Maul Foster & Alongi, Inc.

DUPLICATE

Environmental & Engineering Services

October 5, 2001 Project 9077.15.01

Dr. Mark Brearley Unocal Asset Management Group P.O. Box 2004 Edmonds, Washington 98020

Re: Results of Subsurface Investigation Activities, Former Unocal Bulk Fuel Terminal #0082, Chelan, Washington

Dear Mark:

In May 2000, Maul Foster & Alongi, Inc. (MFA) conducted subsurface investigation activities at the former Unocal Bulk Fuel Terminal #0082 (site) in Chelan, Washington. The purposes of the work were to evaluate the eastern extent of the petroleum hydrocarbonimpacted groundwater beneath the site, and to assess the current groundwater conditions.

BACKGROUND

Former Unocal Bulk Fuel Terminal #0082 is located at the intersection of Highway 97 and East Street in Chelan, Washington. The site is approximately 200 feet south of Lake Chelan. The location of the site is shown on Figure 1. The site is bounded to the north by Highway 97 and the Lady of the Lake ferry terminal; to the east and west by private residences; and to the south by a recreational area parking lot. From at least 1927 to 1989, Unocal used the site for bulk petroleum fuel storage and distribution. The structures at the site included an office, a warehouse, three gasoline aboveground storage tanks (ASTs), a diesel AST, a stove oil (heating oil) AST, four dispenser pumps, a heating oil underground storage tank (UST), two truck loading racks, and a truck unloading rack. The site was closed in 1989, and all of the tanks and structures were demolished and removed by 1992. The locations of the former tanks and structures are shown on Figure 2. The site is currently vacant.

In 1989, GeoEngineers conducted a subsurface investigation at the site to evaluate the potential presence of petroleum hydrocarbons in the soil and groundwater. The investigation consisted of collecting one surface soil sample (designated WH-1), excavating and sampling three test pits (TP-1, TP-2, and TP-3), and drilling and sampling three soil borings that were completed as groundwater monitoring wells (MW-1, MW-2, and MW-3). Groundwater samples were collected from the three wells. The locations of the surface soil sample, test pits, and monitoring wells are shown on Figure 2. The soil sample analytical results showed that samples from boring MW-1 [collected at depths of 15 and 20 feet below ground surface (bgs)] and from test pits TP-1 (collected at a depth 11 feet bgs), TP-2 (collected at depths of 5

and 11 feet bgs), and TP-3 (collected at a depth of less than 6 inches bgs) contained total petroleum hydrocarbon (TPH) concentrations that exceeded the Model Toxics Control Act (MTCA) Method A cleanup level¹. MW-1 was located near the former truck unloaders, TP-1 was located near the former truck loading rack, TP-2 was located near the pre-1968 former truck loading rack, and TP-3 was located at the former barrel storage area (Figure 2). The groundwater sample analytical results showed that the sample from MW-1 contained TPH, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations that exceeded the Method A cleanup levels. The groundwater sample from well MW-3 contained a TPH concentration that exceeded the Method A cleanup level. The results of the investigation were presented in GeoEngineers' report, Report of Geotechnical Services, Subsurface Contamination Study, dated March 14, 1990.

In April 1991, GeoEngineers drilled and sampled three additional soil borings that were completed as groundwater monitoring wells (MW-4, MW-5, and MW-6), and collected groundwater samples from all of the wells at the site. The well locations are shown on Figure 2. The soil sample analytical results showed that the sample collected from boring MW-5, at a depth of 20 feet bgs, contained benzene, TPH, TPH as gasoline (TPH-G), and TPH as diesel (TPH-D) concentrations above the MTCA Method A cleanup levels. MW-5 was located near the former truck unloaders (Figure 2). The groundwater sample analytical results showed that the samples from wells MW-1 and MW-5 contained BTEX and TPH-G concentrations that exceeded the Method A cleanup levels. The samples from wells MW-1, MW-2, MW-3 and MW-4 contained dissolved lead concentrations that exceeded the Method A cleanup level. The results of the assessment activities were presented in GeoEngineers' report, Supplemental Report of Geotechnical Services, Subsurface Contamination Study, dated September 3, 1991.

In November 1992, GeoEngineers collected a surface soil sample (designated S-1), and drilled and sampled an additional soil boring that was completed as a groundwater monitoring well (MW-7). The locations of S-1 and MW-7 are shown on Figure 2. The soil sample analytical results showed that S-1 contained total xylenes, TPH-G, and TPH-D concentrations that exceeded the MTCA Method A cleanup levels. S-1 was located near the former ASTs (Figure 2). The results of the investigation activities were described in GeoEngineers' report, *Progress Report No. 2, Quarterly Groundwater Monitoring and Supplemental Subsurface Explorations*, dated May 14, 1993.

In August 1995, GeoEngineers excavated and sampled 15 test pits (TP-1 through TP-15) to assess the lateral extents of the shallow, hydrocarbon-impacted soil at the site. The locations of the test pits are shown on Figure 2. The soil sample analytical results showed that samples

Chapter 173-340 WAC, "Model Toxics Control Act Cleanup Regulation; Method A Cleanup Levels." Amended January 1996.

from test pits TP-4 (collected at a depth of 6 feet bgs) and TP-5 (collected at a depth of 13.5 feet bgs) contained TPH-G, TPH-D, and TPH as oil (TPH-O) concentrations that exceeded the MTCA Method A cleanup levels. A sample collected from TP-9, at a depth of approximately 10 feet bgs, contained a TPH-G concentration that exceeded the Method A cleanup level. A sample collected from TP-11, at a depth of approximately 6 feet bgs, contained a TPH-O concentration that exceeded the Method A cleanup level. TP-4 was located near the former truck loading rack, TP-5 was located near the former truck unloaders, TP-9 was located near the former ASTs, and TP-11 was located near the former heating oil UST (Figure 2). The results of the investigation were described in GeoEngineers' report, Report of Environmental Services, Supplemental Subsurface Contamination and In-situ Testing, dated January 18, 1996.

From 1991 to 1999, GeoEngineers collected groundwater samples from all of the monitoring wells at the site on a quarterly to semi-annual basis. From 1991 to 1999, the groundwater samples from wells MW-1 and MW-5 typically contained benzene, total xylenes, TPH-G, and TPH-D concentrations that exceeded the MTCA Method A cleanup levels. Between 1991 and 1997, several of the samples from MW-1 and MW-4 contained dissolved lead concentrations that exceeded the Method A cleanup level. However, after December 1997, the groundwater samples from MW-1 and MW-4 contained dissolved lead concentrations that were below the Method A cleanup level. The results of the quarterly and semi-annual sampling events were described in several GeoEngineers' reports from 1991 to 1999.

In April and May 2001, MFA conducted soil excavation activities at six areas of the site to remove the petroleum hydrocarbon-impacted soil that occurred at depths above the high seasonal groundwater table. The approximate areas of each soil excavation are shown on Figure 2. A total of approximately 300 cubic yards of impacted soil from the six excavations was hauled off site for disposal at the Waste Management landfill in East Wenatchee, Washington. MFA collected sidewall and/or floor samples at the extents of each of the excavations for laboratory analysis. The soil sample analytical results showed that the final excavation sidewall and floor samples contained petroleum hydrocarbon concentrations below the MTCA Method A cleanup levels. The results of the excavation activities were described in MFA's report, *Results of Soil Excavation Activities*, dated August 23, 2001.

Based on the geologic conditions encountered during the previous investigation and remediation activities, the soil beneath the site consists of gravel and sand with local silty zones to a depth of at least 33 feet bgs. Unconfined groundwater occurs at depths ranging from approximately 14 to 29 feet bgs. Due to fluctuations of the Lake Chelan water level, the groundwater level beneath the site fluctuates up to 14 feet and the groundwater flow direction is variable.

Dr. Mark Brearley October 5, 2001 Page 4

ASSESS GROUNDWATER CONDITIONS IN EASTERN PART OF SITE

On May 24, 2001, MFA drilled and installed a groundwater monitoring well (MW-8) near the eastern edge of the site to assess the eastern extent of the petroleum hydrocarbon-impacted groundwater. The location of MW-8 is shown on Figure 3. Cascade Drilling, Inc. (Cascade), of Woodinville, Washington, conducted the drilling and well installation activities under the direction of an MFA environmental scientist. The soil boring was drilled by using air rotary drilling methods, and soil samples were collected at 5-foot intervals by using a split-spoon sampler. The boring was extended to a depth of approximately 31 feet bgs. The boring was completed with 2-inch-diameter, schedule 40 PVC well casing and screen (20 slot). The well extended to a depth of approximately 30.5 feet bgs, and a 20-foot-long screen was installed from approximately 10 to 30 feet bgs. At ground surface, the top of the well was protected with a traffic-rated, flush-grade monument. A boring log for MW-8 that includes the well construction details is attached. Following installation, Cascade developed the well by using surging and bailing methods. The soil cuttings and development water are temporarily stored on site in properly labeled, 55-gallon drums, pending off-site disposal.

