Final Remedial Investigation Report Boeing Isaacson-Thompson Site Tukwila, Washington

April 21, 2014

Prepared for

The Boeing Company

EXECUTIVE SUMMARY

INTRODUCTION

This Remedial Investigation (RI) report describes investigations conducted at the Boeing Isaacson-Thompson Site (Site) and the results of these investigations. The Site is located adjacent to the Lower Duwamish Waterway (LDW) in the city of Tukwila, King County, Washington, as shown on Figure ES-1. The Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA) are evaluating sources of contamination to the LDW, source control actions, and cleanup options. Ecology and EPA have determined that the Site is a potential source of contamination to the LDW. Investigations and cleanups are being, or will soon be, conducted by upland property owners under Ecology Agreed Orders at several properties along the LDW near the Site. These properties include the former Kenworth Truck Company property [PACCAR Inc. (PACCAR)/8801 East Marginal Way South property (8801 site)] to the south, adjacent to the Thompson property, and the Jorgensen Forge Corporation property (Jorgensen site) to the north, adjacent to the Isaacson property. Ecology has identified The Boeing Company (Boeing), as current owner of the Site, as a potentially liable person (PLP) for contamination at the Site.

The RI at the Site was performed under Agreed Order No. DE 7088 between Boeing and Ecology (Ecology 2010). In accordance with the Agreed Order, a work plan was prepared for the RI and feasibility study (FS) (RI/FS Work Plan; Landau Associates 2011a) and approved by Ecology on September 21, 2011 (Ecology 2011a). The RI/FS Work Plan identified data gaps that required further information to determine if cleanup at the Site is necessary and to evaluate the potential for recontamination of the LDW. Also, because Boeing was in the process of re-occupying Building 14-01 prior to finalization of the RI/FS Work Plan and because re-occupation of the building could significantly restrict access to the interior of the building, a separate work plan was prepared for conducting an investigation inside Building 14-01 (Building 14-01 Investigation Work Plan; Landau Associates 2011b). The RI was conducted in accordance with these work plans to the extent practicable. At the request of Ecology, an additional work plan was prepared for conducting an investigation on the Port of Seattle property located immediately adjacent to the Site (Landau Associates 2012b) and implemented by Boeing; the results of that investigation are also included in this report. Deviations from the work plans were discussed with and approved by Ecology and are documented in this report.

SITE DESCRIPTION

The Site is comprised of two parcels of land surrounded by a security fence, with limited access: the Isaacson property, located in the northern portion of the property, purchased by Boeing from the

Isaacson Corporation in 1984, and the Thompson property, located in the southern portion of the property, most of which was purchased from Charles Thompson in 1956. The entire Site is paved or covered with structures, except for a small strip of land located along the western and southern portion of the Site. The Site slopes slightly to the west and is at an average elevation of approximately 21 ft above mean lower low water (MLLW). The Site is underlain with 2 to 19.5 ft of fill consisting of silty sand to sandy gravel; bricks, wood debris, and slag material are also found in the fill material where Slip 5 of the LDW was formerly located. A steel bulkhead is located along the LDW shoreline in most of the northern portion of the Thompson property and a wooden bulkhead is located along the southern portion of the Thompson property, as shown on Figure ES-2.

Except for pavement and catch basins (CBs) that collect stormwater runoff, the northern portion of the Site (Isaacson property) is undeveloped. The southern portion of the Site (Thompson property) is developed with several structures that include a 316,000 square foot (ft²) industrial building (Building 14-01) and several support structures including a boiler house (Building 14-02); two mechanical buildings (Buildings 14-03 and 14-14); a fire pump house (Building 14-13) and water tank; an electrical substation (Building 14-22); and a guard shack. Two pedestrian tunnels are located on the north side of Building 14-01. These features are shown on Figure ES-2.

There are three storage tanks currently located on the Thompson property: a 20,000-gallon boiler fuel underground storage tank (UST; TS-01) located on the west side of Building 14-02, which was decommissioned in-place in 2003; a 500-gallon diesel aboveground storage tank (AST; TS-57); and a 200-gallon diesel AST (TSA-25). Each AST is located within secondary containment. Five sumps exist on the Site, but none are connected to the stormdrain line and most just collect rainwater. The locations of these tanks and sumps are shown on Figure ES-3. There are no existing ASTs, USTs, or sumps on the Isaacson property.

Stormwater from the Site is collected in two Boeing-owned stormdrain systems that discharge to the LDW via two outfalls (Outfalls A and B), as shown on Figure ES-4.

The Site is located in an area of industrial properties and is bordered on the north by the Jorgensen site; on the east by East Marginal Way South and King County International Airport (KCIA); and on the south by the 8801 site, currently owned by Merrill Creek Holdings and leased by Insurance Auto Auctions. Both the Jorgensen site and the 8801 site have been identified by Ecology as cleanup sites, and the current or former owners or operators are conducting remedial activities under Ecology or EPA oversight. The west Site boundary along the Isaacson property and the north part of the Thompson property is bordered by a strip of land owned and/or controlled by the Port of Seattle (Port) and then the LDW, and along the remainder of the Thompson property by the LDW.

SITE HISTORY

The first known development of the Site began in 1917 and included a sawmill on the land south of former Slip 5 and, in 1920, another on the western portion of the Site. Prior to development, meanders of the Duwamish River were present in the area of the Site including a segment of the river that flowed west to east through the approximate center of the Site. Between 1910 and 1917, extensive dredge and fill operations were conducted in the lower Duwamish River valley and the river was channelized and placed in its current location to the west of the Site. The river channel modifications resulted in the creation of Slip 5 through part of the Site. Slip 5 was oriented west to east near the current center of the Site and extended from the waterway across approximately two-thirds of the Site (Figure ES-2). In 1936, filling of the slip began to allow development of the Site. Filling occurred in phases and was completed in about 1966. The approximate placement of fill material during each phase is shown on Figure ES-5.

In 1943, the Isaacson property was purchased by Isaacson and was developed between 1943 and 1966. The Isaacson facility was used for various purposes associated with the Jorgenson Steel plant to the north, which included storage of scrap metal prior to it being melted down. Between 1943 and 1945, a galvanizing plant was constructed in the northeast corner of the Isaacson property; it was dismantled in 1967. The Mineralized Cell Wood Preserving Company operated on the northern side of Slip 5 for an unknown period of time beginning prior to 1945. The operations of this company involved heating a solution of arsenic and sulfate salts of copper and zinc and applying the solution under pressure to the base of logs. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were reportedly drained directly to the ground surface. Boeing purchased the Isaacson property from Isaacson in 1984. Boeing proposed to redevelop the Isaacson property by demolishing the Isaacson building and constructing a new building; however, although the Isaacson building was dismantled prior to 1990, the planned new building was not constructed. The Thompson facility was developed in the southern portion of the Site beginning in 1966. Until 2011, the layout of the Thompson facility had remained relatively unchanged. In 2011, Boeing reoccupied Building 14-01 and building modifications were made, including removal of a loading dock and an inactive 5,000-gallon aqueous wastewater AST located west of Building 14-01 and removal of the aqueous degreaser formerly located in the western portion of Building 14-01. The sump associated with the aqueous degreaser was decommissioned in place when the aqueous degreaser was removed.

SCOPE OF THE RI

The goal of the RI is to adequately characterize the Site, to evaluate the potential for recontamination of LDW sediments, and to provide sufficient data to support development and evaluation of cleanup action alternatives. The RI activities, when combined with information collected during

previous Site investigations, are sufficient to meet the RI goal. The data gaps identified in the RI/FS Work Plan and the Building 14-01 Investigation Work Plan include the following: 1) information to assess the contaminant pathways to LDW sediment, 2) chemical data in specific areas of concern in the upland portion of the Site, 3) data regarding the extent to which volatile organic compounds (VOCs) are present in soil vapor below the building floor slab in Building 14-01, and 4) recent LDW sediment chemical data for the full list of Sediment Management Standards (SMS) constituents.

The RI activities conducted included extensive soil, groundwater, and sediment investigations; a sub-slab soil vapor investigation; an evaluation of the Boeing-owned stormdrain system as a potential source of contaminants to the LDW sediment; and monitoring of groundwater levels to better understand groundwater flow throughout the Site and influence of LDW tidal fluctuations on groundwater flow. The soil investigation consisted of collecting 176 soil samples from 47 soil explorations (soil borings and test pits) and three soil samples from behind the wooden bulkhead located at the southern portion of the Site and submittal of the samples to a laboratory for analysis. Although not part of the RI, soil samples were also collected from soil exposed during construction activities related to modification of Building 14-01.

The groundwater investigation consisted of installing 25 new monitoring wells and collecting groundwater samples from each of the new and from existing monitoring wells and piezometers on a quarterly basis and submittal of the samples to a laboratory for analysis. During three of the monitoring events, a groundwater sample was also collected from a seep present along the shoreline adjacent to the Site. All of the soil and groundwater samples were analyzed for the Potential Contaminants of Concern (PCOCs) identified in the RI/FS Work Plan: VOCs; semivolatile organic compounds (SVOCs); metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); polychlorinated biphenyls (PCBs); and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. Groundwater samples were also analyzed for sulfate, nitrate, and ferrous iron. The sediment investigation consisted of collecting surface grab samples and subsurface core samples at 15 locations offshore of the Site. A total of 73 samples were submitted to a laboratory and analyzed for the SMS list of analytes, carbazole, and total organic carbon (TOC) and 5 of the samples were also analyzed for dioxins and furans. The RI soil, groundwater, and sediment sampling locations are shown on Figures ES-6, ES-7, and ES-8, respectively. Five vapor samples were collected beneath the Building 14-01 floor slab and submitted to a laboratory for VOCs analysis. The soil vapor sample locations are shown on Figure ES-9.

The investigation of the Boeing-owned stormdrain system consisted of collecting samples of solids present in the stormdrain system CBs, oil/water separators, Vortechs vaults, and manholes that had accumulated since the last cleaning; collecting samples of stormwater discharged from Outfalls A and B; and a video survey of the Boeing-owned stormdrain pipelines and a 12-inch-diameter corrugated pipe

located south of Building 14-01. A total of 28 discrete solids samples and eight composite solids samples were submitted for laboratory analysis; at stormdrain structures where there were insufficient solids present for the required sample volume either no sample was collected or the solids were combined with solids from an upstream or downstream structure. A total of four stormwater samples were collected (one from each outfall during two events) and submitted for analysis. The stormdrain system solids samples and stormwater samples were analyzed for the Site PCOCs.

To better understand groundwater flow at the Site, groundwater levels were measured at each monitoring well and piezometer during each quarterly groundwater monitoring event and a 3-day tidal study was conducted.

In addition to the RI, soil samples were collected during construction activities related to modification of Building 14-01, and soil and groundwater samples were collected from the Port property to determine if contaminants are present in soil and groundwater on the Port property.

RESULTS OF THE RI

To evaluate the analytical results for the RI, preliminary cleanup levels (pCULs) were developed and the results were compared to these pCULs. Some of the groundwater and soil pCULs included in this RI are based on the Target Media Cleanup Levels (TMCLs) approved by EPA for the Boeing Plant 2 facility (Plant 2). Plant 2 is located on the east bank of the LDW just north of the Jorgenson site and is a treatment, storage, and disposal (TSD) facility subject to Resource Conservation and Recovery Act (RCRA) regulation and permitting, which includes corrective action. Other groundwater and soil pCULs are calculated in accordance with Model Toxics Control Act (MTCA) Method B, are calculated using the same procedure used for TMCL development, or are based on pCULs at other nearby sites, as requested by Ecology to provide consistency for various sites along the LDW. The pCULs have not been adjusted to be no less than practical quantitation limits (PQLs) as provided for in the MTCA. pCULs for some constituents including PCBs, most carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and a few other constituents are less than PQLs and laboratory reporting limits (RLs). PCULs will be adjusted after the RI to be no less than PQLs and, if needed, natural background. Additional adjustments based on potential receptors, migration pathways, or exposure pathways may also be made at that time.

Soil vapor screening levels were developed by applying a vapor attenuation factor (VAF) to the pCULs developed for indoor air (MTCA Method B formula values, where available, and residential ambient air TMCLs developed for Plant 2 for those compounds for which Method B formula values are not available).

The pCULs for sediments offshore of the Site are the Preliminary Remediation Goals (PRGs) established in the EPA's *Proposed Plan for the Lower Duwamish Waterway (LDW) Superfund Site*

(EPA 2013). The PRGs are based on the SMS Sediment Cleanup Objectives (SCOs) or on other information such as toxicity thresholds that were identified in the LDW human health risk assessment or ecological risk assessment. Four contaminants (arsenic, cPAHs, total PCBs, and dioxins/furans) have pCULs that are based on human health risk PRGs. Total PCBs and arsenic have additional pCULs based on benthic organism PRGs (SMS criteria). In addition, an ecological risk-based PRG was developed for total PCBs for the river otter. The remaining SMS contaminants have pCULs based on benthic organism PRGs (SMS criteria).

The results of the comparison of RI analytical data to the pCULs, as well as pertinent field observations, are discussed below by media.

SOIL

For simplicity, the Site soil has been divided into three areas: North of the Former Slip 5 Area, Former Slip 5 Area, and South of the Former Slip 5 Area. The results of RI soil data compared to the pCULs are discussed by area below. The results also include soil data collected prior to the RI that may be representative of soil remaining at the Site.

North of Former Slip 5 Area

Constituents detected in soil samples from soil remaining in the North of Former Slip 5 Area (i.e., in soil samples that represent soil remaining in the Area, which include pre-RI samples) at concentrations greater than the pCULs are metals (arsenic, cadmium, copper, lead, mercury, and zinc); cPAHs; PCBs; and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons. The contaminants of concern (COCs) in soil for this area are arsenic, cadmium, copper, and cPAHs, because exceedances for these constituents were the most numerous and widespread.

Areas of specific concern identified in the RI/FS Work Plan and located in the North of the Former Slip 5 Area include the Paint Storage Area, the Former Diesel and Gasoline Tanks Area, the Observed Tar-Like Substance Area; and the Former Slip 5 Outfall Area. No constituents were detected at concentrations exceeding the pCULs in the Former Diesel and Gasoline Tanks Area.

Constituents present at concentrations exceeding the pCULs in soil in the Former Paint Storage Area and the Former Slip 5 Outfall Area include cPAHs, PCBs, arsenic, copper and, in the Former Slip 5 Outfall Area only, cadmium. The majority of exceedances in both areas occur within the unsaturated zone. Soil contamination in the area of the Observed Tar-Like Substance consists of diesel-range, oil-range, and gasoline-range petroleum hydrocarbons; cPAHs; arsenic; and copper. The contamination appears to be associated with a tar-like substance encountered at a depth interval of 1 to 2 feet below ground surface (ft BGS).

Except for the tar-like substance and a non-hydrocarbon odor that was detected in the soil samples collected at MW-23 and MW-24, no signs of contamination were observed in the soil and no soil vapors were detected above 50 parts per million (ppm) using a photoionization detector (PID) at the RI explorations located North of the Former Slip 5 Area.

Former Slip 5 Area

Constituents detected in soil remaining in the Former Slip 5 Area (i.e., in soil samples that represent soil remaining in the Area, which include pre-RI samples) at concentrations greater than the pCULs include metals (arsenic, barium, cadmium, chromium, chromium VI, copper, lead, mercury, nickel, thallium, and zinc); cPAHs; PCBs; gasoline-range petroleum hydrocarbons; and naphthalene. The COCs in soil for this area are arsenic, cadmium, chromium, copper, lead, nickel, zinc, cPAHs, and PCBs, because exceedances for these constituents were the most numerous and widespread. The majority of the pCULs exceedances occurred in the fill materials identified as Fill C and Fill E. For example, all of the barium, chromium VI, and zinc exceedances; about 92 percent of the cadmium exceedances; about 85 percent of the lead exceedances; and about 75 percent of the PCB, arsenic, and copper exceedances occurred in samples of the Fill C material. All of the remaining lead exceedances and 57 percent of the remaining copper exceedances occurred in Fill E. Arsenic and cPAHs exceedances occurred in each of the five fill material types.

Areas of specific concern identified in the RI/FS Work Plan and located in the Former Slip 5 Area include the Former Hydraulic Test Pad Area, the Former Hazardous Waste/Hazardous Materials Storage Sheds Area, and the area in the Vicinity of I-205(s). No constituents were detected at concentrations greater than the pCULs in these three areas except for arsenic, cPAHs, and copper in the Former Hydraulic Test Pad Area; cPAHs and copper in the Former Hazardous Waste/Hazardous Materials Storage Sheds Area; and two arsenic exceedances and a single copper exceedance in soil samples collected from the pre-RI soil boring associated with the well I-205(s).

In general, the only signs of potential contamination were observed in Fill C and Fill E materials; including the presence of slag material and some hydrocarbon and non-hydrocarbon odors. The slag material and odors did not occur in the areas of specific concern.

South of Former Slip 5 Area

Constituents detected in soil remaining in the South of Former Slip 5 Area (i.e., in soil samples that represent soil remaining in the Area, which include pre-RI samples) at concentrations greater than the pCULs include arsenic, copper, cPAHs, PCBs, trichloroethene (TCE), and gasoline-range petroleum hydrocarbons. TCE was detected at concentrations greater than the pCUL in 3 percent of the soil samples that represent soil remaining in the Area; all of the exceedances are found near the southern property

boundary and the source is likely to be on the 8801 site. The COCs in soil for this area are cPAHs, PCBs, arsenic, and copper, because exceedances for these constituents were the most numerous and widespread.

Areas of specific concern identified in the RI/FS Work Plan and located in the South of Former Slip 5 Area include the area in the Vicinity of I-206(s), the Former Washdown/Aqueous Degreaser Area, and the Former Washdown System Collection Tanks/Loading Dock Area. Arsenic was detected at concentrations exceeding the pCUL in 9 of 68 soil samples from the area in the Vicinity of I-206(s). cPAHs, PCBs, gasoline-range petroleum hydrocarbons, TCE, arsenic, and copper are present in soil at concentrations exceeding the pCULs in the Former Washdown/Aqueous Degreaser Area, but the exceedances are very limited. For example, PCBs, TCE, and gasoline-range petroleum hydrocarbon exceedances occurred in one soil sample each. cPAHs and PCBs are present in soil at concentrations exceeding the pCULs in the Former Washdown System Collection Tanks/Loading Dock Area; all of the exceedances occurred in shallow samples collected from construction-related excavations. cPAHs exceedances occurred in four samples and PCBs exceedances occurred in three samples.

Soil samples were collected from behind the wooden bulkhead on the Thompson property to evaluate the potential for soil erosion as a source of contaminants in offshore sediment. Arsenic was detected in a single sample at a concentration slightly above the sediment pCUL. The results were compared to the sediment pCULs because soil erosion to the sediments is the pathway of concern.

No visual signs of contamination were observed in the soil and no soil vapors were detected above 50 ppm using the PID at the explorations located South of the Former Slip 5 Area.

GROUNDWATER

The constituents detected at concentrations exceeding the pCULs in groundwater at one or more of the locations during the RI include VOCs [acrylonitrile; TCE; cis-1,2-dichloroethene (cis-1,2-DCE); 1,1-dichloroethene (1,1-DCE); and vinyl chloride]; SVOCs [benzoic acid and bis(2-ethylhexyl)phthalate (BEHP)]; cPAHs; PCBs; dissolved metals (arsenic, cadmium, copper, lead, nickel, selenium, thallium, and zinc); chromium VI; and total mercury. PCBs exceedances occurred only in groundwater at wells located in the Former Slip 5 Area and in wells located North of the Former Slip 5 Area. Metals exceedances primarily occurred in groundwater at the North of the Former Slip 5 Area in wells located within an area where arsenic-contaminated soil was treated and stabilized to prevent leaching of arsenic to groundwater and at piezometer PZ-1 located along the northern property boundary. The majority of TCE; cis-1,2-DCE; 1,1-DCE; and vinyl chloride exceedances occurred in groundwater near the southern property boundary. Vinyl Chloride exceedances also occurred south of the stabilized soil area.

The constituents detected at concentrations exceeding the pCULs in groundwater at one or more of the western-most well locations during the RI include cPAHs; PCBs; TCE; and dissolved metals (arsenic, cadmium, and nickel). The cPAHs and PCBs exceedances occurred in groundwater in the center

of the western property boundary and in groundwater in the northwest corner of the property. The dissolved arsenic exceedances primarily occurred in those wells and piezometers located north of MW-9, with the highest arsenic concentrations in the western-most wells occurring at wells located downgradient of the Stabilized Soil Area. Dissolved arsenic concentrations downgradient of the Stabilized Soil Area ranged from 25.9 micrograms per liter (μ g/L) to 2,460 μ g/L.

SOIL VAPOR

VOCs were detected in the five soil vapor samples collected from beneath the Building 14-01 floor slab, but all of the concentrations were below the soil vapor screening levels.

STORMWATER

BEHP, total cadmium, and total zinc were present in stormwater at Outfall A at concentrations exceeding the groundwater pCULs; however, the cadmium and zinc groundwater pCULs apply only to the dissolved fraction. BEHP was present in the stormwater at Outfall B at concentrations exceeding the pCULs.

STORMDRAIN SYSTEM SOLIDS

A comparison of the analytical results for the stormdrain solids collected in September 2011 to sediment pCULs indicated that metals, PCBs, cPAHs, and SVOCs (primarily phthalates and benzyl alcohol) were present in some solids at concentrations exceeding the sediment pCULs. Metals (cadmium, chromium, copper, lead, mercury, and zinc) were detected at concentrations exceeding the sediment pCULs in samples from CBs located around Building 14-01 and in four other areas identified as Building 14-12 Area, Building 14-02/14-03 Area, Isaacson West Area, and Isaacson East Area. Additionally, arsenic was detected above the sediment pCUL in most CBs that also had SMS metals exceedances. Total PCBs were detected above the PRG throughout the Site.

LOWER DUWAMISH WATERWAY SEDIMENT

All of the surface sediment samples collected during the RI sediment investigation had detected concentrations of total PCBs and arsenic that were above the pCULs (based on human health risk PRGs). Surface sediments at four locations had total cPAH Toxic Equivalent Concentration (TEQ) results [expressed in units of micrograms per kilogram dry weight (µg/kg dw)] that were above the pCULs (based on human health risk PRGs). The calculated TEQ for dioxin and furan congeners analyzed in five surface samples [expressed in units of nanograms per kilogram dw (ng/kg dw)] were above the pCULs (based on human health risk PRGs).

However, if compared to SMS criteria, constituents that exceed the SMS criteria in the greatest number of samples are total PCBs (in 30 samples), arsenic (in 7 samples), and benzyl alcohol (in 5

samples). Detected concentrations of PCBs are widespread in the sediment offshore of the Site and exceed the SMS criteria in approximately 39 percent (30 of the 76) of the samples analyzed. At a majority of the sample locations, total PCBs concentrations that exceed the SMS criteria are found in deeper samples than other chemicals with exceedances of the SMS criteria; however, at four sample locations, arsenic concentrations that exceed the SMS criteria are found in deeper sample intervals where total PCBs concentrations are below the SMS criteria. The distribution of samples with total PCBs and arsenic concentrations that exceed the pCULS (including the SMS criteria) can be used to define the maximum horizontal and vertical extent of sediment contamination offshore of the Site.

Additional detected exceedances of the SMS criteria are two of the SMS list of metals (arsenic and zinc); two of the SMS Low Molecular Weight PAHs (LPAHs) (acenapthene and phenanthrene); four of the SMS High Molecular Weight PAHs (HPAHs) [fluoranthene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene]; three of the SMS phthalate esters (diethyl phthalate, butyl benzyl phthalate, and BEHP); two of the chlorinated benzenes (1,2-dichlorobenzene and 1,4-dichlorobenzene); two ionizable organic compounds (benzyl alcohol and phenol); and total PCBs (by Aroclor). In general, chemical concentrations demonstrate either a steady decrease with depth or the concentrations remain stable within a sediment unit (e.g., silt or sandy silt unit) before dropping to nondetected concentrations in deeper sediment units with lower percentages of silt and TOC (e.g., poorly sorted sands or silty sands).

CONCEPTUAL SITE MODEL

The potential receptors that may be exposed to contaminants at the Site and in offshore sediments include humans and, for contaminants present in the offshore sediment, also terrestrial ecological receptors and benthic organisms. Because nearly all of the Site is paved, terrestrial ecological receptors are not likely to be exposed to contaminants at the Site and the Site meets the requirements for ending a terrestrial ecological evaluation based on exposure analysis.

