Supplemental Phase II Site Assessment Report - Revision 1

Tiger Oil — Summitview 5511 Summitview Avenue Yakima, Washington

for

Washington State Department of Ecology October 20, 2015

Supplemental Phase II Site Assessment Report – Revision 1

Tiger Oil – Summitview 5511 Summitview Avenue Yakima, Washington

for Washington State Department of Ecology

October 20, 2015

523 East Second Avenue Spokane, Washington 99206 509.363.3125

Supplemental Phase II Site Assessment Report – Revision 1

Tiger Oil – Summitview 5511 Summitview Avenue Yakima, Washington

File No. 0504-101-02

October 20, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Central Region Office 1250 West Alder Street Union Gap, Washington 98903-0009

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Jedidiah R. Sugalski, PE Environmental Engineer

Bruce D. Williams Principal

JRS:BDW:tlm:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	SCOPE OF SERVICES	2
4.0	FIELD ACTIVITIES	3
4.1.	Soil Borings	3
4.2.	Monitoring Well Installation	5
4.3.	Subsurface Conditions	6
4.4.	Groundwater Monitoring	7
4.4.2	L. Monitoring Well Headspace Vapor Monitoring	7
4.4.2	2. Groundwater Elevation Monitoring	7
5.0	CHEMICAL ANALYTICAL RESULTS	8
5.1.	Soil Chemical Analytical Results	8
5.2.	Groundwater Chemical Analytical Results	9
5.2.2	L. Direct-Push Borings	9
5.2.2	2. Groundwater Monitoring Wells	9
5.3.	Natural Attenuation Parameters	10
5.4.	Quality Assurance/Quality Control Summary	11
6.0	SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS	
6.1.	Soil Assessment	11
6.2.	Groundwater Assessment	12
6.3.	Chemical Analytical Results and Interpretations	12
6.3.2	L. Soil	12
6.3.2	2. Groundwater	13
6.4.	Recommendations	
7.0	REFERENCES	13

LIST OF TABLES

Table 1. Summary of Groundwater Field Parameters
Table 2. Summary of Groundwater Level Measurements
Table 3. Summary of Chemical Analytical Results – Soil
Table 4. Summary of Chemical Analytical Results – Soil PAHs
Table 5. Summary of Chemical Analytical Results – Groundwater from Soil Borings
Table 6. Summary of Chemical Analytical Results – Groundwater
Table 7. Summary of Chemical Analytical Results – Groundwater PAHs
LIST OF FIGURES
Figure 1. Vicinity Map
Figure 2. Site Plan and Sample Locations

- Figure 3. Groundwater Elevations March 16-18, 2015
- Figure 4. Groundwater Elevation and Intrepreted Flow Direction, May 19, 2015
- Figure 5. Subsurface Cross Section A-A' and PID Readings
- Figure 6. Subsurface Cross Section B-B' and PID Readings

LIST OF FIGURES (CONTINUED)

Figure 7. Subsurface Cross Section C-C' and PID Readings Figure 8. Subsurface Cross Section D-D' and PID Readings

APPENDICES

Appendix A. Field Methods and Boring Logs Figure A-1. Key to Exploration Logs Figures A-2 through A-21. Logs of Borings Figures A-22 and A-23. Logs of Monitoring Wells

Appendix B. Laboratory Reports

Appendix C. Well Survey Report

Appendix D. Report Limitations and Guidelines for Use

ACRONYMS AND ABBREVIATIONS

- bgs below ground surface
- BTEX benzene, toluene, ethylbenzene and xylene
- COCS contaminants of concern
- °C degrees Celsius
- DO dissolved oxygen
- DOT U.S. Department of Transportation
- DRPH diesel-range petroleum hydrocarbons
- Ecology Washington State Department of Ecology
- EDB ethylene dibromide
- EDC 1,2-dichloroethane
- Environmental West Environmental West Explorations, Inc.
- EPA Environmental Protection Agency
- ESA environmental site assessment
- eV electron volt
- GeoEngineers GeoEngineers, Inc.
- GPS global positioning system
- GRPH gasoline-range petroleum hydrocarbons
- IDW Investigation-derived waste
- LCS laboratory control sample
- LCSD laboratory control sample duplicate
- mg/L milligrams per liter
- mg/kg milligrams per kilogram
- mm millimeter
- MRL Method Reporting Limit
- MS matrix spike
- MSD matrix spike duplicate
- MTBE methyl tertiary-butyl ether
- MTCA Model Toxics Control Act
- NAD83 North American Datum of 1983
- NAVD88 North American Vertical Datum of 1988
- ntu nephelometric turbidity units

ACRONYMS AND ABBREVIATIONS (CONTINUED)

- ORPH oil-range petroleum hydrocarbons
- PAHs polycyclic aromatic hydrocarbons
- PID photoionization detector
- PLS PLS, Inc.
- ppm parts per million
- PVC polyvinyl chloride
- QAPP Quality Assurance Project Plan
- QA/QC Quality Assurance/Quality Control
- RPD relative percent difference
- SAP Sampling and Analysis Plan
- SDG sample delivery group
- SG silica gel
- TestAmerica TestAmerica Laboratories, Inc.
- TOC total organic carbon
- TPH total petroleum hydrocarbons
- µg/L micrograms per liter
- µg/kg micrograms per kilogram
- UST underground storage tank
- VOCs volatile organic compounds
- WAC Washington Administrative Code

1.0 INTRODUCTION

This report describes soil and groundwater assessment activities conducted in March, April and May 2015 at the Tiger Oil – Summitview site at 5511 Summitview Avenue in Yakima, Washington (herein designated "site"). The site is located as shown in the attached Vicinity Map, Figure 1.

Activities conducted as part of the assessment included:

- Advancing nine sonic borings and collecting soil and grab groundwater samples in March 2015;
- Advancing six direct-push borings and collecting soil and grab groundwater samples in April 2015;
- Advancing five sonic borings in Summitview Avenue south of the property and collecting soil and grab groundwater samples in April 2015;
- Advancing two hollow-stem auger boring using a limited access drill rig and installing monitoring wells in the borings; and
- Collecting groundwater samples for the second quarter 2015 groundwater monitoring event.

This report includes a brief site description, our scope of services, a description of field activities, a summary of chemical and analytical results and our interpretations and recommendations. Assessment activities were conducted in general accordance with the approved work plan (GeoEngineers, 2014) and supplemental monitoring well installation memo (GeoEngineers, 2015b). Our services were performed under Washington State Department of Ecology (Ecology) Contract No. C1100145, GeoEngineers Proposal No. 0504-101-02, dated February 24, 2015, and Work Assignment No. C11145RR.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is located at 5511 Summitview Avenue in Yakima, Washington. The site is bordered by arterial roadways Summitview Avenue to the south and North 56th Avenue to the west as shown on Site Plan and Sample Locations, Figure 2. A paved alley way is located to the north of the property and provides access to the bank building located to the east of the property.

The site operated as a retail gasoline station and convenience store until closure in 2001. The property contains two buildings and two historic fuel dispenser islands. Buildings at the property include the larger former convenience store in the northeast corner of the site and a smaller former satellite pay station in the southwest corner of the property. The convenience store has a glass face facing south near the former main entrance. Observations of the building interior from the glass face indicate the presence of moisture and organic vegetation on the floor of the building. Former fuel dispenser islands are located in the south and west areas of the property. A single tank pit was located south of the former convenience store between the convenience store and the southern fuel dispenser island. The property is generally paved, except where three former underground storage tanks (USTs) were removed.

In 2005, three USTs were decommissioned and removed from the property. Underground fuel delivery lines were drained and capped with quick setting cement and the tank excavation was backfilled with excavated soil and imported sand, gravels and cobbles. The tanks removed from the property included:

- One, 20,000-gallon steel regular gasoline tank
- Two, 10,000-gallon steel unleaded gasoline tanks

According to the UST decommissioning and site assessment report (Tetra Tech, 2005), visual observations did not indicate holes in the steel tanks; however, examination of the underlying soil indicated possible historic spillage associated with fill tubes for the 20,000-gallon and center 10,000-gallon USTs. Soil samples collected during the tank removal in 2005 indicated petroleum hydrocarbon concentrations greater than Model Toxics Control Act (MTCA) Method A cleanup criteria in the bottom of the tank pit.

Gasoline range petroleum hydrocarbons (GRPH), benzene, toluene, ethylbenzene and xylene (BTEX) and lead were identified approximately 11 to 15 feet below ground surface (bgs) in the soil of the tank beds during the tank removal site assessment. A follow up assessment for the dispensers and product lines indicated concentrations of GRPH and BTEX greater than MTCA Method A cleanup criteria at the western most fuel dispenser island at a depth of 3½ feet (Wayne Perry, 2005). Samples taken along the product lines and at the southern fuel dispenser island did not indicate GRPH or BTEX greater than laboratory detection limits (Wayne Perry, 2005). Approximate locations of the subsurface product lines are shown on Figure 2.

In 2014, GeoEngineers Inc. (GeoEngineers) conducted additional assessment activities in order to confirm the presence and extents of contamination identified during the 2005 UST removal. The 2014 assessment activities included advancing six direct-push borings, collecting groundwater samples from temporary wells installed in two of the direct-push borings where groundwater was encountered, installing three groundwater monitoring wells with flush mount monuments and collecting quarterly groundwater samples from each of the wells beginning in September 2014.

The 2014 assessment activities indicated the presence of GRPH, BTEX and naphthalenes exceeding MTCA Method A cleanup criteria in soil at SVDP-1, SVDP-2 and SVMW-3 (GeoEngineers, 2015a, 2015c, 2015d). Groundwater laboratory analytical results indicated GRPH, diesel-range petroleum hydrocarbons (DRPH), benzene, xylenes and naphthalenes were present at concentrations exceeding MTCA Method A cleanup criteria in SVMW-3, located south of the former tank pit and south fuel dispenser island. Analytical results of groundwater collected from SVMW-2 (located south of the subject property across Summitview Avenue) did not indicate the presence of petroleum hydrocarbons. Monitoring well SVMW-1, installed upgradient of the fuel dispenser islands, was screened in a non-water bearing subsurface stratum and has provided limited groundwater information to date. Exploration locations and cleanup criteria exceedances are shown in Figure 2.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Sampling and Analysis Plan (SAP) (GeoEngineers, 2014), to guide assessment activities. A follow up memo describing additional assessment activities was provided on March 10, 2015 (GeoEngineers, 2015b). Site assessment activities included:

- Advancing 20 direct-push and sonic soil borings (SVDP-7 through SVDP-26);
- Observing and documenting subsurface soil conditions for each boring;
- Conducting field screening activities and collecting soil and groundwater samples from the borings;

- Submitting selected soil and groundwater samples from the soil borings for laboratory chemical analysis;
- Installing two groundwater monitoring wells at the site (SVMW-4 and SVMW-5);
- Observing and documenting subsurface soil conditions and construction details for each monitoring well;
- Conducting field screening activities and collecting soil samples during the monitoring well installation;
- Submitting selected soil samples from the well installation for laboratory chemical analysis;
- Developing the new groundwater monitoring wells using surge and purge techniques;
- Surveying the new groundwater monitoring wells for horizontal and vertical references;
- Conducting the 2015 second quarter groundwater monitoring event; and
- Preparing investigation-derived waste (IDW) for disposal.

4.0 FIELD ACTIVITIES

Soil borings and well installations at the site were conducted in four separate mobilizations. For each drilling program, locations were marked in the field and a one-call utility locate was requested before equipment was mobilized to the site. A private utility locator (Utilities Plus, LLC) was contracted to locate site utilities near proposed drilling locations before drilling activities commenced. Soil borings, well construction and well development activities were conducted by Environmental West Explorations, Inc. (Environmental West). Locations of the borings and groundwater monitoring wells were established in the field using a hand-held iPad with global positioning system (GPS) software before drilling commenced. The horizontal accuracy of the hand-held unit is within about 10 feet.

GeoEngineers observed and documented soil boring activities for compliance with the previously prepared guidance documentation (GeoEngineers, 2014 and 2015b). GeoEngineers collected soil samples from the borings as they were advanced and groundwater samples were collected from temporary wells when groundwater was encountered. The two new groundwater monitoring wells were installed and developed by Environmental West and surveyed by a licensed professional surveyor, PLS, Inc. (PLS). IDW from assessment activities was contained in 55-gallon drums, labeled and stored on the subject property pending profiling and disposal.

Soil borings and well locations are shown on Figure 2. Samples collected for analytical testing were submitted to TestAmerica Laboratories, Inc. (TestAmerica) and analyzed in general accordance with the project documents. Detailed descriptions of the soil borings, well installations and groundwater sampling events are provided below.

4.1. Soil Borings

Twenty borings (SVDP-7 through SVDP-26) were advanced at the site between March 10 and April 7, 2015. Boring logs are provided in Appendix A, Figures A-2 through A-21. SVDP-7 through SVDP-15 were advanced March 16 through 18, 2015 using a S1 Schramm Sonic Rig operated by Environmental West. SVDP-16 through SVDP-21 were advanced on April 2, 2015 using a truck-mounted Geoprobe 6600. SVDP-22 through SVDP-26 were advanced on April 7, 2015 using the S1 Schramm Sonic Rig. Approximate locations are provided on Figure 2. In general, GeoEngineers followed the process below during the drilling program:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each explorations before drilling;
- Subcontracted Environmental West to drill the direct-push soil borings at the site;
- Observed and documented subsurface soil conditions for each boring;
- Collected continuous soil samples and select sub-samples were field-screened using visual observations, water sheen and headspace vapor measurements with a photoionization detector (PID) to assess possible presence of petroleum-related contaminants;
- Collected grab water samples from temporary wells installed in 15 borings where groundwater was encountered;
- Backfilled exploratory boreholes with bentonite and repaired the surface with cold patch asphalt as needed; and
- Submitted 22 soil samples and 15 groundwater samples to TestAmerica of Spokane, Washington for chemical analysis.

Soil borings were generally advanced until they intercepted a clay layer underlying the site which generally occurred at a depth of approximately 18 to 22 feet bgs. Groundwater was encountered in each of the borings with the following exceptions:

- SVDP-7;
- SVDP-8;
- SVDP-14;
- SVDP-22; and
- SVDP-23.

One soil sample from each boring was submitted to TestAmerica for analysis. Logs of the soil borings are provided in Appendix A. Groundwater samples were collected and submitted to TestAmerica for analysis from temporary wells in borings where water was encountered. Groundwater was sampled by installing a 5-foot-long temporary well screen into the bottom of the boring and lowering polyethylene tubing into the temporary well.

For sonic borings SVDP-7 through SVDP-15, the borings were backfilled with bentonite up to the estimated clay layer before inserting the temporary well screen. Temporary wells were purged using a peristaltic pump for approximately 6 to 15 minutes before sampling. Water was routed through a water quality meter and flow through cell during well purging and then the flow through cell was disconnected and a sample of the water was collected for chemical analysis. Soil and groundwater samples were placed into coolers containing ice and delivered to TestAmerica under chain-of-custody for chemical analysis. Soil cuttings from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

For soil borings SVDP-7 through SVDP-15, groundwater (if encountered) was allowed to stabilize overnight after the borings were drilled. The following day, depth to groundwater measurements were collected to estimate groundwater elevation and flow direction. Before leaving the site, SVDP-7 through SVDP-15 were surveyed for elevation and referenced to SVMW-3 by the field engineer. Estimated flow direction was used to inform the placement of monitoring wells SVMW-4 and SVMW-5 at the site. The following table summarizes the depth to water and corresponding calculated water surface elevation for the first round borings.

Location	Depth to Water (feet)	Elevation (Feet)
SVMW-2	17.40	1198.19
SVMW-3	18.00	1200.38
SVDP-7	Dry	NA
SVDP-8	Dry	NA
SVDP-9	17.90	1200.86
SVDP-10	18.07	1200.80
SVDP-11	17.95	1201.02
SVDP-12	Not measured	NA
SVDP-13	18.41	1201.50
SVDP-14	Dry	NA
SVDP-15	Not Measured	NA

MARCH 16 THROUGH 18 GROUNDWATER WATER LEVEL MEASUREMENTS

As shown on Groundwater Elevations March 16-18, 2015, Figure 3, groundwater flow direction was south during the March 2015 event. This flow direction is consistent with the groundwater flow direction estimated using the May 19, 2015 groundwater monitoring data (Groundwater Elevation and Interpreted Flow Direction May 19, 2015, Figure 4) after MW-4 and MW-5 were installed.

4.2. Monitoring Well Installation

Two groundwater monitoring wells (SVMW-4 and SVMW-5) were installed at the site on April 27, 2015 using a limited access Little Brutus hollow-stem auger drill rig operated by Environmental West. Monitoring well logs are provided in Appendix A, Figures A-22 and A-23. Wells were installed by advancing a 4.25-inch-diameter, hollow-stem auger. Approximate well locations are provided on Figure 2. In general, GeoEngineers followed the process below:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each exploration before drilling;
- Subcontracted Environmental West to drill and construct the groundwater monitoring wells;
- Observed and documented subsurface soil conditions for each monitoring well;
- Collected soil samples during drilling. Select sub-samples were field-screened using visual observations, water sheen and headspace vapor measurements with a PID to assess possible presence of petroleum-related contaminants;

- Developed the groundwater monitoring wells using surging and pumping techniques;
- Submitted three soil samples (one from each well location and a duplicate from SVMW-5) to TestAmerica for chemical analysis; and
- Contracted with PLS to complete a horizontal and vertical survey of the wells.

SVMW-4 was advanced to a depth of 24-feet bgs. Water was encountered at approximately 22 feet during drilling. The well was installed using 2-inch-diameter, schedule 40 polyvinyl chloride (PVC) pipe and screened from about 13 to 23 feet bgs.

SVMW-5 was advanced to a depth of approximately 26½ feet bgs. Water was observed at about 20 feet during drilling. The hole was backfilled with bentonite chips to 24 feet bgs and then well construction materials were placed. The well was installed using 2-inch-diameter, schedule 40 PVC pipe and screened from about 14 to 24 feet bgs.

Wells were packed with silica-sand up to about 2 feet above the screen, sealed with bentonite chips to about 2¹/₂ foot bgs and then capped with a cement well monument. Wells were developed by Environmental West on April 27, 2015 using surge and purge methods. Soil cuttings and development water from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

Discrete soil samples were collected from each monitoring well boring. Soil samples were field-screened to evaluate for petroleum hydrocarbons, using a PID and sheen pan. One soil sample collected just above the clay interface from each well location was selected for chemical analysis. A duplicate sample was collected from SVMW-5. Soil samples were placed into coolers containing ice and then delivered to TestAmerica under chain- of-custody for chemical analysis.

The two new groundwater monitoring wells installed at the site were surveyed on April 30, 2015 by PLS. The north edge of the top of the PVC casing, and north side of the top of the well monument were surveyed for horizontal and vertical coordinates relative to North American Datum of 1983 (NAD83) Washington South Zone and North American Vertical Datum of 1988 (NAVD88), respectively. PLS also marked the north side of each well casing for future depth to groundwater measurements. Well survey information is provided in Appendix C.

4.3. Subsurface Conditions

Subsurface cross sections were developed using the information from the boring logs provided in Appendix A. Subsurface Cross Section A-A' and PID Readings, Figure 5, Subsurface Cross Section B-B' and PID Readings, Figure 6, Subsurface Cross Section C-C' and PID Readings, Figure 7 and Subsurface Cross Section D-D' and PID Readings Figure 8 represent interpreted subsurface conditions across the site. In general, brown silt with varying amounts of sand was observed below the asphalt and base coarse aggregates. A clay confining layer was observed at depths ranging from about 18 to 22 feet bgs. Above the observed clay layer, more permeable lenses of sand and gravel were present, which appear to be the predominant water bearing zone across the site. As shown in Figure 7, the confining clay layer appears to increase in elevation from west to east. This increase in elevation of the clay layer was further demonstrated by the lack of water observed in SVDP-6, SVDP-7, SVDP-8, SVDP-14, SVDP-22 and SVDP-23. The anomaly to this was the groundwater observed in SVDP-15. Groundwater was encountered in SVDP-15 near a clay sand interface.

4.4. Groundwater Monitoring

Groundwater monitoring wells SVMW-2, SVMW-3, SVMW-4 and SVMW-5 were sampled on May 19, 2015. There was not enough water to sample SVMW-1. The following sections provide a detailed description of the field activities conducted as part of the groundwater monitoring event.

Groundwater monitoring wells were purged and sampled using dedicated tubing, a peristaltic pump and standard low-flow sampling methodology (U.S. Environmental Protection Agency [EPA], 1996). Groundwater quality parameters were usually measured at 3-minute intervals during well purging and samples were generally collected when water quality parameter stabilized in conformance with the criteria presented in Appendix A or 30 minutes of purging had elapsed.

Laboratory prepared sample containers were filled, placed into a cooler on ice and submitted to the analytical laboratory for chemical analysis. One sample from each well was measured for soluble ferrous iron (Fe2+) in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method. A duplicate sample was collected from SVMW-2. Chemical analytical results are discussed in "Section 5.2.2." Groundwater field parameters are provided in Summary of Groundwater Field Parameters, Table 1. Purge water generated during groundwater sampling was drummed, labeled and stored on the subject property pending profiling and disposal.

4.4.1. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapors were measured on May 19, 2015 using a PID. Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapors ranged from 6.1 parts per million (ppm) in SVMW-2 to 284 ppm in SVMW-3, as shown in Table 1.

4.4.2. Groundwater Elevation Monitoring

Static depth to groundwater was measured in monitoring wells SVMW-1 through SVMW-5 on May 19, 2015 using an electronic water level indicator. Depth to groundwater ranged from 17.13 feet (SVMW-2) to 18.08 feet (SVMW-5) below the top of well casing, as shown in Summary of Groundwater Level Measurements, Table 2. Groundwater elevations ranged from about 1,198.46 feet in SVMW-2 to 1,200.39 feet in SVMW-4. In monitoring wells SVMW-2 and SVMW-3, groundwater elevations increased on average approximately 0.24 feet relative to the previous monitoring event conducted during March 2015.

Groundwater elevations in wells SVMW-2 through SVMW-5 appear to be representative of the shallow perched aquifer beneath the site. Based on groundwater elevations measured in SVMW-2 through SVMW-5 on May 19, 2015, groundwater flow in the shallow unconfined aquifer beneath the property was generally south, as shown in Figure 4. Groundwater gradient was estimated at 0.03 feet per foot (158.4 feet per mile) during the March 16 through 18, 2015 direct-push sampling program and 0.02 feet per foot (105.6 feet per mile) during the May 19, 2015 sampling event.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Soil Chemical Analytical Results

One soil sample from borings SVDP-7 through SVDP-26, SVMW-4 and SVMW-5 was submitted to TestAmerica for chemical analysis. Soil samples were placed in coolers with wet ice immediately after sampling and were kept on ice until delivery to the analytical laboratory. Soil samples were submitted for the following chemical analyses:

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- BTEX by (EPA 8260C);
- Polycyclic aromatic hydrocarbons (PAHs) (EPA 8270D); and
- Total Lead (EPA 6010C).

Soil samples from SVDP-16 through SVDP-26 were also submitted for analysis of methyl tertiary-butyl ether (MTBE) by EPA Method 8260C.

Soil analytical results are summarized and compared to MTCA Method A cleanup criteria in Summary of Chemical Analytical Results - Soil, Table 3, and Summary of Chemical Analytical Results - Soil PAHs, Table 4. Chemical analytical results for the submitted soil samples are generally summarized by the following:

- GRPH was detected in samples from SVDP-7, SVDP-9, SVDP-12, SVDP-19, SVDP-22, SVDP-24, SVDP-25 and SVDP-26 at concentrations of 750 milligrams per kilogram (mg/kg), 1,400 mg/kg, 1,400 mg/kg, 100 mg/kg, 4,500 mg/kg, 2.400 mg/kg, 160 mg/kg and 42 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 30 mg/kg when benzene is detected at the site.
- Ethylbenzene was detected in samples from SVDP-7, SVDP-9, SVDP-12 and SVDP-24 at concentrations of 14 mg/kg, 13 mg/kg, 22 mg/kg and 24 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 6 mg/kg.
- Naphthalene analyzed by EPA Method 8260C was detected in the samples from SVDP-7, SVDP-22 and SVDP-24 at concentrations of 20 mg/kg, 6.4 mg/kg and 11 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 5 mg/kg.
- Naphthalene analyzed by EPA Method 8270D was detected in the sample from SVDP-7 at a concentration of 10,000 micrograms per kilogram (µg/kg), which is greater than the MTCA Method A cleanup criteria for unrestricted land use of 5,000 µg/kg for naphthalenes.
- 2-Methylnaphthalene was detected in the samples from SVDP-7 and SVDP-12 at concentrations of 5,400 µg/kg and 24,000 µg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 5,000 µg/kg for naphthalenes.
- 1-Methylnaphthalene was detected in the sample from SVDP-12 at a concentration of 11,000 µg/kg, which is greater than the MTCA Method A cleanup criteria for unrestricted land use of 5,000 µg/kg for naphthalenes.

- Toluene was detected in samples from SVDP-7, SVDP-9, SVDP-12 and SVDP-24 at concentrations of 11 mg/kg, 8.5 mg/kg, 12 mg/kg and 9.3 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 7 mg/kg.
- Total xylenes were detected in samples from SVDP-7, SVDP-9, SVDP-12, SVDP-22 and SVDP-24 at concentrations of 96 mg/kg, 69 mg/kg, 130 mg/kg, 22 mg/kg and 97 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 9 mg/kg.
- Other site contaminants of concern (COCs) were either not detected or were detected at concentrations less than MTCA Method A cleanup criteria in the samples from SVDP-7, SVDP-9, SVDP-12, SVDP-22 and SVDP-24.
- Site COCs were either not detected or were detected at concentrations less than MTCA Method A cleanup criteria in the samples from other site explorations.

Laboratory analytical reports are included in Appendix B.

5.2. Groundwater Chemical Analytical Results

5.2.1. Direct-Push Borings

Groundwater was encountered and sampled from borings SVDP-9 through SVDP-13, SVDP-15 through SVDP-21, and SVDP-24 through SVDP-26 between March 17 and April 7, 2014. Groundwater samples were analyzed for GRPH, DRPH and heavy oil-range petroleum hydrocarbons (ORPH) using Northwest Method NWTPH-HCID. Analytical results are summarized by the following:

- GRPH was detected in the samples from SVDP-9, SVDP-12, SVDP-19, SVDP-24 and SVDP-25 at concentrations of 8.3 milligrams per liter (mg/L), 6.8 mg/L, 1.5 mg/L, 110 mg/L and 3.6 mg/L, respectively.
- DRPH was detected in the samples from SVDP-9, SVDP-10, SVDP-12, SVDP-24 and SVDP-25 at concentrations of 2.8 mg/L, 1.0 mg/L, 2.1 mg/L, 30 mg/L and 2.3 mg/L, respectively.
- ORPH was detected in the samples from SVDP-16 and SVDP-24 at concentrations of 0.82 mg/L and 0.9 mg/L, respectively.
- GRPH, DRPH and ORPH were either not detected or were detected at concentrations less than their MTCA Method A cleanup criteria other than noted above.

Analytical results for grab groundwater samples collected from the soil soils borings are summarized in Table 5.

5.2.2. Groundwater Monitoring Wells

Analytical results for samples collected on May 19, 2015 are tabulated and compared to previous results and MTCA Method A cleanup criteria in Summary of Chemical Analytical Results – Groundwater, Table 6 and Summary of Chemical Analytical Results – Groundwater PAHs, Table 7. TestAmerica's laboratory report is provided in Appendix B.

The following is a summary of the May 19, 2015 analytical data:

- GRPH was detected at a concentration of 14,000 micrograms per liter (µg/L) in the sample collected from SVMW-3 and 2,100 µg/L in SVMW-5, which is greater than the MTCA Method A cleanup criteria of 800 µg/L (when benzene is present).
- DRPH was detected at a concentration of 1.0 mg/L in the sample collected from SVMW-3, which is greater than the MTCA Method A cleanup criteria of 0.5 mg/L. DRPH analyzed with silica gel cleanup was detected at a concentration of 0.99 mg/L in the sample from SVMW-3.
- Benzene was detected at a concentration of 25 µg/L in the sample collected from SVMW-3, which exceeds the MTCA Method A cleanup criteria of 5 µg/L.
- Ethylene dibromide (EDB) was not detected in the sample collected from SVMW-3; however the reporting limit was greater than the MTCA Method A cleanup criteria of 0.01 μg/L.
- Naphthalene was detected at a concentration of 290 μg/L in the sample collected from SVMW-3, which is greater than the MTCA Method A cleanup criteria of 160 μg/L.
- Total xylenes were detected at a concentration of 2,900 μg/L in the sample collected from SVMW-3, which is greater than the MTCA Method A cleanup criteria of 1,000 μg/L.
- 1,3,5-trimethylbenzene was detected at a concentration of 240 µg/L in the sample collected from SVMW-3 and 100 µg/L in SVMW-5 which is greater than the MTCA Method B cleanup criteria of 80 µg/L.
- Other analytes were either not detected or were detected at concentrations less than their applicable cleanup criteria in SVMW-3.
- Site COCs were either not detected or were detected at concentrations less than their applicable cleanup criteria in the sample from SVMW-2.

Analytical results of the groundwater collected from well SVMW-3 (including a duplicate sample) generally were similar to results from the March 2015 sampling event, with the exception of DRPH. The concentrations of DRPH in the samples from SVMW-3 roughly doubled from the December 2014 to the March 2015 event.

5.3. Natural Attenuation Parameters

In addition to the COCs, groundwater samples were analyzed for natural attenuation parameters and field parameters. Results of laboratory-analyzed natural attenuation parameters are provided in Table 6. Field measurement results are provided in Table 1. Reported field parameters reflect conditions at the conclusion of well purging during low-flow sampling.

Dissolved oxygen (DO) measurements during the May 19, 2015 groundwater monitoring event were most likely increased artificially because of an equipment malfunction. Nitrate and sulfate concentrations in SVMW-3 and SVMW-5 are less than concentrations in SVMW-2 and SVMW-4, which might indicate that biodegradation is occurring near SVMW-3 and SVMW-5.

The water quality of the shallow aquifer might naturally be of low quality because the water table is believed to have a thickness of about 2 feet and subsurface soil conditions were generally fine-grained silts and clays with lesser amounts of sand and gravel. This makes it difficult to evaluate natural attenuation parameters and effects from outside influences like petroleum hydrocarbons, lawn watering and fertilizer applications.

5.4. Quality Assurance/Quality Control Summary

GeoEngineers reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of project data quality goals. Results of our review, as well as our evaluation of data suitability, are provided in Appendix B. In summary, it is our opinion that the quality of the analytical data generally is acceptable for the intended use. The following items were noted in the data validation report:

- SVDP-21 (20-21) The percent recoveries for surrogates nitrobenzene-d5 and 2-Fluorobiphenyl were less than the control limits. The reporting limits for all target analytes were qualified as estimated (UJ) in this sample.
- SVMW-4 (22.5-23) and SVMW-5(22.5-23) The sample cooler temperature recorded at the laboratory was 8.2 degrees Celsius (°C) for the samples. The samples were put on ice when they were collected (4/27/2015) and ice was added every day until they were received by the laboratory (4/29/2015). The out-of-compliance temperature was very likely isolated to the day the samples were received at the laboratory. For this reason, this temperature should not affect the sample analytical results.
- SVDP-24:GW, SVDP-25:GW and SVDP-26:GW (NWTPH-HCID) The percent recovery for surrogate n-Triacontane-d62 was less than the control limits. The positive results and reporting limits for all target analytes were qualified as estimated (J/UJ) in these samples.
- SVDP-24:GW and SVDP-25:GW (NWTPH-HCID) The DRPH and ORPH results for these samples may be influenced by the relative concentration of GRPH in the samples. For this reason, the positive results for DRPH and ORPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.
- SVDP-7-15 (NWTPH-Dx) A laboratory duplicate analysis was performed on the sample. The relative percent difference (RPD) values for DRPH and ORPH were greater than the control limits. The positive results for these target analytes were qualified as estimated (J) in this sample.
- Samples SVMW-3, Duplicate and SVMW-5 (NWTPH-Dx) The positive results for DRPH may be influenced by the relative concentration of GRPH in these samples. For this reason, the positive results for DRPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.

6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS

6.1. Soil Assessment

Observed subsurface conditions indicate the site is generally underlain by fine sand, silts and clays with occasional gravel. Soil observed in the borings indicate a low permeability confining layer at a depth of approximately 18 to 22 feet bgs, that decreases in depth from west to east.

Boring logs indicate a coarser lens of gravel and sands is overlying the low permeability clay layer observed near 20 feet bgs. The coarser gravels and sands over the low permeability layer appear to be the predominant water bearing zone of the subsurface. The log for MW-1 indicates that the low permeable layer may be approximately 12 feet thick, before coarser sands and gravels are encountered. Cross sections of the subsurface are provided in Figures 5 through 8.

6.2. Groundwater Assessment

Observations at the site indicate that groundwater is found in coarser sands and gravels lenses between the low permeability clay layer and near surface silt. The low permeability layer generally decreases in depth from west to east and therefore groundwater was not observed in borings on the east side of the site, with the exception of SVDP-15. The shallow clay layer was intercepted by a sand lens from about 19 to 22 feet bgs where water was encountered. The clay lens was encountered again at 22 feet bgs and continued until the boring termination depth of 23 feet bgs. Groundwater contours and elevations are provided in Figures 3 and 4.

6.3. Chemical Analytical Results and Interpretations

6.3.1. Soil

Soil analytical results indicate the presence of GRPH, BTEX and naphthalenes exceeding MTCA Method A cleanup criteria at the site. GRPH, BTEX and naphthalenes were not detected in SVDP-11, SVDP-13, SVDP-20 and SVDP-21. This suggests that there may have been at least two release points at the site. One release may have originated from the west fuel island and traveled south as demonstrated by detections of site COCs in SVDP-12, SVDP-19 and SVDP-26. Impacted soil observed along this path was generally at the soil water interface, and field screening of soil did not indicate COCs near in vadose zone. It is possible that an unidentified area of vadose contamination exists beneath the west fuel island, given that during the dispenser line assessment in 2005, site COCs were detected, however they were not observed in SVDP-3.

The second source area appears to be near SVDP-1. Shallower vadose zone contamination was identified in this boring. Additional borings down gradient of SVDP-1 identified site COCs near the soil groundwater interface and not in the vadose zone. Given the proximity of the product piping lines and former tank pit, it is possible that COCs identified in SVDP-1, SVDP-2, SVMW-3, SVDP-9, SVDP-22, SVDP-24 and SVDP-25 originated from either the product delivery lines or the former tank pit. The 2005 tank removal assessment report indicated that holes were not observed in the tanks and soil contamination was most likely from spillage associated with the tank fill tubes (Tetra Tech, 2005), therefore the most likely cause of the petroleum release was most likely the product lines. It should be noted that other Tiger Oil Sites at both 1606 East Nob Hill Boulevard and 1808 North First Street had documented releases from the product piping and installation procedures of the product piping were suspected as the cause.

It is unknown if the COCs identified in SVDP-7 were a result of spillage from the UST fill tubes or leakage from the product delivery lines or tanks. It is possible that the contamination observed in SVDP-7 indicates a third release area, possibly from the fill tubes.

From the source areas, petroleum hydrocarbons appear to migrate along the soil water interface above the clay confining layer. With the exception of SVDP-1 and to a lesser extent SVDP-7, field screening and chemical analysis has generally indicated that contamination exists in the more permeable soil above the clay confining layer. Potential source areas and estimated contamination extents are provided on Figure 2.

The borings advanced in Summitview Avenue, indicate that petroleum hydrocarbons have moved downgradient and extend under Summitview Avenue. Soil collected from SVMW-2, as well as groundwater samples, have not exceeded MTCA Method A cleanup criteria; however naphthalene was detected in SVMW-2 less than MTCA Method A criteria during the March 2015 groundwater sampling event. The

downgradient edge of the contamination plume has not been fully defined; however it is believed that that it terminates somewhere between the row of borings established by SVDP-22 through SVDP-26 and downgradient monitoring well SVMW-2.

6.3.2. Groundwater

Groundwater laboratory analytical results indicate GRPH, benzene, xylenes and naphthalenes exceeding MTCA Method A cleanup criteria in SVMW-3, located south of the former tank pit and south fuel dispenser island. GRPH was also detected above MTCA Method A cleanup criteria in SVMW-5. Analytical results of groundwater collected from SVMW-2 located across Summitview Avenue did not indicate the presence of petroleum hydrocarbons. Laboratory analytical results from SVMW-4 did not indicate the presence of petroleum related contaminants and this well appears to be suitable to monitor upgradient groundwater conditions. Quarterly groundwater monitoring results between September 2014 and May 2015 were generally consistent with COC concentrations exceeding MTCA Method A in SVMW-3 for each of the four monitoring events and site COCs generally less than detection limits in SVMW-2, with the exception of naphthalene less than MTCA Method A cleanup criteria during the March 31, 2015 event.

6.4. Recommendations

Soil and groundwater contamination greater than MTCA Method A cleanup criteria was observed south and west of the former tank pit and fuel dispenser island. Further investigation is needed to delineate the extent of contamination at this site. We recommend the following activities to address data gaps at the site:

- Further investigation west and south of the site in order to delineate the extent of contamination. This could be accomplished using direct-push soil borings.
- Additional on-site direct-push probes to attempt to identify shallow petroleum hydrocarbons and source areas. Additional areas of investigation are near both fuel dispenser islands as well as along the product lines between the former USTs and fuel islands. This could be accomplished using direct-push soil borings.
- Possible remedial actions based on the results of continued monitoring.

7.0 REFERENCES

- GeoEngineers, Inc., 2014. "Sampling and Analysis Plan Soil and Groundwater Assessment." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, April 15, 2014.
- GeoEngineers, Inc., 2015a. "Phase II Site Assessment Report, Tiger Oil Summitview, Yakima, Washington." GEI File No. 0504-101-00. January 30, 2015.
- GeoEngineers, Inc., 2015b. "Tiger Oil Data Gap Assessments: Supplemental Work Plan Memorandum." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, March 10, 2015.
- GeoEngineers, Inc., 2015c. "Quarterly Groundwater Monitoring Report, Fourth Quarter 2014." Tiger Oil Summitview, Yakima, Washington. GEI File No. 0504-101-00, March 26, 2015.
- GeoEngineers, Inc., 2015d. "DRAFT Quarterly Groundwater Monitoring Report, First Quarter 2015." Tiger Oil Summitview, Yakima, Washington. GEI File No. 0504-101-00, May 18, 2015.

- Puls, R.W. and Barcelona, M.J., Low-flow (minimal drawdown) ground-water sampling procedures: EPA Ground Water Issue, April 1996, p.1-9.
- Tetra Tech, 2005. "UST Decommissioning and Site Assessment at Tiger Oil Corporation Facility, 5511 Summitview Avenue, Yakima, Washington," March 29, 2005.
- U.S. Environmental Protection Agency, 1996. Region 1, Low stress (low-flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. EPA SOP No. GW 0001, Revision No. 2, July 30, 1996.
- U.S. Environmental Protection Agency, 2008. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency, 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency, 2010. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.
- Washington State Department of Ecology, 2007. Model Toxics Control Act Cleanup Regulations, Washington Administrative Code, Chapter 173-340. November 2007.
- Wayne Perry, 2005. "Results of Underground Piping and Dispenser Island Sampling at Tiger Oil Corporation Facility, 5511 Summitview in Yakima, Washington," December 14, 2005.

Summary of Groundwater Field Parameters¹

Tiger Oil Summitview

Yakima, Washington

				Specific	Dissolved				Soluble	Monitoring Well
Well	Date		Temperature	Conductivity	Oxygen	ORP - Field ²	ORP - Normalized ³	Turbidity	Ferrous Iron	Headspace ⁵
Number	Collected	рН	(°C)	(mS/cm)	(mg/L)	(mV)	(mV)	(NTU)	(mg/L)	(ppm)
	09/18/14	NM^4	NM^4	NM^4	NM ⁴	NM^4	NA	NM^4	NM^4	0.0
SVMW-1	12/12/14	NM^4	NM ⁴	NM^4	NM ⁴	NM^4	NA	NM^4	NM ⁴	0.0
3000-1	03/31/15	NM^4	NM ⁴	NM^4	NM^4	NM^4	NA	NM^4	NM ⁴	0.0
	05/19/15	NM^4	NM ⁴	NM^4	NM ⁴	NM^4	NA	NM^4	NM^4	NM ⁴
	09/18/14	6.97	16.78	0.75	1.11	170	372	0.8	0.0	0.1
SVMW-2	12/12/14	6.88	16.93	0.80	3.67	210	412	0.3	0.0	0.0
5010100-2	03/31/15	6.92	16.52	0.80	1.68	247	449	0.9	0.0	0.0
	05/19/15	7.04	18.70	0.71	NR ⁶	132	333	17.2	0.4	6.1
	09/18/14	6.81	17.14	0.78	0.96	-10	192	1.5	1.5	3.8
SVMW-3	12/12/14	6.83	17.07	0.80	1.09	-70	132	5.0	1.0	0.2
3010100-3	03/31/15	6.80	16.21	0.79	0.18	-148	55	3.2	1.8	0.1
	05/19/15	6.84	19.29	0.72	NR ⁶	-104	96	0.1	2.0	284
SVMW-4	05/19/15	7.10	18.04	0.70	NR ⁶	148	349	60.3	0.1	1.9
SVMW-5	05/19/15	7.02	22.38	0.75	NR^{6}	-72	125	81.8	1.6	32.2

Notes:

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

²Field ORP values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Not measured (NM) due to lack of water in well.

⁵Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

⁶Field dissolved oxygen readings not recorded (NR) because of a possible equipment malfunction

ORP = Oxidation reduction potential; °C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NM = not measured

NA = not applicable; NTU = nephelometric turbidity units; ppm = parts per million

Table 2Summary of Groundwater Level MeasurementsTiger Oil SummitviewYakima, Washington

			Top of			Depth to	Groundwater	Change in
Well	Grid Northing ¹	Grid Easting ¹	Casing Elevation ²	Screen Elevation ²	Date	Groundwater ³	Elevation ²	Groundwater
Number	(feet)	(feet)	(feet)	(feet)	Measured	(feet)	(feet)	Elevation ⁴ (feet)
					09/18/14	39.30	NA ⁵	NA
SVMW-1	462054.5	1619556.5	1,220.95	1191.0 to 1181.0	12/12/14	39.49	NA ⁵	NA
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	402034.5	1019550.5	1,220.95	1191.0 (0 1181.0	03/31/15	39.82	NA ⁵	NA
					05/19/15	39.84	NA ⁵	NA
					09/18/14	16.70	1,198.89	NA
SVMW-2	461870.0	1619606.4	1,215.59	1204.6 to 1189.6	12/12/14	16.90	1,198.69	-0.20
3010100-2	401870.0	1019000.4	1,215.59	1204.0 (0 1189.0	03/31/15	17.43	1,198.16	-0.53
					05/19/15	17.13	1,198.46	0.30
					09/18/14	17.20	1,201.18	NA
SVMW-3	461949.3	1619606.4	1,218.38	1208.4 to 1193.4	12/12/14	17.38	1,201.00	-0.18
311110-3	401949.3	1019000.4	1,210.30	1208.4 (0 1193.4	03/31/15	17.97	1,200.41	-0.59
					05/19/15	17.79	1,200.59	0.18
SVMW-4	462028.3	1619576.7	1,220.00	1207.0 to 1197.0	05/19/15	17.99	1,200.39	NA
SVMW-5	461969.3	1619546.4	1,219.09	1205.1 to 1195.1	05/19/15	18.08	1,200.30	NA

Notes:

¹Grid northing and easting are referenced to North American Datum of 1983 (NAD83), Washington State Plane Coordinate System, South Zone.

²Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88). Screen elevations are referenced to the nearest 0.1 foot; other elevations are

referenced to the nearest 0.01 foot.

³Depth to water measurements obtained from the north side of the top of PVC well casing.

⁴Represents change in groundwater elevation from previous monitoring event, as measured in monitoring wells.

⁵Water levels measured in SVMW-1 likely are not representative of general site groundwater conditions, therefore no elevation is reported.

NA = Not Applicable

Summary of Chemical Analytical Results - Soil¹

Tiger Oil Summitview Yakima, Washington

Boring		SVDP-7	SVDP-8	SVDP-9	SVDP-10	SVDP-11	SVDP-12	SVDP-13	SVDP-14	SVDP-15	SVDP-16	SVDP-17	SVDP-18	SVDP-19	SVDP-20
Sample Depth (feet)	Regulatory	15	14	20	19	13	18.5	18	15	13	22-23	19.5-20.5	20-21	20-21	20-21
Date Sampled	Levels ²	03/17/15	03/17/15	03/17/15	03/17/15	03/17/15	03/16/15	03/16/15	03/17/15	03/18/15	04/02/15	04/02/15	04/02/15	04/02/15	04/02/15
Method EPA 8260C - NWTPH-Gx and Volatile Or	ganic Compounds	(mg/kg)					-							-	
Gasoline-range hydrocarbons	30/100 ³	750	<5.7	1,400	30	<5.5	1,400	<5.0	<7.2	<7.7	<5.0	<4.9	<8.7	100	<6.1
Benzene	0.03	< 0.23 ⁶	<0.017	<0.25 ⁶	<0.013	<0.017	<1.5 ⁶	<0.015	<0.022	<0.023	0.029	<0.015	<0.026	<0.020	<0.018
Ethylbenzene	6	14	<0.11	13	<0.084	<0.11	22	<0.10	<0.14	<0.15	<0.099	<0.099	<0.17	<0.14	<0.12
Methyl tert-butyl ether	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.050	<0.049	<0.087	<0.068	<0.061
Naphthalene	5 ⁴	20	<0.23	4.8	<0.17	<0.22	<20 ⁶	<0.20	<0.29	<0.31	<0.20	<0.20	<0.35	<0.27	<0.24
Toluene	7	11	<0.11	8.5	<0.084	<0.11	12	<0.10	<0.14	<0.15	<0.099	<0.099	<0.17	<0.14	<0.12
o-Xylene		29	<0.23	18	<0.17	<0.22	31	<0.20	<0.29	<0.31	<0.20	<0.20	<0.35	<0.27	<0.24
m,p-Xylene	9 ⁵	67	<0.45	51	<0.34	<0.44	95	<0.40	<0.58	<0.62	<0.40	<0.39	<0.70	<0.54	<0.49
Xylenes (total)		96	<0.68	69	<0.51	<0.66	130	<0.60	<0.86	<0.93	<0.60	<0.59	<1.0	<0.81	<0.73
Method NWTPH-Dx - Semivolatile Petroleum Pro	oducts (mg/kg)					-							-	•	
Diesel-range hydrocarbons	2,000	170 J	<12	<17	35	<12	480	<13	<13	<12	<13	<13	<15	<12	<12
Heavy oil-range hydrocarbons	2,000	150 J	<29	<43	97	<30	<88	<31	<34	<30	<32	<32	<36	<30	<31
Method EPA 6010C - Metals Content (mg/kg)													<u>.</u>		
Lead	250	38	9.3	6.8	6.2	7.0	<4.1	4.3	<5.3	5.6	<11	<25	<10	<11	<14

Boring		SVDP-21	SVDP-22	SVDP-23	SVDP-24	SVDP-25	SVDP-26	SVMW-4	SVMW-5
Sample Depth (feet)	Regulatory	20-21	20.5-21	18-18.5	19.5-20	19.5-20	20-20.5	22.5-23	22.5-23
Date Sampled	Levels ²	04/02/15	04/07/15	04/07/15	04/07/15	04/07/15	04/07/15	04/27/15	04/27/15
Method EPA 8260C - NWTPH-Gx and Volatile Organic C	ompounds (mg/kg	()		_				_	
Gasoline-range hydrocarbons	30/100 ³	<6.3	4,500	<5.6	2,400	160	42	<10	<11
Benzene	0.03	<0.019	<0.14 ⁶	<0.017	<0.17 ⁶	<0.019	<0.025	<0.031 ⁶	< 0.034 ⁶
Ethylbenzene	6	<0.13	5.9	<0.11	24	<0.13	<0.16	<0.21	<0.23
Methyl tert-butyl ether	0.1	<0.063	<0.47 ⁶	<0.056	< 0.56 ⁶	<0.063	<0.082	NT	NT
Naphthalene	5 ⁵	<0.25	6.4	<0.22	11	<0.25	<0.33	NT	NT
Toluene	7	<0.13	4.2	<0.11	9.3	<0.13	<0.16	<0.21	<0.23
o-Xylene	9 ⁴	<0.25	4.2	<0.22	29	<0.25	<0.33	<0.42	<0.45
m,p-Xylene	9 ⁴	<0.50	18	<0.45	68	<0.51	<0.66	<0.83	<0.90
Xylenes (total)	9 ⁴	<0.75	22	<0.67	97	<0.76	<0.98	<1.2	<1.4
Method NWTPH-Dx - Semivolatile Petroleum Products (mg/kg)								•
Diesel-range hydrocarbons	2,000	<12	110	15	42	72	<13	<15	<15
Heavy oil-range hydrocarbons	2,000	<30	<52	85	<29	<54	<34	<38	<38
Method EPA 6010C - Metals Content (mg/kg)			-		-	-	-	•	:
Lead	250	<11	<8.9	<10	<11	<10	<9.4	<5.0	4.9

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

² Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup criteria unless otherwise footnoted.

³ Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected at the site and 100 mg/kg when benzene is not detected at the site.

⁴ Cleanup level refers to sum of naphthalenes.

⁵ Cleanup level for total xylenes.

⁶ Reporting limit is greater than applicable cleanup criteria.

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory criteria.

mg/kg = milligrams per kilogram; EPA = Washington State Environmental Protection Agency; NT = not tested

Summary of Chemical Analytical Results - Soil PAHs¹

Tiger Oil Summitview

Yakima,	Washington
---------	------------

	Carcinogenic PAHs																				
		TEF ²	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕQ ²	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
		Date	0.1	1.0	0.1	0.1	0.01	0.1	0.1			1	1		1		1			1	1
Sample ID	Sample Depth	Collected	µg∕kg	µg/kg	µg/kg	µg/kg	µg/kg	µg∕kg	µg/kg	µg/kg	µg∕kg	µg/kg	µg/kg	µg/kg	µg∕kg	µg/kg	µg/kg	µg∕kg	µg∕kg	µg/kg	µg∕kg
SVDP-7	15	03/17/15	<24	<24	<24	<24	<24	<24	<24	<18	10,000	5,400	2,400	<24	<24	<24	<24	<24	<24	24	<24
SVDP-8	14	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-9	20	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	89	300	130	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-10	19	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-11	13	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-12	18.5	03/16/15	12	<12	<12	<12	<12	<12	<12	<9	2,800	24,000	11,000	38	88	<12	60	15	16	18	<12
SVDP-13	18	03/16/15	<13	<13	<13	<13	<13	<13	<13	<10	<13	<13	<13	<13	<13	<13	<13	<13	<13	<13	<13
SVDP-14	15	03/17/15	<14	<14	<14	<14	<14	<14	<14	<11	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14
SVDP-15	13	03/18/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-16	22-23	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-17	19.5-20.5	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-18	20-21	04/02/15	<14	<14	<14	<14	<14	<14	<14	<11	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14
SVDP-19	20-21	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	47	23	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-20	20-21	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-21	20-21	04/02/15	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<9	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ
SVDP-22	20.5-21	04/07/15	<11	<11	<11	<11	<11	<11	<11	<8	410	2,600	1,300	<11	34	34	33	<11	<11	<11	<11
SVDP-23	18-18.5	04/07/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-24	19.5-20	04/07/15	<12	<12	<12	<12	<12	<12	<12	<9	250	1,600	670	<12	21	15	21	<12	<12	<12	<12
SVDP-25	19.5-20	04/07/15	<12	<12	<12	<12	<12	<12	<12	<9	12	100	110	<12	41	37	75	12	21	26	<12
SVDP-26	20-20.5	04/07/15	<14	<14	<14	<14	<14	<14	<14	<11	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14
SVMW-4	22.5-23	04/27/15	<15	<15	<15	<15	<15	<15	<15	<11	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
SVMW-5	22.5-23	04/27/15	<16	<16	<16	<16	<16	<16	<16	<12	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
MTCA Meth	od A Unrestricted Lar	d Use CUL ³	NE	100	NE	NE	NE	NE	NE	100		5,000 ⁴		NE	NE	NE	NE	NE	NE	NE	NE

Notes:

¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using Environmental Protection Agency (EPA) Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation Washington Administrative Code 173-340-708. One half the reporting limit was used to calculate the TEQ. ³Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup criteria.

⁴Total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.

 μ g/kg = micrograms per kilogram; NE = Not Established.

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory criteria.

Summary of Chemical Analytical Results - Groundwater from Soil Borings¹

Tiger Oil Summitview Yakima, Washington

Boring Number	Date Sampled	Gasoline-range hydrocarbons	Diesel-range hydrocarbons	Heavy oil-range hydrocarbons
Method NWTPH-HCID - H	lydrocarbon Identifica	tion (mg/L)		
SVDP-9	03/18/15	8.3	2.8	<0.61
SVDP-10	03/18/15	0.82	1.0	<0.61
SVDP-11	03/18/15	<0.24	<0.60	<0.60
SVDP-12	03/17/15	6.8	2.1	<1.4
SVDP-13	03/17/15	<0.24	<0.60	<0.60
SVDP-15	03/18/15	<0.24	<0.61	<0.61
SVDP-16	04/02/15	<0.25	<0.63	0.82
SVDP-17	04/02/15	<0.26	<0.64	<0.64
SVDP-18	04/02/15	<0.24	<0.62	<0.62
SVDP-19	04/02/15	1.5	<0.63	<0.63
SVDP-20	04/02/15	<0.25	<0.63	<0.63
SVDP-21	04/02/15	<0.25	<0.62	<0.62
SVDP-24	04/07/15	110 J	30 J	0.90 J
SVDP-25	04/07/15	3.6 J	2.3 J	<0.62UJ
SVDP-26	04/07/15	<0.25 UJ	<0.63 UJ	<0.63 UJ

Notes:

¹ Chemical analyses conducted by TestAmerica of Spokane, Washington.

Bold indicates analyte concentration exceeds laboratory reporting limit.

mg/L = milligrams per liter

Summary of Chemical Analytical Results - Groundwater¹

Tiger Oil Summitview

Yakima, Washington

Well II	D Regulatory		SVI	1W-1 ³			SVI	1W-2			SVN	1W-3		Duplicate (SVMW-3)	SVMW-4	SVMW-5
Date Sample		09/18/14	12/12/14	3/31/201512	5/19/2015 ¹²	09/18/14	12/12/14	03/31/15	05/19/15	09/18/14	12/12/14	03/31/15	05/19/15	05/19/15	05/19/15	05/20/1
Method NWTPH-Gx - Gasoline Range (µg/L)	•	-				-	-	•	-		<u>.</u>	•	-			-
Gasoline-range hydrocarbons	800/1,000 ⁴	<100	<100	NT	NT	<100	<100	<100	<100	12,700	13,200	12,000	14,000	14,000	<100	2,100
Method NWTPH-Dx - Diesel Range (mg/L)	•	-		•		•	•									
Diesel-range hydrocarbons	0.5	NA	NT	NT	NT	<0.239	<0.232	<0.24	<0.25	0.815 J	0.650 J	1.3	0.99 J	1.0 J	<0.24	0.49 J
Diesel-range hydrocarbons w/silica gel	0.5	NT	NT	NT	NT	NT	NT	<0.24	NT	0.968 J	0.592 J	1.1	0.99	1.0	NT	0.45
Heavy Oil-Range Hydrocarbons	0.5	NA	NT	NT	NT	<0.399	<0.387	<0.40	<0.42	<0.385	<0.385	<0.39	<0.39	<0.41	<0.40	<0.41
Heavy Oil-Range Hydrocarbons w/silica gel	0.5	NT	NT	NT	NT	NT	NT	<0.40	NT	<0.385	<0.385	<0.39	<0.39	<0.41	NT	<0.41
Method EPA 8011 - EDB (µg/L)	•	-		•		•	•				•					
1,2-dibromoethane (EDB)	0.01	NT	NT	NT	NT	NT	<0.0100	<0.010	<1.0	NT	0.181 J	0.13	<100 ⁷	<100 ⁷	<1.0	<107
Method EPA 8260 - VOCs $(\mu g/L)^5$		_		•	-	•	•	-	-	-						-
1,2-Dichloroethane (EDC)	5	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	<1.00	<100 ⁷	<100 ⁷	<100 ⁷	<100 ⁷	<1.0	<107
2-Butanone	4,800 ⁶	<10.0	NT	NT	NT	<10.0	<10.0	<10	<10	55.1	<1000	<1000	<1,000	<1,000	<10	<100
Acetone	NE	<25.0	NT	NT	NT	<25.0	<25.0	<25	<25	246	NT	<2500	<2,500	<2,500	<25	<250
Benzene	5	<0.200	NT	NT	NT	<0.200	<0.200	<0.20	<0.20	27.6	32.0	36	25	26	<0.20	<2.0
Dichlorofluoromethane	NE	<0.200	NT	NT	NT	<0.200	<0.200	<0.20	<1.0	246	<20.0	<20	<100	<100	<1.0	<10
Ethylbenzene	700	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	436	571	560	570	560	<1.0	<10
HCFC-21	NE	<0.200	NT	NT	NT	<0.200	<0.200			0.270						
Hexachlorobutadiene	NE	<2.00	NT	NT	NT	<2.00	<2.00			<2.00						
n-Hexane	480 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	80.0	<100	110	120	110	<1.0	<10
Isopropylbenzene (Cumene)	NE	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	33.6	<100	<100	<100	<100	<1.0	<10
Methyl t-butyl ether (MTBE)	20	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	<1.00	<100 ⁷	<100 ⁷	<100	<100	<1.0	<10
Naphthalene	160	<2.00	NT	NT	NT	<2.00	<2.00	<2.0	<2.0	236	200	280	290	310	<2.0	<20
p-lsopropyltoluene	NE	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	11.2	<100	<100	<100	<100	<1.0	<10
sec-Butylbenzene	800 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	545	<100	<100	<100	<100	<1.0	<10
tert-Butylbenzene	800 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	<1.00	<100	120	<100	<100	<1.0	<10
Toluene	1,000	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	422	427	410	400	390	<1.0	<10
Xylene, m-,p-		<2.00	NT	NT	NT	<2.00	<2.00	<2.0	<2.0	2,000	2,200	2,100	2,100	2,000	<2.0	<20
Xylene, o-	1,000 ⁸	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	794	896	820	830	840	<1.0	<10
Xylene, Total		<3.00	NT	NT	NT	<3.00	<3.00	<3.0	<3.0	2,794	3,096	2,920⁹	2,900	2,900	<3.0	<30
1,3,5-Trimethylbenzene	80 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	140	211	220	880	820	<1.0	190
1,2,4-Trimethylbenzene	NE	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	660	763	780	250	230	<1.0	100
n-propylbenzene	800 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	82.0	107	110	110	<100	<1.0	18
Metals Method EPA 200.7 - Total Lead (mg/L)																
Lead	0.015	NT	NT	NT	NT	NT	<0.0140	<0.014	<0.014	NT	<0.0140	<0.014	<0.014	<0.014	<0.014	< 0.014

	Well ID	Regulatory		SVI	MW-1 ³			SVN	1W-2			SVN	IW-3		Duplicate (SVMW-3)	SVMW-4	SVMW-5
	Date Sampled	Levels ²	09/18/14	12/12/14	3/31/2015 ¹²	5/19/2015 ¹²	09/18/14	12/12/14	03/31/15	05/19/15	09/18/14	12/12/14	03/31/15	05/19/15	05/19/15	05/19/15	05/20/15
Conventionals (mg/L)																	
Nitrate-Nitrogen		10 ¹⁰	3.43	NT	NT	NT	6.16	7.10	8.1	7.5	2.45	4.86	4.1	3.2	2.9	9.2	4.4
Sulfate		250 ¹¹	28.6	NT	NT	NT	32.0	31.2	32	32	15.4	19.1	19	17	16	29	22
Total Organic Carbon		NE	NA	NT	NT	NT	4.39 J	1.79	1.9	1.7	3.45	2.69	2.5	2.9	2.7	1.6	2.1

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

³Samples from SVMW-1 may not be representative of general site groundwater conditions.

 4 Cleanup level for GRPH is 800 $\mu\text{g/L}$ when benzene is present, 1,000 $\mu\text{g/L}$ when benzene is not present.

⁵Only VOCs detected at concentrations greater than their reporting limits are listed in the table. For a complete list of VOCs analyzed refer to the laboratory analytical report, Appendix B.

⁶MTCA Method B cleanup level.

⁷Reporting limits were greater than regulatory levels as a result of sample dilutions and the calibration range of the laboratory analytical equipment.

⁸Cleanup level for total xylenes.

⁹Total xylenes calculated by adding m,p- and o-xylenes. For total xylene concentration reported by TestAmerica see the laboratory analytical report, Appendix B.

¹⁰Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

¹¹Secondary maximum contaminant level recommended by the Environmental Protection Agency.