MFA screened each of the soil samples for the presence of petroleum hydrocarbons by using visual appearance, odor, and a photoionization detector (PID). Based on the field screening results, a selected soil sample collected at a depth above the high seasonal groundwater table was submitted to North Creek Analytical, Inc. (NCA), in Bothell, Washington, for analysis. The sample (designated MW8-12-0501) collected at a depth of approximately 12 feet bgs was analyzed for BTEX by EPA Method 8021B, TPH-G by Ecology Method NWTPH-Gx, and for TPH-D and TPH-O by Ecology Method NWTPH-Dx (after sulfuric acid/silica gel cleanup). The sample analytical results showed that sample MW8-12-0501 did not contain BTEX, TPH-G, TPH-D, or TPH-O concentrations above the method reporting limits (MRLs). A copy of the laboratory report is attached.

On May 25, 2001, MFA collected groundwater samples from all eight of the monitoring wells (MW-1 through MW-8) at the site for laboratory analysis. Prior to sampling, the depths to groundwater were measured in all of the wells by using an electronic water level probe. The depths to groundwater ranged from 19.46 to 25.02 feet. The depth to groundwater measurements were converted to groundwater elevations by using the results of a well elevation survey conducted by Erlandsen Associates Inc., of Chelan, Washington. The groundwater elevations in the wells ranged from 1,092.26 to 1,092.43 feet above mean sea level (msl), and the general groundwater flow direction beneath the site was to the northeast (Figure 3). The horizontal hydraulic gradients were relatively flat (0.0009 to 0.0035 feet per foot). The groundwater monitoring data from the May 2001 sampling event are presented in Table 1.

The depth to groundwater measurements were used to calculate the volume of standing water in each well casing (pore volume). Before sample collection, at least three pore volumes were removed from each well by using a disposable PVC bailer. Field parameters of pH, specific conductance, and temperature were measured following removal of each pore volume. A groundwater sample was collected following stabilization of the field parameters to less than 10 percent difference in measurements between pore volumes. Each sample was labeled, placed into an iced cooler, and submitted to NCA by using standard chain-of-custody protocol. A new disposable bailer was used to collect the sample set at each well. The purge water is temporarily stored on site in properly labeled, 55-gallon drums, pending off-site disposal.

The groundwater samples were analyzed for BTEX, TPH-G, TPH-D, and TPH-O. The analytical results showed that the samples from wells MW-1 and MW-5 contained TPH-D concentrations (889 and 8,250 micrograms per liter [μ g/L], respectively) that exceeded the MTCA Method A cleanup level² (500 μ g/L). The sample from MW-5 also contained benzene and TPH-G concentrations (56.2 and 1,740 μ g/L, respectively) that exceeded the Method A cleanup levels (5 and 800 μ g/L, respectively). The samples from wells MW-2, MW-3, MW-4, MW-6, MW-7, and MW-8 contained petroleum hydrocarbon concentrations that were below the Method A cleanup levels or the MRLs. The groundwater sample analytical results from the May 2001 event, and the previous groundwater sampling events, are presented in Table 2. The benzene concentrations in the May 2001 samples are also shown on Figure 3. A copy of the laboratory report is attached.

CONCLUSIONS

In May 2001, MFA conducted subsurface investigation activities at the site to evaluate the eastern extent of the petroleum hydrocarbon-impacted groundwater, and to assess the current groundwater conditions. On May 24, 2001, MFA drilled and installed a groundwater monitoring well (MW-8) to assess the eastern extent of the petroleum hydrocarbon-impacted groundwater. A selected soil sample (designated MW8-12-0501) from boring MW-8, collected at a depth above the high seasonal groundwater table, was submitted to NCA for analysis. The soil sample analytical results showed that sample MW8-12-0501 did not contain BTEX, TPH-G, TPH-D, or TPH-O concentrations above the MRLs.

On May 25, 2001, MFA collected groundwater samples from all eight of the monitoring wells (MW-1 through MW-8) at the site for laboratory analysis. At the time of sampling, the depths to groundwater in the wells ranged from 19.46 to 25.02 feet. The groundwater elevations in the wells ranged from 1,092,26 to 1,092.43 feet above msl, and the general groundwater flow

² Chapter 173-340 WAC, "Model Toxics Control Act Cleanup Regulation; Method A Cleanup Levels." Amended February 12, 2001.

Dr. Mark Brearley October 5, 2001 Page 6 Project 9077.15.01

direction beneath the site was to the northeast. The horizontal hydraulic gradients were relatively flat (0.0009 to 0.0035 feet per foot). The groundwater sample analytical results showed that the samples from wells MW-1 and MW-5 contained TPH-D concentrations (889 and 8,250 μ g/L, respectively) that exceeded the MTCA Method A cleanup level. The sample from MW-5 also contained benzene and TPH-G concentrations (56.2 and 1,740 μ g/L, respectively) that exceeded the Method A cleanup levels. The samples from wells MW-2, MW-3, MW-4, MW-6, MW-7, and MW-8 contained petroleum hydrocarbon concentrations that were below the Method A cleanup levels or the MRLs. Based on the groundwater sample analytical results, the groundwater that contains petroleum hydrocarbon concentrations greater than Method A cleanup levels only occurs near the former truck unloaders (wells MW-1 and MW-5), and the lateral extent of the impacted groundwater has been defined in all directions. The locations of wells MW-1 and MW-5 are shown on Figure 3.

If you have any questions, please call Elisabeth Silver at (425) 744-1489.

Sincerely,

Maul Foster & Alongi, Inc.

Elosalude Jul

Elisabeth Silver Project Geologist Michael D. Staton, R.G. Principal Geologist

Attachments:

Limitations

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Elevation Contour Map – May 25, 2001

Soil Boring Log Laboratory Reports

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreements with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

Table 1

Groundwater Monitoring Data Former Unocal Bulk Fuel Terminal #0082 Chelan, Washington

Well Number	Top of Well Casing Elevation ^a (feet)	Date	Depth to Groundwater ^b (feet)	Groundwater Elevation (feet)
MW-1	1,112.38	05/25/01	20.02	1,092.36
MW-2	1,111.78	05/25/01	19.46	1,092.32
MW-3	1,112.15	05/25/01	19.82	1,092.33
MW-4	1,112.35	05/25/01	20.06	1,092.29
MW-5	1,112.20	05/25/01	19.84	1,092.36
MW-6	1,112.18	05/25/01	19.92	1,092.26
MW-7	1,117.45	05/25/01	25.02	1,092.43
MW-8	1,112.66	05/25/01	20.37	1,092.29

NOTE:

^a Well elevations were surveyed relative to mean sea level on 7/12/01.

^b The depths to groundwater were measured from the tops of the well casings.

Dissolved Lead* (µg/L)	15	NA	10	12	59		19	17	NA		NA	6.4	7.1	5.5	6.2	4.1	<10	2.9	7.4	4.6	4.7	2.6	NA
TPH-O ^d	500	3,800	NA	5,300 ⁱ	14,000		25,000	NA	NA		<3,800 ^j	930	1,900	2,000	6,800	4,020	<750 ^j	<500					
TPH-D° (µg/L)	200	NA	<1,000 ^{h,j}	15,000 ^h	19,000 ^h		006'6	16,000	12,000		18,000	3,200	2,000	2,600	21,000	15,500	1,910	1,200	4,800	<250	792	<250	889
TPH-G ^b (µg/L)	800	NA	2,800	3,0008	12,000 ^g		1,200	570	1,600		240	<50	730	<50	200	411	1,290	94.8	10,490	<50	841	<50	117
Total Xylenes ^a (μg/L)	1,000	700	270	57	350		4.3	24	150		9.1	<1.0	4.9	<1.0	33	2.29	112	1.0	124	<1.0	115	1.09	1.24
Ethylbenzene ^a (μg/L)	700	94	41	6.8	43	ń	0.57	4.7	19	, n	2.2	<0.5	2.4	<0.5	1.2	<0.5	15.8	<0.5	<25	<0.5	15.8	<0.5	<0.5
Toluene ^a (μg/L)	1,000	150	50	8.3	71	time of sampling.	<0.5	5.0	53	time of sampling.	1.6	<0.5	0.83	<0.5	4.4	<0.5	9.2	<0.5	25	<0.5	7.21	0.10	<0.5
Benzene ^a (µg/L)	5	270	280	84	250	Well was dry at time	1.2	28	75	Well was dry at time	15	0.88	27	69:0	28	13.7	55	5.4	33.6	1.29	34.4	1.31	0.67
Date Collected	Cleanup Levels ^f	12/04/1989	04/09/1991	08/27/1991	11/23/1991	02/20/1992	05/21/1992	08/19/1992	11/12/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/16/1996	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	05/25/2001
Well Number	MTCA Method A Cleanup Levels ^f	MW-1										27					13.						