The potential sources for contaminants in soil and groundwater within the Former Slip 5 Area and the North of the Former Slip 5 Area include historical operations such as the former sawmills, the wood preserving facility, and the former steel forging and galvanizing plant. Boeing has not operated on the property North of Former Slip 5 except to conduct several cleanup activities, and paving and utilizing the area for equipment storage. Boeing operations are not considered a likely source of contamination in the area North of Former Slip 5. Boeing formerly operated two facilities that were located in the Former Slip 5 Area that had the potential for releasing contaminants to the Site: the Former Hazardous Waste/Hazardous Materials Sheds and the Former Hydraulic Test Pad Area. Based on results primarily from pre-RI soil investigations, the storage of hazardous waste/hazardous materials in the sheds did not

result in a release of contaminants to the Site. In 1992, a release of hydraulic oil occurred from a holding tank associated with an oil/water separator located in the Former Hydraulic Test Pad Area. Approximately 900 tons of petroleum-contaminated soil was excavated from the area surrounding the oil/water separator and holding tank. Based on pre-RI and RI analytical results, the only residual contamination in soil in this area that may be related to the release is cPAHs. RI investigations conducted downgradient of the Former Hydraulic Test Pad Area indicate the presence of cPAHs and PCBs in groundwater; however, it is unlikely that the source of PCBs is the 1992 release of hydraulic oil because PCBs were never detected in soil and groundwater in that area. Debris and contaminants present in the material used to fill the former slip may also be a source of contaminants within the Former Slip 5 Area. Other potential sources for contaminants in soil and groundwater in the North of the Former Slip 5 Area include former sumps, the vein of tar-like substance, the stabilized soil material, and the material used to fill the former river meander.

The potential sources for contaminants in soil and groundwater in the South of the Former Slip 5 Area are offsite contamination, concrete joint material (CJM), and fill material. The most likely source for the VOCs (TCE, cis-1,2–DCE, 1,1,-DCE, and vinyl chloride) detected in soil and/or groundwater at concentrations exceeding the pCULs near the southern property boundary is located on the adjacent former PACCAR property (8801 site). PCE, TCE, and vinyl chloride are present in soil in two areas of concern that are adjacent to the Thompson property, and groundwater concentrations found at the 8801 site are more indicative of a nearby release than the concentrations detected in groundwater at the Thompson property. Furthermore, a draft focused FS states that a potential VOCs source area is located on the 8801 site and, based on the extensive data collected at the Site, there is not an identifiable source of VOCs on the Thompson property. The source of PCBs and cPAHs in soil in the South of the Former Slip 5 Area is unknown, but the contamination may be related to PCBs in CJM and PCBs and cPAHs in fill material.

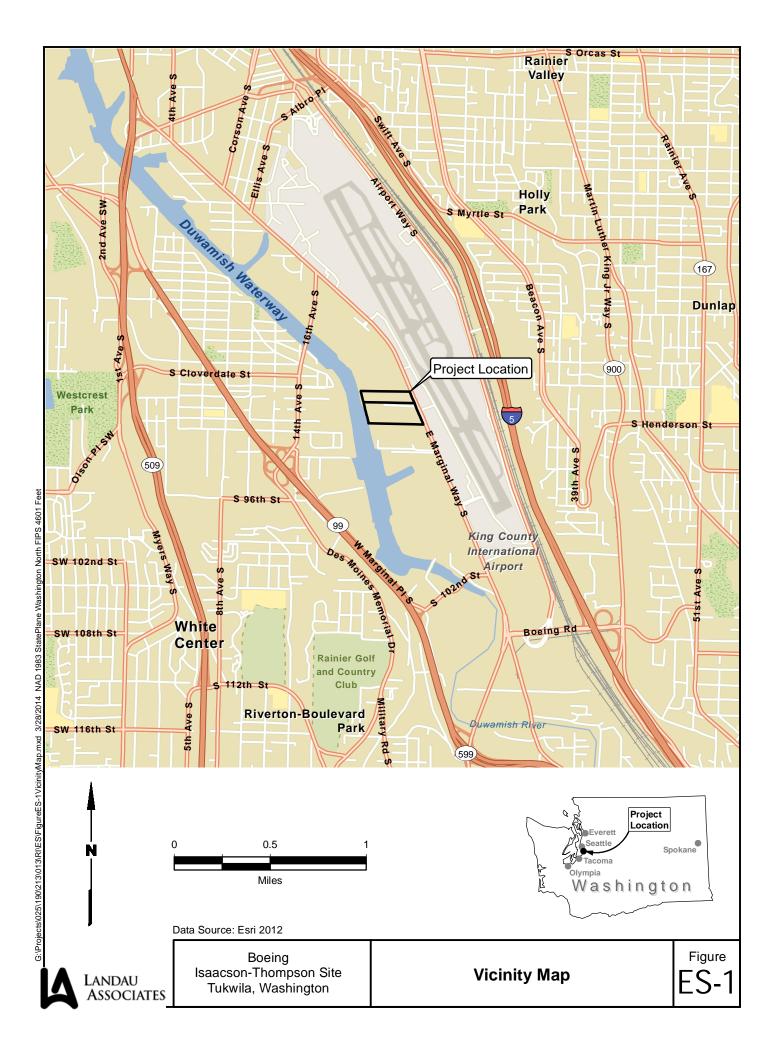
Samples of various media present at the Site that could be a potential source of the contaminants present in the stormdrain solids (surface debris, paint chips, and CJM) were collected and analyzed during the RI. Based on the results, peeling paint, CJM on the Isaacson property, and surface debris may be a source of contaminants found in the stormdrain solids. Also, because the video-survey of the Boeing-owned stormdrain pipes identified cracks, soil infiltration may be a source of contaminants in the stormdrain system solids in some areas. Air deposition is also likely to be a source of contaminants in stormdrain solids. An evaluation of air deposition at Boeing Plant 2 identified moderate to high impacts from copper and zinc in dry deposition particulate samples. Other studies have identified air deposition as a source of PAHs, PCBs, metals, and phthalates. Analytical results for the stormwater samples indicate that constituents detected in stormdrain solids at concentrations above the SMS are not present in

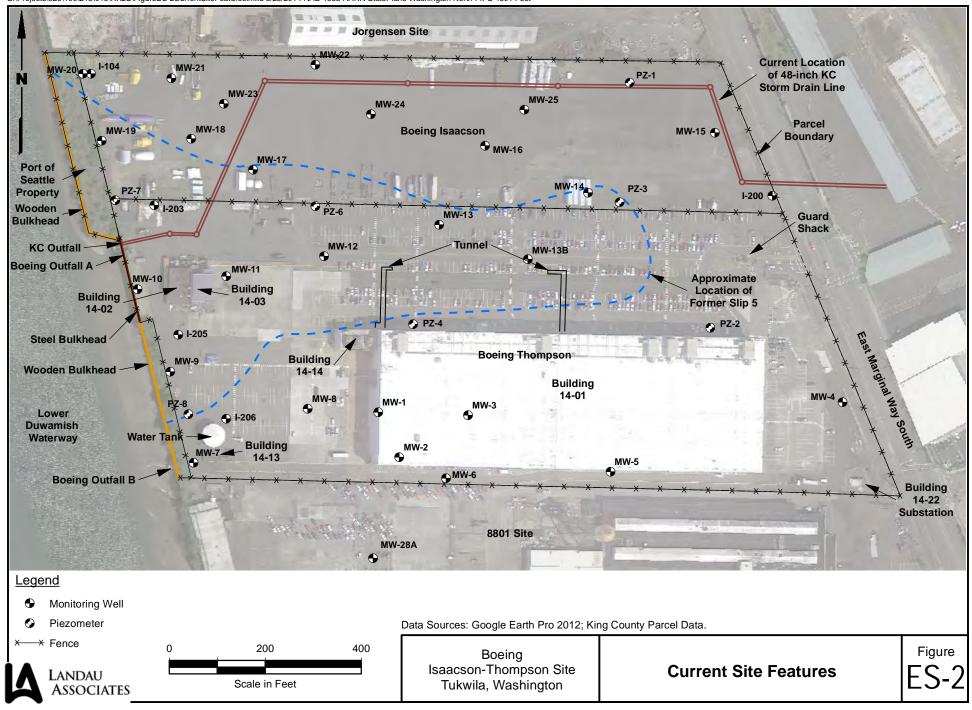
the stormwater at concentrations that result in stormwater concentrations above the pCULs for groundwater, except BEHP (Outfalls A and B) and cadmium and zinc (Outfall A only). Because these three constituents were detected in the stormdrain solids, although BEHP was only detected sporadically, particulates entrained in the stormwater samples may be the source of the constituents in the stormwater. Soil infiltration into the stormdrain system is not likely to be a source of these contaminants because BEHP was only sporadically detected in soil and concentrations were less than the pCUL, and cadmium and zinc were not detected at concentrations greater than the pCULs in areas where cracks or holes in the stormdrain piping were present that might allow soil intrusion. Groundwater infiltration is unlikely to be a source for these contaminants because BEHP is only detected sporadically in groundwater at concentrations exceeding the pCUL and concentrations of cadmium and zinc in groundwater do not exceed the pCULs in areas where cracks were observed in the stormdrain piping and the piping is likely to be submerged at some times of the year.

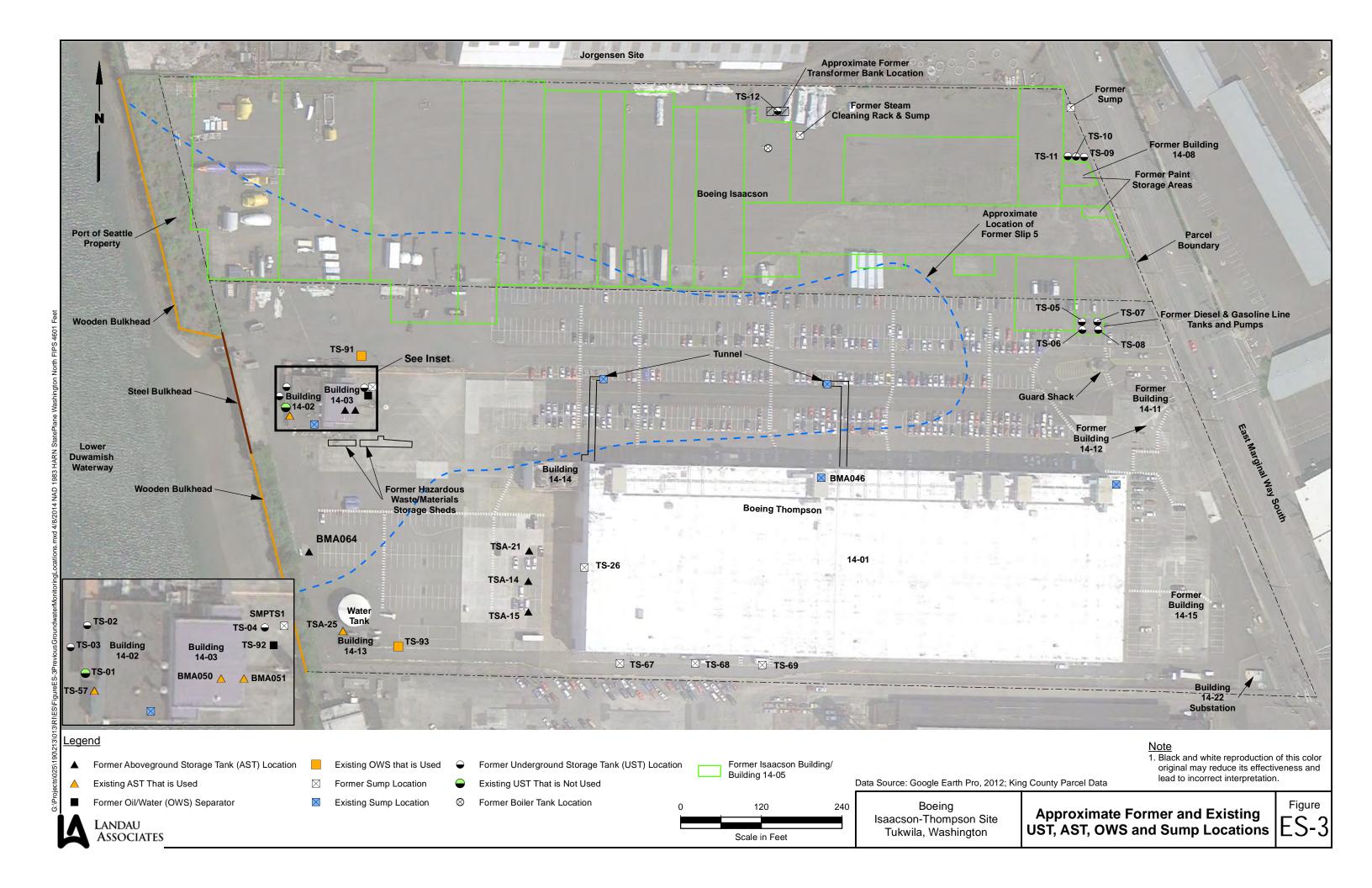
Potential past or current sources for contaminants in sediments offshore of the Site include discharge of Site groundwater and stormwater, erosion of bank soil, and offsite sources. Chemical results from the stormwater monitoring and the CBs solids indicate that Boeing Outfall B located at the south end of the Site and Boeing Outfall A located near the middle of the Site are currently not contributing to the sediment contamination offshore of the Site. Available information regarding the King County Outfall (King County International Airport Stormdrain #2) indicates stormwater from KCIA may be a past and continuing source. Except for arsenic in one soil sample at a concentration slightly above the sediment pCULs, soil samples collected through holes in the wooden bulkhead at the Thompson property did not contain metals or PCBs at concentrations exceeding the sediment pCULs and, therefore, erosion from this area is not likely to be a source of these contaminants in sediment. Concentrations in soil behind the Port bulkhead have not been determined. The placement of fill material within the footprint of the Former Slip 5 Area (a relic portion of a lower Duwamish River meander) may also have contributed to the elevated concentrations of some contaminants (e.g., arsenic) near the central portion of the offshore sediments prior to placement of the bulkheads.

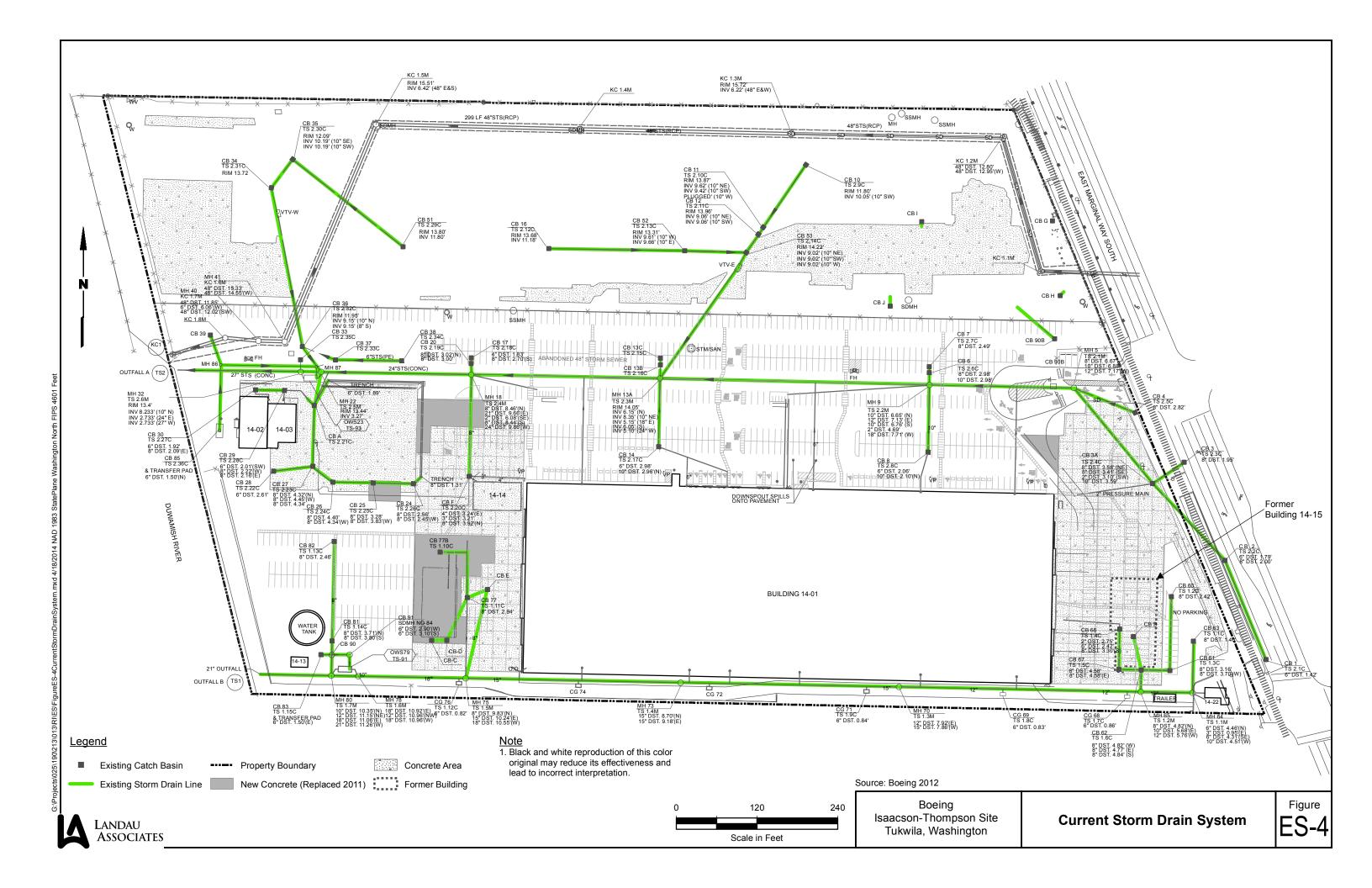
AREAS FOR CONSIDERATION IN THE FS

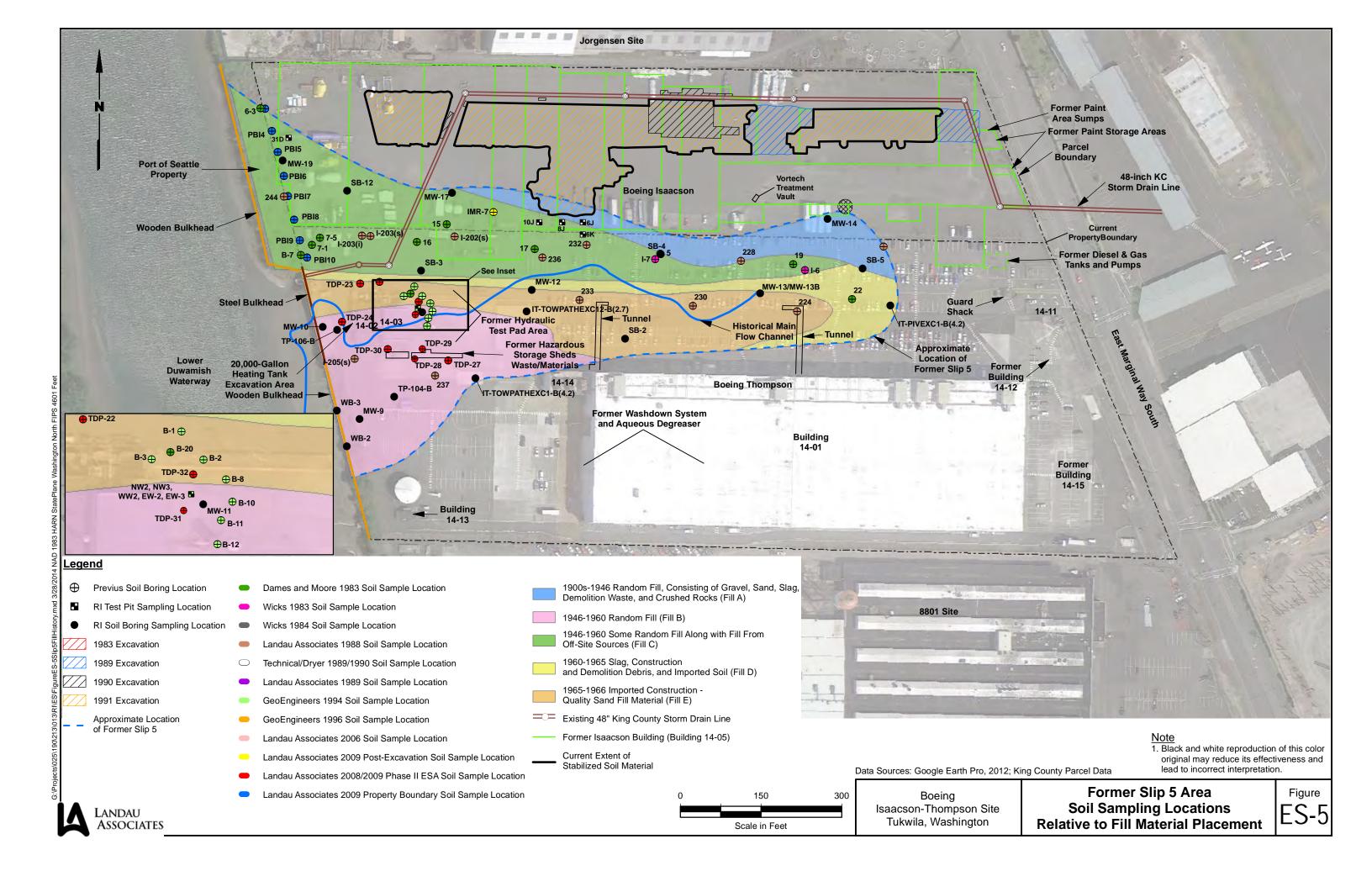
Based on the evaluation of data presented in the RI compared to the pCULs, areas, contaminants, and source areas have been identified for further consideration in the FS. These are described below by general area and/or media:

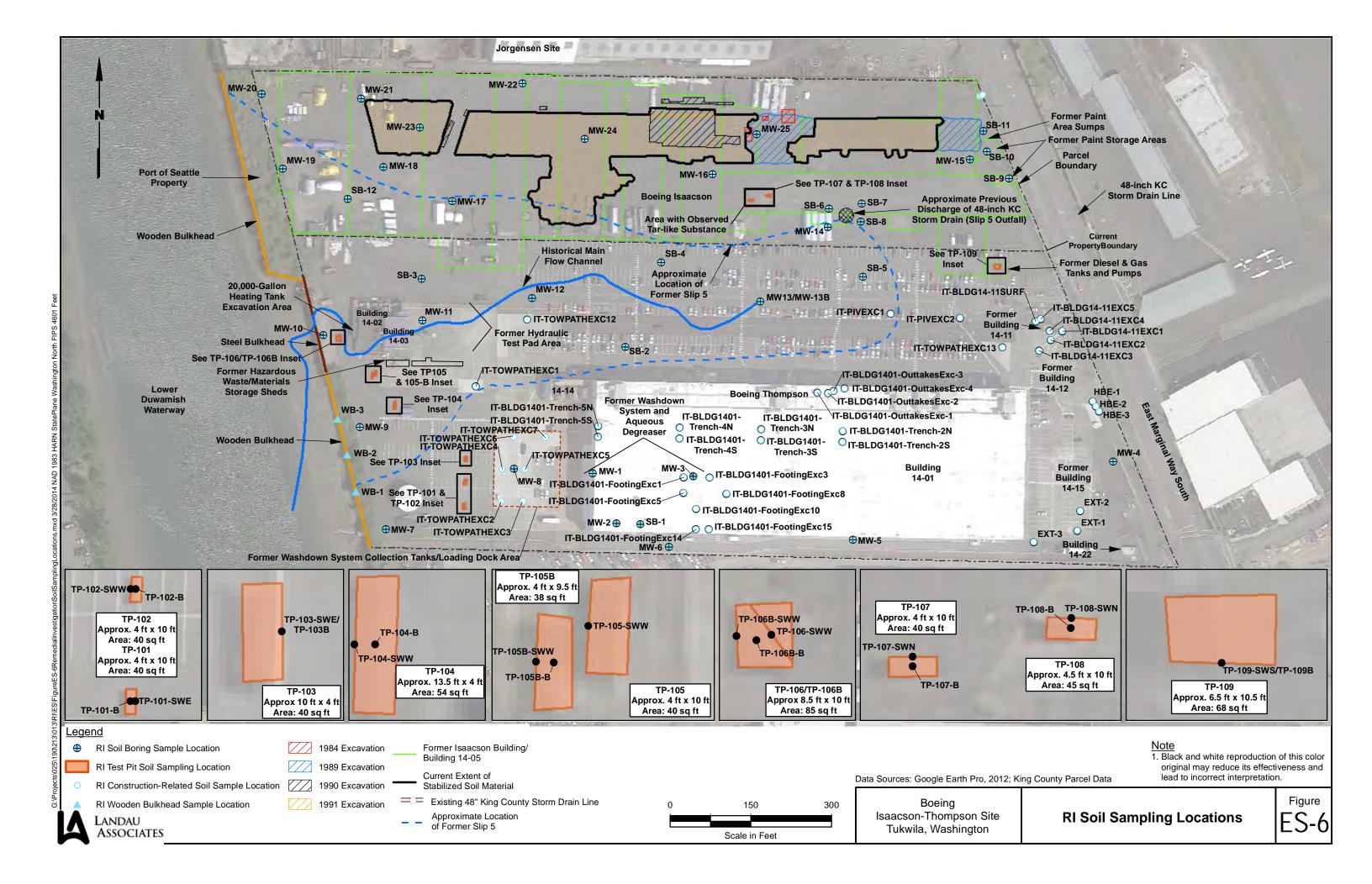

North of the Former Slip 5 Area. Contaminants in soil samples that represent soil remaining at the Site at concentrations greater than the pCULs include metals, cPAHs, PCBs, and total petroleum hydrocarbons. The COCs in soil for this area are arsenic, cadmium, copper, and cPAHs, because these exceedances are the most numerous and widespread. Contaminants in groundwater samples at concentrations greater than the pCULs include metals, cPAHs, PCBs,