¹²Insufficent water volume available for chemical analysis

J flag indicates results are qualified as estimated. See data validation report for additional information. **Bold** indicates analyte concentration exceeds laboratory reporting limit. $\mu g/L =$ micrograms per liter; mg/L = milligrams per liter; NA = not applicable; NE = not established; NT = not tested

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

Summary of Chemical Analytical Results - Groundwater PAHs¹

Tiger Oil Summitview

		Carcinogenic PAHs															r I	·		
		Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕQ ²	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
	TEF ²	0.1	1	0.1	0.1	0.01	0.1	0.1												
Sample ID	Date Collected	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
SVMW-1	09/18/14	< 0.0260 ³	< 0.0442 ³	< 0.0286 ³	< 0.0390 ³	< 0.0286 ³	< 0.0338 ³	< 0.0572 ³	< 0.03 ⁴	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234
	03/31/15	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	05/19/15	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	09/18/14	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.06	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856
SVMW-2	03/31/15	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.07	0.44	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087
	05/19/15	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.07	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094
SVMW-3	09/18/14	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.06	178	48.4	29.3	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854
	03/31/15	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088	<0.07	200	65	38	<0.088	0.11	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088
	05/19/15	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.07	210	68	38	<0.089	0.10	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089
SVMW-4	05/19/15	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.07	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094
SVMW-5	05/19/15	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.07	7.6	9.6	13	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096
Duplicate (SVMW-2)	09/18/14	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.07	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863
Duplicate (SVMW-3)	03/31/15	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.07	210	66	38	<0.089	0.10	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089
Duplicate (SVMW-3)	05/19/15	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.07	200	65	37	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089
MTCA Method A Unrestricted Land Use ${\rm CUL}^5$		NE	0.1	NE	NE	NE	NE	NE	0.1		160 ⁶		NE	NE	NE	NE	NE	NE	NE	NE

Notes:

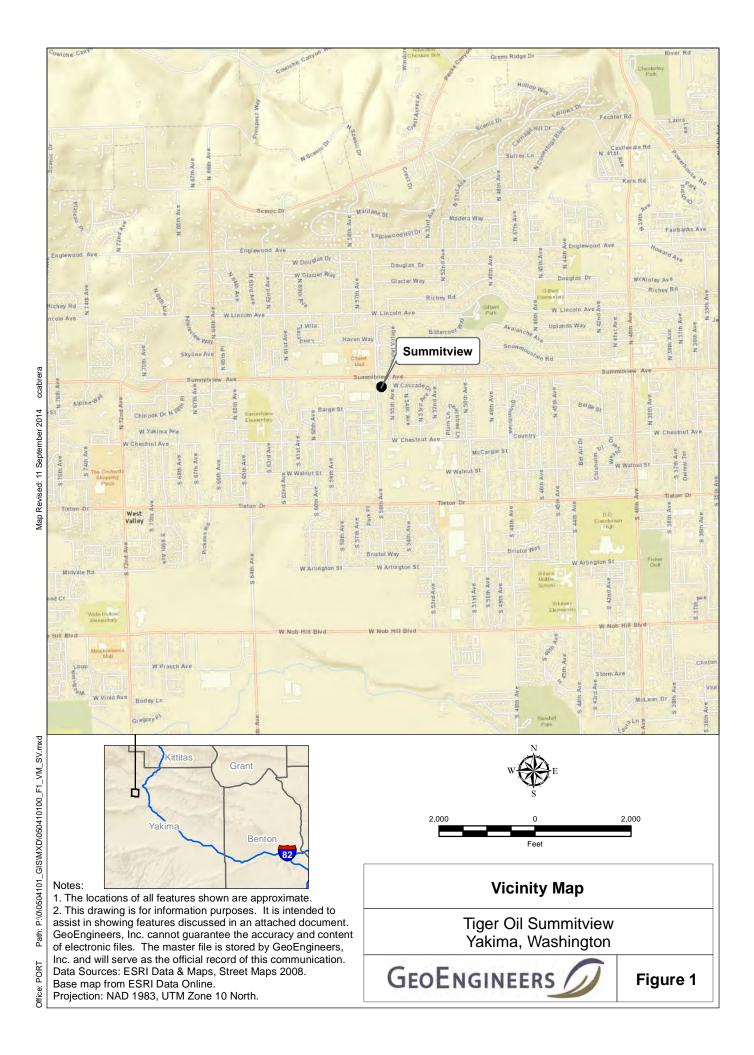
¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using Environmental Protection Agency Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

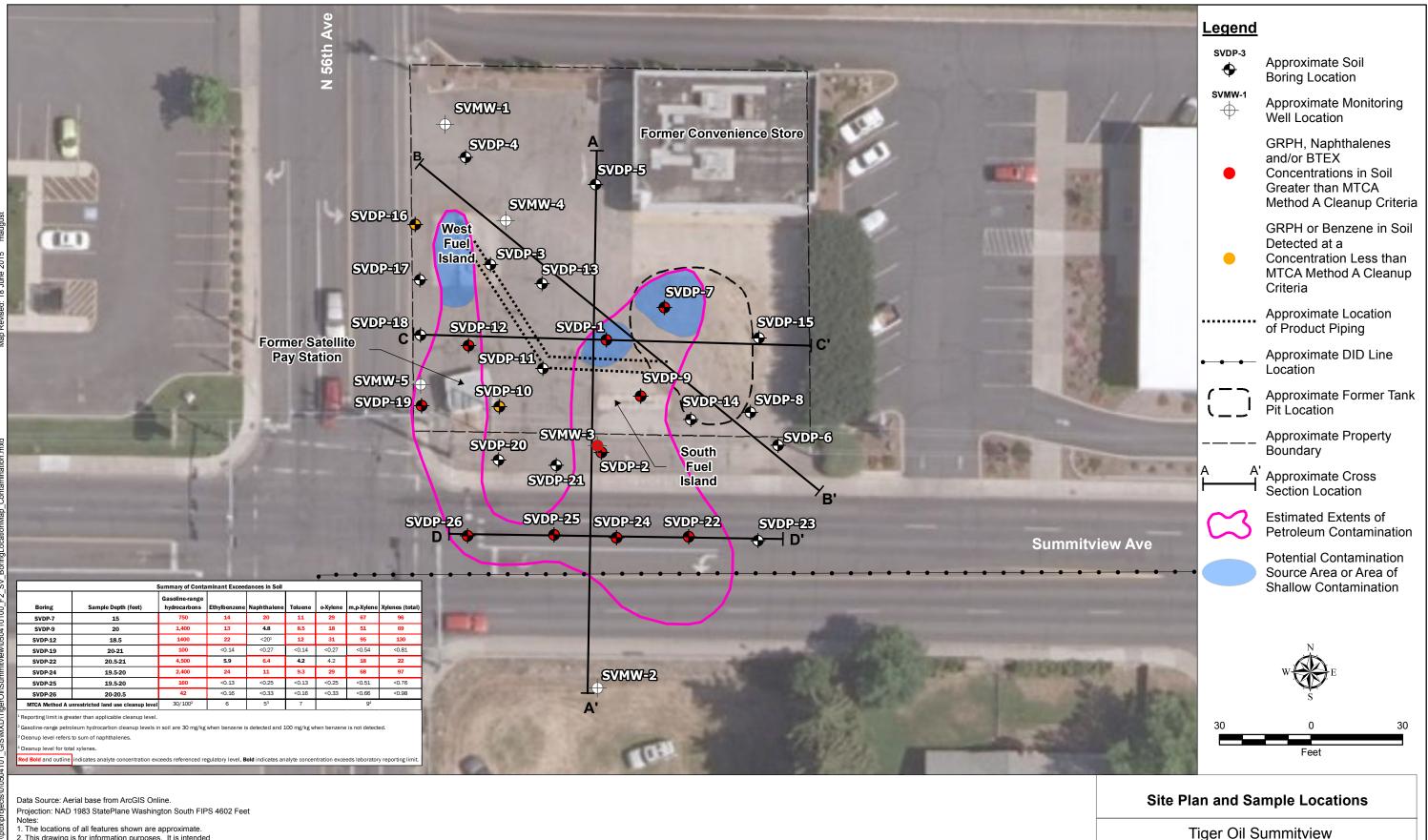
²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation Washington Administrative Code 173-340-708. One half the reporting limit was used to calculate the TEQ. ³Reported value is the method detection limit, as the reporting limit exceeded the MTCA Method A level when used in the TEQ calculation.

⁴The TEQ reported was calculated using half the method detection limits.

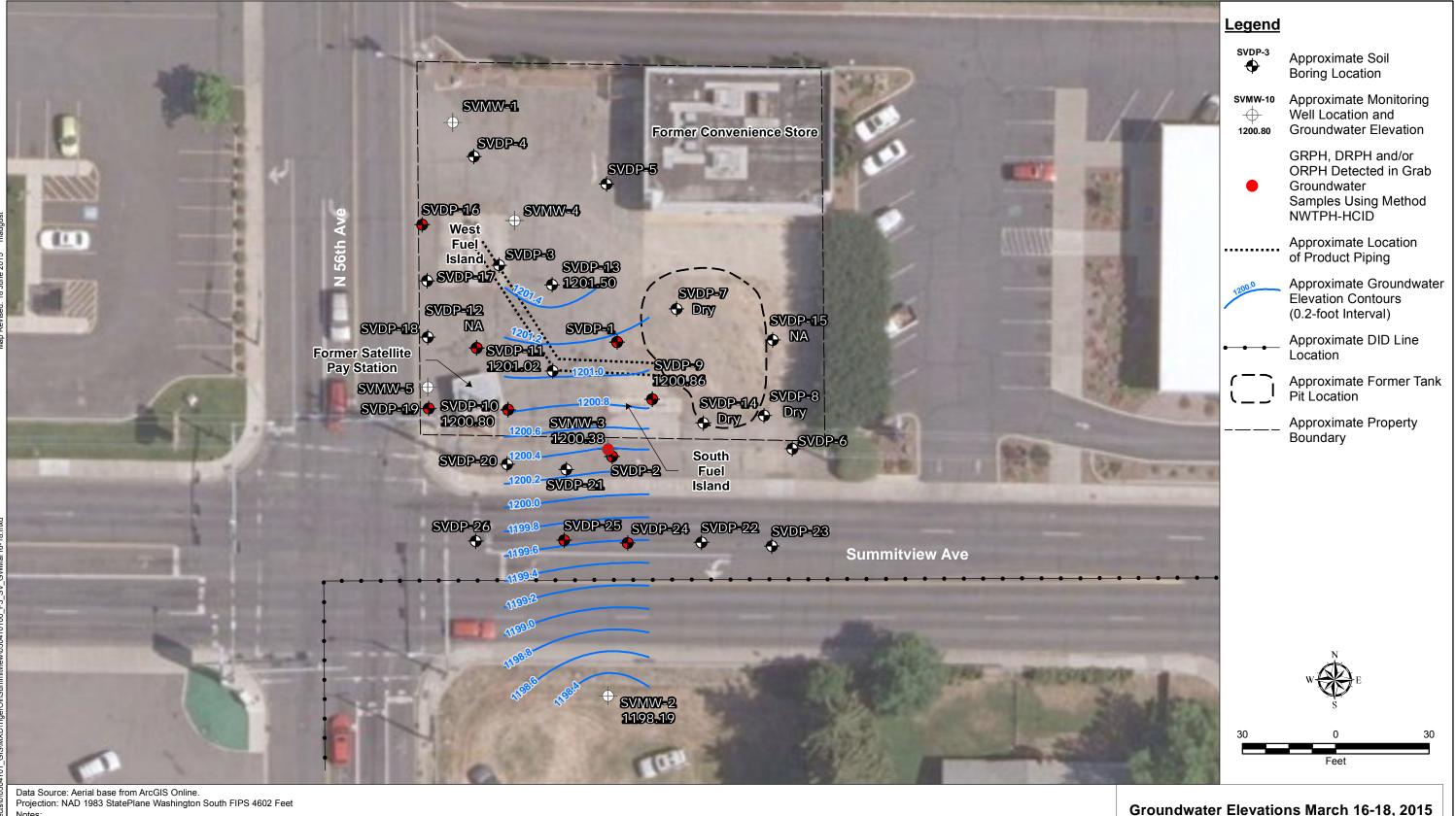
⁵Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels.

⁶Total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.


 $\mu g/L$ = micrograms per liter; NE = Not Established; NT = not tested


Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

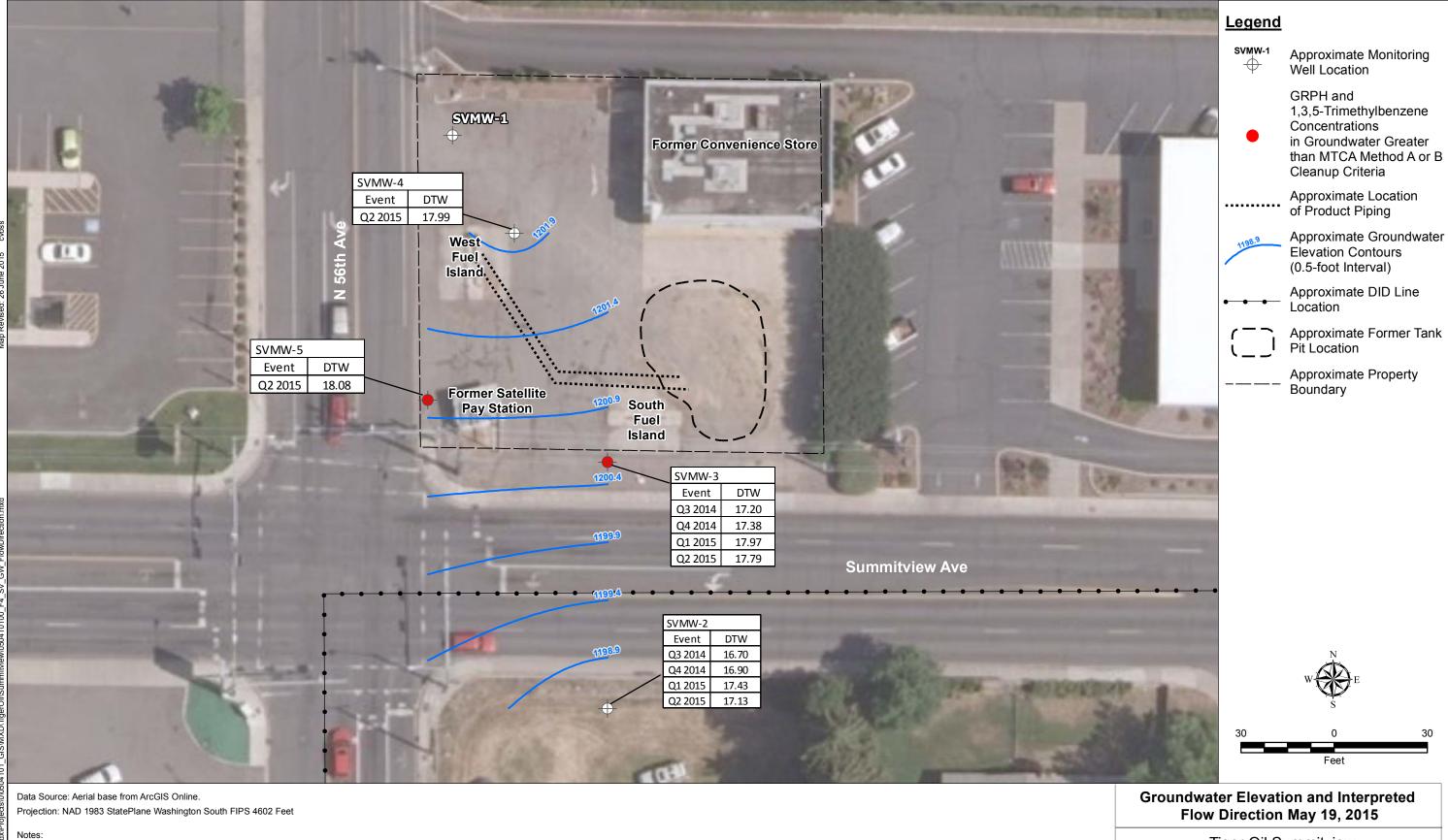

- 2. This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Product piping location estimated from "Results of Underground Piping and Dispenser Island Sampling at Tiger Oil Corporation Facility, 5511 Summitview in Yakima, Washington". Figure 2 Wayne Perry, Inc.

- December 14, 2005.

Yakima, Washington

GEOENGINEERS

Figure 2

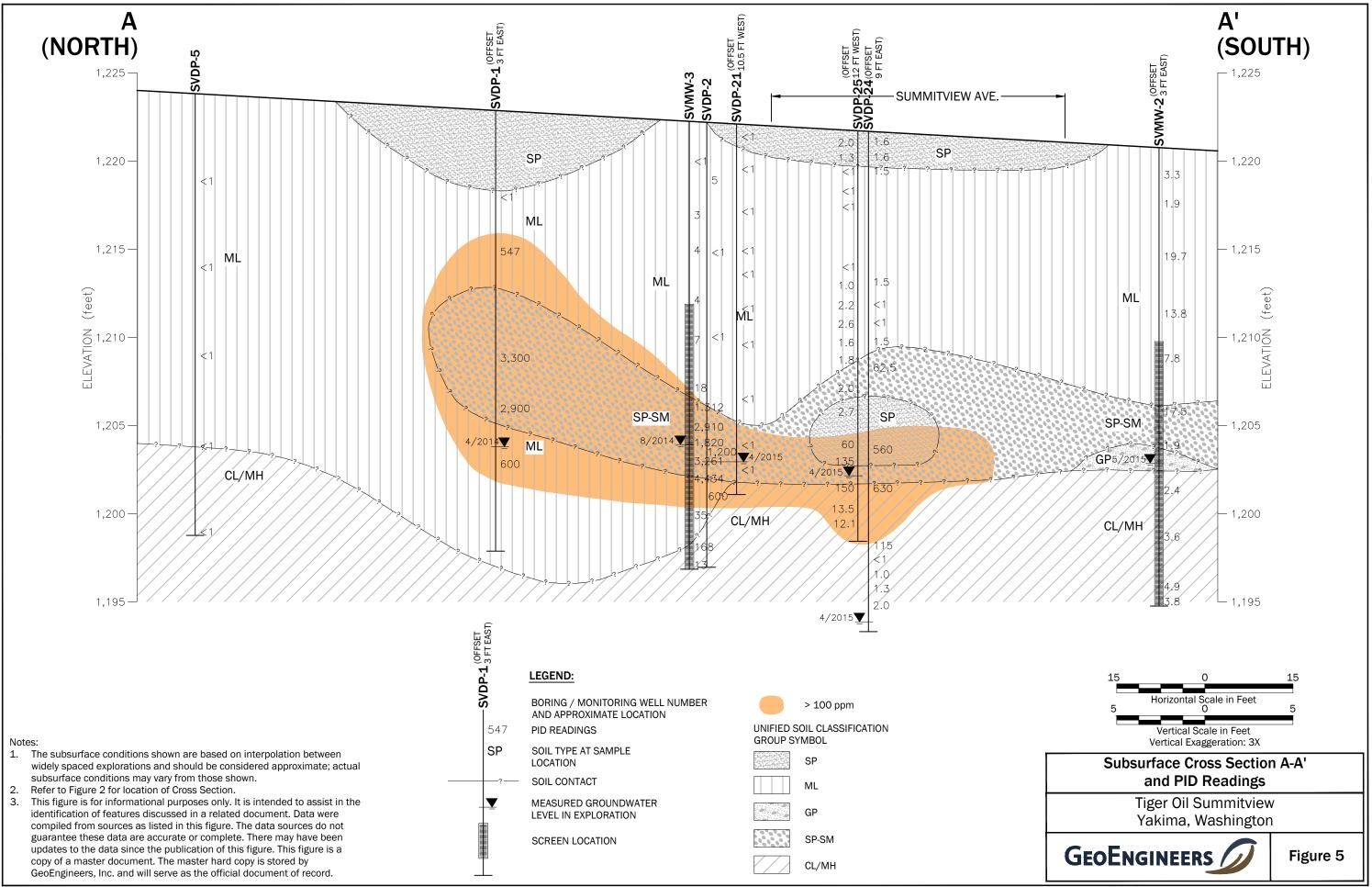

Notes

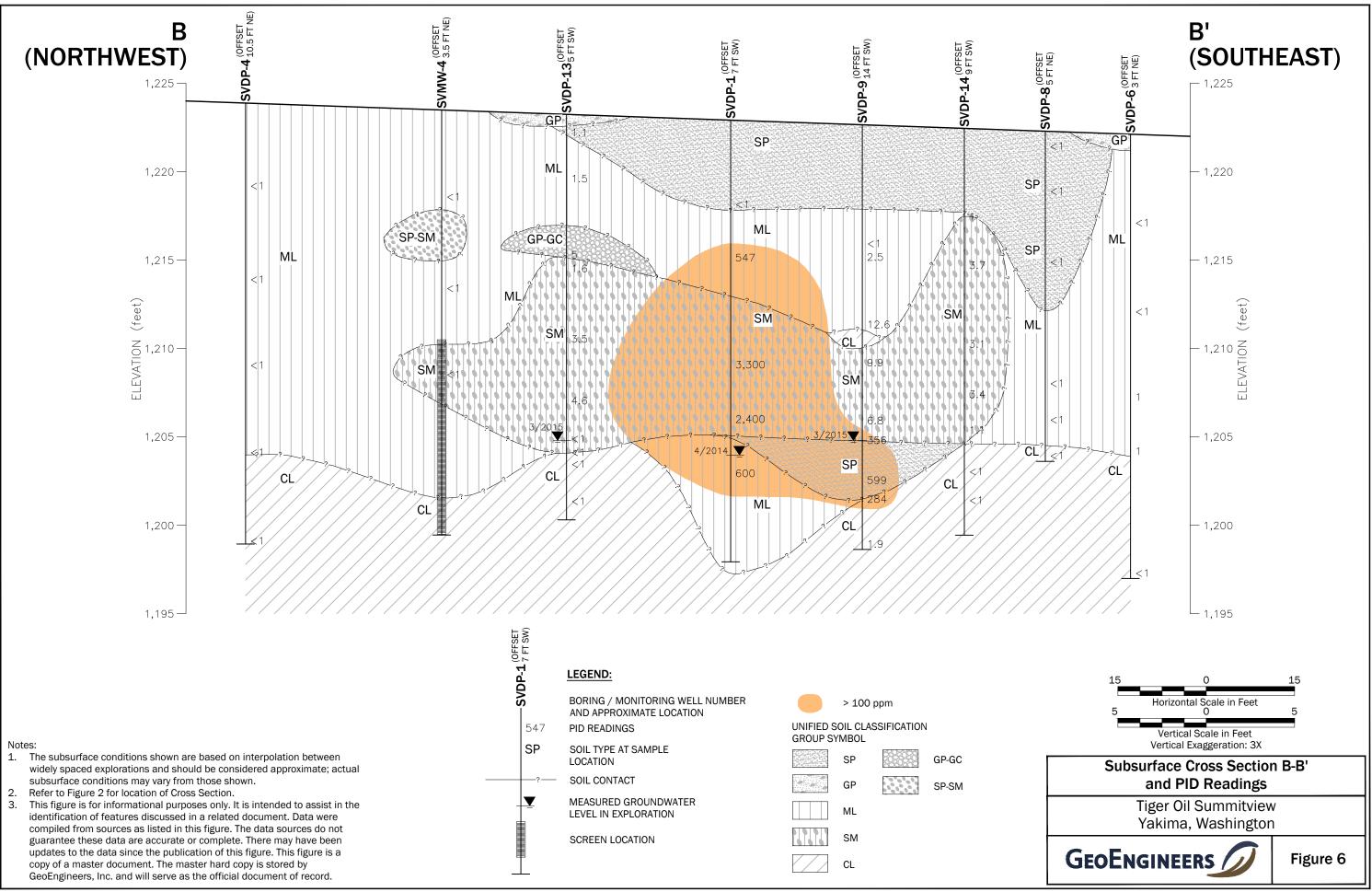
- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document.
- GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication.
- 3. Product piping location estimated from "Results of Underground Piping
- and Dispenser Island Sampling at Tiger Oil Corporation Facility,
- 5511 Summitview in Yakima, Washington". Figure 2 Wayne Perry, Inc.
- December 14, 2005.

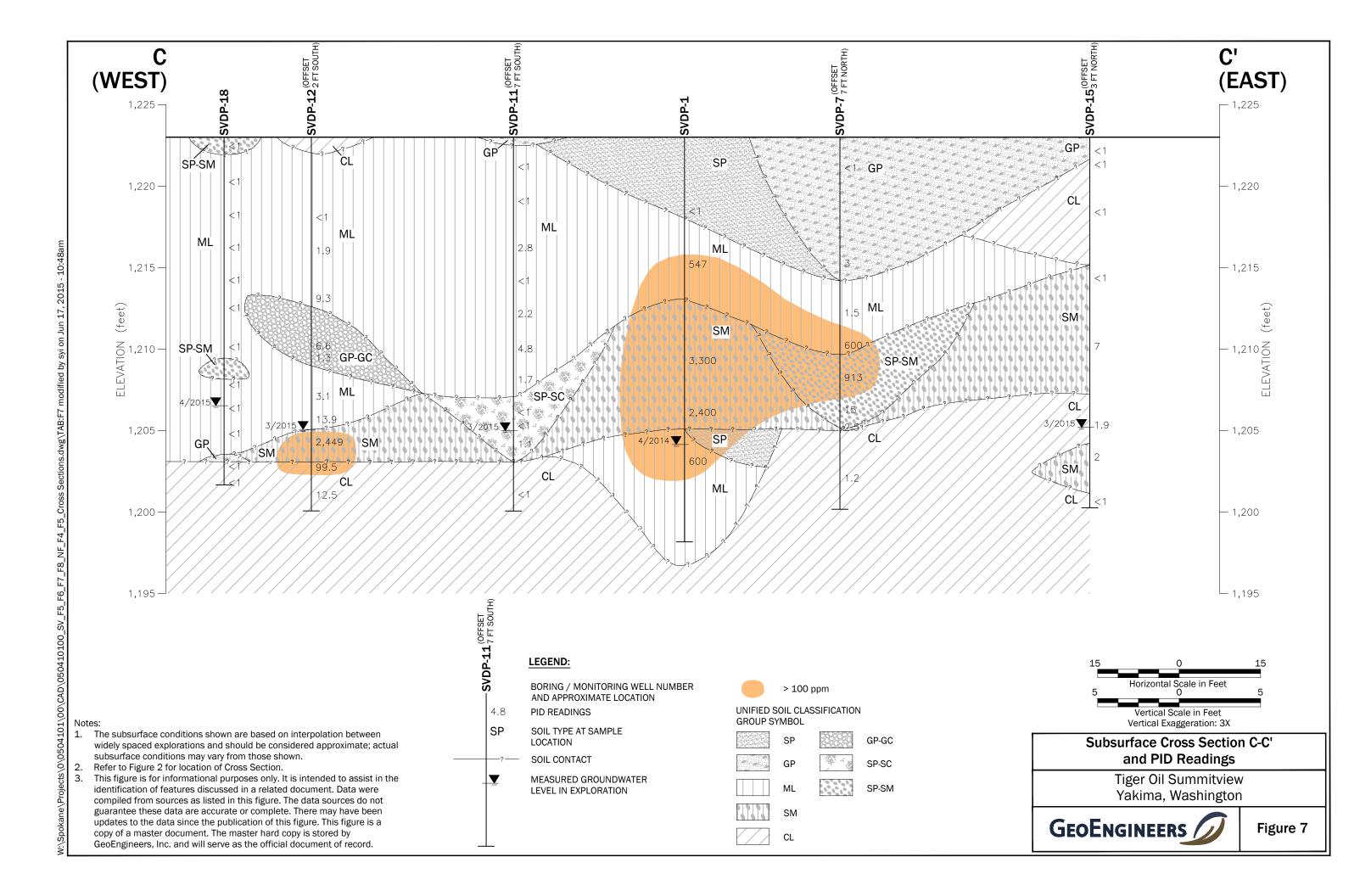
Tiger Oil Summitview Yakima, Washington

GEOENGINEERS

Figure 3


- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content


- of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Groundwater elevations are referred to the North American Vertical Datum of 1988 (NAVD 88).


Tiger Oil Summitview Yakima, Washington

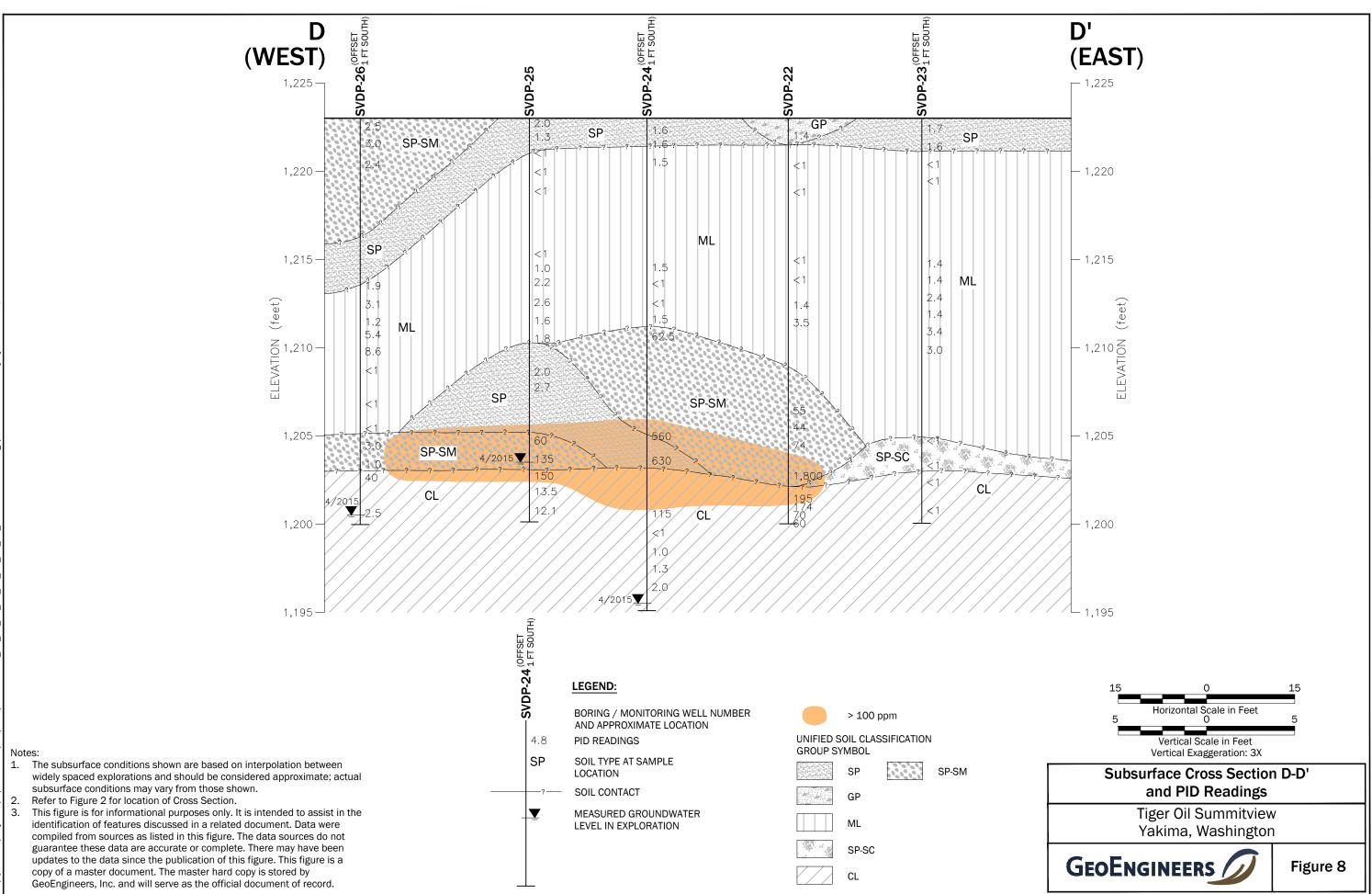

GEOENGINEERS

Figure 4

APPENDIX A Field Methods and Boring Logs

APPENDIX A FIELD METHODS AND BORING LOGS

General Soil Sampling Procedures

Soil samples were obtained using disposable nitrile gloves which were discarded after each use. Samples were placed in 4- or 9-ounce laboratory-supplied sample containers. Sample containers were filled to minimize headspace and labeled with a unique identification. Samples analyzed for volatile organic compounds (VOCs) were obtained using EPA Method 5035 sampling procedures. Samples were temporarily stored in an iced cooler before transfer to TestAmerica's Spokane Valley, Washington laboratory for analysis. Chain-of-custody protocols were followed.

Field Screening of Soil Samples

A GeoEngineers' representative performed field screening of soil samples obtained during drilling activities. Field screening results are used as a general guideline to delineate depths with possible petroleum-related contamination. The screening methods used include: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening using a MiniRae PID calibrated to isobutylene.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Water sheen screening is a more sensitive method that has been effective in evaluating whether contaminant concentrations are less than regulatory cleanup guidelines.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening might detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

No Sheen	No visible sheen on water surface.
Slight Sheen	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil might produce a slight sheen.
Moderate Sheen	Light to heavy sheen; might have some color/iridescence; spread is irregular to flowing, might be rapid; few remaining areas of no sheen on water surface.
Heavy Sheen	Heavy sheen with color/iridescence; spread is rapid; entire water surface might be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. The probe of the PID was then inserted into the bag to measure VOCs in the air within the bag. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (eV) lamp in the range between 1.0 and 2,000 ppm), with a resolution of +/-2 ppm.

Field screening results are site-specific. The effectiveness of field screening results will vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence

or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of petroleum hydrocarbons.

Monitoring Well Construction, Development and Surveying

The groundwater monitoring wells were constructed in general accordance with Chapter 173-160, Section 400 of the Washington Administrative Code (WAC), titled *Washington State Resource Protection Well Construction Standards*. Monitoring well records were submitted in accordance with Washington State monitoring well construction standards. Monitoring well installations were observed and documented by a GeoEngineers' field representative.

The groundwater monitoring wells were installed using sonic drilling equipment and were constructed of 2-inch-diameter, Schedule 40 PVC casing and 0.01-inch slot width well screens. Well screen depths were based on groundwater conditions observed in the field such that the top of the shallow water table intercepted the well screen.

Each well was constructed with a bentonite seal and a flush-mount surface monument. A lockable cap was installed in the top of the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location. Each well was developed using surging and pumping; wells were surged and then pumped until the development water was clear.

The monitoring well was developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The depth to water in the monitoring well was measured prior to development. The total depth of the well was measured and recorded. The groundwater monitoring wells were developed by pumping, surging, bailing or a combination of these methods after construction. Development of the well continued until the water was as free of sediment as practicable, with respect to the composition of the subsurface materials within the screened interval. The removal rate and amount of groundwater removed was recorded during the well development procedures. Development purge water was collected and stored on site.

The locations of the groundwater monitoring wells were established in the field using a hand-held iPad with GPS software, and subsequently surveyed by a licensed surveyor.

Depth to Groundwater

Depth to groundwater measurements from the new wells were collected and recorded in the field notebook after the water level stabilized after well development. Depth to groundwater relative to the marked north side of the monitoring well casing rims was measured to the nearest 0.01 foot using an electronic water level indicator and recorded in the field notebook. Groundwater elevation was calculated by subtracting the depth-to-water measurement from the surveyed casing rim elevation. The electronic water level indicator was decontaminated with Liquinox[®] solution wash and a distilled water rinse prior to use in each well.

Groundwater Sampling

Following depth to groundwater measurements, groundwater samples were collected from the installed groundwater monitoring wells consistent with the EPA's low-flow groundwater sampling procedures (EPA, 1996 and Puls and Barcelona, [Puls, 1996]). Dedicated polyethylene tubing and a portable peristaltic pump were used for groundwater purging and sampling. During purging activities, water quality parameters,

including pH, temperature, conductivity, DO and turbidity were measured using a multi-parameter meter equipped with a flow-through cell. Groundwater samples were collected after: (1) water quality parameters stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, drawdown was not allowed to exceed 0.3 feet and the purge rate did not exceed 400 milliliters per minute. Water quality parameter stabilization criteria included the following:

- Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units (ntu);
- Conductivity: ±3 percent;
- pH: ±0.1 unit;
- Temperature: ±3 percent; and
- DO: ± 10 percent.

Field water quality measurements and depth-to-water measurements were recorded on a Well Purging-Field Water Quality Measurement Form. The groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Chain-of-custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the Quality Assurance Project Plan (QAPP).

Location Control

The locations of the borings and groundwater monitoring wells were established in the field using a handheld iPad with GPS software. The horizontal accuracy of the hand-held unit is within about 10 feet. Upon completion, horizontal and vertical locations of the groundwater monitoring wells were survey by a licensed professional surveyor and referenced to NAD83 and NAVD88, respectively. The horizontal coordinates of the groundwater monitoring wells and the elevation of the benchmark established at the site were determined using a Topcon GR-3 GPS receiver with a nominal accuracy of 10 millimeter (mm) + 1 mm horizontal and 15 mm + 1 mm vertical. The elevation of the monitoring wells relative to the benchmark established at the site were individually determined using a Leica DNA03 digital level with a vertical accuracy of +/- 0.01 feet.

Decontamination Procedures

The objective of the decontamination procedure was to minimize the potential for cross contamination between exploration locations and between individual samples within a specific exploration. A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using pressure washing equipment.

Sampling or measurement equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement:

- Brush equipment with a wire brush, if necessary, to remove large particulate matter.
- Rinse with potable tap water.
- Wash with non-phosphate detergent solution (Liquinox[®] and potable tap water).
- Rinse with potable tap water.

Rinse with distilled water.

Handling of Investigation-Derived Waste

IDW (drill cuttings and development and purge water), was placed in U.S. Department of Transportation (DOT) approved 55-gallon drums. The drums were labeled with the exploration number, general contents and date. IDW generated on site was placed in drums and is pending pickup for disposal at an appropriate facility.

Disposable items, such as sample tubing, direct-push sampler acrylic sleeves, gloves and paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

Laboratory Analytical Plan

Method Reporting Limit (MRL) goals were based on Ecology MTCA soil or groundwater cleanup criteria. The following methods were used for the soil and groundwater samples:

Soil

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- Total petroleum hydrocarbons (TPH) (NWTPH-HCID), direct push soil borings only;
- BTEX by (EPA 8260C);
- PAHs (EPA 8270D);
- EDB (EPA 8011);
- 1,2-dichloroethane (EDC) (EPA 8260C);
- MTBE (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Groundwater

- GRPH (NWTPH-GX);
- DRPH (NWTPH-DX);
- VOCs (EPA 8260c);
- PAHs (EPA 8270D)
- TOC (SM5310B);
- Nitrate and Sulfate by (EPA 300); and

Ferrous Iron (Field Test, Hach 26672-88).

			SYME	BOLS	TYPICAL	SYM
N	AJOR DIVISIO	ONS	GRAPH	LETTER	DESCRIPTIONS	GRAPH
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
30123	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
ETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	▼
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	<u> </u>
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	<u> </u>
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
GRAINED SOILS	OLATO			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
			hin	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
н	IGHLY ORGANIC S	SOILS		РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
	2.4- Star She Pist Dire She Cor Cor count is reco	ect-Push k or grab ntinuous Coring rded for driven	barrel ion Test (g samplers	(SPT) s as the f	number	%F AL CA CS DS HA MC DC PM PP PPM SA TX UC S
dista		to advance sar see exploration				NS
and c						

NAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

roundwater Contact

- easured groundwater level in ploration, well, or piezometer
- easured free product in well or ezometer

raphic Log Contact

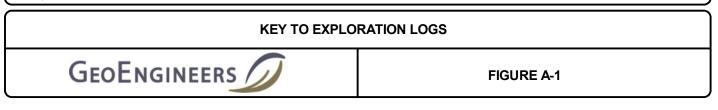
stinct contact between soil strata or ologic units

pproximate location of soil strata hange within a geologic soil unit

aterial Description Contact

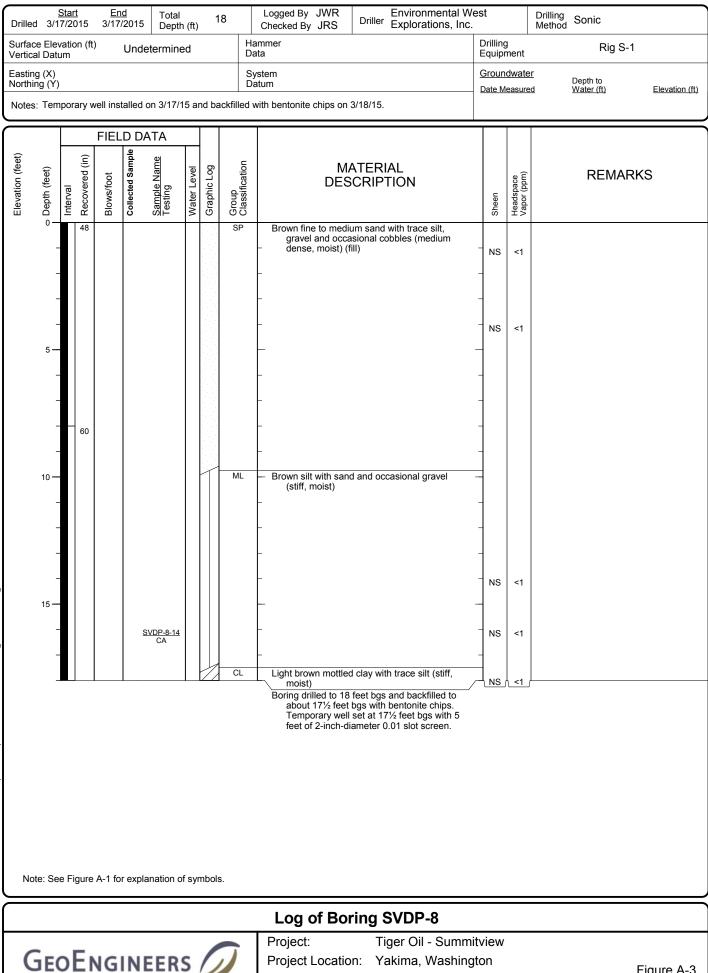
stinct contact between soil strata or ologic units

pproximate location of soil strata hange within a geologic soil unit


boratory / Field Tests

- rcent fines
- terberg limits
- emical analysis
- boratory compaction test
- onsolidation test
- rect shear
- drometer analysis
- pisture content pisture content and dry density
- ganic content
- rmeability or hydraulic conductivity
- asticity index
- cket penetrometer
- rts per million
- eve analysis
- iaxial compression
- nconfined compression
- ne shear

neen Classification


- Visible Sheen
- ight Sheen oderate Sheen
- eavy Sheen ot Tested

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Drille	<u>S</u> d 3/17	<u>start</u> 7/20		<u>Er</u> 3/17	<u>nd</u> 7/2015	Total Depth	n (ft)	2	3	Logged By JWR Checked By JRS Driller Environmental W Explorations, Inc			Drilling Method Sonic	
	ce Eleva al Datu		n (ft))	Unde	etermine	ed			ammer ita	Drilling	g ment	Rig S-1	
Eastir Northi	ig (X) ng (Y)									rstem atum	Groun		Depth to	
		oora	ary w	vell ins	stalled	on 3/17/1	5 ai	nd ba		vith bentonite chips on 3/18/15.	_ Date N	leasure	ed Water (ft) Elevation (ft)	
\succeq				FIEL	_D DA	ATA								
set)	ľ				-			_	ç					
Elevation (feet)	Depth (feet)	/al	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Headspace Vapor (ppm)	REMARKS	
Eleva		Interval	Reco	Blow	Collec	<u>Sam</u> Testi	Wate	Grap	Grou Class		Sheen	Heads		
	0-		36						GP	Brown coarse gravel with silt, sand and occasional cobbles (loose, moist) (fill)				
	_									-				
	_									-	NS	<1		
	-									-	_			
	-		60							_	- NS	3		
	-								ML	Brown clayey silt with sand (medium stiff,	_			
	10 —										-			
	-									_	[–] NS	1.5		
	-									-	-			
	-		60						SP-SM	With gravel Gray fine sand with silt (dense, moist)	SS	600		
1	-										-			
	15 —				<u>S</u>	CA				_	MS	913	Petroleum hydrocarbon-like odor	
1	-									-				
	-							/		Becomes brown	[–] NS	15		
			60						CL	Brown mottled clay with silt (stiff, moist)	NS	2.5		
	20 —									_	_			
L	_									-	NS	1.2		
	-									-	- "	1.2		
Nc										Boring drilled to 23 feet below ground surface				
										(bgs) and backfilled to 18 feet bgs with bentonite chips. Temporary well set at 18 feet bgs with 5 feet of 2-inch-diameter 0.01				
										slot screen.				
No	ite: See	e Fiç	gure	A-1 fc	or expla	anation o	fsyr	nbols	3.					
\bigcap										Log of Boring SVDP-7				
	-		_							Project: Tiger Oil - Summ				
0	JEC			١G	INE	EER	S			Project Location: Yakima, Washing Project Number: 0504-101-02	gton		Figure A-2 Sheet 1 of 1	

Date:6/23/15 Path: P:0/0504101/GINT050410102 GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

0504-101-02

Project Number:

pokane: Date:6/23/15 Path: P:0/0504101/GINT/050410102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL

STANDAR

Figure A-3 Sheet 1 of 1

Drille		<u>Start</u> 7/2015		<u>End</u> 17/2015	Total Depth	n (ft)	2	3	Logged By JWR Checked By JRS		st		Drilling Method Sonic
	ce Elev al Datu	vation (Im	ft)	Unde	termine	ed			ammer ata		Drilling Equipr	g ment	Rig S-1
	ng (Y)		well i	nstalled c	on 3/17/1	15 a	nd ba	D	vstem atum vith bentonite chips on 3/18/15.		Groun Date M 3/17/2	easure	Depth to
			FIE	ELD DA	ΔTA								
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 — - -	36						SP	Brown fine to medium sand with trace silt gravel and occasional cobbles (mediu dense, moist) (fill) -		-		
	- 5 — -							ML	 Brown clayey silt with sand (medium stiff, moist) 	- F, -	NS	<1	
	- 								-	-	NS	2.5	
	-							CL	Brown clay with trace gravel (very stiff, m		NS	12.6	
	- 15 —	60						SM	Brown silty fine to medium sand with grav (dense, moist) Becomes brownish gray	- vei -	NS	9.9	
	-								_	-	NS	6.8	
	-	60				T		SP	Gray fine to coarse sand with trace silt ar gravel (dense, wet)	nd	NS	355.8	3
	20 —			<u>S</u> '	VDP-9-20 CA				-	-	нs	599.0	Petroleum hydrocarbon-like odors
	-							CL	Brown clay with mottled iron staining with silt (stiff, moist) -	n trace	SS	284	
Nc	- ote: Se	e Figur	e A-1	for expla	nation o	f syı	mbols		Boring drilled to 23 feet bgs and backfille 21 feet with bentonite chips. Tempora well set at 21 feet bgs with 5 feet of 2-inch-diameter 0.01 slot screen.	ed to ary	L NS	1.9	<u>}</u>
									Log of Boring SVDP-9				
(GE	эE	NC	GINE	ER	S	0	7	Project: Tiger Oil - S Project Location: Yakima, Wa Project Number: 0504-101-0	Summit ashingt			Figure A- Sheet 1 of

Figure A-4 Sheet 1 of 1

Drilled 3	<u>St</u> 3/17/	<u>art</u> 2015	<u>Er</u> 3/17	<u>nd</u> 7/2015	Total Depth	(ft)	2	3	Logged By JWR Checked By JRS	Driller Explorations, I	l West nc.	t		Drilling Method
Surface El Vertical Da			i)	Undete	ermine	d			ammer ata		D	rilling quipr	nent	Rig S-1
Easting (X Northing (` Notes: Te	Ý)	orary v	well ins	stalled on	n 3/17/1	5 ar	nd ba	D	ystem Jatum with bentonite chips on 3	3/18/15.			<u>dwate</u> easure 2015	Depth to
			FIEL	_D DA1	ΓA									
Elevation (feet)		Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
0	-							AC GP ML		ravel (loose, moist) (fill) It with occasional gravel			<1	
5	 i								-		_		<1	
	_								-		_	NS	1.4	
	-	60							_ Slightly indurated c	ay lenses	-			
10	- 							SP ML	and occasional	to coarse sand with grave cobbles (dense, moist) th slightly indurated clay	- 	NS	2.6	
	-	60						CL	Light brown silty cla		_	NS	4	
15	-							ML		th trace gravel (stiff, moist	:) 	NS	2.4	
	-								-		-	NS	1.7	
	-	60				¥			_		-	MS	246.5	
	_			<u>svc</u>	CA			SP	Light gray fine to m gravel (dense, v	edium sand with trace /et)		HS	731.8	Petroleum hydrocarbon-like odor
20	-							CL	Brown clay with mo silt (stiff, moist)	ttled iron staining and trac	е _	NS	<1	
Note: S	See	Figure	A-1 fc	or explan	ation of	syr	nbols		20 feet bgs with well set at 20 fe	feet bgs and backfilled to bentonite chips. Tempora et bgs with 5 feet of 0.01 slot screen.	ary			
									Loa of Bori	ing SVDP-10				
									Project:	Tiger Oil - Sum	nmitv	iew		

Project Location:

Project Number:

Yakima, Washington

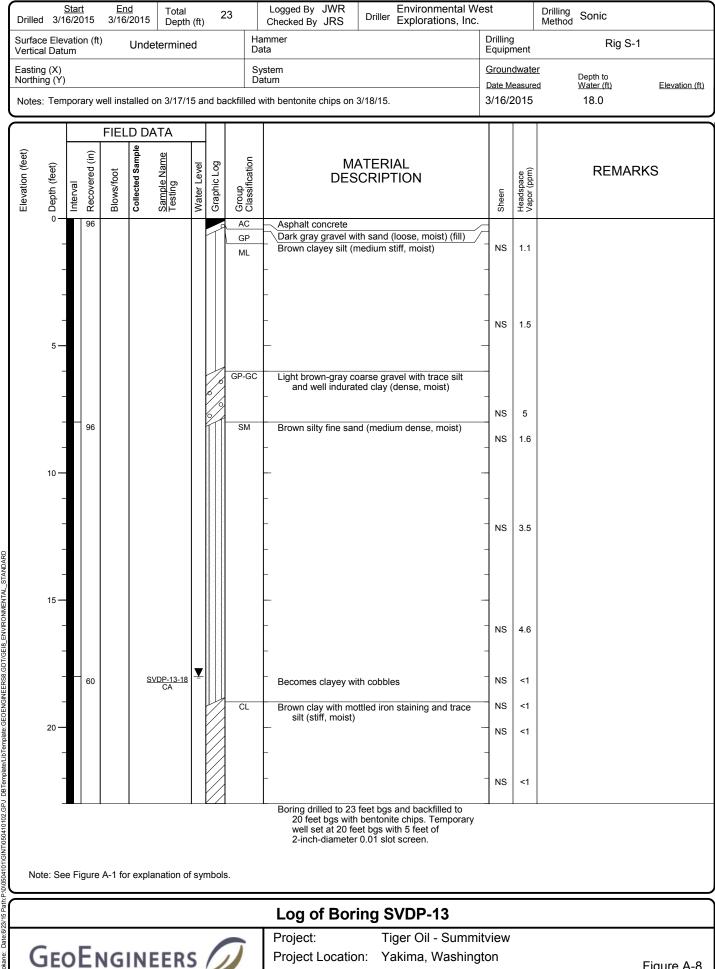
0504-101-02

spokane: Date:6/23/15 Path:P10/0504101/GINT050410102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

GEOENGINEERS

Figure A-5 Sheet 1 of 1

Drilled	<u>5</u> 3/17	<u>Start</u> 7/2015	<u>Er</u> 3/17	<u>nd</u> 7/2015	Total Depth	(ft)	2	3	Logged By JWR Checked By JRS	Environmental Driller Explorations, In				Drilling Method Sonic
Surface Vertical	Elev Datu	ation (ft	i)	Unde	termine	d			Hammer Data		Dri Eq	illing uipr	nent	Rig S-1
Easting Northing Notes:	g (Y)	porary v	well ins	talled o	on 3/17/1	5 a	nd ba		System Datum d with bentonite chips on a	3/18/15.	<u>Gr</u>	oun te M	<u>dwate</u> easure 2015	Depth to
			FIEL	D DA	ΔTA									
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0	96						AC GP ML	Asphalt concrete Dark gray gravel wi Brown clayey silt (n	th sand (loose, moist) (fill) nedium stiff, moist)		NS	<1	
	- - 5								-		-	NS	<1	
	- 60								Trace gravel, very s	tiff with occasional lenses of		NS	2.8	
	- 60 - 10								indurated clay - 			NS	<1	
	10								-		-	vs vs	2.2	
	_ 15 —				CA				-		_	NS	1.7	
	-	60				Ť		SP-S	Brown fine to coars (dense, moist)	e sand with clay and grave		٧S	<1	
:									- With cobbles Light brown clay wi trace silt (stiff, n	h mottled iron staining with		NS	1.1	
	_								Boring drilled to 23	feet bgs and backfilled to	- 1	٧S	<1	
Note	e: See	e Figure	e A-1 fo	or expla	nation of	fsyi	mbol	5.	20 feet bgs with well set at 20 fe	bentonite chips. The mora bentonite chips. Tempora et bgs with 5 feet of 0.01 slot screen.	ry			
_									Log of Bor	ing SVDP-11				
6	_							7	Project:	Tiger Oil - Sum				
G	EC	DEI	NG	INE	ER	S			Project Locatio Project Numbe		ngton	1		Figure A- Sheet 1 of 1


Drilled	<u>9</u> 1 3/1	<u>Star</u> 6/20	15	<u>Er</u> 3/16	<u>id</u> /2015	Total Depth	(ft)	2	23		Logged By JWR Checked By JRS	Driller Exploration	nental We ons, Inc.	st		Drilling Method Sonic
Surfac Vertica			n (ft))	Unde	termine	ed			Ha Da	mmer ta			Drilling Equipr	g ment	Rig S-1
Easting Northin Notes	ng (Y)	pora	ary w	ell ins	talled o	on 3/17/1	5 ai	nd ba	ackfille	Da	stem itum vith bentonite chips on 3	3/18/15.		<u>Groun</u> Date M 3/16/2	easure	Depth to
\equiv				FIEL	.D DA	ΛTA										
Elevation (feet)	⊃ Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		DES	ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	-		96						CL	L	Asphalt concrete Brown silty clay witi (medium stiff, m Brown sandy silt wi (stiff, moist)	oist)	enses			
5																
	-		60								-			- NS -	1.9	
	10 —							0	GP-(GC	Light gray coarse g indurated clay (*	ravel with trace silt a /ery dense, moist)	- and	NS	9.3	
1	- - 15 -		60					0	ML	L	Brown sandy silt wi (stiff, moist)	th occasional clay le	enses	NS NS	6.6 1.3	
	_										-			- NS	3.1	
	-	_	60		<u>sv</u>	<u>DP-12-18.5</u> CA	¥.		SN	И	Gray silty fine to me occasional cobb -	edium sand with gra lles (dense, wet)	vel and	-	13.9 2,449	Petroleum hydrocarbon-like odor
	20 —								CL		Brown clay with mo silt (stiff, moist)	ttled iron staining wi	ith trace	SS NS	99.5	
Not	_ te: Se	e Fiç	gure	A-1 fo	r expla	ination of	f syr	mbol	s.		Temporary well	feet bgs and backfil th bentonite chips. set at 20½ feet bgs ameter 0.01 slot scr	with 5			
$\overline{}$											Log of Bor	ing SVDP-1	2			
0	-	.					~				Project:	Tiger Oil -				

spokane: Date:023/15 Path: P10/0504101/GINT/0504101/02.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

GEOENGINEERS

Project Location: Yakima, Washington Project Number: 0504-101-02

Figure A-7 Sheet 1 of 1

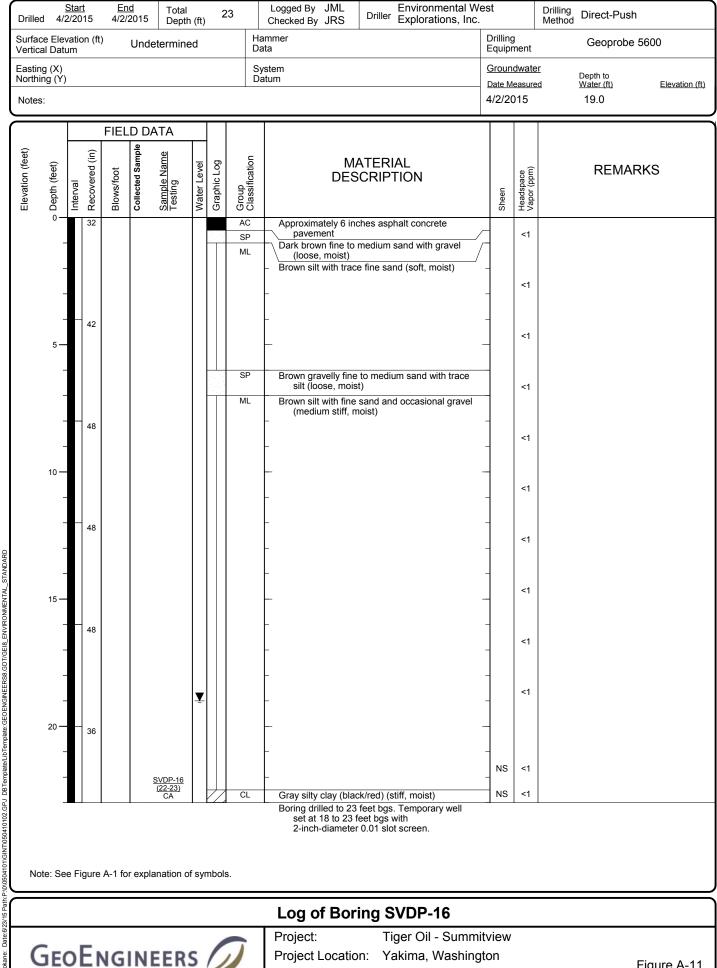
STANDAR

REDENGINEERS

Ë

Project Number: 0504-101-02

Figure A-8 Sheet 1 of 1

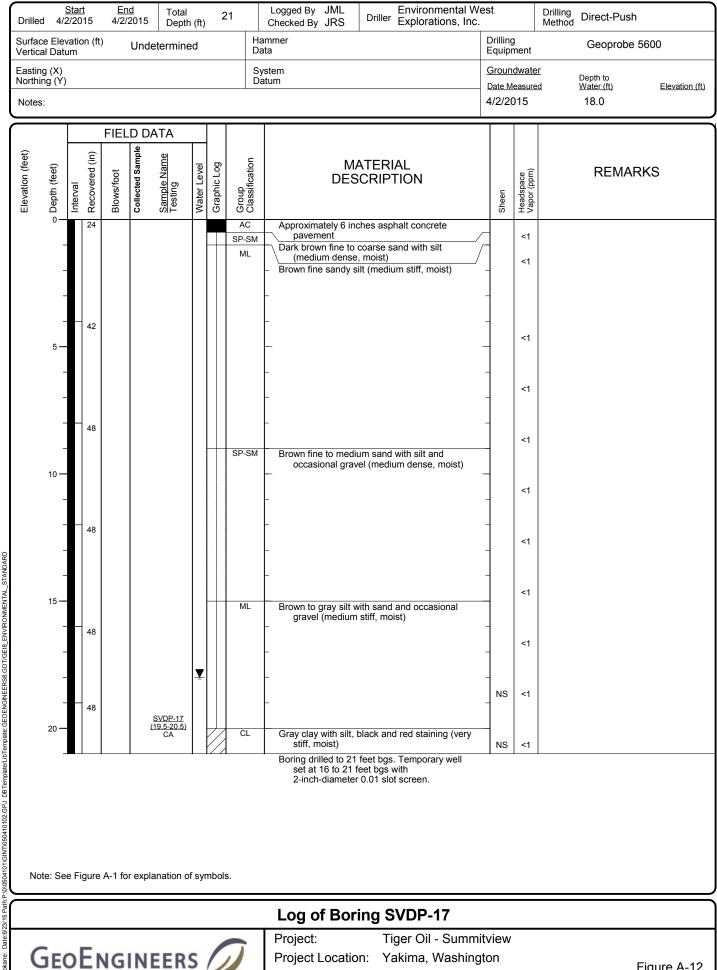

Drille	d 3/1	<u>Start</u> 7/20		<u>Er</u> 3/17	<u>nd</u> 7/2015	Total Depth	ı (ft)	2	3	Logged By JWR Checked By JRS Driller Environmental W Explorations, Inc			Drilling Method Sonic
	ce Elev al Datu		n (ft))	Unde	termine	ed			ammer Ita	Drilling Equipr) ment	Rig S-1
Eastir	ng (X)									rstem	Groun		2r Depth to
	ing (Ý) s: Tem	nora	irv w	ell ins	talled o	on 3/17/1	5 ai	nd ha		atum vith bentonite chips on 3/18/15.	Date M	easure	ed Water (ft) Elevation (ft)
	5. 1011	pore					o ui		okimod				
				FIEL	_D DA I ≞								
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	- 0		0						SP	Brown fine to medium sand with trace silt, gravel and occasional cobbles (medium dense, moist) (fill)	_		
	-									-	-		
	5 —		36						SM	Brown silty fine sand (medium dense, moist) - -	NS	1	
	_		60							-	- NS	3.7	
	60 - 10 - - 60 - 60 - - 60									-	- - NS -	3.1	
	15 -				<u>sv</u>	/ <u>DP-14-15</u> CA					- NS	3.4	
	-		60						CL	Light brown clay with mottled iron staining and trace silt (very stiff, dry)	- NS	1.1	
	20 —									-	- NS	<1	
	_									-	- NS	<1	
					I		1			Boring drilled to 23 feet bgs and backfilled to 18 feet bgs with bentonite chips. Temporary well set at 18 feet bgs with 2-inch-diameter 0.01 slot screen.	I	1	1
	JIE: SE	÷ ⊢ič	jure	A-1 fC	or explai	nation of	ı syr	ndols	i.				
										Log of Boring SVDP-14			
(ĴΕ)E	ĒN	١G	INE	ER	S	0	J	Project: Tiger Oil - Summ Project Location: Yakima, Washing Project Number: 0504-101-02			Figure A-9 Sheet 1 of 1