Table 2

Dissolved Lead ^e (µg/L)	15	NA	0.6	<2.0	<3.0		3.3		NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TPH-O ^d (µg/L)	200	230 ⁱ	NA	<1,000 ^{i,j}	<1,000 ^{i,j}		<1,000 ^j		NA		<750 ^j	<750 ^j	720	<750 ^j	1,400	<750 ^j	<750 ^j	<750 ^j	<750 ^j	<750	<750 ^j	<750 ^j	<500
TPH-D [¢] (μg/L)	200	NA	<1,000 ^{h,j}	<1,000 ^{h,j}	<1,000 ^{h,j}	-	<500		1,000		<250	<250	340	<250	2,000	518	<250	<250	287	<250	<250	<250	<250
TPH-G ^b (µg/L)	800	NA	<1,000 ^{g.j}	<1,000 ^{gJ}	<1,000 ^{g.j}		<50		<100		<100	<50	<50	<50	<50	<50	<50	<50	NA	<50	NA	NA	<50
Total Xylenes ^a (µg/L)	1,000	<0.5	<0.5	<0.5	<0.5	=	<0.5		<0.5		<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA AN	NA	NA	NA	<1.0
Ethylbenzene ^a (µg/L)	700	<0.5	<0.5	<0.5	<0.5		<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Tolueneª (µg/L)	1,000	<0.5	<0.5	<0.5	<0.5	time of sampling	<0.5	npled.	<0.5	time of sampling.	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Benzeneª (µg/L)	5	<0.5	<0.5	<0.5	<0.5	Well was dry at time	<0.5	Well was not sampled.	<0.5	Well was dry at time	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Date Collected	Cleanup Levels ^f	12/04/1989	04/09/1991	08/27/1991	11/23/1991	02/20/1992	05/21/1992	08/19/1992	11/12/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/16/1996	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	05/25/2001
Well Number	MTCA Method A Cleanup Levels ^f	MW-2												٠.									

Table 2

Dissolved Lead ^e (μg/L)	15	NA	12	<2.0	<3.0	<3.0	2.9	<2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PO-HΔL)	200	9,300	NA	<1,000 ^{i,j}	<1,000 ^{i,j}	6,600 ⁱ	9,000	NA	NA	NA	<750 ^j	1,200	2,400	1,700	2,900	1,940	<750 ^j	<500					
TPH-D [¢] (μg/L)	200	NA	<1,000 ^{h,j}	<1,000 ^{h,j}	<1,000 ^{h,j}	12,000 ^h	3,500	1,800	1,800	2,600	1,000	2,000	11,000	2,300	5,100	4,790	<250	<250	280	<250	<250	<250	<250
TPH-G ^b (µg/L)	800	NA	<1,000 ^{g,j}	<1,000 ^{g,j}	<1,000 ^{g,j}	<1,000 ^{g,j}	100	<50	<100	<100	<100	<50	59	<50	<50	<50	<50	<50	NA	NA	NA	NA	<50
Total Xylenes ^a (μg/L)	1,000	<0.5	1.6	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	<1.0
Ethylbenzene ^a (µg/L)	700	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	<0.5
Toluene ^a (μg/L)	1,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Benzene ^a (µg/L)	5	<0.5	3.9	<0.5	1.2	<0.5	1.0	4.4	<0.5	1.4	1.6	0.95	2.8	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Date Collected	MTCA Method A Cleanup Levels ^f	12/04/1989	04/09/1991	08/27/1991	11/23/1991	02/20/1992	05/21/1992	08/19/1992	11/12/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/19/1996	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	05/25/2001
Well Number	MTCA Method A	MW-3	il.																				

Table 2

Dissolved Lead ^e (µg/L)	15	45	15	15		41				NA	2.9	6.4	2.2	6.3	5.7	<10	4.2	3.2	2.4	2.4	NA	NA
TPH-O ^d	200	NA	<1,000 ^{i,j}	<1,000 ^{i,j}		2,100				<750	910	880	1,500	1,400	1,840	<750	<750	<750	<750	<750	<750 ^j	<500
TPH-D° (μg/L)	200	<1,000 ^{h,j}	$<1,000^{\rm h,j}$	<1,000 ^{h,j}		009				280	630	750	490	1,700	2,530	<250	<250	<250	<250	<250	<250	<250
TPH-G ^b (µg/L)	800	<1,000 ^{6,j}	<1,000 ^{g,j}	<1,000 ^{gj}		<50		F-2		<100	<50	<50	<50	<50	<50	<50	<50	NA VA	NA A	NA	NA	<50
Total Xylenes ^a (µg/L)	1,000	<0.5	<0.5	<0.5	11	<0.5				<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	N.A.	NA	NA	NA	<1.0
Ethylbenzene* (µg/L)	700	<0.5	<0.5	<0.5	'n	<0.5			10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Toluene ^a (µg/L)	1,000	<0.5	<0.5	<0.5	Well was dry at time of sampling	<0.5	npled.	npled.	Well was dry at time of sampling.	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Benzene ^a (µg/L)	5	<0.5	<0.5	<0.5	Well was dry at	<0.5	Well was not sampled.	Well was not sampled.	Well was dry at	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	Z	NA	<0.5
Date Collected	Cleanup Levels ^f	04/09/1991	08/27/1991	11/23/1991	02/20/1992	05/21/1992	08/19/1992	11/12/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/19/1996	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	05/25/2001
Well Number	MTCA Method A Cleanup Levels ^f	MW-4																				

DIADAT 15 DAMMAN Taklas YI CITahla 2

Groundwater Sample Analytical Results Former Unocal Bulk Fuel Terminal #0082 Chelan, Washington

Table 2

Dissolved Lead ^e (μg/L)	15	<5.0	<4.0	3.0	<3.0	5.3	<2.0	NA		NA AN	NA	NA	NA	NA	NA	NA	NA	A'N	NA AN	NA	NA	NA
TPH-O ^d (µg/L)	500	NA	2,500 ⁱ	9,4001	5,2001	008'9	NA	NA		<3,800 ^j	3,000	2,300	2,900	8,900	5,540	<750 ^j	<750	<750 ^j	<750 ^j	<750 ^j	<750j	<500
TPH-D° (μg/L)	500	<1,000 ^{h,j}	20,000h	17,000 ^h	8,000 ^h	006'6	NA	15,000		11,000	16,000	13,000	11,000	23,000	17,500	853	557	525	295	388	468	8,250
TPH-G ^b (µg/L)	800	3,200	7,000 ^g	6,000°	4,000 ^g	2,500	2,200	2,100		1,500	3,000	1,000	3,300	1,300	2,200	1,130	3,890	1,920	3,800	1,860	1,050	1,740
Total Xylenes* (μg/L)	1,000	410	460	350	440	190	180	110		92	130	53	260	47	122	65	294	155	400	260	74.9	221
Ethylbenzene ^a (μg/L)	700	78	38	100	120	170	70	<0.5	io	47	43	20	110	37	55.7	34	144	55	76.6	89	<0.5	88.2
Toluene ^a (μg/L)	1,000	20	21	12	28	11	6.1	5.8	time of samplin	4.1	3.5	0.91	9.5	2.6	3.85	2.94	14.4	6.01	13.4	8.74	1.24	8.18
Benzene ^a (µg/L)	5	300	270	280	220	160	130	91	Well was dry at time of sampling	98	29	<0.5	73	70	43.1	51.8	87.7	62.8	88.1	11	31.1	56.2
Date Collected	MTCA Method A Cleanup Levels ^f	04/09/1991	08/27/1991	11/23/1991	02/20/1992	05/21/1992	08/19/1992	11/12/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/16/1996	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	05/25/2001
Well Number	MTCA Method A	MW-5											5,									

Table 2

Dissolved Lead ^e (µg/L)	15	<5.0	<2.0	<3.0	<3.0	4.7	<2.0	NA		NA	NA	NA	NA	NA	NA	NA						
TPH-O ^d (µg/L)	200	NA	<1,000 ^{i,j}	<1,000 ^{i,j}	<1,000 ^{i,j}	1,700	NA	NA		NA	840	800	1,000	890	NA	<750 ^j	<750 ^j	<750 ^j	<750j	<750j	<750 ^j	<500
TPH-D° (μg/L)	500	<1,000 ^{h,j}	<1,000 ^{h,j}	<1,000 ^{h,j}	<1,000 ^{h,j}	<500	<250	<500		NA	360	470	260	270	NA	<250	<250	<250	<250	<250	<250	<250
TPH-G ^b (µg/L)	800	<1,000 ^{g,j}	<1,000 ^{gJ}	<1,000 ^{g.j}	<1,000 ^{g.j}	<50	<50	<100		<100	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA	NA	<50
Total Xylenes ^a (µg/L)	1,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA AN	<1.0
Ethylbenzene ^a (μg/L)	700	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Toluene ^a (μg/L)	1,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Well was dry at time of sampling	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Benzene ^a (µg/L)	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Well was dry at	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	<0.5
Date Collected	MTCA Method A Cleanup Levels ^f	04/09/1991	08/27/1991	11/23/1991	02/20/1992	05/21/1992	08/19/1992	11/12/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/16/1696	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	05/25/2001
Well Number	MTCA Method A	9-MM																				