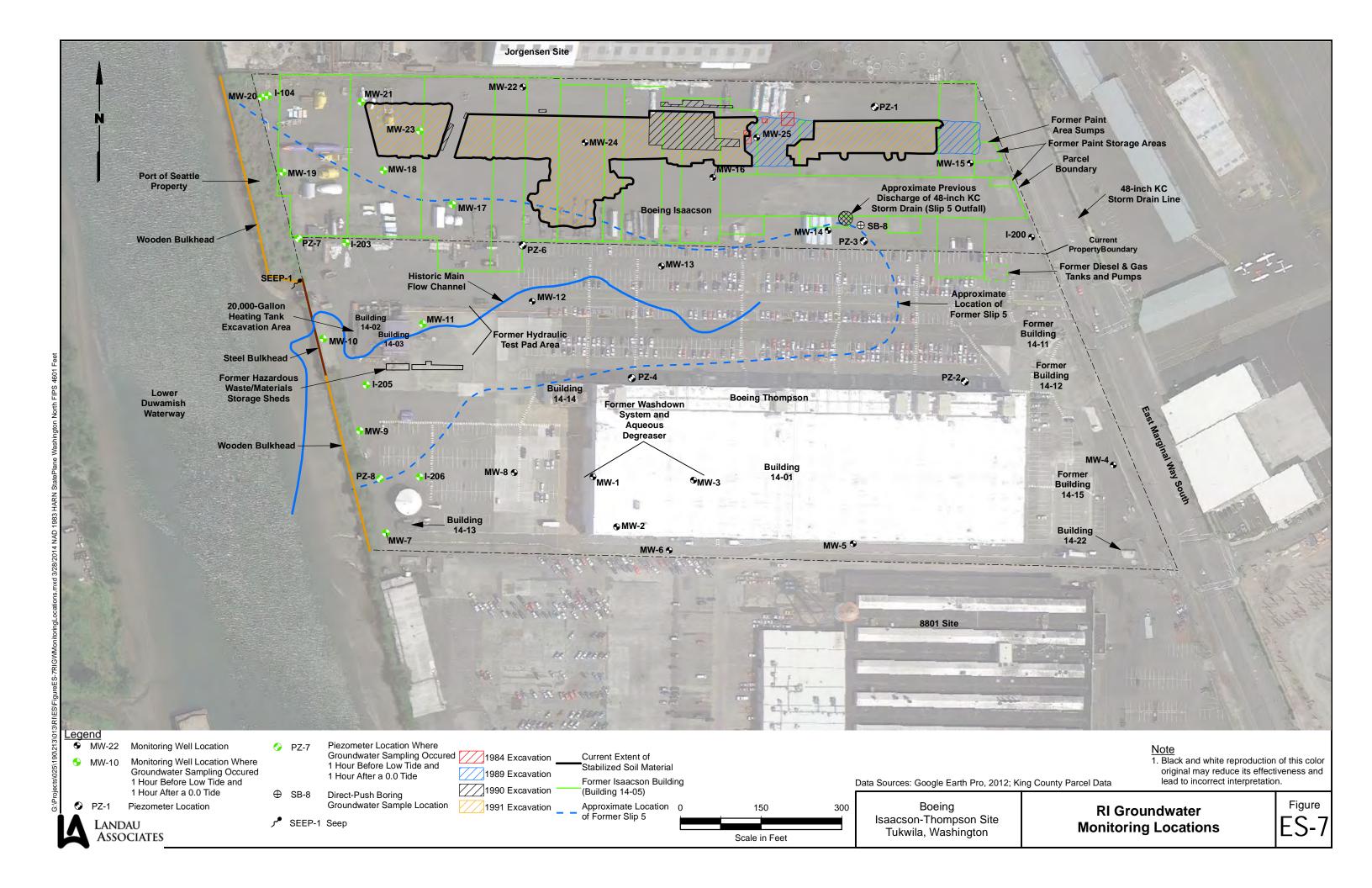

vinyl chloride, acrylonitrile, and two SVOCs. Detected SVOCs and acrylonitrile exceeded pCULs in a single sample each. COCs in groundwater for this area are metals, cPAHs, PCBs, and vinyl chloride, because these exceedances are the most numerous and widespread. Under and downgradient of the stabilized soil, the groundwater pH is elevated, which may affect the solubility of some metals. A specific source area to be considered in the FS is the area with the observed tar-like substance.

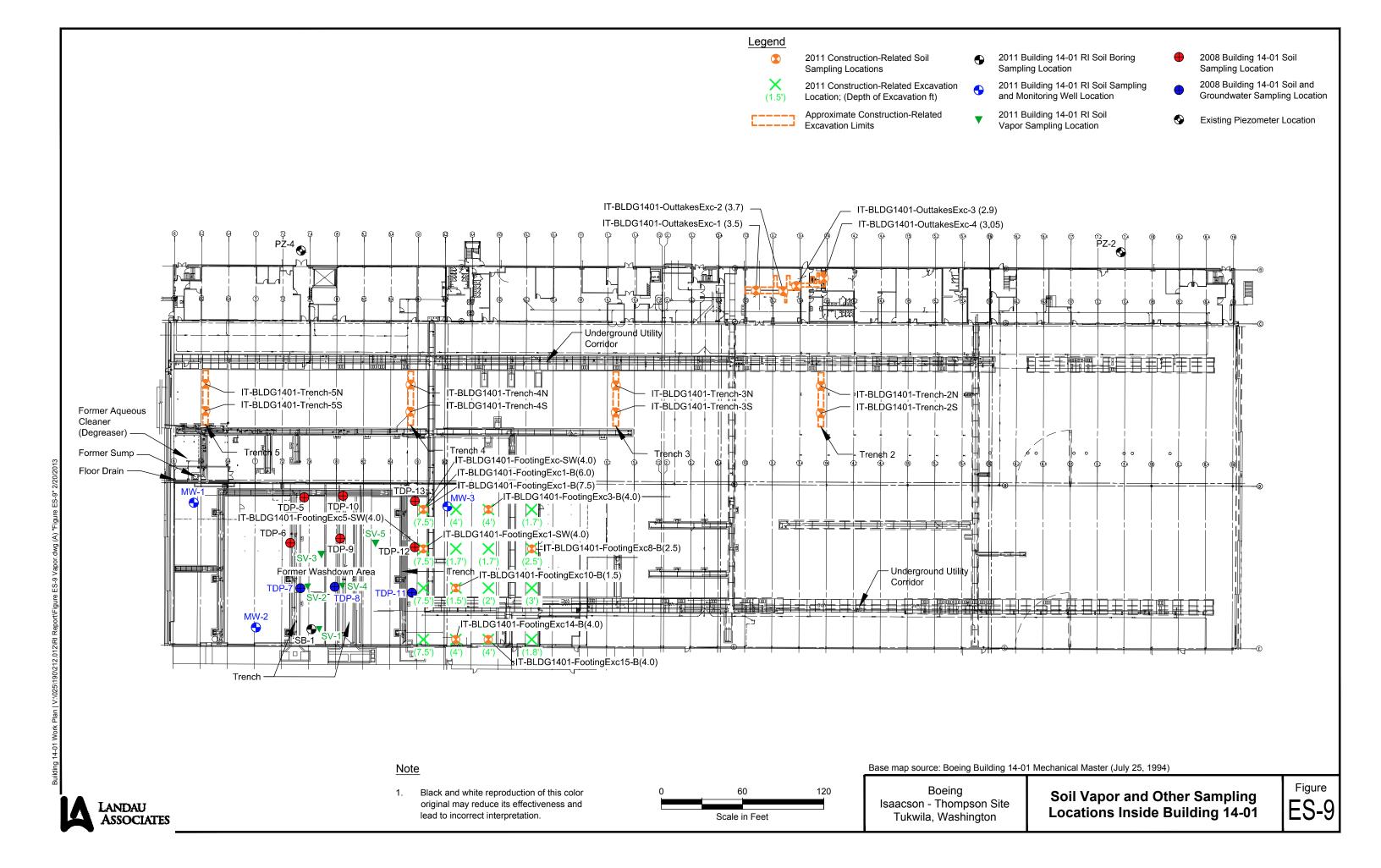

- Former Slip 5 Area. Contaminants in soil samples that represent soil remaining at the Site at concentrations greater than the pCULs include metals, cPAHs, PCBs, gasoline-range petroleum hydrocarbons, and naphthalene. The COCs in soil for this area are arsenic, cadmium, chromium, copper, lead, nickel, zinc, cPAHs, and PCBs, because these exceedances are the most numerous and widespread. Contaminants in groundwater samples at concentrations greater than the pCULs include metals, cPAHs, PCBs, and BEHP. COCs in groundwater for this area are arsenic, cadmium, cPAHs, and PCBs, because these exceedances are the most numerous and widespread. No specific source area was identified for consideration in the FS.
- South of Former Slip 5 Area. Contaminants present in soil samples that represent soil remaining at the Site at concentrations greater than the pCULs include cPAHs, PCBs, metals, TCE, and gasoline-range petroleum hydrocarbons. The COCs in soil for this area are cPAHs, PCBs, arsenic, and copper, because these exceedances are the most numerous and widespread. Contaminants in groundwater samples at concentrations greater than the pCULs include TCE and its breakdown products cis-1,2-DCE, 1,1-DCE, and vinyl chloride; metals; cPAHs; and, in a single sample, acrylonitrile. Of these, acrylonitrile; cis-1,2-DCE; and vinyl chloride were found only near the southern property boundary. The source for TCE and its breakdown products is likely to be on the 8801 site and they are, therefore, not considered COCs for the Site. The COCs in groundwater for this area are arsenic and chromium VI, because these exceedances are the most numerous and widespread.
- Stormwater. Contaminants detected in stormwater at concentrations greater than the pCULs for groundwater are BEHP and, only at Outfall A at the northwestern portion of the Thompson property, cadmium and zinc. Concentrations of cadmium and zinc measured in stormwater are for total metals, although the pCULs for these metals are based on ambient water quality criteria for dissolved criteria. BEHP is detected sporadically in groundwater, stormwater, stormdrain solids, and source material samples at the Site.
- Stormdrain Solids. Contaminants present in stormdrain solids at concentrations greater than the sediment pCULs include metals, PCBs, cPAHs, and SVOCs. Peeling paint, CJM, and surface debris may be a source of these contaminants in stormdrain solids.


Based on the data collected during the RI, contaminants are present in sediment located offshore of the Site at concentrations exceeding the sediment pCULs. The need for cleanup and cleanup options will be evaluated as part of the LDW process and any sediment cleanup necessary offshore of the Isaacson-Thompson property will be conducted under EPA Record of Decision for the LDW.


Prior to preparation of the FS, proposed cleanup levels and points of compliance will be developed and submitted to Ecology for review and approval, incorporating adjustments for PQLs, cross-media protection, current and likely receptors, migration pathways, and exposure pathways, as appropriate. To the extent the proposed cleanup levels are higher than the pCULs, the contaminants and areas to be considered in the FS may change.







				<u>Page</u>
EXE	CUTIV	VE SUM	IMARY	ii
LIST	OF A	BBREV	VIATIONS AND ACRONYMS	XV
1.0	INTR	RODUC'	TION	1-1
2.0	CITE	DESCE	RIPTION AND BACKGROUND	2-1
2.0	2.1		ENT SITE FEATURES AND LAND USE	2-1
	2.1		Isaacson Property	2-1
			Thompson Property	2-2
		2.1.2	Adjacent Properties	2-4
	2.2		DEVELOPMENT	2-5
	2.3		PRICAL SITE USE AND FEATURES	2-6
3.0	PREV	VIOUS 1	INVESTIGATIONS AND REMEDIAL ACTIONS	3-1
	3.1	SOIL A	AND GROUNDWATER	3-1
		3.1.1	August 1983 Soil Investigations (Dames & Moore)	3-2
		3.1.2	October 1983 Soil Investigations (Wicks)	3-4
		3.1.3	1983 Groundwater Monitoring	3-5
		3.1.4	1984 Soil Remediation	3-6
		3.1.5	1984 Wicks Soil Investigation and Installation of Well I-8(s)	3-7
		3.1.6	1985 Groundwater Monitoring	3-7
		3.1.7	1986 and 1987 Groundwater Monitoring	3-8
		3.1.8	1988 Soil Investigation	3-8
			1988 Groundwater Investigation	3-10
			1988 Soil Excavation	3-10
			1989/1990 Storm Drain Line Sampling	3-11
			1991 Soil Stabilizatio*n	3-12
			1991 Groundwater Monitoring	3-13
			1992-1996 Post-Soil Stabilization Groundwater Monitoring	3-13
			1996 Strataprobe Soil and Groundwater Sampling	3-14
			1993 – 1995 Hydraulic Test Pad Area Excavations	3-14
		3.1.17	2000 Groundwater and Seep Sampling and Hydrogeologic Characterization	3-16
			2004 - 20,000-Gallon Heating Oil Tank Closure	3-16
			2004 Groundwater Confirmation Sampling	3-17
			2006 Sump Removal	3-17
			2007 – 2008 Groundwater and Seep Sampling	3-18
			2008 Removal of Stabilized Soil Mound	3-18
			2008/2009 Phase II ESA Soil Sampling	3-20
			2008/2009 Phase II ESA Groundwater Sampling	3-21
			2009 Property Boundary Soil Investigation	3-22
			2009 Property Boundary Groundwater Investigation	3-23
	3.2		MENT QUALITY INVESTIGATIONS	3-23
		3.2.1	Surface Samples	3-23
	2.2	3.2.2	Core Samples	3-24
	3.3		M DRAIN INVESTIGATIONS	3-25
		3.3.1	2007 Catch Basin Rerouting Project	3-25
		3.3.2	2008 Drain Line Investigation	3-26
		3.3.3	2008 Catch Basin Solids Sampling	3-26
		3.3.4	2009 Catch Basin Rerouting Project	3-26
		3.3.5	Ongoing Stormwater Outfall Sampling	3-27

				<u>Page</u>
4.0	REM	1EDIAI	L INVESTIGATION ACTIVITIES	4-1
	4.1	RI SO	IL INVESTIGATION	4-1
		4.1.1	Soil Exploration Locations	4-2
			4.1.1.1 Soil Boring Location Adjustments	4-2
			4.1.1.2 Test Pit Location Adjustments	4-3
		4.1.2	Soil Sample Collection	4-3
			4.1.2.1 Soil Borings	4-3
			4.1.2.2 Test Pits	4-5
			4.1.2.3 Wooden Bulkhead Sampling	4-6
			4.1.2.4 General Soil Sample Collection Procedures	4-6
		4.1.3	1 &	4-6
		4.1.4	1 -	4-7
	4.2		UNDWATER INVESTIGATION	4-7
			Installation and Construction of Monitoring Wells	4-7
		4.2.2		4-8
		4.2.3	1	4-9
		4.2.4	Monitoring Well Groundwater Sampling	4-9
		4.2.5	Soil Boring Groundwater Grab Sampling	4-10
		4.2.6	Seep Sampling	4-10
		4.2.7	, , , , , , , , , , , , , , , , , , ,	4-10
		4.2.8		4-11
		4.2.9	Groundwater Flow Evaluation	4-11
			4.2.9.1 Monitoring Well Surveying	4-11
			4.2.9.2 Water level Measurements	4-11
	4.0	******	4.2.9.3 Tidal Study	4-11
	4.3		L DECOMMISSIONING	4-12
	4.4		VAPOR INVESTIGATION	4-12
	4.5		M DRAIN SYSTEM INVESTIGATION	4-13
		4.5.1	Storm Drain System Solids	4-13
		4.5.2		4-14
		4.5.3	1 6	4-14
			12-Inch Metal Corrugated Pipe	4-16
	16	4.5.5	Storm Drain Inspection and Video Survey MENT INVESTIGATION	4-16
	4.6			4-16
		4.6.1 4.6.2	1	4-17 4-17
		4.6.2	1	4-17 4-17
		4.6.4	<u> </u>	4-17 4-18
	4.7		LITY ASSURANCE (QA) SAMPLES	4-18 4-18
	4.7	QUAI	LITT ASSURANCE (QA) SAMFLES	4-16
5.0			CTION-RELATED SAMPLING ACTIVITIES	5-1
	5.1		AVATION SOIL SAMPLING	5-1
	5.2		CRETE AND CONCRETE JOINT MATERIAL SAMPLING	5-3
	5.3	BUIL	DING MATERIAL SAMPLING	5-4
6.0	POR	T PRO	PERTY INVESTIGATION	6-1
7.0	PRE	LIMINA	ARY CLEANUP LEVELS PCULS	7-1
	7.1	GROU	UNDWATER	7-2
		7.1.1	Potability of Site Groundwater	7-3
		7.1.2	Lower Duwamish Waterway Surface Water Designation	7-4

				<u>Page</u>
	7.2	SOIL		7-4
	7.3	SOIL	VAPOR	7-6
	7.4	SEDIN	MENT	7-6
	7.5	POIN	T OF COMPLIANCE	7-8
8.0	RI R	ESULT	'S	8-1
	8.1	RI RE	SULTS FOR EVALUATING CONTAMINANT PATHWAYS TO	
		LDW	SEDIMENT	8-1
		8.1.1	Geologic Conditions	8-1
		8.1.2	Hydrogeologic Conditions	8-2
			8.1.2.1 Groundwater Levels	8-2
			8.1.2.2 Groundwater Flow Direction	8-3
			8.1.2.3 Tidal Influences	8-4
			8.1.2.4 Estimated Transmissivity and Hydraulic Conductivity	8-6
			8.1.2.5 LDW Surface Water Effects on Groundwater Quality	8-8
		8.1.3	Groundwater Analytical Results	8-9
			8.1.3.1 North of Former Slip 5 Area	8-10
			8.1.3.2 Former Slip 5 Area	8-14
			8.1.3.3 South of Former Slip 5 Area	8-16
		8.1.4		8-19
		8.1.5		8-20
			8.1.5.1 North of the Former Slip 5 Area	8-21
			8.1.5.2 Former Slip 5 Area	8-23
			8.1.5.3 South of the Former Slip 5 Area	8-28
		8.1.6	Storm Drain System Chemical Results	8-30
			8.1.6.1 Stormwater	8-30
			8.1.6.2 Storm Drain Solids	8-31
		0.1.7	8.1.6.3 Storm Drain System Contaminant Source Evaluation	8-32
		8.1.7	Storm Drain System Physical Condition	8-35
			8.1.7.1 12-Inch Metal Corrugated Pipe	8-36
	0.0	DATE	8.1.7.2 Storm Drain System Associated with Outfalls A and B	8-36
	8.2		A GAPS FOR SPECIFIC AREAS OF CONCERN	8-38
		8.2.1	Thompson Property Wooden Bulkhead	8-38
		8.2.2	Former Paint Storage Areas	8-38
			8.2.2.1 Soil 8.2.2.2 Groundwater	8-38
		8.2.3	8.2.2.2 Groundwater Former Diesel and Gasoline Tanks Area	8-39 8-39
		8.2.4	Area with Observed Tar-Like Substance	8-39 8-39
		8.2.5	Former Slip 5 Outfall Area	8-40
		0.2.3	8.2.5.1 Soil	8-40
			8.2.5.2 Groundwater	8-41
		8.2.6	Former Hydraulic Test Pad Area	8-41
		0.2.0	8.2.6.1 Soil	8-41
			8.2.6.2 Groundwater	8-42
		8.2.7	Vicinity of Monitoring Wells I-205 (s) and I-206(s)	8-42
		8.2.8	Monitoring Well I-104(S) Groundwater Arsenic Source	8-42

				<u>Page</u>
		8.2.9	Former Washdown/Aqueous Degreaser Area	8-45
			8.2.9.1 Soil	8-45
			8.2.9.2 Groundwater	8-46
		8.2.10	Former Washdown System Collection Tanks/Loading Dock Area	8-46
			8.2.10.1 Soil	8-46
			8.2.10.2 Groundwater	8-47
	8.3		VAPOR INVESTIGATION	8-47
	8.4	SEDIM		8-47
		8.4.1	Physical Description	8-47
		8.4.2	Laboratory Analytical Results	8-48
9.0			ND EXTENT OF CONTAMINATION	9-1
	9.1		ND AREA	9-1
		9.1.1	Soil	9-1
			9.1.1.1 North of the Former Slip 5 Area	9-2
			9.1.1.2 Former Slip 5 Area	9-4
			9.1.1.3 South of the Former Slip 5 Area	9-6
		0.1.0	9.1.1.4 Wooden Bulkhead	9-8
		9.1.2	Groundwater	9-8
			9.1.2.1 Site Wide	9-8
		0.1.2	9.1.2.2 Western Property Boundary	9-9
		9.1.3 9.1.4	Soil Vapor Stormwater	9-10
		9.1.4		9-10 9-11
	9.2		Storm Drain System Solids ER DUWAMISH WATERWAY SEDIMENT	9-11 9-11
	9.2	9.2.1	Polychlorinated Biphenyls (by Aroclor)	9-11
		9.2.1	Arsenic	9-13
		9.2.2	cPAHs	9-13
		9.2.3	Distribution of Sediments that Exceed the SCO	9-16
10.0	CON	CEDTU	IAL CITE MODEL	10.1
10.0			JAL SITE MODEL	10-1
	10.1		AMINANT MIGRATION PATHWAYS	10-1
		10.1.1	Potential Contaminant Migration Pathways	10-1
			10.1.1.1 Leaching From Soil to Groundwater	10-1
			10.1.1.2 Transport of Contaminants in Groundwater to Adjacent	10.0
			Surface Water and Sediment	10-2
			10.1.1.3 Transport of Contaminants in Stormwater to Adjacent Surface Water and Sediment	10.2
				10-2
		10.1.2	10.1.1.4 Transport of Contaminants in Soil to Sediment via Bank Erosion	10-2 10-2
	10.2		Non-Potential Contaminant Migration Pathways 'AMINANT RECEPTORS	10-2
	10.2			10-3
			Potential Receptors Non-Potential Receptors	10-3
	10.3		SURE PATHWAYS	10-3
	10.5		Potential Exposure Pathways	10-4
		10.5.1	10.3.1.1 Soil Direct Contact	10-4
			10.3.1.1 Soil Direct Contact 10.3.1.2 Sediment Direct Contact	10-4
			10.3.1.2 Sediment Direct Contact 10.3.1.3 Surface Water Uptake	10-4
			10.3.1.4 Ingestion of Fish and Shellfish	10-5
		10 3 2	Non-Potential Exposure Pathways	10-5
		10.5.4	Tion I occurat Exposure I aniways	10-5

			TABLE OF CONTENTS	
				Page
	10.4 UPLAN	ND AREA	CONTAMINANTS	10-5
	10.4.1	Potential	Upland Contaminant Sources	10-5
		10.4.1.1	Soil and Groundwater	10-6
		10.4.1.2	Storm Drain Solids	10-11
		10.4.1.3	Stormwater	10-12
	10.4.2	Potential	Sediment Contaminant Sources	10-13
		10.4.2.1	Contaminants in Groundwater	10-13
		10.4.2.2	Contaminants in Stormwater	10-13
		10.4.2.3	Contaminants in Erodible Bank Soil	10-14
		10.4.2.4	Contaminant Releases from Offsite Sources	10-14
11.0	AREAS FOR	CONSID	ERATION IN THE FS	11-1
12.0	USE OF THI	S REPORT	Γ	12-1
13.0	REFERENCI	ES		13-1