Spokane: Date:6/23/15 Path:P:00504101/GINT050410102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Drilled	<u>S</u> 3/18	<u>Start</u> 3/20	15	<u>En</u> 3/18	<u>d</u> /2015	Total Depth	(ft)	23	3	Logged By JWR Checked By JRS	Driller Explorations			Dri Me	lling thod Sonic	
Surfac Vertica	e Elev I Datu	atio m	n (ft))	Unde	etermine	d			Hammer Data		Drilli Equi	ng pmer	t	Rig S-1	
Easting Northir Notes:	ig (Y)	pora	ary w	vell ins	talled	on 3/17/1	5 aı	nd ba	[System Datum I with bentonite chips on	3/18/15.	Date	<u>Indwa</u> Measi 8/201	ired	Depth to <u>Water (ft)</u> 18.0	<u>Elevation (ft)</u>
Elevation (feet)		Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION	Sheen	Headspace	Vapor (ppm)	REMAR	KS
	0		60						AC GP CL	Asphalt concrete	with sand (loose, moist))	<	1		
	5 —		60						SM	- - Brown silty fine sar	d (dense, moist)	-	<	I		
	- 10 — -									-		- NS - -		I		
	_ _		60		<u>s</u>	<u>VDP-15-13</u> CA			CL	With gravel	ey silt (soft, moist)	- NS	5 7			
	- 20 — -		60				Y		SM	Becomes wet Brown silty fine sar occasional cobl	d with gravel and les (dense, wet)	- NS - NS - NS				
Not	e: See	e Fiç	gure	A-1 fo	r expl	anation of	syr	mbols	CL	(stiff, moist) Boring drilled to 23 22 feet bgs with well set at 23 fe	ttled iron staining and si feet bgs and backfilled t bentonite chips. Tempo et bgs with 5 feet of 0.01 slot screen.	to NS	<u>s</u> <			
										Log of Bor	ing SVDP-15					

GEOENGINEERS Project: Tiger Oil - Summitview Project Location: Yakima, Washington Project Number: 0504-101-02

Figure A-10 Sheet 1 of 1

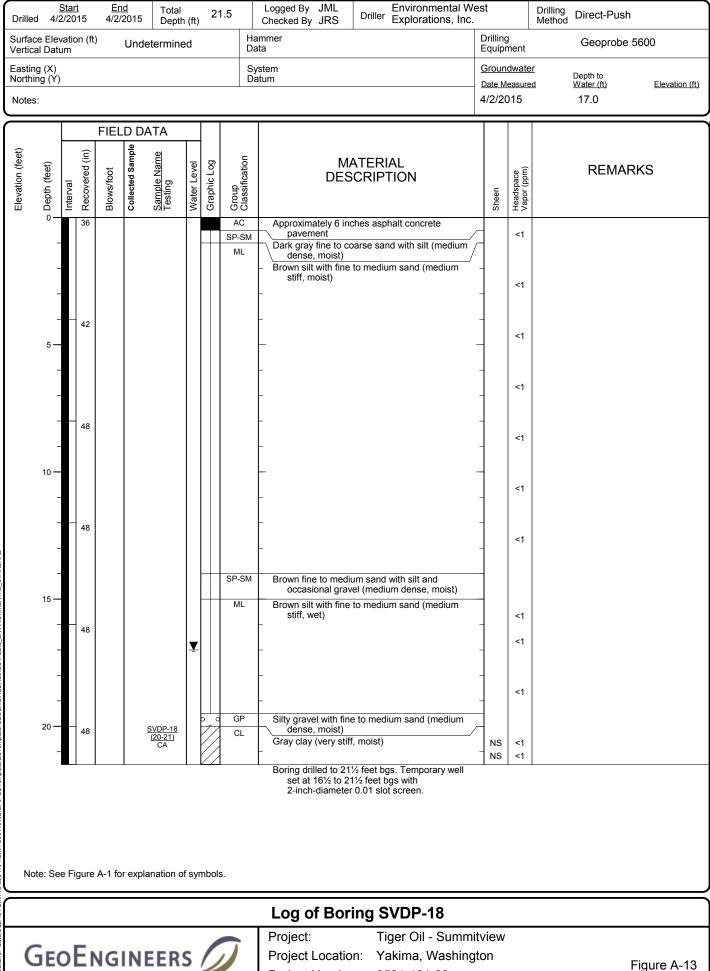

Project Location:

Project Number:

Yakima, Washington

0504-101-02

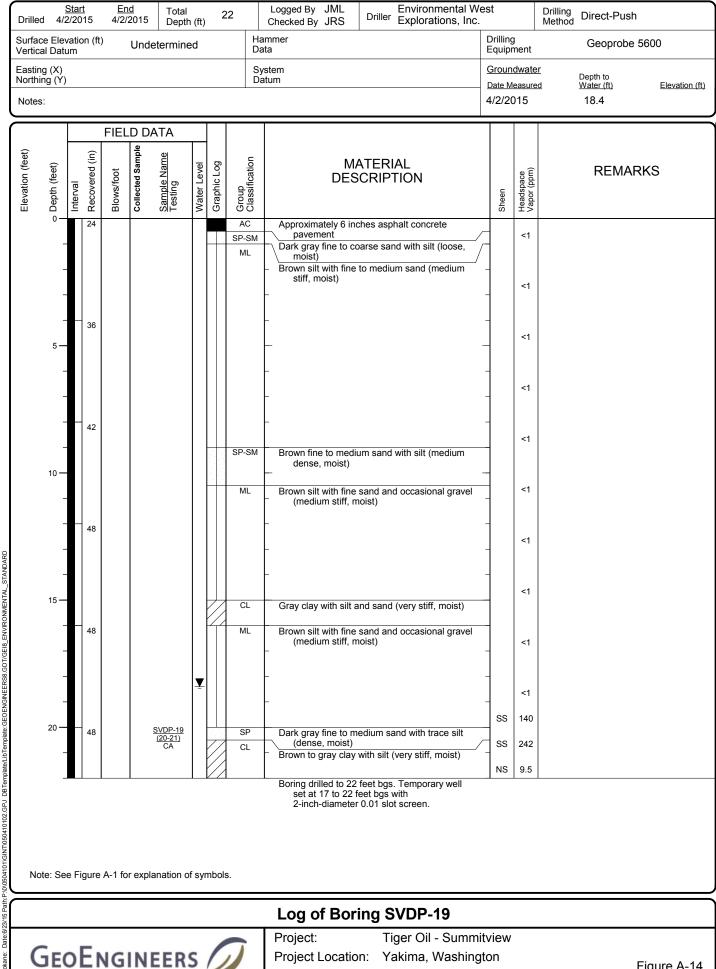
Figure A-11 Sheet 1 of 1



0504-101-02

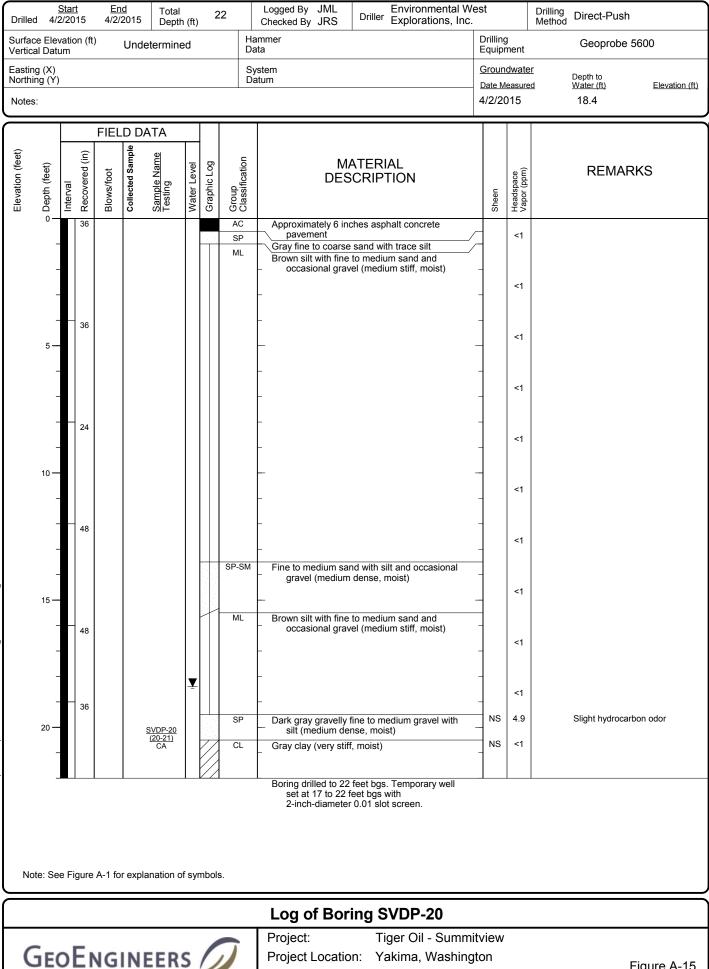
Project Number:

GEOENGINEERS8.GDT/GEI8 ENVIRONMENTAL E T/050410102.GPJ Date: 6/2


Figure A-12 Sheet 1 of 1

0504-101-02

Project Number:


Sheet 1 of 1

0504-101-02

GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL Ë N050410102.GPJ Date: 6/2

Figure A-14 Sheet 1 of 1

0504-101-02


Project Number:

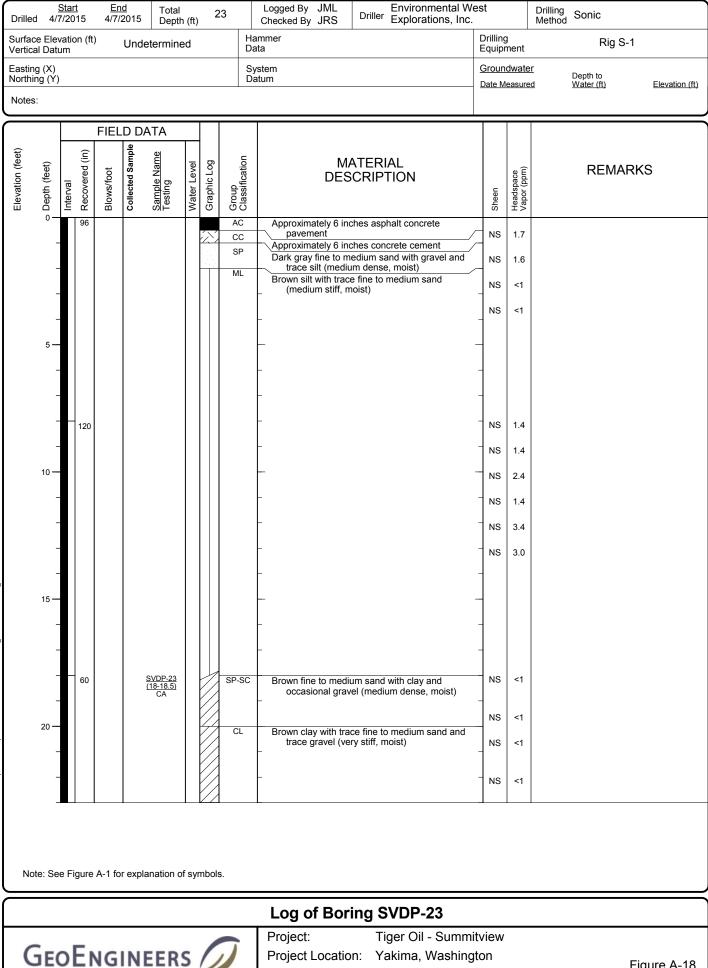
Figure A-15 Sheet 1 of 1

Drilled		<u>art</u> 2015	<u>En</u> 4/2/2	<u>nd</u> /2015	Total Depth	h (ft)	2	21	Logged By JML Checked By JRS	Environme Driller Exploration		st		Drilling Method
Surface Vertical)	Unde	etermine	ed			Hammer Data			Drilling Equip	g ment	Geoprobe 5600
Easting Northing	(X) a (Y)								System Datum			Groun		Depth to
Notes:	,,											Date N 4/2/2		d <u>Water (ft)</u> <u>Elevation (ft)</u> 18.4
\equiv			FIEL	D DA	٦	_	\square							
feet)		(in)		ample	me		5	Ę	5 M	ATERIAL				
Elevation (feet)	Depth (feet)	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DES	CRIPTION		c	Headspace Vapor (ppm)	REMARKS
Elevi	o Dept		Blow	Colle	<u>Sam</u> Testi	Wate	Grap					Sheen	Head Vapo	
	_	36						AC SP-SI	M pavement	ches asphalt concrete		_	<1	
	_							ML	 dense, moist) Brown silt with fine 	to medium sand (med	/			
	_								stiff, moist)				<1	
	_	36							_					
	5 —								_		-		<1	
	-								_			-		
	-								_			-	<1	
	-	48							_				<1	
	-								-					
	10 —								_		-		<1	
	-								-					
	_	42							-				<1	
	15 —								_		-			
	_	48							_				<1	
	_	40						SP-SI	Brown fine to coars	e sand with silt and		_		
	-					V				el (medium dense, mo	oist to	_		
	-					-			_			-	<1	
:	20 —	18		ŝ	<u>SVDP-21</u> (20-21)				_		-		<1	
				<u> </u>	CA		VZ.	CL	occasional grav	to medium sand and el (very stiff, moist) feet bgs. Temporary v				
									set at 16 to 21 f		*****			
Note	: See	Figure	A-1 fo	or expla	anation o	ofsyr	mbol	S.						
\vdash														
									Log of Bor Project:	Tiger Oil - S		View		
G	EC	E	١G	INE	EER	S		J	Project Locatio	n: Yakima, Wa	ashingt			Figure A-16

0504-101-02

Figure A-16 Sheet 1 of 1

Project Location:

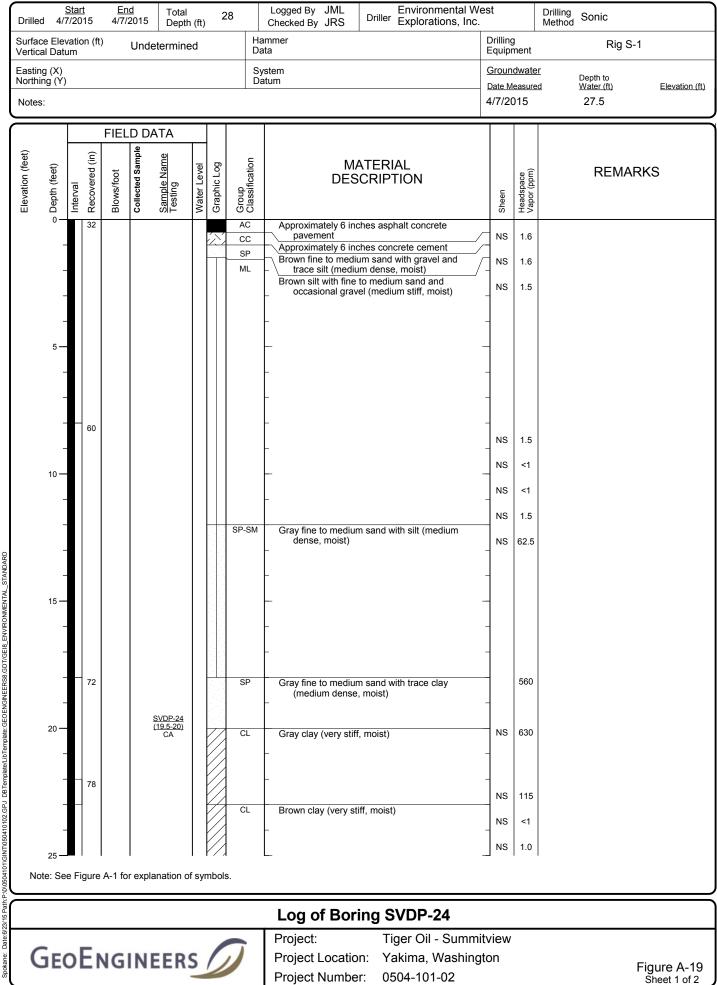

Project Number:

Yakima, Washington

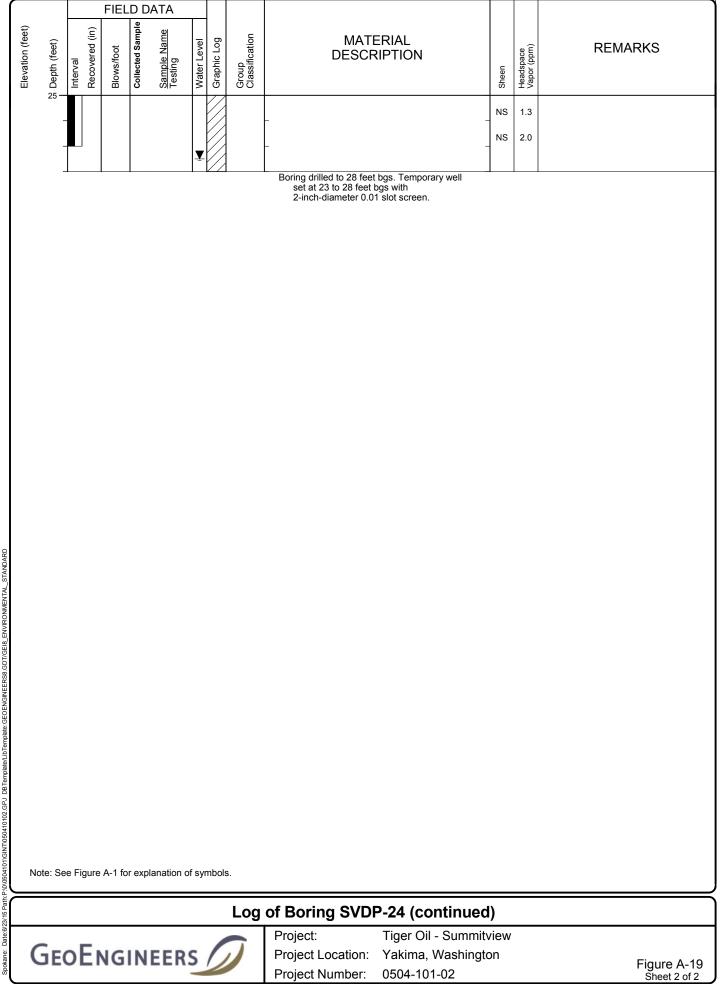
0504-101-02

GDT/GEI8 ENVIRONMENTAL GEOFNGINFERS8 E TN050410102.GPJ Date: 6/2

Figure A-17 Sheet 1 of 1


0504-101-02

Project Number:


GDT/GEI8 ENVIRONMENTAL GEOFNGINFERS8 Ë INT/050410102.GPJ kane: Date:6/2

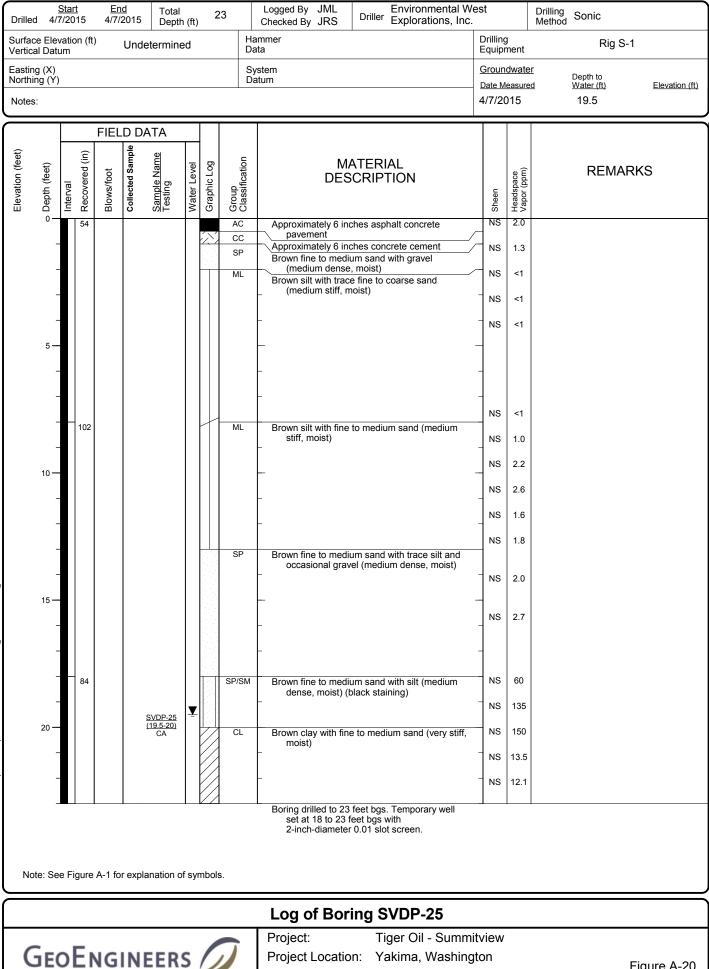

STANDAR

Figure A-18 Sheet 1 of 1

GDT/GEI8 ENVIRONMENTAL Ë 31NT/050410102.GPJ Date:

0504-101-02

GDT/GEI8 ENVIRONMENTAL GEOFNGINFERS8 Ë N050410102.GPJ Date: 6/2

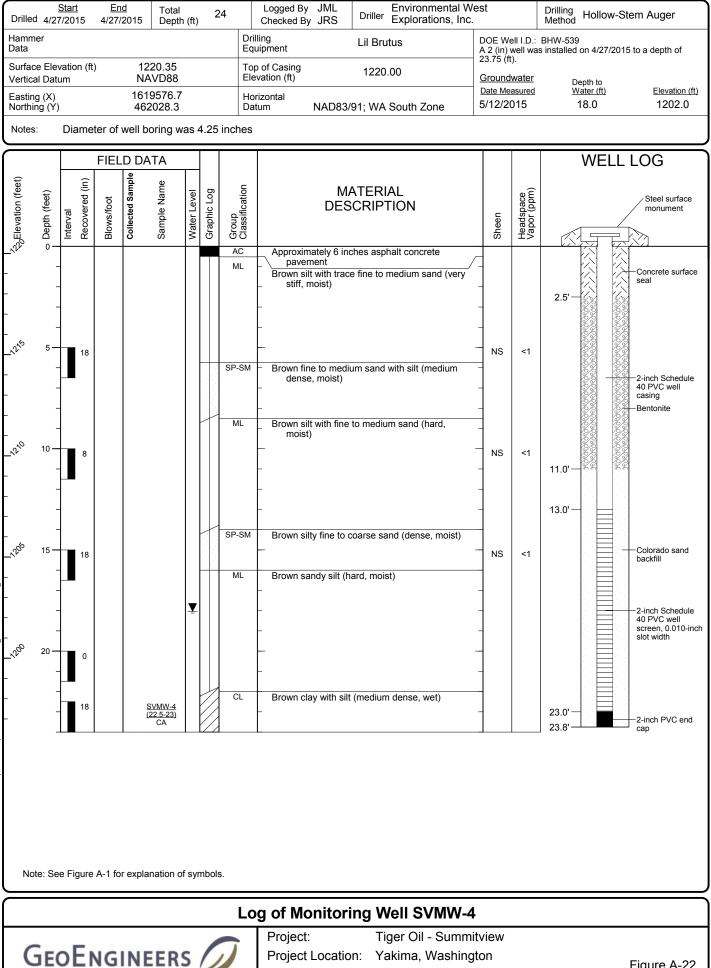
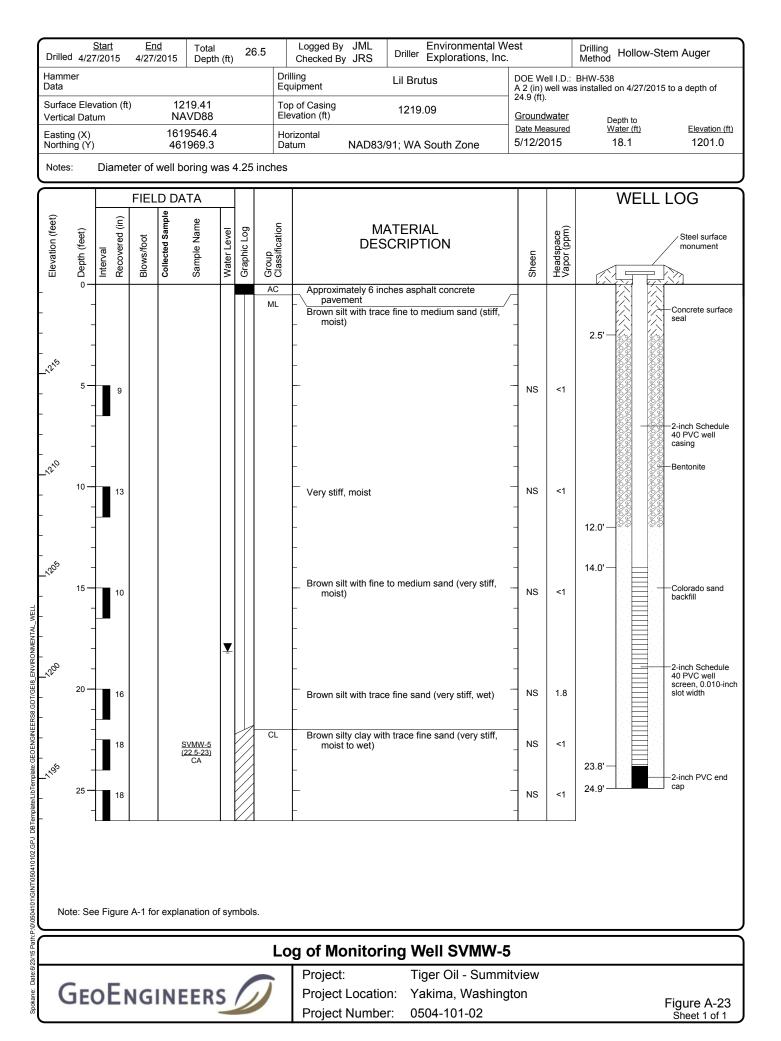

STANDAR

Figure A-20 Sheet 1 of 1

	Drilled	<u>9</u> 4/7	<u>Start</u> 7/201		<u>End</u> 4/7/201	5 Total 5 Depth) 2	23		Logged By JML Checked By JRS	Driller	Environmental Explorations, Ir	Wes nc.	st		Drilling Method	Sonic	
		e Elev al Datu		n (ft)	Un	determine	ed				ammer ata				Drilling Equipr			Rig S-1	
E; N	asting orthin	g (X) 1g (Y)								Sy	ystem atum				Groun		_	Depth to	——————————————————————————————————————
	lotes:														Date M 4/7/20		<u>ed</u>	<u>Water (ft)</u> 22.5	Elevation (ft)
			_		FIELD [DATA		$\overline{\top}$			1								
4	(199	0		(in)	ample	me	_	1	s s	uo	M	ATERI	Δι						
) acit-	Elevation (feet)	Depth (feet)	val	Recovered (in)	Blows/foot Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	sificatio		SCRIPT			Ę	Headspace Vapor (ppm)		REMAR	KS
Ē	Elev	o Dept	Interval		Blow	Sam Test	Wat	Gra							Sheen	Head			
				36					AC CC	2	Approximately 6 in pavement Approximately 6 in				NS	2.5			
		_							SP-S	ЗM	Brown fine to medi – (medium dense	ium sand			NS	3.0			
		_									-			_	NS	2.4			
		-									=			-					
		5 —									 -			_					
		_									-			-					
		-							SP		Brown fine to medi	ium sand	with trace silt		-				
		-		60							(medium dense			-	-				
		-									_			-	NS	1.9			
		10 —							ML	L	Brown silt with san	ıd (mediur	n stiff, moist)		NS	3.1			
		-									-			-	NS	1.2			
		-									-			-	NS	5.4			
RD		-		68							-			-	NS	8.6			
VTAL_STANDARD		-									-			-	NS	<1			
MENTAL		15 —									-			-	-				
NVIRON		-									-			-	NS	<1			
JT/GEI8_E		-									-			-					
ERS8.GD		-		90					SP-S	SM		ium sand	with silt (medium		NS	<1			
DENGINE		-									dense, moist)			-	NS	3.0			
plate:GE0		20 —				<u>SVDP-26</u> (20-20.5) CA		$\left \right $	CL	_	Brown with gray st				NS NS	1.0 40			
te/LibTem		_				CA					medium sand (meaium s	tiff, moist)	-					
Spokane: Date 0/23/15 Path:P:0/0604101/GINT/050410102.GPJ DB Template/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMEI		_					Ţ				-			-	NS	2.5			
02.GPJ D					I						Boring drilled to 23 set at 18 to 23								
\0504101											2-inch-diamete								
H01/GINT							. .												
:P:/0/0504	NOT	e: See	e Fig	jure .	A-1 for ex	planation o	rsy		s.	_									
23/15 Path											Log of Bor	ring S	VDP-26						
: Date:6/2	<i>c</i>		. 1				_		7		Project:		ger Oil - Sum						
Spokane	C	JE(J		IGIN	IEER	5				Project Location		ıkima, Washi 04-101-02	ngto	on			F	Figure A-21

0504-101-02

Figure A-21 Sheet 1 of 1



0504-101-02

IGFIS ENVIRONMENTAL E Date: 6/2:

NFI-

Figure A-22 Sheet 1 of 1

APPENDIX B Laboratory Reports

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project:	Tiger Oil – Summitview, Data Gap Assessment April 2015 Soil Samples
GEI File No:	00504-101-02
Date:	May 19, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil samples collected as part of the April 2015 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory/Field Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-731-1	SVMW-4 (22.5-23), SVMW-5 (22.5-23), SVMW-Dup

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil samples using the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory outside the appropriate temperatures of between 2°C and 6°C. The out-of-compliance temperature is detailed below.

SDG 590-731-1: The sample cooler temperature recorded at the laboratory was 8.2° C. The samples were put on ice when they were collected (4/27/2015) and ice was added every day until they were received by the laboratory (4/29/2015). The out-of-compliance temperature was very likely isolated to the day the

samples were received at the laboratory. For this reason, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For sample batches, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if the element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/laboratory control sample duplicate (LCSD) control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 35 percent.

SDG 590-731-1: One field duplicate sample pair, SVMW-5 (22.5-23) and SVMW-Dup, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values.

No analytical results were qualified. Data is acceptable for the intended use.

Data Validation Report

www.geoengineers.com

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

Project:	Tiger Oil – Summitview, Data Gap Assessment April 2015 Direct Push Soil and Groundwater Samples
GEI File No:	00504-101-02
Date:	May 26, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the April 2015 sampling event, and the associated laboratory quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated	
590-580-1	SVDP-16:GW, SVDP-17:GW, SVDP-18:GW, SVDP-19:GW, SVDP-20:GW, SVDP-21:GW	
590-581-1	SVDP-16 (22-23), SVDP-17 (19.5-20.5), SVDP-18 (20-21), SVDP-19 (20-21), SVDP-20 (20-21), SVDP-21 (20-21)	

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using the following methods:

Groundwater:

Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID.

Soil:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte

concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 590-581-1: (PAHs) The percent recovery for surrogate 2-Fluorobiphenyl was less than the control limits in Samples SVDP-16 (22-23), SVDP-17 (19.5-20.5), SVDP-18 (20-21), SVDP-19 (20-21) and SVDP-20 (20-21); however, the samples were spiked with two additional surrogates, both within their respective control limits. No action was required for these outliers.

The percent recoveries for surrogates nitrobenzene-d5 and 2-Fluorobiphenyl were less than the control limits in Sample SVDP-21 (20-21). The reporting limits for the target analytes were qualified as estimated (UJ) in this sample.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if the element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to the samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit for water is 20 percent and the RPD control limit for soil is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory duplicate RPD values.

Data is acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SVDP-21 (20-21)	PAH target analytes	UJ	Surrogate Recovery

Data Validation Report

www.geoengineers.com

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

Project:	Tiger Oil – Summitview, Data Gap Assessment
March 2015 Soil and Groundwater Samples	
GEI File No:	00504-101-02
Date:	May 27, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the March 2015 sampling event, and the associated laboratory quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples
- Laboratory Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-483-1	SVDP-7-15, SVDP-8-14, SVDP-9-20, SVDP-10-19, SVDP-11-13, SVDP-12-18.5, SVDP-13-18.0, SVDP-14-15, SVDP-15-13
590-484-1	SVDP-9-031815, SVDP-10-031815, SVDP-11-031815, SVDP-12-031715, SVDP-13-031715, SVDP-15-031815

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using the following methods:

Groundwater:

Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID.

Soil:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For sample batches, method blanks for applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if the element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS control limits for accuracy are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS analyses would apply to samples in the associated

batch, instead of just the parent sample. The percent recovery control limits for LCS analyses are specified in the laboratory documents.

One LCS analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit for water is 20 percent and the RPD control limit for soil is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

SDG 590-483-1: (NWTPH-Dx) A laboratory duplicate analysis was performed on Sample SVDP-7-15. The RPD values for diesel-range and lube oil-range hydrocarbons were greater than the control limits. The positive results for these target analytes were qualified as estimated (J) in this sample.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD and laboratory duplicate RPD values, with the exception noted above.

Data is acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
SVDP-7-15	Diesel-range Hydrocarbons	J	Laboratory Duplicate RPD
	Lube oil-range Hydrocarbons	J	Laboratory Duplicate RPD

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Data Validation Report

www.geoengineers.com

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

Project: Tiger Oil – Summitview, Data Gap Assessment April 2015 Soil and Groundwater Boring Samples	
GEI File No:	00504-101-02
Date:	May 27, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the April 2015 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated	
590-628-1	SVDP-22 (20.5-21), SVDP-23 (18-18.5), SVDP-24 (19.5-20), SVDP-25 (19.5-20), SVDP-26 (20-20.5), SVDP-24:GW, SVDP-25:GW, SVDP-26:GW, Trip Blank	

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using the following methods:

Groundwater:

■ Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID.

Soil:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory, with the following exception:

SDG 590-628-1: The laboratory noted that Sample Trip Blank was received, but not listed on the chain-ofcustody form.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 590-628-1: (NWTPH-HCID) The percent recovery for surrogate n-Triacontane-d62 was less than the control limits in Samples SVDP-24:GW, SVDP-25:GW and SVDP-26:GW. The positive results and reporting limits for the target analytes were qualified as estimated (J/UJ) in these samples.

Method and Trip Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks for applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the analytes of interest were detected above the reporting limits in the trip blank.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to the samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Miscellaneous

SDG 590-628-1: (NWTPH-HCID) The DRPH and ORPH results for Samples SVDP-24:GW and SVDP-25:GW may be influenced by the relative concentration of GRPH in the samples. For this reason, the positive results for DRPH and ORPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD RPD values.

The data is acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SVDP-24:GW	Gasoline-range Hydrocarbons	J	Surrogate Recovery
	Diesel-range Hydrocarbons	J	Surrogate Recovery/Other
	Lube oil-range Hydrocarbons	J	Surrogate Recovery/Other
SVDP-25:GW	Gasoline-range Hydrocarbons	J	Surrogate Recovery
	Diesel-range Hydrocarbons	J	Surrogate Recovery/Other
	Lube oil-range Hydrocarbons	UJ	Surrogate Recovery
SVDP-26:GW	Gasoline-range Hydrocarbons	UJ	Surrogate Recovery
	Diesel-range Hydrocarbons	UJ	Surrogate Recovery
	Lube oil-range Hydrocarbons	UJ	Surrogate Recovery

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project: Tiger Oil - Summitview Second Quarter 2015 Groundwater Samples	
GEI File No:	00504-101-00
Date:	June 11, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of groundwater samples collected as part of the May 2015 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples
- Field Duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-870-1	SVMW-2, SVMW-3, Duplicate, SVMW-4, SVMW-5, Trip Blank

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the groundwater samples using the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Petroleum Hydrocarbons with Silica Gel (SG) Cleanup (NWTPH-Dx/SG) by Method NWTPH-Dx/SG;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- 1,2-Dibromoethane (EDB) by Method SW8011;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM;
- Total Metals by Method EPA200.7;
- Anions by Method EPA300.0; and
- Total Organic Carbon (TOC) by Method SM5310C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample

collection. Established holding times were met for all analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Trip Blanks

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the target analytes were detected above the reporting limits in the trip blank.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS control limits for accuracy are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS analyses are specified in the laboratory documents.

One LCS analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery values were within the proper control limits.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG 590-870-1: One field duplicate sample pair, SVMW-3 and Duplicate, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair.

Miscellaneous

SDG 590-870-1: (NWTPH-Dx) The positive results for DRPH in Samples SVMW-3, Duplicate and SVMW-5 may be influenced by the relative concentration of GRPH in these samples. For this reason, the positive results for DRPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS and MS percent recovery values. Precision was acceptable, as demonstrated by the field duplicate RPD values.

All data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID Analyte Qualifier Reason SVMW-3 J See Miscellaneous **Diesel-range Hydrocarbons** Duplicate See Miscellaneous **Diesel-range Hydrocarbons** J SVMW-5 Diesel-range Hydrocarbons J See Miscellaneous

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-483-1 Client Project/Site: Tiger Oil - Summitview

For: GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 3/30/2015 6:04:27 PM

Michelle Johnston, Project Manager II (303)736-0110 michelle.johnston@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	
Client Sample Results	5
QC Sample Results	18
Chronicle	23
Certification Summary	27
Method Summary	28
Chain of Custody	29
Receipt Checklists	30

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summitview TestAmerica Job ID: 590-483-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
590-483-1	SVDP-9-20	Solid	03/17/15 14:15	03/20/15 12:10	
590-483-2	SVDP-7-15	Solid	03/17/15 09:05	03/20/15 12:10	
590-483-3	SVDP-11-13	Solid	03/17/15 10:44	03/20/15 12:10	
590-483-4	SVDP-10-19	Solid	03/17/15 12:53	03/20/15 12:10	
590-483-5	SVDP-8-14	Solid	03/17/15 11:38	03/20/15 12:10	
590-483-6	SVDP-15-13	Solid	03/18/15 10:25	03/20/15 12:10	
590-483-7	SVDP-13-18.0	Solid	03/16/15 16:55	03/20/15 12:10	
590-483-8	SVDP-12-18.5	Solid	03/16/15 13:55	03/20/15 12:10	
590-483-9	SVDP-14-15	Solid	03/17/15 15:05	03/20/15 12:10	

4

5

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
F3	Duplicate RPD exceeds the control limit

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Lab Sample ID: 590-483-1

03/25/15 11:50

03/25/15 10:38

Matrix: Solid

Percent Solids: 80.0

2 3 4 5 6

10

Client	Sample	ID:	SVD	P-9-20

Date Collected: 03/17/15 14:15 Date Received: 03/20/15 12:10

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.25		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 11:50	10
Ethylbenzene	13		1.6		mg/Kg	¢	03/25/15 10:38	03/25/15 11:50	10
m,p-Xylene	51		6.6		mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
o-Xylene	18		3.3		mg/Kg	¢	03/25/15 10:38	03/25/15 11:50	10
Toluene	8.5		1.6		mg/Kg	¢	03/25/15 10:38	03/25/15 11:50	10
Naphthalene	4.8		3.3		mg/Kg	☆	03/25/15 10:38	03/25/15 11:50	10
Xylenes, Total	69		9.9		mg/Kg	¢	03/25/15 10:38	03/25/15 11:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 - 120				03/25/15 10:38	03/25/15 11:50	10
4-Bromofluorobenzene (Surr)	104		69.8 - 140				03/25/15 10:38	03/25/15 11:50	10
Dibromofluoromethane (Surr)	98		80 - 120				03/25/15 10:38	03/25/15 11:50	10

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

97

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1400		82		mg/Kg	¢	03/25/15 10:38	03/25/15 11:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		41.5 - 162				03/25/15 10:38	03/25/15 11:50	10

78.5 - 125

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	89		12		ug/Kg	<u></u>	03/26/15 11:12	03/26/15 13:45	·
2-Methylnaphthalene	300		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
1-Methylnaphthalene	130		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	
Acenaphthylene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	• • • • •
Acenaphthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	
Fluorene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	
Phenanthrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	
Chrysene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 13:45	· · · · · · ·
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Benzo[a]pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 13:45	
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 13:45	
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	53		35.1 - 144				03/26/15 11:12	03/26/15 13:45	
2-Fluorobiphenyl (Surr)	73		48.8 - 134				03/26/15 11:12	03/26/15 13:45	
p-Terphenyl-d14	80		48 - 166				03/26/15 11:12	03/26/15 13:45	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		17		mg/Kg	¢	03/25/15 09:56	03/25/15 12:08	1
(C10-C25)									

TestAmerica Spokane

Client Sample ID: SVDP-9-20

Date Collected: 03/17/15 14:15 Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-1 Matrix: Solid

Lab Sample ID: 590-483-2

Matrix: Solid

Percent Solids: 83.1

Percent Solids: 80.0

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		43		mg/Kg	<u>*</u>	03/25/15 09:56	03/25/15 12:08	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150				03/25/15 09:56	03/25/15 12:08	1
n-Triacontane-d62	93		50 - 150				03/25/15 09:56	03/25/15 12:08	1
- Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.8		5.8		mg/Kg	<u></u>	03/23/15 07:57	03/24/15 18:03	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20		0.010		%			03/23/15 14:09	1
reicent woisture									

Client Sample ID: SVDP-7-15

Date Collected: 03/17/15 09:05

Date Received: 03/20/15 12:10

Method: 8260C - Volatile	Organic Compounds	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.23		mg/Kg	\$	03/25/15 10:38	03/25/15 15:11	10
Ethylbenzene	14		1.5		mg/Kg	₽	03/25/15 10:38	03/25/15 15:11	10
m,p-Xylene	67		6.1		mg/Kg	¢	03/25/15 10:38	03/25/15 15:11	10
o-Xylene	29		3.1		mg/Kg	¢	03/25/15 10:38	03/25/15 15:11	10
Toluene	11		1.5		mg/Kg	¢	03/25/15 10:38	03/25/15 15:11	10
Naphthalene	20		3.1		mg/Kg	¢	03/25/15 10:38	03/25/15 15:11	10
Xylenes, Total	96		9.2		mg/Kg	¢	03/25/15 10:38	03/25/15 15:11	10
Summe mete	% Deservery	Overlifier	Lincita				Dramarad	Analyzad	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		74.7 - 120	03/25/15 10:38	03/25/15 15:11	10
4-Bromofluorobenzene (Surr)	104		69.8 - 140	03/25/15 10:38	03/25/15 15:11	10
Dibromofluoromethane (Surr)	100		80 - 120	03/25/15 10:38	03/25/15 15:11	10
Toluene-d8 (Surr)	99		78.5 - 125	03/25/15 10:38	03/25/15 15:11	10
	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	1,2-Dichloroethane-d4 (Surr)994-Bromofluorobenzene (Surr)104Dibromofluoromethane (Surr)100	1,2-Dichloroethane-d4 (Surr)994-Bromofluorobenzene (Surr)104Dibromofluoromethane (Surr)100	1,2-Dichloroethane-d4 (Surr) 99 74.7 - 120 4-Bromofluorobenzene (Surr) 104 69.8 - 140 Dibromofluoromethane (Surr) 100 80 - 120	1,2-Dichloroethane-d4 (Surr) 99 74.7 - 120 03/25/15 10:38 4-Bromofluorobenzene (Surr) 104 69.8 - 140 03/25/15 10:38 Dibromofluoromethane (Surr) 100 80 - 120 03/25/15 10:38	1,2-Dichloroethane-d4 (Surr) 99 74.7 - 120 03/25/15 10:38 03/25/15 15:11 4-Bromofluorobenzene (Surr) 104 69.8 - 140 03/25/15 10:38 03/25/15 15:11 Dibromofluoromethane (Surr) 100 80 - 120 03/25/15 10:38 03/25/15 15:11

					D	Prepared	Analyzed	Dil Fac
Gasoline	750		76	 mg/Kg	<u></u>	03/25/15 10:38	03/25/15 15:11	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		41.5 - 162			03/25/15 10:38	03/25/15 15:11	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	10000		60		ug/Kg	<u> </u>	03/26/15 11:12	03/27/15 11:59	5
2-Methylnaphthalene	5400		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
1-Methylnaphthalene	2400		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Acenaphthylene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Acenaphthene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Fluorene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Phenanthrene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2

TestAmerica Spokane

Client Sample ID: SVDP-7-15 Date Collected: 03/17/15 09:05

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-2 Matrix: Solid

Analyzed

D

Pronarod

Percent Solids: 83.1

5

Dil Fac

Method: 8270D SIM - Semivol	atile Organic Compounds (GC/MS	SIM) (Con	tinued)	
Analyte	Result Qualifier	RL	MDL U	Jnit

Analyte	Result	Quaimer		NIDL	Unit	U	Flepaleu	Analyzeu	DirFac
Anthracene	ND		24		ug/Kg	<u></u>	03/26/15 11:12	03/26/15 14:08	2
Fluoranthene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Pyrene	24		24		ug/Kg	\$	03/26/15 11:12	03/26/15 14:08	2
Benzo[a]anthracene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Chrysene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Benzo[b]fluoranthene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Benzo[k]fluoranthene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Benzo[a]pyrene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Indeno[1,2,3-cd]pyrene	ND		24		ug/Kg	¢	03/26/15 11:12	03/26/15 14:08	2
Dibenz(a,h)anthracene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Benzo[g,h,i]perylene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		35.1 - 144				03/26/15 11:12	03/26/15 14:08	2
2-Fluorobiphenyl (Surr)	86		48.8 - 134				03/26/15 11:12	03/26/15 14:08	2
p-Terphenyl-d14	82		48 - 166				03/26/15 11:12	03/26/15 14:08	2

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

83

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	170		12	mg/Kg	a	03/25/15 09:56	03/25/15 12:52	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	150		30	mg/Kg) [‡]	03/25/15 09:56	03/25/15 12:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surroyate	/%Recovery	Quaimer	Lilling				Frepareu	Analyzeu	DirFac
o-Terphenyl	98		50 - 150				03/25/15 09:56	03/25/15 12:52	1
n-Triacontane-d62	101		50 - 150				03/25/15 09:56	03/25/15 12:52	1
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	38		4.7		mg/Kg	<u> </u>	03/23/15 07:57	03/24/15 18:07	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17		0.010		%			03/23/15 14:09	1

0.010

%

Client Sample ID: SVDP-11-13

Date Collected: 03/17/15 10:44

Date Received: 03/20/15 12:10

Percent Solids

Method: 8260C - Volatile Or	ganic Compounds b	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.017		mg/Kg	₩ ₩	03/25/15 10:38	03/25/15 12:35	1
Ethylbenzene	ND		0.11		mg/Kg	¢	03/25/15 10:38	03/25/15 12:35	1
m,p-Xylene	ND		0.44		mg/Kg	¢	03/25/15 10:38	03/25/15 12:35	1
o-Xylene	ND		0.22		mg/Kg	¢	03/25/15 10:38	03/25/15 12:35	1
Toluene	ND		0.11		mg/Kg	¢	03/25/15 10:38	03/25/15 12:35	1
Naphthalene	ND		0.22		mg/Kg	¢	03/25/15 10:38	03/25/15 12:35	1
Xylenes, Total	ND		0.66		mg/Kg	¢	03/25/15 10:38	03/25/15 12:35	1

03/23/15 14:09

Lab Sample ID: 590-483-3

1

Matrix: Solid

Percent Solids: 79.3

lient Sample ID: SVDP-11-	15							mple ID: 590	
Pate Collected: 03/17/15 10:44 Pate Received: 03/20/15 12:10								Matri Percent Soli	x: Soli
ale Received. 03/20/15 12.10								Percent Son	us. 79.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)			74.7 - 120				03/25/15 10:38	03/25/15 12:35	
4-Bromofluorobenzene (Surr)	98		69.8 - 140				03/25/15 10:38	03/25/15 12:35	
Dibromofluoromethane (Surr)	99		80 - 120				03/25/15 10:38	03/25/15 12:35	
Toluene-d8 (Surr)	103		78.5 - 125				03/25/15 10:38	03/25/15 12:35	
Method: NWTPH-Gx - Northwes	t - Volatile Petr	oleum Pro	ducts (GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	ND		5.5		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 12:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98		41.5 - 162				03/25/15 10:38	03/25/15 12:35	
Method: 8270D SIM - Semivolat	ile Organic Con	npounds ((GC/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		12		ug/Kg	\\\\	03/26/15 11:12	03/26/15 14:30	
2-Methylnaphthalene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
1-Methylnaphthalene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Acenaphthylene	ND		12		ug/Kg	÷.	03/26/15 11:12	03/26/15 14:30	
Acenaphthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Fluorene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Phenanthrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Fluoranthene	ND		12			¢	03/26/15 11:12		
					ug/Kg			03/26/15 14:30	
Pyrene	ND		12		ug/Kg		03/26/15 11:12	03/26/15 14:30	
Benzo[a]anthracene	ND		12		ug/Kg	Å.	03/26/15 11:12	03/26/15 14:30	
Chrysene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Benzo[k]fluoranthene	ND		12		ug/Kg	₿. Ĉ	03/26/15 11:12	03/26/15 14:30	
Benzo[a]pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 14:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	54		35.1 - 144				03/26/15 11:12	03/26/15 14:30	
2-Fluorobiphenyl (Surr)	73		48.8 - 134				03/26/15 11:12	03/26/15 14:30	
p-Terphenyl-d14	83		48 - 166				03/26/15 11:12	03/26/15 14:30	
Method: NWTPH-Dx - Northwes	t - Semi-Volatile	e Petroleur	m Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg	¢	03/25/15 09:56	03/25/15 13:15	
Residual Range Organics (RRO) (C25-C36)	ND		30		mg/Kg	¢	03/25/15 09:56	03/25/15 13:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	96	_	50 - 150				03/25/15 09:56	03/25/15 13:15	
n-Triacontane-d62	100		50 - 150				03/25/15 09:56	03/25/15 13:15	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

TestAmerica Spokane

Client Sample Results

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summitview

lient Sample ID: SVDP-11 ate Collected: 03/17/15 10:44 ate Received: 03/20/15 12:10	1-13							mple ID: 590 Matri	x: Soli
General Chemistry Analyte	Popult	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	<u></u>	Quaimer	0.010				Fiepaleu	03/23/15 14:09	
Percent Solids	79		0.010		%			03/23/15 14:09	
reicent Solius	75		0.010		70			00/20/10 14:00	
lient Sample ID: SVDP-10	0-19						Lab Sa	mple ID: 590	-483-
ate Collected: 03/17/15 12:53								Matri	x: Sol
ate Received: 03/20/15 12:10								Percent Soli	
Method: 8260C - Volatile Orga	nic Compounds I								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	ND		0.013		mg/Kg	— <u>–</u>	03/25/15 10:38	03/25/15 12:57	
Ethylbenzene	ND		0.084		mg/Kg	¢	03/25/15 10:38	03/25/15 12:57	
n,p-Xylene	ND		0.34		mg/Kg	¢	03/25/15 10:38	03/25/15 12:57	
	ND		0.17				03/25/15 10:38	03/25/15 12:57	
o-Xylene					mg/Kg	¢			
Foluene	ND		0.084		mg/Kg		03/25/15 10:38	03/25/15 12:57	
Naphthalene	ND		0.17		mg/Kg	¢	03/25/15 10:38	03/25/15 12:57	
Kylenes, Total	ND		0.51		mg/Kg	¢	03/25/15 10:38	03/25/15 12:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
1,2-Dichloroethane-d4 (Surr)	98		74.7 - 120				03/25/15 10:38	03/25/15 12:57	
							03/25/15 10:38	03/25/15 12:57	
	110		69.8 - 140				03/23/13 10.30	00,20,10,12,01	
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	100 98 est - Volatile Petro		80 - 120 78.5 - 125				03/25/15 10:38 03/25/15 10:38	03/25/15 12:57 03/25/15 12:57	
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte	100 98 est - Volatile Petro Result	Dieum Prod Qualifier	80 - 120 78.5 - 125 Iucts (GC/MS) RL	MDL	Unit	D	03/25/15 10:38 03/25/15 10:38 Prepared	03/25/15 12:57 03/25/15 12:57 Analyzed	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline	100 98 est - Volatile Petro		80 - 120 78.5 - 125 Iucts (GC/MS)	MDL	Unit mg/Kg	D ¤	03/25/15 10:38 03/25/15 10:38	03/25/15 12:57 03/25/15 12:57	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline	100 98 est - Volatile Petro Result	Qualifier	80 - 120 78.5 - 125 Iucts (GC/MS) RL	MDL			03/25/15 10:38 03/25/15 10:38 Prepared	03/25/15 12:57 03/25/15 12:57 Analyzed	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte	100 98 est - Volatile Petro Result 30	Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2	MDL			03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57	
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	100 98 est - Volatile Petro Result 30 %Recovery 110	Qualifier Qualifier	80 - 120 78.5 - 125 Iucts (GC/MS) RL 4.2 Limits 41.5 - 162	MDL			03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed	
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola	100 98 est - Volatile Petro Result 30 <u>%Recovery</u> 110 atile Organic Com	Qualifier Qualifier	80 - 120 78.5 - 125 Iucts (GC/MS) RL 4.2 Limits 41.5 - 162	MDL	mg/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte	100 98 est - Volatile Petro Result 30 <u>%Recovery</u> 110 atile Organic Com	Qualifier Qualifier	80 - 120 78.5 - 125 Jucts (GC/MS) RL 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM)		mg/Kg	<u>~</u>	03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result	Qualifier Qualifier	80 - 120 78.5 - 125 Jucts (GC/MS) RL 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL		Unit ug/Kg	🛱	03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Vaphthalene 2-Methylnaphthalene	100 98 est - Volatile Petro Result 30 <u>%Recovery</u> 110 atile Organic Com Result ND	Qualifier Qualifier	80 - 120 78.5 - 125 Jucts (GC/MS) RL 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL 12		Unit ug/Kg ug/Kg	x	03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL 12 12 12		Unit ug/Kg ug/Kg ug/Kg	\alpha	03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38	Dil I
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Aucts (GC/MS) RL 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg	D 20 20 20 20 20 20 20 20 20 20 20 20 20	03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Eluorene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil F
A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate A-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> <u>4.2</u> <u>Limits</u> <u>41.5 - 162</u> <u>5C/MS SIM)</u> <u>RL</u> 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate A-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Vaphthalene 2-Methylnaphthalene I-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> <u>4.2</u> <u>Limits</u> <u>41.5 - 162</u> <u>5C/MS SIM)</u> <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate A-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene I-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2 Limits 41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
A-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate A-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene I-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2 Limits 41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Phenanthrene Pyrene Benzo[a]anthracene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Basoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Phenanthrene Phenanthrene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> 4.2 <u>Limits</u> 41.5 - 162 6C/MS SIM) <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38	Dil I
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Phenanthrene Fluoranthene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> 4.2 <u>Limits</u> 41.5 - 162 6C/MS SIM) <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Fluoranthene Sanzo[a]anthracene Chrysene Benzo[a]fluoranthene Benzo[k]fluoranthene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> 4.2 <u>Limits</u> 41.5 - 162 6C/MS SIM) <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene 3	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) RL 4.2 Limits 41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38	Dil F
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate	100 98 est - Volatile Petro Result 30 %Recovery 110 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	80 - 120 78.5 - 125 Hucts (GC/MS) <u>RL</u> 4.2 <u>Limits</u> 41.5 - 162 GC/MS SIM) <u>RL</u> 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		03/25/15 10:38 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/25/15 10:38 Prepared 03/26/15 11:12 03/26/15 11:12	03/25/15 12:57 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/25/15 12:57 Analyzed 03/26/15 15:38 03/26/15 15:38	

TestAmerica Job ID: 590-483-1

D ×	03/2 03/2 03/2 03/2 03/2 ∞ 03/2 ∞ 03/2	Prepared 26/15 11:12 26/15 11:12 26/15 11:12 26/15 01:12 Prepared 25/15 09:56 25/15 09:56 Prepared	Percent Sol Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/25/15 13:38 03/25/15 13:38 03/25/15 13:38 Analyzed	ix: Solici ids: 79.7 Dil Fac
<u></u>	03/2 03/2 03/2 03/2 03/2 ∞ 03/2 ∞ 03/2	26/15 11:12 26/15 11:12 26/15 11:12 26/15 11:12 26/15 11:12 25/15 09:56 25/15 09:56 Prepared	Analyzed 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 Analyzed 03/25/15 13:38 03/25/15 13:38	Dil Fa
<u></u>	03/2 03/2 03/2 03/2 03/2 ∞ 03/2 ∞ 03/2	26/15 11:12 26/15 11:12 26/15 11:12 26/15 11:12 26/15 11:12 25/15 09:56 25/15 09:56 Prepared	03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/25/15 15:38 03/25/15 13:38 03/25/15 13:38 Analyzed	Dil Fa
<u></u>	03/2 03/2 03/2 03/2 03/2 ∞ 03/2 ∞ 03/2	26/15 11:12 26/15 11:12 26/15 11:12 26/15 11:12 26/15 11:12 25/15 09:56 25/15 09:56 Prepared	03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/26/15 15:38 03/25/15 15:38 03/25/15 13:38 03/25/15 13:38 Analyzed	Dil Fa
<u></u>	03/2 03/2 03/2 03/2 © 03/2	26/15 11:12 26/15 11:12 Prepared 25/15 09:56 25/15 09:56 Prepared	03/26/15 15:38 03/26/15 15:38 Analyzed 03/25/15 13:38 03/25/15 13:38 Analyzed	Dil Fa
<u></u>	03/2 D P ☆ 03/2 ☆ 03/2 P	26/15 11:12 Prepared 25/15 09:56 25/15 09:56 Prepared	03/26/15 15:38 Analyzed 03/25/15 13:38 03/25/15 13:38 Analyzed	Dil Fa
<u></u>	D P ☆2 ☆2 ₽	Prepared 25/15 09:56 25/15 09:56 Prepared	Analyzed 03/25/15 13:38 03/25/15 13:38 Analyzed	Dil Fa
<u></u>	☆ 03/2 ☆ 03/2 ₽	25/15 09:56 25/15 09:56 Prepared	03/25/15 13:38 03/25/15 13:38 Analyzed	
<u></u>	☆ 03/2 ☆ 03/2 ₽	25/15 09:56 25/15 09:56 Prepared	03/25/15 13:38 03/25/15 13:38 Analyzed	
	⇔ 03/2 ₽	25/15 09:56 Prepared	03/25/15 13:38 Analyzed	
¢	P	Prepared	Analyzed	
				Dil Fa
	03/2		02/25/15 12:28	
		25/15 09:56	03/23/13 13.30	
	03/2	25/15 09:56	03/25/15 13:38	1
D		Prepared	Analyzed	Dil Fa
÷.	☆ 03/2	23/15 07:57	03/24/15 18:13	Ę
п		Proparad	Analyzod	Dil Fa
		repareu		
			03/23/15 14.09	
		Lab S	ample ID: 59)-483-{
			Matr	ix: Solic
			Percent Sol	ds: 83.8
_		D F		03/23/15 14:09 03/23/15 14:09 Lab Sample ID: 590

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.017		mg/Kg	<u> </u>	03/25/15 10:38	03/25/15 13:20	1
Ethylbenzene	ND		0.11		mg/Kg	⇔	03/25/15 10:38	03/25/15 13:20	1
m,p-Xylene	ND		0.45		mg/Kg	¢	03/25/15 10:38	03/25/15 13:20	1
o-Xylene	ND		0.23		mg/Kg	¢	03/25/15 10:38	03/25/15 13:20	1
Toluene	ND		0.11		mg/Kg	¢	03/25/15 10:38	03/25/15 13:20	1
Naphthalene	ND		0.23		mg/Kg	¢	03/25/15 10:38	03/25/15 13:20	1
Xylenes, Total	ND		0.68		mg/Kg	¢	03/25/15 10:38	03/25/15 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 _ 120				03/25/15 10:38	03/25/15 13:20	1
4-Bromofluorobenzene (Surr)	100		69.8 - 140				03/25/15 10:38	03/25/15 13:20	1
Dibromofluoromethane (Surr)	97		80 - 120				03/25/15 10:38	03/25/15 13:20	1
Toluene-d8 (Surr)	99		78.5 - 125				03/25/15 10:38	03/25/15 13:20	1

Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Proc	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.7		mg/Kg	\$	03/25/15 10:38	03/25/15 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				03/25/15 10:38	03/25/15 13:20	1

Client Sample ID: SVDP-8-14 Date Collected: 03/17/15 11:38

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-5 Matrix: Solid

Percent Solids: 83.8

5

Method: 8270D SIM - Semivola	tile Organic Con	pounds (G	SC/MS SIM)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
2-Methylnaphthalene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
1-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	
Acenaphthylene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Acenaphthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	
Fluorene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Phenanthrene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 16:00	
Anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Iuoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Benzo[a]anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Chrysene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:00	
Benzo[a]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	
ndeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 16:00	
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
litrobenzene-d5	43		35.1 - 144				03/26/15 11:12	03/26/15 16:00	
P-Fluorobiphenyl (Surr)	58		48.8 - 134				03/26/15 11:12	03/26/15 16:00	
p-Terphenyl-d14	77		48 - 166				03/26/15 11:12	03/26/15 16:00	
Method: NWTPH-Dx - Northwe	st - Semi-Volatile	Petroleun	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Diesel Range Organics (DRO) C10-C25)	ND		12		mg/Kg		03/25/15 09:56	03/25/15 14:01	
Residual Range Organics (RRO) C25-C36)	ND		29		mg/Kg	¢	03/25/15 09:56	03/25/15 14:01	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
-Terphenyl	94		50 - 150				03/25/15 09:56	03/25/15 14:01	
-Triacontane-d62	96		50 - 150				03/25/15 09:56	03/25/15 14:01	
lethod: 6010C - Metals (ICP)									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ead	9.3		5.6		mg/Kg	<u> </u>	03/23/15 07:57	03/24/15 18:17	
General Chemistry									
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
General Chemistry Analyte Percent Moisture	Result	Qualifier	RL	RL	Unit %	D	Prepared	Analyzed 03/23/15 14:09	Dil F