Groundwater Sample Analytical Results Former Unocal Bulk Fuel Terminal #0082 Chelan, Washington

Table 2

TPH-D ^c TPH-O ^d Lead ^c (μ g/L) (μ g/L)	500 500 15	1,700 NA NA		<250 <750 NA	600 1,300 2.0	1,300 1,200 <2.0	370 1,000 NA	510 1,000 NA	841 789 NA	<250 <750 NA	<250 <750 ⁱ NA	<250 <750 ⁱ NA		<250 <750 ⁱ NA	<250 <750 NA	
TPH-G ^b (µg/L)	800	<100		<100	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA	NA	
Total Xylenes ^a (μg/L)	1,000	0.7		<0.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA VA	NA	NA	NA	
Ethylbenzene ^a (µg/L)	700	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	
Toluene ^a (µg/L)	1,000	<0.5	time of sampling.	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	
Benzene ^a (µg/L)	5	<0.5	Well was dry at time	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	
Date Collected	Cleanup Levels ^f	11/15/1992	02/25/1993	08/24/1993	07/08/1994	01/04/1995	06/29/1995	12/29/1995	06/19/1996	12/13/1996	07/01/1997	12/30/1997	06/12/1998	12/07/1998	06/21/1999	
Well Number	MTCA Method A Cleanup Levels	MW-7	73										П			

Groundwater Sample Analytical Results Former Unocal Bulk Fuel Terminal #0082 Chelan, Washington

Well Number	Date Collected	Benzene ^a (µg/L)	Toluene ^a (μg/L)	Ethylbenzene ^ª (μg/L)	Total Xylenes ^a (µg/L)	TPH-G ^b	TPH-D° (μg/L)	ρΟ-HdT	Dissolved Lead [¢] (µg/L)
MTCA Method	MTCA Method A Cleanup Levels ^f	5	1,000	700	1,000	800	200	500	15
8-WM	05/25/2001	<0.5	<0.5	<0.5	<1.0	<50	<250	<500	NA

NOTES:

 $\mu g/L = micrograms$ per liter; approximates parts per billion.

Shaded values exceed MTCA Method A cleanup levels.

NA = Not analyzed.

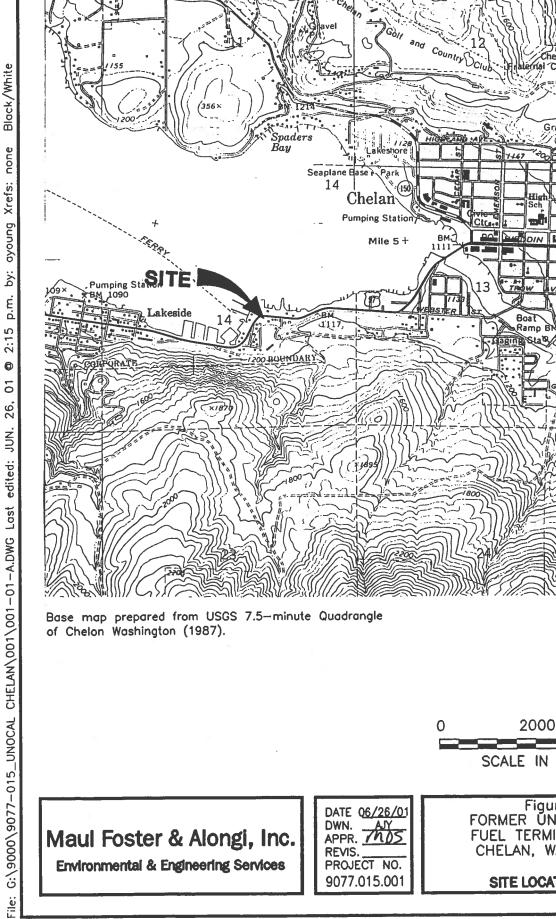
^a Benzene, toluene, ethylbenzene, and total xylenes by EPA Methods 8020 or 8021B.

^b TPH as gasoline (TPH-G) by Ecology Methods WTPH-G or NWTPH-Gx.

c TPH as diesel (TPH-D) by Ecology Methods WTPH-D or NWTPH-Dx (after sulfuric acid/silica gel cleanup).

^d TPH as oil (TPH-O) by Ecology Methods WTPH-418.1 or NWTPH-Dx (after sulfuric silica gel cleanup).

^c Dissolved lead by EPA Method 7421.


^f Chapter 173-340 WAC, "Model Toxics Control Act Cleanup Regulation; Method A Cleanup Levels for Ground Water." Amended February 12, 2001.

8 TPH-G by EPA Method 8015 modified.

^h TPH-D by EPA Method 8015 modified.

TPH-O by EPA Method 418.1.

Method reporting limit exceeded the MTCA Method A cleanup level.

2000 4000 SCALE IN FEET Figure 1 FORMER UNOCAL BULK FUEL TERMINAL #0082 CHELAN, WASHINGTON SITE LOCATION MAP

SOIL BORING LOG

LABORATORY REPORTS

Total Depth Sampled = 27.5 feet.

WELL COMPLETION DETAILS

0 to 10.0 feet: 2-inch diameter, flush-threaded, Schedule 40 PVC blank riser pipe.

10.0 to 30.0 feet: 2-inch diameter, flush-threaded, Schedule 40 PVC well screen with 0.020-inch machine-cut slots. 30.0 to 30.5 feet: 2-inch diameter, Schedule 40 PVC well cap.

0 to 0.5 foot: Concrete.

0.5 to 8.0 feet: Hydrated, 3/8-inch bentonite chips.

8.0 to 31.0 feet: #2/12 Sand.

Monument: Traffic-rated, flush-grade in cement base.

NOTES: (1) SS = 3.0-inch O.D. split-spoon sampler driven with a 140-pound hammer and a 30-inch drop. (2) * = Sample submitted to laboratory for analysis.

Water level at time of drilling.

C:PROGRA-1/GINTWMFA/PROJECTS/CHELAN.GPJ

GBLWC-PID&BLOWS

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Spokane

503.924.3200 Mimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported:

06/11/01 19:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW8-12-0501	B1E0708-01	Soil	05/24/01 09:45	05/29/01 10:55
ASI-12.0-0501	B1E0708-02	Soil	05/24/01 16:40	05/29/01 10:55
AS2-12.0-0501	B1E0708-03	Soil	05/25/01 08:30	05/29/01 10:55
AS3-12.0-0501	B1E0708-04	Soil	05/25/01 11:11	05/29/01 10:55

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 10

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264

Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/11/01 19:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW8-12-0501 (B1E0708-01) Soil	Sampled: 05/24	/01 09:45 R	eceived: 05/2	29/01 10:5:	5		-		
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	1F05022	06/05/01	06/06/01	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	н	*	н		**	
Toluene	ND	0.0500	**	**	н	**	Ħ	**	
Ethylbenzene	ND	0.0500	**	11	н	**	*	99	
Xylenes (total)	ND	0.100	"		**	11	н	**	
Surrogate: 4-BFB (FID)	89.5 %	50-150		-	"	"	**	"	
Surrogate: 4-BFB (PID)	92.0 %	50-150			"	"	"	"	
AS1-12.0-0501 (B1E0708-02) Soil	Sampled: 05/24	/01 16:40 R	Received: 05/2	29/01 10:5	5				
Gasoline Range Hydrocarbons	1530	100	mg/kg dry	20	1F05022	06/05/01	06/06/01	NWTPH-Gx/8021B	G-01
Benzene	ND	1.00	**	"	Ħ	**	**		
Toluene	1.07	1.00	**	*	**	**	#	**	I-06
Ethylbenzene	6.93	1.00	**	**	**		н	11	
Xylenes (total)	112	2.00	"	**	"	11	11	#	
Surrogate: 4-BFB (FID)	%	50-150			*1	"	"	"	S-01
Surrogate: 4-BFB (PID)	138 %	50-150			"	"	"	"	
AS2-12.0-0501 (B1E0708-03) Soil	Sampled: 05/25/	/01 08:30 R	eceived: 05/2	29/01 10:5:	5				
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	1F05022	06/05/01	06/06/01	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	#	**	**	11	Ħ	
Toluene	ND	0.0500	11	**	н	**	**	11	
Ethylbenzene	ND	0.0500	tt	"	"	Hr .	"	**	
Xylenes (total)	ND	0.100	"	**	**		= "	H	
Surrogate: 4-BFB (FID)	86.2 %	50-150			"	**	"	"	
Surrogate: 4-BFB (PID)	89.2 %	50-150			"	**	*	#	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 2 of 10