FIGURES

<u>Figure</u>	<u>Title</u>
1	Vicinity Map
2	Current Site Features
3	Current Storm Drain System
4	Approximate Former and Existing UST, ASTs, OWS, and Sump Locations
5	Historical Duwamish River Shoreline
6	Historical Site Features
7	Slip 5 Fill History
8	1936 Aerial Photograph
9	Historical Storm Drain Configuration
10	Previous Soil Sampling Locations
11	Previous Soil Sampling Locations Detail
12	Previous Groundwater Monitoring Locations
13	Previous Remediation Areas
14A	1989/1990 Storm Drain Line Excavation Sample Locations and Results - West
14B	1989/1990 Storm Drain Line Excavation Sample Locations and Results - East
15	1989/1990 Test Pit Locations
16A	1991 Soil Stabilization Excavation Sample Locations and Results- West
16B	1991 Soil Stabilization Excavation Sample Locations and Results - East
17	Previous Sediment Sampling Locations
18	Corrugated Pipe Location
19	RI Soil Sampling Locations
20	Thompson Wooden Bulkhead Soil Sample Location - WB-1 March 3, 2012
21	Thompson Wooden Bulkhead Soil Sample Location – WB-2 March 3, 2012
22	Thompson Wooden Bulkhead Soil Sample Location – WB-3 March 3, 2012
23	RI Groundwater Monitoring Locations
24	Soil Vapor and Other Sampling Locations Inside Building 14-01
25	RI Storm Drain System Sampling Locations
26	Source Material and Construction-Related Concrete Joint Material Sampling Locations
27	Storm Drain Line Video Inspection Activities
28	RI Sediment Surface Grab and Core Sampling Locations
29	Ferrous Iron Concentrations in Groundwater
30	Cross-Section Locations
31	Cross-Section A-A'
32	Cross-Section B-B'
33 34	Cross-Section C-C' Cross-Section D-D'
34 35	Cross-Section E-E'
35 36	Cross-Section F-F'
37	Groundwater Elevation Contours – December 5, 2011
38	Groundwater Elevation Contours – December 3, 2011 Groundwater Elevation Contours – March 6, 2012
39	Groundwater Elevation Contours – March 6, 2012 Groundwater Elevation Contours – June 13, 2012
40	Groundwater Elevation Contours – Sune 13, 2012 Groundwater Elevation Contours – September 10, 2012
41	Tidal Fluctuations in Lower Duwamish Waterway vs All Measured Wells
42	Tidal Fluctuations in Lower Duwamish Waterway vs Wells MW-7 and MW-20
43	Tidal Fluctuations in Lower Duwamish Waterway vs Wells MW-10 and I-205
44	Tidal Fluctuations in Lower Duwamish Waterway vs Wells MW-8 and MW-12
45	Total cPAH TEQ Concentrations in Groundwater
	Tome of the table of ta

FIGURES CON'T

<u>Figure</u>	<u>Title</u>
46	Total PCB Concentrations in Groundwater
47	Dissolved Arsenic Concentrations in Groundwater
48	Dissolved Ariseme Concentrations in Groundwater Dissolved Cadmium Concentrations in Groundwater
49	Chromium VI Concentrations in Groundwater
50	Dissolved Copper Concentrations in Groundwater
51	Dissolved Lead Concentrations in Groundwater
52	Dissolved Nickel Concentrations in Groundwater
53	Dissolved Zinc Concentrations in Groundwater
54	TCE Concentrations in Groundwater
55	Total cPAH Concentrations in Soil
56	Total PCB Concentrations in Soil
57	Arsenic Concentrations in Soil
58	Barium Concentrations in Soil
59	Cadmium Concentrations in Soil
60	Copper Concentrations in Soil
61	Lead Concentrations in Soil
62	Zinc Concentrations in Soil
63	TCE Concentrations in Soil
64	PCE Concentrations in Soil
65	Former Slip 5 Area Soil Sampling Locations Relative to Fill Material Placement
66	Metals in Catch Basin Solids
67	PCBs in Catch Basin Solids
68	RI Soil Sampling Locations Representing Soil Remaining
69	Constituents Exceeding Groundwater Preliminary Cleanup Levels at Western Property Boundary
70	Geospatial Interpolation of Total PCBs Compared to the SMS
71	Geospatial Interpolation of Arsenic Compared to the SMS
72	Geospatial Interpolation of cPAHs
73	Conceptual Site Model

TABLES

<u>Table</u>	<u>Title</u>
1	Summary of RI and Construction-Related Soil Samples and Field Screening Results
2	Monitoring Well and Piezometer Survey Information and Construction Summary
3	Tide Height During Nearshore Groundwater Sample Collection
4	Source Material Sampling Location Descriptions
5	Summary of Sediment Grab and Core Sample Locations
6	Upland pCULs
7	Air pCULs and Sub-Slab Vapor Screening Levels
8	Preliminary Cleanup Levels in Surface Sediments
9	Summary of Depths to River Deposits/Alluvium in RI Explorations
10	Surface Water Level and Precipitation Data
11	Summary of Measured Depths to Groundwater and Calculated Groundwater Elevations
12	Monitoring Wells - Groundwater Analytical Results- North of Former Slip 5 Area
13	Monitoring Wells - Groundwater Analytical Results-Former Slip 5 Area
14	Monitoring Wells - Groundwater Analytical Results-South of Former Slip 5 Area
15	Summary of Groundwater pCUL Exceedances – North of Former Slip 5 Area
16	Summary of Groundwater pCUL Exceedances – Former Slip 5 Area
17	Summary of Groundwater pCUL Exceedances - South of Former Slip 5 Area
18	Detected Arsenic Concentrations in RI and Construction-Related Soil Samples – North of
1.0	Former Slip 5 Area
19	Summary of Soil Analytical Results for Detected Constituents – North of Former Slip 5 Area
20	Detected Arsenic Concentrations in RI and Construction-Related Soil Samples – Former Slip
21	5 Area
21	Summary of Soil Analytical Results for Detected Constituents - Former Slip 5 Area
22	Detected Arsenic Concentrations in RI and Construction-Related Soil Samples – South of
23	Former Slip 5 Area Suppose of Sail Analytical Results for Detected Constituents - South of Former Slip 5 Area
23 24	Summary of Soil Analytical Results for Detected Constituents - South of Former Slip 5 Area Analytical Results for Detected Constituents in RI Stormwater Samples
25	2011 Storm Drain Solids Analytical Data
26	Storm Drain Source Evaluation Analytical Data – Building 14-01 South Area
27	Storm Drain Source Evaluation Analytical Data – Building 14-01 South Area Storm Drain Source Evaluation Analytical Data – Building 14-01 East Area
28	Storm Drain Source Evaluation Analytical Data – Building 14-01 West Area
29	Storm Drain Source Evaluation Analytical Data – Building 14-01 North Area
30	Storm Drain Source Evaluation Analytical Data – Building 14-13 Area
31	Storm Drain Source Evaluation Analytical Data – Building 14-02/14-03 Area
32	Storm Drain Source Evaluation Analytical Data – Isaacson East Area
33	Storm Drain Source Evaluation Analytical Data – Isaacson West Area
34	Summary of Soil Analytical Results for Detected Constituents – Boeing Thompson Property
	Wooden Bulkhead
35	Summary of Soil Analytical Results for Detected Constituents – Former Paint Storage Area
	and Former Diesel and Gasoline Tank Area
36	Summary of Soil Analytical Results for Detected Constituents – Observed Tar-Like
	Substance Area
37	Summary of Soil Analytical Results for Detected Constituents – Former Slip 5 Outfall Area
38	Summary of Soil Analytical Results for Detected Constituents – Former Hydraulic Test Pad
	Area

TABLES CON'T

<u>Table</u>	<u>Title</u>
39	Summary of Soil Analytical Results for Detected Constituents – Vicinity of Wells I-205(s) and I-206(s)
40	Summary of Soil Analytical Results for Detected Constituents – Former Washdown/Aqueous
	Degreaser Area
41	Summary of Soil Analytical Results for Detected Constituents - Former Washdown System Collection Tanks/Loading Dock Area
42	Sub-Slab Soil Vapor Analytical Results, Building 14-01
43	Results from RI Surface Sediment Grab Samples
44	Results from RI Sediment Core Samples
45	Dioxin/Furan Results from RI Surface Sediment Grab Samples
46	Summary Statistics for Chemicals of Concern in RI Sediment Samples
47	Summary of Constituents Detected in Upland Soil and Groundwater and Sediments at Concentrations Exceeding the pCULs
48	Summary of pCULs Exceedances in Soil Remaining North of the Former Slip 5 Area on Boeing Property
49	Summary of pCULs Exceedances in Soil Remaining Within the Former Slip 5 Area on Boeing Property
50	Summary of pCULs Exceedances in Soil Remaining South of the Former Slip 5 Area on Boeing Property
51	Summary of pCULs Exceedances in Groundwater North of the Former Slip 5 Area on Boeing Property
52	Summary of pCULs Exceedances in Groundwater Within the Former Slip 5 Area on Boeing Property
53	Summary of pCULs Exceedances in Groundwater South of the Former Slip 5 Area on Boeing Property
54	Exceedances of the SMS Criteria for the SMS Chemicals
55	Remedial Action Levels from EPA's Proposed Plan

APPENDICES

<u>Appendix</u>	<u>Title</u>
A	Previous Sediment Sample Analytical Results
В	Summary of NPDES Stormwater Sample Analytical Results
C	RI Soil Boring and Test Pit Logs and RI Well As-Builts
D	Source Material Sampling and Evaluation Technical Memoranda
E	RI Sediment Sampling Field Forms
F	Port Property Investigation Data
G	Backup for Development of Non-TMCL pCULs
Н	Boeing Plant 2 TMCL Technical Memoranda and EPA Approval Letter
I	Plant 2 TMCLs for Soil, Groundwater, and Ambient Air
J	Terrestrial Evaluation Exclusion Form
K	Tidal Study Calculations
L	RI Groundwater Analytical Results
M	RI Soil Analytical Results
N	RI Stormwater Sample, Storm Drain Solids Sample, and Source Material Sample Analytical
	Results
O	Corrugated Metal Pipe Video Survey (February 2012)
P	Storm Drain Pipeline Video Survey (October 2012)
Q	Detected Analytical Results for Soil Samples Representing Soil Remaining
R	Storm Drain System Evaluation/Source Material Sampling Technical Memorandum
S	Laboratory Analytical Data
T	Surface Water Effects on Groundwater Quality and Arsenic Mobility Figures

LIST OF ABBREVIATIONS AND ACRONYMS

 $\begin{array}{ll} \mu g/kg & \text{Micrograms per Kilogram} \\ \mu g/L & \text{Micrograms per Liter} \\ 1,1\text{-DCE} & 1,1\text{-Dichloroethene} \end{array}$

μS/cm Microsiemens per Centimeter
APS Applied Professional Services

ARAR Applicable or Relevant and Appropriate Requirement

ARI Analytical Resources, Inc.
AST Aboveground Storage Tank
BAS Boeing Abatement Services

BEHP Bis(2-ethylhexyl)phthalate, also identified as di(2-ethylhexyl)phthalate

BGS Below Ground Surface
BMP Best Management Practice

CB Catch Basin

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

cis-1,2-DCE Cis-1,2-dichloroethene
CJM Concrete Joint Material

CLARC Cleanup Levels and Risk Calculations

cm Centimeters

cm/s Centimeters per Second COC Contaminant of Concern

cPAH Carcinogenic polycyclic aromatic hydrocarbon

[includes benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene,

benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3cd)pyrene]

CSL Cleanup Screening Level
CSM Conceptual Site Model

DFFS Draft Focused Feasibility Study

DGPS Differential Global Positioning System

DO Dissolved Oxygen
DQO Data Quality Objectives

dw Dry Weight

Ecology Washington State Department of Ecology

EHS Environment, Health and Safety
ENR Enhanced Natural Recovery

EOF Emergency Overflow EP Extraction Procedure

EPA U.S. Environmental Protection Agency

ERA Ecological Risk Assessment

ERM Environmental Resources Management

ESA Environmental Site Assessment

FS Feasibility Study

ft Feet

ft² Square Feet

HPAH High Molecular Weight Polycyclic Aromatic Hydrocarbon

LIST OF ACRONYMS Con't

HHRA Human Health Risk Assessment

HVOCs Halogenated Volatile Organic Compounds

IDW Inverse Distance Weighting

IH Industrial Hygiene
I-T Isaacson-Thompson

KCDNRP King County Department of Natural Resources and Parks

KCIA King County International Airport

KCSD King County Storm Drain

KCSWDM King County Surface Water Design Manual

LAET Lowest Apparent Effects Threshold

LDW Lower Duwamish Waterway

LPAH Low Molecular Weight Polycyclic Aromatic Hydrocarbon

m² Square Meters

MDL Method Detection Limit
mg/kg Milligrams per Kilogram
mg/L Milligrams per Liter

MIC/H Manufacturing Industrial Center/Heavy Industrial

Min Minute

MLLW Mean Lower Low Water

mm Millimeter
MSL Mean Sea Level

MTCA Model Toxics Control Act

mV Millivolt

NFA No Further Action

ng Nanograms

ng/kg Nanograms per Kilogram

NOAA National Oceanic and Atmospheric Administration

NTU Nephelometric Turbidity Unit

OC Organic Carbon
OD Outside Diameter

ORP Oxidation Reduction Potential
PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

PCE Tetrachloroethene (also called Perchloroethylene)

PCOC Potential Contaminant of Concern

PCP Pentachlorophenol

pCUL Preliminary Cleanup Level
PID Photoionization Detector
PIV Post Indicator Valve
PLP Potentially Liable Person

Port Port of Seattle
ppm Parts per Million
pptr Parts per Trillion

LIST OF ACRONYMS Con't

PRG Preliminary Remediation Goal
PQL Practical Quantitation Limit

PVC Polyvinyl chloride
QA Quality Assurance
RAL Remedial Action Level
RAO Remedial Action Objective

RCRA Resource Conservation and Recovery Act

RHP Radiation Health Protection
RI Remedial Investigation

RL Reporting Limit
ROD Record of Decision

SADA Spatial Analysis Decision Assistance

SAP Sampling and Analysis Plan SCO Sediment Cleanup Objective

Sediment SAP Sediment Sample and Analysis Plan

SIM Selective Ion Monitoring

Site Boeing Isaacson-Thompson Site
SMS Sediment Management Standards
SPCS State Plane Coordinate System

SSL Site Screening Level

SVOCs Semivolatile Organic Compounds
SWPPP Stormwater Pollution Prevention Plan

TCE Trichloroethene

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TEF Toxicity Equivalency Factor

TEQ Toxic Equivalent Concentration
TOC Total Organic Carbon

TMCL Target Media Cleanup Level (Used at Boeing Plant 2)

TPH Total Petroleum Hydrocarbons
TSCA Toxic Substances Control Act
TSD Treatment, Storage, and Disposal

TSS Total Suspended Solids

USACE United States Army Corps of Engineers

USGS U.S. Geologic Survey
UST Underground Storage Tank
VAF Vapor Attenuation Factor
VOCs Volatile Organic Compounds
WAC Washington Administrative Code

1.0 INTRODUCTION

This report presents the results of a remedial investigation (RI) conducted for the Boeing Isaacson-Thompson (I-T) Site (Site) located in the city of Tukwila, King County, Washington (Figure 1). The Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA) are evaluating sources of contamination to the Lower Duwamish Waterway (LDW), source control actions, and cleanup options. A RI of the LDW, including the portion offshore of the Site, has been completed (Windward 2010) and a final feasibility study (FS) of the LDW (AECOM 2012) has been submitted to EPA and Ecology; EPA has prepared a Proposed Plan for the LDW that includes a description of the EPA's preferred alternative for cleanup of the LDW (EPA 2013). Ecology and EPA have determined that the Site is a potential source of contamination to the LDW. Investigations and cleanups are being, or will soon be, conducted by upland property owners under Ecology Agreed Orders at several properties along the LDW near the Site. These properties include the former Kenworth Truck Company property [PACCAR Inc. (PACCAR)/8801 East Marginal Way South property (8801 site)] adjacent to the Thompson property, and the Jorgensen Forge Corporation property (Jorgensen site) adjacent to the Isaacson property. Ecology has identified The Boeing Company (Boeing), as current owner of the Site, as a potentially liable person (PLP) for contamination at the Site.

The RI at the Site was performed under Agreed Order No. DE 7088 between Boeing and Ecology (Ecology 2010). In accordance with the Agreed Order, a work plan was prepared for the RI and FS (RI/FS Work Plan; Landau Associates 2011a) and approved by Ecology on September 21, 2011 (Ecology 2011a). Also, because Boeing was in the process of re-occupying Building 14-01 prior to finalization of the RI/FS Work Plan and because re-occupation of the building could significantly restrict access to the interior of the building, a separate work plan was prepared for conducting an investigation inside the building (Building 14-01 Investigation Work Plan; Landau Associates 2011b). This work plan was approved by Ecology on March 24, 2011 contingent on a change that was subsequently incorporated into the work plan (Ecology 2011b). The RI was conducted in accordance with these work plans. Deviations from these work plans are identified in Sections 4.0 and 5.0 of this report. At the request of Ecology, an additional work plan was prepared for conducting an investigation on the Port of Seattle Property located immediately adjacent to the Site (Landau Associates 2012a). This work plan was implemented by Boeing, as described in Section 6.0.

This report was prepared for submittal to Ecology in accordance with the provisions of the Agreed Order, and meets the general requirements for a RI as defined by the Washington Model Toxics Control Act (MTCA) Cleanup Regulation [Washington Administrative Code (WAC) 173-340-350]. The RI describes the environmental setting of the Site and field investigations that were conducted, identifies the nature and extent of contamination for affected media, and provides sufficient information to support development and evaluation of cleanup action alternatives.

2.0 SITE DESCRIPTION AND BACKGROUND

This section describes current Site features and land use, the history of development of the Site, and historical Site uses.

2.1 CURRENT SITE FEATURES AND LAND USE

The Site is comprised of two parcels of land surrounded by a security fence, with limited access. The Site is used for industrial purposes and, as described in Section 7.2, meets the criteria for industrial use. Parcel #0001600014 is a 9.84-acre parcel of land located near the east side of the LDW, at approximately river miles 3.7 to 3.8, as measured from the southern tip of Harbor Island. This parcel is known as the Isaacson property because, in 1984, it was purchased by Boeing from the Isaacson Corporation. The property was apparently owned or operated at various times by Isaacson Iron Works, Isaacson Steel Company, Isaacson Steel Works, and Isaacson Corporation. For this report, all of these entities will be identified as Isaacson. Parcel #0007400033 is a 19.35-acre parcel of land located on the eastern bank of the LDW, directly south of the Isaacson property. This parcel is known as the Thompson property because, in 1956, most of the property was purchased by Boeing from Charles Thompson. The parcels are referred to collectively as the Isaacson-Thompson Site. The total size of the Site is 29.19 acres. The Isaacson property and the northern portion of the Thompson property do not extend all the way to the LDW; a strip of land, under Port of Seattle (Port) ownership and/or control, consisting of the shoreline bulkhead (wooden), and approximately 20 to 30 feet (ft) landward of the bulkhead, separates this area from the LDW. A Site plan that shows the property features and boundaries is provided as Figure 2.

The Site is located in an area of industrial properties and is bordered on the north by the Jorgensen site; on the east by East Marginal Way South and King County International Airport (KCIA); and on the south by the 8801 site, currently owned by Merrill Creek Holdings and leased by Insurance Auto Auctions. As noted above, the Isaacson property and the northern portion of the Thompson property are bordered by a strip of land owned by the Port and then the LDW, and at the remainder of the Thompson property by the LDW.

The Site slopes slightly to the west and is at an average elevation of approximately 10 ft above mean sea level (MSL). Surface topography in the vicinity of the Site is generally level and slopes slightly to the west/southwest toward the LDW [U.S. Geologic Survey (USGS) 1983].

2.1.1 ISAACSON PROPERTY

The Isaacson property is the northern portion of the Site. The current Isaacson property boundaries are shown on Figure 2; however, prior to October 2001, the property boundary between the Isaacson property and the Thompson property was about 75 ft south of its current location. This portion of the Site consists of paved land and is separated from the Thompson property by a security fence. There are no buildings on this portion of the Site. A 48-inch-diameter King County storm drain line conveys stormwater from approximately 237 acres of the central portion of the KCIA, which consists of the flight line and industrial facilities that support the KCIA, along the northern Isaacson property boundary to an outfall (KCSD#2 Outfall) located on the Thompson property (Figure 3). The KCSD#2 Outfall also serves as an emergency overflow (EOF) for the city of Seattle. There are five storm drain manholes connected to the King County storm drain on the Isaacson property; stormwater from the Isaacson property does not enter this storm drain line. Thirteen stormwater catch basins (CBs) are present on the Isaacson property. Nine of these CBs are connected to a Boeing-owned storm drain line that conveys stormwater to the LDW via an outfall (Outfall A; also referred to as TS-2), which is located on the Thompson portion of the Site (Figure 3). Four of the CBs are not active; they are not connected to the Boeing-owned storm drain line and appear to have been connected to a former King County 48-inch storm drain line that was abandoned in 1990. Verification of the pipeline connections for these CBs was attempted during the RI and is discussed in Section 8.1.7. The Boeing storm drain system on the Isaacson portion of the Site includes two CONTECH® Vortechs® (Vortechs) treatment vaults that treat stormwater by allowing suspended solids to settle out prior to discharge to the LDW. The vaults were installed in 2008 during excavation activities (Section 3.1.22). These excavation activities were classified by the city of Tukwila as a "redevelopment" project because the project involved altering existing site grades; therefore, upgrades to the stormwater treatment and conveyance system including installation of the Vortechs system were required in accordance with the King County Surface Water Design Manual [KCSWDM; King County Department of Natural Resources and Parks (KCDNRP) 2005]. The Vortechs system at the Isaacson property is sized to accommodate peak storm events. The locations of the King County storm drain system and outfall, Vortechs treatment vaults (VTV-W and VTV-E), and the Boeing-owned storm drain system and outfalls are shown on Figure 3. The Isaacson property is occasionally used by Boeing for temporary trailer and container storage and vehicle parking. Boeing is currently evaluating options for industrial uses of the Isaacson property.

2.1.2 THOMPSON PROPERTY

The Thompson property is the southern portion of the Site. This portion of the Site is developed with several structures that include: a 316,000 square foot (ft²) industrial building (Building 14-01) and

several support structures including a boiler house (Building 14-02); two mechanical buildings (Buildings 14-03 and 14-14); a fire pump house (Building 14-13) and water tank; an electrical substation (Building 14-22); and a guard shack. Two pedestrian tunnels are located on the north side of Building 14-01 (Figure 2); the tunnels are approximately 100 ft long and extend 11 ft below ground surface (BGS) (above the groundwater table, which is generally encountered at about 11 to 12 ft BGS).

Existing structures on the Thompson property are shown on Figure 2. Three storage tanks are currently located on the Thompson property: a 20,000-gallon boiler fuel underground storage tank (UST; TS-01) located on the west side of Building 14-02, which was decommissioned in-place in 2003; a 500-gallon diesel aboveground storage tank (AST; TS-57) located on the west side Building 14-02; and a 200-gallon diesel AST (TSA-25) located on the northwest side of Building 14-13. Each AST is located within secondary containment. In addition, there is an aboveground water tank located northwest of Building 14-13. The approximate locations of these ASTs and UST are shown on Figure 4.

In addition to the ASTs and UST, five sumps exist at the Site. One of the sumps is located in the southeast corner of Building 14-02 (this has not been assigned a numerical designation), it is approximately 3 ft² and is located in a 10-ft² by 6-ft deep mechanical pit that houses underground utility pipes. The sump does not appear to be connected to the existing storm drain. At the time of the reconnaissance, a pump was present in the sump. The depth of the sump has not been determined. Sump BMA046 is located in the northern portion of Building 14-01, in an area that has historically been used for office space. Sump BMA046 is associated with a sanitary sewer lift station. The other three existing sumps are located outside of Building 14-01. Two of these sumps are associated with tunnels located north of Building 14-01. These sumps are 2-ft by 2-ft and 3-ft deep concrete structures located 11 ft BGS at the base of the stairs used to exit the tunnels. The sumps accumulate rainwater that collects at the base of the stairs. The third sump is located at the northeast corner of Building 14-01 at the base of the stairs that lead to a room housing piping and valves associated with the main water line. This sump also accumulates rainwater that collects at the base of the stairs. Construction details for this sump are not known, but are likely similar to the sumps associated with the tunnels. Rainwater collected in each of these three sumps is discharged, as needed, to the Site storm drain system. Other ASTs, USTs, and sumps shown on Figure 4 have been removed.