Client Sample ID: SVDP-15-13 Date Collected: 03/18/15 10:25

Date Received: 03/20/15 12:10

Method: 8260C - Volatile Organic (Compounds b	y GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.023		mg/Kg	\$	03/25/15 10:38	03/25/15 13:42	1

TestAmerica Spokane

Percent Solids: 80.9

Matrix: Solid

Lab Sample ID: 590-483-6

Client Sample ID: SVDP-15-13 Date Collected: 03/18/15 10:25

Date Received: 03/20/15 12:10

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethylbenzene	ND		0.15		mg/Kg	<u>₽</u>	03/25/15 10:38	03/25/15 13:42	
n,p-Xylene	ND		0.62		mg/Kg	¢	03/25/15 10:38	03/25/15 13:42	
o-Xylene	ND		0.31		mg/Kg	¢	03/25/15 10:38	03/25/15 13:42	
Toluene	ND		0.15		mg/Kg	₽	03/25/15 10:38	03/25/15 13:42	
Naphthalene	ND		0.31		mg/Kg	₽	03/25/15 10:38	03/25/15 13:42	
Xylenes, Total	ND		0.93		mg/Kg	¢	03/25/15 10:38	03/25/15 13:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	95		74.7 - 120				03/25/15 10:38	03/25/15 13:42	
4-Bromofluorobenzene (Surr)	101		69.8 - 140				03/25/15 10:38	03/25/15 13:42	
Dibromofluoromethane (Surr)	98		80 - 120				03/25/15 10:38	03/25/15 13:42	
Toluene-d8 (Surr)	99		78.5 - 125				03/25/15 10:38	03/25/15 13:42	
Method: NWTPH-Gx - Northwe	est - Volatile Petr	oleum Pro	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	ND		7.7		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 13:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		41.5 - 162				03/25/15 10:38	03/25/15 13:42	
Method: 8270D SIM - Semivol	atile Organic Con	nounds ((GC/MS SIM)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		12		ug/Kg	— \	03/26/15 11:12	03/26/15 16:23	
2-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	
1-Methylnaphthalene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Acenaphthylene	ND		12		ug/Kg	÷	03/26/15 11:12	03/26/15 16:23	
Acenaphthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Fluorene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Phenanthrene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 16:23	
Anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	
Chrysene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Benzo[b]fluoranthene	ND		12		ug/Kg		03/26/15 11:12	03/26/15 16:23	
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	
Benzo[a]pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
ndeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 16:23	
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 16:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	56		35.1 - 144				03/26/15 11:12	03/26/15 16:23	
VILIODENZENE-UJ	76		48.8 - 134				03/26/15 11:12	03/26/15 16:23	
								00/00/45 40 00	
p-Terphenyl-d14	86		48 - 166				03/26/15 11:12	03/26/15 16:23	
2-Fluorobiphenyl (Surr)		e Petroleur					03/26/15 11:12	03/26/15 16:23	

(C10-C25)

Client Sample ID: SVDP-15-13

Date Collected: 03/18/15 10:25 Date Received: 03/20/15 12:10

Method: NWTPH-Dx - Northwest -	Semi-Volatile Petroleum P	roducts (GC) (Continued)
Analyte	Result Qualifier	RL	MDL Unit

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		30		mg/Kg	\\\\	03/25/15 09:56	03/25/15 14:21	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				03/25/15 09:56	03/25/15 14:21	1
n-Triacontane-d62	97		50 - 150				03/25/15 09:56	03/25/15 14:21	1
– Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.6		5.2		mg/Kg	\$	03/23/15 07:57	03/24/15 18:20	5
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19		0.010		%			03/23/15 14:09	1
Percent Solids	81		0.010		%			03/23/15 14:09	1

Client Sample ID: SVDP-13-18.0

Date Collected: 03/16/15 16:55

Date	Received:	03/20/15	12:10

Phenanthrene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 14:04	1
Ethylbenzene	ND		0.10		mg/Kg	₽	03/25/15 10:38	03/25/15 14:04	1
m,p-Xylene	ND		0.40		mg/Kg	₽	03/25/15 10:38	03/25/15 14:04	1
o-Xylene	ND		0.20		mg/Kg	₽	03/25/15 10:38	03/25/15 14:04	1
Toluene	ND		0.10		mg/Kg	₽	03/25/15 10:38	03/25/15 14:04	1
Naphthalene	ND		0.20		mg/Kg	¢	03/25/15 10:38	03/25/15 14:04	1
Xylenes, Total	ND		0.60		mg/Kg	¢	03/25/15 10:38	03/25/15 14:04	1
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	97		74.7 - 120	03/25/15 10:38	03/25/15 14:04	1
4-Bromofluorobenzene (Surr)	100		69.8 - 140	03/25/15 10:38	03/25/15 14:04	1
Dibromofluoromethane (Surr)	98		80 - 120	03/25/15 10:38	03/25/15 14:04	1
Toluene-d8 (Surr)	100		78.5 - 125	03/25/15 10:38	03/25/15 14:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				03/25/15 10:38	03/25/15 14:04	1
Method: 8270D SIM - Semivol Analyte	-	n <mark>pounds (O</mark> Qualifier	C/MS SIM) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result			MDL		D	·		Dil Fac
Analyte Naphthalene	Result ND		RL 13	MDL	ug/Kg		03/26/15 11:12	03/26/15 16:45	Dil Fac
Analyte Naphthalene 2-Methylnaphthalene	Result			MDL		<u></u>	·		Dil Fac 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	Result ND ND		RL	MDL	ug/Kg ug/Kg	* *	03/26/15 11:12 03/26/15 11:12	03/26/15 16:45 03/26/15 16:45	Dil Fac 1 1 1 1
	Result ND ND ND ND		RL	MDL	ug/Kg ug/Kg ug/Kg		03/26/15 11:12 03/26/15 11:12 03/26/15 11:12	03/26/15 16:45 03/26/15 16:45 03/26/15 16:45	Dil Fac 1 1 1 1 1 1

TestAmerica Spokane

1

03/26/15 16:45

03/26/15 11:12

¢

Lab Sample ID: 590-483-6

Matrix: Solid

Percent Solids: 80.9

5

Lab Sample ID: 590-483-7

13

ug/Kg

ND

Client Sample ID: SVDP-13-18.0 Date Collected: 03/16/15 16:55 Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-7 Matrix: Solid

Percent Solids: 76.9

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND		13		ug/Kg		03/26/15 11:12	03/26/15 16:45	1
Fluoranthene	ND		13		ug/Kg	¢	03/26/15 11:12	03/26/15 16:45	1
Pyrene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Benzo[a]anthracene	ND		13		ug/Kg	¢	03/26/15 11:12	03/26/15 16:45	1
Chrysene	ND		13		ug/Kg	¢	03/26/15 11:12	03/26/15 16:45	1
Benzo[b]fluoranthene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Benzo[k]fluoranthene	ND		13		ug/Kg	¢	03/26/15 11:12	03/26/15 16:45	1
Benzo[a]pyrene	ND		13		ug/Kg	¢	03/26/15 11:12	03/26/15 16:45	1
Indeno[1,2,3-cd]pyrene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Dibenz(a,h)anthracene	ND		13		ug/Kg	¢	03/26/15 11:12	03/26/15 16:45	1
Benzo[g,h,i]perylene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	45		35.1 - 144				03/26/15 11:12	03/26/15 16:45	1
2-Fluorobiphenyl (Surr)	62		48.8 - 134				03/26/15 11:12	03/26/15 16:45	1
p-Terphenyl-d14	80		48 - 166				03/26/15 11:12	03/26/15 16:45	1

Method: NWTPH-Dx	- Northwest - Semi-Volatile	Petroleum Products (GC)
------------------	-----------------------------	-------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		13		mg/Kg	¢	03/25/15 09:56	03/25/15 14:44	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		31		mg/Kg	¢	03/25/15 09:56	03/25/15 14:44	1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				03/25/15 09:56	03/25/15 14:44	1
n-Triacontane-d62	101		50 _ 150				03/25/15 09:56	03/25/15 14:44	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		4.3		mg/Kg	<u></u>	03/23/15 07:57	03/24/15 18:24	5

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23		0.010		%			03/23/15 14:09	1
Percent Solids	77		0.010		%			03/23/15 14:09	1

Client Sample ID: SVDP-12-18.5

Date Collected: 03/16/15 13:55

Date	Rece	ived:	03/20/15	12:10

Method: 8260C - Volatile Org	ganic Compounds b	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.5		mg/Kg	<u>₽</u>	03/25/15 10:38	03/25/15 14:27	100
Ethylbenzene	22		10		mg/Kg	₽	03/25/15 10:38	03/25/15 14:27	100
m,p-Xylene	95		40		mg/Kg	₽	03/25/15 10:38	03/25/15 14:27	100
o-Xylene	31		20		mg/Kg	⇔	03/25/15 10:38	03/25/15 14:27	100
Toluene	12		10		mg/Kg	¢	03/25/15 10:38	03/25/15 14:27	100
Naphthalene	ND		20		mg/Kg	¢	03/25/15 10:38	03/25/15 14:27	100
Xylenes, Total	130		60		mg/Kg	¢	03/25/15 10:38	03/25/15 14:27	100

Lab Sample ID: 590-483-8

Matrix: Solid Percent Solids: 81.3

Client Sample ID: SVDP-12-1	0.5						Lap Sa	mple ID: 590	
ate Collected: 03/16/15 13:55 ate Received: 03/20/15 12:10								Percent Soli	ix: Solid ds: 81.3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		74.7 - 120				03/25/15 10:38	03/25/15 14:27	10
4-Bromofluorobenzene (Surr)	100		69.8 - 140				03/25/15 10:38	03/25/15 14:27	10
Dibromofluoromethane (Surr)	98		80 - 120				03/25/15 10:38	03/25/15 14:27	10
Toluene-d8 (Surr)	99		78.5 - 125				03/25/15 10:38	03/25/15 14:27	10
Method: NWTPH-Gx - Northwest	- Volatile Petro	oleum Proc	lucts (GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	1400		500		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 14:27	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		41.5 - 162				03/25/15 10:38	03/25/15 14:27	10
-									
Method: 8270D SIM - Semivolatile Analyte	-	Qualifier	GC/MS SIM) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	2800		12		ug/Kg	— 	03/26/15 11:12	03/26/15 17:08	
2-Methylnaphthalene	24000		120		ug/Kg	¢	03/26/15 11:12	03/27/15 12:21	1
1-Methylnaphthalene	11000		120		ug/Kg	¢	03/26/15 11:12	03/27/15 12:21	1
Acenaphthylene	38		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 17:08	
Acenaphthene	88		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Fluorene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Phenanthrene	60		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 17:08	
Anthracene	15		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Fluoranthene	16		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Pyrene	18		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 17:08	
Benzo[a]anthracene	12		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Chrysene	ND		12		ug/Kg	⇔	03/26/15 11:12	03/26/15 17:08	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 17:08	
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Benzo[a]pyrene	ND		12		ug/Kg	¢	03/26/15 11:12	03/26/15 17:08	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢.	03/26/15 11:12	03/26/15 17:08	
Dibenz(a,h)anthracene	ND		12		ug/Kg	⇔	03/26/15 11:12	03/26/15 17:08	
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	78		35.1 - 144				03/26/15 11:12	03/26/15 17:08	
2-Fluorobiphenyl (Surr)	85		48.8 - 134				03/26/15 11:12	03/26/15 17:08	
p-Terphenyl-d14	83		48 - 166				03/26/15 11:12	03/26/15 17:08	
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleun	n Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	480		35		mg/Kg	\	03/25/15 09:56	03/26/15 09:28	
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		88		mg/Kg	¢	03/25/15 09:56	03/26/15 09:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	90		50 - 150				03/25/15 09:56	03/26/15 09:28	
n-Triacontane-d62	98		50 - 150				03/25/15 09:56	03/26/15 09:28	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		4.1		mg/Kg	— —	03/23/15 07:57	03/24/15 18:28	

TestAmerica Spokane

Client Sample Results

RL

0.010

0.010

RL Unit

%

%

D

Prepared

Result Qualifier

19

81

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summitview

Date Collected: 03/16/15 13:55

Date Received: 03/20/15 12:10

General Chemistry

Percent Moisture

Percent Solids

Analyte

Client Sample ID: SVDP-12-18.5

Client Sample ID: SVDP-14-15

Lab Sample ID: 590-483-8

Analyzed

03/23/15 14:09

03/23/15 14:09

Lab Sample ID: 590-483-9

Matrix: Solid

Dil Fac

1

1

6 7 8 9

ate Collected: 03/17/15 15:05									ix: Solic
ate Received: 03/20/15 12:10								Percent Soli	ds: 73.
Method: 8260C - Volatile Orga	nic Compounds	bv GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.022		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
Ethylbenzene	ND		0.14		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
m,p-Xylene	ND		0.58		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
o-Xylene	ND		0.29		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
Toluene	ND		0.14		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
Naphthalene	ND		0.29		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
Xylenes, Total	ND		0.86		mg/Kg	¢	03/25/15 10:38	03/25/15 14:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		74.7 _ 120				03/25/15 10:38	03/25/15 14:49	
4-Bromofluorobenzene (Surr)	101		69.8 - 140				03/25/15 10:38	03/25/15 14:49	
Dibromofluoromethane (Surr)	99		80 - 120				03/25/15 10:38	03/25/15 14:49	
Toluene-d8 (Surr)	102		78.5 - 125				03/25/15 10:38	03/25/15 14:49	
Method: NWTPH-Gx - Northwe	est - Volatile Petr	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	ND		7.2		mg/Kg	<u></u>	03/25/15 10:38	03/25/15 14:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		41.5 - 162				03/25/15 10:38	03/25/15 14:49	
Method: 8270D SIM - Semivol	atile Organic Con	npounds (C	GC/MS SIM)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nanhthalene	ND		14		ua/Ka	\\\\\	03/26/15 11:12	03/26/15 17:30	

Analyte	Result	Quaimer	KL.	WIDL	Unit	U	Frepareu	Analyzeu	DIFAC
Naphthalene	ND		14		ug/Kg	<u></u>	03/26/15 11:12	03/26/15 17:30	1
2-Methylnaphthalene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
1-Methylnaphthalene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Acenaphthylene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Acenaphthene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Fluorene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Phenanthrene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Anthracene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Fluoranthene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Pyrene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Benzo[a]anthracene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Chrysene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Benzo[b]fluoranthene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Benzo[k]fluoranthene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Benzo[a]pyrene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Indeno[1,2,3-cd]pyrene	ND		14		ug/Kg	¢	03/26/15 11:12	03/26/15 17:30	1
Dibenz(a,h)anthracene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1
Benzo[g,h,i]perylene	ND		14		ug/Kg	₽	03/26/15 11:12	03/26/15 17:30	1

TestAmerica Job ID: 590-483-1

lient Sample ID: SVDP-14	-15						Lab Sa	mple ID: 590)-483-9
ate Collected: 03/17/15 15:05								Matri	x: Solie
ate Received: 03/20/15 12:10								Percent Soli	ds: 73.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	52		35.1 - 144				03/26/15 11:12	03/26/15 17:30	
2-Fluorobiphenyl (Surr)	69		48.8 - 134				03/26/15 11:12	03/26/15 17:30	
p-Terphenyl-d14	83		48 - 166				03/26/15 11:12	03/26/15 17:30	
-									
Method: NWTPH-Dx - Northwes						_			
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	ND		13		mg/Kg	¢	03/25/15 09:56	03/25/15 15:53	
(C10-C25)	ND		34		mg/Kg	¢	03/25/15 09:56	03/25/15 15:53	
Residual Range Organics (RRO) (C25-C36)	ND		54		mg/itg	.,.	03/23/13 03.30	03/23/13 13:33	
(020 000)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	90		50 - 150				03/25/15 09:56	03/25/15 15:53	
n-Triacontane-d62	93		50 - 150				03/25/15 09:56	03/25/15 15:53	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		5.3		mg/Kg	<u> </u>	03/23/15 07:57	03/24/15 18:42	
-									
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	26		0.010		%			03/23/15 14:09	
Percent Solids	74		0.010		%			03/23/15 14:09	

RL

0.015

0.10

0.40

0.20

0.10

0.20

0.60

Limits

74.7 - 120

69.8 - 140

78.5 - 125

80 - 120

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

Prepared

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

Lab Sample ID: MB 590-859/1-A

Matrix: Solid

Analyte

Benzene

Ethylbenzene

m,p-Xylene

Naphthalene

Xylenes, Total

Surrogate

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

o-Xylene

Toluene

Analysis Batch: 850

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

ND

ND

ND

ND

ND

ND

ND

94

99

97

99

%Recovery

MB MB

Qualifier

Result Qualifier

Client Sample ID: Method Blank

Analyzed

03/25/15 10:20

03/25/15 10:20

03/25/15 10:20

03/25/15 10:20

03/25/15 10:20

03/25/15 10:20

Prep Type: Total/NA

Prep Batch: 859

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 859

Dil Fac

1

1

1

1

1

1

6 7 8

 03/25/15
 10:20
 1

 03/25/15
 10:20
 1

 Analyzed
 Dil Fac
 1

 03/25/15
 10:20
 1

 03/25/15
 10:20
 1

 03/25/15
 10:20
 1

 03/25/15
 10:20
 1

 03/25/15
 10:20
 1

Lab Sample ID: LCS 590-859/2-A
Matrix: Solid
Analysis Batch: 850

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.483		mg/Kg		97	75.8 - 123	
Ethylbenzene	0.500	0.472		mg/Kg		94	77.3 - 121	
m,p-Xylene	0.500	0.484		mg/Kg		97	77.7 - 124	
o-Xylene	0.500	0.478		mg/Kg		96	76.7 _ 129	
Toluene	0.500	0.478		mg/Kg		96	76.6 - 125	
Naphthalene	0.500	0.440		mg/Kg		88	55.1 - 142	
LCS LCS								

Surrogate		%Recovery	Qualifier	Limits
1,2-Dichloroethane-	d4 (Surr)	100		74.7 - 120
4-Bromofluorobenze	ene (Surr)	98		69.8 - 140
Dibromofluorometha	nne (Surr)	103		80 - 120
Toluene-d8 (Surr)		100		78.5 - 125

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-859/1-A Matrix: Solid Analysis Batch: 852							Client Sa	mple ID: Metho Prep Type: 1 Prep Ba	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		41.5 - 162				03/25/15 10:38	03/25/15 10:20	1

1 2 3 4 5 6 7 8 8 9

Lab Sample ID: LCS 590-85	9/3-A						Client	Sampl	e ID: Lab Co	ntrol Sample
Matrix: Solid									Prep Ty	/pe: Total/NA
Analysis Batch: 852									Pre	p Batch: 859
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline			50.0	47.8		mg/Kg		96	74.4 - 124	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	103		41.5 - 162							

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: MB 590-877/1-A Matrix: Solid							Client Sa	mple ID: Metho Prep Type: 1	otal/NA
Analysis Batch: 876	МВ	MB						Prep Ba	tch: 877
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
2-Methylnaphthalene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
1-Methylnaphthalene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Acenaphthylene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Acenaphthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Fluorene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Phenanthrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Anthracene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Fluoranthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Pyrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[a]anthracene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Chrysene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[b]fluoranthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[k]fluoranthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[a]pyrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Dibenz(a,h)anthracene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[g,h,i]perylene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1

	MB	МВ			
Surrogate	%Recovery	Qualifier Lim	its Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	60	35.1 -	144 03/26/15 11:12	03/26/15 17:53	1
2-Fluorobiphenyl (Surr)	67	48.8 -	134 03/26/15 11:12	03/26/15 17:53	1
p-Terphenyl-d14	90	48 -	166 03/26/15 11:12	03/26/15 17:53	1

Lab Sample ID: LCS 590-877/2-A Matrix: Solid Analysis Batch: 876

Analysis Batch. 070							- F	Tep Datch. 077
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	154		ug/Kg		58	51.4 - 133	
Fluorene	267	246		ug/Kg		92	65.7 - 123	
Chrysene	267	239		ug/Kg		90	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	341		ug/Kg		128	54.6 - 142	

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 877

TestAmerica Spokane

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-877/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 876 Prep Batch: 877 LCS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 52 35.1 - 144 2-Fluorobiphenyl (Surr) 71 48.8 - 134 p-Terphenyl-d14 88 48 - 166 Lab Sample ID: 590-483-3 MS Client Sample ID: SVDP-11-13 Matrix: Solid Prep Type: Total/NA Analysis Batch: 876 Prep Batch: 877 Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added **Result Qualifier** %Rec Limits Unit D Ť Naphthalene ND 323 217 ug/Kg 67 30 - 120 ⇔ Fluorene ND 323 313 ug/Kg 97 30 - 140 ₽ Chrysene ND 323 269 ug/Kg 83 30 - 133 Indeno[1,2,3-cd]pyrene ND 323 303 ug/Kg ÷. 94 30 - 140 MS MS Surrogate %Recovery Qualifier Limits

Nitrobenzene-d5	61	 35.1 - 144
2-Fluorobiphenyl (Surr)	85	48.8 - 134
p-Terphenyl-d14	86	48 - 166

Lab Sample ID: 590-483-3 MSD								Client	Sample ID	: SVDP	-11-13
Matrix: Solid									Prep T	ype: Tot	al/NA
Analysis Batch: 876									Pr	ep Batc	h: 877
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		330	195		ug/Kg	\\\\	59	30 - 120	10	35
Fluorene	ND		330	316		ug/Kg	¢	96	30 - 140	1	35
Chrysene	ND		330	273		ug/Kg	₽	83	30 - 133	1	35
Indeno[1,2,3-cd]pyrene	ND		330	349		ug/Kg	\$	106	30 ₋ 140	14	35
	MSD	MSD									

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	63		35.1 - 144
2-Fluorobiphenyl (Surr)	79		48.8 - 134
p-Terphenyl-d14	80		48 - 166

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-853/1-A Matrix: Solid Analysis Batch: 856	МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Bat	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10		mg/Kg		03/25/15 09:56	03/25/15 11:22	1
Residual Range Organics (RRO) (C25-C36)	ND		25		mg/Kg		03/25/15 09:56	03/25/15 11:22	1

Method: NWTPH-Dx - Northwest - Semi-Volatil	e Petroleum Products (GC) (Continued)
Method. NWTFH-DX - Northwest - Senii-Volati	e Felloleum Floudcis (GC) (Continueu)

Lab Sample ID: MB 590-853/1-A Matrix: Solid								Client Sa	mple ID: Method	
									Prep Type: To	
Analysis Batch: 856									Prep Bate	50: 05
		MB MB								
Surrogate	%Reco	very Qualifier	Limits				P	repared	Analyzed	Dil Fa
o-Terphenyl		94	50 - 150				03/2	25/15 09:56	03/25/15 11:22	
n-Triacontane-d62		90	50 - 150				03/2	25/15 09:56	03/25/15 11:22	
Lab Sample ID: LCS 590-853/2-A							Client	t Sample	ID: Lab Control S	Sampl
Matrix: Solid									Prep Type: To	otal/N
Analysis Batch: 856									Prep Bate	ch: 85
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)			66.7	58.3		mg/Kg		87	50 - 150	
Residual Range Organics (RRO) (C25-C36)			66.7	58.8		mg/Kg		88		
()	LCS	1.00								
Surrogate	%Recovery		Limits							
o-Terphenyl	98	Quaimer	50 - 150							
	90 99									
n-Triacontane-d62	99		50 - 150							
Lab Sample ID: 590-483-2 DU								Client	t Sample ID: SVD	P-7-1
Matrix: Solid									Prep Type: To	otal/N
Analysis Batch: 856									Prep Bate	ch: 85
	Sample	Sample		DU	DU					RP
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Lim
Diesel Range Organics (DRO) (C10-C25)	170			82.3	F3	mg/Kg	<u> </u>		69	
Residual Range Organics (RRO) (C25-C36)	150			91.7	F3	mg/Kg	¢		47	
	DU	DU								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	97		50 - 150							
n-Triacontane-d62	102		50 - 150							

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-819/2-A Matrix: Solid Analysis Batch: 845	МВ	МВ									Client S	ample ID: Meth Prep Type: Prep B	
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Lead	ND			0.025			mg/Kg	J		03/2	3/15 07:56	03/24/15 11:25	1
Lab Sample ID: LCS 590-819/1-A									С	ient	Sample	ID: Lab Contro	ol Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 845												Prep B	atch: 819
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits	
Lead			1.00		0.976			mg/Kg		_	98	80 - 120	

Method: Moisture - Percent Moisture

Lab Sample ID: 590-483-1 DU Matrix: Solid Analysis Batch: 832							Client Sample ID: SVD Prep Type: To	
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	20		 21		%			20
Percent Solids	80		79		%		0.8	20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.466 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		10	4.466 g	5 mL	850	03/25/15 11:50	MRS	TAL SPK
Total/NA	Prep	5035			4.466 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	4.466 g	5 mL	852	03/25/15 11:50	MRS	TAL SPK
Total/NA	Prep	3550C			15.32 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.32 g	2 mL	876	03/26/15 13:45	NMI	TAL SPK
Total/NA	Prep	3550C			10.92 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	10.92 g	5 mL	856	03/25/15 12:08	NMI	TAL SPK
Total/NA	Prep	3050B			1.35 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.35 g	50 mL	864	03/24/15 18:03	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-7-15

Date Collected: 03/17/15 09:05 Date Received: 03/20/15 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.552 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		10	4.552 g	5 mL	850	03/25/15 15:11	MRS	TAL SPK
Total/NA	Prep	5035			4.552 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	4.552 g	5 mL	852	03/25/15 15:11	MRS	TAL SPK
Total/NA	Prep	3550C			15.10 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		2	15.10 g	2 mL	876	03/26/15 14:08	NMI	TAL SPK
Total/NA	Prep	3550C			15.10 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		5	15.10 g	2 mL	890	03/27/15 11:59	NMI	TAL SPK
Total/NA	Prep	3550C			15.27 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.27 g	5 mL	856	03/25/15 12:52	NMI	TAL SPK
Total/NA	Prep	3050B			1.59 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.59 g	50 mL	864	03/24/15 18:07	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-11-13

Date Collected: 03/17/15 10:44 Date Received: 03/20/15 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.512 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	7.512 g	5 mL	850	03/25/15 12:35	MRS	TAL SPK
Total/NA	Prep	5035			7.512 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	7.512 g	5 mL	852	03/25/15 12:35	MRS	TAL SPK
Total/NA	Prep	3550C			15.71 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.71 g	2 mL	876	03/26/15 14:30	NMI	TAL SPK
Total/NA	Prep	3550C			15.85 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK

Lab Sample ID: 590-483-1 Matrix: Solid

TestAmerica Job ID: 590-483-1

Percent Solids: 80.0

Lab Sample ID: 590-483-2

Matrix: Solid

Percent	Solids:	83.1

Lab Sample ID: 590-483-3

Matrix: Solid

Percent Solids: 79.3

Initial

Amount

15.85 g

1.40 g

1.40 g

Final

Amount

5 mL

50 mL

50 mL

Batch

856

819

864

832

Number

Dil

1

5

1

Factor

Run

Date Collected: 03/17/15 10:44

Date Received: 03/20/15 12:10

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Batch

Method

3050B

6010C

Moisture

NWTPH-Dx

Batch

Туре

Prep

Client Sample ID: SVDP-10-19

Date Collected: 03/17/15 12:53

Date Received: 03/20/15 12:10

Analysis

Analysis

Analysis

Lab Sample ID: 590-483-3

Analyst

NMI

JSP

JSP

NMI

7

Lab Sample ID: 590-483-4

Lab Sample ID: 590-483-5

Matrix: Solid

Percent Solids: 83.8

Matrix: Solid Percent Solids: 79.7

Matrix: Solid

Percent Solids: 79.3

Lab

TAL SPK

TAL SPK

TAL SPK

TAL SPK

		Dor

Prepared

or Analyzed

03/25/15 13:15

03/23/15 07:57

03/24/15 18:11

03/23/15 14:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.633 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	10.633 g	5 mL	850	03/25/15 12:57	MRS	TAL SPK
Total/NA	Prep	5035			10.633 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	10.633 g	5 mL	852	03/25/15 12:57	MRS	TAL SPK
Total/NA	Prep	3550C			15.19 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.19 g	2 mL	876	03/26/15 15:38	NMI	TAL SPK
Total/NA	Prep	3550C			15.47 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.47 g	5 mL	856	03/25/15 13:38	NMI	TAL SPK
Total/NA	Prep	3050B			1.58 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.58 g	50 mL	864	03/24/15 18:13	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-8-14

Date Collected: 03/17/15 11:38 Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.357 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.357 g	5 mL	850	03/25/15 13:20	MRS	TAL SPK
Total/NA	Prep	5035			6.357 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.357 g	5 mL	852	03/25/15 13:20	MRS	TAL SPK
Total/NA	Prep	3550C			15.12 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.12 g	2 mL	876	03/26/15 16:00	NMI	TAL SPK
Total/NA	Prep	3550C			15.43 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.43 g	5 mL	856	03/25/15 14:01	NMI	TAL SPK
Total/NA	Prep	3050B			1.34 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.34 g	50 mL	864	03/24/15 18:17	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Initial

Amount

4.736 g

4.736 g

4.736 q

4.736 g

15.02 g

15.02 g

15.54 g

15.54 g

1.50 g

1.50 g

Final

Amount

5 mL

5 mL

5 mL

5 mL

2 ml

2 mL

5 mL

5 mL

50 mL

50 mL

Batch

859

850

859

852

877

876

853

856

819

864

832

Number

Dil

1

1

1

1

5

1

Factor

Run

Client Sample ID: SVDP-15-13

Batch

Туре

Prep

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

Method

5035

8260C

5035

3550C

3550C

3050B

6010C

Moisture

NWTPH-Gx

8270D SIM

NWTPH-Dx

Date Collected: 03/18/15 10:25 Date Received: 03/20/15 12:10

Prep Type

Total/NA

Lab Sample ID: 590-483-6

Analyst

MRS

MRS

MRS

MRS

NMI

NMI

NMI

JSP

JSP

Lab Sample ID: 590-483-7

Prepared

or Analyzed

03/25/15 10:38

03/25/15 13:42

03/25/15 10:38

03/25/15 13:42

03/26/15 11:12

03/26/15 16:23

03/25/15 09:56

03/25/15 14:21

03/23/15 07:57

03/24/15 18:20

03/23/15 14:09

Matrix: Solid Percent Solids: 80.9

Lab

TAL SPK

9

TAL SPK NMI TAL SPK TAL SPK NMI TAL SPK

Matrix: Solid

Percent Solids: 76.9

Client Sample ID: SVDP-13-18.0 Date Collected: 03/16/15 16:55 Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.195 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	9.195 g	5 mL	850	03/25/15 14:04	MRS	TAL SPK
Total/NA	Prep	5035			9.195 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	9.195 g	5 mL	852	03/25/15 14:04	MRS	TAL SPK
Total/NA	Prep	3550C			15.42 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.42 g	2 mL	876	03/26/15 16:45	NMI	TAL SPK
Total/NA	Prep	3550C			15.53 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.53 g	5 mL	856	03/25/15 14:44	NMI	TAL SPK
Total/NA	Prep	3050B			1.89 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.89 g	50 mL	864	03/24/15 18:24	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-12-18.5 Date Collected: 03/16/15 13:55

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-8 Matrix: Solid

Percent Solids: 81.3

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.97 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		100	7.97 g	5 mL	850	03/25/15 14:27	MRS	TAL SPK
Total/NA	Prep	5035			7.97 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		100	7.97 g	5 mL	852	03/25/15 14:27	MRS	TAL SPK
Total/NA	Prep	3550C			15.47 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.47 g	2 mL	876	03/26/15 17:08	NMI	TAL SPK
Total/NA	Prep	3550C			15.47 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		10	15.47 g	2 mL	890	03/27/15 12:21	NMI	TAL SPK
Total/NA	Prep	3550C			10.54 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK

TestAmerica Spokane

Lab Sample ID: 590-483-8

Lab Sample ID: 590-483-9

Matrix: Solid Percent Solids: 81.3

Matrix: Solid

Percent Solids: 73.8

2 3 4 5 6 7

Client Sample ID: SVDP-12-18.5

Date Collected: 03/16/15 13:55	5
Date Received: 03/20/15 12:10)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Dx		2	10.54 g	5 mL	856	03/26/15 09:28	NMI	TAL SPK
Total/NA	Prep	3050B			1.88 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.88 g	50 mL	864	03/24/15 18:28	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-14-15 Date Collected: 03/17/15 15:05 Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.244 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.244 g	5 mL	850	03/25/15 14:49	MRS	TAL SPK
Total/NA	Prep	5035			6.244 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.244 g	5 mL	852	03/25/15 14:49	MRS	TAL SPK
Total/NA	Prep	3550C			15.04 g	2 mL	877	03/26/15 11:12	NMI	TAL SP
Total/NA	Analysis	8270D SIM		1	15.04 g	2 mL	876	03/26/15 17:30	NMI	TAL SP
Total/NA	Prep	3550C			15.11 g	5 mL	853	03/25/15 09:56	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1	15.11 g	5 mL	856	03/25/15 15:53	NMI	TAL SP
Total/NA	Prep	3050B			1.60 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.60 g	50 mL	864	03/24/15 18:42	JSP	TAL SP
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

2 3 4 5 6 7 8 9 10 11

TestAmerica Spokane

Ichorotom	: TestAmerica S	Snokono
Laboratory	: restamenca a	SUOKane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summitview

5
8

Method	Method Description	Protocol	Laborator				
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK				
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK				
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK				
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH TAI					
6010C	Metals (ICP)	SW846 T/					
Moisture	Percent Moisture	EPA	TAL SPK				
Protocol Ref	erences:						
EPA = US	S Environmental Protection Agency						
NWTPH :	= Northwest Total Petroleum Hydrocarbon						

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290 FAX 906-9210 FAX 563-9210	X
503-906-9200	FAX 906-9210	i
907-563-9200	FAX 563-9210	

CHAIN OF CUSTODY REPORT

							1 OF	<u>CU31</u>			UKI				We	ork O	rder #		
CLIENT: Greatingener	c 3					INVOICE TO:									TURNAROUND REQUEST				
REPORT TO: JR Sugar	ski js	rgalski Oge	o ergu	veers. C	0~1												'n	n Business Days *	
ADDRESS: 523 Eact 9	Second Au)e																& Inorganic Analyses	
Spokene wi	A 49202	717-2176					2.0. NUMBER:									STD. 7 5 4 3 2 1 <1 Petroleum Hydrocarbon Analyses			
ADDRESS: 523 East Second Ave Spokene WA 99202 PHONE: 509-363-3126 PROJECT NAME: Typer 0,1 - Sumitview				[F.O. NO	WIDER.	PR	ESERVA	TIVE						Y	11		า		
iser Vi	пимвек: 6504-101-02												STU						
	-101-02						ļ	REQUE	STED AI	NALYSES	.					O	THER	Specify:	
SAMPLED BY: UWT			Ē,	士、	X	500		Ś							* Tur	naround	Requests le	ess than standard may incur h	ush Charges
CLIENT SAMPLE IDENTIFICATION		1PLING E/TIME	Nwteh	-Hdrul	TELEX	PAHS 101-00-001	12401	5								ATRIX 7, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
15VDP-9-20	3/17/15	1415	×	\times		X	×									5	3		
25VDP-7-15	3/17/15	0905														}			
35UDP-11-13	3/17/15	1044																	
\$VDP-10-19	3/17/15	1253																	
		438						<u> </u>											
. SUDP-15-13	3/18/15	1025																	
15UDP-B-180	3/16/15	1655																	
	3/16/15	1355																	
.SUDP-14-15	3/17/15 1	1505	1													<u> </u>			
10												9	·						1
RELEASED BY. 2 2							21/2	-			peil	a PY	igs				DATE		
PRINT NAME Justin Zuc FIRM: Grea				TIME: DATE		10		PRINT NA	<u>`</u>	she, la	<u>K</u> r	212	······	FIRM:	105	AMUSIC TIME 1	<u> </u>		
PRINT NAME		FIRM:				TIME	l			PRINT NA						FIRM:		TIME:	
ADDITIONAL REMARKS												911			-*	TEMP:			
																		A. C PAGE	OF
																			000 (0714
										590-	-483 Cha	an of Cu	stody						

-

-

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 483 List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-483-1

List Source: TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

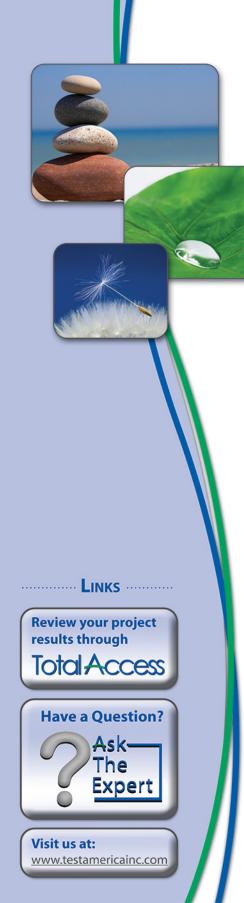
ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-484-1 Client Project/Site: Tiger Oil

For: GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202


Attn: JR Sugalski

Authorized for release by: 3/27/2015 8:33:22 AM

Michelle Johnston, Project Manager II (303)736-0110 michelle.johnston@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

1
2
3
1
5
7
3
10
11
12
13

Sample Summary

Matrix

Water

Water

Water

Water

Water

Water

Client: GeoEngineers Inc Project/Site: Tiger Oil

Lab Sample ID

590-484-1

590-484-2

590-484-3

590-484-4

590-484-5

590-484-6

Client Sample ID

SVDP-12-031715

SVDP-9-031815

SVDP-13-031715

SVDP-11-031815

SVDP-15-031815

SVDP-10-031815

TestAmerica Job ID: 590-484-1

Received

03/20/15 12:10

03/20/15 12:10

03/20/15 12:10

03/20/15 12:10

03/20/15 12:10

03/20/15 12:10

Collected

03/17/15 08:01

03/18/15 09:56

03/17/15 07:41

03/18/15 08:39

03/18/15 11:25

03/18/15 10:11

3
5
8
9

TestAmerica Spokane

Page	3 of	13
------	------	----

Glossary	
----------	--

Clobbaly		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Client Sample ID: SVDP-12-031715

Date Collected:	03/17/15 08:01
Date Received:	03/20/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	6.8		0.57		mg/L		03/24/15 09:25	03/24/15 13:52	1
C10]									
Diesel Range Organics (DRO)	2.1		1.4		mg/L		03/24/15 09:25	03/24/15 13:52	1
(C10-C25)									
Residual Range Organics (RRO)	ND		1.4		mg/L		03/24/15 09:25	03/24/15 13:52	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	105		50 - 150				03/24/15 09:25	03/24/15 13:52	1
n-Triacontane-d62	98		50 - 150				03/24/15 09:25	03/24/15 13:52	1

Client Sample ID: SVDP-9-031815

Date Collected: 03/18/15 09:56

Date Received: 03/20/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	8.3		0.24		mg/L		03/24/15 09:25	03/24/15 14:16	1
C10]									
Diesel Range Organics (DRO)	2.8		0.61		mg/L		03/24/15 09:25	03/24/15 14:16	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.61		mg/L		03/24/15 09:25	03/24/15 14:16	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	99		50 - 150				03/24/15 09:25	03/24/15 14:16	1
n-Triacontane-d62	97		50 - 150				03/24/15 09:25	03/24/15 14:16	1

Client Sample ID: SVDP-13-031715

Date Collected: 03/17/15 07:41 Date Received: 03/20/15 12:10

Method: NWTPH-HCID - Northwe	st - Hydrocarb	on Identific	ation (GC)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.24		mg/L		03/24/15 09:25	03/24/15 14:40	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.60		mg/L		03/24/15 09:25	03/24/15 14:40	1
Residual Range Organics (RRO) (C25-C36)	ND		0.60		mg/L		03/24/15 09:25	03/24/15 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 _ 150				03/24/15 09:25	03/24/15 14:40	1
n-Triacontane-d62	96		50 - 150				03/24/15 09:25	03/24/15 14:40	1

Client Sample ID: SVDP-11-031815

Date Collected: 03/18/15 08:39

Date Received: 03/20/15 12:10

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.24		mg/L		03/24/15 09:25	03/24/15 15:04	1
Diesel Range Organics (DRO)	ND		0.60		mg/L		03/24/15 09:25	03/24/15 15:04	1
(C10-C25)									

Lab Sample ID: 590-484-3

Lab Sample ID: 590-484-4

Matrix: Water

TestAmerica Spokane

Matrix: Water

Matrix: Water

Matrix: Water

5

Lab Sample ID: 590-484-1

Lab Sample ID: 590-484-2

Residual Range Organics (RRO)

(C25-C36)

TestAmerica Job ID: 590-484-1

Client Sample ID: SVDP-11-	-031815						Lab Sa	mple ID: 590	-484-4
Date Collected: 03/18/15 08:39								Matrix	c: Water
Date Received: 03/20/15 12:10									
Method: NWTPH-HCID - Northw	vest - Hvdrocarb	on Identific	ation (GC) (Con	tinued)					
Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND		0.60		mg/L		03/24/15 09:25	03/24/15 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	99		50 - 150				03/24/15 09:25	03/24/15 15:04	1
n-Triacontane-d62	91		50 - 150				03/24/15 09:25	03/24/15 15:04	1
Client Sample ID: SVDP-15-	031815						Lab Sa	mple ID: 590	-484-5
Date Collected: 03/18/15 11:25									c: Water
Date Received: 03/20/15 12:10									
– Method: NWTPH-HCID - Northw	vest - Hydrocarb	on Identific	ation (GC)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.24		mg/L		03/24/15 09:25	03/24/15 15:28	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.61		mg/L		03/24/15 09:25	03/24/15 15:28	1
Residual Range Organics (RRO) (C25-C36)	ND		0.61		mg/L		03/24/15 09:25	03/24/15 15:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				03/24/15 09:25	03/24/15 15:28	1
n-Triacontane-d62	96		50 - 150				03/24/15 09:25	03/24/15 15:28	1
Client Sample ID: SVDP-10-	031815						Lab Sa	mple ID: 590	-484-6
Date Collected: 03/18/15 10:11									c: Water
Date Received: 03/20/15 12:10									
_ Method: NWTPH-HCID - Northw	vest - Hvdrocarb	on Identific	ation (GC)						
Analyte	-	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	0.82		0.24		mg/L		03/24/15 09:25	03/24/15 15:51	1
Diesel Range Organics (DRO) (C10-C25)	1.0		0.61		mg/L		03/24/15 09:25	03/24/15 15:51	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	112	50 - 150	03/24/15 09:25	03/24/15 15:51	1
n-Triacontane-d62	103	50 - 150	03/24/15 09:25	03/24/15 15:51	1

0.61

mg/L

ND

1

03/24/15 09:25 03/24/15 15:51

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

Lab Sample ID: MB 590-836/1-A Matrix: Water Analysis Batch: 841	МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Ba	otal/NA
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		03/24/15 09:25	03/24/15 13:28	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.63		mg/L		03/24/15 09:25	03/24/15 13:28	1
Residual Range Organics (RRO) (C25-C36)	ND		0.63		mg/L		03/24/15 09:25	03/24/15 13:28	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	104		50 - 150				03/24/15 09:25	03/24/15 13:28	1
n-Triacontane-d62	102		50 - 150				03/24/15 09:25	03/24/15 13:28	1

Lab Sample ID: 590-484-1

Lab Sample ID: 590-484-2

Lab Sample ID: 590-484-3

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 03/17/15 08:01 Date Received: 03/20/15 12:10

—										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			54.9 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	54.9 mL	2 mL	841	03/24/15 13:52	NMI	TAL SPK

Client Sample ID: SVDP-9-031815 Date Collected: 03/18/15 09:56 Date Received: 03/20/15 12:10

Client Sample ID: SVDP-12-031715

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			129.2 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	129.2 mL	2 mL	841	03/24/15 14:16	NMI	TAL SPK

Client Sample ID: SVDP-13-031715 Date Collected: 03/17/15 07:41 Date Received: 03/20/15 12:10

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			130.8 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	130.8 mL	2 mL	841	03/24/15 14:40	NMI	TAL SPK

Client Sample ID: SVDP-11-031815

Date Collected: 03/18/15 08:39 Date Received: 03/20/15 12:10

1	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3510C			130.8 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
	Total/NA	Analysis	NWTPH-HCID		1	130.8 mL	2 mL	841	03/24/15 15:04	NMI	TAL SPK

Client Sample ID: SVDP-15-031815

Date Collected: 03/18/15 11:25 Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			128.2 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	128.2 mL	2 mL	841	03/24/15 15:28	NMI	TAL SPK

Client Sample ID: SVDP-10-031815

Date Collected: 03/18/15 10:11 Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			128.2 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	128.2 mL	2 mL	841	03/24/15 15:51	NMI	TAL SPK

Lab Sample ID: 590-484-4

Lab Sample ID: 590-484-5

Lab Sample ID: 590-484-6

Matrix: Water

Matrix: Water

Matrix: Water

Client: GeoEngineers Inc Project/Site: Tiger Oil

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil

2 3 4 5 6 7 8 9 10 11

TestAmerica Spokane

Laboratory:	TestAmerica S	poka	ine
All should be a construction of the	CONTRACTOR CONTRACTOR	ere a	AL

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Client: GeoEngineers Inc Project/Site: Tiger Oil

5
8
9

TestAmerica Spokane

Method	Method Description	Protocol	Laboratory
NWTPH-HCID	Northwest - Hydrocarbon Identification (GC)	NWTPH	TAL SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 509-924-9200FAX 924-9290503-906-9200FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT

	CHAI	CHAIN OF CUSTODY REPORT									Work Order #:					
CLIENT: Geo Engineers		INVOI	CE TO:										TURNA	ROUND REQUES	šT	
REPORT TO: JR Sugalski Jsugals ADDRESS: 523 East Secand A Spokane WA 99202	ski@secenstier(-cen ve	-										कि 7	Organic &	Business Days *	1 <1	
PHONE: 509 - 363-3125 FAX: 509-	363-3126	P.O. NI	MBER:					·		····		ato 7 5 4 3 2 1 <1 STD. Petroleum Hydrocarbon Analyses				
PHONE: 509-363-3125 FAX: 509-1 PROJECT NAME: Typer 011 50 mm 1+	View		PRESERVATIVE													
PROJECT NUMBER: 0504-101-02												<u> </u>				
	+	I	REQUESTED ANALYSES								OTHER Specify:					
SAMPLED BY. JUR	Ē.			i i								 	1 1	is than standard may incu	r Rush Charges.	
	PLING TIME											MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WOID	
, SUDP-12-03705 3/17/15	0801 <											ပာ	١			of 13
2 SUDP-9-631815 3/18/15																10
, SUDP-13-031715. 3/17/15																Page
. SUDP-11-031815 3/13/15	0839 X			ļ	ļ											ŀ
, SUDP-15-031815 3/18/15	1125 X															
· SVDP-10-031815 3/18/15	ωι γ		ļ													
7																
8			 													
9													ļ			
10									. ,						1	
RELEASED BY: 77	FIRM: Cree	DATE	3/20	10		RECEIVEI PRINT NA	DBY:	heel	a Xy	105		FIRM:	Tod	AMERICA TIME	<u>3</u> 30115	
RELEASED BY.	0.0	DATE	<u>.</u>			RECT			<u> </u>					DATE DATE		
PRINT NAME: ADDITIONAL REMARKS	FIRM:	TIME				P1						TRM:		тіме темр: 2/. (с рад		
l <u></u>					. · •		484 Ch	ain of Cu	istody			<u></u>			1000 (0714)))
							-									

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 484 List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-581-1 Client Project/Site: Tiger Oil Summitview

For: GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 4/15/2015 4:00:21 PM

Michelle Johnston, Project Manager II (303)736-0110 michelle.johnston@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

1
2
3
4
5
6
15
20
23
24
25
29

1 2 3 4 5 6 7 8 9 10 11

Job ID: 590-581-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-581-1

Comments

No additional comments.

Receipt

The samples were received on 4/3/2015 12:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.5° C.

Except:

The container label for the following sample SVDP-20 (9-10) did not match the information listed on the Chain-of-Custody (COC). The sample is listed on the COC but there is no sample container for it.

Several samples were placed on hold upon receipt at the laboratory in accordance with the instructions on the COC. In accordance with the client's isntructions provided on 04/15/2015, all analyses on hold were cancelled.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8270D SIM: Surrogate recovery for the following samples were outside control limits: SVDP- 17 (19.5-20.5) (590-581-11), SVDP-16 (22-23) (590-581-12), SVDP-18 (20-21) (590-581-18), SVDP-19 (20-21) (590-581-24), SVDP-19 (20-21) (590-581-24 MS), SVDP-20 (20-21) (590-581-29), SVDP-21 (20-21) (590-581-34). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The samples were analyzed at dilutions for the presence of interferring, non-target analytes.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview TestAmerica Job ID: 590-581-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-581-11	SVDP- 17 (19.5-20.5)	Solid	04/02/15 12:30	04/03/15 12:10
590-581-12	SVDP-16 (22-23)	Solid	04/02/15 10:30	04/03/15 12:10
590-581-18	SVDP-18 (20-21)	Solid	04/02/15 14:50	04/03/15 12:10
590-581-24	SVDP-19 (20-21)	Solid	04/02/15 17:00	04/03/15 12:10
590-581-29	SVDP-20 (20-21)	Solid	04/02/15 18:25	04/03/15 12:10
590-581-34	SVDP-21 (20-21)	Solid	04/02/15 19:40	04/03/15 12:10

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description						
x	Surrogate is outside control limits						

Glossary

Quaimer	qualitier Description	
X	Surrogate is outside control limits	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	- /
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Client Sample ID: SVDP- 17 (19.5-20.5)

Date Collected: 04/02/15 12:30 Date Received: 04/03/15 12:10

Lab Sample ID: 590-581-11 Matrix: Solid

Percent Solids: 76.1

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg	<u>₽</u>	04/06/15 14:22	04/06/15 15:19	1
Ethylbenzene	ND		0.099		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
m,p-Xylene	ND		0.39		mg/Kg	☆	04/06/15 14:22	04/06/15 15:19	1
Methyl tert-butyl ether	ND		0.049		mg/Kg	☆	04/06/15 14:22	04/06/15 15:19	1
o-Xylene	ND		0.20		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
Toluene	ND		0.099		mg/Kg	¢	04/06/15 14:22	04/06/15 15:19	1
Naphthalene	ND		0.20		mg/Kg	÷	04/06/15 14:22	04/06/15 15:19	1
Xylenes, Total	ND		0.59		mg/Kg	¢	04/06/15 14:22	04/06/15 15:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		74.7 - 120				04/06/15 14:22	04/06/15 15:19	1
4-Bromofluorobenzene (Surr)	98		69.8 - 140				04/06/15 14:22	04/06/15 15:19	1
Dibromofluoromethane (Surr)	95		80 - 120				04/06/15 14:22	04/06/15 15:19	1
Toluene-d8 (Surr)	100		78.5 - 125				04/06/15 14:22	04/06/15 15:19	1
Method: NWTPH-Gx - Northwe									
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
Gasoline	ND		4.9		mg/Kg	<u>Å</u>	04/06/15 14:22	04/06/15 15:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		41.5 - 162				04/06/15 14:22	04/06/15 15:19	1
Method: 8270D SIM - Semivol	atile Organic Con	npounds (G	C/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 16:19	1
2-Methylnaphthalene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:19	
1-Methylnaphthalene	ND		12		ug/Kg	☆	04/07/15 09:20	04/07/15 16:19	
Acenaphthylene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	•
Acenaphthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	
Fluorene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Phenanthrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:19	1
Anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	
Iuoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	
Pyrene	ND		12		ug/Kg	¢.	04/07/15 09:20	04/07/15 16:19	• • • • •
Benzo[a]anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:19	1
	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:19	1
Chrysene	IND						04/07/15 09:20	04/07/15 16:19	,
					ug/Kg	54F			
Benzo[b]fluoranthene	ND		12		ug/Kg ug/Kg	¢			1
Benzo[b]fluoranthene Benzo[k]fluoranthene	ND ND		12 12		ug/Kg	ф ф	04/07/15 09:20	04/07/15 16:19	1
Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene	ND ND ND		12 12 12		ug/Kg ug/Kg		04/07/15 09:20 04/07/15 09:20	04/07/15 16:19 04/07/15 16:19	1 1 1
Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	ND ND ND		12 12 12 12		ug/Kg ug/Kg ug/Kg	¢	04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	04/07/15 16:19 04/07/15 16:19 04/07/15 16:19	1 1 1 1
Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene	ND ND ND		12 12 12		ug/Kg ug/Kg	¢ ¢	04/07/15 09:20 04/07/15 09:20	04/07/15 16:19 04/07/15 16:19	1 1 1 1 1
Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Benzo[g,h,i]perylene	ND ND ND ND ND	Qualifier	12 12 12 12 12 12		ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 04/07/15 16:19	1 1 1 1 1 1
Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Benzo[g,h,i]perylene Surrogate	ND ND ND ND ND	Qualifier	12 12 12 12 12 12 12		ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 04/07/15 16:19	
Chrysene Benzo[b]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Benzo[g,h,i]perylene Surrogate Nitrobenzene-d5 2-Fluorobiphenyl (Surr)	ND ND ND ND ND ND		12 12 12 12 12 12 12 12 Limits		ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 Prepared	04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 04/07/15 16:19 Analyzed	Dil Fac

RL

13

32

MDL Unit

mg/Kg

mg/Kg

D

☆

₽

Prepared

04/08/15 10:35

04/08/15 10:35

Client Sample ID: SVDP- 17 (19.5-20.5)

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Result Qualifier

ND

ND

Date Collected: 04/02/15 12:30 Date Received: 04/03/15 12:10

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

Analyte

(C10-C25)

(C25-C36)

I	estAr	nerica	JOD	ID:	590-58	1-1

Lab Sample ID: 590-581-11

Analyzed

04/08/15 12:16

04/08/15 12:16

Matrix: Solid

Dil Fac

1

1

Percent Solids: 76.1

6

	8
	9

	a/ 5	0 ""					- <i>.</i>		
Surrogate	%Recovery	Qualifier	Limits 50 - 150				Prepared	Analyzed	Dil Fac
o-Terphenyl	95						04/08/15 10:35	04/08/15 12:16	
n-Triacontane-d62	83		50 - 150				04/08/15 10:35	04/08/15 12:16	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		25		mg/Kg	\$	04/06/15 09:43	04/08/15 12:34	20
 General Chemistry									
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	24		0.010		%			04/07/15 09:16	1
Percent Solids	76		0.010		%			04/07/15 09:16	1
			0.010		70				
Client Sample ID: SVDP-16 (22	-23)						Lab Sar	nple ID: 590-	581-12
Date Collected: 04/02/15 10:30								Matri	x: Solid
Date Received: 04/03/15 12:10								Percent Soli	ds: 75.7
_									
Method: 8260C - Volatile Organic C									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.029		0.015		mg/Kg	¢	04/06/15 14:22	04/06/15 15:42	1
Ethylbenzene	ND		0.099		mg/Kg	¢	04/06/15 14:22	04/06/15 15:42	1
m,p-Xylene	ND		0.40		mg/Kg	¢	04/06/15 14:22	04/06/15 15:42	1
Methyl tert-butyl ether	ND		0.050		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
o-Xylene	ND		0.20		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Toluene	ND		0.099		mg/Kg	¢	04/06/15 14:22	04/06/15 15:42	1
Naphthalene	ND		0.20		mg/Kg	¢	04/06/15 14:22	04/06/15 15:42	1
Xylenes, Total	ND		0.60		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91	·	74.7 - 120				04/06/15 14:22	04/06/15 15:42	1
4-Bromofluorobenzene (Surr)	99		69.8 - 140				04/06/15 14:22	04/06/15 15:42	1
Dibromofluoromethane (Surr)	98		80 - 120				04/06/15 14:22	04/06/15 15:42	1
Toluene-d8 (Surr)	99		78.5 - 125				04/06/15 14:22	04/06/15 15:42	1
_									
Method: NWTPH-Gx - Northwest - V	/olatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg	\\\	04/06/15 14:22	04/06/15 15:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		41.5 - 162				04/06/15 14:22	04/06/15 15:42	1
Method: 8270D SIM - Semivolatile (-			MD	11	-	Dremered	Analyzad	DI [
Analyte	ND	Qualifier	RL 	MDL		— D	Prepared	Analyzed	Dil Fac
Naphthalene					ug/Kg	÷	04/07/15 09:20		1
2-Methylnaphthalene	ND		12		ug/Kg	745	04/07/15 09:20	04/07/15 16:42	1

TestAmerica Spokane

1

1

04/07/15 16:42

04/07/15 16:42

12

12

ug/Kg

ug/Kg

04/07/15 09:20

04/07/15 09:20

¢

ND

ND

1-Methylnaphthalene Acenaphthylene

Client Sample ID: SVDP-16 (22-23) Date Collected: 04/02/15 10:30

Methyl tert-butyl ether

o-Xylene

Lab Sample ID: 590-581-12 Matrix: Solid

Percent Solids: 75.7

5 6

ate Received: 04/03/15 12:10								Percent Soll	as: 75.
Method: 8270D SIM - Semivolatil	e Organic Con	npounds (C	GC/MS SIM) (Con	tinued)					
Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 16:42	
Fluorene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
Phenanthrene	ND		12		ug/Kg	¢.	04/07/15 09:20	04/07/15 16:42	
Anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
Fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
Pyrene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 16:42	
Benzo[a]anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
	ND		12			¢	04/07/15 09:20	04/07/15 16:42	
Chrysene Ronzolhiftueranthana					ug/Kg			04/07/15 16:42	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20		
Benzo[k]fluoranthene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 16:42	
Benzo[a]pyrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢.	04/07/15 09:20	04/07/15 16:42	
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 16:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	38		35.1 - 144				04/07/15 09:20	04/07/15 16:42	
2-Fluorobiphenyl (Surr)	48	Х	48.8 - 134				04/07/15 09:20	04/07/15 16:42	
p-Terphenyl-d14	65		48 - 166				04/07/15 09:20	04/07/15 16:42	
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleur	n Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	ND		13		mg/Kg	— <u> </u>	04/08/15 10:35	04/08/15 12:39	
(C10-C25)									
Residual Range Organics (RRO) (C25-C36)	ND		32		mg/Kg	¢	04/08/15 10:35	04/08/15 12:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl	99		50 _ 150				04/08/15 10:35	04/08/15 12:39	
n-Triacontane-d62	81		50 - 150				04/08/15 10:35	04/08/15 12:39	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		11		mg/Kg	 	04/06/15 09:43	04/08/15 11:39	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	24		0.010		%			04/07/15 09:16	
Percent Solids	76		0.010		%			04/07/15 09:16	
lient Sample ID: SVDP-18 (20-21)						Lab Sar	nple ID: 590-	581-1
ate Collected: 04/02/15 14:50	,							-	ix: Sol
ate Received: 04/03/15 12:10								Percent Soli	
Mothod: 8260C - Volatilo Organi	Compounde								
Method: 8260C - Volatile Organio Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	ND		0.026		mg/Kg	<u> </u>	04/06/15 14:22	04/06/15 16:04	
Ethylbenzene	ND		0.17		mg/Kg	¢	04/06/15 14:22	04/06/15 16:04	
m,p-Xylene	ND		0.70		mg/Kg	¢	04/06/15 14:22	04/06/15 16:04	
	NU		0.70				5-1,00/10 14.2Z	0-100/10 10.04	

1

1

04/06/15 16:04

04/06/15 16:04

0.087

0.35

¢

₽

mg/Kg

mg/Kg

04/06/15 14:22

04/06/15 14:22

ND

ND

RL

0.17

0.35

1.0

Limits

74.7 - 120

69.8 - 140

78.5 - 125

80 - 120

MDL Unit

mg/Kg

mg/Kg

mg/Kg

D

☆

φ.