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264

Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported:

06/11/01 19:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
AS3-12.0-0501 (B1E0708-04) Soil	Sampled: 05/25	/01 11:11 R	Received: 05/	29/01 10:5	5				= =
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	1F05022	06/05/01	06/06/01	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	н	**	**	**	#	
Toluene	ND	0.0500	**	**	Ħ	n	**	11	
Ethylbenzene	ND	0.0500	**		**	"	11	Ħ	
Xylenes (total)	ND	0.100	н	н	**	"		rt	
Surrogate: 4-BFB (FID)	87.1 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	93.5 %	50-150			*	"		"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 3 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425,420,9200 fax 425,420,9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200 fax 509,924,9290

Spokane

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle

Project: Chelan Bulk Terminal #0082

17171 Bothell Way NE #264 Seattle WA, 98155

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/11/01 19:38

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW8-12-0501 (B1E0708-01) Soil	Sampled: 05/24/	01 09:45 R	eceived: 05/	29/01 10:5	5				
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	. 1	1F02001	06/02/01	06/06/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	25.0	11	"	**		**	. **	
Surrogate: 2-FBP	61.5 %	50-150			**	"		"	
Surrogate: Octacosane	76.7 %	50-150			. "	"	**	"	
AS1-12.0-0501 (B1E0708-02) Soil	Sampled: 05/24	/01 16:40 F	Received: 05/	/29/01 10:5	5			·	
Diesel Range Hydrocarbons	9570	410	mg/kg dry	41	1F02001	06/02/01	06/07/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	1020	"	11	Ħ	**	" _		
Surrogate: 2-FBP	%	50-150			. "	"	"	"	S-01
Surrogate: Octacosane	96.7 %	50-150			*	"	"	"	
AS2-12.0-0501 (B1E0708-03) Soil	Sampled: 05/25/	/01 08:30 R	Received: 05/	/29/01 10:5	5			·	
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	1F02001	06/02/01	06/06/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	25.0	**	11	Ħ	11	**	"	
Surrogate: 2-FBP	60.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	75.3 %	50-150			**	**	"	"	
AS3-12.0-0501 (B1E0708-04) Soil	Sampled: 05/25	/01 11:11 F	Received: 05/	/29/01 10:5	5				
Diesel Range Hydrocarbons	75.0	10.0	mg/kg dry	1	1F02001	06/02/01	06/06/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	25.0	**	и,	**	**	**	**	
Surrogate: 2-FBP	79.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	81.6 %	50-150			*	"	#	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 4 of 10

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported:

06/11/01 19:38

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW8-12-0501 (B1E0708-01) Soil	Sampled: 05/24/01	09:45 Re	ceived: 05/	/29/01 10:5	5				
Dry Weight	97.2	1.00	%	1	1F05012	06/05/01	06/06/01	BSOPSPL003R07	
AS1-12.0-0501 (B1E0708-02) Soil	Sampled: 05/24/01	16:40 Re	ceived: 05	/29/01 10:5	5				
Dry Weight	88.3	1.00	%	1	1F05012	06/05/01	06/06/01	BSOPSPL003R07	
AS2-12.0-0501 (B1E0708-03) Soil	Sampled: 05/25/01	08:30 Re	ceived: 05	/29/01 1 0 :5	5				
Dry Weight	90.3	1.00	%	1	1F05012	06/05/01	06/06/01	BSOPSPL003R07	
AS3-12.0-0501 (B1E0708-04) Soil	Sampled: 05/25/01	11:11 Re	ceived: 05	/29/01 10:5	5				
Dry Weight	95.6	1.00	%	1	1F05012	06/05/01	06/06′01	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 5 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle

Project: Chelan Bulk Terminal #0082

17171 Bothell Way NE #264 Seattle WA, 98155

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/11/01 19:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

= 11		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1F05022: Prepared 06/05/01	Using E	PA 5030B	(McOH)							
Blank (1F05022-BLK1)										
Gasoline Range Hydrocarbons	ND	5.00	mg/kg wet							
Benzene	ND	0.0500	"							
Toluene	ND	0.0500	u u							
Ethylbenzene	ND	0.0500	**							
Xylenes (total)	ND	0.100	**							
Surrogate: 4-BFB (FID)	3.49	•	"	4.00		87.2	50-150			
Surrogate: 4-BFB (PID)	3.59		"	4.00		89.8	50-150			
LCS (1F05022-BS1)										
Gasoline Range Hydrocarbons	25.0	5.00	mg/kg wet	25.0		100	70-130			
Surrogate: 4-BFB (FID)	3.73		"	4.00		93.2	50-150			
LCS (1F05022-BS2)										
Benzene	0.480	0.0500	mg/kg wet	0.500		96.0	70-130	-		
Toluene	0.488	0.0500	Ħ	0.500		97.6	70-130			
Ethylbenzene	0.524	0.0500	H	0.500		105	70-130			
Xylenes (total)	1.58	0.100	н	1.50		105	70-130			
Surrogate: 4-BFB (PID)	3.66		"	4.00	-	91.5	50-150			
LCS Dup (1F05022-BSD1)										
Gasoline Range Hydrocarbons	25.0	5.00	mg/kg wet	25.0		100	70-130	0.00	25	
Surrogate: 4-BFB (FID)	3.74		"	4.00		93.5	50-150		20	
LCS Dup (1F05022-BSD2)										
Benzene	0.481	0.0500	mg/kg wet	0.500		96.2	70-130	0.208	25	
Foluene	0.492	0.0500	**	0.500		98.4	70-130	0.816	25	
Ethylbenzene	0.540	0.0500	**	0.500		108	70-130	3.01	25	
Xylenes (total)	1.59	0.100	tt	1.50		106	70-130	0.631	25	
Surrogate: 4-BFB (PID)	3.66		"	4.00		91.5	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain o custody document. This analytical report must be reproduced in its entirety

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 6 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/11/01 19:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Using E	PA 5030B	(MeOH)							
-				Source: E	31F0055-0)1			
ND	5.00	mg/kg dry		ND			40.6	50	
3.63		н	5.05		71.9	50-150			
				Source: E	31F0055-0)6			
ND	5.00	mg/kg dry	<u> </u>	ND				50	
3.59		"	4.51		79.6	50-150			
				Source: E	1F0055-0	15			
25.0	5.00	mg/kg dry	32.1	ND	75.0	60-140			
4.04		"	5.13	-	78.8	50-150			
				Source: E	1F0055-1	1			
0.507	0.0500	mg/kg dry	0.635	ND	79.4	60-140			
0.535	0.0500	"	0.635	ND	83.7	60-140			
	0.0500	**	0.635	ND	90.2	60-140			
1.72	0.100	"	1.91	ND	90.1	60-140			
3.96		"	5.08		78.0	50-150			
				Source: E	1 F00 55-0)5			
25.7	5.00	mg/kg dry	32.1	ND	77.2	60-140	2.76	20	
4.01		"	5.13		78.2	50-150	7,		
				Source: E	1 F005 5-1	1			
0.519	0.0500	mg/kg dry	0.635	ND	81.3	60-140	2.34	20-	
	0.0500	"	0.635	ND	84.8	60-140	1.30	20	
		**	0.635	ND	91.8	60-140	1.73	20	
		**	1.91	ND	91.6	60-140	1.73	20	
4.16			5.08		81.9	50-150			
	Using El ND 3.63 ND 3.59 25.0 4.04 0.507 0.535 0.573 1.72 3.96	ND 5.00	Result Limit Units Using EPA 5030B (McOH) ND 5.00 mg/kg dry 3.63 " ND 5.00 mg/kg dry 3.59 " 25.0 5.00 mg/kg dry 4.04 " 0.507 0.0500 mg/kg dry 0.535 0.0500 " 0.573 0.0500 " 1.72 0.100 " 3.96 " 0.519 0.0500 mg/kg dry 0.542 0.0500 " 0.583 0.0500 " 1.75 0.100 "	Result Limit Units Level Using EPA 5030B (McOH) ND 5.00 mg/kg dry 3.63 " 5.05 ND 5.00 mg/kg dry 3.59 " 4.51 25.0 5.00 mg/kg dry 32.1 4.04 " 5.13 0.507 0.0500 mg/kg dry 0.635 0.535 0.0500 " 0.635 0.573 0.0500 " 0.635 1.72 0.100 " 1.91 3.96 " 5.08 25.7 5.00 mg/kg dry 32.1 4.01 " 5.13 0.519 0.0500 mg/kg dry 0.635 0.542 0.0500 " 0.635 0.583 0.0500 " 0.635 0.583 0.0500 " 0.635 1.75 0.100 " 1.91	ND 5.00 mg/kg dry ND	ND 5.00 mg/kg dry ND	Result Limit Units Level Result %REC Limits Using EPA 5030B (McOH) Source: B1F0055-01 ND 5.00 mg/kg dry ND Source: B1F0055-05 ND 5.00 mg/kg dry ND 79.6 50-150 Source: B1F0055-05 Source: B1F0055-05 Source: B1F0055-05 Source: B1F0055-05 25.0 5.00 mg/kg dry 32.1 ND 75.0 60-140 4.04 " 5.13 78.8 50-150 Source: B1F0055-11 Source: B1F0055-11 0.507 0.0500 mg/kg dry 0.635 ND 79.4 60-140 0.573 0.0500 " 0.635 ND 83.7 60-140 3.96 " 5.08 78.0 50-150 Source: B1F0055-05 25.7 5.00 mg/kg dry 32.1 ND 77.2 60-140 4.01 " 5.13 <td< td=""><td> No No No No No No No No</td><td> No</td></td<>	No No No No No No No No	No