Fifty-five CBs, 15 storm drain manholes, and 2 oil/water separators (TS-91 and TS-93) are also present on the Thompson property. One of the CBs is not active and is not connected to the Boeing-owned storm drain line and appears to have been connected to a former King County 48-inch storm drain line that was abandoned in 1990. Verification of the pipeline connection for this CB was attempted during the RI and is discussed in Section 8.1.7. Stormwater collected in the remaining structures is discharged to the LDW via Boeing storm drain lines and two outfalls. The storm drain system is shown

on Figure 3. One of the outfalls is located near the northwestern portion of the Thompson property, as described in Section 2.1.1, and is identified as Outfall A (also referred to as TS-2) on Figure 3. The second outfall is located at the southwest corner of the Thompson property near the 8801 site boundary and is identified as Outfall B (also referred to as TS-1) on Figure 3. There are also three KCIA storm drain manholes on the Thompson property that are connected to the KCIA storm drain that runs beneath the Isaacson and Thompson properties and discharges to the LDW. Stormwater from the Thompson property does not enter the KCIA drain line. The outfall for the KCIA storm drain is located just north of Boeing Outfall A, near the Thompson and Isaacson property lines, as shown on Figure 3.

A steel bulkhead is located along the LDW shoreline in the northern portion of the Thompson property and a wooden bulkhead is located along the southern portion of the shoreline, as shown on Figure 2.

Boeing ceased active operations at the Thompson property in December of 2008 and the property was used only for storage for several years. Currently, Boeing's P-8 program operates at the Thompson property, and building modifications to expand operations were conducted in 2011 and 2012.

2.1.3 ADJACENT PROPERTIES

The Site is located in an urban industrial area. Current land uses surrounding the Site include steel and aluminum forging and milling (Jorgensen site), storage of damaged and wrecked vehicles (8801 site), and an airport (KCIA). The area has been used for industrial purposes since the 1920's and is likely to remain industrial in the future. Both the Jorgensen site and the 8801 site are contaminated properties that have been identified by Ecology as cleanup sites and are under Ecology Agreed Orders.

The 8801 site is located at 8801 East Marginal Way South in Tukwila, Washington, which is adjacent to the south Thompson property boundary. The site includes the upland area and the sediments in the LDW offshore of the upland area. The upland area of the site is about 25 acres and is covered with paved surfaces and buildings. The property has been used for industrial purposes since 1929. Ecology and PACCAR, a former property owner, signed an Agreed Order in 2006 requiring PACCAR to evaluate sediment contamination and whether upland contamination was reaching LDW sediments. Ecology, PACCAR, and Merrill Creek Holdings, the current property owner, signed an Agreed Order in 2008 to address the upland area of the site (Ecology Website 2013a). PACCAR and Merrill Creek Holdings prepared a RI report identifying contaminants of concern (COCs), areas of concern, and data gaps. They subsequently prepared a data gaps work plan to address the identified data gaps. Identified contamination at the upland portion of the 8801 site includes petroleum hydrocarbons; polycyclic aromatic hydrocarbons (PAHs); volatile organic compounds (VOCs); semivolatile organic compounds (SVOCs); polychlorinated biphenyls (PCBs); and metals (primarily chromium, copper, lead, nickel and zinc) (Ecology Website

2013a). VOCs including tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride are present in soil and groundwater at the 8801 site near the northern property boundary with the Thompson property. Contaminants present in sediments include PCBs and cPAHs.

The Jorgensen site is located at 8531 East Marginal Way South in Seattle, Washington, which is adjacent to the north Isaacson property boundary. The site is approximately 21.6 acres. Identified contamination at the Jorgensen site includes PCBs; petroleum hydrocarbons; and metals (arsenic, cadmium, chromium, lead, and nickel) in soil and petroleum hydrocarbons and metals in groundwater (Ecology Website 2013b). Slag has been stored in an unpaved area at the southwest corner of the site, near the southern boundary with the Isaacson property (Anchor QEA 2009). PCBs have been detected in sediments offshore of the Jorgensen site. Jorgensen Forge Corporation entered into an Agreed Order with Ecology and an Administrative Order on Consent with EPA to determine if the site is an ongoing source of contamination to sediments in the LDW and to determine a recommended sediment remedial action (Anchor QEA 2011).

2.2 SITE DEVELOPMENT

Meanders of the Duwamish River were formerly present in the area of the Site including a segment of the river that flowed west to east through the approximate center of the Site (Figure 5). Between 1910 and 1917, extensive dredge and fill operations were conducted in the lower Duwamish River valley and the river was channelized and placed in its current location to the west of the Site. The river channel modifications resulted in the creation of Slip 5 through part of the Site. Slip 5 was oriented west to east near the current center of the Site and extended from the waterway across approximately two-thirds of the Site (Figure 6). In 1936, filling of the slip began, to allow development of the Site. Filling occurred in phases and was completed in about 1966. Based on aerial photographs, much of the filling occurred prior to the mid-1960s. The fill history of Slip 5 is shown on Figure 7.

The first known development of the Site occurred in 1917 after the river channelization. The Bissell Lumber Company constructed a sawmill on land in the South of the Former Slip 5 Area. Shortly thereafter, in 1920, the Duwamish Lumber Company operated a sawmill on the western portion of the Site, in the North of the Former Slip 5 Area, and a planing mill was operated by the Tyee Lumber Company at the eastern end of Slip 5. The approximate locations of these operations are shown on Figure 6. Structures related to the operations are also visible in a 1936 aerial photograph (Figure 8). In 1943, the Isaacson property was purchased by Isaacson and was developed between 1943 and 1966. The Isaacson building was expanded from east to west in phases to cover nearly the entire land surface in the North of the Former Slip 5 Area (Figure 6). Boeing purchased the Isaacson property from Isaacson in 1984. In 1988, Boeing proposed to redevelop the Isaacson property by demolishing the Isaacson building

(referred to by Boeing as Building 14-05) and constructing a new building (referred to as Building 14-09). The Isaacson building was dismantled prior to 1990, but Building 14-09 was never constructed. With the exception of various earthwork projects, which are discussed later in this document, the layout of the northern portion of the Site has remained relatively unchanged since 1990. The Thompson facility was developed in the southern portion of the Site beginning in 1966. Until 2011, the layout of the Thompson facility had remained relatively unchanged. In 2011, Boeing re-occupied Building 14-01 and building modifications were made, including removal of a loading dock and an inactive 5,000-gallon aqueous wastewater AST (TSA-21) located west of Building 14-01 and removal of the aqueous degreaser formerly located in the western portion of Building 14-01. The sump (TS-26) associated with the aqueous degreaser was decommissioned in place when the aqueous degreaser was removed (May 2011). Historical aerial photographs are provided in the Phase I Environmental Site Assessment (ESA) reports (Landau Associates 2008a,b), and are further discussed in Section 3.0.

2.3 HISTORICAL SITE USE AND FEATURES

This section identifies and describes the historical uses of the Site, based on information developed by previous Phase I ESAs (Landau Associates 2008a,b). These documents should be reviewed for a more thorough description of historical Site uses.

Historical uses of the Isaacson property (northern portion of the Site) include:

- **Duwamish Lumber Company.** The Duwamish Lumber Company operated a sawmill in the western portion of the Isaacson property, in the North of the Former Slip 5 Area, from approximately 1920 until sometime prior to 1946. Structures associated with the Duwamish Lumber Company included a sawmill, lunch room, engine room, blacksmith, lumber storage, wood bin, block bin, sawdust bin, and waste burner.
- **Tyee Lumber Company.** The Tyee Lumber Company operated a planing mill at the eastern end of Slip 5 during the approximate same time period as the Duwamish Lumber Company operations. Structures associated with the Tyee Lumber Company included garages, office, a planing mill, dry kilns, and a shavings bin. A storage tank was located north of the dry kilns building.
- Mineralized Cell Wood Preserving Company. The Mineralized Cell Wood Preserving Company operated on the northern side of Slip 5 for an unknown period of time beginning prior to 1945. The operations of this company involved heating a solution of arsenic and sulfate salts of copper and zinc and applying the solution under pressure to the base of logs. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were reportedly drained directly to the ground surface.
- Isaacson/United States Navy. In 1941, the United States Navy constructed steel melting, forging, and fabricating facilities north of the Site. The facilities were known as the Isaacson Iron Works Plant No. 2. Portions of the Isaacson property were used for activities associated with the plant, which included storage of scrap metal prior to it being melted down. Between 1943 and 1945, a galvanizing plant was constructed in the northeast corner of the Isaacson property; it was dismantled in 1967.

- **Isaacson.** The Isaacson property was purchased by Isaacson in 1943. In the 1950's, Isaacson purchased Isaacson Iron Works Plant No. 2 and expanded facilities from east to west in phases to cover nearly the entire land surface of the Isaacson property in the North of the Former Slip 5 Area. Structures associated with the facility included tractor repair, welding, tractor sheds, storage shed, tractor parts warehouse, offices, a scrap iron yard, galvanizing plant, general warehouse, paint shop, and paint storage. A transformer yard was located to the north of the galvanizing plant; however, it is not clear if the yard was located on the Isaacson property or on the adjacent property to the north. Sections of the main building were used for storage of scrap metal and fabricating shops.
- **Isaacson Property Operations**. Boeing purchased the Isaacson property from Isaacson in 1984. Boeing used the large steel fabrication building (referred to by Boeing as Building 14-05) located on the Isaacson property for storage until it was demolished in 1989/1990, including temporary storage of gasoline- and Jet A fuel-contaminated soil excavated in the mid to late 1980s from other nearby Boeing properties during UST removal.

Historical uses of the Thompson property (southern portion of the Site) include:

- **Bissell Lumber Company.** The Bissell Lumber Company operated a sawmill from approximately 1917 until 1952. The sawmill operations were conducted primarily on the western portion of the Thompson property, adjacent to Slip 5. The structures associated with Bissell Lumber Company included a sawmill, wood bin, steam pump building, waste burner, transformer yard, blacksmith, and a building containing four storage tanks. Additionally, modifications to Slip 5, including piling installation, construction of log chutes, and dredging, were made to accommodate the sawmill operations. Title records and aerial photographs indicate that the sawmill was demolished in 1955.
- **Pre-Thompson Site Lessees.** Between approximately 1953 and 1956, the southern portion of the Site was leased to St. Johns Moto Express and Consolidated Freightways. Available information indicates that a rail spur and office building were located in this portion of the Site at the time of the leases.
- Thompson Property Operations. Boeing purchased the Thompson property from Charles Thompson in 1956. Boeing developed the Thompson facility in 1967. The facility was originally used to assemble one 737 aircraft, and to conduct fatigue testing of 757 aircraft. The facility was later used for assembly of a United States' B-2 bomber fuselage section, and, later, by Boeing's Propulsion Systems Division for jet engine build-up. The facility currently consists of an industrial building (Building 14-01) where airplane assembly, washing, and painting was formerly conducted, and several support structures including a boiler house (Building 14-02), two mechanical buildings (Buildings 14-03 and 14-14), a fire pump house (Building 14-13) and a water tank, an electrical substation (Building 14-22), and a guard shack (unnumbered). Former buildings and structures that have been removed include a cafeteria (Building 14-15), a restroom/shower facility (Building 14-12), a guard shack (Building 14-11), an office (Building 14-07), a loading dock located west of Building 14-11, and hazardous waste/hazardous materials storage sheds (unnumbered). The hazardous waste/hazardous materials storage sheds were used to temporarily store hazardous materials and accumulated waste material from facility operations (e.g., paint sludge, spent solvents, spent copper brush plating solutions, soiled rags, etc.).

A statement of hazardous waste disposal provided in the *Report of Evaluation of Site Contamination* (Dames & Moore 1983) and included in Appendix E of the RI/FS Work Plan indicates that petroleum distillates and solvents were stored and/or used on the property by Isaacson during

Isaacson ownership. This statement also suggests that PCBs may not have been used during Isaacson property ownership or present in the transformers at the time. A list of chemicals potentially used and/or stored by Boeing at the Thompson property is also provided in Appendix E of the RI/FS Work Plan.

Other features of significance include bulkheads constructed along the LDW. A wooden bulkhead was constructed along the LDW west of the northern portion of the Site during filling of Slip 5, on property currently owned by the Port. Construction details for this bulkhead are not known. A steel bulkhead was constructed along the central portion of the Site in the 1960s. This bulkhead consists of a sheetpile wall that extends 60 ft BGS (Alpha Engineers 1989). The sheetpile is supported with tiebacks and timber fender piles spaced on 9-ft centers. The tieback anchor rods are located about 6 ft BGS, extend 40 ft east behind the wall, and are supported by timber pile groups connected by a continuous concrete pile cap. A timber pile-supported concrete apron extends behind the bulkhead a distance of approximately 20 ft. A wooden bulkhead is also present along the southern portion of the Site, but the date of construction is unknown. A review of historical aerial photos indicates that a wooden bulkhead may have been present along this portion of the property since at least 1936. No other information for this bulkhead was available. The locations of these bulkheads are shown on Figure 2. A bulkhead oriented east to west at the edge of Former Slip 5 is visible in historical aerial photos taken in 1956, 1961, and 1965; no other information regarding this bulkhead is available.

Prior to the filling of Slip 5, a 48-inch-diameter storm sewer conveyance line, that conveyed stormwater from the east side of East Marginal Way South, discharged at the east end of Slip 5 (referred to as the Former Slip 5 Outfall Area and shown on Figure 6). In approximately 1966, and prior to the filling of Slip 5, the King County storm drain line was extended west to the LDW.

From 1966 to 1990, stormwater from the Isaacson property collected in 17 CBs that drained to the King County storm drain line. Stormwater from the Thompson property discharged to a separate Boeing storm drain system. The configuration of the storm drain systems at the Isaacson property in 1983 and at the Thompson property in 1999 are shown on Figure 9. This figure shows a 6-inch storm drain line west of Building 14-02 that may have discharged non-contact cooling water from Building 14-02 (formerly used as a boiler house) to the LDW. According to a report titled *Environmental Risk Assessment of the Boeing Field Division, Boeing Commercial Airplane Company* (Risk Science International 1985), about 4 million gallons of non-contact cooling water were discharged annually to the LDW. The report also suggests about 5.5 million gallons of washdown water may have been discharged annually to the LDW via an oil/water separator.

In 1990, the King County storm drain line was rerouted from along the northern Thompson property boundary to its current location, shown on Figure 3. After the storm drain line was rerouted, only Site stormwater collected by CB-39, which is located in the western portion of the Isaacson property,

continued to discharge to the 48-inch King County storm drain line. In 2008, upgrades to the Site stormwater treatment and conveyance system were completed. As described in Section 2.1.1, these upgrades included the installation of two Vortechs treatment vaults on the Isaacson property for the collection of stormwater and the settling of suspended material from the stormwater prior to discharge via Outfall A, located near the northern Thompson property boundary. Following these upgrades, Boeing completed a project to re-route the stormwater collected by CB-39 to the south into the existing Boeing Site stormwater system to eliminate all discharges of Site stormwater to the King County stormwater system. There are currently no connections between the Site stormwater system and the King County storm drain line. The Site stormwater system investigations and improvements are discussed further in Section 3.3.

3.0 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

Environmental investigations at the Site to date have been conducted to characterize and evaluate the chemical quality and physical condition of soil, groundwater, sediment, and storm drain solids. In 2002, Environmental Resources Management (ERM) summarized the investigations and remedial actions completed at the Isaacson property through 2000 in a *Comprehensive Data Summary Report* (ERM 2002). Investigations and remedial actions completed at the Site after 2000 have been documented in various reports, including a *Data Summary Report* (Landau Associates 2009a), which provides a comprehensive overview of the investigations conducted in 2008 and the first half of 2009. This section briefly describes the environmental investigations and the remedial actions previously conducted at the Site. This information was previously provided in the RI/FS Work Plan.

In addition to the investigations mentioned above, Phase I ESAs were conducted for the Isaacson property and the Thompson property to evaluate the environmental liabilities associated with the properties based on reasonably available documentation (both oral and written) and to support Boeing planning for future Site use. These Phase I ESAs include a review of records from Boeing's Environment, Health and Safety (EHS); Industrial Hygiene (IH); Radiation Health Protection (RHP); and Boeing Abatement Services (BAS) organizations; a review of historical information including aerial photographs, fire insurance maps, and historical tax records; and a site reconnaissance of the properties and adjacent properties to assess land use activities and environmental conditions. The results of the Phase I ESAs are documented in reports prepared by Landau Associates (Landau Associates 2008a,b). The 2008 Phase I ESA site reconnaissance results are provided in Appendix F of the RI/FS Work Plan (Landau Associates 2011a).

3.1 SOIL AND GROUNDWATER

Available records indicate that soil and groundwater investigations and a remedial action were initiated at the Site in 1983, prior to Boeing's purchase of the Isaacson property in 1984. Since then, several investigations and additional remedial actions have occurred at the Site with the most recent soil investigation occurring in the latter half of 2009. All of the soil and groundwater investigations and remedial actions are discussed below in chronological order. Analytical data for soil and groundwater samples collected during these investigations are provided in Appendices G (soil) and H (groundwater) of the RI/FS Work Plan.

3.1.1 August 1983 Soil Investigations (Dames & Moore)

This initial environmental site investigation was conducted by Dames & Moore for Boeing in 1983 to identify possible contaminants in the soil and groundwater at the Isaacson property. The investigation was completed in two phases (Phase I and Phase II) and consisted of 22 soil borings (#1 through #22), shown on Figures 10 and 11, and installation of a monitoring well in each of three of the borings. These wells and the associated boreholes are identified as B-7, B-12, and B-20 in previous reports and are discussed in Section 3.1.3. Soil samples were collected at each location and analyzed for PCBs; metals (arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, silver, zinc); total cyanide; oil and grease; and total organic carbon (TOC). The scope of the investigation and the results are presented in *The Report of the Evaluation of Site Contamination, Isaacson Steel Property* (Dames & Moore 1983). The soil characterization portion of this investigation is discussed below. The groundwater characterization portion is discussed in Section 3.1.3.

Part of the soil characterization focused on potential contaminant source areas as follows:

- Former Diesel and Gasoline Tanks. Four diesel and gasoline tanks were located in the eastern portion of the Isaacson property, as shown on Figure 4. Boring #1 was located in this area and one soil sample collected at 5.5 ft BGS was analyzed for PCBs, metals, and total cyanide. PCBs, total cyanide, mercury, and silver were not detected. Concentrations of other metals detected in the soil sample were low [e.g., arsenic and lead were detected at 3.4 milligrams per kilogram (mg/kg) and 1.3 mg/kg, respectively]. This soil sample may be representative of current soil conditions at this location since no known information is available to confirm that the tanks and soil surrounding the tanks were removed.
- Former Paint Storage Areas. Two paint storage areas were previously located in the eastern portion of the Isaacson property, as shown on Figure 4. Boring #2 was located in this area and one soil sample collected at 2.5 ft BGS was analyzed for metals and cyanide. Total cyanide and silver were not detected in the soil sample and the concentrations of other metals that were detected in the sample were low (e.g., arsenic and lead were detected at 8.7 mg/kg and 11 mg/kg, respectively). This soil sample may be representative of current soil conditions at this location because no known soil removal has occurred at this location.
- Former Steam Cleaning Rack and Sump. A steam cleaning rack and associated sump were formerly located in the northern portion of the Isaacson property as shown on Figure 4. The steam cleaning rack was used by Isaacson to clean equipment. Water, waste sludge, and solvents from the cleaning were placed into a 5-ft deep sand and gravel unlined sump. In about 1979 or 1980, a catch pan was placed above the sand and gravel in the sump to facilitate collection and disposal of waste sludge and solvent, but the sump was never connected to the sewer (Dames & Moore 1983). A sample of the sludge within the sump contained arsenic, zinc, and oil and grease at concentrations of 39.0 mg/kg, 94,950 mg/kg, and 350,000 mg/kg, respectively. Boring #3 was located adjacent to the sump and borings #11 and #B-12 were located east and south of the sump, respectively. Three soil samples were collected at boring #3 at depths ranging between 2.5 ft BGS and 10.5 ft BGS; two soil samples were collected at boring #11 at depths of 6.5 ft BGS and 11.5 ft BGS; and three soil samples were collected at boring #B-12 at depths ranging between 6.5 ft BGS and 14 ft BGS. The soil samples were analyzed for metals, total cyanide, and oil and grease. One sample at

boring #3, the deepest, was also analyzed for PCBs. Arsenic was detected in the soil at concentrations up to 2,880 mg/kg, zinc at concentrations up to 2,030 mg/kg, and oil and grease at a concentration of 1,850 mg/kg. PCBs were not detected above a reporting limit (RL) of 0.2 mg/kg. The sump and associated soil were later removed as described in Section 3.1.4. Only the soil sample collected at boring #B-12 at a depth of 14 ft BGS may represent current soil conditions in this area because no subsequent soil removal is known to have occurred at this location.

- Former Transformer Bank. A former transformer bank was located in the northern portion of the Isaacson property, as shown on Figure 4 or in the southern portion of the Jorgensen site. Boring #4 was located adjacent to the potential transformer bank location at the Site. Three soil samples were collected (2.5 ft BGS, 6.5 ft BGS, and 10.5 ft BGS) and analyzed for metals, and one of the samples (6.5 ft BGS) was also analyzed for PCBs. PCBs were not detected above the RL of 0.2 mg/kg. These soil samples may represent current soil conditions at this location because no subsequent soil removal is known to have occurred at this location.
- Fill Material Along Southern Property Boundary. Seven soil borings (#5, #7-1, #7-5, #15, #16, #17, and #19) were completed in the fill material located near the southern Isaacson property boundary, as shown on Figure 10. This area was the location of the northern portion of Slip 5 that was filled in the 1960s. Soil samples were generally collected at shallow depths ranging between 1.5 ft and 3.5 ft BGS at these locations, except at boring #7-5, where soil samples were also collected at depths of 8.5 ft BGS, 13.5 ft BGS, and 18.5 ft BGS, and at borings #16 and #17 where soil samples were also collected at 6.5 ft BGS. All of the soil samples were analyzed for metals and some of the soil samples were analyzed for PCBs, total cyanide, and oil and grease. Total cyanide was not detected in any soil samples. Arsenic was detected at concentrations up to 36 mg/kg. Elevated concentrations of zinc (440 mg/kg to 3,640 mg/kg) were detected at borings #5, #7-1, #7-5, #15, #16, and #17, and elevated concentrations of cadmium, chromium, and lead were detected at one or more of the soil borings. The highest oil and grease concentration detected in the soil was 2,020 mg/kg at boring #15. PCB concentrations were less than 1 mg/kg or not detected in soil samples collected at each soil boring except at boring #5 where PCB Aroclor 1254 was detected at a concentration of 9.7 mg/kg. Soil samples collected at soil borings #5, #7-1, #7-5, #15, #16, #17, and #19 may represent current soil conditions in this area because no subsequent soil removal is known to have occurred at this location.

The remaining soil borings were located near the western and northern property boundaries (borings #6-3 and #10, respectively); within the former Isaacson building (borings #8, #9, #13, and #14); and at the Thompson property (borings #20, #21, #22). No samples were collected at boring #8 for laboratory analysis. Except at boring #6-3, no elevated concentrations of metals or PCBs were detected in the soil samples at these locations. At boring #6-3, elevated concentrations of cadmium (7.7 mg/kg), chromium (466 mg/kg), lead (580 mg/kg), and zinc (2,320 mg/kg) were detected in the soil and PCB Aroclor 1260 was detected at 1.2 mg/kg. Except for boring #9, these explorations are in areas where soil removal has not occurred; therefore, analytical results for these soil samples may represent soil remaining in this area because no subsequent soil removal is known to have occurred at this location.

One slag sample was collected from fill material located near the Isaacson southern property boundary. The sample was analyzed for major and trace components. Barium and chromium were detected at concentrations of 1,350 mg/kg and 4,330 mg/kg, respectively; arsenic was not detected above the RL of 30 mg/kg. The results are summarized in tabular format in Appendix I of the RI-FS Work Plan (Landau Associates 2011a).

3.1.2 OCTOBER 1983 SOIL INVESTIGATIONS (WICKS)

In October 1983, soil samples were collected from boreholes associated with the installation of seven monitoring wells [I-1(s) through I-7(s)] at the locations shown on Figures 10 and 11. The soil samples were analyzed for arsenic, total chromium, copper, lead, and zinc. Only one soil sample [I-7(s)] was analyzed for barium and cadmium. Elevated concentrations of arsenic (up to 3,800 mg/kg), copper (up to 2,400 mg/kg), lead (up to 440 mg/kg), and zinc (up to 380 mg/kg) were detected at I-1(s), which was located in the area of the former steam cleaning rack, and/or at I-2(s), which was located inside the former Isaacson building just south of the former transformer bank area (Figure 10). However, subsequent remedial actions removed most of the soil associated with elevated concentrations of arsenic, copper, lead, and zinc at these locations. Elevated concentrations of chromium (up to 740 mg/kg), copper (up to 360 mg/kg), lead (up to 3,900 mg/kg), and zinc (up to 1,500 mg/kg) were also detected in soil samples collected at I-7(s), which is located in the fill material along the southern Isaacson property boundary adjacent to boring #5. Soil at this location has not been removed.