☆

Prepared

04/06/15 14:22

04/06/15 14:22

04/06/15 14:22

Prepared

04/06/15 14:22

04/06/15 14:22

04/06/15 14:22

04/06/15 14:22

04/07/15 09:20

Date Received: 04/03/15 12:10

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte

Toluene

Naphthalene

Xylenes, Total

Toluene-d8 (Surr)

p-Terphenyl-d14

Surrogate

Client Sample ID: SVDP-18 (20-21) Date Collected: 04/02/15 14:50

Lab Sample ID: 590-581-18

Analyzed

04/06/15 16:04

04/06/15 16:04

04/06/15 16:04

Analyzed

04/06/15 16:04

04/06/15 16:04

04/06/15 16:04

04/06/15 16:04

Matrix: Solid

Dil Fac

Dil Fac

1

1

1

1

1

1

Percent Solids: 68.2

7 8 9

Method: NWTPH-Gx - Northwest - Vo	latile Petroleum Products	(GC/MS)
A 1 <i>i</i>		-

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Qualifier

ND

ND

ND

93

98

96

101

%Recovery

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		8.7		mg/Kg	\\\\	04/06/15 14:22	04/06/15 16:04	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	98		41.5 - 162				04/06/15 14:22	04/06/15 16:04	1	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		14		ug/Kg	\\\	04/07/15 09:20	04/07/15 17:04	1
2-Methylnaphthalene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
1-Methylnaphthalene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Acenaphthylene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Acenaphthene	ND		14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Fluorene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Phenanthrene	ND		14		ug/Kg	¢.	04/07/15 09:20	04/07/15 17:04	1
Anthracene	ND		14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Fluoranthene	ND		14		ug/Kg	⇔	04/07/15 09:20	04/07/15 17:04	1
Pyrene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Benzo[a]anthracene	ND		14		ug/Kg	⇔	04/07/15 09:20	04/07/15 17:04	1
Chrysene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Benzo[b]fluoranthene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Benzo[k]fluoranthene	ND		14		ug/Kg	⇔	04/07/15 09:20	04/07/15 17:04	1
Benzo[a]pyrene	ND		14		ug/Kg	⇔	04/07/15 09:20	04/07/15 17:04	1
Indeno[1,2,3-cd]pyrene	ND		14		ug/Kg	¢	04/07/15 09:20	04/07/15 17:04	1
Dibenz(a,h)anthracene	ND		14		ug/Kg	⇔	04/07/15 09:20	04/07/15 17:04	1
Benzo[g,h,i]perylene	ND		14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	39		35.1 - 144				04/07/15 09:20	04/07/15 17:04	1
2-Fluorobiphenyl (Surr)	38	X	48.8 - 134				04/07/15 09:20	04/07/15 17:04	1

Mathady NM/TDH Dy Northwest Sami Valatile Patroloum Products //	201
Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (36)

51

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		15		mg/Kg	\\\\\	04/08/15 10:35	04/08/15 12:58	1
(C10-C25)									
Residual Range Organics (RRO)	ND		36		mg/Kg	¢	04/08/15 10:35	04/08/15 12:58	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
		Quanner							Diride
o-Terphenyl	98		50 - 150				04/08/15 10:35	04/08/15 12:58	1

48 - 166

TestAmerica Spokane

04/07/15 17:04

1

Limits

50 - 150

RL

10

RL

0.010

0.010

MDL Unit

RL Unit

%

%

mg/Kg

Client Sample ID: SVDP-18 (20-21)

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

%Recovery Qualifier

Result Qualifier

Result Qualifier

93

ND

32

68

Date Collected: 04/02/15 14:50 Date Received: 04/03/15 12:10

Method: 6010C - Metals (ICP)

Surrogate

Analyte

Analyte

Lead

n-Triacontane-d62

General Chemistry

Percent Moisture

Percent Solids

TestAmerica Job ID: 590-581-1

Lab Sample ID: 590-581-18

Analyzed

04/08/15 12:58

Analyzed

04/08/15 11:41

Analyzed

04/07/15 09:16

04/07/15 09:16

Lab Sample ID: 590-581-24

Prepared

04/08/15 10:35

Prepared

04/06/15 09:43

Prepared

D

☆

D

Matrix: Solid

Matrix: Solid

Percent Solids: 81.1

Percent Solids: 68.2

6

Dil Fac 1 Dil Fac 10 Dil Fac 1 1

Client Sample ID: SVDP-19 (20-21)

Date Collected: 04/02/15 17:00

Date Received: 04/03/15 12:10

Method: 8260C - Volatile Orga	nic Compounds b	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.020		mg/Kg	<u>\$</u>	04/06/15 14:22	04/06/15 16:27	1
Ethylbenzene	ND		0.14		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
m,p-Xylene	ND		0.54		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
Methyl tert-butyl ether	ND		0.068		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
o-Xylene	ND		0.27		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
Toluene	ND		0.14		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
Naphthalene	ND		0.27		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
Xylenes, Total	ND		0.81		mg/Kg	¢	04/06/15 14:22	04/06/15 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74.7 - 120				04/06/15 14:22	04/06/15 16:27	1
4-Bromofluorobenzene (Surr)	100		69.8 - 140				04/06/15 14:22	04/06/15 16:27	1
Dibromofluoromethane (Surr)	96		80 - 120				04/06/15 14:22	04/06/15 16:27	1
Toluene-d8 (Surr)	99		78.5 - 125				04/06/15 14:22	04/06/15 16:27	1

Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Proc	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	100		6.8		mg/Kg	<u></u>	04/06/15 14:22	04/06/15 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				04/06/15 14:22	04/06/15 16:27	1

Method: 8270D SIM - Semivola	atile Organic Compo	ounds (GC/MS SIM)						
Analyte	Result Qua	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	12		ug/Kg	<u>\$</u>	04/07/15 09:20	04/07/15 15:12	1
2-Methylnaphthalene	47	12		ug/Kg	\$	04/07/15 09:20	04/07/15 15:12	1
1-Methylnaphthalene	23	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Acenaphthylene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Acenaphthene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Fluorene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Phenanthrene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Anthracene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Fluoranthene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Pyrene	ND	12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1

TestAmerica Spokane

Client Sample ID: SVDP-19 (20-21) Date Collected: 04/02/15 17:00

Lab Sample ID: 590-581-24 Matrix: Solid

Percent Solids: 81.1

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		12		ug/Kg	<u>\$</u>	04/07/15 09:20	04/07/15 15:12	
Chrysene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Benzo[a]pyrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 15:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	37		35.1 - 144				04/07/15 09:20	04/07/15 15:12	1
2-Fluorobiphenyl (Surr)	47	X	48.8 - 134				04/07/15 09:20	04/07/15 15:12	1
p-Terphenyl-d14	64		48 - 166				04/07/15 09:20	04/07/15 15:12	1
Analyte	Result	Qualifier	RL	MDL	Unit	— D	Prepared 04/08/15 10:35	Analyzed	Dil Fac
Method: NWTPH-Dx - Northwest				MDI	Unit		Branarad	Analyzad	Dil Eog
Diesel Range Organics (DRO) (C10-C25)	ND		12		mg/Kg	~	04/06/15 10.35	U4/U0/ID ID I/	
(010-025)								0 10 00 10 10111	1
Residual Range Organics (RRO)	ND		30		ma/Ka	¢	04/08/15 10:35		
Residual Range Organics (RRO) (C25-C36)	ND		30		mg/Kg	₽	04/08/15 10:35	04/08/15 13:17	
00,00,00	ND %Recovery	Qualifier	30 Limits		mg/Kg	÷	04/08/15 10:35 Prepared		1 Dil Fac
(C25-C36)		Qualifier			mg/Kg	¢		04/08/15 13:17	1
(C25-C36) Surrogate	%Recovery	Qualifier	Limits		mg/Kg	☆	Prepared	04/08/15 13:17 Analyzed	Dil Fac
(C25-C36) Surrogate o-Terphenyl		Qualifier	Limits		mg/Kg	Ť	Prepared	04/08/15 13:17 Analyzed 04/08/15 13:17	1 Dil Fac
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62		<i>Qualifier</i> Qualifier	Limits	MDL	mg/Kg Unit	¢	Prepared	04/08/15 13:17 Analyzed 04/08/15 13:17	Dil Fac
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP)			Limits 50 - 150 50 - 150	MDL			Prepared 04/08/15 10:35 04/08/15 10:35	04/08/15 13:17 Analyzed 04/08/15 13:17 04/08/15 13:17	Dil Fac
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP) Analyte			Limits 50 - 150 50 - 150 RL	MDL	Unit	D	Prepared 04/08/15 10:35 04/08/15 10:35 Prepared	04/08/15 13:17 <u>Analyzed</u> 04/08/15 13:17 04/08/15 13:17 Analyzed	Dil Fac
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP) Analyte Lead			Limits 50 - 150 50 - 150 RL		Unit	D	Prepared 04/08/15 10:35 04/08/15 10:35 Prepared	04/08/15 13:17 <u>Analyzed</u> 04/08/15 13:17 04/08/15 13:17 Analyzed	1 Dil Fac

Client Sample ID: SVDP-20 (20-21)

Date Collected: 04/02/15 18:25
Date Received: 04/03/15 12:10

Percent Solids

Lab Sample ID: 590-581-29

04/07/15 09:16

Matrix: Solid Percent Solids: 79.2

1

Perce

Method: 8260C - Volatile Organic Compounds by GC/MS

81

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.018		mg/Kg	<u>₩</u>	04/06/15 14:22	04/06/15 16:49	1
Ethylbenzene	ND		0.12		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
m,p-Xylene	ND		0.49		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Methyl tert-butyl ether	ND		0.061		mg/Kg	¢	04/06/15 14:22	04/06/15 16:49	1
o-Xylene	ND		0.24		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Toluene	ND		0.12		mg/Kg	¢	04/06/15 14:22	04/06/15 16:49	1
Naphthalene	ND		0.24		mg/Kg	¢	04/06/15 14:22	04/06/15 16:49	1
Xylenes, Total	ND		0.73		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74.7 _ 120				04/06/15 14:22	04/06/15 16:49	1
4-Bromofluorobenzene (Surr)	97		69.8 - 140				04/06/15 14:22	04/06/15 16:49	1

0.010

%

Client Sample Results

Cli

5 6

Client Sample ID: SVDP-20	(20-21)						Lab San	nple ID: 590-	
Date Collected: 04/02/15 18:25 Date Received: 04/03/15 12:10								Matri Percent Soli	x: Solid ds: 79.2
	ia Compoundo I		(Continued)						<u>uo. 10.</u>
Method: 8260C - Volatile Organ		-					- ·		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	98		80 - 120				04/06/15 14:22	04/06/15 16:49	
Toluene-d8 (Surr)	103		78.5 - 125				04/06/15 14:22	04/06/15 16:49	
		. I							
Method: NWTPH-Gx - Northwes						_	<u> </u>		
Analyte		Qualifier		MDL	Unit	— <u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline	ND		6.1		mg/Kg	4	04/06/15 14:22	04/06/15 16:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		41.5 - 162				04/06/15 14:22	04/06/15 16:49	
Method: 8270D SIM - Semivolat	-								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		12		ug/Kg	¥	04/07/15 09:20	04/07/15 17:27	
2-Methylnaphthalene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
1-Methylnaphthalene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Acenaphthylene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Acenaphthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Fluorene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Phenanthrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Pyrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Benzo[a]anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Chrysene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Benzo[a]pyrene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 17:27	
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	04/07/15 09:20	04/07/15 17:27	
			12		uging		0 1101 10 00.20	0 1101110 11.21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	42		35.1 - 144				04/07/15 09:20	04/07/15 17:27	
2-Fluorobiphenyl (Surr)	44	X	48.8 - 134				04/07/15 09:20	04/07/15 17:27	
p-Terphenyl-d14	64		48 - 166				04/07/15 09:20	04/07/15 17:27	
		Defendence in							
Method: NWTPH-Dx - Northwes					11	_	Deensural	A	D 21 C
Analyte		Qualifier		MDL	Unit	— D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	ND		12		mg/Kg	745	04/08/15 10:35	04/08/15 13:36	
(C10-C25) Residual Range Organics (RRO)	ND		31		mg/Kg	₽	04/08/15 10:35	04/08/15 13:36	
(C25-C36)								1.15.10 10.00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl		Guanner	50 _ 150				04/08/15 10:35	04/08/15 13:36	
n-Triacontane-d62	95		50 - 150				04/08/15 10:35	04/08/15 13:36	
Method: 6010C - Metals (ICP)									
Analyte	Posult	Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND	14	mg/Kg	<u>*</u>	04/06/15 09:43	04/08/15 11:46	10

Client Sample Results

RL

RL Unit

D

Prepared

Result Qualifier

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Date Received: 04/03/15 12:10

General Chemistry

Analyte

Client Sample ID: SVDP-20 (20-21) Date Collected: 04/02/15 18:25

TestAmerica	Job	ID:	590-58	31-1

Lab Sample ID: 590-581-29

Analyzed

Matrix: Solid

Dil Fac

6

Analyte	Kesuit	Quaimer			Unit		Flepaleu	Analyzeu	Dirra
Percent Moisture	21		0.010		%			04/07/15 09:16	
Percent Solids	79		0.010		%			04/07/15 09:16	
lient Sample ID: SVDP-21	(20-21)						Lab San	nple ID: 590-	581-34
ate Collected: 04/02/15 19:40								Matri	ix: Solie
ate Received: 04/03/15 12:10								Percent Soli	ds: 80.0
Mathadi 82606 - Valatila Orma	nia Compoundo I								
Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.019		mg/Kg	<u></u>	04/06/15 14:22	04/06/15 17:12	
Ethylbenzene	ND		0.13		mg/Kg	₽	04/06/15 14:22	04/06/15 17:12	
m,p-Xylene	ND		0.50		mg/Kg	¢	04/06/15 14:22	04/06/15 17:12	
Methyl tert-butyl ether	ND		0.063		mg/Kg	¢	04/06/15 14:22	04/06/15 17:12	
o-Xylene	ND		0.25		mg/Kg	¢	04/06/15 14:22	04/06/15 17:12	
Toluene	ND		0.13		mg/Kg	¢	04/06/15 14:22	04/06/15 17:12	
Naphthalene	ND		0.25		mg/Kg	¢.	04/06/15 14:22	04/06/15 17:12	
Xylenes, Total	ND		0.75		mg/Kg	¢	04/06/15 14:22	04/06/15 17:12	
					0 0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	92		74.7 - 120				04/06/15 14:22	04/06/15 17:12	
4-Bromofluorobenzene (Surr)	96		69.8 - 140				04/06/15 14:22	04/06/15 17:12	
Dibus as a flue as as a flue as a (Oural)	97		80 - 120				04/06/15 14:22	04/06/15 17:12	
Dibromofiuoromethane (Surr)								04/00/45 47 40	
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte	Result	Dieum Proc Qualifier		MDL	Unit	D	04/06/15 14:22 Prepared	04/06/15 17:12 Analyzed	Dil Fa
<i>Toluene-d8 (Surr)</i> Method: NWTPH-Gx - Northwe Analyte Gasoline	est - Volatile Petro Result	Qualifier	ducts (GC/MS) RL 	MDL	Unit mg/Kg	D	Prepared 04/06/15 14:22	Analyzed 04/06/15 17:12	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate	est - Volatile Petro Result ND %Recovery	Qualifier	ducts (GC/MS) RL 6.3	MDL			Prepared 04/06/15 14:22 Prepared	Analyzed 04/06/15 17:12 Analyzed	Dil Fa
<i>Toluene-d8 (Surr)</i> Method: NWTPH-Gx - Northwe Analyte Gasoline	est - Volatile Petro Result	Qualifier	ducts (GC/MS) RL 	MDL			Prepared 04/06/15 14:22	Analyzed 04/06/15 17:12	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	est - Volatile Petro Result ND %Recovery 96	Qualifier Qualifier	Limits 41.5 - 162	MDL			Prepared 04/06/15 14:22 Prepared	Analyzed 04/06/15 17:12 Analyzed	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola	est - Volatile Petro Result ND %Recovery 96 atile Organic Com	Qualifier Qualifier	Limits 41.5 - 162				Prepared 04/06/15 14:22 Prepared	Analyzed 04/06/15 17:12 Analyzed	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte	est - Volatile Petro Result ND %Recovery 96 atile Organic Com	Qualifier Qualifier	ducts (GC/MS) - RL - 6.3 - Limits - 41.5 - 162 - GC/MS SIM)		mg/Kg	<u>*</u>	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL		mg/Kg Unit	☆	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND	Qualifier Qualifier	Limits 41.5 - 162 GC/MS SIM) RL 12		mg/Kg Unit ug/Kg	\alpha	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49	Dil Fa Dil Fa Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND	Qualifier Qualifier	Limits 41.5 - 162 GC/MS SIM) RL 12 12		Unit ug/Kg ug/Kg	\alpha	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49	Dil Fa Dil Fa Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg	<u>D</u> 22 23 24 24 24 25 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49	Dil Fa Dil Fa Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg	D 20 20 20 20 20 20 20 20 20 20 20 20 20	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa Dil Fa Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND	Qualifier Qualifier	Limits 41.5 - 162 GC/MS SIM) RL 12 <		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa Dil Fa Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D 20 20 20 20 20 20 20 20 20 20 20 20 20	Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa Dil Fa Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 <u>Limits</u> 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 - Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49	Dil Fa
Toluene-d8 (Surr) Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[a]pyrene	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 14:22 Prepared 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49	Dil Fa
Method: NWTPH-Gx - Northwe Analyte Gasoline Surrogate	est - Volatile Petro Result ND %Recovery 96 atile Organic Com Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	ducts (GC/MS) RL 6.3 Limits 41.5 - 162 GC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12		Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/06/15 14:22 Prepared 04/06/15 04/06/15 14:22 Prepared 04/07/15 04/07/15 09:20	Analyzed 04/06/15 17:12 Analyzed 04/06/15 17:12 Analyzed 04/07/15 17:49 04/07/15 17:49	Dil Fa

TestAmerica Job ID: 590-581-1

Client Sample ID: SVDP-21	l (20-21)						Lab San	nple ID: 590-	581-34
ate Collected: 04/02/15 19:40	. ,								x: Solid
Date Received: 04/03/15 12:10								Percent Soli	ds: 80.6
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	33	X	35.1 - 144				04/07/15 09:20	04/07/15 17:49	
2-Fluorobiphenyl (Surr)	43	X	48.8 - 134				04/07/15 09:20	04/07/15 17:49	
p-Terphenyl-d14	63		48 - 166				04/07/15 09:20	04/07/15 17:49	1
- Method: NWTPH-Dx - Northwe	st - Somi-Volatile	Petroleur	Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		12		mg/Kg	\\\\	04/08/15 10:35	04/08/15 13:55	· · · ·
(C10-C25)									
Residual Range Organics (RRO)	ND		30		mg/Kg	¢	04/08/15 10:35	04/08/15 13:55	
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	91		50 - 150				04/08/15 10:35	04/08/15 13:55	
n-Triacontane-d62	89		50 - 150				04/08/15 10:35	04/08/15 13:55	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		11		mg/Kg	\\\\	04/06/15 09:43	04/08/15 11:58	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19		0.010		%			04/07/15 09:16	
Percent Solids	81		0.010		%			04/07/15 09:16	

RL

0.015

0.10

0.40

0.050

0.20

0.10

0.20

0.60

Limits

74.7 - 120

69.8 - 140

80 - 120

78.5 - 125

Spike

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Lab Sample ID: MB 590-1016/1-A

Matrix: Solid

Analyte

Benzene

Ethylbenzene

Methyl tert-butyl ether

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

m,p-Xylene

o-Xylene

Toluene

Naphthalene

Xylenes, Total

Surrogate

Analysis Batch: 1011

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

90

97

96

102

%Recovery

MB MB

Qualifier

Client Sample ID: Method Blank

Analyzed

04/06/15 13:01

04/06/15 13:01

04/06/15 13:01

04/06/15 13:01

04/06/15 13:01

Prep Type: Total/NA Prep Batch: 1016

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

Prep Batch: 1016

Dil Fac

1

1

5 6 7 8 9

mg/Kg	04/06/15 14:22	04/06/15 13:01	1	8
mg/Kg	04/06/15 14:22	04/06/15 13:01	1	
mg/Kg	04/06/15 14:22	04/06/15 13:01	1	9
mg/Kg	04/06/15 14:22	04/06/15 13:01	1	
	Prepared	Analyzed	Dil Fac	
	04/06/15 14:22	04/06/15 13:01	1	
	04/06/15 14:22	04/06/15 13:01	1	
	04/06/15 14:22	04/06/15 13:01	1	

04/06/15 14:22

Prepared

04/06/15 14:22

04/06/15 14:22

04/06/15 14:22

04/06/15 14:22

Lab Sample ID: LCS 590-1016/2-A Matrix: Solid

Analysis Batch: 1011	
Analyte	

Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.534	mg/Kg		107	75.8 - 123	
Ethylbenzene	0.500	0.539	mg/Kg		108	77.3 - 121	
m,p-Xylene	0.500	0.555	mg/Kg		111	77.7 _ 124	
Methyl tert-butyl ether	0.500	0.468	mg/Kg		94	60 - 140	
o-Xylene	0.500	0.548	mg/Kg		110	76.7 _ 129	
Toluene	0.500	0.544	mg/Kg		109	76.6 - 125	
Naphthalene	0.500	0.452	mg/Kg		90	55.1 - 142	

LCS LCS

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		74.7 - 120
4-Bromofluorobenzene (Surr)	97		69.8 - 140
Dibromofluoromethane (Surr)	97		80 _ 120
Toluene-d8 (Surr)	101		78.5 _ 125

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-1016/1-A Matrix: Solid Analysis Batch: 1013							Client Sa	mple ID: Metho Prep Type: 1 Prep Bate	otal/NA
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		41.5 - 162				04/06/15 14:22	04/06/15 13:01	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCS 590-101 Matrix: Solid	6/3-A						Client	Sampl		Control Sample Type: Total/NA
Analysis Batch: 1013										ep Batch: 1016
-			Spike	LCS	LCS				%Rec.	-
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline			50.0	50.4		mg/Kg		101	74.4 - 124	·
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	99		41.5 - 162							

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-1026/1-A Matrix: Solid Analysis Batch: 1024							Client Sa	mple ID: Metho Prep Type: T Prep Bato	otal/NA
Analysis Batch. 1024	МВ	мв						Trep Date	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
2-Methylnaphthalene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
1-Methylnaphthalene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Acenaphthylene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Acenaphthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Fluorene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Phenanthrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Anthracene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Fluoranthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Pyrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[a]anthracene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Chrysene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[b]fluoranthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[k]fluoranthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[a]pyrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Dibenz(a,h)anthracene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[g,h,i]perylene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	36		35.1 - 144	04/07/15 09:20	04/07/15 13:19	1
2-Fluorobiphenyl (Surr)	58		48.8 - 134	04/07/15 09:20	04/07/15 13:19	1
p-Terphenyl-d14	62		48 - 166	04/07/15 09:20	04/07/15 13:19	1

Lab Sample ID: LCS 590-1026/2-A Matrix: Solid

Analysis Batch: 1024

	Spike	LCS	LCS				%Rec.	-
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	173		ug/Kg		65	51.4 - 133	
Fluorene	267	221		ug/Kg		83	65.7 - 123	
Chrysene	267	220		ug/Kg		83	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	243		ug/Kg		91	54.6 - 142	

TestAmerica Spokane

Prep Type: Total/NA

Prep Batch: 1026

Client Sample ID: Lab Control Sample

Limits

35.1 - 144

48.8 - 134

48 - 166

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

LCS LCS

%Recovery Qualifier

41

50

68

Lab Sample ID: LCS 590-1026/2-A

Matrix: Solid

Nitrobenzene-d5

p-Terphenyl-d14

2-Fluorobiphenyl (Surr)

Surrogate

Analysis Batch: 1024

Prep Type: Total/NA

Prep Batch: 1026

Drop Databy 1026

2 3 4 5 6 7 8 9

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA	

Client Sample ID: Lab Control Sample

Lab Sample ID: LCSD 590-1026/3-A Matrix: Solid

Analysis Batch: 1024							Pre	ер ватсп	: 1026	
	Spike	LCSD	LCSD				%Rec.		RPD	í
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Naphthalene	267	164		ug/Kg		61	51.4 - 133	5	35	
Fluorene	267	208		ug/Kg		78	65.7 _ 123	6	35	
Chrysene	267	213		ug/Kg		80	57.3 - 133	3	35	
Indeno[1,2,3-cd]pyrene	267	219		ug/Kg		82	54.6 - 142	11	35	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	56		35.1 - 144
2-Fluorobiphenyl (Surr)	54		48.8 - 134
p-Terphenyl-d14	62		48 - 166

Lab Sample ID: 590-581-24 MS Matrix: Solid

Analysis Batch: 1024 Prep Batch: 1026 Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier %Rec Analyte Added Unit D Limits ö Naphthalene ND 313 187 60 30 - 120 ug/Kg ₽ ND Fluorene 313 255 81 30 - 140 ug/Kg ₽ Chrysene ND 313 234 ug/Kg 75 30 - 133 ¢ Indeno[1,2,3-cd]pyrene ND 313 237 ug/Kg 76 30 - 140

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	49		35.1 - 144
2-Fluorobiphenyl (Surr)	48	X	48.8 - 134
p-Terphenyl-d14	60		48 - 166

Lab Sample ID: 590-581-24 MSD Matrix: Solid

Analysis Batch: 1024									Pre	p Batch	: 1026
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		328	199		ug/Kg	<u></u>	61	30 - 120	7	35
Fluorene	ND		328	260		ug/Kg	¢	79	30 - 140	2	35
Chrysene	ND		328	275		ug/Kg	¢	84	30 - 133	16	35
Indeno[1,2,3-cd]pyrene	ND		328	261		ug/Kg	₽	79	30 - 140	10	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	48		35.1 - 144
2-Fluorobiphenyl (Surr)	50		48.8 - 134

Client Sample ID: SVDP-19 (20-21)

Client Sample ID: SVDP-19 (20-21)

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-581-24 MSD Matrix: Solid									Cli	ient Sam	ple ID: SVDP-' Prep Type:		
Analysis Batch: 1024											Prep Ba		
Analysis Dalon. 1024											гер Ба	ich:	102
	MSD N												
Surrogate	%Recovery	ualifier	Limits										
p-Terphenyl-d14	63		48 - 166										
lethod: NWTPH-Dx - Northy	vest - Sem	i-Volatile	Petroleum F	Produc	cts (GC)							
Lab Sample ID: MB 590-1047/1-A Matrix: Solid										Client Sa	mple ID: Meth Prep Type:		
Analysis Batch: 1044											Prep Ba		
Analysis Datch. 1044	N	IB MB									Перва	ten.	104
Analyte		ult Qualifier	RL		MDL	Unit		D	Pr	epared	Analyzed		Dil Fa
Diesel Range Organics (DRO) (C10-C25)						mg/Kg				3/15 10:35	04/08/15 11:11		
Residual Range Organics (RRO) (C25-C36)	١	ID	25			mg/Kg			04/08	3/15 10:35	04/08/15 11:11		
		1B MB											
Surrogate		ry Qualifier	Limits						р,	repared	Analyzed		Dil Fa
o-Terphenyl		04						-		8/15 10:35	04/08/15 11:11		Dii i a
n-Triacontane-d62		94	50 - 150 50 - 150							B/15 10:35	04/08/15 11:11		
Matrix: Solid Analysis Batch: 1044			Spike	LCS	LCS						Prep Type: Prep Ba %Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Diesel Range Organics (DRO) (C10-C25)			66.7	62.5			mg/Kg			94	50 - 150		
Residual Range Organics (RRO) (C25-C36)			66.7	59.6			mg/Kg			89	50 - 150		
	LCS L	cs											
Surrogate	%Recovery G	ualifier	Limits										
o-Terphenyl	102		50 - 150										
n-Triacontane-d62	97		50 - 150										
Lab Sample ID: 590-581-11 DU								Cli	ent	Sample I	D: SVDP- 17 (*	19.5	-20.5
Matrix: Solid											Prep Type:	Tot	al/N
Analysis Batch: 1044											Prep Ba		
	Sample S	ample		DU	DU						-		RP
Analyte	Result Q	ualifier		Result	Qua	lifier	Unit		D		R	PD	Lim
Diesel Range Organics (DRO) (C10-C25)	ND			ND			mg/Kg		\\\\			5	4
Residual Range Organics (RRO) (C25-C36)	ND			ND			mg/Kg		₽		1	١C	4
	DU D	U											
Surrogate	%Recovery G	ualifier	Limits										
o-Terphenyl	100		50 - 150										

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-1002/2-A Matrix: Solid Analysis Batch: 1048	мв	МВ								С	lient Sa	ample ID: Meth Prep Type: Prep Ba	
Analyte		Qualifier		RL		MDL	Unit		D	Pre	pared	Analyzed	Dil Fac
Lead	ND			0.025			mg/Kg		04	4/06/	15 09:43	04/07/15 13:45	1
Lab Sample ID: LCS 590-1002/1-A									Clie	nt S	ample	ID: Lab Contro	I Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 1048												Prep Ba	ch: 1002
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit	[5	%Rec	Limits	
Lead			1.00		1.01			mg/Kg			101	80 - 120	

Method: Moisture - Percent Moisture

Lab Sample ID: 590-581-24 DU Matrix: Solid Analysis Batch: 1025	J					Client S	ample ID: SVDP-19 (Prep Type: To	· · · · ·
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	19		18		%		4	20
Percent Solids	81		82		%		1	20

Client Sample ID: SVDP- 17 (19.5-20.5)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.775 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	9.775 g	5 mL	1011	04/06/15 15:19	MRS	TAL SPK
Total/NA	Prep	5035			9.775 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	9.775 g	5 mL	1013	04/06/15 15:19	MRS	TAL SPK
Fotal/NA	Prep	3550C			15.93 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.93 g	2 mL	1024	04/07/15 16:19	NMI	TAL SPK
otal/NA	Prep	3550C			15.54 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Fotal/NA	Analysis	NWTPH-Dx		1	15.54 g	5 mL	1044	04/08/15 12:16	NMI	TAL SPK
Total/NA	Prep	3050B			1.29 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
otal/NA	Analysis	6010C		20	1.29 g	50 mL	1055	04/08/15 12:34	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-16 (22-23) Date Collected: 04/02/15 10:30 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.809 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	9.809 g	5 mL	1011	04/06/15 15:42	MRS	TAL SPK
Total/NA	Prep	5035			9.809 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	9.809 g	5 mL	1013	04/06/15 15:42	MRS	TAL SPK
Total/NA	Prep	3550C			15.86 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.86 g	2 mL	1024	04/07/15 16:42	NMI	TAL SPK
Total/NA	Prep	3550C			15.33 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.33 g	5 mL	1044	04/08/15 12:39	NMI	TAL SPK
Total/NA	Prep	3050B			1.47 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.47 g	50 mL	1055	04/08/15 11:39	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-18 (20-21) Date Collected: 04/02/15 14:50 Date Received: 04/03/15 12:10

Lab Sample ID: 590-581-18 Matrix: Solid

Lab Sample ID: 590-581-12

Matrix: Solid

Percent Solids: 75.7

Percent Solids: 68.2

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.75 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5.75 g	5 mL	1011	04/06/15 16:04	MRS	TAL SPK
Total/NA	Prep	5035			5.75 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	5.75 g	5 mL	1013	04/06/15 16:04	MRS	TAL SPK
Total/NA	Prep	3550C			15.26 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.26 g	2 mL	1024	04/07/15 17:04	NMI	TAL SPK
Total/NA	Prep	3550C			15.08 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.08 g	5 mL	1044	04/08/15 12:58	NMI	TAL SPK
Total/NA	Prep	3050B			1.78 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK

TestAmerica Spokane

Lab Sample ID: 590-581-11 Matrix: Solid

Percent Solids: 76.1

8

Client Sample ID: SVDP-18 (20-21)

Lab Sample ID: 590-581-18

Lab Sample ID: 590-581-24

Matrix: Solid

Matrix: Solid

Percent Solids: 81.1

Date Collected: 04/02/15 14:50 Date Received: 04/03/15 12:10

Date Received	eived: 04/03/15 12:10									Solids: 68.2
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		10	1.78 g	50 mL	1055	04/08/15 11:41	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-19 (20-21) Date Collected: 04/02/15 17:00 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.505 g	5 mL	1016	04/06/15 14:22	MRS	TAL SP
Total/NA	Analysis	8260C		1	5.505 g	5 mL	1011	04/06/15 16:27	MRS	TAL SP
Total/NA	Prep	5035			5.505 g	5 mL	1016	04/06/15 14:22	MRS	TAL SP
Total/NA	Analysis	NWTPH-Gx		1	5.505 g	5 mL	1013	04/06/15 16:27	MRS	TAL SP
Total/NA	Prep	3550C			15.13 g	2 mL	1026	04/07/15 09:20	NMI	TAL SP
Total/NA	Analysis	8270D SIM		1	15.13 g	2 mL	1024	04/07/15 15:12	NMI	TAL SP
Total/NA	Prep	3550C			15.38 g	5 mL	1047	04/08/15 10:35	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1	15.38 g	5 mL	1044	04/08/15 13:17	NMI	TAL SP
Total/NA	Prep	3050B			1.36 g	50 mL	1002	04/06/15 09:43	JSP	TAL SP
Total/NA	Analysis	6010C		10	1.36 g	50 mL	1055	04/08/15 11:43	JSP	TAL SPI
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SP

Client Sample ID: SVDP-20 (20-21) Date Collected: 04/02/15 18:25

Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.595 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.595 g	5 mL	1011	04/06/15 16:49	MRS	TAL SPK
Total/NA	Prep	5035			6.595 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.595 g	5 mL	1013	04/06/15 16:49	MRS	TAL SPK
Total/NA	Prep	3550C			15.89 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.89 g	2 mL	1024	04/07/15 17:27	NMI	TAL SPK
Total/NA	Prep	3550C			15.26 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.26 g	5 mL	1044	04/08/15 13:36	NMI	TAL SPK
Total/NA	Prep	3050B			1.13 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.13 g	50 mL	1055	04/08/15 11:46	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-21 (20-21) Date Collected: 04/02/15 19:40 Date Received: 04/03/15 12:10

—	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.102 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK

TestAmerica Spokane

Lab Sample ID: 590-581-29 Matrix: Solid

Percent Solids: 79.2

Percent Solids: 80.6

Matrix: Solid

Lab Sample ID: 590-581-34

TestAmerica Job ID: 590-581-1

Lab Sample ID: 590-581-34 Matrix: Solid

Percent Solids: 80.6

Date Collected: 04/02/15 19:40 Date Received: 04/03/15 12:10

Client Sample ID: SVDP-21 (20-21)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	6.102 g	5 mL	1011	04/06/15 17:12	MRS	TAL SPK
Total/NA	Prep	5035			6.102 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.102 g	5 mL	1013	04/06/15 17:12	MRS	TAL SPK
Total/NA	Prep	3550C			15.75 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Fotal/NA	Analysis	8270D SIM		1	15.75 g	2 mL	1024	04/07/15 17:49	NMI	TAL SPK
Total/NA	Prep	3550C			15.63 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Fotal/NA	Analysis	NWTPH-Dx		1	15.63 g	5 mL	1044	04/08/15 13:55	NMI	TAL SPK
Total/NA	Prep	3050B			1.36 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.36 g	50 mL	1055	04/08/15 11:58	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

5
8
9
10

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
	= Northwest Total Petroleum Hydrocarbon "Teet Methode For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, J	November 1986 And Its Indates	
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, I	November 1986 And Its Updates.	
Laboratory R	References:		
	= TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200		

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 503-906-9200	FAX 924-9290 FAX 906-9210 FAX 563-9210	X
907-563-9200	FAX 563-9210	

Work Order #:

CHAIN OF CUSTODY REPORT

CLIENT: GED ENGINERS				· · ·	INVOI	CE TO:						1		TURNAL	ROUND REQUEST	1
REPORT TO: USUJA ISK' C. ADDRESS: 523 E Seca Spokna UA PHONE: 509-363-3125 PROJECT NUMBER: 50-44	eat Minara, Con				1										Business Days *	
ADDRESS: TOO T									1					Organic &	inorganic Analyses	
523 E 5202	10 AVC 99227														<u> </u>	<1
PHONE: 509-363-7/25	FAX: 501-363-3126				P.O. NI,	MBER:			1			510			Hydrocarbon Analyses	
PROJECT NAME: Time Ail	- Sum hereit						PRESER	VATIVE					Ŕ] [4]	3 2 1 <	1
PROJECT NUMBER: 0504 - 10	Unimal - NEW												STD	. — .		-
0509-10	1-02						REQUESTED	ANALYSES			····		0	THER	Specify:	
SAMPLED BY: JML		É	à	1 3		(f-1+1) 60102						* Тит	around)	Requests less	than standard may incur I	lush Charges
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	WUTPH - CAX	ra-Hulran	BIEY 8260C	24HZ	PL EN							TRIX S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
15VDP-16(2-3)	4/2/2015 0930												2	3		
25Vpp-16(5-6)	0940					<u> </u>										
"SVDP- 16 (10-11)	0945															
SVDP-16(15-16)	0150								i							
,SVDP-16(17-18)	1000								1							
.SVDD - 17(1-2)	1130															
5VDP-17 (4-5)	1140															
.SVDP-17 (11-12)	1145								1							
.SVDP-17 (15-16)	005/								ı				<u> </u>			
10SVDP-17 (18-19)	V 1210												V	V		1.1.0
RELEASED BY: 44	1 1	$c\tau$			DATE	: 4/3/	015	RECEIVE	DBOCH	eilor ?	-			- 1	DATE-	315
PRINT NAME Josh Ler	firm: GÉ	,			TIME	: 12:1	0	PRINT N.	ME: She	ila t	Xrath_	<u> </u>	FIRM:	123	Annor icatime 1:	2:10
RELEASED BY					DATE			RECEIVE	1						DATE	
PRINT NAME ADDITIONAL REMARKS:	FIRM:				TIME			PRINT N	AME:				FIRM:		TIME-	
												1			S. 6 PAGE	<u>1_{of}</u> <u>7</u> 000 (0714)

590-581 Chain of Custody

1

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290 FAX 906-9210 FAX 563-9210	\mathbf{X}
503-906-9200	FAX 906-9210	·
907-563-9200	FAX 563-9210	

Work Order #:

CHAIN OF CUSTODY REPORT

CLIENT: (170 Energy				······	INVOIO	CE TO:										FURNAI	ROUND REQUES	r I
REPORT TO:)Shidishi (?)? ADDRESS: [] E Stu	opynars loon															in	Business Days *	
ADDRESS: 533 E Siu,	nd Ave															Organic &	Inorganic Analyses	
Sphere WA PHONE: 501 - 363 - 3125 PROJECT NAME: 7,54 0.4	99202									I					10 7 STD,		4 3 2 1	
PHONE: 501-363 - 3125	FAX: 509-363-5175			-	P.O. NU	MBER:									4		Hydrocarbon Analyses	_
PROJECT NAME: TIM O.	1 - Summitview		1	T			PRI	ESERVAT	IVE	<u> </u>	r		r	r	5	4	3 2 1 <	1
PROJECT NUMBER: 1504 -																•		
SAMPLED BY: TML		*		1	1	5	REQUE	STED AN	IALYSES		T	_ · · · · ·	r	T			Specify: than standard may incur l	Buch Charges
SAMPLED BI: JP(L		- 6	4	5		19109				·				l		<u> </u>	nan sanara nay meur	tush Churges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	WUTPH - Gx	XT-HULOM	Brex	NES.	D D D Z				I					MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
, SVDP-17(19.5-20.5)	/230	X	×	×	X	X				!								
25VDP-16(22-23)	1030	X	V	X	X	X												
35VDP-18(2-3)	1400									1								
5VDP-18(6-7)	1405									1								
SUDP-18 (11-18)	1410																	
.SVDP-N(15-16)	1415																	
- SVDP-18 (19-20)	1425																	
. SVDP - 18 (20-21)	1450	Х	X	X	χ	X				'								
.5VDP-19(1-2)	1600									1	• •							
10 SVDP - 19 (6-7)	161D									i t			ha	4-				
RELEASED BY	1				DATE:	: 4/3	レント		RECEIVE	эвү 👷	heil	nor j		$\langle \rangle$		- ^		315
PRINT NAME Josh be	firm: GU	55			TIME:	/ ~ /	2				neila	XX	ratz	~	FIRM:	<u>L</u> U		01.10
RELEASED BY.	FIRM:				DATE:				RECEIVER						F2003.4		DATE-	
PRINT NAME: ADDITIONAL REMARKS:	PIRM:				TIME:				PRINT NA	ME:					FIRM:		TIME TEMP:	
										I						_	5.6 PAGE	$\frac{2}{000}$

Page 26 of 29

590-581-01 Chain of Custody

.

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave , Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290 FAX 906-9210 FAX 563-9210	X
503-906-9200	FAX 906-9210	
907-563-9200	FAX 563-9210	

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST CLIENT: Q40 heoensmans com in Business Days * ہادز REPORT TO: ADDRESS: Stord Are Organic & Inorganic Analyses 5 X0 STD 3 <1 7 5 4 2 1 19202 509-Petroleum Hydrocarbon Analyses FAX: 3130126 P.O. NUMBER: PHONE: 501 PROJECT NAME: PRESERVATIVE 4 3 2 <1 Tran Oil - Summition 1 PROJECT NUMBER. 0504-101.02 REQUESTED ANALYSES OTHER Specify: KP-HdTun JM OFST MIS EPA 60100 SAMPLED BY: A-Holu M Pho (hour) Turnaround Requests less than standard may incur Rush Charges. BTE'S 9260C LOCATION/ CLIENT SAMPLE SAMPLING MATRIX #OF TA IDENTIFICATION DATE/TIME (W, S, O) CONT. COMMENTS WOID 2 3 , SVOP- 19 (10-11) 1620 4/2 12015 SVDP- 19(15-16 1630 SVDP-19 /650 19-20 1700 X Х X X $\boldsymbol{\times}$ 1 750 22000-20 SVDP-20/6-7 1800 1815 ωD 1810 1820 W 10 SVDP-20(20-21 1825 У X \succ \mathcal{V} 13/15 DATE: 4/3/2015 RECEIVED BY Terlin DATE RELEASED BY: GET FIRM: T. A 10 TIME. 1210 ເລະເດ FIRM PRINT NAME: TIME: PRINT NAME. RECEIVED BY: RELEASED BY: DATE: DATE TIME: PRINT NAME: FIRM: PRINT NAME: FIRM: TIME ADDITIONAL REMARKS. TEMP: 5.6 PAGE OF

590-581-02 Chain of Custody

Page 27 of 29

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

10

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290 FAX 906-9210 FAX 563-9210	R
503-906-9200	FAX 906-9210	
907-563-9200	FAX 563-9210	

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST CLIENT: 171020 jsugatsh @ geoensmes.com in Business Days * REPORT TO: ADDRESS: E Sucond Are Organic & Inorganic Analyses IX STD. 3 2 <1 99202 5 4 1 Petroleum Hydrocarbon Analyses PHONE: 509-763-3125 FAX: 509-768-7126 P.O. NUMBER: 4 3 2 1 <1 PROJECT NAME: 0:1- Summitured PRESERVATIVE PROJECT NUMBER: 0504-101-07 REQUESTED ANALYSES OTHER Specify: PD (Hull) 7M SAMPLED BY: NEW PAHP. Turnaround Requests less than standard may incur Rush Charges. 82UD Cax Numpt MATRIX LOCATION/ TA SAMPLING #OF CLIENT SAMPLE (W, S, O) CONT. COMMENTS WOID **IDENTIFICATION** DATE/TIME S 3 SVDP-21(2-205 1900 SVDP-21 (6-7 1910 , SVDP- 21 (10-11)92D IG-90VZ (18,5-19.5 1925 67 Case W SVDP-2 1940 X X \checkmark X Х 20-2 DATE: 4/3/20/5 herla RECEIVED BY DATE: RELEASED BY: FIRME T.A FIRM: GEI he TIME: PRINT NAME: TIME: PRINT NAME. Jas DATE: RECEIVED BY: DATE RELEASED BY: PRINT NAME FIRM: TIME: PRINT NAME: FIRM: TIME: ADDITIONAL REMARKS TEMP: Hold L

590-581-03 Chain of Custody

OF TAL-1000 (0714)

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 581 List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-580-1 Client Project/Site: Tiger Oil Summitview

For: GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 4/13/2015 10:44:00 AM

Michelle Johnston, Project Manager II (303)736-0110 michelle.johnston@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	8
Chronicle	9
Certification Summary	11
Method Summary	12
Chain of Custody	13
Receipt Checklists	14

1 2 3 4 5 6 7 8 9 10 11

Job ID: 590-580-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-580-1

Comments

No additional comments.

Receipt

The samples were received on 4/3/2015 12:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.5° C.

GC Semi VOA

Method(s) NWTPH-HCID: Gasoline in samples 590-580-5 and SVDP-20:GW (590-580-5 appears to be present just below the reporting limit.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview TestAmerica Job ID: 590-580-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-580-1	SVDP-16:GW	Water	04/02/15 11:08	04/03/15 12:10
590-580-2	SVDP-17:GW	Water	04/02/15 13:25	04/03/15 12:10
590-580-3	SVDP-18:GW	Water	04/02/15 15:38	04/03/15 12:10
590-580-4	SVDP-19:GW	Water	04/02/15 17:32	04/03/15 12:10
590-580-5	SVDP-20:GW	Water	04/02/15 18:46	04/03/15 12:10
590-580-6	SVDP-21:GW	Water	04/02/15 20:04	04/03/15 12:10

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Glossary

Client: GeoEng		80-1
Project/Site. In	iger Oil Summitview	
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	ð
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	9
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Toxicity Equivalent Quotient (Dioxin)

(C10-C25)

Client Sample ID: SVDP-16:0	W						Lab Sa	mple ID: 590	
Pate Collected: 04/02/15 11:08 Pate Received: 04/03/15 12:10								Matrix	k: Wate
Method: NWTPH-HCID - Northwe	st - Hydrocarb	on Identifi	cation (GC)						
Analyte	-	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics [C6 - C10]	- <u></u>		0.25				04/08/15 12:46	04/09/15 12:17	
					mg/L				
Diesel Range Organics (DRO) (C10-C25)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 12:17	
Residual Range Organics (RRO) (C25-C36)	0.82		0.63		mg/L		04/08/15 12:46	04/09/15 12:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	96		50 - 150				04/08/15 12:46	04/09/15 12:17	
n-Triacontane-d62	76		50 - 150				04/08/15 12:46	04/09/15 12:17	
Client Sample ID: SVDP-17:0	SW						Lab Sa	mple ID: 590)-580-2
Date Collected: 04/02/15 13:25 Date Received: 04/03/15 12:10								Matrix	k: Wate
_ Method: NWTPH-HCID - Northwe	st - Hvdrocarb	on Identific	cation (GC)						
Analyte	-	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics [C6 - C10]	ND		0.26		mg/L		04/08/15 12:46	04/09/15 12:38	
Diesel Range Organics (DRO) (C10-C25)	ND		0.64		mg/L		04/08/15 12:46	04/09/15 12:38	
Residual Range Organics (RRO) (C25-C36)	ND		0.64		mg/L		04/08/15 12:46	04/09/15 12:38	
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	88		50 - 150				04/08/15 12:46	04/09/15 12:38	
n-Triacontane-d62 _	69		50 - 150				04/08/15 12:46	04/09/15 12:38	
Client Sample ID: SVDP-18:0	SW						Lab Sa	mple ID: 590	
Date Collected: 04/02/15 15:38 Date Received: 04/03/15 12:10								Matrix	k: Wate
_ Method: NWTPH-HCID - Northwe	st - Hydrocarb	on Identific	cation (GC)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics [C6 - C10]	ND		0.24		mg/L		04/08/15 12:46	04/09/15 13:02	
Diesel Range Organics (DRO) (C10-C25)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 13:02	
Residual Range Organics (RRO) (C25-C36)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 13:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	97		50 - 150				04/08/15 12:46	04/09/15 13:02	
n-Triacontane-d62 	69		50 - 150				04/08/15 12:46	04/09/15 13:02	
Client Sample ID: SVDP-19:0	SW						Lab Sa	mple ID: 590)-580-4
Date Collected: 04/02/15 17:32 Date Received: 04/03/15 12:10								Matrix	k: Wate
- Method: NWTPH-HCID - Northwe	st - Hydrocarb	on Identific	cation (GC)						
Analyte	-	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics [C6 - C10]	1.5		0.25		mg/L		04/08/15 12:46	04/09/15 13:20	
Diesel Range Organics (DRO)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 13:20	

Client Sample ID: SVDP-19:GW

Date Collected: 04/02/15 17:32

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Residual Range Organics (RRO) (C25-C36)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 13:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	100		50 _ 150				04/08/15 12:46	04/09/15 13:20	
n-Triacontane-d62	72		50 - 150				04/08/15 12:46	04/09/15 13:20	
Client Sample ID: SVDP-20	GW						Lab Sa	mple ID: 590	-580-5
Date Collected: 04/02/15 18:46								Matrix	: Wate
Date Received: 04/03/15 12:10									

Method: NWTPH-HCID - Northwe	st - Hydrocarb	on Identific	ation (GC)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		04/08/15 12:46	04/09/15 13:42	1
Diesel Range Organics (DRO)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 13:42	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 13:42	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				04/08/15 12:46	04/09/15 13:42	1
n-Triacontane-d62	75		50 _ 150				04/08/15 12:46	04/09/15 13:42	1

Client Sample ID: SVDP-21:GW

Date Collected: 04/02/15 20:04

Date Received: 04/03/15 12:10

Method: NWTPH-HCID - Northwe	est - Hydrocarbo	n Identific	ation (GC)						
Analyte	Result C	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		04/08/15 12:46	04/09/15 14:02	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 14:02	1
Residual Range Organics (RRO) (C25-C36)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 14:02	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				04/08/15 12:46	04/09/15 14:02	1
n-Triacontane-d62	69		50 - 150				04/08/15 12:46	04/09/15 14:02	1

Lab Sample ID: 590-580-4

Matrix: Water

5 6

Lab Sample ID: 590-580-6 Matrix: Water

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

Lab Sample ID: MB 590-1049/1-A Matrix: Water Analysis Batch: 1069		MD					Client Sa	mple ID: Metho Prep Type: T Prep Bato	otal/NA
Analyte		MB Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	- ND		0.25		mg/L		04/08/15 12:46	04/09/15 11:54	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 11:54	1
Residual Range Organics (RRO) (C25-C36)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 11:54	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				04/08/15 12:46	04/09/15 11:54	1
n-Triacontane-d62	68		50 - 150				04/08/15 12:46	04/09/15 11:54	1

Client Sample ID: SVDP-16:GW

Lab Sample ID: 590-580-1 Matrix: Water

Lab Sample ID: 590-580-2

Lab Sample ID: 590-580-3

Lab Sample ID: 590-580-4

Matrix: Water

Matrix: Water

Date Collected: 04/02/15 11:08 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			124.9 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	124.9 mL	2 mL	1069	04/09/15 12:17	NMI	TAL SPK

Client Sample ID: SVDP-17:GW Date Collected: 04/02/15 13:25 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			122.5 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	122.5 mL	2 mL	1069	04/09/15 12:38	NMI	TAL SPK

Client Sample ID: SVDP-18:GW

Date Collected: 04/02/15 15:38 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			127.7 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	127.7 mL	2 mL	1069	04/09/15 13:02	NMI	TAL SPK

Client Sample ID: SVDP-19:GW

Date Collected: 04/02/15 17:32 Date Received: 04/03/15 12:10

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			125.4 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	125.4 mL	2 mL	1069	04/09/15 13:20	NMI	TAL SPK

Client Sample ID: SVDP-20:GW

Date Collected: 04/02/15 18:46 Date Received: 04/03/15 12:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			124.8 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	124.8 mL	2 mL	1069	04/09/15 13:42	NMI	TAL SPK

Client Sample ID: SVDP-21:GW

Date Collected: 04/02/15 20:04

Date Received: 04/03/15 12:10 Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Factor Amount Amount Number or Analyzed Analyst Run Lab Total/NA Prep 3510C 126.3 mL 2 mL 1049 04/08/15 12:46 NMI TAL SPK Total/NA NWTPH-HCID Analysis 1 126.3 mL 2 mL 1069 04/09/15 14:02 NMI TAL SPK

Lab Sample ID: 590-580-5

Lab Sample ID: 590-580-6

Matrix: Water

Matrix: Water

Matrix: Water

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

	5	
	8	
	9	
1		D

Method	Method Description	Protocol	Laboratory
NWTPH-HCID	Northwest - Hydrocarbon Identification (GC)	NWTPH	TAL SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290
503-906-9200	FAX 906-9210
907-563-9200	FAX 563-9210

					CHAI	N OF	CUS	FODY	Y REP	ORT				Work O	rder #	:	
CLIENT: GRE Ensmals				INVO	ICE TO:					TURNAROUND REQUEST							
REPORT TO: JR Sign bhi jsing bhi Cocorras ion													in Business Days *				
ADDRESS: 523 E Sperrer Ame Spehrere int 99202									Organic & Inorganic Analyses T 5 4 3 2 1 <1 STD. Petroleum Hydrocarbon Analyses								
PHONE: 509 - 163 - 3135 FAX:			1	P.O. NUMBER: PRESERVATIVE											remoieur רביו ל	3 2 1 <	1
CLIENT: Goo Engrues REPORT TO: JR Singliki Jsingliki Cycooracis ion ADDRESS: 523 E Sound Ame Spokore WA 99202 PHONE: 509-763-3125 FAX: PROJECT NUMBER: PROJECT NUMBER:												y Ľ		<u>-1</u>			
		· 0	REQUESTED ANALYSES												THER	Specify:	
SAMPLED BY:					·····	1										specity. is than standard may incur R	ush Charges.
CLIENT SAMPLE IDENTIFICATION		PLING E/TIME	HI I											MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	ŤA WO ID
SVDP-16:GW	4/2/2015	llog	ÿ											ω	1		
25VDP-17:6W	1	1325	Х														
35VDP-18:GW		1538	X														
SVDP-19: GW		1732	X														-
SVDP-ZO!GW		1846	X									:					
.SVDP-21 : GW	$\overline{\mathbb{V}}$	2004	$ \chi $											$\overline{\mathbf{V}}$	V		
7																	
a			1			1								-			
10	· · · · -					1					-				<u> </u>		
	<u> </u>					4/2	1701-	. <u>.</u>	PECEIVE		b ++ 0	$\frac{1}{2}$	at 1		1	DATE 4	13/15
PRINT NAME Josh La	FIRM. 480				date. 4/3/2015 time. 1210			RECEIVED BY Charles Avratz				FIRM	FIRM: Tast Hime i ca TIME 12:10				
RELEASED BY:		÷-			DAT	Б:			RECEIVE							DATE	<u> </u>
PRINT NAME.		FIRM:			TIM	E:			PRINT NA	AME:				FIRM	:	TIME	
ADDITIONAL REMARKS:						····				[TEMP: C 5.6 C PAGE TAL-1	000 (0714)

590-580 Chain of Custody

À

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 580 List Number: 1

Creator: Kratz, Sheila J

Answer	Comment
N/A	
True	5.5
True	
N/A	
	N/A True

12

List Source: TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-628-1 Client Project/Site: Tiger Oil Summitview

For: GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 4/22/2015 10:05:56 AM Stephanie Kupper, Project Manager I (303)736-0182 stephanie.kupper@testamericainc.com

Designee for

Michelle Johnston, Project Manager II (303)736-0110 michelle.johnston@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

1
2
3
4
5
6
16
24
27
28
29
30

3

5

Job ID: 590-628-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-628-1

Receipt

The samples were received on 4/9/2015 at 9:52 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

Except:

Sample Trip Blank (590-628-9) was received at the laboratory, but was not listed on the COC. This sample was logged for methods 8260B and NWTPH-Gx per the volume received. The client was notified on 04/10/2015.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-HCID: Surrogate recovery for the following samples was outside control limits: SVDP-24 :GW (590-628-6), SVDP-25 :GW (590-628-7), SVDP-26 :GW (590-628-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method NWTPH-HCID: Detected hydrocarbons appear to be due to gasoline overlap: SVDP-24 :GW (590-628-6), SVDP-25 :GW (590-628-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Matrix

Solid

Solid

Solid

Solid

Solid

Water

Water

Water

Water

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Lab Sample ID

590-628-1

590-628-2

590-628-3

590-628-4

590-628-5

590-628-6

590-628-7

590-628-8

590-628-9

Client Sample ID

SVDP-22 (20.5-21)

SVDP-23 (18-18.5)

SVDP-24 (19.5-20)

SVDP-25 (19.5-20)

SVDP-26 (20-20.5)

SVDP-24 :GW

SVDP-25 :GW

SVDP-26 :GW

Trip Blank

TestAmerica Job ID: 590-628-1

Received

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

04/09/15 09:52

Collected

04/07/15 11:30

04/07/15 13:00

04/07/15 14:00

04/07/15 15:40

04/07/15 17:15

04/07/15 14:40

04/07/15 16:03

04/07/15 17:40

04/02/15 00:00

4
5
8
9

Qualifiers

GC/MS VO	Α	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC Semi V	OA	
Qualifier	Qualifier Description	
x	Surrogate is outside control limits	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

RL

0.14

0.95

3.8

0.47

1.9

0.95

1.9

5.7

Limits

Date Collected: 04/07/15 11:30

Date Received: 04/09/15 09:52

Analyte

Benzene

Ethylbenzene

Methyl tert-butyl ether

m,p-Xylene

o-Xylene

Toluene

Naphthalene

Xylenes, Total

Surrogate

Client Sample ID: SVDP-22 (20.5-21)

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

5.9

18

ND

4.2

4.2

6.4

22

%Recovery Qualifier

Lab Sample ID: 590-628-1

Analyzed

04/10/15 11:01

04/10/15 11:01

04/10/15 11:01

04/10/15 11:01

04/10/15 11:01

04/10/15 11:01

04/10/15 11:01

04/10/15 11:01

Analyzed

Matrix: Solid

Dil Fac

10

10

10

10

10

10

10

10

Dil Fac

Percent Solids: 88.8

6

Method: NWTPH-Gx - Northwest	- Volatile Petroleum	Products (GC/MS)				
Toluene-d8 (Surr)	102	78.5 - 125		04/10/15 09:34	04/10/15 11:01	10
Dibromofluoromethane (Surr)	93	80 - 120		04/10/15 09:34	04/10/15 11:01	10
4-Bromofluorobenzene (Surr)	105	69.8 - 140		04/10/15 09:34	04/10/15 11:01	10
1,2-Dichloroethane-d4 (Surr)	96	74.7 - 120		04/10/15 09:34	04/10/15 11:01	10

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

₽

₽

₽

₽

Ö

¢

à

₽

Prepared

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

Prepared

Gasoline	4500	47	mg/Kg 🔅	04/10/15 09:34	04/10/15 11:01	10
Surrogate	%Recovery Qualifie	er Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105	41.5 - 162		04/10/15 09:34	04/10/15 11:01	10

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	410	11		ug/Kg	⇒	04/17/15 11:36	04/17/15 15:23	1
2-Methylnaphthalene	2600	22		ug/Kg	₽	04/17/15 11:36	04/17/15 17:38	2
1-Methylnaphthalene	1300	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Acenaphthylene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Acenaphthene	34	11		ug/Kg	₽	04/17/15 11:36	04/17/15 15:23	1
Fluorene	34	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Phenanthrene	33	11		ug/Kg	¢.	04/17/15 11:36	04/17/15 15:23	1
Anthracene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Fluoranthene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Pyrene	ND	11		ug/Kg	¢.	04/17/15 11:36	04/17/15 15:23	1
Benzo[a]anthracene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Chrysene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Benzo[b]fluoranthene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Benzo[k]fluoranthene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Benzo[a]pyrene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Indeno[1,2,3-cd]pyrene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Dibenz(a,h)anthracene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1
Benzo[g,h,i]perylene	ND	11		ug/Kg	¢	04/17/15 11:36	04/17/15 15:23	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	50		35.1 - 144	04/17/15 11:36	04/17/15 15:23	1
2-Fluorobiphenyl (Surr)	68		48.8 - 134	04/17/15 11:36	04/17/15 15:23	1
p-Terphenyl-d14	71		48 - 166	04/17/15 11:36	04/17/15 15:23	1

RL

21

52

RL

8.9

RL

0.010

0.010

Limits

50 - 150

50 - 150

MDL Unit

MDL Unit

RL Unit

%

%

mg/Kg

mg/Kg

mg/Kg

D

₽

D

¢

D

Prepared

04/16/15 11:17

04/16/15 11:17

Prepared

04/16/15 11:17

04/16/15 11:17

Prepared

04/17/15 09:34

Prepared

Client Sample ID: SVDP-22 (20.5-21)

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Result Qualifier

Qualifier

110

ND

111

110

ND

11

89

Result Qualifier

Result Qualifier

%Recovery

Date Collected: 04/07/15 11:30 Date Received: 04/09/15 09:52

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

Method: 6010C - Metals (ICP)

Analyte

(C10-C25)

(C25-C36) Surrogate

o-Terphenyl

Analyte

Analyte

Lead

n-Triacontane-d62

General Chemistry

Percent Moisture

Percent Solids

Lab Sample ID: 590-628-1

Analyzed

04/17/15 21:25

04/17/15 21:25

Analyzed

04/17/15 21:25

04/17/15 21:25

Analyzed

04/21/15 12:47

Analyzed

04/10/15 15:26

04/10/15 15:26

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

10

1

1

1

1

1

Percent Solids: 88.8

6

Lab Sample ID: 590-628-2

Percent Solids: 81.3

Matrix: Solid

Date Collected: 04/07/15 13:00 Date Received: 04/09/15 09:52

Client Sample ID: SVDP-23 (18-18.5)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.017		mg/Kg	<u> </u>	04/10/15 09:34	04/10/15 11:23	1
Ethylbenzene	ND		0.11		mg/Kg	¢	04/10/15 09:34	04/10/15 11:23	1
m,p-Xylene	ND		0.45		mg/Kg	¢	04/10/15 09:34	04/10/15 11:23	1
Methyl tert-butyl ether	ND		0.056		mg/Kg	₽	04/10/15 09:34	04/10/15 11:23	1
o-Xylene	ND		0.22		mg/Kg	¢	04/10/15 09:34	04/10/15 11:23	1
Toluene	ND		0.11		mg/Kg	¢	04/10/15 09:34	04/10/15 11:23	1
Naphthalene	ND		0.22		mg/Kg	¢	04/10/15 09:34	04/10/15 11:23	1
Xylenes, Total	ND		0.67		mg/Kg	₽	04/10/15 09:34	04/10/15 11:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		74.7 - 120				04/10/15 09:34	04/10/15 11:23	1
4-Bromofluorobenzene (Surr)	104		69.8 - 140				04/10/15 09:34	04/10/15 11:23	1
Dibromofluoromethane (Surr)	95		80 - 120				04/10/15 09:34	04/10/15 11:23	1
Toluene-d8 (Surr)	100		78.5 - 125				04/10/15 09:34	04/10/15 11:23	1