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 7 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle

Project: Chelan Bulk Terminal #0082

17171 Bothell Way NE #264 Seattle WA, 98155

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/11/01 19:38

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source	_	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1F02001: Prepared 06/02/01	Using El	PA 3550B								
Blank (1F02001-BLK1)				-						
Diesel Range Hydrocarbons	ND	10.0	mg/kg wet	_	(1					
Lube Oil Range Hydrocarbons	ND	25.0	н							
Surrogate: 2-FBP	6.26	,	"	10.7		58.5	50-150			
Surrogate: Octacosane	8.11		"	10.7		75.8	50-150			
LCS (1F02001-BS1)										
Diesel Range Hydrocarbons	50.0	10.0	mg/kg wet	66.7		75.0	50-150			
Surrogate: 2-FBP	7.65		"	10.7		71.5	50-150			
Duplicate (1F02001-DUP1)					Source: I	31E0617-	01			
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry		ND				50	
Lube Oil Range Hydrocarbons	ND	25.0	н		ND				50	
Surrogate: 2-FBP	7.35	-	"	11.6		63.4	50-150			
Surrogate: Octacosane	8.95		"	11.6		77.2	50-150			
Duplicate (1F02001-DUP2)					Source: E	31E0700-	01			
Diesel Range Hydrocarbons	124	10.0	mg/kg dry		57.4			73.4	50	Q-14
Lube Oil Range Hydrocarbons	191	25.0	Ħ		88.0			73.8	50	Q-14
Surrogate: 2-FBP	11.1		н	16.1		68.9	50-150			
Surrogate: Octacosane	12.0		*	16.1		74.5	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain o, custody document. This analytical report must be reproduced in its entirely.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 8 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425,420,9200 fax 425,420,9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200 fax 509,924,9290

303.324.3200 fax 303.324.323 405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264

Project: Chelan Bulk Terminal #0082

Bend

Project Number: 9077.015.001

Reported:

Seattle WA, 98155

Project Manager: Mike Staton

06/11/01 19:38

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1F05012:	Prepared 06/05/01	Using Dr	Weight	= =							
Blank (1F05012-Bl	LK1)										
Dry Weight		100	1.00	%							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 9 of 10

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 Seattle

425.420.9200 fax 425.420.9210

425.420.3200 fax 425.420.3210 fax 625.420.3210 fax 625.420.3210 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

Bend 541,383.9310 fax 541,382,7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264

Project: Chelan Bulk Terminal #0082

Reported:

Seattle WA, 98155

Project Number: 9077.015.001 Project Manager: Mike Staton

06/11/01 19:38

Notes and Definitions

Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons. G-01

The analyte concentration may be artificially elevated due to coeluting compounds or components. I-06

Visual examination indicates the RPD and/or matrix spike recovery is outside the control limit due to a non-homogeneous Q-14

sample matrix.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or S-01

matrix interferences.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 10 of 10

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 East 11115 Montgomery, Suite B, Spokane, WA 98206-9405 S.W. Nimbus Avenue, Beaverton, OR 97008-

11.02 TEO 7.210	FAX 924-9290	FAX 906-9210	FAX 382-7588
0076-074 (674)	(509) 924-9200	(503) 906-9200	(541) 383-9310
-0770-	-4776	-7132	5711

			_
FAX 420-9210	FAX 924-9290	FAX 906-9210	EAY 382-7588
(425) 420-9200	(509) 924-9200	(503) 906-9200	75/11/283_0310

UNOCAL CHAIN OF CUSTODY REPORT BIF0108

								ו ה								$\neg \top$			$\neg \neg$	٦_				
cuain of Custody Mocole #:		Quality Assurance Data Level:	al Simple Control	A. Stational Summary	B: Standard + Chromatograms	oratory Tumarou	1 7 1 5 1 5 X				INCA SAMITLE INUMBER	40-	-63	40-							yes no Define	2	on back	Date:
	2001 1/5,001						3)		No.	CLP or RC	V										Final Report Approvation of the second of th	Were results within requested turnaround?	Final Approval Signature:	
	11. M _{bol} L _o L _o + Δ(λ _o) Project# 9/77, 0/5, 00	Syr	4.98153		489 Fax:(425)744-0919	on	Gundberg	AK (A) NW Series	Ext.	xtended PH-Diesel- //SG Clean falogen. Vol. pp. 82.50 pp. 82.50 pp. 82.60 pp	L 1 8 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	*	*	×							Firm: Date & Time),)		\mathcal{L}
		Address: 17171 80+	Siatte, WA. 98153		Phone: (425) 744-1489	Project Manager: Mike Staton	us Sample Collection by: 6, 4 nn Uyer9	O OR O WA O		PH-HCID PH-Cas PH-Cas PH-Cas PH-Cas PH-Cas PH-Cas		*	7	×							Received by:	2		TELLO 1 - MATERIA DE LASTA SILIA DE LOSTA
	UNOCALIDEORMATIONS			Ic Brearley - June		Remediation	e Miscellaneous			# OF MATRIX CON-	(M,3,0) 1AME	N	Vi	χ χ							Date & Time 5/24/01 (2) 1/95			1. MUTPUL
	ALINFORMATIONS		WA.	B!11.2 to May	0.(6	Evaluation	ition Closure			SAMPLING	S	_	5/25/or@ 0830	111 00 1111						- -	Firm:	_		Δ
	Facility Number: (1,2 16,2 15,1)	Site Address: 500 Esst	City. State, ZIP: Chelan, WA.	Site Release Number: Direct Billing to Mark Brearley - Ument	Unocal Manager: Marle Brewile	CERT INFO: (check one)	Detection Demolition			TO THE COMPANY OF THE	1. BRANGE MUNITORNION	2 M ASI-12,0-0501	3. A52-12.0-0501	1 453-12.0-0501	5.	6.	7.	8.	9.		Relinquished by	7	3.	Page of Thu.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portfand 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Case Narrative for B1E0721

Client: Maul Foster & Alongi Project Manager: Mike Staton

Project Name: Chelan Bulk Terminal #0082

1.0 DESCRIPTION OF CASE

Eight water samples were submitted on May 29, 2001, for one or all of the following analyses: Volatile Petroleum Products and BTEX compounds by NWTPH-Gx/EPA 8021B and Semivolatile Petroleum Products by NWTPHDx with Acid/Silica Gel Clean-up.

2.0 COMMENTS ON SAMPLE RECEIPT

The samples were received on May 29, 2001 and logged in on May 30, 2001 at a temperature of 5.4 °C. No anomalies were associated with sample receipt.

3.0 PREPARATION AND ANALYSIS

Volatile Petroleum Products and BTEX compounds by NWTPH-Gx/EPA 8021B

No anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Semivolatile Petroleum Products by NWTPHDx with Acid/Silica Gel Clean-up

The surrogates, 2-FBP and Octocosane, fell outside of their established QC limits in sample MW-7-0501. It could not be determined whether the low recoveries were attributable to an extraction anomaly, the harshness of the acid/silica gel treatment or a matrix effect. Extra volume was available with which to conduct a re-extraction and re-analysis of the sample. The re-extraction was conducted outside the recommended holding time. As a consequence, both sets of results are reported. Furthermore, the results of the initial extraction should be considered with a low bias and the results of the second extraction estimated.

No additional anomalies or discrepancies were associated with this analysis.

"I certify that this data package is in compliance with the Contract both technically and for completeness, other than the conditions detailed above. Release of the data in this hard copy data package has been authorized by the Laboratory Director, as verified by the following signature."