Soil samples collected at locations I-1(s), I-2(s), and I-7(s) were also tested to determine the leachability of the metals to groundwater to determine if the soil would be classified as a hazardous waste using the Extraction Procedure (EP) Toxicity test. Metals analyzed using this procedure included those metals analyzed in the soil samples (arsenic, total chromium, copper, lead, and zinc) and additional metals including barium, cadmium, chromium VI, mercury, selenium, and silver. Barium, chromium VI, mercury, selenium, and silver were not detected using this procedure. The concentrations of those metals that were detected using this procedure are as follows: arsenic at 7.8 milligrams per liter (mg/L) and 7.3 mg/L [two depth intervals at I-1(s)]; cadmium at 0.02 mg/L [I-7(s)]; total chromium at 0.1 mg/L [I-7(s)]; and lead at 6.1 mg/L [I-7(s)].

In addition to the above soil samples, four samples of slag were collected and analyzed for arsenic, total chromium, copper, lead, and zinc. The slag samples were collected at I-4(s), I-6(s), and I-7(s), which were all located in fill material west and south of the former Isaacson building. One sample was collected from each location and one sample was a composite of slag collected at I-4(s) and I-6(s). The composite sample was also analyzed for barium. The results of the slag samples indicated relatively

low concentrations of arsenic (18 mg/kg to 20 mg/kg) and elevated concentrations of total chromium (920 mg/kg to 2,200 mg/kg); copper (160 mg/kg to 1,200 mg/kg); and lead (120 mg/kg to 1,400 mg/kg). Barium and cadmium were detected in the composite sample at concentrations of 440 mg/kg and 2.2 mg/kg, respectively. EP Toxicity tests were also performed on the slag samples, but none of the metals were detected using this procedure.

The analytical results for the soil and slag samples are presented in the *Project Description for Remedial Work* report (Wicks 1984a).

3.1.3 1983 GROUNDWATER MONITORING

In August 1983, groundwater samples were collected from monitoring wells B-7, B-12, and B-20 (Figure 12) and analyzed for metals (antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, silver, and zinc); fluoride; total cyanide; phenol; and TOC (Dames & Moore 1983). It is not documented whether the metals results are total or dissolved. Only mercury was not detected in the groundwater samples. Arsenic was detected at concentrations up to 310 micrograms per liter (μ g/L), barium was detected at concentrations up to 390 μ g/L, cadmium was detected at concentrations up to 3.6 μ g/L, chromium was detected at concentrations up to 130 μ g/L, lead was detected at concentrations up to 95 μ g/L, selenium was detected at concentrations up to 4 μ g/L, and silver was detected at concentrations up to 8.1 μ g/L. Nickel and zinc were only analyzed in one sample, from well B-7, and were detected at a concentration of 10 μ g/L and 110 μ g/L, respectively. Total cyanide was detected only at well B-7 at a concentration of 13 μ g/L. Fluoride and phenol were detected at concentrations up to 500 μ g/L and 81 μ g/L, respectively.

In October 1983, six monitoring wells [I-1(s), I-2(s), I-4(s), I-5(s), I-6(s), and I-7(s)] were installed on the Isaacson property and one monitoring well [I-3(s)] was installed off-property at the locations shown on Figure 12. Groundwater samples were collected from these wells and wells B-12 and B-20 in October and December 1983 and analyzed for dissolved metals (arsenic, chromium, copper, nickel, lead, zinc). Arsenic, chromium, copper, nickel, and zinc were detected in groundwater samples from each location, including the well located off-property and hydraulically upgradient of the Site [I-3(s)]. Lead was detected in less than half the samples analyzed and the concentrations detected were generally below 5.0 μg/L, except at well B-20 where lead was detected at a concentration of 30 μg/L. Elevated concentrations of dissolved zinc (14,000 μg/L and 8,000 μg/L) were detected at well B-12 in October 1983 and December 1983, respectively. Elevated concentrations of zinc were also detected in the soil at well B-12. Arsenic concentrations ranged from 8.5 μg/L to 590 μg/L, except at well I-2(s) where dissolved arsenic was detected at 9,200 μg/L and 4,400 μg/L in October and December 1983,

respectively. The maximum chromium concentration (10.9 μ g/L) occurred at well I-2(s) during the December event. As described below in Sections 3.1.4 and 3.1.10 and shown on Figure 11, remedial activities were later conducted in the area of wells B-12 and I-2(s).

The results for the October and December 1983 groundwater samples are reported in the *Project Description for Remedial Work* report (Wicks 1984a).

3.1.4 1984 SOIL REMEDIATION

In 1984, Isaacson implemented a remedial action that consisted of excavating arsenic- and zinc-contaminated soil from three areas located in the northern portion of the Site. These areas, identified as A, B, and C, are shown on Figure 13. The extent of contamination identified and excavation within each area are described below. Further detail on the basis and scope of the remedial action is provided in two reports: *Project Description for Remedial Work* (Wicks 1984a) and the *Report on Remedial Project and Recommendation for Project Completion at Isaacson Corporation Property* (Wicks 1984b).

The Area A excavation was located around well I-2(s) where elevated concentrations of arsenic were present in the soil and groundwater. Based on the analytical results for soil samples collected at this location, soil was excavated from an area about 13 ft by 25 ft, centered on this well. The excavation extended vertically to a depth of 11 ft BGS. Soil samples were collected from the base and sidewalls of the excavation and analyzed for arsenic. The concentration of arsenic in the soil sample collected from the base of the excavation, PZFA, was 530 mg/kg. This result may represent soil remaining at this location; however, the results for the sidewall samples may not represent remaining soil as the soil represented by the samples was removed during subsequent remedial actions.

The excavation at Area B occurred at the location of the former steam cleaning rack and a 5-ft deep sand and gravel sump where the previous investigations had identified elevated concentrations of arsenic and zinc in the soil. The excavation removed the sump and some soil surrounding the sump to a depth of 4.7 ft BGS. Soil samples were collected from the base and sidewalls of the excavation and analyzed for zinc; however, the results for these samples may not represent soil remaining at this location, as the soil represented by these samples was removed during subsequent remedial actions.

The excavation in Area C was conducted to address arsenic-contaminated soil at I-1(s) and boring #11. The excavation was about 23 ft by 23 ft and extended to a depth of 12 ft BGS. Soil samples were collected from the base and sidewalls of the excavation and analyzed for arsenic. The concentration of arsenic in the soil sample collected from the base of the excavation, PZFC, was 290 mg/kg. This result may represent soil conditions remaining at this location; however, the results for the sidewall samples

may not represent current soil conditions because the soil represented by those samples was removed during subsequent remedial actions.

During this remedial action, arsenic EP Toxicity tests were performed on 11 soil samples. Arsenic concentrations ranged from less than 0.2 mg/L to 8.9 mg/L. The dry weight (dw) concentrations for these samples ranged from 67 mg/kg to 5,000 mg/kg.

After completion of the remedial action, Ecology issued a letter indicating that no further action (NFA) would be required unless groundwater monitoring indicated that arsenic was present in groundwater at concentrations greater than the identified cleanup level (Ecology 1985). As a result, a program for monitoring arsenic in groundwater was developed and implemented in 1985 and 1986. The groundwater monitoring program is described in Section 3.1.6.

3.1.5 1984 WICKS SOIL INVESTIGATION AND INSTALLATION OF WELL I-8(s)

In 1984, following excavation of soil in Areas A, B, and C, 12 soil samples were collected outside of the limits of the Area C excavation. All of the soil samples were collected from a depth of 8 ft BGS and analyzed for arsenic (Wicks 1984b). The soil samples are identified as PZTCS 7', PZTCS 14', PZTCS 20', PZTCW 5', PZTCW 10', PZTCE 7', PZTCE 14', PZTCE 20', T-1, T-2, T-3, and T-4. The locations of these soil samples are shown on Figures 10 and 11. Only the results for samples T-1 and T-4 (26 mg/kg and 10 mg/kg arsenic, respectively) and PZTCE 7', PZTCE 14', PZTCE 20' (1,800 mg/kg, 940 mg/kg, and 1,700 mg/kg, respectively) may represent current soil conditions at this location because no subsequent soil removal is known to have occurred at those locations. Soil represented by the other samples was removed by subsequent excavations. The analytical results for the post-excavation soil investigation samples are reported in the *Report on Remedial Project and Recommendation for Project Completion at Isaacson Corporation Property* (Wicks 1984b).

In November 1984, monitoring well I-8(s) and observation well I-8M were installed and hydraulic conductivity testing was performed at wells I-3(s), I-4(s), I-6(s), I-7(s), I-8(s), and I-8M (Sweet Edwards 1984).

3.1.6 1985 GROUNDWATER MONITORING

Following remediation of arsenic-contaminated soil at the Isaacson property, Ecology requested that groundwater monitoring at the property be continued and annual reports be submitted to Ecology for 2 years (Ecology 1985). To comply with Ecology's request, groundwater samples were collected from wells I-2(s), I-7(s), and B-12 in June 1985 and analyzed for total and dissolved arsenic (Landau Associates 1986). According to the groundwater monitoring plan prepared by Landau Associates for

Boeing in 1985 (Landau Associates 1985), wells I-1(s), I-2(s), I-4(s), and I-5(s) were damaged or inaccessible and, in October 1985, Boeing installed two new monitoring wells [I-104(s) and I-105(s)] to replace damaged wells I-4(s) and I-5(s). The locations of monitoring wells I-104(s) and I-105(s) are shown on Figure 12. In December 1985, groundwater samples were collected from wells I-3(s), I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12 and analyzed for total and dissolved arsenic.

For samples collected at the wells located on the property [I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12], dissolved arsenic concentrations ranged from less than 5 μ g/L [I-104(s) and I-6(s)] to 1,200 μ g/L [I-105(s)] and total arsenic concentrations ranged from 18 μ g/L [I-104(s)] to 2,400 μ g/L [I-105(s)] during these two events. At the off-property well [I-3(s)], dissolved arsenic was not detected above the RL of 5 μ g/L, and total arsenic was detected during both sampling events at concentrations of 12 μ g/L and 15 μ g/L.

The 1985 groundwater monitoring results are reported in the *First Annual Report Groundwater Monitoring Program Boeing Isaacson Property*, 8541 East Marginal Way South, Seattle, Washington report (Landau Associates 1986).

3.1.7 1986 AND 1987 GROUNDWATER MONITORING

In 1986 and 1987, groundwater samples were collected annually from wells I-3(s), I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12(s) and analyzed for total and dissolved arsenic. In 1986, for those samples collected at the wells located on the property [I-6(s), I-7(s), I-8(s), I-104(s), I-105(s), and B-12], dissolved arsenic concentrations ranged from less than 5 μ g/L [I-104(s)] to 510 μ g/L (B-12), and total arsenic concentrations ranged from less than 5 μ g/L [I-104(s)] to 1,500 μ g/L [I-105(s)]. In 1987, dissolved arsenic concentrations ranged from less than 5 μ g/L [I-104(s)] to 4,300 μ g/L [I-105(s)], and total arsenic concentrations ranged from 6 μ g/L [I-104(s)] to 4,300 μ g/L [I-105(s)]. At the off-property well [I-3(s)], dissolved arsenic was not detected above the RL of 5 μ g/L, and total arsenic was detected during the two sampling events at concentrations of 14 μ g/L and 27 μ g/L.

The 1986 and 1987 groundwater sample results are reported in Appendix D of the *Building 14-09 Thompson-Isaacson Site Investigation Data Report* (Landau Associates 1988).

3.1.8 1988 SOIL INVESTIGATION

In 1988, Boeing planned to demolish the Isaacson building (also referred to by Boeing as Building 14-05) and construct a new building (referred to as Building 14-09) along the north side of Building 14-01. Prior to the planned construction, Boeing conducted a soil and groundwater investigation to further evaluate soil and groundwater quality. Initially, the investigation consisted of collecting soil

samples from 46 explorations [210-244, 250, 251, 252, 260, 290, I-8(i), I-200(s), I-202(s), I-203(i), I-205(s), and I-206(s)] and installing 8 wells [I-8(i), I-200(s), I-201(s), I-202(s), I-203(s), I-203(i), I-205(s), and I-206(s)]. Boeing identified the wells as shallow wells (s) if the wells extended to depths of 30 ft BGS or less and as intermediate wells (i) if the wells extended to depths greater than 30 ft BGS.

All of the soil samples were analyzed for arsenic. Additionally, all of the soil samples collected from the Slip 5 fill material were analyzed for chromium, copper, lead, nickel, and zinc, and a subset of these were also analyzed for cadmium, mercury, silver, total cyanide, PAHs, PCBs, and VOCs. Soil samples from three explorations located in the areas of previous excavation areas A, B, and C, and one exploration located near the northern Isaacson property boundary, were also analyzed for PCBs and VOCs.

Based on the results of the soil investigation, two areas of elevated arsenic concentrations were identified: Bay 13 of the former Isaacson building and in the courtyard between Bays 11, 12, and 14 of the former Isaacson building. Low concentrations of VOCs were also detected in the soil in this area. As recommended by Ecology, additional investigations were conducted in 1988 to better delineate the distribution of arsenic concentrations in soil in these areas. Soil samples were collected from 0 to 2.5 ft BGS, 2.5 to 6.5 ft BGS, and 6.5 to 9.5 BGS at seven borings (identified as 313, 317, 318, 328, 330, 416, and 417) and analyzed for arsenic. Four of the samples, 317, 318, 416, and 417 were located north of the courtyard and Bays 11, 12, and 14, and the others were located south of the courtyard and Bays 11, 12, and 14, as shown on Figures 10 and 11. Based on the results of the 1988 investigations, a work plan for excavating soil within the two areas was prepared by Landau Associates for Boeing (Landau Associates 1989a).

Elevated concentrations of chromium (up to 4,180 mg/kg); lead (up to 1,690 mg/kg); nickel (up to 2,460 mg/kg); and zinc (up to 5,770 mg/kg) were detected in soil samples collected from the Slip 5 fill material. EP Toxicity test results for those samples containing the maximum dw concentrations of these metals were non-detect for chromium, 0.090 mg/L for lead, 7.07 mg/L for nickel, and 132 mg/L for zinc. Other constituents detected in the Slip 5 fill included arsenic, cadmium, copper, silver, PAHs, toluene, and xylenes. Low concentrations of PCBs (0.06 mg/kg to 0.51 mg/kg) were also detected in the Slip 5 fill material.

All of the soil samples collected in 1988 may represent current soil conditions, except at explorations 210, 214, 220, 222, 226, 227, 231, 238, and 242, where only the deepest soil samples (greater than 10.0 ft BGS) may represent soil remaining at the Site; soil shallower than 10 ft BGS at these locations was removed during subsequent remediation activities as described in Sections 3.1.10 and 3.1.12.

The results for the initial 46 soil samples are reported in Appendix C of the *Building 14-09 Thompson-Isaacson Site Investigation Data Report* (Landau Associates 1988). The results for the remaining soil samples are reported in Appendix B of the *Comprehensive Data Summary Report Boeing Isaacson Site*, ERM 2002)

3.1.9 1988 GROUNDWATER INVESTIGATION

In 1988, eight wells [I-8(i), I-200(s), I-201(s), I-202(s), I-203(s), I-203(i), I-205(s), and I-206(s)] were installed and, in February of 1988, groundwater samples were collected from the new wells and existing wells [B-12, B-20, I-6(s), I-7(s), I-8(s), I-104(s), and I-105(s); Landau Associates 1988]. All of the groundwater samples were analyzed for the following dissolved metals: arsenic, chromium, copper, lead, nickel, and zinc. Groundwater samples from B-20, I-6(s), I-7(s), I-202(s), I-203(s), I-203(i), I-205(s), and I-206(s) were also analyzed for dissolved cadmium, mercury, dissolved silver, VOCs, SVOCs, and pesticides. Groundwater samples from I-6(s) and I-105(s) were analyzed for dissolved barium, dissolved iron, dissolved manganese, dissolved selenium, oil and grease, dissolved oxygen (DO), and TOC. Elevated concentrations of arsenic (100 μ g/L to 15,000 μ g/L) were detected at wells B-12, B-20, I-105(s) I-201(s), I-202(s), I-203(i), and I-106(s). Elevated concentrations of copper (500 μ g/L) and zinc (9,090 μ g/L) were also detected at well B-12. Silver and selenium were not detected in any of the samples, and mercury and copper were detected in only one sample at or slightly above the RL. Barium was detected in the samples, but at low concentrations of SVOCs were also detected in most of the groundwater samples analyzed for SVOCs. Pesticides were not detected in any of the samples.

The results for the 1988 groundwater samples are reported in Appendix D of the *Building 14-09 Thompson-Isaacson Site Investigation Data Report* (Landau Associates 1988).

3.1.10 1988 SOIL EXCAVATION

In 1988, prior to Boeing's planned removal of the Isaacson building and paving of the Isaacson property, Ecology requested that soil containing elevated arsenic concentrations be removed from Bay 13 and the courtyard between Bays 11, 12, and 14 of the former Isaacson building (Ecology 1988). In each area, soil was excavated to the groundwater table (approximately 10 to 12 ft BGS). The lateral extent of the excavations is shown on Figure 13. Excavations were backfilled with pea gravel, imported fill, and excavated soil. During the excavations, field screening tests and laboratory tests were performed on samples collected from the soil stockpiles to determine appropriate disposition of the excavated soil. Soil containing arsenic concentrations greater than or equal to 500 mg/kg was disposed of offsite. Soil

containing less than 500 mg/kg arsenic was used as backfill for the excavations. Sidewall samples were collected from each excavation. If a sidewall sample contained arsenic at a concentration of 500 mg/kg or greater, additional excavation was conducted and additional sidewall samples were collected. For the courtyard excavation, five samples were collected from each of the north and south sidewalls, three from the east sidewall, and two from the west sidewall. Due to further remediation in the courtyard in 1991, only the samples collected from the north and south sidewalls may represent soil remaining in this area. These samples are identified as N-01 through N-04, N-05-A1, S-01-B1, and S-02 through S-05 on Figure 11. For the Bay 13 excavation, three samples were collected from each of the north and south sidewalls and one sample was collected from each of the west and east sidewalls. For the same reason, only the samples collected from the north and south sidewalls of the Bay 13 excavation may represent remaining soil. These samples are identified as N-01 through N-03, S-01, S-02, and S-03-A1 on Figure 10. The specific location of each sample along the sidewalls of each excavation is unknown; therefore, the locations shown on Figures 10 and 11 are approximate. The maximum arsenic concentration detected in the sidewall samples for soil remaining at the Site was 420 mg/kg.

Further details of the soil excavations are provided in the *Draft Thompson-Isaacson Site Soil Excavation Summary Report* (Landau Associates 1989b).

3.1.11 1989/1990 STORM DRAIN LINE SAMPLING

In late 1989 and early 1990, the former Isaacson building (Building 14-05) was demolished and the storm drain line that crossed the Isaacson property near the southern property boundary was rerouted along the northern property boundary as part of the planned development of the Site by Boeing. The new storm drain line was installed to an average depth of 13 ft BGS (Technical Dryer 1991). To evaluate proper disposition of the soil excavated along the alignment of the new storm drain, soil removed from each 10 to 12 ft length of the storm drain alignment was stockpiled separately (126 stockpiles total) and sampled. The stockpile samples were analyzed for arsenic. Soil stockpiles containing arsenic concentrations greater than or equal to 500 mg/kg were disposed of offsite. Soil stockpiles containing arsenic concentrations less than 500 mg/kg were used as backfill for the new storm drain line. The analytical results for the stockpile samples and the locations along the storm drain trench that they represent are shown on Figures 14A and 14B.

In general, soil excavated from the western half of the north portion of the trench contained arsenic at concentrations equal to or greater than 500 mg/kg. If a soil stockpile sample contained arsenic concentrations greater than or equal to 500 mg/kg, soil samples were collected from each sidewall corresponding to that portion of the trench where the soil was removed. The results of the sidewall

samples are presented on Figures 14A and 14B. Based on the results of the sidewall samples, further excavation was conducted on both sides of the storm drain line in some areas. The lateral extent of these excavations is shown on Figure 13. The vertical extent of the excavations was approximately 11 ft BGS, at which depth groundwater was encountered. Sidewall samples were also collected from the additional excavations; however, achieving removal of all soil containing arsenic concentrations equal to or greater than 500 mg/kg was determined to be impracticable. Three sidewall samples collected from an excavation north of the trench contained arsenic concentrations up to 3,500 mg/kg; however, further excavation was not conducted due to the excavation's proximity to the northern property line. Following removal of additional soil on the opposite side of the storm drain line from these northern sidewall samples, elevated arsenic concentrations continued to be present in samples collected from the western sidewall of this excavation. Soil excavation ceased and 96 test pits were completed to evaluate the extent of arsenic-contaminated soil. At each test pit, soil samples were collected from the following depth intervals: 1 to 3 ft BGS, 3 to 5 ft BGS, and 5 to 9 ft BGS. The depth intervals were designated as AA, A, and B in the sample identifications; with AA being the shallowest and B being the deepest. The test pits were identified as 1A, 1B, 1C, 1D, 2A, 2B, 2C, and so on. The locations of the test pits are shown on Figure 15.

Soil samples collected from the sidewall samples that may represent current soil conditions along the storm drain line include SW-1 through SW-28, SW-33 through SW-40, SW-44 through SW-46, SW-50, and SW-54 through SW-60. Test pits where soil samples were collected that may represent current soil conditions in the North of the Former Slip 5 Area because no subsequent soil removal is known to have occurred at these locations include 6J, 6K, 8J, 10J, 18N, 18E, 22N, 24B, 25N, 25A through 25D, 26B, 27B, 28A, 28B, 28D, 29B, 30B, 31A, 31B, and 31D.

Details of the storm drain line sampling are provided in the *Thompson-Isaacson Site Storm Drain Line and Soil Core Sampling* report (Technical Dryer, Inc. 1991).

3.1.12 1991 SOIL STABILIZATION

Due to elevated concentrations of arsenic in soil samples collected during the 1989/1990 storm drain line sampling, an area approximately 35 ft by 175 ft was remediated. The selected remediation method consisted of excavation of soil within the area to the depth of the groundwater table (approximately 12 ft BGS) and chemical treatment and stabilization of the excavated soil using soluble silicate solutions and cementitious materials. Because previous sampling results indicated arsenic concentrations in shallow soil were below the remediation cleanup level of 200 mg/kg, most of the soil removed from the upper 2 to 3 ft of the excavation was not treated and was used as backfill. The

remediation activities occurred between August and November 1991. Excavation sidewall samples were collected as shown on Figures 16A and 16B. Excavation continued until all sidewall sample arsenic concentrations were below 200 mg/kg, except along the northern boundary of the excavation. Additional excavation to the north was not feasible due to the King County storm drain line located approximately 15 ft north of the excavation. Concentrations of arsenic greater than 200 mg/kg primarily occurred along the portion of the northern sidewall between Manhole 5 and Manhole 4, shown on Figures 16A and 16B. At several locations, the arsenic concentrations were greater than 1,000 mg/kg.

Following stabilization, the material was returned to the excavated area; however, the volume of treated material was greater than the excavated area and a mound of treated soil was created. The stabilized material, including the mound, was covered with asphalt pavement.

Soil samples that may represent current soil conditions in the North of the Former Slip 5 Area because no subsequent soil removal is known to have occurred at this location include storm drain line sidewall samples SW-1 through SW-60.

Further detail on the basis and scope of the remedial action and analytical results is provided in the *Thompson-Isaacson Site Soil Excavation Work Plan Final Report* (Landau Associates 1989a).

3.1.13 1991 GROUNDWATER MONITORING

During treatment and stabilization of arsenic-contaminated soil in 1991, groundwater samples were collected four times at five monitoring wells [I-104(s), I-200(s), I-203(i), I-205(s), and I-206(s)] and analyzed for dissolved arsenic. The results indicated that the groundwater samples collected from wells located immediately downgradient from the soil remedial action area [wells I-104(s) and I-203(s)] had dissolved arsenic concentrations ranging from 15 μ g/L to 576 μ g/L. Dissolved arsenic concentrations at the wells located on the Thompson property [I-205(s), and I-206(s)] ranged from 6 μ g/L at well I-205(s) to 1,790 μ g/L at well I-206(s).