Method: NWTPH-Gx - Northwest - \	/olatile Petro	ucts (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.6		mg/Kg	<u></u>	04/10/15 09:34	04/10/15 11:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr)	104	 41.5 - 162	-	04/10/15 09:34	04/10/15 11:23	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier Analyte MDL Unit Prepared Dil Fac RL D Analyzed ☆ Naphthalene ND 12 ug/Kg 04/17/15 11:36 04/17/15 15:46 1 ug/Kg ND 12 æ 04/17/15 11:36 04/17/15 15:46 2-Methylnaphthalene 1 ¢ 1-Methylnaphthalene ND 12 ug/Kg 04/17/15 11:36 04/17/15 15:46 1 Acenaphthylene ND 12 ug/Kg 04/17/15 11:36 04/17/15 15:46 1

o-Xylene

Client Sample ID: SVDP-23 (18-18.5) Date Collected: 04/07/15 13:00 Date Received: 04/09/15 09:52

Lab Sample ID: 590-628-2 Matrix: Solid

Percent Solids: 81.3

5 6 7

Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene	ND ND ND ND ND ND		12 12 12 12 12 12		ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	04/17/15 15:46 04/17/15 15:46 04/17/15 15:46	
Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene	ND ND ND ND		12 12 12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene	ND ND ND ND		12 12						
Fluoranthene Pyrene Benzo[a]anthracene Chrysene	ND ND ND		12		ug/Kg	¢	04/17/15 11:36		
Pyrene Benzo[a]anthracene Chrysene	ND ND						0	04/17/15 15:46	
Benzo[a]anthracene Chrysene	ND		40		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Chrysene			12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
			12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	
	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Benzo[a]pyrene	ND		12		ug/Kg	☆	04/17/15 11:36	04/17/15 15:46	
ndeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢.	04/17/15 11:36	04/17/15 15:46	
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 15:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Nitrobenzene-d5	51		35.1 - 144				04/17/15 11:36	04/17/15 15:46	
2-Fluorobiphenyl (Surr)	63		48.8 - 134				04/17/15 11:36	04/17/15 15:46	
p-Terphenyl-d14	71		48 - 166				04/17/15 11:36	04/17/15 15:46	
Analyte Diesel Range Organics (DRO)	Result	Qualifier	RL	MDL	Unit mg/Kg		Prepared 04/16/15 11:17	Analyzed 04/17/15 21:49	Dil F
Diesel Range Organics (DRO) (C10-C25)	15		12		mg/Kg	245	04/16/15 11:17	04/17/15 21:49	
Residual Range Organics (RRO)	85		30		mg/Kg	¢	04/16/15 11:17	04/17/15 21:49	
(C25-C36)					5 5				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
p-Terphenyl	101		50 - 150				04/16/15 11:17	04/17/15 21:49	
n-Triacontane-d62	103		50 - 150				04/16/15 11:17	04/17/15 21:49	
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Lead	ND		10		mg/Kg	 	04/17/15 09:34	04/21/15 12:49	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
Percent Moisture	19		0.010		%			04/10/15 15:26	
	81		0.010		%			04/10/15 15:26	
Percent Solids							Lab Sa	mple ID: 590	-628
	9.5-20)								
lient Sample ID: SVDP-24 (19	9.5-20)							Matri	x: So
Percent Solids lient Sample ID: SVDP-24 (19 ate Collected: 04/07/15 14:00 ate Received: 04/09/15 09:52	9.5-20)							Matri Percent Soli	
lient Sample ID: SVDP-24 (19 ate Collected: 04/07/15 14:00 ate Received: 04/09/15 09:52		oy GC/MS							
lient Sample ID: SVDP-24 (19 ate Collected: 04/07/15 14:00 ate Received: 04/09/15 09:52 Method: 8260C - Volatile Organic O	Compounds I	oy GC/MS Qualifier	RL	MDL	Unit	D	Prepared		x: Sol ds: 83 Dil F
lient Sample ID: SVDP-24 (19 ate Collected: 04/07/15 14:00 ate Received: 04/09/15 09:52 Method: 8260C - Volatile Organic O Analyte	Compounds I	-		MDL		D	Prepared 04/10/15 09:34	Percent Soli	ds: 83
lient Sample ID: SVDP-24 (19 ate Collected: 04/07/15 14:00 ate Received: 04/09/15 09:52 Method: 8260C - Volatile Organic C Analyte Benzene	Compounds I Result	-		MDL	mg/Kg		-	Percent Soli Analyzed	ds: 83
lient Sample ID: SVDP-24 (19 ate Collected: 04/07/15 14:00	Compounds I Result	-	0.17	MDL		<u> </u>	04/10/15 09:34	Percent Soli Analyzed 04/10/15 11:46	ds: 83 Dil F

TestAmerica Spokane

04/10/15 14:18

22

mg/Kg

₽

04/10/15 09:34

29

Client Sample Results

Client Sample ID: SVDP-24 (19.5-20) Date Collected: 04/07/15 14:00

Date Received: 04/09/15 09:52								Percent Soli	ds: 83.2	
Method: 8260C - Volatile Org	•	- · · · ·	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Toluene	9.3		1.1		mg/Kg	<u> </u>	04/10/15 09:34	04/10/15 11:46	10	-
Naphthalene	11		2.2		mg/Kg	¢	04/10/15 09:34	04/10/15 11:46	10	

Xylenes, Total	97		67	mg/Kg	₽	04/10/15 09:34	04/10/15 14:18	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74.7 - 120			04/10/15 09:34	04/10/15 11:46	10
1,2-Dichloroethane-d4 (Surr)	97		74.7 - 120			04/10/15 09:34	04/10/15 14:18	100
4-Bromofluorobenzene (Surr)	105		69.8 - 140			04/10/15 09:34	04/10/15 11:46	10
4-Bromofluorobenzene (Surr)	101		69.8 - 140			04/10/15 09:34	04/10/15 14:18	100
Dibromofluoromethane (Surr)	94		80 - 120			04/10/15 09:34	04/10/15 11:46	10
Dibromofluoromethane (Surr)	96		80 - 120			04/10/15 09:34	04/10/15 14:18	100
Toluene-d8 (Surr)	101		78.5 - 125			04/10/15 09:34	04/10/15 11:46	10
Toluene-d8 (Surr)	97		78.5 - 125			04/10/15 09:34	04/10/15 14:18	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	2400		56		mg/Kg	\$	04/10/15 09:34	04/10/15 11:46	10
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		41.5 _ 162				04/10/15 09:34	04/10/15 11:46	10

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	250		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
2-Methylnaphthalene	1600		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
1-Methylnaphthalene	670		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Acenaphthylene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Acenaphthene	21		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Fluorene	15		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Phenanthrene	21		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Anthracene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Fluoranthene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Pyrene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Benzo[a]anthracene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Chrysene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Benzo[a]pyrene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	•
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	49		35.1 - 144				04/17/15 11:36	04/17/15 16:08	
2-Fluorobiphenyl (Surr)	69		48.8 - 134				04/17/15 11:36	04/17/15 16:08	
p-Terphenyl-d14	63		48 - 166				04/17/15 11:36	04/17/15 16:08	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	42	12		mg/Kg	¢	04/16/15 11:17	04/17/15 22:13	1
(C10-C25)								

6

TestAmerica Job ID: 590-628-1

Client Sample ID: SVDP-24 (19.5-20)

Date Collected: 04/07/15 14:00 Date Received: 04/09/15 09:52

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		29		mg/Kg	¢	04/16/15 11:17	04/17/15 22:13	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				04/16/15 11:17	04/17/15 22:13	1
n-Triacontane-d62	102		50 - 150				04/16/15 11:17	04/17/15 22:13	1
_ Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		11		mg/Kg	\$	04/17/15 09:34	04/21/15 12:52	10
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17		0.010		%			04/10/15 15:26	1
Percent Solids	83		0.010		%			04/10/15 15:26	1

Client Sample ID: SVDP-25 (19.5-20)

Date Collected: 04/07/15 15:40 Date Received: 04/09/15 09:52

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.019		mg/Kg	\$	04/10/15 09:34	04/10/15 12:08	1
Ethylbenzene	ND		0.13		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
m,p-Xylene	ND		0.51		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Methyl tert-butyl ether	ND		0.063		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
o-Xylene	ND		0.25		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Toluene	ND		0.13		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Naphthalene	ND		0.25		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Xylenes, Total	ND		0.76		mg/Kg	¢	04/10/15 09:34	04/10/15 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	96		74.7 - 120				04/10/15 09:34	04/10/15 12:08	1

1,2-Dichloroethane-d4 (Surr)	96	74.7 - 120	04/10/15 09:34	04/10/15 12:08	1
4-Bromofluorobenzene (Surr)	110	69.8 - 140	04/10/15 09:34	04/10/15 12:08	1
Dibromofluoromethane (Surr)	98	80 - 120	04/10/15 09:34	04/10/15 12:08	1
Toluene-d8 (Surr)	101	78.5 - 125	04/10/15 09:34	04/10/15 12:08	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	160		6.3		mg/Kg	<u>\$</u>	04/10/15 09:34	04/10/15 12:08	1
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
	/%Recovery	quanner	Linits				Prepareu	Analyzeu	DiiFac

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result Qualifier RL MDL Unit

Naphthalene	12	12	ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
2-Methylnaphthalene	100	12	ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
1-Methylnaphthalene	110	12	ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Acenaphthylene	ND	12	ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Acenaphthene	41	12	ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Fluorene	37	12	ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1

D

Prepared

TestAmerica Spokane

Analyzed

Lab Sample ID: 590-628-3

Lab Sample ID: 590-628-4

Matrix: Solid

Percent Solids: 78.0

Matrix: Solid

Percent Solids: 83.2

Dil Fac

Client Sample ID: SVDP-25 (19.5-20) Date Collected: 04/07/15 15:40

Date Received: 04/09/15 09:52

Lab Sample ID: 590-628-4 Matrix: Solid

Percent Solids: 78.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	75		12		ug/Kg	<u>\$</u>	04/17/15 11:36	04/17/15 16:31	1
Anthracene	12		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Fluoranthene	21		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Pyrene	26		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Benzo[a]anthracene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Chrysene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Benzo[b]fluoranthene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Benzo[k]fluoranthene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Benzo[a]pyrene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	¢	04/17/15 11:36	04/17/15 16:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56		35.1 - 144				04/17/15 11:36	04/17/15 16:31	1
2-Fluorobiphenyl (Surr)	66		48.8 - 134				04/17/15 11:36	04/17/15 16:31	1
p-Terphenyl-d14	70		48 _ 166				04/17/15 11:36	04/17/15 16:31	1

Method: NWTPH-Dx - Northwest	 Semi-Volatile 	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	72		22		mg/Kg	<u> </u>	04/16/15 11:17	04/17/15 22:37	1
Residual Range Organics (RRO) (C25-C36)	ND		54		mg/Kg	¢	04/16/15 11:17	04/17/15 22:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	109		50 - 150				04/16/15 11:17	04/17/15 22:37	1
n-Triacontane-d62	106		50 - 150				04/16/15 11:17	04/17/15 22:37	1
_ Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		10		mg/Kg	<u></u>	04/17/15 09:34	04/21/15 12:54	10
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22		0.010		%			04/10/15 15:26	1
Percent Solids	78		0.010		%			04/10/15 15:26	1

Client Sample ID: SVDP-26 (20-20.5) Date Collected: 04/07/15 17:15

Date Received: 04/09/15 09:52

Г

Method: 8260C - Volatile Organ	hod: 8260C - Volatile Organic Compounds by GC/MS								
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	ND	0.025	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		
Ethylbenzene	ND	0.16	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		
m,p-Xylene	ND	0.66	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		
Methyl tert-butyl ether	ND	0.082	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		
o-Xylene	ND	0.33	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		
Toluene	ND	0.16	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		
Naphthalene	ND	0.33	mg/Kg	¢	04/10/15 09:34	04/10/15 12:31	1		

TestAmerica Spokane

Lab Sample ID: 590-628-5

Matrix: Solid

Percent Solids: 72.9

Client Sample ID: SVDP-26 (20-20.5) Date Collected: 04/07/15 17:15

Date Received: 04/09/15 09:52

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.98		mg/Kg	<u></u>	04/10/15 09:34	04/10/15 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 _ 120				04/10/15 09:34	04/10/15 12:31	1
4-Bromofluorobenzene (Surr)	105		69.8 - 140				04/10/15 09:34	04/10/15 12:31	1
Dibromofluoromethane (Surr)	97		80 - 120				04/10/15 09:34	04/10/15 12:31	1
Toluene-d8 (Surr)	100		78.5 - 125				04/10/15 09:34	04/10/15 12:31	1

Method: NWTPH-Gx - Northwest -	Volatile Petroleum Products	GC/MS)
A seals sta	Descrift Occalifiers	D 1

				/					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	42		8.2		mg/Kg	<u></u>	04/10/15 09:34	04/10/15 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		41.5 - 162				04/10/15 09:34	04/10/15 12:31	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	14		ug/Kg	⇒	04/17/15 11:36	04/17/15 16:53	1
2-Methylnaphthalene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
1-Methylnaphthalene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Acenaphthylene	ND	14		ug/Kg	¢.	04/17/15 11:36	04/17/15 16:53	1
Acenaphthene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Fluorene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Phenanthrene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Anthracene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Fluoranthene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Pyrene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Benzo[a]anthracene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Chrysene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Benzo[b]fluoranthene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Benzo[k]fluoranthene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Benzo[a]pyrene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Indeno[1,2,3-cd]pyrene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Dibenz(a,h)anthracene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Benzo[g,h,i]perylene	ND	14		ug/Kg	¢	04/17/15 11:36	04/17/15 16:53	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac

ounoguic	<i>Milecovery</i>	Quanner	Linits		ricpurcu	Analyzea	Dirruc	
Nitrobenzene-d5	54		35.1 - 144		04/17/15 11:36	04/17/15 16:53	1	
2-Fluorobiphenyl (Surr)	67		48.8 - 134	(04/17/15 11:36	04/17/15 16:53	1	
p-Terphenyl-d14	68		48 - 166	(04/17/15 11:36	04/17/15 16:53	1	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

n-Triacontane-d62

100

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		13		mg/Kg	<i>\</i>	04/16/15 11:17	04/17/15 23:01	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		34		mg/Kg	¢	04/16/15 11:17	04/17/15 23:01	1
Surrogate o-Terphenyl	% Recovery 0	Qualifier	Limits				Prepared 04/16/15 11:17	Analyzed 04/17/15 23:01	Dil Fac

50 - 150

04/17/15 23:01

04/16/15 11:17

TestAmerica Job ID: 590-628-1

Client Sample Results

RL

9.4

RL

0.010

0.010

RL

0.27

0.69

0.69

Limits

50 - 150

50 - 150

MDL Unit

RL Unit

%

%

RL Unit

mg/L

mg/L

mg/L

mg/Kg

D

D

D

Prepared

04/17/15 09:34

Prepared

Prepared

04/13/15 14:39

04/13/15 14:39

Result Qualifier

Result Qualifier

Result Qualifier

110

30

0.90

%Recovery Qualifier

92

40 X

ND

27

73

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Date Collected: 04/07/15 17:15

Date Received: 04/09/15 09:52

Method: 6010C - Metals (ICP)

Client Sample ID: SVDP-24 :GW

Date Collected: 04/07/15 14:40

Date Received: 04/09/15 09:52

Gasoline Range Organics [C6 -

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

General Chemistry

Percent Moisture

Percent Solids

Analyte

Analyte

Analyte

(C10-C25)

(C25-C36)

Surrogate o-Terphenyl

n-Triacontane-d62

C10]

Lead

Client Sample ID: SVDP-26 (20-20.5)

TestAmerica Job ID: 590-628-1

Lab Sample ID: 590-628-5

Analyzed

04/21/15 12:56

Analyzed

04/10/15 15:26

04/10/15 15:26

Lab Sample ID: 590-628-6

Analyzed

04/15/15 09:11

04/15/15 09:11

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

1

1

Matrix: Water

10

1

1

Percent Solids: 72.9

6	5
8	3

04/13/15 14:39	5 14:39 04/15/15 09:11			
Prepared	Analyzed	Dil Fac		
04/13/15 14:39	04/15/15 09:11	1		
04/13/15 14:39	04/15/15 09:11	1		

Client Sample ID: SVDP-28	5 :GW

Lab Sample ID: 590-628-7 Matrix: Water

Lab Sample ID: 590-628-8

Matrix: Water

Date Collected: 04/07/15 16:03 Date Received: 04/09/15 09:52

Method: NWTPH-HCID - Northw	-								
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	3.6		0.25		mg/L		04/13/15 14:39	04/15/15 09:33	1
C10] Diesel Range Organics (DRO)	2.3		0.62		mg/L		04/13/15 14:39	04/15/15 09:33	1
(C10-C25)					5				
Residual Range Organics (RRO)	ND		0.62		mg/L		04/13/15 14:39	04/15/15 09:33	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 _ 150				04/13/15 14:39	04/15/15 09:33	1
n-Triacontane-d62	45	X	50 _ 150				04/13/15 14:39	04/15/15 09:33	1

Client Sample ID: SVDP-26 :GW

Date Collected: 04/07/15 17:40 Date Received: 04/09/15 09:52

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND	0.25	mg/L		04/13/15 14:43	04/15/15 09:56	1
Diesel Range Organics (DRO) (C10-C25)	ND	0.63	mg/L		04/13/15 14:43	04/15/15 09:56	1
Residual Range Organics (RRO) (C25-C36)	ND	0.63	mg/L		04/13/15 14:43	04/15/15 09:56	1

Client Sample ID: SVDP-26 :GW

Date Collected: 04/07/15 17:40 Date Received: 04/09/15 09:52

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150	04/13/15 14:43	04/15/15 09:56	1
n-Triacontane-d62	37	X	50 _ 150	04/13/15 14:43	04/15/15 09:56	1

Client Sample ID: Trip Blank

Date Collected: 04/02/15 00:00 Date Received: 04/09/15 09:52

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		04/10/15 21:45	
1,1,1-Trichloroethane	ND	1.0	ug/L		04/10/15 21:45	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		04/10/15 21:45	
1,1,2-Trichloroethane	ND	1.0	ug/L		04/10/15 21:45	
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L		04/10/15 21:45	
1,1-Dichloroethane	ND	1.0	ug/L		04/10/15 21:45	
1,1-Dichloroethene	ND	1.0	ug/L		04/10/15 21:45	
1,1-Dichloropropene	ND	1.0	ug/L		04/10/15 21:45	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		04/10/15 21:45	
1,2,3-Trichloropropane	ND	1.0	ug/L		04/10/15 21:45	• • • • •
1,2,4-Trichlorobenzene	ND	1.0	ug/L		04/10/15 21:45	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		04/10/15 21:45	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		04/10/15 21:45	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		04/10/15 21:45	
1,2-Dichlorobenzene	ND	1.0	ug/L		04/10/15 21:45	
1,2-Dichloroethane	ND	1.0	ug/L		04/10/15 21:45	
1,2-Dichloropropane	ND	1.0	ug/L		04/10/15 21:45	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		04/10/15 21:45	
1,3-Dichlorobenzene	ND	1.0	ug/L		04/10/15 21:45	
1,3-Dichloropropane	ND	1.0	ug/L		04/10/15 21:45	
1,4-Dichlorobenzene	ND	1.0	ug/L		04/10/15 21:45	
2,2-Dichloropropane	ND	1.0	ug/L		04/10/15 21:45	
2-Butanone (MEK)	ND	10	ug/L		04/10/15 21:45	
2-Chlorotoluene	ND	1.0	ug/L		04/10/15 21:45	
2-Hexanone	ND	10	ug/L		04/10/15 21:45	
4-Chlorotoluene	ND	1.0	ug/L		04/10/15 21:45	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		04/10/15 21:45	
Acetone	ND	25	ug/L		04/10/15 21:45	• • • • •
Benzene	ND	0.20	ug/L		04/10/15 21:45	
Bromobenzene	ND	1.0	ug/L		04/10/15 21:45	
Bromochloromethane	ND	1.0	ug/L		04/10/15 21:45	
Bromodichloromethane	ND	1.0	ug/L		04/10/15 21:45	
Bromoform	ND	1.0	ug/L		04/10/15 21:45	
Bromomethane	ND	5.0	ug/L		04/10/15 21:45	• • • • •
Carbon disulfide	ND	1.0	ug/L		04/10/15 21:45	
Carbon tetrachloride	ND	1.0	ug/L		04/10/15 21:45	
Chlorobenzene	ND	1.0	ug/L		04/10/15 21:45	• • • • • • •
Chloroethane	ND	1.0	ug/L		04/10/15 21:45	
Chloroform	ND	1.0	ug/L		04/10/15 21:45	
Chloromethane	ND	3.0	ug/L		04/10/15 21:45	
cis-1,2-Dichloroethene	ND	1.0	ug/L		04/10/15 21:45	

TestAmerica Job ID: 590-628-1

Lab Sample ID: 590-628-8

Lab Sample ID: 590-628-9

Matrix: Water

Matrix: Water

11 12

Client Sample ID: Trip Blank Date Collected: 04/02/15 00:00 Date Received: 04/09/15 09:52

TestAmerica	Job	ID:	590-628-1

Lab Sample ID: 590-628-9 Matrix: Water

Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		1.0	ug	/L			04/10/15 21:45	1
Dibromochloromethane	ND		1.0	ug				04/10/15 21:45	1
Dibromomethane	ND		1.0	ug	/L			04/10/15 21:45	1
Dichlorodifluoromethane	ND		1.0	ug	/L			04/10/15 21:45	1
Dichlorofluoromethane	ND		0.20	ug	/L			04/10/15 21:45	1
Ethylbenzene	ND		1.0	ug	/L			04/10/15 21:45	1
Hexachlorobutadiene	ND		2.0	ug	/L			04/10/15 21:45	1
Hexane	ND		1.0	ug	/L			04/10/15 21:45	1
Isopropylbenzene	ND		1.0	ug	/L			04/10/15 21:45	1
m,p-Xylene	ND		2.0	ug	/L			04/10/15 21:45	1
Methyl tert-butyl ether	ND		1.0	ug	/L			04/10/15 21:45	1
Methylene Chloride	ND		10	ug	/L			04/10/15 21:45	1
Naphthalene	ND		2.0	ug	/L			04/10/15 21:45	1
n-Butylbenzene	ND		1.0	ug	/L			04/10/15 21:45	1
N-Propylbenzene	ND		1.0	ug	/L			04/10/15 21:45	1
o-Xylene	ND		1.0	ug	/L			04/10/15 21:45	1
p-Isopropyltoluene	ND		1.0	ug	/L			04/10/15 21:45	1
sec-Butylbenzene	ND		1.0	ug	/L			04/10/15 21:45	1
Styrene	ND		1.0	ug	/L			04/10/15 21:45	1
tert-Butanol	ND		5.0	ug	/L			04/10/15 21:45	1
tert-Butylbenzene	ND		1.0	ug	/L			04/10/15 21:45	1
Tetrachloroethene	ND		1.0	ug	/L			04/10/15 21:45	1
Toluene	ND		1.0	ug	/L			04/10/15 21:45	1
trans-1,2-Dichloroethene	ND		1.0	ug	/L			04/10/15 21:45	1
trans-1,3-Dichloropropene	ND		1.0	ug	/L			04/10/15 21:45	1
Trichloroethene	ND		1.0	ug	/L			04/10/15 21:45	1
Trichlorofluoromethane	ND		1.0	ug	/L			04/10/15 21:45	1
Vinyl chloride	ND		0.20	ug	/L			04/10/15 21:45	1
Xylenes, Total	ND		3.0	ug	/L			04/10/15 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 140			-		04/10/15 21:45	1
4-Bromofluorobenzene (Surr)	99		68.7 - 141					04/10/15 21:45	1
Dibromofluoromethane (Surr)	105		71.2 - 143					04/10/15 21:45	1
Toluene-d8 (Surr)	100		74.1 - 135					04/10/15 21:45	1
- Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac

Gasoline ND 100 ug/L 04/10/15 21:45 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 99 68.7 - 141 04/10/15 21:45 1

Lab Sample ID: MB 590-1077/1-A

Matrix: Solid

Analyte

Benzene

Ethylbenzene

Methyl tert-butyl ether

m,p-Xylene

Naphthalene

Analysis Batch: 1073

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

ND

ND

ND

ND

. . .

Client Sample ID: Method Blank

Analyzed

04/10/15 09:05

04/10/15 09:05

04/10/15 09:05

04/10/15 09:05

04/10/15 09:05

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 1077

Prep Type: Total/NA

Prep Batch: 1077

Dil Fac

1

1

1

1

2 3 4 5 6

6 7 8 9 10

o-Xylene	ND		0.20	mg/Kg	04/10/15 09:34	04/10/15 09:05	1
Toluene	ND		0.10	mg/Kg	04/10/15 09:34	04/10/15 09:05	1
Xylenes, Total	ND		0.60	mg/Kg	04/10/15 09:34	04/10/15 09:05	1
	МВ	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Recovery 96	Qualifier	Limits 74.7 - 120		Prepared 04/10/15 09:34	Analyzed 04/10/15 09:05	Dil Fac
		Qualifier					Dil Fac 1 1
1,2-Dichloroethane-d4 (Surr)	96	Qualifier	74.7 - 120		04/10/15 09:34	04/10/15 09:05	Dil Fac 1 1 1

RL

0.015

0.10

0.40

0.050

0.20

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

04/10/15 09:34

Lab Sample ID: LCS 590-1077/2-A Matrix: Solid

Analysis Batch: 1073

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.479		mg/Kg		96	75.8 - 123	
Ethylbenzene	0.500	0.477		mg/Kg		95	77.3 _ 121	
m,p-Xylene	0.500	0.481		mg/Kg		96	77.7 _ 124	
Methyl tert-butyl ether	0.500	0.473		mg/Kg		95	60 - 140	
Naphthalene	0.500	0.440		mg/Kg		88	55.1 - 142	
o-Xylene	0.500	0.478		mg/Kg		96	76.7 _ 129	
Toluene	0.500	0.490		mg/Kg		98	76.6 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		74.7 - 120
4-Bromofluorobenzene (Surr)	100		69.8 - 140
Dibromofluoromethane (Surr)	100		80 - 120
Toluene-d8 (Surr)	99		78.5 - 125

Lab Sample ID: MB 590-1091/4 Matrix: Water Analysis Batch: 1091

Client Sample ID: Method Blank Prep Type: Total/NA

		MB	MB							
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,	1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,	1,1-Trichloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,	1,2,2-Tetrachloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,	1,2-Trichloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,	1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,	1-Dichloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,	1-Dichloroethene	ND		1.0		ug/L			04/10/15 19:06	1
1,	1-Dichloropropene	ND		1.0		ug/L			04/10/15 19:06	1

Client Sample ID: Method Blank

Prep Type: Total/NA

5 6 7

04/10/13 19.00		
04/10/15 19:06	1	8
04/10/15 19:06	1	
04/10/15 19:06	1	9
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	
04/10/15 19:06	1	

Lab Sample ID: MB 590-1091/4

Matrix: Water	
Analysis Batch:	1091

	MB	MB					
Analyte		Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND		1.0	ug/L		04/10/15 19:06	1
1,2,3-Trichloropropane	ND		1.0	ug/L		04/10/15 19:06	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		04/10/15 19:06	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		04/10/15 19:06	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L		04/10/15 19:06	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		04/10/15 19:06	1
1,2-Dichlorobenzene	ND		1.0	ug/L		04/10/15 19:06	1
1,2-Dichloroethane	ND		1.0	ug/L		04/10/15 19:06	1
1,2-Dichloropropane	ND		1.0	ug/L		04/10/15 19:06	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		04/10/15 19:06	1
1,3-Dichlorobenzene	ND		1.0	ug/L		04/10/15 19:06	1
1,3-Dichloropropane	ND		1.0	ug/L		04/10/15 19:06	1
1,4-Dichlorobenzene	ND		1.0	ug/L		04/10/15 19:06	1
2,2-Dichloropropane	ND		1.0	ug/L		04/10/15 19:06	1
2-Butanone (MEK)	ND		10	ug/L		04/10/15 19:06	1
2-Chlorotoluene	ND		1.0	ug/L		04/10/15 19:06	1
2-Hexanone	ND		10	ug/L		04/10/15 19:06	1
4-Chlorotoluene	ND		1.0	ug/L		04/10/15 19:06	1
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L		04/10/15 19:06	1
Acetone	ND		25	ug/L		04/10/15 19:06	
Benzene	ND		0.20	ug/L		04/10/15 19:06	1
Bromobenzene	ND		1.0	ug/L		04/10/15 19:06	1
Bromochloromethane	ND		1.0	ug/L		04/10/15 19:06	
Bromodichloromethane	ND		1.0	ug/L		04/10/15 19:06	1
Bromoform	ND		1.0	ug/L		04/10/15 19:06	1
Bromomethane	ND		5.0	ug/L		04/10/15 19:06	
Carbon disulfide	ND		1.0	ug/L		04/10/15 19:06	1
Carbon tetrachloride	ND		1.0	ug/L		04/10/15 19:06	1
Chlorobenzene	ND		1.0			04/10/15 19:06	
Chloroethane	ND		1.0	ug/L		04/10/15 19:06	1
				ug/L			
Chloroform	ND		1.0	ug/L		04/10/15 19:06 04/10/15 19:06	1
Chloromethane	ND		3.0	ug/L			-
cis-1,2-Dichloroethene	ND		1.0	ug/L		04/10/15 19:06	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		04/10/15 19:06	1
Dibromochloromethane	ND		1.0	ug/L		04/10/15 19:06	1
Dibromomethane	ND		1.0	ug/L		04/10/15 19:06	1
Dichlorodifluoromethane	ND		1.0	ug/L		04/10/15 19:06	1
Dichlorofluoromethane	ND		0.20	ug/L		04/10/15 19:06	1
Ethylbenzene	ND		1.0	ug/L		04/10/15 19:06	1
Hexachlorobutadiene	ND		2.0	ug/L		04/10/15 19:06	1
Hexane	ND		1.0	ug/L		04/10/15 19:06	1
Isopropylbenzene	ND		1.0	ug/L		04/10/15 19:06	1
m,p-Xylene	ND		2.0	ug/L		04/10/15 19:06	1
Methyl tert-butyl ether	ND		1.0	ug/L		04/10/15 19:06	1
Methylene Chloride	ND		10	ug/L		04/10/15 19:06	1
Naphthalene	ND		2.0	ug/L		04/10/15 19:06	1
n-Butylbenzene	ND		1.0	ug/L		04/10/15 19:06	1
N-Propylbenzene	ND		1.0	ug/L		04/10/15 19:06	1

Client Sa	ample ID: Metho Prep Type: T		
			5
Prepared	Analyzed	Dil Fac	
	04/10/15 19:06	1	
	04/10/15 19:06	1	
	04/10/15 19:06	1	7
	04/10/15 19:06	1	
	04/40/45 40 00		

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-1091/4

Matrix: Water Analysis Batch: 1091

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		1.0		ug/L			04/10/15 19:06	1
p-Isopropyltoluene	ND		1.0		ug/L			04/10/15 19:06	1
sec-Butylbenzene	ND		1.0		ug/L			04/10/15 19:06	1
Styrene	ND		1.0		ug/L			04/10/15 19:06	1
tert-Butanol	ND		5.0		ug/L			04/10/15 19:06	1
tert-Butylbenzene	ND		1.0		ug/L			04/10/15 19:06	1
Tetrachloroethene	ND		1.0		ug/L			04/10/15 19:06	1
Toluene	ND		1.0		ug/L			04/10/15 19:06	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/10/15 19:06	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/10/15 19:06	1
Trichloroethene	ND		1.0		ug/L			04/10/15 19:06	1
Trichlorofluoromethane	ND		1.0		ug/L			04/10/15 19:06	1
Vinyl chloride	ND		0.20		ug/L			04/10/15 19:06	1
Xylenes, Total	ND		3.0		ug/L			04/10/15 19:06	1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 140		04/10/15 19:06	1
4-Bromofluorobenzene (Surr)	99		68.7 - 141		04/10/15 19:06	1
Dibromofluoromethane (Surr)	106		71.2 - 143		04/10/15 19:06	1
Toluene-d8 (Surr)	101		74.1 - 135		04/10/15 19:06	1

Lab Sample ID: LCS 590-1091/5 Matrix: Water Analysis Batch: 1091

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	10.0	11.1		ug/L		111	60 - 140	
1,1,1-Trichloroethane	10.0	10.3		ug/L		103	60 - 140	
1,1,2,2-Tetrachloroethane	10.0	10.6		ug/L		106	60 _ 140	
1,1,2-Trichloroethane	10.0	10.8		ug/L		108	60 - 140	
1,1,2-Trichlorotrifluoroethane	10.0	10.9		ug/L		109	60 - 140	
1,1-Dichloroethane	10.0	10.8		ug/L		108	60 - 140	
1,1-Dichloroethene	10.0	11.0		ug/L		110	78.1 - 155	
1,1-Dichloropropene	10.0	11.0		ug/L		110	60 - 140	
1,2,3-Trichlorobenzene	10.0	10.5		ug/L		105	60 - 140	
1,2,3-Trichloropropane	10.0	10.7		ug/L		107	60 ₋ 140	
1,2,4-Trichlorobenzene	10.0	10.2		ug/L		102	60 - 140	
1,2,4-Trimethylbenzene	10.0	10.1		ug/L		101	60 - 140	
1,2-Dibromo-3-Chloropropane	10.0	11.3		ug/L		113	60 - 140	
1,2-Dichlorobenzene	10.0	10.5		ug/L		105	60 - 140	
1,2-Dichloroethane	10.0	10.5		ug/L		105	63.9 - 144	
1,2-Dichloropropane	10.0	10.5		ug/L		105	60 _ 140	
1,3,5-Trimethylbenzene	10.0	10.1		ug/L		101	60 - 140	
1,3-Dichlorobenzene	10.0	10.6		ug/L		106	60 - 140	
1,3-Dichloropropane	10.0	10.9		ug/L		109	60 - 140	
1,4-Dichlorobenzene	10.0	10.3		ug/L		103	60 - 140	
2,2-Dichloropropane	10.0	10.3		ug/L		103	60 - 140	
2-Butanone (MEK)	50.0	57.7		ug/L		115	60 - 140	

2 3 Client Sample ID: Lab Control Sample Prep Type: Total/NA %Rec. <u>D</u> %Rec Limits 103 60 140

7
8
9

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-1091/5

Matrix: Water	
Analysis Batch:	1091

Spike	LCS	LCS		%Rec.
Added	Result	Qualifier Unit	D %Rec	Limits
10.0	10.3			60 - 140
50.0			118	60 - 140
		· · · · · · · · · · · · · · · · · · ·		60 - 140
				60 - 140
		-		60 - 140
		· · · · · · · · · · · · · · · · · · ·		80 - 140
		-		60 - 140
		-		60 - 140
		· · · · · · · · · · · · · · · · · · ·		60 - 140
				60 - 140
		-		60 - 140
		· · · · · · · · · · · · · · · · · · ·		60 - 140
		-		60 - 140
		-		79.2 - 125
		.		60 - 140
				60 - 140
		-		60 - 140
		· · · · · · · · · · · · · · · · · · ·		60 - 140
		-		60 - 140
		-		60 - 140
				60 - 140
		-		60 - 140
				60 - 140
		· · · · · · · · · · · · · · · · · · ·		80 - 120
		-		80 - 120
		-		60 - 140
				60 - 140
		-		80 - 120
		-		80.1 - 128
		· · · · · · · · · · · · · · · · · · ·		60 - 140
		0		62.8 - 132
		-		60 - 140
		· · · · · · · · · · · · · · · · · · ·		60 - 140
				80 - 120
				60 - 140
				60 - 140
				60 ₋ 140
				60 - 140
		· · · · · · · · · · · · · · · · · · ·		60 ₋ 140
				60 ₋ 140
		-		80 - 123
		· · · · · · · · · · · · · · · · · · ·		60 - 123
		-		60 ₋ 140
		-		74.8 - 123
		· · · · · · · · · · · · · · · · · · ·		60 - 140
		-		
10.0	12.3	ug/L	123	60 - 140
		Aded Result 10.0 10.3 50.0 59.1 10.0 10.1 50.0 57.5 50.0 51.7 10.0 10.6 10.0 10.7 10.0 10.9 10.0 10.3 10.0 10.7 10.0 10.3 10.0 10.7 10.0 10.3 10.0 10.7 10.0 10.7 10.0 11.3 10.0 11.3 10.0 11.0 10.0 11.4 10.0 10.4 10.0 10.4 10.0 10.4 10.0 10.3 10.0 10.4 10.0 10.4 10.0 11.3 10.0 10.7 10.0 10.7 10.0 10.4 10.0 10.5 10.0 10.4 10.0<	Added Result Qualifier Unit 10.0 10.3 ug/L 50.0 59.1 ug/L 50.0 57.5 ug/L 50.0 57.5 ug/L 10.0 10.6 ug/L 10.0 10.6 ug/L 10.0 10.7 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 11.3 ug/L 10.0 11.0 ug/L 10.0 11.0 ug/L 10.0 11.0 ug/L 10.0 11.7 ug/L 10.0 10.4 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.3 ug/L 10.0 10.5 ug/L 10.0 10.3	$\begin{tabular}{ c c c c c c c } \hline Added & Result & Qualifier & Unit & D & %Rec \\ \hline 100 & 10.3 & Ug/L & 118 \\ \hline 100 & 10.1 & Ug/L & 118 \\ \hline 100 & 10.1 & Ug/L & 101 \\ \hline 500 & 57.5 & Ug/L & 115 \\ \hline 500 & 51.7 & Ug/L & 103 \\ \hline 100 & 10.6 & Ug/L & 106 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.9 & Ug/L & 109 \\ \hline 10.0 & 10.3 & Ug/L & 103 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.3 & Ug/L & 107 \\ \hline 10.0 & 10.3 & Ug/L & 107 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 11.3 & Ug/L & 113 \\ \hline 10.0 & 11.0 & Ug/L & 110 \\ \hline 10.0 & 11.0 & Ug/L & 1110 \\ \hline 10.0 & 11.0 & Ug/L & 1110 \\ \hline 10.0 & 11.0 & Ug/L & 1110 \\ \hline 10.0 & 11.0 & Ug/L & 110 \\ \hline 10.0 & 10.4 & Ug/L & 104 \\ \hline 10.0 & 10.4 & Ug/L & 103 \\ \hline 10.0 & 10.3 & Ug/L & 103 \\ \hline 10.0 & 10.3 & Ug/L & 103 \\ \hline 10.0 & 10.3 & Ug/L & 103 \\ \hline 10.0 & 10.3 & Ug/L & 103 \\ \hline 10.0 & 11.3 & Ug/L & 103 \\ \hline 10.0 & 11.3 & Ug/L & 103 \\ \hline 10.0 & 11.3 & Ug/L & 103 \\ \hline 10.0 & 11.3 & Ug/L & 1011 \\ \hline 10.0 & 10.4 & Ug/L & 104 \\ \hline 10.0 & 10.5 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.5 & Ug/L & 106 \\ \hline 10.0 & 10.1 & Ug/L & 101 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.5 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 101 \\ \hline 10.0 & 10.5 & Ug/L & 106 \\ \hline 10.0 & 10.4 & Ug/L & 107 \\ \hline 10.0 & 10.5 & Ug/L & 106 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.6 & Ug/L & 106 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.6 & Ug/L & 106 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.6 & Ug/L & 106 \\ \hline 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline 10.0 & 10.0 & 10.7 & Ug/L & 107 \\ \hline$

Limits

68.7 - 141

71.2 - 143

74.1 - 135

70 _ 140

Lab Sample ID: LCS 590-1091/5

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 1091

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

2 3 4 5 6 7 8 9

Method: NWIPH	-Gx - Northwest	- Volatile Petroleu	m Products	(GC/MS)

LCS LCS

%Recovery Qualifier

101

97

105

100

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-1077/1-A Matrix: Solid	X											Client S	Sample ID: Metho Prep Type: 1	
													Prep Bate	
Analysis Batch: 1074		MB	мв										Ртер Бай	
Analyte	D/		Qualifier		RL		MDL	Unit		D	Б	repared	Analyzed	Dil Fac
Gasoline		ND	Quaimer		5.0			mg/Kg		_		0/15 09:34		1
Gasoline		ND			5.0			my/r.ų	1		04/1	0/15 09.54	- 04/10/13 09.03	1
		MB	МВ											
Surrogate	%Reco	very	Qualifier	Limit	ts						Р	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		101		41.5 - 1	162						04/1	0/15 09:34	4 04/10/15 09:05	1
Lab Sample ID: LCS 590-1077/3-	Α									С	lient	Sample	ID: Lab Control	Sample
Matrix: Solid													Prep Type: 1	Total/NA
Analysis Batch: 1074													Prep Bate	ch: 1077
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Gasoline				50.0		51.3			mg/Kg			103	74.4 - 124	
		100												
	1.00													
Summa mada	LCS		lifian	l insite										
Surrogate 4-Bromofluorobenzene (Surr)	LCS %Recovery 102		lifier	Limits 41.5 - 162										
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water	%Recovery		lifier									Client S	Sample ID: Metho Prep Type: 1	
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4	%Recovery	Qua										Client S		
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090	%Recovery 102	Qua MB	МВ		RL		MDL	Unit		D	Ρ		Prep Type: ⊺	Fotal/NA
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water	%Recovery 102	Qua MB esult			RL		MDL			D	P	Client S	Prep Type: 1 Analyzed	
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte	%Recovery 102	Qua MB esult	MB Qualifier				MDL	Unit ug/L		D	P		Prep Type: ⊺	Total/NA Dil Fac
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline	%Recovery 102	Qua MB esult	MB Qualifier MB	41.5 - 162	100		MDL			D		repared	Analyzed 04/10/15 19:06	Total/NA Dil Fac
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate	%Recovery 102	Qua MB esult ND MB	MB Qualifier	41.5 - 162	100 ts		MDL			D			Analyzed 04/10/15 19:06 Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline	%Recovery 102 Re	MB esult ND MB	MB Qualifier MB	41.5 - 162	100 ts		MDL			<u>D</u>		repared	Analyzed 04/10/15 19:06	Total/NA Dil Fac
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6	%Recovery 102 Re	Qua MB esult ND MB	MB Qualifier MB	41.5 - 162	100 ts		MDL			_	P	repared Prepared	Prep Type: 7 Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 D: Lab Control	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6 Matrix: Water	%Recovery 102 Re	Qua MB esult ND MB	MB Qualifier MB	41.5 - 162	100 ts		MDL			_	P	repared Prepared	Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6	%Recovery 102 Re	Qua MB esult ND MB	MB Qualifier MB	41.5 - 162	100 ts			ug/L		_	P	repared Prepared	Prep Type: 7 Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 D: Lab Control Prep Type: 7	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6 Matrix: Water Analysis Batch: 1090	%Recovery 102 Re	Qua MB esult ND MB	MB Qualifier MB	41.5 - 162	100 ts		LCS	ug/L		_	P	repared repared	Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 04/10/15 19:06 DI: Lab Control Prep Type: 1 %Rec.	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6 Matrix: Water Analysis Batch: 1090 Analysis Batch: 1090 Analyte	%Recovery 102 Re	Qua MB esult ND MB	MB Qualifier MB	41.5 - 162 Limit 68.7 - 1 Spike Added	100 ts	Result	LCS	ug/L	Unit	_	P	repared repared Sample	Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 04/10/15 19:06 e ID: Lab Control Prep Type: 1 %Rec. Limits	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6 Matrix: Water Analysis Batch: 1090	%Recovery 102 Re	Qua MB esult ND MB	MB Qualifier MB	41.5 - 162	100 ts		LCS	ug/L	Unit ug/L	_	P	repared repared	Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 04/10/15 19:06 DI: Lab Control Prep Type: 1 %Rec.	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6 Matrix: Water Analysis Batch: 1090 Analysis Batch: 1090 Analyte	%Recovery 102 Re	Qua MB esult ND MB overy 99	MB Qualifier MB Qualifier	41.5 - 162 Limit 68.7 - 1 Spike Added	100 ts	Result	LCS	ug/L		_	P	repared repared Sample	Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 04/10/15 19:06 e ID: Lab Control Prep Type: 1 %Rec. Limits	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample
4-Bromofluorobenzene (Surr) Lab Sample ID: MB 590-1090/4 Matrix: Water Analysis Batch: 1090 Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 590-1090/6 Matrix: Water Analysis Batch: 1090 Analysis Batch: 1090 Analyte	%Recovery 102 Re %Reco	Qua MB esult ND MB overy 99	MB Qualifier MB Qualifier	41.5 - 162 Limit 68.7 - 1 Spike Added	100 ts	Result	LCS	ug/L		_	P	repared repared Sample	Analyzed 04/10/15 19:06 Analyzed 04/10/15 19:06 04/10/15 19:06 e ID: Lab Control Prep Type: 1 %Rec. Limits	Dil Fac 1 Dil Fac 1 Dil Fac 1 Sample

Lab Sample ID: MB 590-1155/1-A

Method:

Matrix: Solid

Client Sample ID: Method Blank

Analyzed 04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

04/17/15 12:37

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

04/17/15 11:36

04/17/15 11:36

Prep Type: Total/NA Prep Batch: 1155

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8
9

8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

ND

ND

MB	MB					
Result	Qualifier	RL	MDL	Unit	D	Prepared
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
ND		10		ug/Kg		04/17/15 11:36
	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	ResultQualifierND	Result Qualifier RL ND 10 ND 10	Result Qualifier RL MDL ND 10 10 ND 10 10	Result Qualifier RL MDL Unit ND 10 ug/Kg ND </td <td>Result Qualifier RL MDL Unit D ND 10 ug/Kg ug/Kg ND 10 ug/Kg ug/Kg</td>	Result Qualifier RL MDL Unit D ND 10 ug/Kg ug/Kg ND 10 ug/Kg ug/Kg

	MB MB				
Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	45	35.1 - 144	04/17/15 11:36	04/17/15 12:37	1
2-Fluorobiphenyl (Surr)	53	48.8 - 134	04/17/15 11:36	04/17/15 12:37	1
p-Terphenyl-d14	80	48 - 166	04/17/15 11:36	04/17/15 12:37	1

10

10

ug/Kg

ug/Kg

Lab Sample ID: LCS 590-1155/2-A Matrix: Solid Analysis Batch: 1154

Dibenz(a,h)anthracene

Benzo[g,h,i]perylene

Analysis Batch: 1154							Pre	ep Batch: 1155
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	194		ug/Kg		73	51.4 - 133	
Fluorene	267	286		ug/Kg		107	65.7 _ 123	
Chrysene	267	273		ug/Kg		102	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	247		ug/Kg		92	54.6 - 142	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	59		35.1 - 144
2-Fluorobiphenyl (Surr)	73		48.8 - 134
p-Terphenyl-d14	70		48 - 166

Lab Sample ID: LCSD 590-1155/3-A Matrix: Solid

Analysis Batch: 1154 Prep Batch: 1155 Spike LCSD LCSD RPD %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Naphthalene 267 201 ug/Kg 75 51.4 - 133 35 3 Fluorene 267 310 ug/Kg 116 65.7 - 123 8 35 Chrysene 267 264 ug/Kg 99 57.3 - 133 3 35

TestAmerica Spokane

Prep Type: Total/NA

2 3 4 5 6 7 8 9 10

Lab Sample ID: LCSD 590- Matrix: Solid	1155/3-A					Clie	nt Sam	ple ID:	Lab Contro Prep T	ol Sampl ype: Tot	
Analysis Batch: 1154									Pre	p Batch	: 1155
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Indeno[1,2,3-cd]pyrene			267	275		ug/Kg		103	54.6 - 142	11	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	61		35.1 - 144								
2-Fluorobiphenyl (Surr)	90		48.8 - 134								
p-Terphenyl-d14	76		48 - 166								

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-1136/1-A Matrix: Solid Analysis Batch: 1160	МВ	МВ								Client Sa	ample ID: Meth Prep Type: Prep Ba	
Analyte		Qualifier	RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10			mg/Kg		_	04/1	6/15 11:17	04/17/15 15:25	1
Residual Range Organics (RRO) (C25-C36)	ND		25			mg/Kg			04/1	6/15 11:17	04/17/15 15:25	1
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150						04/1	6/15 11:17	04/17/15 15:25	1
n-Triacontane-d62	103		50 - 150						04/1	6/15 11:17	04/17/15 15:25	1
Lab Sample ID: LCS 590-1136/2-A Matrix: Solid Analysis Batch: 1160								С	lient	Sample	ID: Lab Contro Prep Type: Prep Ba	
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Diesel Range Organics (DRO)			66.7	58.7			mg/Kg			88	50 - 150	

66.7

60.5

mg/Kg

(C25-C36)			
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	99		50 - 150
n-Triacontane-d62	105		50 - 150

(C10-C25)

Residual Range Organics (RRO)

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

Lab Sample ID: MB 590-1104/1-A Matrix: Water Analysis Batch: 1112							Client Sa	mple ID: Metho Prep Type: T Prep Bato	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		04/13/15 14:39	04/15/15 08:48	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.63		mg/L		04/13/15 14:39	04/15/15 08:48	1

50 - 150

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC) (Continued)

MB MB

Lab Sample ID: MB 590-1104/1-A

Matrix: Water

Analysis Batch: 1112

2 3 4 5 6 7 8

Prep Type: Total/NA
Prep Batch: 1104

Client Sample ID: Method Blank

Analyte Residual Range Organics (RRO) (C25-C36)	ResultND	Qualifier	RL 0.63	RL	Unit mg/L	<u> </u>	Prepared 04/13/15 14:39	Analyzed 04/15/15 08:48	Dil Fac 1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				04/13/15 14:39	04/15/15 08:48	1
n-Triacontane-d62	52		50 - 150				04/13/15 14:39	04/15/15 08:48	1

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-1151/2-A Matrix: Solid Analysis Batch: 1189	мв	мв								Client Sa	mple ID: Metho Prep Type: 1 Prep Bat	Fotal/NA
Analyte		Qualifier	RL 0.025		MDL	Unit mg/Kg		D		repared 7/15 09:34	Analyzed	Dil Fac
Lab Sample ID: LCS 590-1151/1-A								C	iont	Sample	ID: Lab Control	Sample
Matrix: Solid									iem	Campie	Prep Type: 1	Fotal/NA
Analysis Batch: 1189		Spik	e	LCS	LCS						Prep Bate %Rec.	ch: 1151
Analyte		Adde		Result	Qual	ifier	Unit		<u>D</u>	%Rec	Limits	
Lead		1.0	0	0.955			mg/Kg			95	80 - 120	

Initial

Amount

6.839 q

6.839 g

6.839 g

6.839 g

15.60 g

15.60 g

15.60 g

15.60 g

8.11 g

8.11 g

1.58 g

1.58 g

Dil

10

10

1

2

1

10

1

Factor

Run

Date Collected: 04/07/15 11:30

Date Received: 04/09/15 09:52

Prep Type

Total/NA

Client Sample ID: SVDP-22 (20.5-21)

Batch

Туре

Prep

Prep

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

Method

5035

8260C

5035

3550C

3550C

3550C

3050B

6010C

Moisture

NWTPH-Gx

8270D SIM

8270D SIM

NWTPH-Dx

Prepared

or Analyzed

04/10/15 09:34

04/10/15 11:01

04/10/15 09:34

04/10/15 11:01

04/17/15 11:36

04/17/15 15:23

04/17/15 11:36

04/17/15 17:38

04/16/15 11:17

04/17/15 21:25

04/17/15 09:34

04/21/15 12:47

Batch

1077

1073

1077

1074

1155

1154

1155

1154

1136

1160

1151

1189

1086

Number

1 2 3 4 5

04/10/15 15:26 NMI TAL SPK Lab Sample ID: 590-628-2

Lab Sample ID: 590-628-1

Analyst

MRS

MRS

MRS

MRS

NMI

NMI

NMI

NMI

NMI

NMI

JSP

JSP

Matrix: Solid

TAL SPK

TAL SPK TAL SPK

TAL SPK

TAL SPK

Matrix: Solid

Percent Solids: 81.3

Percent Solids: 88.8

Lab

Client Sample ID: SVDP-23 (18-18.5) Date Collected: 04/07/15 13:00

Date Received: 04/09/15 09:52

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.886 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.886 g	5 mL	1073	04/10/15 11:23	MRS	TAL SPK
Total/NA	Prep	5035			6.886 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.886 g	5 mL	1074	04/10/15 11:23	MRS	TAL SPK
Total/NA	Prep	3550C			15.71 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.71 g	2 mL	1154	04/17/15 15:46	NMI	TAL SPK
Total/NA	Prep	3550C			15.13 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.13 g	5 mL	1160	04/17/15 21:49	NMI	TAL SPK
Total/NA	Prep	3050B			1.50 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.50 g	50 mL	1189	04/21/15 12:49	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-24 (19.5-20)

Date Collected: 04/07/15 14:00 Date Received: 04/09/15 09:52

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.597 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		10	6.597 g	5 mL	1073	04/10/15 11:46	MRS	TAL SPK
Total/NA	Prep	5035			6.597 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		100	6.597 g	5 mL	1073	04/10/15 14:18	MRS	TAL SPK
Total/NA	Prep	5035			6.597 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	6.597 g	5 mL	1074	04/10/15 11:46	MRS	TAL SPK
Total/NA	Prep	3550C			15.35 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK

TestAmerica Spokane

Lab Sample ID: 590-628-3

Matrix: Solid

Percent Solids: 83.2

Final

Amount

5 mL

5 mL

5 mL

5 mL

2 mL

2 mL

2 mL

2 mL

5 mL

5 mL

50 mL

50 mL

Lab Sample ID: 590-628-3

Percent Solids: 78.0

Lab Sample ID: 590-628-5

Matrix: Solid

Percent Solids: 72.9

Date Collected: 04/07/15 14:00 Date Received: 04/09/15 09:52

Client Sample ID: SVDP-24 (19.5-20)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		1	15.35 g	2 mL	1154	04/17/15 16:08	NMI	TAL SPK
Total/NA	Prep	3550C			15.65 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.65 g	5 mL	1160	04/17/15 22:13	NMI	TAL SPK
Total/NA	Prep	3050B			1.40 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.40 g	50 mL	1189	04/21/15 12:52	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-25 (19.5-20)

Date Collected: 04/07/15 15:40 Date Received: 04/09/15 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.54 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.54 g	5 mL	1073	04/10/15 12:08	MRS	TAL SPK
Total/NA	Prep	5035			6.54 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.54 g	5 mL	1074	04/10/15 12:08	MRS	TAL SPK
Total/NA	Prep	3550C			15.61 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.61 g	2 mL	1154	04/17/15 16:31	NMI	TAL SPK
Total/NA	Prep	3550C			8.83 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	8.83 g	5 mL	1160	04/17/15 22:37	NMI	TAL SPK
Total/NA	Prep	3050B			1.61 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.61 g	50 mL	1189	04/21/15 12:54	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-26 (20-20.5) Date Collected: 04/07/15 17:15 Date Received: 04/09/15 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.413 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5.413 g	5 mL	1073	04/10/15 12:31	MRS	TAL SPK
Total/NA	Prep	5035			5.413 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	5.413 g	5 mL	1074	04/10/15 12:31	MRS	TAL SPK
Total/NA	Prep	3550C			15.14 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.14 g	2 mL	1154	04/17/15 16:53	NMI	TAL SPK
Total/NA	Prep	3550C			15.32 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.32 g	5 mL	1160	04/17/15 23:01	NMI	TAL SPK
Total/NA	Prep	3050B			1.82 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.82 g	50 mL	1189	04/21/15 12:56	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-24 :GW

Date Collected: 04/07/15 14:40 Date Received: 04/09/15 09:52

		-								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			114.5 mL	2 mL	1104	04/13/15 14:39	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	114.5 mL	2 mL	1112	04/15/15 09:11	NMI	TAL SPK

Client Sample ID: SVDP-25 :GW

Date Collected: 04/07/15 16:03 Date Received: 04/09/15 09:52

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			126.7 mL	2 mL	1104	04/13/15 14:39	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	126.7 mL	2 mL	1112	04/15/15 09:33	NMI	TAL SPK

Client Sample ID: SVDP-26 :GW Date Collected: 04/07/15 17:40

Date Received: 04/09/15 09:52

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C	· ·		124.9 mL	2 mL	1104	04/13/15 14:43	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	124.9 mL	2 mL	1112	04/15/15 09:56	NMI	TAL SPK

Client Sample ID: Trip Blank

Date Collected: 04/02/15 00:00 Date Received: 04/09/15 09:52

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1091	04/10/15 21:45	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	1090	04/10/15 21:45	MRS	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: 590-628-6

Matrix: \	Water
-----------	-------

Matrix: Water

Lab Sample ID: 590-628-8

Lab Sample ID: 590-628-9

Lab Sample ID: 590-628-7

Matrix: Water

Matrix: Water

Certification Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

1

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Nethod	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
WTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
WTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
IWTPH-HCID	Northwest - Hydrocarbon Identification (GC)	NWTPH	TAL SPK
010C	Metals (ICP)	SW846	TAL SPK
loisture	Percent Moisture	EPA	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane

11922 East 1st Ave

Spokane, WA 99206

Chain of Custody Record

THE LEADER IN ENVERONMENTAL TESTING Phone (509) 924-9200 Fax (509) 924-9290 Sampler: Lab PM Carner Tracking No(s) COC No: JML Josh Johnston, Michelle A Client Information 22. 590-253-89.1 Client Contact hone: E-Mail Page. 406-239-7810 JR Sugalski michelle.johnston@testamericainc.com Page 1 of 1 Company Job # GeoEngineers Inc **Analysis Requested** Address, Due Date Requested: Preservation Codes: 523 East Second Ave A - HCL M - Hexane City: TAT Requested (days): B - NaOH N - None Spokane Stal C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na2O4S WA, 99202 E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2SO3 Phone: PO# G - Amchlor S - H2SO4 509-209-2830(Tel) Purchase Order not required T - TSP Dodecahydrate H - Ascorbic Acid Email: WO # L - Ice U - Acetone 1- ICE s, J. - DI Wate K. - EDTA L. - EDA UL - EDA Other: 3- J. - Content - Cont jsugalski@geoengineers com 2 J - DI Water V - MCAA 6010C, 8270D_SIM, NWTPH_Dx W - ph 4-5 Project Name Project #: Z - other (specify) Tiger Oil - Sumitview - Soil 59000440 Figld Filtered Sample Perform MS/MSD (Yes 8260C, NWTPH_Gx_MS SSOW#: Site HCT) Matrix Sample (W=water, Туре ۳. S=solid, Sample (C=comp, n=waste/oil. Sample Identification Sample Date Time G=grab) BT=Tissue, A=Air Special Instructions/Note: Preservation Code: F Ň. 信号的名词 JC J. V Jr. 4. J. SVDP-22 (20.5-21 4/7/2015 S X 3 lÍ3D G Х SVDP-23(18-18.5) 3 1300 X X 5VDP-24(19.5-20) 0 3 X 1400 χ SVDP-25/19.5-20 3 1540 X χ 3 V SVDP-26/20-20,5 715 V X χ 200 SVDP - 11.94 30P=23:6W 5VDP - 24:GN 1440 Êя 2 ω X SVDP-25: UN χ 1603 51DP-26: 4W 1740 χ \mathbf{V} $\sqrt{}$ A. Blonk 3 Tr'o Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

 Return To Client
 Disposal By Lab
 Archive For ______ Month
 Possible Hazard Identification Non-Hazard Flammable Poison B Radiological Return To Client Archive For Skin Irritant Months Deliverable Requested: I, II, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinguished by: Method of Shipment: Date. Time Reinquished by Company Company AMURICA 9:51 4/9 Relinquished by. Date/Time Company Relinguished by: Received by: Date/Time. Company Cooler Temperature(s) °C and Other Remarks 4,7 ° II Custody Seals Intact: Custody Seal No." 590-628 Chain of Custody ∆ Yes ∆ No ILCO

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 628 List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Trip Blank received, but not listed on COC.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-628-1

List Source: TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-731-1 Client Project/Site: Tiger Oil/0504-101-02

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski


tandre Arrington

Authorized for release by: 5/13/2015 2:09:04 PM

Randee Arrington, Project Manager II (509)924-9200 randee.arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	11
Chronicle	16
Certification Summary	18
Method Summary	19
Chain of Custody	20
Receipt Checklists	21

Job ID: 590-731-1

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 4/29/2015 4:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 8.1° C.

Except:

The following samples were received at the laboratory outside the required temperature criteria: SVMW-Dup (590-731-1), SVMW-5 (22.5-23) (590-731-2) and SVMW-4 (22.5-23) (590-731-3).

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method Moisture: The sample duplicate (DUP) precision for 590-1316 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02 TestAmerica Job ID: 590-731-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
590-731-1	SVMW-Dup	Solid	04/27/15 08:00	04/29/15 16:25	
590-731-2	SVMW-5 (22.5-23)	Solid	04/27/15 09:30	04/29/15 16:25	
590-731-3	SVMW-4 (22.5-23)	Solid	04/27/15 12:00	04/29/15 16:25	

Definitions/Glossary

Glossary

These commonly used abbreviations may or may not be present in this report.	
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	5
Contains Free Liquid	
Contains no Free Liquid	
Duplicate error ratio (normalized absolute difference)	
Dilution Factor	
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision level concentration	
Minimum detectable activity	8
Estimated Detection Limit	
Minimum detectable concentration	9
Method Detection Limit	
Minimum Level (Dioxin)	
Not Calculated	
Not detected at the reporting limit (or MDL or EDL if shown)	
Practical Quantitation Limit	
Quality Control	
Relative error ratio	
Reporting Limit or Requested Limit (Radiochemistry)	
Relative Percent Difference, a measure of the relative difference between two points	
Toxicity Equivalent Factor (Dioxin)	
	Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid Contains no Free Liquid Duplicate error ratio (normalized absolute difference) Dilution Factor Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision level concentration Minimum detectable activity Estimated Detection Limit Minimum detectable concentration Method Detection Limit Minimum Level (Dioxin) Not Calculated Not detected at the reporting limit (or MDL or EDL if shown) Practical Quantitation Limit Quality Control Relative error ratio Reporting Limit or Requested Limit (Radiochemistry) Relative Percent Difference, a measure of the relative difference between two points

TEQ Toxicity Equivalent Quotient (Dioxin)

RL

0.040

0.27

1.1

0.53

0.27

1.6

Limits

74.7 - 120

69.8 - 140

78.5 - 125

80 - 120

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

₽

₽

Ċ.