Scott A. Woerman Project Manager

North Creek Analytical - Bothell

North Creek Analytical, Inc. **Environmental Laboratory Network**

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported:

06/18/01 16:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-0501	B1E0721-01	Water	05/25/01 15:35	05/29/01 10:55
MW-2-0501	B1E0721-02	Water	05/25/01 14:30	05/29/01 10:55
MW-3-0501	B1E0721-03	Water	05/25/01 17:15	05/29/01 10:55
MW-4-0501	B1E0721-04	Water	05/25/01 16:40	05/29/01 10:55
MW-5-0501	B1E0721-05	Water	05/25/01 18:30	05/29/01 10:55
MW-6-0501	B1E0721-06	Water	05/25/01 15:00	05/29/01 10:55
MW-7-0501	B1E0721-07	Water	05/25/01 17:50	05/29/01 10:55
MW-8-0501	B1E0721-08	Water	05/25/01 12:45	05/29/01 10:55

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scoll A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264

Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

PH-Gx/8021B " " " "	G-01
11 11 11 11	
11 11 11 11	
11 11 11	I-06
" "	I-06
" "	I-06
"	I-06
"	
DIA C. (0001D	
DIT C:-/0001D	
PH-Gx/8021B	
**	
**	
17	
. **	
"	
"	
PH-Gx/8021B	
99	
**	
**	
"	
"	
	" " " " " " " " " " " " " " " " " " " "

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain a custody document. This analytical report must be reproduced in its entirety

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 2 of 10

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, DR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle

Project: Chelan Bulk Terminal #0082

17171 Bothell Way NE #264 Seattle WA, 98155

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported:

06/18/01 16:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4-0501 (B1E0721-04) Water	Sampled: 05/25	/01 16:40 I	Received: 05	/29/01 10:5	5				
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	1F05010	06/05/01	06/05/01	NWTPH-Gx/8021B	
Benzene	ND	0.500	"	tt.	11	**	59	86	
Toluene	ND	0.500	**	**	41	"	"	41	
Ethylbenzene	ND	0.500	"	IT	41	Ħ	н	**	
Xylenes (total)	ND	1.00	"	H	н	11	11	81	
Surrogate: 4-BFB (FID)	92.5 %	50-150			"	н	"	"	
Surrogate: 4-BFB (PID)	92.9 %	50-150			**	"	"	"	
MW-5-0501 (B1E0721-05) Water	Sampled: 05/25	/01 18:30 F	Received: 05	/29/01 10:5	5			v.	
Gasoline Range Hydrocarbons	1740	500	ug/l	10	1F05010	06/05/01	06/05/01	NWTPH-Gx/8021B	
Benzene	56.2	5.00	н	11	**	**	**	**	
Toluene	8.18	5.00	11	"	#	"	"	**	
Ethylbenzene	88.2	5.00	#1	***	11	11	IT	10	
Xylenes (total)	221	10.0	"	11	,,	11	11	11	
Surrogate: 4-BFB (FID)	97.5 %	50-150			н	"	"	"	
Surrogate: 4-BFB (PID)	95.8 %	50-150			"	"	"	"	
MW-6-0501 (B1E0721-06) Water	Sampled: 05/25/	01 15:00 R	eceived: 05/	29/01 10:55	5	_	_		
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	1F05010	06/05/01	06/05/01	NWTPH-Gx/8021B	
Benzene	ND	0.500	**	**	*	II .	tt	P#	
Toluene	ND	0.500	"	**	н	**		"	
Ethylbenzene	ND	0.500	**	**	**	11	H	**	
Xylenes (total)	ND	1.00	**	**	" .	11	***	**	
Surrogate: 4-BFB (FID)	92.7 %	50-150			*	"	"	**	
Surrogate: 4-BFB (PID)	91.7 %	50-150			*	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain o custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 3 of 10

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509,924,9200
 fax 509,924,9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503,906,9200
 fax 503,906,9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541,383,9310
 fax 541,382,7588

Maul Foster & Alongi-Seattle

17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

		Reporting	VA.			-				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW-7-0501 (B1E0721-07) Water	Sampled: 05/25/	/01 17:50 l	Received: 05	/29/01 10:5	5					
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	1F05010	06/05/01	06/05/01	NWTPH-Gx/8021B		
Benzene	ND	0.500	**	**	**	**	**	l†		
Toluene	ND	0.500	11	5	"	**	**	**		
Ethylbenzene	ND	0.500	**		"	**	11	**		
Xylenes (total)	ND	1.00	**	"		**	**	11		
Surrogate: 4-BFB (FID)	90.8 %	50-150			"	"	"	"		
Surrogate: 4-BFB (PID)	90.6 %	50-150			"	"	"	**		
MW-8-0501 (B1E0721-08) Water	Sampled: 05/25/	01 12:45 I	Received: 05	/29/01 10:5	5					
Gasoline Range Hydrocarbons	ND	50.0	ug/[1	1F05010	06/05/01	06/05/01	NWTPH-Gx/8021B		
Benzene	ND	0.500	11	**	**	**	H	**		
Toluene	ND	0.500	**	žŧ	**	**	**	11		
Ethylbenzene	ND	0.500	**	**	**	**		11		
Xylenes (total)	ND	1.00	**	**	**	**	**	89		
Surrogate: 4-BFB (FID)	92.1 %	50-150			"	**	"	"		
Surrogate: 4-BFB (PID)	90.6 %	50-150			"	"	"	"		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 4 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Portland 9405 SW Nimbus Avenue, Seaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle

Project: Chelan Bulk Terminal #0082

17171 Bothell Way NE #264 Seattle WA, 98155

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1-0501 (B1E0721-01) Water	Sampled: 05/25	/01 15:35 I	Received: 05/	29/01 10:5	5				
Diesel Range Hydrocarbons	0.889	0.250	mg/l	1	1E31022	05/31/01	06/08/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	"	Ħ	Ħ	tr	**	**	
Surrogate: 2-FBP	80.7 %	50-150			"	"	"	"	
Surrogate: Octacosane	96.1 %	50-150			"	"	"	"	
MW-2-0501 (B1E0721-02) Water	Sampled: 05/25	/01 14:30 F	Received: 05/	29/01 10:5	5				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1E31022	05/31/01	06/09/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	"	н	**	**	**	*1	
Surrogate: 2-FBP	76.5 %	50-150			"	"	"	#	
Surrogate: Octacosane	84.5 %	50-150			"	"	"	"	
MW-3-0501 (B1E0721-03) Water	Sampled: 05/25/	01 17:15 F	Received: 05/	29/01 10:5:	5				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1E31022	05/31/01	06/08/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	**	**	**	#	**	11	
Surrogate: 2-FBP	69.4 %	50-150			"	"	"	"	
Surrogate: Octacosane	78.7 %	50-150			"	"	"	"	
MW-4-0501 (B1E0721-04) Water	Sampled: 05/25/	01 16:40 R	Received: 05/	29/01 10:5	5				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1E31022	05/31/01	06/09/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	**	**	**	**	**	**	
Surrogate: 2-FBP	69.5 %	50-150			"	"	"	н	
Surrogate: Octacosane	78.5 %	50-150			"	"	"	"	
MW-5-0501 (B1E0721-05) Water	Sampled: 05/25/	01 18:30 R	Received: 05/	29/01 10:55	5				
Diesel Range Hydrocarbons	8.25	0.250	mg/l	1	1E31022	05/31/01	06/08/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	*	**	**	**	**	11	
Surrogate: 2-FBP	97.3 %	50-150			"	,,	"	"	
Surrogate: Octacosane	83.6 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 5 of 10

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

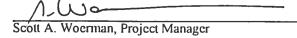
Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton


Reported: 06/18/01 16:38

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6-0501 (B1E0721-06) Water	Sampled: 05/25	/01 15:00 R	leceived: 05	5/29/01 10:5	5				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1E31022	05/31/01	06/09/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	"	**	**	**	**	11	
Surrogate: 2-FBP	69.6 %	50-150				"	"	"	
Surrogate: Octacosane	79.8 %	50-150			"	"	"	**	
MW-7-0501 (B1E0721-07) Water	Sampled: 05/25	/01 17:50 R	eceived: 05	5/29/01 10:5	5				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1E31022	05/31/01	06/09/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	**	**	**	11	"	41	
Surrogate: 2-FBP	39.4 %	50-150			- "	"	"	"	X
Surrogate: Octacosane	45.0 %	50-150			"	"	"	"	X
MW-7-0501 (B1E0721-07RE1) Wa	iter Sampled: 0	5/25/01 17:5	0 Received	d: 05/29/01	10:55				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	IF13012	06/13/01	06/15/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	n	**	**	**	**	**	
Surrogate: 2-FBP	68.8 %	50-150			**	"	"	"	
Surrogate: Octacosane	73.1 %	50-150			"	"	"	"	
MW-8-0501 (B1E0721-08) Water	Sampled: 05/25	/01 12:45 R	eceived: 05	/29/01 10:5	5				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	1E31022	05/31/01	06/09/01	NWTPH-Dx SG	
Lube Oil Range Hydrocarbons	ND	0.500	11	**	**	**	**	99	
Surrogate: 2-FBP	56.4 %	50-150			"	n	"	"	
Surrogate: Octacosane	65.0 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Bend