The results for the 1991 groundwater samples are reported in the *Evaluation of Ground Water Compliance Monitoring Program, Boeing Thompson-Isaacson Site, Seattle, Washington* report (GeoEngineers 1997).

3.1.14 1992-1996 POST-SOIL STABILIZATION GROUNDWATER MONITORING

Following treatment and stabilization of arsenic-contaminated soil at the Isaacson property in November 1991, voluntary compliance groundwater monitoring was conducted to establish a baseline for post-remediation groundwater conditions and to evaluate long-term effectiveness of Site remedial activities (GeoEngineers 1997). The monitoring was conducted semiannually at five monitoring wells

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

[I-104(s), I-200(s), I-203(i), I-205(s), and I-206(s)] between 1992 and 1994 for a total of five post-remediation sampling events and annually at the same wells in 1995 and 1996. Each semiannual event consisted of collecting groundwater samples at low tide weekly for 4 weeks and analyzing the samples for dissolved arsenic. Each annual event consisted of collecting a single sample at each location and analyzing the sample for total and dissolved arsenic. The results of the post-remediation monitoring are compiled in a report titled *Evaluation of Ground Water Compliance Monitoring Program, Boeing Thompson-Isaacson Site* (GeoEngineers 1997). The results indicated that the groundwater samples collected from wells located downgradient from the soil remedial action area [i.e., wells I-104(s), I-203(i), and I-205(s)] had concentrations of dissolved arsenic up to 640 μg/L. The samples from monitoring well I-206(s) had dissolved arsenic concentrations ranging from 1,360 μg/L to 2,000 μg/L.

3.1.15 1996 STRATAPROBE SOIL AND GROUNDWATER SAMPLING

In April 1996, six strataprobe borings (HP-1 through HP-6) were completed in the vicinity of monitoring well I-206(s), as shown on Figure 10, in an effort to identify a source for the arsenic previously detected in groundwater at well I-206(s) (GeoEngineers 1997). Sixty-three soil samples were collected from depths ranging between 1 to 20 ft BGS at the six borings and analyzed for arsenic. Arsenic concentrations ranged from 0.7 to 43.0 mg/kg. One grab sample of the groundwater at each boring was also collected and analyzed for dissolved and total arsenic. Dissolved arsenic concentrations in the groundwater samples ranged from 66 μ g/L to 660 μ g/L, and total arsenic concentrations ranged from 110 μ g/L to 570 μ g/L. The investigation did not identify a source for the arsenic in groundwater at well I-206(s) (GeoEngineers 1997).

The results for the 1996 soil and groundwater samples are reported in the *Evaluation of Ground Water Compliance Monitoring Program, Boeing Thompson-Isaacson Site, Seattle, Washington* report (GeoEngineers 1997).

3.1.16 1993 – 1995 Hydraulic Test Pad Area Excavations

In late 1993, approximately 10 ft of petroleum product was observed in a monitoring well near an oil/water separator located in the Former Hydraulic Test Pad Area east of Building 14-03. Twelve soil borings (B-1 through B-12) were completed in the area of the well and a nearby oil/water separator. The boring locations are shown on Figure 10. Heavy sheens were observed on soil in the borings nearest the oil/water separator (B-4, B-5, B-6, and B-7). Soil samples were collected from all 12 borings and analyzed for diesel-range, oil-range, and/or gasoline-range petroleum hydrocarbons. Elevated concentrations of petroleum hydrocarbons were detected in borings B-4, B-6, and B-9. The analytical

results for the soil borings are summarized in Appendix G of the RI/FS Work Plan. Based on the results of the soil investigation, the estimated volume of contaminated soil to be excavated was 825 cubic yards. Documentation showing the lateral and vertical extent of the excavation has not been identified; however, a figure showing planned excavation limits (GeoEngineers 1994) suggests that soil at borings B-4 through B-9 may have been removed. The results of the 1994 subsurface investigation are reported in *Report of Geotechnical Services, Subsurface Investigation Oil/Water Separator Area, Building 14-03, Thompson-Isaacson Facility* (GeoEngineers 1994).

The oil/water separator system consisted of a 5,000-gallon steel oil/water separator and an associated 4,000-gallon fiberglass holding tank (TS-04) (GeoEngineers 1994). A sample of the sludge present in the oil/water separator was collected and analyzed for VOCs; SVOCs; metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver); and PCBs. Several VOCs were detected in the sludge sample including acetone (1.4 mg/kg), 2-butanone (0.39 mg/kg), toluene (0.23 mg/kg), ethylbenzene (0.36 mg/kg), and xylenes (up to 0.16 mg/kg). PCB Aroclors 1254 and 1260 were detected in the sludge sample at concentrations of 1.3 mg/kg and 0.65 mg/kg, respectively. One SVOC, bis(2-ethylhexyl)phthalate (BEHP), was detected in the sludge sample at a concentration of 16 mg/kg. All of the metals analyzed for were detected in the sludge sample, except selenium. Arsenic was detected at a concentration of 10 mg/kg and lead was detected at a concentration of 6 mg/kg. The concentrations of the other detected metals were 1 mg/kg or less.

In August 1995, the oil/water separator system was removed. According to an undated internal Boeing memorandum, approximately 900 tons of petroleum-contaminated soil was excavated from the area surrounding the oil/water separator and holding tank. The soil was transported to a treatment facility in Oregon operated by TPS Technologies. Eleven soil samples (NW-2, NW-3, WW-2, EW-2, EW-3, EW-4, EW-5, EW-6, EW-7, EW-8, and SW-3-11.5) were collected from the excavation sidewalls and submitted to a laboratory for diesel-range and oil-range petroleum hydrocarbons analysis. However, only laboratory reports for NW-2, NW-3, WW-2, EW-2, EW-3, and SW-3-11.5 were available for review. The locations of the samples, other than SW-3-11.5, are shown on Figure 10. Except for SW-3-11.5, the depth of the samples has not been determined. Based on the results of the sidewall samples, diesel-range and hydraulic oil-range petroleum hydrocarbons remained in the soil at concentrations up to 7,400 mg/kg and 59,000 mg/kg, respectively. Subsurface soil and groundwater conditions in this area were investigated during the Phase II ESA investigation (Landau Associates 2009b).

3.1.17 2000 GROUNDWATER AND SEEP SAMPLING AND HYDROGEOLOGIC CHARACTERIZATION

Beginning in August 2000, eight piezometers (PZ-1 through PZ-8; shown on Figure 12) were installed at the Site. Groundwater samples were collected for laboratory analysis for dissolved arsenic, TOC, total iron, and ferrous iron from two of the piezometers (PZ-7 and PZ-8) and five existing monitoring wells [I-104(s), I-200(s), I-203(i), I-205(s), and I-206(s)]. Dissolved arsenic concentrations ranged from 2.0 μg/L at well I-200(s) located on the eastern property boundary to 1,600 μg/L at well I-104(s) located near the western boundary of the Isaacson property. One seep sample (Seep-1) was collected from a shoreline seep at the location shown on Figure 12. The seep emanated from rock and rubble material beneath the northern wooden bulkhead at an elevation of approximately -4 ft NGVD (29). The seep sample was analyzed for dissolved arsenic, which was detected at a concentration of 7 μg/L.

Also in August 2000, hydrogeologic characterization was completed that included a study of tidal effects on Site groundwater conditions. The results of the hydrogeologic characterization form the basis for the current understanding of the Site hydrogeology, which is described in Section 8.1.2.

The analytical results for the 2000 groundwater monitoring samples and seep sample, and the results of the hydrogeologic characterization, are reported in the *Request for Groundwater NFA Determination*, *Hydrogeologic Investigation and Site-Specific Action Level For Arsenic in Groundwater*, *Boeing Isaacson Site*, report (ERM and Exponent 2000).

3.1.18 2004 - 20,000-GALLON HEATING OIL TANK CLOSURE

In 2004, a 20,000-gallon heating oil UST located on the west side of Building 14-02 was decommissioned in-place. A soil sample was collected from stockpiled soil resulting from the excavation associated with the tank decommissioning and a groundwater sample was collected from a partial excavation at the north end of the tank. Both the soil and the groundwater samples were analyzed for diesel-range and motor oil-range petroleum hydrocarbons. Analytical results indicated the presence of diesel- and motor oil-range petroleum hydrocarbons in the groundwater sample at concentrations of 1.0 mg/L and 1.2 mg/L, respectively. The detected concentrations in the excavation groundwater sample were attributed to stormwater flowing into the excavation that was temporarily impacted by residual petroleum hydrocarbons on the excavation equipment.

The tank closure was documented in technical memorandum *Tank Closure Confirmation and Sampling, Former 20,000 Gallon Heating Oil Tank, Thompson Site* (Landau Associates 2004).

3.1.19 2004 GROUNDWATER CONFIRMATION SAMPLING

In 2004, two wells (TH-MW-1 and TH-MW-2) were installed downgradient of the 20,000-gallon heating oil UST located west of Building 14-02. The well locations are shown on Figure 12. The wells were installed after the tank was decommissioned in-place, as described in Section 3.1.18. Groundwater samples were collected from each well during two sampling events (January 19, 2004 and February 26, 2004) and were analyzed for diesel-range and motor oil-range petroleum hydrocarbons. Motor oil-range petroleum hydrocarbons were detected in the January 2004 sample collected from well TH-MW-2 at a concentration of 0.7 mg/L. Motor oil-range-petroleum hydrocarbons were not detected in the February 2004 sample collected from this well. Diesel-range petroleum hydrocarbons were not detected in the samples collected from well TH-MW-2, and motor oil-range and diesel-range petroleum hydrocarbons were not detected in the samples collected from well TH-MW-1. Subsequent attempts were made to resample these wells during the Phase II ESA investigations; however, no groundwater was present in the wells during the sampling attempts. Wells TH-MW-1 and TH-MW-2 were subsequently decommissioned as part of the 2011 RI described in Section 4.3.

The results for the 2004 groundwater monitoring samples at wells TH-MW-1 and TH-MW-2 are reported in the technical memorandum *Tank Closure Confirmation and Sampling, Former 20,000 Gallon Heating Oil Tank, Thompson Site* (Landau Associates 2004).

3.1.20 2006 SUMP REMOVAL

In November 2006, Boeing removed a sump located in the northeastern corner of the Site (identified as Former Sump on Figure 4). The sump was a below-grade, open-to-the-surface 55-gallon drum that was discovered under a steel plate. The sump reportedly had an inlet pipe and an outlet pipe (Landau Associates 2007). Prior to removal of the sump, two samples of soil in the sump were collected and analyzed for diesel-range and motor oil-range petroleum hydrocarbons; VOCs; SVOCs; and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to determine appropriate disposal of the sump and its contents. The excavation associated with the sump removal extended about 2 ft beyond the exterior of the sump and to about 5 ft in depth. One soil sample (IsaacEX-01-5) was collected from the base of the excavation (5 ft BGS) and two soil samples (IsaacEX-02-1.5 and IsaacEX-03-2) were collected from the excavation sidewalls at depths of 1.5 ft and 2 ft BGS. The sample locations are shown on Figure 10. These samples were analyzed for diesel-range and motor oil-range petroleum hydrocarbons; VOCs; SVOCs; PCBs; and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). Diesel-range and motor oil-range petroleum hydrocarbons, acetone, PAHs, BEHP,

and metals were detected in one or more of the samples collected from the excavation. PCB Aroclor 1260 was detected in one sidewall sample at a concentration of 0.041 mg/kg.

Further details of the sump removal and the results for the 2006 post-excavation soil samples are reported in technical memorandum *Sump Removal and Soil Excavation Boeing Isaacson Property, Seattle, Washington* (Landau Associates 2007).

3.1.21 2007 - 2008 GROUNDWATER AND SEEP SAMPLING

In September 2007 and June 2008, groundwater samples were collected from five existing monitoring wells [I-104(s), I-200(s), I-203(s), I-205(s), and I-206(s)]; two existing piezometers (PZ-7 and PZ-8); and one seep (Seep-1) and analyzed for dissolved arsenic. During the 2007 sampling event, dissolved arsenic was detected at concentrations ranging from 0.9 μ g/L at I-200(s) to 3,600 μ g/L at I-104(s). The detected concentration of dissolved arsenic in the seep sample was 5 μ g/L (Landau Associates 2009a). During the 2008 sampling event, dissolved arsenic was detected at concentrations ranging from 0.7 μ g/L at I-200(s) to 3,640 μ g/L at I-104(s). The detected concentration of dissolved arsenic in the seep sample in 2008 was 3.4 μ g/L (Landau Associates 2009a).

3.1.22 2008 REMOVAL OF STABILIZED SOIL MOUND

In late 2008, an independent action was conducted to remove the mound of stabilized soil in the northern portion of the Site. Independent action consisted of the removal and offsite disposal of the stabilized soil mound and non-stabilized surface soil surrounding the mound to reduce the grade, as necessary, for planned development at the Isaacson property. After the mound of stabilized material and the surrounding non-stabilized surface soil were removed, the area was recapped with asphalt. New stormwater treatment and conveyance system improvements (Vortechs vaults) were also installed as part of this action in compliance with the *King County Surface Water Design Manual* (KCDNRP 2005). The basis and scope of the independent action is discussed in detail in the *Redevelopment Activities: Stabilized Soil Mound Removal and Stormwater System Upgrades, Boeing Isaacson Property, Tukwila, Washington* report (Landau Associates 2008c).

To determine the appropriate disposal options for the stabilized soil designated for removal, samples of the stabilized soil were collected from seven test pits completed within the mound (Landau Associates 2008d). The samples, identified ISS-TP-1 through ISS-TP-7, were analyzed for total Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, and zinc); Toxicity Characteristic Leachate Procedure (TCLP) RCRA metals; and gasoline-range, diesel-range, and oil-range petroleum hydrocarbons. Elevated concentrations of

arsenic (up to 1,700 mg/kg) were detected in the samples, but the TCLP results were low (non-detect to 0.0017 mg/L). Barium, cadmium, chromium, and lead were also detected in the stabilized soil samples, but only barium was detected by TCLP. Barium concentrations ranged from 0.000051 mg/L to 0.00056 mg/L. Low concentrations (380 mg/kg or less) of diesel-range and motor oil-range petroleum hydrocarbons were also detected.

To determine appropriate disposal options for the non-stabilized soil that was removed, 20 samples of the surface soil were collected and analyzed for total arsenic and TCLP arsenic. The samples were identified as ISC-A through ISC-T. Although total arsenic concentrations were elevated, TCLP arsenic results were low (not detected to $1.7 \,\mu g/L$).

Following removal of the mound of stabilized soil and surrounding non-stabilized soil, 18 samples were collected at 16 locations evenly distributed throughout the removal area (IMR-2 through IMR-8, IMR-10 through IMR-16, IMR-18, and IMR-19, locations shown on Figure 10). The samples consisted of stabilized soil and non-stabilized soil and were collected to document soil conditions at the surface of the finished grade. All of the soil samples were analyzed for total RCRA metals. Arsenic was detected in 16 of the 18 samples at concentrations ranging from 8 mg/kg to 2,440 mg/kg. In addition, although no field indications of petroleum contamination were observed during removal of the stabilized soil mound, sample IMR-6 was analyzed for diesel-range and motor oil-range petroleum hydrocarbons because these petroleum hydrocarbons were detected at concentrations up to 380 mg/kg in the samples collected from the stabilized soil mound that were used to evaluate disposal options. Diesel-range and motor oil-range petroleum hydrocarbons were detected in the post-mound removal sample (IMR-6) at concentrations of 17 mg/kg and 61 mg/kg, respectively.

During the project, a vein of tar-like substance was discovered outside of the stabilized soil perimeter on the northern side of the excavation for the eastern Vortechs vault (vault identified as VTV-E on Figure 3), at a depth of approximately 1.5 ft BGS. The extent of the tar-like substance is not known, as excavation of the material was completed before the substance was identified; however, the vein appeared to be approximately 6 inches thick and approximately 3 ft wide. A sample of the tar-like substance (IMR-1-081003) was collected and analyzed for VOCs, SVOCs, and diesel-range and motor oil-range petroleum hydrocarbons. Diesel-range and motor oil-range petroleum hydrocarbons were detected at concentrations of 7,400 mg/kg and 25,000 mg/kg, respectively. The following PAHs were detected in the sample: phenanthrene (2,400 mg/kg), pyrene (4,200 mg/kg), chrysene (8,800 mg/kg), and benzo(a)pyrene (2,400 mg/kg).

Samples IMR-2 through IMR-8, IMR-10 through IMR-16, IMR-18, and IMR-19 may represent current soil conditions in the northern portion of the Site because no subsequent soil removal is known to have occurred at this location.

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

3.1.23 2008/2009 Phase II ESA Soil Sampling

In 2008 and 2009, focused Phase II ESA investigations were conducted at the Site. During these investigations, 60 soil samples were collected from 49 soil borings located throughout the Site (borings IDP-1 through IDP-15, IDP-1a, IDP-6a, and TDP-1 through TDP-32). The Phase II ESA soil sampling locations are shown on Figure 10. The soil samples were selectively analyzed for metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc); VOCs; SVOCs; petroleum hydrocarbons; PCBs; and PAHs. The sampling locations and analyses for the Phase II ESA investigations were selected based on the findings from the Phase I ESAs conducted in 2008.

The highest concentrations of arsenic (333 mg/kg at IDP-5-8'), copper (624 mg/kg at IDP-14-11'), lead (420 mg/kg at IDP-7-3'), and zinc (estimated 1,390 mg/kg at IDP-7-3') in soil were detected in samples collected from the Former Slip 5 Area. Mercury was detected at concentrations ranging from 0.05 mg/kg to an estimated 0.52 mg/kg in samples collected from across the Site.

Thirty-eight soil samples were analyzed for VOCs. Trichloroethene was detected at a concentration of 66 micrograms per kilogram (µg/kg) in one soil sample (TDP-26-8') located near the southern property boundary, and benzene was detected at a concentration of 9.8 µg/kg in one soil sample (IDP-9-3') located on the Isaacson property. VOCs were not detected in the remaining 36 soil samples analyzed for VOCs. Twenty-two soil samples were analyzed for PCBs during the Phase II investigations. PCBs were not detected in any of the soil samples collected from the Site at concentrations greater than the laboratory RLs. Eighteen soil samples were analyzed for SVOCs. With the exception of a few SVOCs detected in soil at TDP-8-8', SVOCs were not detected in soil at concentrations greater than the laboratory RLs. Two PAHs, chrysene and benzo(b)fluoranthene, were detected in one soil sample (TDP-18-4') at slightly elevated concentrations (91 mg/kg and 76 mg/kg, respectively).

All of the soil samples collected during the Phase II ESA are representative of current soil conditions in the areas in which the samples were collected because no subsequent soil removal is known to have occurred at these locations.

The results of the Phase II ESA soil investigations are reported in the *Phase II Environmental Site Assessment, Boeing Isaacson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009c) and the *Phase II Environmental Site Assessment, Boeing Thompson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009b).

3.1.24 2008/2009 Phase II ESA Groundwater Sampling

In November 2008, groundwater samples were collected for laboratory analysis from eight direct-push borings (TDP-1, TDP-7, TDP-8, TDP-11, TDP-16, TDP-18, TDP-25, TDP-26) located in the southern portion of the Site and from three direct-push borings (TDP-28, TDP-29, and TDP-31) located in the west-central portion of the Site (Figure 12). In February 2009, groundwater samples were collected for laboratory analysis from eight direct-push borings (IDP-1a, IDP-2 through IDP-6, IDP-8, and IDP-14) located in the northwest corner of the Site and two direct-push borings (IDP-9 and IDP-12) located in the north-central portion of the Site, as shown on Figure 12. Additionally, groundwater samples were collected from twelve existing monitoring wells and piezometers. The groundwater samples were selectively analyzed for dissolved metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc); VOCs; SVOCs; petroleum hydrocarbons; PCBs; and PAHs.

Arsenic and chromium were the only metals detected in the groundwater samples collected in the southern portion of the Site. Detected arsenic concentrations ranged from 1.3 μ g/L to 575 μ g/L and detected chromium concentrations ranged from 6 μ g/L to 14 μ g/L. Arsenic, copper, and lead were detected in the groundwater samples collected from the northern portion of the Site. Arsenic concentrations ranged from 0.8 μ g/L to 2,360 μ g/L, except at IDP-8 and IDP-14 where arsenic concentrations were 13,600 μ g/L and 16,000 μ g/L, respectively. Copper concentrations ranged from 6 μ g/L to 20 μ g/L, and lead was detected in one sample (IDP-8) at a concentration of 1 μ g/L. VOCs, SVOCs, and PAHs were also detected in groundwater from some wells. The VOC vinyl chloride was detected in five of eight groundwater samples collected from the area near the Thompson property/8801 site boundary (TDP-7, TDP-8, TDP-16, TDP-25, and TDP-26) and in groundwater samples collected from three locations in the western portion of the Site [IDP-8, I-104(s), and I-206(s)] at concentrations up to 140 μ g/L. Other VOCs [cis-1,2-dichloroethene (cis-1,2-DCE); 1,1-dichloroethene (1,1-DCE); PCE; and TCE] were detected in the groundwater samples collected from two locations near (TDP-25 and TDP-26) near the Thompson property/8801 site boundary.

SVOCs (carbazole and BEHP) were detected in groundwater during the Phase II ESA investigations. Carbazole was only detected in one groundwater sample (TDP1-GW) at a concentration of 6.9 μg/L and BEHP was detected in seven groundwater samples (TDP-7, TDP-8, TDP-11, TDP-18, TDP-25, TDP-28, and TDP-31) at concentrations up to 3.8 μg/L. Neither carbazole nor BEHP was detected in soil at the Site. PAHs were detected in seven groundwater samples (TDP-1, TDP-16, TDP-18, TDP-25, TDP-28, TDP-29, and TDP-31) at concentrations up to 15 μg/L.

Diesel-range and motor oil-range petroleum hydrocarbons were detected in one direct-push groundwater sample (TDP31-GW) located in the Former Hydraulic Test Pad Area. PCBs were not detected in any of the groundwater samples.

The results of the Phase II ESA groundwater monitoring are reported in the *Phase II Environmental Site Assessment, Boeing Isaacson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009c) and the *Phase II Environmental Site Assessment, Boeing Thompson Property, 8625 East Marginal Way South, Tukwila, Washington* report (Landau Associates 2009b).

3.1.25 2009 Property Boundary Soil Investigation

The property boundary investigation was conducted in late July 2009 to evaluate soil conditions at locations along the west property boundary adjacent to the Port property and at the south property boundary adjacent to the 8801 site. Soil samples were collected at 10 locations (PBI-1 through PBI-10) near the Isaacson/Port property boundary and the Thompson/Port property boundary (Figure 10). These samples were analyzed for the constituents of concern at that time in this portion of the Site at that time: arsenic, cadmium, chromium, copper, lead, mercury, and zinc. Arsenic concentrations in the soil samples ranged from 0.5 mg/kg to 754 mg/kg. The highest concentrations, 329 mg/kg and 754 mg/kg, were detected in the 5-ft to 6-ft BGS interval at locations PBI-2 and PBI-3. Other metals detected included cadmium (0.6 to 11.1 mg/kg); chromium (14 to 940 mg/kg); copper (21 to 1,300 mg/kg); lead (3 to 4,200 mg/kg); mercury (0.03 to 2 mg/kg); and zinc (56 to 3,290 mg/kg).

Soil samples were also collected at five locations (PBI-11, PBI-12, PBI-13, PBI-14, and PBI-15) along the Thompson property/8801 site boundary and analyzed for the COCs in this portion of the Site at that time, which included halogenated VOCs (HVOCs): vinyl chloride; 1,1-DCE; cis-1,2-DCE; TCE; PCE; and 1,1,2,2-tetrachloroethane). The property boundary soil sampling locations are shown on Figure 10. The results of the investigation indicated the presence of TCE and PCE in soil along the property boundary. The highest concentrations were detected at PBI-13, which is the most central of the boring locations in this investigation. The concentrations of TCE detected in the soil at PBI-13 were 20 μ g/kg at the 2- to 3-ft depth interval, 28 μ g/kg at the 5- to 6-ft depth interval, and 35 μ g/kg at the 8- to 9-ft depth interval. PCE concentrations at this location at these intervals were 1.7 μ g/kg, 2.3 μ g/kg, and 5.3 μ g/kg, respectively, with concentrations increasing with depth. Because groundwater was encountered at depths of about 15 to 16 ft BGS, all of the soil samples were collected from the vadose zone.

The results of the Property Boundary soil investigation are reported in the *Property Boundary Investigation Thompson-Isaacson Property*, *Tukwila*, *Washington* report (Landau Associates 2009d).