¢

Ċ.

Prepared

Prepared

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

05/01/15 12:55 05/01/15 13:26

* 05/01/15 12:55 05/01/15 13:26

Client Sample ID: SVMW-Dup

Method: 8260C - Volatile Organic Compounds by GC/MS

Date Collected: 04/27/15 08:00

Date Received: 04/29/15 16:25

Analyte

Benzene

Ethylbenzene

Xylenes, Total

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Surrogate

m,p-Xylene

o-Xylene

Toluene

Lab Sample ID: 590-731-1

Analyzed

Analyzed

Matrix: Solid

Dil Fac

1

1

Percent Solids: 63.7

6

1 1 1 Dil Fa

1	ð
C	Q
1	
1	
1	
1	

-		
Method: NWTPH-Gx - Northwest	t - Volatilo Potroloum	Products (GC/MS)
Welliou, NW IFII-GA - NOILIWES		

%Recovery

Result Qualifier

ND

ND

ND

ND

ND

ND

99

101

99

101

Qualifier

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	13	13	mg/Kg	<u> </u>	05/01/15 12:55	05/01/15 13:26	1	
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	101	41.5 - 162			05/01/15 12:55	05/01/15 13:26	1	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		15		ug/Kg	₩ 	05/08/15 10:17	05/12/15 17:16	1
2-Methylnaphthalene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
1-Methylnaphthalene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Acenaphthylene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Acenaphthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Fluorene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Phenanthrene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Anthracene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Fluoranthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Pyrene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Benzo[a]anthracene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Chrysene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Benzo[b]fluoranthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Benzo[k]fluoranthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Benzo[a]pyrene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Indeno[1,2,3-cd]pyrene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Dibenz(a,h)anthracene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Benzo[g,h,i]perylene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 17:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67		35.1 - 144				05/08/15 10:17	05/12/15 17:16	1
2-Fluorobiphenyl (Surr)	55		48.8 - 134				05/08/15 10:17	05/12/15 17:16	1
p-Terphenyl-d14	109		48 - 166				05/08/15 10:17	05/12/15 17:16	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pe	troleum Produ	ucts (G	C)				
Analyte		Qualifier	RL	•	Únit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		16		mg/Kg	- \	05/05/15 08:15	05/05/15 10:36	1

(C10-C25)

Client Sample ID: SVMW-Dup Date Collected: 04/27/15 08:00 Date Received: 04/29/15 16:25

Lab Sample ID: 590-731-1 Matrix: Solid Percent Solids: 63.7

Lab Sample ID: 590-731-2

Matrix: Solid

Percent Solids: 62.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		39		mg/Kg	\ ☆	05/05/15 08:15	05/05/15 10:36	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				05/05/15 08:15	05/05/15 10:36	1
n-Triacontane-d62	88		50 - 150				05/05/15 08:15	05/05/15 10:36	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.4		4.8		mg/Kg	\\\\	04/30/15 09:21	05/01/15 13:11	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	36		0.010		%			05/01/15 16:12	1
Percent Solids	64		0.010		%			05/01/15 16:12	

Client Sample ID: SVMW-5 (22.5-23) Date Collected: 04/27/15 09:30 Date Received: 04/29/15 16:25

Method: 8260C - Volatile O	rganic Compo	unds by G	SC/MS						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.034		mg/Kg	₩ Å	05/01/15 12:55	05/01/15 13:49	1
Ethylbenzene	ND		0.23		mg/Kg	¢	05/01/15 12:55	05/01/15 13:49	1
m,p-Xylene	ND		0.90		mg/Kg	¢	05/01/15 12:55	05/01/15 13:49	1
o-Xylene	ND		0.45		mg/Kg	¢	05/01/15 12:55	05/01/15 13:49	1
Toluene	ND		0.23		mg/Kg	¢	05/01/15 12:55	05/01/15 13:49	1
Xylenes, Total	ND		1.4		mg/Kg	¢	05/01/15 12:55	05/01/15 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74.7 - 120				05/01/15 12:55	05/01/15 13:49	1
4-Bromofluorobenzene (Surr)	101		69.8 - 140				05/01/15 12:55	05/01/15 13:49	1
Dibromofluoromethane (Surr)	98		80 - 120				05/01/15 12:55	05/01/15 13:49	1
Toluene-d8 (Surr)	101		78.5 - 125				05/01/15 12:55	05/01/15 13:49	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		11		mg/Kg		05/01/15 12:55	05/01/15 13:49	1
Surrogata	0/	0	1				- ·	A	D// E
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	16	ug/Kg	\$	05/08/15 10:17	05/12/15 17:39	1
2-Methylnaphthalene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
1-Methylnaphthalene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Acenaphthylene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Acenaphthene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Fluorene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Phenanthrene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Anthracene	ND	16	ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1

TestAmerica Spokane

5

Client Sample ID: SVMW-5 (22.5-23) Date Collected: 04/27/15 09:30 Date Received: 04/29/15 16:25

Lab Sample ID: 590-731-2 Matrix: Solid

Percent Solids: 62.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		16		ug/Kg	₩	05/08/15 10:17	05/12/15 17:39	1
Pyrene	ND		16		ug/Kg	¢.	05/08/15 10:17	05/12/15 17:39	1
Benzo[a]anthracene	ND		16		ug/Kg	☆	05/08/15 10:17	05/12/15 17:39	1
Chrysene	ND		16		ug/Kg	☆	05/08/15 10:17	05/12/15 17:39	1
Benzo[b]fluoranthene	ND		16		ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Benzo[k]fluoranthene	ND		16		ug/Kg	☆	05/08/15 10:17	05/12/15 17:39	1
Benzo[a]pyrene	ND		16		ug/Kg	☆	05/08/15 10:17	05/12/15 17:39	1
Indeno[1,2,3-cd]pyrene	ND		16		ug/Kg	¢	05/08/15 10:17	05/12/15 17:39	1
Dibenz(a,h)anthracene	ND		16		ug/Kg	₽	05/08/15 10:17	05/12/15 17:39	1
Benzo[g,h,i]perylene	ND		16		ug/Kg	₽	05/08/15 10:17	05/12/15 17:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71		35.1 - 144				05/08/15 10:17	05/12/15 17:39	1
2-Fluorobiphenyl (Surr)	60		48.8 - 134				05/08/15 10:17	05/12/15 17:39	1
p-Terphenyl-d14	98		48 - 166				05/08/15 10:17	05/12/15 17:39	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		15		mg/Kg	<u></u>	05/05/15 08:15	05/05/15 10:59	1
Residual Range Organics (RRO) (C25-C36)	ND		38		mg/Kg	¢	05/05/15 08:15	05/05/15 10:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				05/05/15 08:15	05/05/15 10:59	1
n-Triacontane-d62	89		50 - 150				05/05/15 08:15	05/05/15 10:59	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.9		4.0		mg/Kg	- \	04/30/15 09:21	05/01/15 13:15	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	37		0.010		%			05/01/15 16:12	1
Percent Solids	63		0.010		%			05/01/15 16:12	1

Client Sample ID: SVMW-4 (22.5-23) Date Collected: 04/27/15 12:00 Date Received: 04/29/15 16:25

Г	_						
L	Method:	8260C .	Volatile	Organic	Compounds	by GC/MS	

	rgame compoun							
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.031		mg/Kg	¢	05/01/15 12:55	05/01/15 14:11	1
Ethylbenzene	ND	0.21		mg/Kg	¢	05/01/15 12:55	05/01/15 14:11	1
m,p-Xylene	ND	0.83		mg/Kg	¢	05/01/15 12:55	05/01/15 14:11	1
o-Xylene	ND	0.42		mg/Kg	₽	05/01/15 12:55	05/01/15 14:11	1
Toluene	ND	0.21		mg/Kg	¢	05/01/15 12:55	05/01/15 14:11	1
Xylenes, Total	ND	1.2		mg/Kg	☆	05/01/15 12:55	05/01/15 14:11	1
Surrogate	%Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	74.7 - 120				05/01/15 12:55	05/01/15 14:11	1
4-Bromofluorobenzene (Surr)	98	69.8 - 140				05/01/15 12:55	05/01/15 14:11	1

TestAmerica Spokane

Lab Sample ID: 590-731-3

Matrix: Solid

Percent Solids: 64.5

5

Client Sample Results

Client Sample ID: SVMW-4	(22.5-23)						Lab Sam	ple ID: 590	
Pate Collected: 04/27/15 12:00 Pate Received: 04/29/15 16:25								Matrix Percent Solic	c: Solid ls: 64.5
Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS (Contir	ued)					
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99	Quanner	80 - 120				05/01/15 12:55	•	1
Toluene-d8 (Surr)	102		78.5 - 125					05/01/15 14:11	
Method: NWTPH-Gx - Northwe	est - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		10		mg/Kg	₽	05/01/15 12:55	05/01/15 14:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	Quaimer	41.5 - 162					05/01/15 14:11	1
	50		47.0 - 702				00/01/10 12:00	00/01/10 14.11	,
Method: 8270D SIM - Semivola	atile Organi	c Compou	unds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		15		ug/Kg	\ ↓	05/08/15 10:17	05/12/15 18:01	1
2-Methylnaphthalene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
1-Methylnaphthalene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Acenaphthylene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Acenaphthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Fluorene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Phenanthrene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Anthracene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 18:01	1
Fluoranthene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 18:01	1
Pyrene	ND		15		ug/Kg	¢.	05/08/15 10:17	05/12/15 18:01	1
Benzo[a]anthracene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Chrysene	ND		15		ug/Kg	₽		05/12/15 18:01	1
Benzo[b]fluoranthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Benzo[k]fluoranthene	ND		15		ug/Kg	¢	05/08/15 10:17	05/12/15 18:01	1
Benzo[a]pyrene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 18:01	1
Indeno[1,2,3-cd]pyrene	ND		15		ug/Kg	¢		05/12/15 18:01	1
Dibenz(a,h)anthracene	ND		15		ug/Kg	₽		05/12/15 18:01	1
Benzo[g,h,i]perylene	ND		15		ug/Kg	₽		05/12/15 18:01	1
					0 0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		35.1 - 144				05/08/15 10:17	05/12/15 18:01	1
2-Fluorobiphenyl (Surr)	57		48.8 - 134				05/08/15 10:17	05/12/15 18:01	1
p-Terphenyl-d14	109		48 - 166				05/08/15 10:17	05/12/15 18:01	1
Method: NWTPH-Dx - Northwe				•		_	_ .		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		15		mg/Kg	<u> </u>	05/05/15 08:15	05/05/15 11:22	1
(C10-C25) Residual Range Organics (RRO)	ND		38		mg/Kg	¢	05/05/15 08:15	05/05/15 11:22	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	87		50 - 150					05/05/15 11:22	1
n-Triacontane-d62	83		50 - 150					05/05/15 11:22	1
Method: 6010C - Metals (ICP)							_	_	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample Results

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02 TestAmerica Job ID: 590-731-1

6

Client Sample ID: SVMW-4 (22.5-23) Lab Sample ID: 590-731-3 Date Collected: 04/27/15 12:00 Matrix: Solid Date Received: 04/29/15 16:25 **General Chemistry** Analyte RL **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac % Percent Moisture 0.010 05/01/15 16:12 36 1 **Percent Solids** 0.010 % 05/01/15 16:12 64 1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-1312/7-A Matrix: Solid

Analysis Batch: 1310								Prep Batch	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
Ethylbenzene	ND		0.10		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
m,p-Xylene	ND		0.40		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
o-Xylene	ND		0.20		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
Toluene	ND		0.10		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
Xylenes, Total	ND		0.60		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		74.7 - 120				05/01/15 16:23	05/01/15 16:30	1
4-Bromofluorobenzene (Surr)	99		69.8 - 140				05/01/15 16:23	05/01/15 16:30	1
Dibromofluoromethane (Surr)	99		80 - 120				05/01/15 16:23	05/01/15 16:30	1
Toluene-d8 (Surr)	99		78.5 - 125				05/01/15 16:23	05/01/15 16:30	1

Lab Sample ID: LCS 590-1312/2-A Matrix: Solid Analysis Batch: 1310

Analysis Batch: 1310							Prep	Batch: 1312
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.497		mg/Kg		99	75.8 - 123	
Ethylbenzene	0.500	0.501		mg/Kg		100	77.3 - 121	
m,p-Xylene	0.500	0.502		mg/Kg		100	77.7 - 124	
o-Xylene	0.500	0.501		mg/Kg		100	76.7 _ 129	
Toluene	0.500	0.503		mg/Kg		101	76.6 - 125	
LC	S LCS							

%Recovery	Qualifier	Limits
97		74.7 - 120
99		69.8 - 140
99		80 - 120
100		78.5 - 125
	97 99 99	99 99 99

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-1312/ Matrix: Solid Analysis Batch: 1313		МВ						le ID: Methoo Prep Type: To Prep Batcl	otal/NA
Analyte Gasoline		Qualifier	RL 5.0	MDL	Unit mg/Kg	D	Prepared 05/01/15 16:23	Analyzed 05/01/15 16:30	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	MB %Recovery 99	MB Qualifier	<i>Limits</i> 41.5 - 162				Prepared 05/01/15 16:23	Analyzed 05/01/15 16:30	Dil Fac

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCS 590- Matrix: Solid	1312/3-A					Clier	nt Sar	nple II	Prep Ty	ntrol Sample vpe: Total/NA
Analysis Batch: 1313									Prep	Batch: 1312
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline			50.0	51.4		mg/Kg		103	74.4 - 124	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	99		41.5 - 162							

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-1385/1-A Matrix: Solid Analysis Batch: 1398							Client Sample ID: Method Blan Prep Type: Total/N/ Prep Batch: 138				
		MB			11	_	Deserved	•			
Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Naphthalene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
2-Methylnaphthalene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
1-Methylnaphthalene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Acenaphthylene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Acenaphthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Fluorene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Phenanthrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Anthracene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Fluoranthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Pyrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Benzo[a]anthracene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Chrysene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Benzo[b]fluoranthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Benzo[k]fluoranthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Benzo[a]pyrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Dibenz(a,h)anthracene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
Benzo[g,h,i]perylene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1		
	МВ	МВ									

		N D	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	69		35.1 - 144
2-Fluorobiphenyl (Surr)	69		48.8 - 134
p-Terphenyl-d14	122		48 - 166

Lab Sample ID: LCS 590-1385/2-A Matrix: Solid Analysis Batch: 1398

Analysis Batch: 1398							Prep	Batch: 1385
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	269		ug/Kg		101	51.4 - 133	
Fluorene	267	282		ug/Kg		106	65.7 - 123	
Chrysene	267	294		ug/Kg		110	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	314		ug/Kg		118	54.6 - 142	

TestAmerica Spokane

Prep Type: Total/NA

Analyzed

Dil Fac

1

1

1

Prepared

05/08/15 10:17 05/12/15 13:27

05/08/15 10:17 05/12/15 13:27

05/08/15 10:17 05/12/15 13:27

Client Sample ID: Lab Control Sample

Client Sample ID: SVMW-Dup

Prep Type: Total/NA

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-1385/2-A Matrix: Solid

Analysis Batch: 1398

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	73		35.1 - 144
2-Fluorobiphenyl (Surr)	84		48.8 - 134
p-Terphenyl-d14	102		48 - 166

Lab Sample ID: LCSD 590-1385/3-A Matrix: Solid

Analysis Batch: 1398							Prep	Batch:	1385
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	267	271		ug/Kg		102	51.4 - 133	1	35
Fluorene	267	284		ug/Kg		106	65.7 - 123	1	35
Chrysene	267	290		ug/Kg		109	57.3 - 133	1	35
Indeno[1,2,3-cd]pyrene	267	316		ug/Kg		119	54.6 - 142	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	72		35.1 - 144
2-Fluorobiphenyl (Surr)	84		48.8 - 134
p-Terphenyl-d14	100		48 - 166

Lab Sample ID: 590-731-1 MS **Matrix: Solid** Analysis Batch: 1398

Analysis Batch: 1398									Prep	Batch: 1385
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		415	408		ug/Kg	¢	98	30 - 120	
Fluorene	ND		415	455		ug/Kg	¢	110	30 - 140	
Chrysene	ND		415	463		ug/Kg	¢	112	30 - 133	
Indeno[1,2,3-cd]pyrene	ND		415	527		ug/Kg	¢	126	30 - 140	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	88		35.1 - 144
2-Fluorobiphenyl (Surr)	92		48.8 - 134
p-Terphenyl-d14	102		48 - 166

Lab Sample ID: 590-731-1 MSD Matrix: Solid Analysis Batch: 1398

Analysis Batch: 1398									Prep	Batch:	1385
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		413	421		ug/Kg	<u>Å</u>	102	30 - 120	3	35
Fluorene	ND		413	337		ug/Kg	₽	82	30 - 140	30	35
Chrysene	ND		413	453		ug/Kg	₽	110	30 - 133	2	35
Indeno[1,2,3-cd]pyrene	ND		413	508		ug/Kg	¢	122	30 - 140	4	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	95		35.1 - 144
2-Fluorobiphenyl (Surr)	72		48.8 - 134

Prep Type: Total/NA

Client Sample ID: SVMW-Dup

QC Sample Results

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued) Lab Sample ID: 590-731-1 MSD **Client Sample ID: SVMW-Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 1398 Prep Batch: 1385 MSD MSD %Recovery Qualifier Surrogate Limits p-Terphenyl-d14 48 - 166 101 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) Lab Sample ID: MB 590-1339/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 1335 Prep Batch: 1339 MB MB RL Analyte **Result Qualifier** MDL Unit D Dil Fac Prepared Analyzed 10 05/05/15 08:15 05/05/15 09:08 Diesel Range Organics (DRO) ND mg/Kg 1 (C10-C25) Residual Range Organics (RRO) ND 25 mg/Kg 05/05/15 08:15 05/05/15 09:08 1 (C25-C36) MB MB Qualifier Surrogate %Recovery I imits Prepared Analvzed Dil Fac 50 - 150 o-Terphenyl 88 05/05/15 08:15 05/05/15 09:08 1 05/05/15 08:15 05/05/15 09:08 n-Triacontane-d62 79 50 - 150 1 Lab Sample ID: LCS 590-1339/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 1335 Prep Batch: 1339 LCS LCS Spike %Rec. Added **Result Qualifier** Limits Analyte Unit D %Rec 66.7 67.6 101 50 - 150 mg/Kg Diesel Range Organics (DRO) (C10-C25) 66.7 72.9 mg/Kg 109 50 - 150 Residual Range Organics (RRO) (C25-C36) LCS LCS Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 109 n-Triacontane-d62 102 50 - 150 Lab Sample ID: LCSD 590-1339/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA Matrix: Solid Prep Batch: 1339 Analysis Batch: 1335 LCSD LCSD Spike %Rec. RPD Analyte Added **Result Qualifier** Unit D %Rec l imits RPD Limit 66.7 25 Diesel Range Organics (DRO) 71.1 mg/Kg 107 50 - 150 5 (C10-C25) Residual Range Organics (RRO) 66.7 74.9 mg/Kg 112 50 - 1503 25 (C25-C36) LCSD LCSD %Recovery Qualifier Surrogate Limits 110 o-Terphenyl 50 - 150 n-Triacontane-d62 102 50 - 150

5

7

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 590-731-1 Matrix: Solid Analysis Batch: 1335		Sample		DU	DU		Client	t Sample ID: SVMW Prep Type: Tot Prep Batch:	al/NA
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)	ND			ND		mg/Kg	<u> </u>	<u></u> <u></u> <u>NC</u>	40
Residual Range Organics (RRO) (C25-C36)	ND			ND		mg/Kg	¢	NC	40
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	87		50 - 150						
n-Triacontane-d62	78		50 - 150						

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-1290/2-A Matrix: Solid Analysis Batch: 1315	МВ	МВ							Cli		ole ID: Method Prep Type: To Prep Batc	otal/NA
Analyte	Result	Qualifier		RL	1	MDL	Unit	1	DI	Prepared	Analyzed	Dil Fac
Lead	ND			0.025			mg/Kg		04/	30/15 09:21	05/01/15 11:09	1
Lab Sample ID: LCS 590-1290/1-A Matrix: Solid Analysis Batch: 1315								Clie	nt Sa		Lab Control S Prep Type: T Prep Batc	otal/NA
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	
Lead			1.00		0.910			mg/Kg		91	80 - 120	

Client Sample ID: SVMW-Dup

Lab Sample ID: 590-731-1 Matrix: Solid

Lab Sample ID: 590-731-2

Matrix: Solid

Percent Solids: 62.7

Date Collected: 04/27/15 08:00 Date Received: 04/29/15 16:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3.767 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	8260C		1	3.767 g	5 mL	1310	05/01/15 13:26	MRS	TAL SPK
Total/NA	Prep	5035			3.767 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	3.767 g	5 mL	1313	05/01/15 13:26	MRS	TAL SPK
Total/NA	Prep	3550C			15.46 g	2 mL	1385	05/08/15 10:17	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.46 g	2 mL	1398	05/12/15 17:16	MRS	TAL SPK
Total/NA	Prep	3550C			15.16 g	5 mL	1339	05/05/15 08:15	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.16 g	5 mL	1335	05/05/15 10:36	NMI	TAL SPK
Total/NA	Prep	3050B			2.04 g	50 mL	1290	04/30/15 09:21	JSP	TAL SPK
Total/NA	Analysis	6010C		5	2.04 g	50 mL	1315	05/01/15 13:11	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1316	05/01/15 16:12	JSP	TAL SPK

Client Sample ID: SVMW-5 (22.5-23) Date Collected: 04/27/15 09:30 Date Received: 04/29/15 16:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.798 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	8260C		1	4.798 g	5 mL	1310	05/01/15 13:49	MRS	TAL SPK
Total/NA	Prep	5035			4.798 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	4.798 g	5 mL	1313	05/01/15 13:49	MRS	TAL SPK
Total/NA	Prep	3550C			15.25 g	2 mL	1385	05/08/15 10:17	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.25 g	2 mL	1398	05/12/15 17:39	MRS	TAL SPK
Total/NA	Prep	3550C			15.57 g	5 mL	1339	05/05/15 08:15	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.57 g	5 mL	1335	05/05/15 10:59	NMI	TAL SPK
Total/NA	Prep	3050B			2.49 g	50 mL	1290	04/30/15 09:21	JSP	TAL SPK
Total/NA	Analysis	6010C		5	2.49 g	50 mL	1315	05/01/15 13:15	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1316	05/01/15 16:12	JSP	TAL SPK

Client Sample ID: SVMW-4 (22.5-23) Date Collected: 04/27/15 12:00 Date Received: 04/29/15 16:25

Lab Sample ID: 590-731-3 Matrix: Solid Percent Solids: 64.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.067 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5.067 g	5 mL	1310	05/01/15 14:11	MRS	TAL SPK
Total/NA	Prep	5035			5.067 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	5.067 g	5 mL	1313	05/01/15 14:11	MRS	TAL SPK
Total/NA	Prep	3550C			15.21 g	2 mL	1385	05/08/15 10:17	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.21 g	2 mL	1398	05/12/15 18:01	MRS	TAL SPK
Total/NA	Prep	3550C			15.25 g	5 mL	1339	05/05/15 08:15	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.25 g	5 mL	1335	05/05/15 11:22	NMI	TAL SPK
Total/NA	Prep	3050B			1.94 g	50 mL	1290	04/30/15 09:21	JSP	TAL SPK

Lab Sample ID: 590-731-3

Matrix: Solid

Client Sample ID: SVMW-4 (22.5-23) Date Collected: 04/27/15 12:00 Date Received: 04/29/15 16:25

Date Receive	d: 04/29/15 ′	16:25						P	ercent S	olids: 64.5
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		5	1.94 g	50 mL	1315	05/01/15 13:19	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1316	05/01/15 16:12	JSP	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Method Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02

	5
	8
	9
1	0
	14

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
Protocol Re	ferences:		
EPA = U	S Environmental Protection Agency		
NWTPH	= Northwest Total Petroleum Hydrocarbon		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition	, November 1986 And Its Update	es.
Laboratory	References:		
TAL SPK	= TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-920	00	

TestAmerica Spokane 11922 East 1st Ave

Chain of Custody Record

The leader of the transmission of the teather of teathe

10

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

	Sampler			Lab	PM						Carne	r Tracking	No(s)		CC	OC No ⁻			
Client Information	Sampler Josh Phone 406-2	Lu		Joh	nston,	, Mich	nelle A					-			59	90-291-89.1			
Client Contact:	Phone / Int	70 70		E-Ma												age		İ	
JR Sugalski	406-2	239- +1	<i>§10</i>	mic	helle je	ohnst	ton@te	estame	ricainc	com					Pa	age 1 of 1			
Company.															Jo	**0504	4 10	1-07	7
GeoEngineers Inc									Analy	sis Re	quest	ea			<u> </u>	-		<u> </u>	-
Address	Due Date Requeste	ed:													Pr	reservation C	odes:		
523 East Second Ave					- 18	5			ł							- HCL	M - He	xane	
city. Spokane	TAT Requested (da	ays):			148											- NaOH - Zn Acetate	N - No O - As	he NoO2	
State, Zip:	std.				1.6	1 B										- Ziti Adeiale - Nitric Acid	P - Na	2045	
WA, 99202								ļ	1						÷Ε	- NaHSO4	Q - Na	2803	
Phone	PO#				- 48											- MeOH	R - Na	252503	
509-209-2830(Tel)	Purchase Order	not require	d			111										i - Amchior - Ascorbic Acid	S-H2 1 T-TS	주U4 P Dodecahy	drate
Email	WO#				1Ž 🗄	5 mil									11-	- lce	U - Ac	etone	
jsugalski@geoengineers.com					S OF	2	ă								観し	- Dí Water - EDTA	V - M0 W - pt		
Project Name.	Project #.				Sample (Yes	ð	-	Ì								- EDTA		er (specify)	
Tiger Oll - Sumitview - Soll	59000440					S S S S S S S S S S S S S S S S S S S									12			[
Site:	SSOW#:															ther:			
					i i i i i i i i i i i i i i i i i i i	0									2				
			Sample	Matrix	ĨŽ.	BERDORM WISHING COS OF YOU	8270D_SIM, NWTPH_DX								Total Number				
			Туре	(w=water,	et i	MN N	8271								E				
	l .	Sample		S=solid, O=waste/oil,	1	i i	Î g								i i i				
Sample Identification	Sample Date	Time		=Tissue, A=Air	۱æ.	8261	6010C,								D'	Special	Instruct	ons/Note	e:
		\sim	Preservatio		X	K F	. N		:	1.		- 1 -			Ň.		<u>, , , , , , , , , , , , , , , , , , , </u>	4	
SI/M/L-Dun	4/27/2015	0300	G	S	fŤ	$\langle \rangle$				<u>4 4</u>	<u> </u>	· •	<u>+</u>		3		· · ·	1	<u> </u>
SVMW-Dup SVMW-5 (22.5-23)		0930		1		X				$\left - \right $					3			ļ	
					++				_				+ $+$		[
SVMW-4 (22.5-23)	V	1200		V	11	Х	X								3				
														Ĩ				İ	
		1	┥────┤──		\square										\square				
												ł		1 I.					
									11	100 00 US	11111111		119411911	1				Í	
					++				II	111111	11111					_			
									11	00.00.0	(111), HI								
· · · · · · · · · · · · · · · · · · ·					┥╍┢╴				-+ 11	000000000	1410 111	1 1441 14							
												Hunuu A Custa	la huu uu u Seiva	111					
					Т				5	90-731 (Snain d	n Cust	Juy						
Possible Hazard Identification	1	I			-	amn	le Disi	insal i	Δ fee	may he		od if e	molec	<u> </u>	<u> </u>	longer than	1 month	1	
Non-Hazard Griammable Skin Irritant Poiso			adiological		ľ		Return					al By La	pico c						
Deliverable Requested: I, II, III, IV, Other (specify)		wn Re	adiological								Jisposa	al By La	D	Arc	chive I	-or	Mon	tns -	
Deliverable Requested. I, II, III, IV, Oblet (specify)					3	pecia	n risu	ucaons		equireme	ents.								
Empty Kit Relinquished by		Date [.]			Time	ə:	·/			2	i l	Method o	Shipment						
Relinquished by:	Date/Time. 4/24/15	16	:25 ^{co}	mpany	Ţ	Pe	ceived b	y. Ula	^¢	na	f		Date/Tid	29/1	5	16:25	5 Comp	"-S	ØK
Relinquished by:	Date/Tirpé			mpany			ceived b		-+	uq2	\		Date/Tim	<u>≁://</u> ne	$\underline{\nabla}$	<u>w.a</u>	Comp		<u> </u>
<i>,</i>			1	-		i			l		}		1					l'	
Relinquished by	Date/Time.		Cc	mpany		Re	ceived b	y-					Date/Tim	ne:			Comp	any	
	I																		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Co	olerTen	nperatur A	e(s) °C a	nd Other R I	emarks:	Ì							

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 731 List Number: 1 Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-731-1 SDG Number:

List Source: TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-870-1

Client Project/Site: Tiger Oil - Summit View Revision: 2

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Cardie Arrington

Authorized for release by: 9/16/2015 3:24:31 PM

Randee Arrington, Project Manager II (509)924-9200 randee.arrington@testamericainc.com

Review your project results through TOTOLACCESS Have a Question?

..... Links

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

1
2
3
4
5
6
23
31
34
35
36
37

Job ID: 590-870-1

Laboratory: TestAmerica Spokane

Narrative

Revision2: Method 8260C

The peaks for 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene were misidentified and switched for samples Duplicate (590-870-1), SVMW-3 (590-870-3) and SVMW-5 (590-870-5). Due to this the data was reprocessed and is reflected in the revised report. This final report replaces the final report generated on 06/15/2015.

Case Narrative

Revision1 Method 200.7

The QC data for method 200.7 was inadvertantly not included in the intial final report. This final report replaces the final report generated on 05/29/2015.

Receipt

The samples were received on 5/20/2015 10:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA Method 8260C:

The continuing calibration verification (CCV) associated with batch 590-1594 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: Duplicate (590-870-1), SVMW-2 (590-870-2), SVMW-3 (590-870-3), SVMW-4 (590-870-4), SVMW-5 (590-870-5), Trip Blank (590-870-6) and (CCVIS 590-1594/6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA Method NWTPH-Dx:

Detected hydrocarbons appear to be due to gasoline overlap in the following samples: Duplicate (590-870-1), SVMW-3 (590-870-3) and SVMW-5 (590-870-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

ab Sample ID.	Client Sample ID	Matrix	Collected Receive	ed
90-870-1	Duplicate	Water	05/19/15 08:00 05/20/15 1	0:40
90-870-2	SVMW-2	Water	05/19/15 12:46 05/20/15 1	0:40
90-870-3	SVMW-3	Water	05/19/15 14:23 05/20/15 1	0:40
90-870-4	SVMW-4	Water	05/19/15 11:30 05/20/15 1	0:40
90-870-5	SVMW-5	Water	05/19/15 13:35 05/20/15 1	0:40
90-870-6	Trip Blank	Water	05/19/15 00:00 05/20/15 1	0:40

Definitions/Glossary

Glossary

4
5
8
9

TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

TestAmerica Job ID: 590-870-1

Matrix: Water

9 10

Lab Sample ID: 590-870-1

Date Collected: 05/19/15 08:00 Date Received: 05/20/15 10:40

Client Sample ID: Duplicate

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,1-Trichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,2,2-Tetrachloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,2-Trichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,2-Trichlorotrifluoroethane	ND	100	ug/L		05/28/15 17:08	100
1,1-Dichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1-Dichloroethene	ND	100	ug/L		05/28/15 17:08	100
1,1-Dichloropropene	ND	100	ug/L		05/28/15 17:08	100
1,2,3-Trichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,2,3-Trichloropropane	ND	100	ug/L		05/28/15 17:08	100
1,2,4-Trichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,2,4-Trimethylbenzene	840	100	ug/L		05/28/15 17:08	100
1,2-Dibromo-3-Chloropropane	ND	500	ug/L		05/28/15 17:08	100
1,2-Dibromoethane (EDB)	ND	100	ug/L		05/28/15 17:08	100
1,2-Dichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,2-Dichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,2-Dichloropropane	ND	100	ug/L		05/28/15 17:08	100
1,3,5-Trimethylbenzene	220	100	ug/L		05/28/15 17:08	100
1,3-Dichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,3-Dichloropropane	ND	100	ug/L		05/28/15 17:08	100
1,4-Dichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
2,2-Dichloropropane	ND	100	ug/L		05/28/15 17:08	100
2-Butanone (MEK)	ND	1000	ug/L		05/28/15 17:08	100
2-Chlorotoluene	ND	100	ug/L		05/28/15 17:08	100
2-Hexanone	ND	1000	ug/L		05/28/15 17:08	100
4-Chlorotoluene	ND	100	ug/L		05/28/15 17:08	100
4-Methyl-2-pentanone (MIBK)	ND	1000	ug/L		05/28/15 17:08	100
Acetone	ND	2500	ug/L		05/28/15 17:08	100
Benzene	26	20	ug/L		05/28/15 17:08	100
Bromobenzene	ND	100	ug/L		05/28/15 17:08	100
Bromochloromethane	ND	100	ug/L		05/28/15 17:08	100
Bromodichloromethane	ND	100	ug/L		05/28/15 17:08	100
Bromoform	ND	100	ug/L		05/28/15 17:08	100
Bromomethane	ND	500	ug/L		05/28/15 17:08	100
Carbon disulfide	ND	100	ug/L		05/28/15 17:08	100
Carbon tetrachloride	ND	100	ug/L		05/28/15 17:08	100
Chlorobenzene	ND	100	ug/L		05/28/15 17:08	100
Chloroethane	ND	100	ug/L		05/28/15 17:08	100
Chloroform	ND	100	ug/L		05/28/15 17:08	100
Chloromethane	ND	300	ug/L		05/28/15 17:08	100
cis-1,2-Dichloroethene	ND	100	ug/L		05/28/15 17:08	100
cis-1,3-Dichloropropene	ND	100	ug/L		05/28/15 17:08	100
Dibromochloromethane	ND	100	ug/L		05/28/15 17:08	100
Dibromomethane	ND	100	ug/L		05/28/15 17:08	100
Dichlorodifluoromethane	ND	100	ug/L		05/28/15 17:08	100
Dichlorofluoromethane	ND	20	ug/L		05/28/15 17:08	100
Ethylbenzene	560	100	ug/L		05/28/15 17:08	100
Hexachlorobutadiene	ND	200	ug/L		05/28/15 17:08	100
Hexane	110	100	ug/L		05/28/15 17:08	100

RL

100

200

MDL Unit

ug/L

ug/L

D

Prepared

Client Sample ID: Duplicate Date Collected: 05/19/15 08:00 Date Received: 05/20/15 10:40

Analyte

Isopropylbenzene

m,p-Xylene

Lab Sample ID: 590-870-1 Matrix: Water

Analyzed

05/28/15 17:08

05/28/15 17:08

6

Dil Fac

100

100

	9

,			- 5			
Methyl tert-butyl ether	ND	100	ug/L	0	5/28/15 17:08	100
Methylene Chloride	ND	1000	ug/L	0	5/28/15 17:08	100
Naphthalene	310	200	ug/L	0	5/28/15 17:08	100
n-Butylbenzene	ND	100	ug/L	0	5/28/15 17:08	100
N-Propylbenzene	ND	100	ug/L	0	5/28/15 17:08	100
o-Xylene	840	100	ug/L	0	5/28/15 17:08	100
p-Isopropyltoluene	ND	100	ug/L	0	5/28/15 17:08	100
sec-Butylbenzene	ND	100	ug/L	0	5/28/15 17:08	100
Styrene	ND	100	ug/L	0	5/28/15 17:08	100
tert-Butanol	ND	500	ug/L	0	5/28/15 17:08	100
tert-Butylbenzene	ND	100	ug/L	0	5/28/15 17:08	100
Tetrachloroethene	ND	100	ug/L	0	5/28/15 17:08	100
Toluene	390	100	ug/L	0	5/28/15 17:08	100
trans-1,2-Dichloroethene	ND	100	ug/L	0	5/28/15 17:08	100
trans-1,3-Dichloropropene	ND	100	ug/L	0	5/28/15 17:08	100
Trichloroethene	ND	100	ug/L	0	5/28/15 17:08	100
Trichlorofluoromethane	ND	100	ug/L	0	5/28/15 17:08	100
Vinyl chloride	ND	20	ug/L	0	5/28/15 17:08	100
Xylenes, Total	2900	300	ug/L	0	5/28/15 17:08	100
Surrogate	%Recovery Qua	alifier Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	70 - 140		0	5/28/15 17:08	100
4-Bromofluorobenzene (Surr)	97	68.7 - 141		0	5/28/15 17:08	100
Dibromofluoromethane (Surr)	100	71.2 - 143		0	5/28/15 17:08	100
Toluene-d8 (Surr)	101	74.1 - 135		0	5/28/15 17:08	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

2000

Analyte	Result	Qualifier	RL	` MDĹ	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	14000		10000		ug/L			05/28/15 17:08	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		68.7 - 141					05/28/15 17:08	100

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene 2		1.8		ug/L		05/21/15 12:52	05/21/15 17:43	20
2-Methylnaphthalene	65	1.8		ug/L		05/21/15 12:52	05/21/15 17:43	20
1-Methylnaphthalene	37	1.8		ug/L		05/21/15 12:52	05/21/15 17:43	20
Acenaphthylene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Acenaphthene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Fluorene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Phenanthrene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Anthracene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Fluoranthene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Pyrene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Benzo[a]anthracene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Chrysene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Benzo[b]fluoranthene	ID	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1

Client Sample ID: Duplicate Date Collected: 05/19/15 08:00 Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-1 Matrix: Water

5

6

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzo[k]fluoranthene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	
Benzo[a]pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	
ndeno[1,2,3-cd]pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	
Dibenz(a,h)anthracene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	
Benzo[g,h,i]perylene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Nitrobenzene-d5	69		32.7 - 135				05/21/15 12:52	05/21/15 17:43	
2-Fluorobiphenyl (Surr)	67		44.3 - 120				05/21/15 12:52	05/21/15 15:24	
p-Terphenyl-d14	91		59.5 - 154				05/21/15 12:52	05/21/15 15:24	
Method: 8011 - EDB, DBCP, a	and 1.2.3-TC	P (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		05/27/15 09:58	05/27/15 11:40	
Method: NWTPH-Dx - Northw	vest - Semi-V	olatile Pe	troleum Prod	ucts (G	C)				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil I
Diesel Range Organics (DRO) C10-C25)	1.0		0.24		mg/L		05/26/15 13:14	05/26/15 17:40	
Residual Range Organics (RRO) C25-C36)	ND		0.41		mg/L		05/26/15 13:14	05/26/15 17:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
o-Terphenyl	96		50 - 150				05/00/45 40.44	05/00/45 43 40	
	50		50 - 150				05/26/15 13:14	05/26/15 17:40	
	106		50 - 150 50 - 150					05/26/15 17:40 05/26/15 17:40	
n-Triacontane-d62	106	/olatile Pe	50 - 150	ucts (G	C) - Silica	a Gel (05/26/15 13:14		
n- <i>Triacontane-d</i> 62 Method: NWTPH-Dx - Northw	106 v <mark>est - Semi-V</mark>	<mark>'olatile Pe</mark> Qualifier	50 - 150		C) - <mark>Silic</mark> a Unit	a Gel (D	05/26/15 13:14		Dil I
n- <i>Triacontane-d</i> 62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO)	106 v <mark>est - Semi-V</mark>		50 - 150 troleum Prod				05/26/15 13:14 Cleanup	05/26/15 17:40 Analyzed	Dil
n- <i>Triacontane-d</i> 62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO)	106 V <mark>est - Semi-V</mark> Result		50 - 150 troleum Prod RL		Únit		05/26/15 13:14 Cleanup Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed	Dil
n- <i>Triacontane-d</i> 62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36)	106 vest - Semi-V Result 1.0	Qualifier	50 - 150 troleum Prod RL 0.24		Unit mg/L		05/26/15 13:14 Cleanup Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54	
n- <i>Triacontane-d</i> 62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate	106 vest - Semi-V Result 1.0 ND	Qualifier	50 - 150 troleum Prod RL 0.24 0.41		Unit mg/L		05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54	
n-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate p-Terphenyl	106 vest - Semi-V Result 1.0 ND %Recovery	Qualifier	50 - 150 troleum Produ RL 0.24 0.41 <i>Limits</i>		Unit mg/L		05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed	
n- <i>Triacontane-d</i> 62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate p-Terphenyl n-Triacontane-d62	106 vest - Semi-V Result 1.0 ND %Recovery 97 89	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 <u>Limits</u> 50 - 150		Unit mg/L		05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54	
Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate D-Terphenyl D-Triacontane-d62 Method: 300.0 - Anions, Ion C	106 vest - Semi-V Result 1.0 ND %Recovery 97 89 Chromatogra	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 <u>Limits</u> 50 - 150 50 - 150	MDL	Unit mg/L mg/L		05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54	Dil I Dil I
n-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate p-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion C Analyte	106 rest - Semi-V Result 1.0 ND %Recovery 97 89 Chromatogra Result	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 <u>Limits</u> 50 - 150 50 - 150 RL	MDL	Unit mg/L mg/L	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54	Dil
n-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate p-Terphenyl p-Triacontane-d62 Method: 300.0 - Anions, Ion C Analyte Nitrate as N	106 vest - Semi-V Result 1.0 ND %Recovery 97 89 Chromatogra	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 <u>Limits</u> 50 - 150 50 - 150	MDL	Unit mg/L mg/L	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54	Dil
An-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate D-Terphenyl D-Triacontane-d62 Method: 300.0 - Anions, Ion C Analyte Nitrate as N Sulfate	106 vest - Semi-V Result 1.0 ND %Recovery 97 89 Chromatogra Result 2.9 16	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 <i>Limits</i> 50 - 150 50 - 150 RL 0.20	MDL	Unit mg/L mg/L Unit mg/L	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54 05/27/15 09:54	
n-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate p-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion C Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Metal	106 vest - Semi-V Result 1.0 ND - %Recovery 97 89 Chromatogra Result 2.9 16 Is (ICP)	Qualifier Qualifier	50 - 150 troleum Prod 0.24 0.41 <i>Limits</i> 50 - 150 50 - 150 RL 0.20 0.50	MDL	Unit mg/L mg/L Unit mg/L mg/L	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54 05/27/15 16:00 05/20/15 16:00	Dil
n-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate p-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion C Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Metal Analyte Lead	106 vest - Semi-V Result 1.0 ND - %Recovery 97 89 Chromatogra Result 2.9 16 Is (ICP)	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 <i>Limits</i> 50 - 150 50 - 150 RL 0.20	MDL	Unit mg/L mg/L Unit mg/L	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54 05/27/15 09:54 05/20/15 16:00 05/20/15 16:00 Analyzed	Dil
A-Triacontane-d62 Method: NWTPH-Dx - Northw Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate p-Terphenyl h-Triacontane-d62 Method: 300.0 - Anions, Ion C Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Metal Analyte Lead	106 vest - Semi-V Result 1.0 ND %Recovery 97 89 Chromatogra Result 2.9 16 Is (ICP) Result	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 Limits 50 - 150 50 - 150 RL 0.20 0.50 RL	MDL	Unit mg/L mg/L Unit mg/L Unit	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54 05/27/15 16:00 05/20/15 16:00 Analyzed	Dil
Analyte Diesel Range Organics (DRO) C10-C25) Residual Range Organics (RRO) C25-C36) Surrogate Diethod: 300.0 - Anions, Ion C Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Metal Analyte	106 vest - Semi-V Result 1.0 ND %Recovery 97 89 Chromatogra Result 2.9 16 Is (ICP) Result ND	Qualifier Qualifier	50 - 150 troleum Prod RL 0.24 0.41 Limits 50 - 150 50 - 150 RL 0.20 0.50 RL	MDL MDL	Unit mg/L mg/L Unit mg/L Unit	D	05/26/15 13:14 Cleanup Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/26/15 17:40 Analyzed 05/27/15 09:54 05/27/15 09:54 Analyzed 05/27/15 09:54 05/27/15 09:54 05/27/15 16:00 05/20/15 16:00 Analyzed	Dil I

Client Sample ID: SVMW-2 Date Collected: 05/19/15 12:46 Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-2 Matrix: Water

5 6

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		05/28/15 17:30	1
1,1,1-Trichloroethane	ND	1.0	ug/L		05/28/15 17:30	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		05/28/15 17:30	1
1,1,2-Trichloroethane	ND	1.0	ug/L		05/28/15 17:30	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L		05/28/15 17:30	1
1,1-Dichloroethane	ND	1.0	ug/L		05/28/15 17:30	
1,1-Dichloroethene	ND	1.0	ug/L		05/28/15 17:30	
1,1-Dichloropropene	ND	1.0	ug/L		05/28/15 17:30	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		05/28/15 17:30	
1,2,3-Trichloropropane	ND	1.0	ug/L		05/28/15 17:30	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/28/15 17:30	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		05/28/15 17:30	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		05/28/15 17:30	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		05/28/15 17:30	
,2-Dichlorobenzene	ND	1.0	ug/L		05/28/15 17:30	
,2-Dichloroethane	ND	1.0	ug/L		05/28/15 17:30	
,2-Dichloropropane	ND	1.0	ug/L		05/28/15 17:30	
I,3,5-Trimethylbenzene	ND	1.0	ug/L		05/28/15 17:30	
,3-Dichlorobenzene	ND	1.0	ug/L		05/28/15 17:30	
I,3-Dichloropropane	ND	1.0	ug/L		05/28/15 17:30	
.4-Dichlorobenzene	ND	1.0	ug/L		05/28/15 17:30	
2,2-Dichloropropane	ND	1.0	ug/L		05/28/15 17:30	
2-Butanone (MEK)	ND	10	ug/L		05/28/15 17:30	
2-Chlorotoluene	ND	1.0	ug/L		05/28/15 17:30	
2-Hexanone	ND	10	ug/L		05/28/15 17:30	
I-Chlorotoluene	ND	1.0	ug/L		05/28/15 17:30	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		05/28/15 17:30	
Acetone	ND	25	ug/L		05/28/15 17:30	
Benzene	ND	0.20	ug/L		05/28/15 17:30	
Bromobenzene	ND	1.0	ug/L		05/28/15 17:30	
Bromochloromethane	ND	1.0	ug/L		05/28/15 17:30	
Bromodichloromethane	ND	1.0	ug/L		05/28/15 17:30	
Bromoform	ND	1.0	ug/L		05/28/15 17:30	
Bromomethane	ND	5.0	ug/L		05/28/15 17:30	
Carbon disulfide	ND	1.0			05/28/15 17:30	
Carbon tetrachloride	ND	1.0	ug/L		05/28/15 17:30	
Chlorobenzene	ND	1.0	ug/L		05/28/15 17:30	
Chloroethane	ND	1.0	ug/L		05/28/15 17:30	
Chloroform	ND	1.0	ug/L		05/28/15 17:30	
			ug/L			
Chloromethane	ND	3.0	ug/L		05/28/15 17:30	
sis-1,2-Dichloroethene	ND	1.0	ug/L		05/28/15 17:30	
is-1,3-Dichloropropene	ND	1.0	ug/L		05/28/15 17:30	
Dibromochloromethane	ND	1.0	ug/L		05/28/15 17:30	
Dibromomethane	ND	1.0	ug/L		05/28/15 17:30	
Dichlorodifluoromethane	ND	1.0	ug/L		05/28/15 17:30	
Dichlorofluoromethane	ND	0.20	ug/L		05/28/15 17:30	
Ethylbenzene	ND	1.0	ug/L		05/28/15 17:30	
Hexachlorobutadiene Hexane	ND ND	2.0 1.0	ug/L ug/L		05/28/15 17:30 05/28/15 17:30	

RL

MDL Unit

D

Prepared

Client Sample ID: SVMW-2 Date Collected: 05/19/15 12:46 Date Received: 05/20/15 10:40

Analyte

Lab Sample ID: 590-870-2

Matrix: Water Dil Fac Analyzed 6

Toluene-d8 (Surr)	96		74.1 - 135			05/28/15 17:30	1
Dibromofluoromethane (Surr)	100		71.2 - 143			05/28/15 17:30	1
4-Bromofluorobenzene (Surr)	102		68.7 - 141			05/28/15 17:30	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 140			05/28/15 17:30	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		3.0	ug/L		05/28/15 17:30	1
Vinyl chloride	ND		0.20	ug/L		05/28/15 17:30	1
Trichlorofluoromethane	ND		1.0	ug/L		05/28/15 17:30	1
Trichloroethene	ND		1.0	ug/L		05/28/15 17:30	1
trans-1,3-Dichloropropene	ND		1.0	ug/L		05/28/15 17:30	1
trans-1,2-Dichloroethene	ND		1.0	ug/L		05/28/15 17:30	1
Toluene	ND		1.0	ug/L		05/28/15 17:30	1
Tetrachloroethene	ND		1.0	ug/L		05/28/15 17:30	1
tert-Butylbenzene	ND		1.0	ug/L		05/28/15 17:30	1
tert-Butanol	ND		5.0	ug/L		05/28/15 17:30	1
Styrene	ND		1.0	ug/L		05/28/15 17:30	1
sec-Butylbenzene	ND		1.0	ug/L		05/28/15 17:30	1
p-Isopropyltoluene	ND		1.0	ug/L		05/28/15 17:30	1
o-Xylene	ND		1.0	ug/L		05/28/15 17:30	1
N-Propylbenzene	ND		1.0	ug/L		05/28/15 17:30	1
n-Butylbenzene	ND		1.0	ug/L		05/28/15 17:30	1
Naphthalene	ND		2.0	ug/L		05/28/15 17:30	1
Methylene Chloride	ND		10	ug/L		05/28/15 17:30	1
Methyl tert-butyl ether	ND		1.0	ug/L		05/28/15 17:30	1
m,p-Xylene	ND		2.0	ug/L		05/28/15 17:30	1
Isopropylbenzene	ND		1.0	ug/L		05/28/15 17:30	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Analyte	Result	Qualifier	RL	` MDĹ	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L			05/28/15 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		68.7 - 141					05/28/15 17:30	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
2-Methylnaphthalene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
1-Methylnaphthalene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Acenaphthylene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Acenaphthene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Fluorene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Phenanthrene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Anthracene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Fluoranthene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Pyrene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Benzo[a]anthracene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Chrysene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Benzo[b]fluoranthene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1

Client Sample ID: SVMW-2 Date Collected: 05/19/15 12:46 Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[k]fluoranthene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	
Benzo[a]pyrene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	
Indeno[1,2,3-cd]pyrene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	
Dibenz(a,h)anthracene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	
Benzo[g,h,i]perylene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	96		32.7 - 135				05/21/15 12:52	05/21/15 15:52	
2-Fluorobiphenyl (Surr)	72		44.3 - 120				05/21/15 12:52	05/21/15 15:52	
p-Terphenyl-d14	94		59.5 - 154				05/21/15 12:52	05/21/15 15:52	
Method: 8011 - EDB, DBCP,	and 1,2,3-TC	P (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		05/27/15 09:58	05/27/15 11:56	
Method: NWTPH-Dx - North	west - Semi-V	olatile Pe	troleum Prod	ucts (G	C)				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) C10-C25)	ND		0.25		mg/L		05/26/15 13:14	05/26/15 18:00	
Residual Range Organics (RRO)	ND		0.42		mg/L		05/26/15 13:14	05/26/15 18:00	
(C25-C36)	%Recovery	Qualifier	Limits				Prepared	Analyzed	
(C25-C36) Surrogate	%Recovery 97	Qualifier					Prepared 05/26/15 13:14	Analyzed 05/26/15 18:00	Dil Fa
(C25-C36) Surrogate o-Terphenyl	-	Qualifier	Limits				05/26/15 13:14	-	Dil Fa
(C25-C36) Surrogate p-Terphenyl n-Triacontane-d62	97 97 107		Limits				05/26/15 13:14	05/26/15 18:00	Dil Fa
(C25-C36) Surrogate p-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion	97 107 Chromatogra Result		Limits 50 - 150 50 - 150 RL	MDL	Unit	D	05/26/15 13:14	05/26/15 18:00	Dil Fa
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte	97 107 Chromatogra	phy	Limits 50 - 150 50 - 150	MDL	Unit mg/L	<u>D</u>	05/26/15 13:14 05/26/15 13:14	05/26/15 18:00 05/26/15 18:00	Dil Fa
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N	97 107 Chromatogra Result	phy	Limits 50 - 150 50 - 150 RL	MDL		D	05/26/15 13:14 05/26/15 13:14	05/26/15 18:00 05/26/15 18:00 Analyzed	
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate	97 107 Chromatogra Result 7.5 32	phy	Limits 50 - 150 50 - 150 RL 0.20	MDL	mg/L	D	05/26/15 13:14 05/26/15 13:14	05/26/15 18:00 05/26/15 18:00 05/26/15 18:00 Analyzed 05/20/15 16:13	Dil Fa
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta	97 107 Chromatogra Result 7.5 32 als (ICP)	phy	Limits 50 - 150 50 - 150 RL 0.20	MDL	mg/L mg/L	D	05/26/15 13:14 05/26/15 13:14	05/26/15 18:00 05/26/15 18:00 05/26/15 18:00 Analyzed 05/20/15 16:13	Dil Fa
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte	97 107 Chromatogra Result 7.5 32 als (ICP)	phy Qualifier	Limits 50 - 150 50 - 150 RL 0.20 0.50		mg/L mg/L		05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/26/15 18:00 05/26/15 18:00 Analyzed 05/20/15 16:13 05/20/15 16:13	Dil Fa Dil Fa
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte Lead	Chromatogra Result 7.5 32 als (ICP) Result	phy Qualifier	Limits 50 - 150 50 - 150 - RL 0.20 0.50 - RL		mg/L mg/L Unit		05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/26/15 18:00 05/26/15 18:00 Analyzed 05/20/15 16:13 05/20/15 16:13 Analyzed	Dil Fa Dil Fa
(C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte Lead General Chemistry Analyte Total Organic Carbon	Ghromatogra Result 7.5 32 als (ICP) Result ND	phy Qualifier	Limits 50 - 150 50 - 150 - RL 0.20 0.50 - RL		mg/L mg/L Unit mg/L		05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/26/15 18:00 05/26/15 18:00 Analyzed 05/20/15 16:13 05/20/15 16:13 Analyzed	Dil Fa

Client Sample ID: SVMW-3 Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

Method: 8260C - Volatile Org	janic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	100	ug/L			05/28/15 18:01	100
1,1,1-Trichloroethane	ND	100	ug/L			05/28/15 18:01	100
1,1,2,2-Tetrachloroethane	ND	100	ug/L			05/28/15 18:01	100
1,1,2-Trichloroethane	ND	100	ug/L			05/28/15 18:01	100
1,1,2-Trichlorotrifluoroethane	ND	100	ug/L			05/28/15 18:01	100
1,1-Dichloroethane	ND	100	ug/L			05/28/15 18:01	100
1,1-Dichloroethene	ND	100	ug/L			05/28/15 18:01	100

TestAmerica Spokane

Lab Sample ID: 590-870-3

Matrix: Water

RL

MDL Unit

D

Prepared

Client Sample ID: SVMW-3 Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

Analyte

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Lab Sample ID: 590-870-3 Matrix: Water

Analyzed

Dil Fac

10

12

-					
1,1-Dichloropropene	ND	100	ug/L		100
1,2,3-Trichlorobenzene	ND	100	ug/L	05/28/15 18:01	100
1,2,3-Trichloropropane	ND	100	ug/L	05/28/15 18:01	100
1,2,4-Trichlorobenzene	ND	100	ug/L	05/28/15 18:01	100
1,2,4-Trimethylbenzene	900	100	ug/L	05/28/15 18:01	100
1,2-Dibromo-3-Chloropropane	ND	500	ug/L	05/28/15 18:01	100
1,2-Dibromoethane (EDB)	ND	100	ug/L	05/28/15 18:01	100
1,2-Dichlorobenzene	ND	100	ug/L	05/28/15 18:01	100
1,2-Dichloroethane	ND	100	ug/L	05/28/15 18:01	100
1,2-Dichloropropane	ND	100	ug/L	05/28/15 18:01	100
1,3,5-Trimethylbenzene	240	100	ug/L	05/28/15 18:01	100
1,3-Dichlorobenzene	ND	100	ug/L	05/28/15 18:01	100
1,3-Dichloropropane	ND	100	ug/L	05/28/15 18:01	100
1,4-Dichlorobenzene	ND	100	ug/L	05/28/15 18:01	100
2,2-Dichloropropane	ND	100	ug/L	05/28/15 18:01	100
2-Butanone (MEK)	ND	1000	ug/L	05/28/15 18:01	100
2-Chlorotoluene	ND	100	ug/L	05/28/15 18:01	100
2-Hexanone	ND	1000	ug/L	05/28/15 18:01	100
4-Chlorotoluene	ND	100	ug/L	05/28/15 18:01	100
4-Methyl-2-pentanone (MIBK)	ND	1000	ug/L	05/28/15 18:01	100
Acetone	ND	2500	ug/L	05/28/15 18:01	100
Benzene	25	20	ug/L	05/28/15 18:01	100
Bromobenzene	ND	100	ug/L	05/28/15 18:01	100
Bromochloromethane	ND	100	ug/L	05/28/15 18:01	100
Bromodichloromethane	ND	100	ug/L	05/28/15 18:01	100
Bromoform	ND	100	ug/L	05/28/15 18:01	100
Bromomethane	ND	500	ug/L	05/28/15 18:01	100
Carbon disulfide	ND	100	ug/L	05/28/15 18:01	100
Carbon tetrachloride	ND	100	ug/L	05/28/15 18:01	100
Chlorobenzene	ND	100	ug/L	05/28/15 18:01	100
Chloroethane	ND	100	ug/L	05/28/15 18:01	100
Chloroform	ND	100	ug/L	05/28/15 18:01	100
Chloromethane	ND	300	ug/L	05/28/15 18:01	100
cis-1,2-Dichloroethene	ND	100	ug/L	05/28/15 18:01	100
cis-1,3-Dichloropropene	ND	100	ug/L	05/28/15 18:01	100
Dibromochloromethane	ND	100	ug/L	05/28/15 18:01	100
Dibromomethane	ND	100	ug/L	05/28/15 18:01	100
Dichlorodifluoromethane	ND	100	ug/L	05/28/15 18:01	100
Dichlorofluoromethane	ND	20	ug/L	05/28/15 18:01	100
Ethylbenzene	570	100	ug/L	05/28/15 18:01	100
Hexachlorobutadiene	ND	200	ug/L	05/28/15 18:01	100
Hexane	120	100	ug/L	05/28/15 18:01	100
Isopropylbenzene	ND	100	ug/L	05/28/15 18:01	100
m,p-Xylene	2100	200	ug/L	05/28/15 18:01	100
Methyl tert-butyl ether	ND	100	ug/L	05/28/15 18:01	100
Methylene Chloride	ND	1000	ug/L	05/28/15 18:01	100
-	290	200	ug/L	05/28/15 18:01	100
Naphthalene n.Butvibenzene	290 ND				100
n-Butylbenzene		100 100	ug/L	05/28/15 18:01 05/28/15 18:01	100
N-Propylbenzene	110	100	ug/L	05/26/15 16:01	100

Client Sample ID: SVMW-3 Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 590-870-3 Matrix: Water

05/28/15 18:01

05/28/15 18:01

100

100

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	830		100		ug/L			05/28/15 18:01	100
p-Isopropyltoluene	ND		100		ug/L			05/28/15 18:01	100
sec-Butylbenzene	ND		100		ug/L			05/28/15 18:01	100
Styrene	ND		100		ug/L			05/28/15 18:01	100
tert-Butanol	ND		500		ug/L			05/28/15 18:01	100
tert-Butylbenzene	ND		100		ug/L			05/28/15 18:01	100
Tetrachloroethene	ND		100		ug/L			05/28/15 18:01	100
Toluene	400		100		ug/L			05/28/15 18:01	100
trans-1,2-Dichloroethene	ND		100		ug/L			05/28/15 18:01	100
trans-1,3-Dichloropropene	ND		100		ug/L			05/28/15 18:01	100
Trichloroethene	ND		100		ug/L			05/28/15 18:01	100
Trichlorofluoromethane	ND		100		ug/L			05/28/15 18:01	100
Vinyl chloride	ND		20		ug/L			05/28/15 18:01	100
Xylenes, Total	2900		300		ug/L			05/28/15 18:01	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 140					05/28/15 18:01	100
4-Bromofluorobenzene (Surr)	105		68.7 - 141					05/28/15 18:01	100

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

104

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	14000		10000		ug/L			05/28/15 18:01	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		68.7 - 141					05/28/15 18:01	100

71.2 - 143

74.1 - 135

Method: 8270D SIM - Sem	ivolatile Organic	Compounds (GC/MS	S SIM)				
Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	210	1.8	ug/L		05/21/15 12:52	05/21/15 18:38	20
2-Methylnaphthalene	<mark>68</mark>	1.8	ug/L		05/21/15 12:52	05/21/15 18:38	20
1-Methylnaphthalene	38	1.8	ug/L		05/21/15 12:52	05/21/15 18:38	20
Acenaphthylene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Acenaphthene	0.10	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Fluorene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Phenanthrene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Anthracene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Fluoranthene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Pyrene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[a]anthracene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Chrysene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[b]fluoranthene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[k]fluoranthene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[a]pyrene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Indeno[1,2,3-cd]pyrene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Dibenz(a,h)anthracene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[g,h,i]perylene	ND	0.089	ug/L		05/21/15 12:52	05/21/15 16:20	1
Surrogate	%Recovery G	Qualifier Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56	32.7 - 135			05/21/15 12:52	05/21/15 18:38	20