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1F05010:	Prepared 06/05/01	Using El	PA 5030B (P/T)							
Blank (1F05010-BL	K1)									_	
Gasoline Range Hydrod	carbons	ND	50.0	ug/l							
Benzene		ND	0.500	**							
Toluene		ND	0.500	**							
Ethylbenzene		ND	0.500	**							
Xylenes (total)		ND	1.00	**							
Surrogate: 4-BFB (FID)	43.3		"	48.0		90.2	50-150			
Surrogate: 4-BFB (PID)	45.9		"	48.0		95.6	50-150			
LCS (1F05010-BS1)	1										
Gasoline Range Hydrod	arbons	488	50.0	ug/l	500		97.6	70-130			
Surrogate: 4-BFB (FID)	48.6	5	"	48.0		101	50-150			
LCS (1F05010-BS2)	1										
Benzene		9.48	0.500	ug/l	10.0		94.8	70-130			
Toluene		9.77	0.500		10.0		97.7	70-130			
Ethylbenzene		10.3	0.500	H	10.0		103	70-130			
Xylenes (total)		31.0	1.00	**	30.0		103	70-130			
Surrogate: 4-BFB (PID))	44.2		"	48.0		92.1	50-150			
LCS Dup (1F05010-	BSD1)										
Gasoline Range Hydroc	arbons	496	50.0	ug/l	500		99.2	70-130	1.63	25	
Surrogate: 4-BFB (FID))	48.2		"	48.0		100	50-150		5	
LCS Dup (1F05010-	BSD2)										
Benzene		9.61	0.500	ug/l	10.0		96.1	70-130	1.36	25	
Toluene		9.69	0.500	**	10.0		96.9	70-130	0.822	25	
Ethylbenzene		10.4	0.500	**	10.0		104	70-130	0.966	25	
Xylenes (total)		31.1	1.00	- <u>-</u>	30.0		104	70-130	0.322	25	
Surrogate: 4-BFB (PID)		44.2		"	48.0		92.1	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 7 of 10

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264

Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1F05010:	Prepared 06/05/01	Using EP	A 5030B (P/T)							
Duplicate (1F05010-I	OUP1)					Source: E	31E0721-	05			
Gasoline Range Hydroca	rbons	1870	1000	ug/l		1740			7.20	25	
Surrogate: 4-BFB (FID)		44.7		"	48.0		93.1	50-150			
Matrix Spike (1F05010-MS1)						Source: E	31E0721-4	02			
Gasoline Range Hydroca	rbons	492	50.0	ug/l	500	ND	98.4	70-130			
Surrogate: 4-BFB (FID)		46.6		"	48.0		97.1	50-150			
Matrix Spike (1F050)	10-MS2)					Source: E	31E0721-0	04			
Benzene	,	9.79	0.500	ug/l	10.0	ND	97.9	70-130			
Toluene		9.72	0.500	Ħ	10.0	ND	96.1	70-130			
Ethylbenzene		10.3	0.500	11	10.0	ND	103	70-130			
Xylenes (total)		30.9	1.00	11	30.0	ND	103	70-130			
Surrogate: 4-BFB (PID)		44.5		"	48.0		92.7	50-150			
Matrix Spike Dup (1)	F05010-MSD1)					Source: B	1E0721-0)2			
Gasoline Range Hydroca	rbons	486	50.0	ug/l	500	ND	97.2	70-130	1.23	15	
Surrogate: 4-BFB (FID)		47.3		"	48.0		98.5	50-150			21
Matrix Spike Dup (1)	F05010-MSD2)					Source: B	1E0721-0	04			
Benzene		9.73	0.500	ug/l	10.0	ND	97.3	70-130	0.615	15	
Toluene		9.85	0.500	#	10.0	ND	97.4	70-130	1.33	15	
Ethylbenzene		10.5	0.500	**	10.0	ND	105	70-130	1.92	15	
Xylenes (total)		31.5	1.00	н	30.0	ND	105	70-130	1.92	15	
Surrogate: 4-BFB (PID)		44.9	. ,	"	48.0		93.5	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 8 of 10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

425.420.9200 lax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1E31022:	Prepared 05/31/01	Using El	PA 3520C/	600 Series							
Blank (1E31022-Bl	LK1)	_									
Diesel Range Hydroca	rbons	ND	0.250	mg/l							
Lube Oil Range Hydro	carbons	ND	0.500	**							
Surrogate: 2-FBP		0.238		"	0.320		74.4	50-150			
Surrogate: Octacosane	?	0.263		Ħ	0.320		82.2	50-150			
LCS (1E31022-BS1)										
Diesel Range Hydroca	rbons	1.47	0.250	mg/l	2.00		73.5	50-150			
Surrogate: 2-FBP		0.237		п	0.320		74.1	50-150			
LCS Dup (1E31022	-BSD1)										
Diesel Range Hydrocar	sel Range Hydrocarbons		0.250	mg/l	2.00	•	75.0	50-150	2.02	50	
Surrogate: 2-FBP		0.252		"	0.320		78.8	50-150			
Batch 1F13012:	Prepared 06/13/01	Using EF	A 3520C/	500 Series							
Blank (1F13012-BL	-K1)										
Diesel Range Hydroca	rbons	ND	0.250	mg/l	· · · · · · · · · · · · · · · · · · ·						
Lube Oil Range Hydro	carbons	ND	0.500	**							
Surrogate: 2-FBP		0.223		"	0.320		69.7	50-150			
Surrogate: Octacosane	•	0.226		"	0.320		70.6	50-150			
LCS (1F13012-BS1))										
Diesel Range Hydrocar	bons	1.36	0.250	mg/l	2.00		68.0	50-150		n .	
Surrogate: 2-FBP		0.225		"	0.320		70.3	50-150			
LCS Dup (1F13012	-BSD1)										
Diesel Range Hydrocar	bons	1.45	0.250	mg/l	2.00		72.5	50-150	6.41	50	
Surrogate: 2-FBP		0.218		ii -	0.320		68.1	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 9 of 10

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Maul Foster & Alongi-Seattle 17171 Bothell Way NE #264 Seattle WA, 98155

Project: Chelan Bulk Terminal #0082

Project Number: 9077.015.001 Project Manager: Mike Staton

Reported: 06/18/01 16:38

Notes and Definitions

Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons. G-01

The analyte concentration may be artificially elevated due to coeluting compounds or components. I-06

Х See case narrative.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety

Scolt A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 10 of 10

9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776

Ш		L
FAX 420-9210	FAX 924-9290	FAX 906-9210
(425) 420-9200	(509) 924-9200	(503) 906-9200

FAX 382-7588

(541) 383-9310

UNOCAL CHAIN OF CUSTODY REPORT 38 (F0 42)

Citatif of Custody Necold #.		Quality Assurance Data Level:		A: Standard Summary	B: Standard + Chromatograms	ratory T	AL 5 3 2 1			NOA SAMBI EMBEB	1 ()	- 02		72/	30		to-	50	3			ound? yes no Define	on back		
010	Firm: Ma, 1, Foster, 4 A lo-a; Project# 9077,015,001	Address: 17171 Bothe (Way NE, #264	Seather, W.A. 48155		Phone: (425) 744-1489 Fax: (425) 744-0919	Project Manager: Willer Stato4	Sample Collection by: 6: 5and herg	O OR O WA O AK (A NW Series	I Mod. 1 Hod. 1 HTEX 1 ASOLIS 2 Sel 2 Sel 2 Sel 3 Sel 3 Sel 4 PCBs Conly Volatiles Conly Conly	Cead: S5.0 2IM S5.0 2IM D5.0 2IM D6.0	×	×	×	X	× ×	*	X	X			Firm: Date & Time	Were all requested results provided? Were sults within requested turnaround?	Final Approval Signature:	(17.77)	HATTER VILLER DEL CIEDAND IL
	2 2	-		rosley- Wocal		Remediation	Miscellaneous			# OF # OF CON- (W,S,O) TAINERS	W @							7			Date & Time	129101025		יקי הפבעיוע	20 - 11 - 20 - 20 - 20 - 20 - 20 - 20 -
	Chela Boll #0082	500 East 6ibson St.	WA	silling to Mark B	organ len		ition Closure		<u> </u>	SAMPLING M DATE / TIME	5/3/61 @ 1535	1430	715	0,9)	0281	025/	0571	Spalore 1245 V			Firm: D	Mr. 3		1 0 1 0 t 0 C	TEACO THE DESCRIPTION OF THE CONTROL
П	Facility Number: Chelan Bull	Site Address: 500 Eag-1	City, State, ZIP: Chelan, WA	Site Release Number: Dreect Billing to Mark Brotley - Wocal	Unocal Manager: Mark Branker	CERT INFO: (check one)	Detection Demolition			SAMPLE IDENTIFICATION	1. mw-1-0501	2. PMW-7-0501	3. MW- 3-0501	4. MW-4-0501	5. May -5-0501	6. MW-6-050	7. MALU -7-0501	8. hnul-51-0501	9.	10.	Relinguished by.	1	3.	Page of Comments:	Rev. UNO3.3, 2/99