05/21/15 12:52 05/21/15 18:38 20

Client Sample Results

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View TestAmerica Job ID: 590-870-1

Client Sample ID: SVMW-3 Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-3 Matrix: Water

> 5 6

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	65		44.3 - 120				05/21/15 12:52	05/21/15 16:20	
p-Terphenyl-d14	83		59.5 - 154				05/21/15 12:52	05/21/15 16:20	
Method: 8011 - EDB, DBCP,	and 1,2,3-TC	P (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		05/27/15 09:58	05/27/15 12:13	
Method: NWTPH-Dx - Northy	west - Semi-V	olatile Pe	troleum Prod	ucts (G	C)				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) (C10-C25)	1.0		0.23		mg/L		05/26/15 13:14	05/26/15 18:20	
Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		05/26/15 13:14	05/26/15 18:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	94		50 - 150				05/26/15 13:14	05/26/15 18:20	
n-Triacontane-d62	106		50 - 150				05/26/15 13:14	05/26/15 18:20	
Analyte Diesel Range Organics (DRO) (C10-C25)		Olatile Pe Qualifier	RL 0.23		Únit mg/L	a Gel (Prepared 05/26/15 13:14	Analyzed 05/27/15 10:14	Dil Fa
Method: NWTPH-Dx - Northy Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36)	Result		RL		Únit		Prepared 05/26/15 13:14	•	
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate	Result 0.99 ND %Recovery	Qualifier	RL 0.23 0.39 <i>Limits</i>		Únit mg/L		Prepared 05/26/15 13:14 05/26/15 13:14 Prepared	05/27/15 10:14 05/27/15 10:14 Analyzed	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate p-Terphenyl	Result 0.99 ND 	Qualifier	RL 0.23 0.39 Limits 50 - 150		Únit mg/L		Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14	
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36)	Result 0.99 ND %Recovery	Qualifier	RL 0.23 0.39 <i>Limits</i>		Únit mg/L		Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed	
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate po-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion	Result 0.99 ND %Recovery 96 94 Chromatogra	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150	MDL	Únit mg/L mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate po-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte	Result Chromatogra Result	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 RL	MDL	Únit mg/L mg/L Unit		Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14 Analyzed	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate po-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion	Result 0.99 ND %Recovery 96 94 Chromatogra	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150	MDL	Únit mg/L mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N	Result 0.99 ND %Recovery 96 94 Chromatogra Result 3.2 17	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 50 - 200	MDL	Únit mg/L mg/L Unit mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14 05/27/15 10:14 05/20/15 16:26	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate	Result 0.99 ND %Recovery 96 94 Chromatogra Result 3.2 17 als (ICP)	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 50 - 200	MDL	Únit mg/L mg/L Unit mg/L mg/L Unit	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/27/15 10:14 05/27/15 10:14 Malyzed 05/27/15 10:14 05/27/15 10:14 05/20/15 10:26 05/20/15 16:26 Analyzed	
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta	Result 0.99 ND %Recovery 96 94 Chromatogra Result 3.2 17 als (ICP)	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 50 - 150 0.20 0.20 0.50	MDL	Únit mg/L mg/L Unit mg/L mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14 05/27/15 10:14 05/20/15 16:26 05/20/15 16:26	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte Lead General Chemistry	Result 0.99 ND %Recovery 96 94 Chromatogra Result 3.2 17 als (ICP) Result ND	Qualifier Qualifier Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 50 - 150 0.20 0.50 RL 0.014	MDL MDL	Únit mg/L mg/L Mg/L mg/L Unit mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14 05/27/15 10:14 Analyzed 05/20/15 16:26 05/20/15 16:26 05/20/15 16:26	Dil Fa Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte Lead General Chemistry Analyte	Result 0.99 ND %Recovery 96 94 Chromatogra Result 3.2 17 als (ICP) Result ND Result ND	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 50 - 150 RL 0.20 0.50 RL 0.014	MDL MDL	Únit mg/L mg/L Unit mg/L Unit mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 13:14 05/26/15 13:14 Prepared Prepared	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14 Analyzed 05/20/15 16:26 05/20/15 16:26 05/20/15 16:26 Analyzed 05/28/15 22:14 Analyzed	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate p-Terphenyl n-Triacontane-d62 Method: 300.0 - Anions, Ion Analyte Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte Lead General Chemistry	Result 0.99 ND %Recovery 96 94 Chromatogra Result 3.2 17 als (ICP) Result ND	Qualifier Qualifier Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150 50 - 150 0.20 0.50 RL 0.014	MDL MDL	Únit mg/L mg/L Mg/L mg/L Unit mg/L	D	Prepared 05/26/15 13:14 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14 Prepared 05/26/15 05/26/15 13:14	05/27/15 10:14 05/27/15 10:14 Analyzed 05/27/15 10:14 05/27/15 10:14 05/27/15 10:14 Analyzed 05/20/15 16:26 05/20/15 16:26 05/28/15 22:14	Dil Fa Dil Fa Dil Fa

weillou. 02000 - Volatile Org	and compounds by Gon						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 18:23	1
1,1,1-Trichloroethane	ND	1.0	ug/L			05/28/15 18:23	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 18:23	1
1,1,2-Trichloroethane	ND	1.0	ug/L			05/28/15 18:23	1
	Analyte 1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	AnalyteResultQualifier1,1,1,2-TetrachloroethaneND1,1,1-TrichloroethaneND1,1,2,2-TetrachloroethaneND	1,1,1,2-TetrachloroethaneND1.01,1,1-TrichloroethaneND1.01,1,2,2-TetrachloroethaneND1.0	AnalyteResultQualifierRLMDLUnit1,1,1,2-TetrachloroethaneND1.0ug/L1,1,1-TrichloroethaneND1.0ug/L1,1,2,2-TetrachloroethaneND1.0ug/L	AnalyteResultQualifierRLMDLUnitD1,1,1,2-TetrachloroethaneND1.0ug/L1,1,1-TrichloroethaneND1.0ug/L1,1,2,2-TetrachloroethaneND1.0ug/L	AnalyteResultQualifierRLMDLUnitDPrepared1,1,1,2-TetrachloroethaneND1.0ug/LImage: Compared to the second sec	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/28/15 18:23 05/28/15 18:23 1,1,1-Trichloroethane ND 1.0 ug/L 05/28/15 18:23 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 05/28/15 18:23 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 05/28/15 18:23

RL

MDL Unit

D

Prepared

Client Sample ID: SVMW-4 Date Collected: 05/19/15 11:30 Date Received: 05/20/15 10:40

Analyte

Methyl tert-butyl ether

Methylene Chloride

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Lab Sample ID: 590-870-4 Matrix: Water

Analyzed

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Analyte	Result	Quaimer			D Flepaleu	Analyzeu	DIFa
1,1,2-Trichlorotrifluoroethane	ND		1.0	ug/L		05/28/15 18:23	
1,1-Dichloroethane	ND		1.0	ug/L		05/28/15 18:23	
1,1-Dichloroethene	ND		1.0	ug/L		05/28/15 18:23	
1,1-Dichloropropene	ND		1.0	ug/L		05/28/15 18:23	
1,2,3-Trichlorobenzene	ND		1.0	ug/L		05/28/15 18:23	
1,2,3-Trichloropropane	ND		1.0	ug/L		05/28/15 18:23	
1,2,4-Trichlorobenzene	ND		1.0	ug/L		05/28/15 18:23	
1,2,4-Trimethylbenzene	ND		1.0	ug/L		05/28/15 18:23	
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L		05/28/15 18:23	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		05/28/15 18:23	
1,2-Dichlorobenzene	ND		1.0	ug/L		05/28/15 18:23	
1,2-Dichloroethane	ND		1.0	ug/L		05/28/15 18:23	
1,2-Dichloropropane	ND		1.0	ug/L		05/28/15 18:23	
1,3,5-Trimethylbenzene	ND		1.0	ug/L		05/28/15 18:23	
1,3-Dichlorobenzene	ND		1.0	ug/L		05/28/15 18:23	
1,3-Dichloropropane	ND		1.0	ug/L		05/28/15 18:23	
1,4-Dichlorobenzene	ND		1.0	ug/L		05/28/15 18:23	
2,2-Dichloropropane	ND		1.0	· · · · · · · · · · · · · · · · · ·		05/28/15 18:23	
2-Butanone (MEK)	ND		10	ug/L ug/L		05/28/15 18:23	
2-Chlorotoluene	ND		1.0	-		05/28/15 18:23	
				ug/L			
2-Hexanone	ND		10	ug/L		05/28/15 18:23	
4-Chlorotoluene	ND		1.0	ug/L		05/28/15 18:23	
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L		05/28/15 18:23	
Acetone	ND		25	ug/L		05/28/15 18:23	
Benzene	ND		0.20	ug/L		05/28/15 18:23	
Bromobenzene	ND		1.0	ug/L		05/28/15 18:23	
Bromochloromethane	ND		1.0	ug/L		05/28/15 18:23	
Bromodichloromethane	ND		1.0	ug/L		05/28/15 18:23	
Bromoform	ND		1.0	ug/L		05/28/15 18:23	
Bromomethane	ND		5.0	ug/L		05/28/15 18:23	
Carbon disulfide	ND		1.0	ug/L		05/28/15 18:23	
Carbon tetrachloride	ND		1.0	ug/L		05/28/15 18:23	
Chlorobenzene	ND		1.0	ug/L		05/28/15 18:23	
Chloroethane	ND		1.0	ug/L		05/28/15 18:23	
Chloroform	ND		1.0	ug/L		05/28/15 18:23	
Chloromethane	ND		3.0	ug/L		05/28/15 18:23	
cis-1,2-Dichloroethene	ND		1.0	ug/L		05/28/15 18:23	
cis-1,3-Dichloropropene	ND		1.0	ug/L		05/28/15 18:23	
Dibromochloromethane	ND		1.0	ug/L		05/28/15 18:23	
Dibromomethane	ND		1.0	ug/L		05/28/15 18:23	
Dichlorodifluoromethane	ND		1.0	ug/L		05/28/15 18:23	
Dichlorofluoromethane	ND	C	0.20	ug/L		05/28/15 18:23	
Ethylbenzene	ND		1.0	ug/L		05/28/15 18:23	
Hexachlorobutadiene	ND		2.0	ug/L		05/28/15 18:23	
Hexane	ND		1.0	ug/L		05/28/15 18:23	
Isopropylbenzene	ND		1.0	ug/L		05/28/15 18:23	
m,p-Xylene	ND		2.0	ug/L		05/28/15 18:23	
				· · · · · · · · · · · · · · · · · · ·			

TestAmerica Spokane

05/28/15 18:23

05/28/15 18:23

1.0

10

ug/L

ug/L

ND

ND

Vinyl chloride

Xylenes, Total

Lab Sample ID: 590-870-4 Matrix: Water

05/28/15 18:23

05/28/15 18:23

1

1

Method: 8260C - Volatile Orga	anic Compounds by GC/	MS (Continu	led)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Naphthalene	ND	2.0		ug/L			05/28/15 18:23
n-Butylbenzene	ND	1.0		ug/L			05/28/15 18:23
N-Propylbenzene	ND	1.0		ug/L			05/28/15 18:23
o-Xylene	ND	1.0		ug/L			05/28/15 18:23
p-Isopropyltoluene	ND	1.0		ug/L			05/28/15 18:23
sec-Butylbenzene	ND	1.0		ug/L			05/28/15 18:23
Styrene	ND	1.0		ug/L			05/28/15 18:23
tert-Butanol	ND	5.0		ug/L			05/28/15 18:23
tert-Butylbenzene	ND	1.0		ug/L			05/28/15 18:23
Tetrachloroethene	ND	1.0		ug/L			05/28/15 18:23
Toluene	ND	1.0		ug/L			05/28/15 18:23
trans-1,2-Dichloroethene	ND	1.0		ug/L			05/28/15 18:23
trans-1,3-Dichloropropene	ND	1.0		ug/L			05/28/15 18:23
Trichloroethene	ND	1.0		ug/L			05/28/15 18:23
Trichlorofluoromethane	ND	1.0		ug/L			05/28/15 18:23

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	70 - 140		05/28/15 18:23	1
4-Bromofluorobenzene (Surr)	107	68.7 - 141	(05/28/15 18:23	1
Dibromofluoromethane (Surr)	100	71.2 - 143	(05/28/15 18:23	1
Toluene-d8 (Surr)	99	74.1 - 135	(05/28/15 18:23	1

0.20

3.0

ug/L

ug/L

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

ND

ND

Analyte Gasoline	Result Qualifier	RL 100	MDL Unit ug/L	D	Prepared	Analyzed 05/28/15 18:23	Dil Fac
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107	68.7 - 141				05/28/15 18:23	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
2-Methylnaphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
1-Methylnaphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Acenaphthylene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Acenaphthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Fluorene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Phenanthrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[a]anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Chrysene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[b]fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[k]fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[a]pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Indeno[1,2,3-cd]pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Dibenz(a,h)anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1

Lab Sample ID: 590-870-4 Matrix: Water

5 6 7

Client Sample ID: SVMW-4 Date Collected: 05/19/15 11:30 Date Received: 05/20/15 10:40

1,2,4-Trichlorobenzene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[g,h,i]perylene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 16:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	96		32.7 - 135				05/21/15 12:52	05/21/15 16:47	
2-Fluorobiphenyl (Surr)	74		44.3 - 120				05/21/15 12:52	05/21/15 16:47	
p-Terphenyl-d14	90		59.5 - 154				05/21/15 12:52	05/21/15 16:47	
Method: 8011 - EDB, DBCP,	and 1,2,3-TC	P (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		05/27/15 09:58	05/27/15 12:29	
Method: NWTPH-Dx - North	west - Semi-V	olatile Pe	troleum Prod	ucts (G	C)				
Analyte		Qualifier	RL		Únit	D	Prepared	Analyzed	Dil F
Diesel Range Organics (DRO) C10-C25)	ND		0.24		mg/L		05/26/15 13:14	05/26/15 18:40	
Residual Range Organics (RRO) C25-C36)	ND		0.40		mg/L		05/26/15 13:14	05/26/15 18:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
-Terphenyl	97		50 - 150				05/26/15 13:14	05/26/15 18:40	
-Triacontane-d62	107		50 - 150				05/26/15 13:14	05/26/15 18:40	
lethod: 300.0 - Anions, Ion	Chromatogra	aphy							
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
litrate as N	9.2		0.20		mg/L			05/20/15 16:39	
ulfate	29		0.50		mg/L			05/20/15 16:39	
/lethod: 200.7 Rev 4.4 - Met									
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ead	ND		0.014		mg/L		05/27/15 14:00	05/28/15 22:17	
General Chemistry		0 110				_	_ .		
Inalyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil F
otal Organic Carbon	1.6		1.0		mg/L			05/26/15 11:39	
ient Sample ID: SVMW							Lab Sam	ple ID: 590-	
te Collected: 05/19/15 13:3 te Received: 05/20/15 10:4								Matrix	: Wat
lethod: 8260C - Volatile Or	ganic Compo	unds by G	GC/MS						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
,1,1,2-Tetrachloroethane	ND		10		ug/L			05/28/15 18:45	
,1,1-Trichloroethane	ND		10		ug/L			05/28/15 18:45	
1,2,2-Tetrachloroethane	ND		10		ug/L			05/28/15 18:45	
1,2-Trichloroethane	ND		10		ug/L			05/28/15 18:45	
1,2-Trichlorotrifluoroethane	ND		10		ug/L			05/28/15 18:45	
1-Dichloroethane	ND		10		ug/L			05/28/15 18:45	
1-Dichloroethene	ND		10		ug/L			05/28/15 18:45	
1-Dichloropropene	ND		10		ug/L			05/28/15 18:45	
,2,3-Trichlorobenzene	ND		10		ug/L			05/28/15 18:45	
,_,									
,2,3-Trichloropropane	ND		10		ug/L			05/28/15 18:45	

TestAmerica Spokane

05/28/15 18:45

10

ug/L

ND

10

RL

10

50

10

10

10

10

10

10

10

10

10

100

10

100

10

100

250

2.0

10

MDL Unit

ug/L

D

Prepared

Client Sample ID: SVMW-5 Date Collected: 05/19/15 13:35 Date Received: 05/20/15 10:40

Analyte

1,2,4-Trimethylbenzene

1,2-Dibromoethane (EDB)

1,3,5-Trimethylbenzene

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene

2,2-Dichloropropane

2-Butanone (MEK)

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

4-Methyl-2-pentanone (MIBK)

2-Hexanone

Acetone

Benzene

1,2-Dibromo-3-Chloropropane

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

190

ND

ND

ND

ND

ND

100

ND

Lab Sample ID: 590-870-5 Matrix: Water

Analyzed

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

6

Dil Fac

10

10 10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

2.0			~ <u>9</u> , <u>=</u>		
Bromochloromethane	ND	10	ug/L	05/28/15 18:45	10
Bromodichloromethane	ND	10	ug/L	05/28/15 18:45	10
Bromoform	ND	10	ug/L	05/28/15 18:45	10
Bromomethane	ND	50	ug/L	05/28/15 18:45	10
Carbon disulfide	ND	10	ug/L	05/28/15 18:45	10
Carbon tetrachloride	ND	10	ug/L	05/28/15 18:45	10
Chlorobenzene	ND	10	ug/L	05/28/15 18:45	10
Chloroethane	ND	10	ug/L	05/28/15 18:45	10
Chloroform	ND	10	ug/L	05/28/15 18:45	10
Chloromethane	ND	30	ug/L	05/28/15 18:45	10
cis-1,2-Dichloroethene	ND	10	ug/L	05/28/15 18:45	10
cis-1,3-Dichloropropene	ND	10	ug/L	05/28/15 18:45	10
Dibromochloromethane	ND	10	ug/L	05/28/15 18:45	10
Dibromomethane	ND	10	ug/L	05/28/15 18:45	10
Dichlorodifluoromethane	ND	10	ug/L	05/28/15 18:45	10
Dichlorofluoromethane	ND	2.0	ug/L	05/28/15 18:45	10
Ethylbenzene	ND	10	ug/L	05/28/15 18:45	10
Hexachlorobutadiene	ND	20	ug/L	05/28/15 18:45	10
Hexane	ND	10	ug/L	05/28/15 18:45	10
Isopropylbenzene	ND	10	ug/L	05/28/15 18:45	10
m,p-Xylene	ND	20	ug/L	05/28/15 18:45	10
Methyl tert-butyl ether	ND	10	ug/L	05/28/15 18:45	10
Methylene Chloride	ND	100	ug/L	05/28/15 18:45	10
Naphthalene	ND	20	ug/L	05/28/15 18:45	10
n-Butylbenzene	ND	10	ug/L	05/28/15 18:45	10
N-Propylbenzene	18	10	ug/L	05/28/15 18:45	10
o-Xylene	ND	10	ug/L	05/28/15 18:45	10
p-Isopropyltoluene	ND	10	ug/L	05/28/15 18:45	10
sec-Butylbenzene	ND	10	ug/L	05/28/15 18:45	10
Styrene	ND	10	ug/L	05/28/15 18:45	10
				TestAmerica Spok	ane

Lab Sample ID: 590-870-5 Matrix: Water

5

6

Method: 8260C - Volatile O	Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac					
tert-Butanol	ND	50	ug/L			05/28/15 18:45	10					
tert-Butylbenzene	ND	10	ug/L			05/28/15 18:45	10					
Tetrachloroethene	ND	10	ug/L			05/28/15 18:45	10					
Toluene	ND	10	ug/L			05/28/15 18:45	10					
trans-1,2-Dichloroethene	ND	10	ug/L			05/28/15 18:45	10					
trans-1,3-Dichloropropene	ND	10	ug/L			05/28/15 18:45	10					
Trichloroethene	ND	10	ug/L			05/28/15 18:45	10					
Trichlorofluoromethane	ND	10	ug/L			05/28/15 18:45	10					
Vinyl chloride	ND	2.0	ug/L			05/28/15 18:45	10					
Xylenes, Total	ND	30	ug/L			05/28/15 18:45	10					
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac					
1,2-Dichloroethane-d4 (Surr)	102	70 - 140				05/28/15 18:45	10					
4-Bromofluorobenzene (Surr)	104	68.7 - 141				05/28/15 18:45	10					
Dibromofluoromethane (Surr)	103	71.2 - 143				05/28/15 18:45	10					
Toluene-d8 (Surr)	97	74.1 - 135				05/28/15 18:45	10					
Toluene-d8 (Surr)	97	74.1 - 135				05/28/15 18:45						

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte Gasoline	Result	Qualifier	RL	MDL	Unit ug/L	D	Prepared	Analyzed 05/28/15 18:45	Dil Fac 10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			68.7 - 141			-		05/28/15 18:45	10

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	7.6		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
2-Methylnaphthalene	9.6		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
1-Methylnaphthalene	13		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Acenaphthylene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Acenaphthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Fluorene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Phenanthrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Anthracene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Fluoranthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Pyrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[a]anthracene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Chrysene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[b]fluoranthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[k]fluoranthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[a]pyrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Indeno[1,2,3-cd]pyrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Dibenz(a,h)anthracene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[g,h,i]perylene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	92		32.7 - 135				05/21/15 12:52	05/21/15 17:15	1
2-Fluorobiphenyl (Surr)	79		44.3 - 120				05/21/15 12:52	05/21/15 17:15	1
p-Terphenyl-d14	94		59.5 - 154				05/21/15 12:52	05/21/15 17:15	1

Client Sample Results

TestAmerica Job ID: 590-870-1

Client: GeoEngineers Inc
Project/Site: Tiger Oil - Summit View

Client Sample ID: SVMW-5

Date Collected: 05/19/15 13:35

1,1-Dichloroethane

1,1-Dichloroethene

1,1-Dichloropropene

1,2,3-Trichlorobenzene

Lab Sample ID: 590-870-5 ter

	Matrix:	Wat

1

1

1

1

6

Date Received: 05/20/15 10:40)							Wat IX.	
Method: 8011 - EDB, DBCP, Analyte		P (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	- Result ND	Quaimer	0.010		ug/L		·	05/27/15 12:45	
	ND		0.010		ug/L		00/21/10 00:00	00/21/10 12:40	
Method: NWTPH-Dx - Northy									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) (C10-C25)	0.49		0.25		mg/L		05/26/15 13:14	05/26/15 19:00	
Residual Range Organics (RRO)	ND		0.41		mg/L		05/26/15 13:14	05/26/15 19:00	
(C25-C36)					5				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	95		50 - 150				05/26/15 13:14	•	
n-Triacontane-d62	104		50 - 150				05/26/15 13:14	05/26/15 19:00	
Method: NWTPH-Dx - Northy								A makers of	D/1 E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) (C10-C25)	0.45		0.25		mg/L		05/26/15 13:14	05/27/15 10:34	
Residual Range Organics (RRO)	ND		0.41		mg/L		05/26/15 13:14	05/27/15 10:34	
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl	95		50 - 150				05/26/15 13:14	05/27/15 10:34	
n-Triacontane-d62	71		50 - 150				05/26/15 13:14	05/27/15 10:34	
Method: 300.0 - Anions, Ion			ы	MDI	11	_	Drenered	Analyzad	
Analyte Nitrate as N		Qualifier		MDL	mg/L	D	Prepared	Analyzed 05/20/15 16:52	Dil Fa
Sulfate	4.4		0.20		mg/L			05/20/15 16:52	
Sunate			0.00		ilig/L			00/20/10 10:02	
Method: 200.7 Rev 4.4 - Meta	als (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		0.014		mg/L		05/27/15 14:00	05/28/15 22:19	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Organic Carbon	2.1		1.0		mg/L			05/26/15 11:39	
Client Sample ID: Trip Bl							Lab Sam	ple ID: 590-	·870-
ate Collected: 05/19/15 00:00								Matrix:	Wate
ate Received: 05/20/15 10:40)								
Nothody 8260C Valatila Ora	ania Compo	undo hu C	CIME						
Method: 8260C - Volatile Org Analyte		Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane			1.0		ug/L			05/28/15 19:07	
1,1,1-Trichloroethane	ND		1.0		ug/L			05/28/15 19:07	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			05/28/15 19:07	
1,1,2-Trichloroethane	ND		1.0		ug/L			05/28/15 19:07	
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			05/28/15 19:07	
					.				

05/28/15 19:07

05/28/15 19:07

05/28/15 19:07

05/28/15 19:07

1.0

1.0

1.0

1.0

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

Client Sample ID: Trip Blank Date Collected: 05/19/15 00:00 **Date Receiv**

o-Xylene

p-Isopropyltoluene

Lab Sample ID: 590-870-6 Matrix: Water

ate Received: 05/20/15 10:40	1							
Method: 8260C - Volatile Org Analyte	janic Compounds by GC Result Qualifier	/MS (Contir _{RL}	nued) MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2,3-Trichloropropane	- <u></u>	1.0		ug/L			05/28/15 19:07	1
2,4-Trichlorobenzene	ND	1.0		ug/L			05/28/15 19:07	1
2,4-Trimethylbenzene	ND	1.0		ug/L			05/28/15 19:07	1
2-Dibromo-3-Chloropropane	ND	5.0		ug/L			05/28/15 19:07	1
,2-Dibromoethane (EDB)	ND	1.0		ug/L			05/28/15 19:07	1
,2-Dichlorobenzene	ND	1.0		ug/L			05/28/15 19:07	1
,2-Dichloroethane	ND	1.0		ug/L			05/28/15 19:07	1
,2-Dichloropropane	ND	1.0		ug/L			05/28/15 19:07	1
3,5-Trimethylbenzene	ND	1.0		ug/L			05/28/15 19:07	1
3-Dichlorobenzene	ND	1.0		ug/L			05/28/15 19:07	· · · · · · · 1
3-Dichloropropane	ND	1.0		ug/L			05/28/15 19:07	1
4-Dichlorobenzene	ND	1.0		ug/L			05/28/15 19:07	1
2-Dichloropropane	ND	1.0					05/28/15 19:07	
	ND	1.0		ug/L			05/28/15 19:07	1
Butanone (MEK) Chlorotoluene	ND	1.0		ug/L			05/28/15 19:07	1
				ug/L				ا م
Hexanone	ND	10		ug/L			05/28/15 19:07	1
Chlorotoluene	ND	1.0		ug/L			05/28/15 19:07	1
Methyl-2-pentanone (MIBK)	ND	10		ug/L			05/28/15 19:07	1
cetone	ND	25		ug/L			05/28/15 19:07	1
enzene	ND	0.20		ug/L			05/28/15 19:07	1
omobenzene	ND	1.0		ug/L			05/28/15 19:07	1
omochloromethane	ND	1.0		ug/L			05/28/15 19:07	1
omodichloromethane	ND	1.0		ug/L			05/28/15 19:07	1
omoform	ND	1.0		ug/L			05/28/15 19:07	1
omomethane	ND	5.0		ug/L			05/28/15 19:07	1
arbon disulfide	ND	1.0		ug/L			05/28/15 19:07	1
arbon tetrachloride	ND	1.0		ug/L			05/28/15 19:07	1
nlorobenzene	ND	1.0		ug/L			05/28/15 19:07	1
nloroethane	ND	1.0		ug/L			05/28/15 19:07	1
nloroform	ND	1.0		ug/L			05/28/15 19:07	1
hloromethane	ND	3.0		ug/L			05/28/15 19:07	1
s-1,2-Dichloroethene	ND	1.0		ug/L			05/28/15 19:07	1
s-1,3-Dichloropropene	ND	1.0		ug/L			05/28/15 19:07	1
bromochloromethane	ND	1.0		ug/L			05/28/15 19:07	1
bromomethane	ND	1.0		ug/L			05/28/15 19:07	1
chlorodifluoromethane	ND	1.0		ug/L			05/28/15 19:07	1
chlorofluoromethane	ND	0.20		ug/L			05/28/15 19:07	1
hylbenzene	ND	1.0		ug/L			05/28/15 19:07	1
exachlorobutadiene	ND	2.0		ug/L			05/28/15 19:07	1
exane	ND	1.0		ug/L			05/28/15 19:07	1
opropylbenzene	ND	1.0		ug/L			05/28/15 19:07	1
p-Xylene	ND	2.0		ug/L			05/28/15 19:07	1
ethyl tert-butyl ether	ND	1.0		ug/L			05/28/15 19:07	
ethylene Chloride	ND	1.0		ug/L			05/28/15 19:07	1
aphthalene	ND	2.0		ug/L			05/28/15 19:07	1
	ND ND	2.0 1.0					05/28/15 19:07	
Butylbenzene Propylbenzene	ND			ug/L			05/28/15 19:07	1
-Propylbenzene	NU	1.0		ug/L			05/20/15 19:07	1

TestAmerica Spokane

05/28/15 19:07

05/28/15 19:07

1.0

1.0

ug/L

ug/L

ND

ND

1

1

Client Sample Results

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View

Client Sample ID: Trip Blank Date Collected: 05/19/15 00:00 **Date Recei** A. 05/20/45 40

Lab Sample ID: 590-870-6 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0		ug/L			05/28/15 19:07	1
Styrene	ND		1.0		ug/L			05/28/15 19:07	1
ert-Butanol	ND		5.0		ug/L			05/28/15 19:07	1
ert-Butylbenzene	ND		1.0		ug/L			05/28/15 19:07	1
etrachloroethene	ND		1.0		ug/L			05/28/15 19:07	1
oluene	ND		1.0		ug/L			05/28/15 19:07	1
ans-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 19:07	1
ans-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 19:07	1
richloroethene	ND		1.0		ug/L			05/28/15 19:07	1
richlorofluoromethane	ND		1.0		ug/L			05/28/15 19:07	1
inyl chloride	ND		0.20		ug/L			05/28/15 19:07	1
ylenes, Total	ND		3.0		ug/L			05/28/15 19:07	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	100		70 - 140			-		05/28/15 19:07	1
-Bromofluorobenzene (Surr)	106		68.7 - 141					05/28/15 19:07	1
bibromofluoromethane (Surr)	98		71.2 - 143					05/28/15 19:07	1
oluene-d8 (Surr)	97		74.1 - 135					05/28/15 19:07	1

Client Sample ID: Method Blank Prep Type: Total/NA

6 7

Lab Sample ID: MB 590-1594/7 Matrix: Water Analysis Batch: 1594

Analysis Batch: 1594									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,1,1-Trichloroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,1,2-Trichloroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,1-Dichloroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,1-Dichloroethene	ND		1.0		ug/L			05/28/15 10:19	1
1,1-Dichloropropene	ND		1.0		ug/L			05/28/15 10:19	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	1
1,2,3-Trichloropropane	ND		1.0		ug/L			05/28/15 10:19	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			05/28/15 10:19	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			05/28/15 10:19	1
1,2-Dichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	1
1,2-Dichloroethane	ND		1.0		ug/L			05/28/15 10:19	1
1,2-Dichloropropane	ND		1.0		ug/L			05/28/15 10:19	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
1,3-Dichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	1
1,3-Dichloropropane	ND		1.0		ug/L			05/28/15 10:19	1
1,4-Dichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	1
2,2-Dichloropropane	ND		1.0		ug/L			05/28/15 10:19	1
2-Butanone (MEK)	ND		10		ug/L			05/28/15 10:19	1
2-Chlorotoluene	ND		1.0		ug/L			05/28/15 10:19	1
2-Hexanone	ND		10		ug/L			05/28/15 10:19	· · · · · · · · · · · · · · · · · · ·
4-Chlorotoluene	ND		1.0		ug/L			05/28/15 10:19	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			05/28/15 10:19	1
Acetone	ND		25		ug/L			05/28/15 10:19	
Benzene	ND		0.20		ug/L			05/28/15 10:19	1
Bromobenzene	ND		1.0		ug/L			05/28/15 10:19	1
Bromochloromethane	ND		1.0		ug/L			05/28/15 10:19	
Bromodichloromethane	ND		1.0		ug/L			05/28/15 10:19	1
Bromoform	ND		1.0		ug/L			05/28/15 10:19	1
Bromomethane	ND		5.0		ug/L			05/28/15 10:19	
Carbon disulfide	ND		1.0		ug/L			05/28/15 10:19	1
Carbon tetrachloride	ND		1.0		ug/L			05/28/15 10:19	1
Chlorobenzene	ND		1.0		ug/L			05/28/15 10:19	
Chloroethane	ND		1.0		ug/L			05/28/15 10:19	1
Chloroform	ND		1.0		ug/L			05/28/15 10:19	1
Chloromethane	ND		3.0		ug/L			05/28/15 10:19	
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 10:19	1
cis-1,3-Dichloropropene	ND		1.0		-			05/28/15 10:19	1
Dibromochloromethane					ug/L			05/28/15 10:19	
Dibromoethane	ND ND		1.0 1.0		ug/L			05/28/15 10:19	1 1
					ug/L				
Dichlorodifluoromethane	ND		1.0		ug/L			05/28/15 10:19	1
Dichlorofluoromethane	ND		0.20		ug/L			05/28/15 10:19	1
Ethylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
Hexachlorobutadiene	ND		2.0		ug/L			05/28/15 10:19	1

Client Sample ID: Method Blank

Prep Type: Total/NA

5

7

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ND

Lab Sample ID: MB 590-1594/7

Matrix: Water Analysis Batch: 1594

Analysis Batch: 1594							
	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hexane	ND	1.0	ug/L			05/28/15 10:19	1
Isopropylbenzene	ND	1.0	ug/L			05/28/15 10:19	1
m,p-Xylene	ND	2.0	ug/L			05/28/15 10:19	1
Methyl tert-butyl ether	ND	1.0	ug/L			05/28/15 10:19	1
Methylene Chloride	ND	10	ug/L			05/28/15 10:19	1
Naphthalene	ND	2.0	ug/L			05/28/15 10:19	1
n-Butylbenzene	ND	1.0	ug/L			05/28/15 10:19	1
N-Propylbenzene	ND	1.0	ug/L			05/28/15 10:19	1
o-Xylene	ND	1.0	ug/L			05/28/15 10:19	1
p-Isopropyltoluene	ND	1.0	ug/L			05/28/15 10:19	1
sec-Butylbenzene	ND	1.0	ug/L			05/28/15 10:19	1
Styrene	ND	1.0	ug/L			05/28/15 10:19	1
tert-Butanol	ND	5.0	ug/L			05/28/15 10:19	1
tert-Butylbenzene	ND	1.0	ug/L			05/28/15 10:19	1
Tetrachloroethene	ND	1.0	ug/L			05/28/15 10:19	1
Toluene	ND	1.0	ug/L			05/28/15 10:19	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			05/28/15 10:19	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			05/28/15 10:19	1
Trichloroethene	ND	1.0	ug/L			05/28/15 10:19	1
Trichlorofluoromethane	ND	1.0	ug/L			05/28/15 10:19	1
Vinyl chloride	ND	0.20	ug/L			05/28/15 10:19	1

	MB M	МВ				
Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 140		05/28/15 10:19	1
4-Bromofluorobenzene (Surr)	103	6	8.7 - 141		05/28/15 10:19	1
Dibromofluoromethane (Surr)	101	7	1.2 - 143		05/28/15 10:19	1
Toluene-d8 (Surr)	104	7.	4.1 - 135		05/28/15 10:19	1

3.0

ug/L

Lab Sample ID: LCS 590-1594/8 Matrix: Water Analysis Batch: 1594

Xylenes, Total

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	10.0	9.56		ug/L		96	60 - 140	
1,1,1-Trichloroethane	10.0	9.57		ug/L		96	60 - 140	
1,1,2,2-Tetrachloroethane	10.0	9.90		ug/L		99	60 - 140	
1,1,2-Trichloroethane	10.0	9.90		ug/L		99	60 - 140	
1,1,2-Trichlorotrifluoroethane	10.0	10.2		ug/L		102	60 - 140	
1,1-Dichloroethane	10.0	10.1		ug/L		101	60 - 140	
1,1-Dichloroethene	10.0	9.69		ug/L		97	78.1 ₋ 155	
1,1-Dichloropropene	10.0	10.9		ug/L		109	60 - 140	
1,2,3-Trichlorobenzene	10.0	10.3		ug/L		103	60 ₋ 140	
1,2,3-Trichloropropane	10.0	9.48		ug/L		95	60 ₋ 140	
1,2,4-Trichlorobenzene	10.0	10.0		ug/L		100	60 - 140	
1,2,4-Trimethylbenzene	10.0	9.83		ug/L		98	60 - 140	
1,2-Dibromo-3-Chloropropane	10.0	8.55		ug/L		86	60 - 140	
1,2-Dichlorobenzene	10.0	9.87		ug/L		99	60 - 140	

05/28/15 10:19 1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-1594/8 Matrix: Water

Math	. .	alei	
Analy	ysis	Batch:	1594

Analysis Batch: 1594	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
1,2-Dichloroethane	10.0	9.68	ug/L	97	63.9 - 144	
1,2-Dichloropropane	10.0	10.1	ug/L	101	60 - 140	
1,3,5-Trimethylbenzene	10.0	9.59	ug/L	96	60 - 140	
1,3-Dichlorobenzene	10.0	9.66	ug/L	97	60 - 140	
1,3-Dichloropropane	10.0	9.79	ug/L	98	60 - 140	
1,4-Dichlorobenzene	10.0	9.75	ug/L	97	60 - 140	
2,2-Dichloropropane	10.0	9.59	ug/L	96	60 - 140	
2-Butanone (MEK)	50.0	57.3	ug/L	115	60 - 140	
2-Chlorotoluene	10.0	10.0	ug/L	100	60 - 140	
2-Hexanone	50.0	51.0	ug/L	102	60 - 140	
4-Chlorotoluene	10.0	9.61	ug/L	96	60 - 140	
4-Methyl-2-pentanone (MIBK)	50.0	49.7	ug/L	99	60 - 140	
Acetone	50.0	51.6	ug/L	103	60 - 140	
Benzene	10.0	9.81	ug/L	98	80 - 140	
Bromobenzene	10.0	9.83	ug/L	98	60 - 140	
Bromochloromethane	10.0	9.55	ug/L	96	60 - 140	
Bromodichloromethane	10.0	9.62	ug/L	96	60 - 140	
Bromoform	10.0	8.82	ug/L	88	60 - 140	
Bromomethane	10.0	11.2	ug/L	112	60 - 140	
Carbon disulfide	10.0	10.0	ug/L	100	60 - 140	
Carbon tetrachloride	10.0	9.89	ug/L	99	60 - 140	
Chlorobenzene	10.0	9.62	ug/L	96	79.2 - 125	
Chloroethane	10.0	10.8	ug/L	108	60 - 140	
Chloroform	10.0	9.63	ug/L	96	60 - 140	
Chloromethane	10.0	11.4	ug/L	114	60 - 140	
cis-1,2-Dichloroethene	10.0	9.56	ug/L	96	60 - 140	
cis-1,3-Dichloropropene	10.0	10.1	ug/L	101	60 - 140	
Dibromochloromethane	10.0	9.48	ug/L	95	60 - 140	
Dibromomethane	10.0	9.49	ug/L	95	60 - 140	
Dichlorodifluoromethane	10.0	12.9	ug/L	129	60 - 140	
Dichlorofluoromethane	10.0	10.2	ug/L	102	60 - 140	
Ethylbenzene	10.0	9.82	ug/L	98	80 - 140	
Hexachlorobutadiene	10.0	9.52	ug/L	95	80 - 120	
Hexane	10.0	10.4	ug/L	104	60 <u>-</u> 120	
Isopropylbenzene	10.0	9.45	ug/L	95	60 - 140	
	10.0	9.40 9.80	ug/L	98	80 - 140 80 - 120	
m,p-Xylene Methyl tert-butyl ether	10.0	9.80 10.0		100	80.1 - 128	
Methylene Chloride	10.0	10.0	ug/L	100	60 - 140	
-			ug/L			
Naphthalene	10.0 10.0	10.0 9.72	ug/L	100 97	62.8 - 132	
n-Butylbenzene			ug/L		60 <u>-</u> 140	
N-Propylbenzene	10.0	9.97	ug/L	100	60 - 140 80 - 120	
	10.0	9.60	ug/L	96	80 - 120	
p-Isopropyltoluene	10.0	9.51	ug/L	95	60 <u>-</u> 140	
sec-Butylbenzene	10.0	9.50	ug/L	95	60 <u>-</u> 140	
Styrene	10.0	9.13	ug/L	91	60 - 140	
tert-Butanol	100	98.3	ug/L	98	60 - 140	
tert-Butylbenzene	10.0	9.82	ug/L	98	60 - 140	
Tetrachloroethene	10.0	9.67	ug/L	97	60 - 140	

TestAmerica Spokane

Page 25 of 38

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590- Matrix: Water	1594/8					Clie	ent Sar	nple II): Lab Cont Prep Typ	rol Sample e: Total/NA
Analysis Batch: 1594										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene			10.0	9.58		ug/L		96	80 - 123	
trans-1,2-Dichloroethene			10.0	9.98		ug/L		100	60 ₋ 140	
trans-1,3-Dichloropropene			10.0	10.7		ug/L		107	60 ₋ 140	
Trichloroethene			10.0	10.3		ug/L		103	74.8 - 123	
Trichlorofluoromethane			10.0	10.1		ug/L		101	60 - 140	
Vinyl chloride			10.0	11.0		ug/L		110	60 - 140	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	99		70 - 140							
4-Bromofluorobenzene (Surr)	98		68.7 - 141							
Dibromofluoromethane (Surr)	98		71.2 - 143							
Toluene-d8 (Surr)	100		74.1 - 135							

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-15 Matrix: Water	96/7						Clie	ent San	ple ID: Method Prep Type: To	
Analysis Batch: 1596	Ν	IB MB								
Analyte	Res	ult Qualifie	r RL	м	DL Unit		D P	repared	Analyzed	Dil Fac
Gasoline	N	1D	100		ug/L				05/28/15 10:19	1
	٨	IB MB								
Surrogate	%Recove	ery Qualifie	r Limits				F	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	1	03	68.7 - 141						05/28/15 10:19	1
Lab Sample ID: LCS 590-1 Matrix: Water Analysis Batch: 1596	596/9					Clier	nt Sa	mple ID	: Lab Control S Prep Type: To	
-			Spike	LCS I	LCS				%Rec.	
Analyte			Added	Result (Qualifier	Unit	D	%Rec	Limits	
Gasoline			1000	932		ug/L		93	80 - 120	
	LCS L	.cs								
Surrogate	%Recovery 0	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	100		68.7 - 141							

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-1534/1- Matrix: Water Analysis Batch: 1531	A MB N	МВ						le ID: Method Prep Type: To Prep Batcl	otal/NA
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
2-Methylnaphthalene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
1-Methylnaphthalene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Acenaphthylene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Acenaphthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1

TestAmerica Spokane

5

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 590-1534/1-/ Matrix: Water Analysis Batch: 1531								le ID: Method Prep Type: To Prep Batcl	otal/NA
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Phenanthrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Anthracene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Fluoranthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Pyrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[a]anthracene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Chrysene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[b]fluoranthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[k]fluoranthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[a]pyrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Indeno[1,2,3-cd]pyrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Dibenz(a,h)anthracene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[g,h,i]perylene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	117		32.7 - 135				05/21/15 12:52	05/21/15 14:29	1
2-Fluorobiphenyl (Surr)	88		44.3 - 120				05/21/15 12:52	05/21/15 14:29	1
p-Terphenyl-d14	106		59.5 - 154				05/21/15 12:52	05/21/15 14:29	1

Lab Sample ID: LCS 590-1534/2-A **Matrix: Water**

Analysis Batch: 1531

Prep Batch: 1534 LCS LCS Spike %Rec. Result Qualifier Unit Analyte Added Limits D %Rec 94 27.8 - 143 Naphthalene 3.20 3.01 ug/L Fluorene 3.20 3.69 115 59.2 - 120 ug/L Chrysene 3.20 3.67 ug/L 115 69.1 - 122 Indeno[1,2,3-cd]pyrene 3.20 3.94 ug/L 123 56.1 - 135 100 100

LCS LCS	
%Recovery Qualifier	r Limits
97	32.7 - 135
79	44.3 - 120
85	59.5 - 154
	97 79

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC)

Lab Sample ID: MB 590-1582/2- Matrix: Water Analysis Batch: 1583	Analysis Batch: 1583							le ID: Methoo Prep Type: To Prep Batcl	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		05/27/15 09:58	05/27/15 11:07	1

TestAmerica Spokane

5 7

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC) (Continued)

Lab Sample ID: LCS 590-1 Matrix: Water Analysis Batch: 1583	582/3-A					Cli	ent	: Sar		Lab Control S Prep Type: To Prep Batc	otal/NA
Annabada			Spike		LCS			_	0/ D	%Rec.	
Analyte			Added		Qualifie			_ D	%Rec	Limits	
1,2-Dibromoethane (EDB)			0.125	0.157		ug/L			125	60 - 140	
lethod: NWTPH-Dx - N	orthwest - S	Semi-Vo	latile Petr	oleun	n Prod	lucts (0	GC)			
Lab Sample ID: MB 590-15	59/1-A							Clie	nt Sam	ole ID: Method	d Blank
Matrix: Water										Prep Type: To	otal/NA
Analysis Batch: 1555										Prep Batc	h: 1559
	MB	MB									
Analyte	Result	Qualifier	RL	I	MDL Uni	it	D		repared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24		mg	/L	_	05/2	6/15 13:14	05/26/15 17:00	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40		mg	/L		05/2	6/15 13:14	05/26/15 17:00	1
	MB	МВ									
Surrogate	%Recovery		Limits					P	repared	Analyzed	Dil Fac
o-Terphenyl										05/26/15 17:00	
n-Triacontane-d62	102		50 - 150							05/26/15 17:00	
Matrix: Water Analysis Batch: 1574 Analyte Diesel Range Organics (DRO)		MB Qualifier		I	MDL Uni		D		repared	Prep Type: To Prep Batc Analyzed 05/27/15 09:15	
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		0.40		mg	/L		05/2	6/15 13:14	05/27/15 09:15	
	МВ	МВ									
Surrogate	%Recovery	Qualifier	Limits					P	repared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150							05/27/15 09:15	
n-Triacontane-d62	74		50 - 150					05/2	6/15 13:14	05/27/15 09:15	ŕ
Lab Sample ID: LCS 590-1 Matrix: Water Analysis Batch: 1555	559/2-A		Spike	LCS	LCS	Cli	ent	: Sar		Lab Control S Prep Type: To Prep Batc %Rec.	otal/NA
Analyte			Added		Qualifie	r Unit		D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)			3.20	2.89		mg/L			90	50 - 150	
Residual Range Organics (RRO) (C25-C36)			3.20	2.97		mg/L			93	50 - 150	
	LCS LCS	S									
Surrogate	%Recovery Qua		Limits								
o-Terphenyl	98		50 - 150								
o-rerbnenvi											

7

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-1 Matrix: Water Analysis Batch: 1574	559/2-A					Clie	nt Sai	mple ID	: Lab Control Sampl Prep Type: Total/N Prep Batch: 155
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Diesel Range Organics (DRO) (C10-C25)			3.20	2.84		mg/L		89	50 - 150
Residual Range Organics (RRO) (C25-C36)			3.20	2.99		mg/L		93	50 - 150
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	98		50 - 150						
n-Triacontane-d62	64		50 - 150						

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 590-1516/15 Matrix: Water									•	Clie	nt Sam	ple ID: Metho Prep Type: T	
Analysis Batch: 1516													otan in t
	MB	MB											
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Nitrate as N	ND			0.20			mg/L					05/20/15 15:08	1
Lab Sample ID: LCS 590-1516/14								Cli	ient	Sar	nple ID:	: Lab Control	Sample
Matrix: Water												Prep Type: T	
Analysis Batch: 1516													
-			Spike		LCS	LCS	5					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Nitrate as N			5.00		5.08			mg/L		_	102	90 - 110	
Lab Sample ID: MB 590-1517/15										Clie	nt Sam	ple ID: Metho	d Blank
Matrix: Water												Prep Type: T	
Analysis Batch: 1517													
-	MB	MB											
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Sulfate	ND			0.50			mg/L					05/20/15 15:08	1
Lab Sample ID: LCS 590-1517/14								Cli	ient	Sar	nple ID:	: Lab Control	Sample
											•	Prep Type: T	
Matrix: Water													
Matrix: Water													
-			Spike		LCS	LCS	6					%Rec.	
Matrix: Water			Spike Added		LCS Result			Unit		D	%Rec	%Rec. Limits	

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 590-1553/2-/ Matrix: Water Analysis Batch: 1633						le ID: Methoo Prep Type: To Prep Batcl	otal/NA		
Analyte	Result	Qualifier	RL	MDL	Unit mg/L	D	Prepared	Analyzed 05/29/15 11:10	Dil Fac

TestAmerica Spokane

7

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued) Lab Sample ID: LCS 590-1553/1-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 1633 Prep Batch: 1553 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1.00 85 - 115 Lead 0.997 mg/L 100

Method: SM 5310C - TOC

 Lab Sample ID: MB 490-251385/1									Cli	ent San	nple ID: Method	d Blank
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 251385												
	MB	MB										
Analyte	Result	Qualifier		RL	I	MDL (Jnit		D P	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND			1.0		r	ng/L				05/26/15 11:39	1
								Clie	ent Sa	mple IC	: Lab Control	Sample
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 251385												
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits	
Total Organic Carbon			10.0		9.81			mg/L		98	90 - 110	
TOC Result 1			10.0		9.89			mg/L		99	90 - 110	
TOC Result 2			10.0		9.73			mg/L		97	90 - 110	

Lab Sample ID: 590-870-1

Matrix: Water

5

8

Client Sample ID: Duplicate Date Collected: 05/19/15 08:00 Date Received: 05/20/15 10:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		100	43 mL	43 mL	1594	05/28/15 17:08	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	1596	05/28/15 17:08	MRS	TAL SPK
Total/NA	Prep	3510C			253.9 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	253.9 mL	2 mL	1531	05/21/15 15:24	NMI	TAL SPK
Total/NA	Prep	3510C			253.9 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		20	253.9 mL	2 mL	1531	05/21/15 17:43	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 11:40	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			122.9 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	122.9 mL	2 mL	1574	05/27/15 09:54	NMI	TAL SPK
Total/NA	Prep	3510C SGC			122.9 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	122.9 mL	2 mL	1555	05/26/15 17:40	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:00	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:00	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:09	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Client Sample ID: SVMW-2 Date Collected: 05/19/15 12:46 Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-2 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1594	05/28/15 17:30	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	1596	05/28/15 17:30	MRS	TAL SPK
Total/NA	Prep	3510C			238.8 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	238.8 mL	2 mL	1531	05/21/15 15:52	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 11:56	NMI	TAL SPK
Total/NA	Prep	3510C SGC			118.9 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	118.9 mL	2 mL	1555	05/26/15 18:00	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:13	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:13	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:11	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Lab Sample ID: 590-870-3 Matrix: Water

Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

Client Sample ID: SVMW-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		100	43 mL	43 mL	1594	05/28/15 18:01	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	1596	05/28/15 18:01	MRS	TAL SPK
Total/NA	Prep	3510C			253 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	253 mL	2 mL	1531	05/21/15 16:20	NMI	TAL SPK
Total/NA	Prep	3510C			253 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		20	253 mL	2 mL	1531	05/21/15 18:38	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 12:13	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			127.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	127.7 mL	2 mL	1574	05/27/15 10:14	NMI	TAL SPK
Total/NA	Prep	3510C SGC			127.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	127.7 mL	2 mL	1555	05/26/15 18:20	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:26	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:26	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:14	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Client Sample ID: SVMW-4

Date Collected: 05/19/15 11:30 Date Received: 05/20/15 10:40

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Factor Amount Number or Analyzed Туре Run Amount Analyst Lab Total/NA Analysis 8260C 43 mL 43 mL 1594 05/28/15 18:23 MRS TAL SPK 1 05/28/15 18:23 MRS Total/NA Analysis NWTPH-Gx 1 43 mL 43 mL 1596 TAL SPK Total/NA Prep 3510C 239.2 mL 2 mL 1534 05/21/15 12:52 NMI TAL SPK Total/NA Analysis 8270D SIM 1 239.2 mL 2 mL 1531 05/21/15 16:47 NMI TAL SPK Total/NA 80 mL 8011 2 mL 1582 05/27/15 09:58 NMI TAL SPK Prep Total/NA Analysis 8011 1 80 mL 2 mL 1583 05/27/15 12:29 NMI TAL SPK Total/NA Prep 3510C SGC 126.2 mL 2 mL 1559 05/26/15 13:14 NMI TAL SPK Total/NA Analysis NWTPH-Dx 1 126.2 mL 2 mL 1555 05/26/15 18:40 NMI TAL SPK Total/NA Analysis 300.0 5 mL 1516 05/20/15 16:39 MRS TAL SPK 1 Total/NA Analysis 300.0 1 5 mL 1517 05/20/15 16:39 MRS TAL SPK Total/NA Prep 50 mL 1553 TAL SPK 200.7 50 mL 05/27/15 14:00 JSP Total/NA Analysis 200.7 Rev 4.4 1 50 mL 50 mL 1622 05/28/15 22:17 JSP TAL SPK Total/NA 50 mL 50 mL 251385 05/26/15 11:39 JAB TAL NSH Analysis SM 5310C 1

Lab Sample ID: 590-870-4

Matrix: Water

TestAmerica Spokane

Lab Sample ID: 590-870-5 Matrix: Water

Date Collected: 05/19/15 13:35 Date Received: 05/20/15 10:40

Client Sample ID: SVMW-5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	43 mL	43 mL	1594	05/28/15 18:45	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	1596	05/28/15 18:45	MRS	TAL SPK
Total/NA	Prep	3510C			233.3 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	233.3 mL	2 mL	1531	05/21/15 17:15	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 12:45	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			120.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	120.7 mL	2 mL	1574	05/27/15 10:34	NMI	TAL SPK
Total/NA	Prep	3510C SGC			120.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	120.7 mL	2 mL	1555	05/26/15 19:00	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:52	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:52	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:19	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Client Sample ID: Trip Blank Date Collected: 05/19/15 00:00 Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-6 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1594	05/28/15 19:07	MRS	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C789	07-19-16

TestAmerica Spokane

Method Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8011	EDB, DBCP, and 1,2,3-TCP (GC)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
300.0	Anions, Ion Chromatography	MCAWW	TAL SPK
200.7 Rev 4.4	Metals (ICP)	EPA	TAL SPK
SM 5310C	TOC	SM	TAL NSH
Protocol Ref	erences:		
EPA = US	Environmental Protection Agency		

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. NWTPH = Northwest Total Petroleum Hydrocarbon

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane 11922 East 1st Ave

Chain of Custody Record

The leader in the teacher of state

Tes

.

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290

	Sampler	۸		DERICY	M Carrier Tracking No(s)									C No ^r												
Client Information	0.000	AAlor	JTRE	orning	Arrıı E-Ma		n, Ra	ndee	ÈΕ													0-364-12	28.1			
JR Sugalski	Phone	216	५०७	6773			arring	iton@	Dtest	tame	rical	nc.co	m									ge 1 of 1	1			
Company GeoEngineers Inc											An	alve	sis F	leau	uest	ed					Jop	#				
Address: 523 East Second Ave	Due Dat	e Requeste	ed:			T	æ	1				Í		Ť			T		-		Pre	eservatio	n Cod	es:		
City: Spokane State, Zip: WA, 99202	TAT Rec	quested (da	ays):						rbons												́, В- С- D-	HCL NaOH Zn Acetat Nithe Acid NaHSO4 MeOH	d	N - No O - As P - Na Q - Na	NaO2 204S a2SO3	
Phone. 509-209-2830(Tel)	PO #. Purcha	ise Order	r not reau	ired		11		Ì	liceal				o SGI								G-	Amchlor		\$ - H2	25250 2504	
Email:	WO #		motroqu	nça		-2		8	c Hyd				o/w pi	_							, <u>a</u> I - Io			U - Ac	etone	ecahydrate
jsugalski@gecengineers.com Project Name:	Project #	4				- 8		D UO	mat	SFIME	42		ith ar	EDB)						lers.	≱]]]- ∦]]]-	DI Water EDTA		V - M W - pl	4-5	
Tiger Oil - Summit View	590004	440				ŝ		Carb	lc Arc	, B	ISph	s	XQ	ane (les					contaiñers	L-I	EDA		Z-oth	ner (spe	:cify)
Site: Washington	SSOW#					Samp) as	ganic	lycycll	0, 300	1	GX_M	Hd11	moeth	Volati					ofeo		er:				
			Sampl		Matrīx (W=water, s=solid, O=waste/cII,	eld Filtered	Perform MS/W	6310C - Total Organic Carbon (TOC)	8270D_SIM - Polycyclic Aromatic Hydrocarbons	300_ORGFM_28D, 300_ORGFMS	200.7 - Lead	8260C, NWTPH_Gx_MS	NWTPH_Dx - NWTPH-Dx with and w/o SGT	8011 - 1,2-Dibromoethane (EDB)	8260C - 8260C - Volatiles					Total Number						
Sample Identification	Samp	le Date		G=grab)	BT=Tissue, A=Air		¥.	1.11				Ŧ	<u>ع</u> A I		A I			•		1	<u>-</u>	Spec	cial In	struct	ions/N	Note:
DUQUICATE	5/10	115	0500	G	Water	N	<u>~ ``</u>		<u>√</u>	X	X	×		· ···	× :						<u>}</u>					
SVMW-2))	1246		Water	N		x	x	×	~	*			x					1						··· ·
SUMW-3			1427		Water	2			×	×	×	ĸ			$\frac{r}{\gamma}$		-									
SVMW -4		<u> </u>	1130	ι	Water	N		×	<u>×</u>	~ ~	×	x x			<u>^</u> ×				-+-	_	-					
SVMW-S			1335	4	Water	IJ		×	-	~	×	×		x	Y											
Teip Brown	-	4			Water	N				Í				-+	×		+			-						
	1				Water	4										-	+									
					Water								- 1													
· · · · · · · · · · · · · · · · · · ·	1							_					- 1													
													-													
													— ē	90-8	370 (Chai	n of C	Custo	ody							
Possible Hazard Identification	-		<u></u>		1		Sam	ple L	Disp	osal	(A1	fee n	ay b	e as	sess	ed i	r sam	ples	are r	etain	ied la	onger th	an 1 i	month		
Non-Hazard Flammable Skin Irritant Poisc	n B	Unkno	wn	Radiological				Ret	turn	To C	lient		_	Dis	pose	al By	Lab			Arch.	ive Fo	or		Mon	ths	
Deliverable Requested: I, II, III, IV, Other (specify)							Spec	ial In	nstru	ction	IS/QC	CRed	quirei	nent	s: "	fl	Lab 4 5	PP	b 1	FCA	LEN	40				
Empty Kit Relinquished by.			Date:	· ,		Tim	ne							,	ľ	Metho	d of Sh	ipmen	t							
Relinquished by:	Date/Tim	18.5/.	19/1	5/1516	Company G		F	Receiv	ed by	ho		1c.	L	h	24		0 U	ate/T	me γ _Γ /	15	· /	0:40	~,	Comp	any	knk
Relinquished by:	Date/Tim	ne"			Company		ß	Receiv	ed by	!.			7)	<u>and</u>	Ľ	1	ľ	ate/Tu	me	~		<u>, . , (</u>	<u> </u>	Comp	any	
Relinguished by:	Date/Tim	ne:			Company			Receiv				•••			<u> </u>		1	ate/Ti	me					Comp	any	
Custody Seals Intact: Custody Seal No.:					I		c	Cooler	Temp	peratu	ire(s)	°C and	d Othe	r Rem	jarks:	c _	ea	01								

9/16/2015

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 870 List Number: 1 Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-870-1

List Source: TestAmerica Spokane

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 870 List Number: 2 Creator: Ford, Easton

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-870-1

List Source: TestAmerica Nashville

List Creation: 05/21/15 04:28 PM

APPENDIX C Well Survey Report

TIGER OIL MONITORING WELL ELEVATION TABLE YAKIMA, WA			SURVEY DATE 4/30/2015	PLS JOB NO. 15029
FEATURE	NORTH EDGE OF PVC	NORTH RIM OF OUTER CASE	NORTHING	EASTING
SUMMITVIEW				
SVMW-4	1220.00	1220.35	462028.3	1619576.7
SVMW-5	1219.09	1219.41	461969.3	1619546.4
BENCHMARK ELEVATION = 1219.58'	SW CORNER OF TRAFFIC SIGNAL POLE CONCRETE PAD AT THE NE CORNER OF SUMMITVIEW AVE. AND N. 56TH AVE AT N. END OF CONCRETE WALK		461957.6	1619548.4
VERTICAL DATUM: NAVD 88 - REFERENCED FROM WSDOT MONUMENT DESIGNATION GP39012-9, WITH A PUBLISHED ELEVATION OF 1130.33 FEET.				
HORIZONTAL DATUM:	NAD 83/91 WASHINGTON SOUTH ZONE - BASED ON GPS MEASUREMENTS USING THE WASHINGTON STATE REFERENCE NETWORK.			
were determined using a ⁻ 1ppm vertical. The elevat	Topcon GR-3 GPS receiver ion of the monitoring wells a	oring wells and the elevation with a nominal accuracy of at each site are relative to th gital level with a vertical accu	10mm + 1ppm horizor e benchmark establish	ntal and 15mm +

APPENDIX D Report Limitations and Guidelines for Use

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this assessment of the Tiger Oil – Summitview site in Yakima, Washington in general accordance with the Work Plan dated April 15, 2014. This report has been prepared for the exclusive use of the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an Environmental Site Assessment (ESA) study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except the Washington Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Tiger Oil – Summitview site in Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup criteria referenced in this report are site- and situation-specific. The cleanup criteria may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup criteria. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ,

sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