3.1.26 2009 Property Boundary Groundwater Investigation

Groundwater samples were collected from four locations along the Thompson property/8801 site boundary (PBI-11, PBI-12, PBI-13, and PBI-15) during the 2009 property boundary investigation. No groundwater sample was collected from location PBI-14 due to an apparent buried concrete slab that did not allow drilling deep enough to encounter groundwater. The groundwater sample locations are shown on Figure 12. The groundwater samples were analyzed for HVOCs.

Vinyl chloride was detected at three locations (PBI-11, PBI-12, and PBI-13) at concentrations of 1.3 μ g/L, 0.18 μ g/L, and 0.051 μ g/L, respectively. 1,1-DCE was detected at PBI-13 and PBI-15 at concentrations of 0.58 μ g/L and 0.14 μ g/L, respectively, and cis-1,2-DCE was detected at PBI-11 and PBI-13 at concentrations of 100 μ g/L and 190 μ g/L, respectively. TCE and PCE were detected only in the groundwater sample collected at PBI-13 at concentrations of 1,000 μ g/L and 78 μ g/L, respectively.

The results of the Property Boundary groundwater investigation are reported in the *Property Boundary Investigation Thompson-Isaacson Property*, *Tukwila*, *Washington* report (Landau Associates 2009d).

3.2 SEDIMENT QUALITY INVESTIGATIONS

The LDW FS Baseline Dataset (AECOM 2010) was reviewed for sediment chemistry for samples collected offshore of the Site. Sediments within and immediately adjacent to the area offshore of the Site were sampled at 39 surface (0 to 0.33 ft) grab locations and at 9 core locations between 1991 and 2009, as shown on Figure 17.

It should be noted that some of the sediment represented by samples that were collected in and immediately adjacent to the navigation channel prior to 1999 may have been subsequently removed during U.S. Army Corps of Engineers (USACE) maintenance dredging.

3.2.1 SURFACE SAMPLES

Surface sediment grab samples from 23 of the surface sediment grab locations were analyzed for Washington State Sediment Management Standards (SMS) chemicals. A second grab sample was collected at sample location AN-046 as a field duplicate (Sample ID—AN-096-SS-080211). Sediments from an additional 16 locations were analyzed for PCBs and TOC. A table summarizing the results is provided in Appendix A.

The surface sediment results were initially screened using the SMS Sediment Cleanup Objectives (SCO) and the Cleanup Screening Level (CSL). There were detected exceedances of the SMS SCO for

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

one or more of the SMS metals (including arsenic, lead, mercury, and zinc) at six locations. At five of the locations, one or more metals also exceeded the SMS CSL. There were detected exceedances of the SCO for one or more of the SMS list of PAHs at five locations. Although chlorinated benzenes were not detected, the RLs were above the SCO at multiple locations.

There were detected exceedances of the SCO for butyl benzyl phthalate at ten locations; concentrations at one of the locations also exceeded the CSL. Four locations had detected exceedances of the SCO for BEHP, with concentrations at two of the four locations also exceeding the CSL. Dibenzofuran exceeded the SCO at a single location. Although hexachlorobutadiene was not detected in any of the surface sediment samples, the RL was above the SCO at 2 locations. Total PCBs exceeded the SCO at 21 locations, with concentrations at one location also exceeding the CSL. Benzoic acid also exceeded the CSL at 2 locations. Although benzyl alcohol and several phenols were not detected in any of the surface sediment samples, the RLs exceeded the SCO at 4 locations.

In addition, the arsenic and total PCB concentrations were screened against the human health risk-based preliminary remediation goals (PRGs) presented in the EPA Proposed Plan for the Lower Duwamish Superfund Site (EPA 2013). Human health risk-based PRGs are also available for dioxins/furans and for carcinogenic polycyclic aromatic hydrocarbons (cPAHs). The development of the PRGs and the appropriateness of their use in the development of pCULs is discussed in Section 7.4.

All of the surface samples had concentrations of one or more contaminants that were above the LDW site-wide human health risk-based PRGs. All of the surface samples analyzed for total PCBs (by Aroclor) and arsenic were above the human health risk-based PRGs. Surface sediment samples from 3 locations were analyzed for dioxins/furans. The calculated dioxin Toxic Equivalent Concentration (TEQ) for the 3 locations ranged from 2.53 nanograms/kilogram dry weight [ng/kg dw or parts per trillion (pptr)] to 11 ng/kg dw. The dioxin TEQs were above the LDW site-wide PRG for human seafood consumption. The calculated TEQ for the cPAHs ranged from 62 micrograms/kilogram dry weight (µg/kg dw) to 6,600 µg /kg dw. The cPAH TEQs were above the human health risk-based PRG for human direct contact at 17 of the 23 locations.

Surface sediment samples from 3 locations were also analyzed for selected organochlorine pesticides, but none were detected. Analysis of PCB congeners was also performed on samples from 15 surface sediment locations. A table summarizing the results is provided in Appendix A.

3.2.2 CORE SAMPLES

Subsurface sediment samples were collected using a coring device at nine locations shown on Figure 17. Core sample intervals submitted for chemical analyses were 2 ft or less at eight of the

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

locations. At the remaining sample location (core location DU9120XX), sediments were composited from the surface to 3 ft below mudline within the navigation channel; that sample was used to characterize sediments for dredged material disposal. The deepest sample interval collected at any coring location in the vicinity of the Site was from 7.0 to 7.7 ft below mudline at location SD-216.

Eight of the core samples were analyzed for the complete SMS list of chemicals. The remaining samples were analyzed for a more limited list of chemicals. A table summarizing the results is provided in Appendix A. General trends in sediment concentrations for the SMS list of chemicals showed decreasing concentrations with depth. Sediment concentrations for metals and a majority of the organic compounds that exceeded the SMS criteria (SCO or CSL) in shallow sediments (generally less than 4 ft below mudline were below the SMS criteria in sample intervals collected deeper than 4 ft below mudline.

Total PCB concentrations at location SD-216 (located north and downstream of the Site were above the CSL criteria in the deepest sample interval collected (7 to 7.7 ft below mudline). However, samples SD-217 and SD-315C, which were immediately upstream of SD-216 and offshore of the Site, either had total PCB concentrations below the SCO in the 4.0- to 4.5-ft sample or PCBs were not detected at 4 ft below mudline and deeper.

The TOC content in some of the deeper sample intervals was less than 0.5 percent. These lower TOC values may be an indication of older native delta deposits that have low organic content. These older deposits are expected to show lower levels of contamination. In addition, comparison of the analytical results to the SMS criteria that are organic carbon (OC) normalized may not be appropriate if the TOC values are less than 0.5 percent. Comparison to the dry weight lowest apparent effects threshold (LAET) values is more appropriate and is consistent with Ecology guidance. There were no exceedances of the LAET values for sediment core samples with TOC values of less than 0.5 percent.

3.3 STORM DRAIN INVESTIGATIONS

This section describes investigations that were conducted prior to the RI to assess the storm drain system present at the Site.

3.3.1 2007 CATCH BASIN REPOUTING PROJECT

Prior to 2007, two CBs (CB-81 and CB-82) located in the southwest portion of the Thompson property bypassed the oil/water separator located in that portion of the property. In 2007, the storm drain lines from these CBs were rerouted to connect the CBs to the oil/water separator. The location of these CBs and the current storm drain configuration are shown on Figure 3.

3.3.2 2008 Drain Line Investigation

On February 25, 2008, Landau Associates and Applied Professional Services (APS) conducted a video tape investigation of a 12-inch corrugated metal pipe located within a retaining wall near the southern boundary of the Site; the pipe outlet is approximately 35 ft south of the southwest corner of Building 14-01 (Figure 18). Based on the results of this investigation, the 12-inch corrugated metal pipe appears to extend east to west parallel to the north side of the retaining wall along the southern property boundary. No inlets to the pipe were identified along its course. The pipe appears to serve as a drain to prevent buildup of groundwater behind the retaining wall. No connections between the pipe and the stormwater drains or sewer lines located on the Site in the vicinity of the pipe were identified during the investigation. There was no evidence of water draining from the pipe onto the property adjacent to the south of the Site. It was assumed that the pipe extends the full length of the retaining wall (approximately 460 ft); however, only 158 ft of the western portion of the pipe was investigated due to a three-prong, industrial-sized electrical plug that was present in the pipe during videotaping. This plug prevented advancement of the camera farther eastward.

A video survey of the full extent of the pipe was conducted as part of the RI and is discussed in Sections 4.5.4 and 8.1.7.

3.3.3 2008 CATCH BASIN SOLIDS SAMPLING

In December 2008, an investigation was conducted of the solids present in the CBs and oil/water separators at the Site. The purpose of this investigation was to collect and analyze samples of solid material from the CBs and oil/water separators at the Site prior to planned cleaning of the storm drain system. The solid samples were analyzed for PCBs; SVOCs; total metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc); TOC; and total solids. Samples from some nearby CBs were composited prior to analysis. Twenty-two solids samples were analyzed for PCBs, SVOCs, total metals, TOC, and total solids.

PCBs were detected above the laboratory RLs in 19 of the 22 samples analyzed. One or more SVOCs were detected in 19 of the 22 samples collected. One or more metals were detected in all 22 samples collected. The analytical results for these samples were provided in the RI/FS Work Plan (Landau Associates 2011a).

3.3.4 2009 CATCH BASIN REPOUTING PROJECT

In 2009, Boeing completed a project to re-route stormwater collected by CB-39 so that no stormwater from the Site would enter the 48-inch King County storm drain line. CB-39 is located in the

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

western portion of the Site, near the outfall of the King County storm drain line (Figure 3). Stormwater collected by CB-39 previously was conveyed to the 48-inch King County storm drain line. The King County storm drain line conveys stormwater from a portion of the KCIA to the LDW. Two pipes were previously connected to CB-39. One of the pipes was the outlet for CB-39 that connected to the King County storm drain. The purpose of the second pipe has not been determined. Both of the existing pipes were plugged with grout. The CB was inspected and found to be in good condition with a solid concrete bottom; therefore, the existing structure was retained and a new pipe was installed to route stormwater from the CB to the south into the existing Site stormwater system. There are currently no connections between the Site stormwater system and the King County storm drain line.

3.3.5 ONGOING STORMWATER OUTFALL SAMPLING

The Site operates under Industrial Stormwater General Permit #WAR000148. The permit requires quarterly sampling from the two stormwater outfalls (Outfalls A and B) located along the western Site boundary (Figure 3). Stormwater discharged from both outfalls met all applicable benchmark values in the first and second quarters of 2012 (per permit conditions, for quarters when multiple sampling events are conducted, the average of the sampling results is compared to the benchmark value). Copper was detected in stormwater at a concentration exceeding the permit benchmark of 14 µg/L during the third quarter 2012 sampling event at both Outfall A (TS-2) and at Outfall B (TS-1). Zinc was detected in stormwater at a concentration exceeding the permit benchmark of 117 µg/L during the third quarter 2012 sampling event at both Outfall A and Outfall B. After receiving third quarter sampling results, Boeing completed a Level One Corrective Action per the permit conditions. The corrective action included inspection of the facility to investigate the potential cause of the benchmark exceedances and review of and revisions to the Stormwater Pollution Prevention Plan (SWPPP) to include additional operational source control Best Management Practices (BMPs). Facility operational source control BMPs include sweeping, roof cleaning, and CB cleaning to remove accumulated solids. Fourth quarter 2012 sampling conducted in October indicated that stormwater discharged to both outfalls again met all applicable benchmark values. A summary of stormwater sampling results from 2010 through 2012 is included in Appendix B.

4.0 REMEDIAL INVESTIGATION ACTIVITIES

RI activities were designed to further investigate Site soil, groundwater, soil vapor, storm drain solids, stormwater, and sediment to adequately characterize the Site, to evaluate the potential for recontamination of LDW sediments, and to provide sufficient data to support development and evaluation of cleanup action alternatives. The RI activities address the data gaps identified in the RI/FS Work Plan (Landau Associates 2011a).

RI field activities were completed in general accordance with the RI/FS Work Plan (Landau Associates 2011a) and the Building 14-01 Work Plan (Landau Associates 2011b). This section describes the RI activities and any deviations from the procedures specified in the RI/FS work plan. Soil and groundwater investigations conducted in Building 14-01 and on the Port Property are described in Sections 5.0 and 6.0, respectively. RI results are presented in Section 8.0.

4.1 RISOIL INVESTIGATION

The RI soil investigation was conducted in two phases. The first phase occurred in April 2011 and consisted of soil explorations located inside Building 14-01 and the second phase occurred in October and November 2011. A total of 179 soil samples were collected for laboratory analysis from 50 explorations and submitted for laboratory analysis. The explorations where soil samples were collected for laboratory analysis include:

- Twenty-four soil borings where new wells were installed. These borings are identified as MW-1 through MW-12 and MW-14 through MW-25.
- Two soil borings identified as MW-13 and MW-13B. Soil samples were collected, but no
 wells were installed in these borings because an obstruction was encountered during drilling
 preventing advancement of the drilling auger. The monitoring well MW-13 was eventually
 installed approximately 195ft away from these two soil borings. No soil samples were
 collected from the soil boring where monitoring well MW-13 was installed because it is near
 SB-4 where soil samples were collected.
- Twelve soil borings identified as SB-1 through SB-12.
- Nine test pits identified as TP-101 through TP-104, TP-105B, TP-106B, and TP-107 through TP-109
- Three grab samples identified as WB-1, WB-2, and WB-3. Samples WB-1, WB-2, and WB-3 were collected from outside of the bulkhead through gaps in the wooden bulkhead located at the southern portion of the Site.

The data gaps identified in the RI/FS Work Plan that were filled by the soil investigation scope include: 1) characterization of soil in the paint storage areas formerly located on the Isaacson property, 2) characterization of soil in the former diesel and gasoline tank areas located east of the former Isaacson building, 3) determination of the extent of the tar-like substance previously observed in the soil north of the eastern Vortechs vault, 4) evaluation of soil quality near the Former Slip 5 Outfall Area, 5) evaluation

LANDAU ASSOCIATES

of the source of arsenic in groundwater at monitoring wells I-205(s) and I-206(s), 6) evaluation of subsurface conditions downgradient of the Former Hydraulic Test Pad Area, 7) evaluation of the potential for bank erosion to impact sediment quality, 8) characterization of the different fill material used to fill the Former Slip 5 Area, and 9) analysis of soil samples for an extended list of analytes.

Modifications of sample locations or sampling procedures were documented by Landau Associates and discussed with and approved by Ecology. Deviations from the RI/FS Work Plan are discussed below. RI soil sampling results are discussed in Section 9.1.1.

4.1.1 SOIL EXPLORATION LOCATIONS

Soil borings, test pit, and grab sample locations are shown on Figure 19. The explorations were generally located at or near the locations identified in the work plans (Landau Associates 2011a,b); however, some soil borings and test pits were moved due to subsurface conditions. The soil borings and test pits that were moved are described below.

4.1.1.1 Soil Boring Location Adjustments

The soil borings that were moved greater than 10 ft are as follow:

- SB-1 was moved approximately 15 west to avoid underground utilities.
- SB-2 was moved approximately 25 ft southwest. The planned location was too near the newly constructed airplane tow path.
- MW-4 was moved approximately 15 ft southwest to a location inside the Boeing fence. The planned location was outside the fence line.
- MW-7 was moved approximately 15 ft northeast. The planned location was in an area with a steep slope.
- MW-9 was moved approximately 24 ft east. The planned location was in an area with a steep slope. MW-9 was also moved 5 ft north to avoid an electrical panel.
- MW-12 was moved approximately 14 ft north to avoid underground utilities.
- MW-13 was moved 40 ft east and 30 ft north of the planned location to avoid the newly constructed airplane tow path. At this approximate location, there are two soil borings identified as MW-13 and MW-13B. Soil samples were collected, but no wells were installed in these borings because an obstruction was encountered during drilling, preventing advancement of the drilling auger and installation of the planned monitoring well. No soil samples were collected from the soil boring where monitoring well MW-13 was installed because it was installed at the location of soil boring SB-4, approximately 150 ft northwest of the planned location identified in the RI/FS work plan.
- At boring SB-3, geotextile fabric was encountered at approximately 10 inches BGS and a thick plastic was encountered at approximately 12 inches BGS. A second boring was conducted approximately 10 ft north and the geotextile and thick plastic were encountered at the same depths. The plastic was not penetrated and no samples were collected. The geotextile and plastic material was later determined to be associated with the treatment and staging area for the soil stabilization activities on the Isaacson property and that penetration

through each was allowable. Boring SB-3 was then completed to 11 ft BGS in the original location, at which depth an obstruction was encountered.

• At boring SB-4, difficult drilling was encountered at 5.5 ft BGS and then the drill rods dropped 3 ft into the boring. Based on a review of historical drawings, it was determined that the drilling may have penetrated the old 48-inch King County storm drain line. The boring was then relocated approximately 20 ft south and difficult drilling was encountered at 4 ft BGS. Drilling at this second location was aborted. The location for soil boring SB-4 was moved to a third location, approximately 10 ft north and 8 ft west of the location identified in the RI/FS Work Plan. The third boring location for SB-4 was completed successfully to 25 ft BGS.

4.1.1.2 Test Pit Location Adjustments

Test pits that required relocation are as follows:

- At test pit TP-104, a pipe that was not shown on drawings or identified by utility locator was encountered at 4.5 ft BGS. The pipe was nicked by the excavator bucket and some water leaked from the pipe. A sample of the water was collected and archived at the analytical laboratory. The pipe was later confirmed to be a transite pressure sewer pipe that is connected to Building 14-02 and Building 14-14. The pipe was repaired and the test pit was extended to the south approximately 4 ft to complete excavation to the groundwater table and collection of soil samples.
- At test pit TP-105, a pipe that was not shown on drawings or identified by utility locator was encountered at 3.5 ft BGS. This pipe was determined to be a hot water pipe connected to Building 14-02. The pipe was not damaged. The test pit was backfilled and a new test pit (TP-105B) was excavated immediately west and approximately 2 ft south of the planned location.
- At test pit TP-106, a concrete slab was encountered at approximately 4.5 ft BGS. The slab was oriented diagonally (northwest-southeast) through the center of the test pit. The total depth of the concrete was not determined, but it was observed that the concrete extended to at least 6.5 ft BGS. A new test pit (TP-106B) was excavated immediately west of the planned location.

4.1.2 SOIL SAMPLE COLLECTION

The sample collection methods used for soil borings, test pits, and the wooden bulkhead grab samples are described below. All soil sampling equipment was decontaminated using a tap water rinse, Alconox wash, and distilled water rinse between samples.

4.1.2.1 Soil Borings

The soil borings were completed using a truck-mounted, hollow-stem auger rig or truck-mounted, direct-push drill rig. A summary of the drilling method used for each borehole is provided in Table 1. Except for three soil boring locations, the depth of the soil borings range from 25 ft to 26 ft BGS to fully characterize fill material in the subsurface at the Site. Three soil borings (MW-13, SB-3, and MW-13B) completed on November 3, 8, and 10, 2011 extended to 18.5 ft, 11ft, and 13 ft BGS, respectively. Further

advancement of the boreholes was prohibited due to obstructions in the subsurface (concrete rubble and rebar). The depth of each soil boring is summarized in Table 1. A record of the soil and groundwater conditions observed at each borehole was recorded and the logs are provided in Appendix C.

In general, at locations where the soil boring was drilled using a hollow-stem auger, soil samples were obtained using a 3.25-inch outside diameter (OD) split-spoon sampler and, at locations where soil borings were drilled using a direct-push method, soil samples were obtained using a closed-piston sampling device with a core sampler. However, at explorations MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-11, MW-13B, SB-3, and SB-4, samples from 2 to 3.5 ft BGS and 5 to 6.5ft BGS were collected using a hand auger instead of a split-spoon sampler. Also, the upper 2 ft of soil and the soil between the two sample depth intervals at each of these locations was removed using an air-knife instead of a hollow-stem auger and split-spoon sampler. The sampling and drilling modifications were made to provide extra assurance that unmarked underground utilities, if present at these locations, were not damaged. The modifications were approved by Ecology.

At soil boring SB-1 and at the soil borings associated with monitoring wells MW-1, MW-2, and MW-3, soil samples were collected from 3 to 4 ft BGS, 5 to 6 ft BGS, and 8 to 9 ft BGS in accordance with the Building 14-01 Work Plan. At each of the other soil boring locations, the planned soil sample depth intervals for laboratory analysis were 2 to 3 ft BGS, 5 to 6 ft BGS, 8 to 9 ft BGS, and 13 to 14 ft BGS, as specified in the RI/FS Work Plan. However, due to the expanded list of analyses required for all soil samples and the lack of sufficient soil volume collected in the sampler to fill the required laboratory-supplied sample jars, modifications to the sampling plan were made after approval by Ecology. Ecology approval was documented in the October 2011 progress report (Landau Associates 2012b). These modifications included the following:

- For the hollow-stem auger soil samples, the depth intervals collected were increased from 1.0 ft to 1.5 ft. At these soil borings, soil samples were generally collected from 2 to 3.5 ft BGS, 5 to 6.5 ft BGS, 8 to 9.5 ft BGS, and 13 to 14.5 ft BGS for laboratory analysis. In some cases, the depth intervals were modified slightly due to sample recovery.
- For direct-push soil samples, a second matching boring was advanced within one foot of the original boring and the soil from the same depth intervals was composited.

At the soil borings not located inside Building 14-01, soil samples were also collected from 3.5 to 5 ft BGS and 6.5 to 8 ft BGS when sufficient soil was available and archived for possible supplementary laboratory analysis. If the 13- to 14.5-ft depth interval was not at least 1 ft below the groundwater table at the time of drilling, the 13- to 14.5-ft depth interval sample was replaced with a sample from a depth interval starting at 1 ft below the groundwater table at the time of drilling. Also, additional samples were collected from the depth interval where field-screening [i.e., visual presence of potential contamination and/or a photoionization detector (PID) measurement greater than 50 parts per million (ppm)], as

described in Section 4.1.3, indicated the likelihood for potential contamination, and from the depth interval below the zone of potential contamination to evaluate the vertical extent of potential impact.

Other changes to planned soil sample collection are described below:

- During drilling at the SB-3 location, an obstruction was encountered at 11 ft BGS that prohibited further advancement of the drilling auger; therefore, the boring could not extend to 25 ft BGS as planned. Also, soil samples could only be collected from the upper 6.5 ft of soil. No soil was retained in the sampler between 6.5 and 11 ft BGS.
- No soil boring was completed at the proposed monitoring well location in the eastern half of Building 14-01; therefore, no soil samples were collected at this location.
- At MW-1, a soil sample was collected by mistake from the 3- to 4-ft depth interval instead of the planned 2- to 3-ft depth interval.

A summary of the samples collected and submitted for laboratory analysis from the soil borings is provided in Table 1.

4.1.2.2 Test Pits

The test pit explorations were excavated prior to the soil borings. The test pits were excavated at or near low tide to reduce the potential for water seepage into the excavation. Each test pit extended to the water table except at test pit TP-109. Loose sand was encountered at TP-109 and the test pit sidewalls began to cave when the test pit was 10 ft deep. Further excavation was not conducted; thus, the test pit did not extend to the groundwater table.

Soil samples were collected from one sidewall at each test pit at 1-ft depth intervals beginning at 2 ft BGS and from the base of the test pit, except at test pits TP-103 and TP-109. Samples representing soil at the base of test pits TP-103 and TP-109 were collected from the base of a sidewall due to the presence of groundwater at the base of test pit TP-103 and due to loose sands and caving sidewalls at test pit TP-109. Except at test pit TP-109, samples collected from the base of the test pits or base of the sidewalls were representative of soil within the capillary fringe zone. Test pit samples collected from 2 to 4 ft BGS were collected by scraping sidewalls with a stainless-steel spoon; samples from below 4 ft were collected from the excavator bucket, with care taken to collect soil that was not in contact with the sides of the bucket.

In accordance with the RI/FS Work Plan, all of the sidewall samples were archived at the laboratory except where field-screening (i.e., visual presence of potential contamination and/or a PID measurement greater than 50 ppm) indicated potential contamination. The only potential contamination observed was at TP-103 where wood and brick debris were observed between 5 and 6 ft BGS. At this test pit, sidewall samples collected from 5 to 6 ft BGS and just below the debris at 6 to 7 ft BGS were submitted for analysis. All of the soil samples representing the capillary fringe were submitted for

laboratory analysis. A summary of the samples collected and submitted for laboratory analysis from the test pits is provided in Table 1.

4.1.2.3 Wooden Bulkhead Sampling

On March 3, 2012, a reconnaissance of the wooden bulkhead located at the southern portion of the Thompson property was conducted. The reconnaissance identified gaps in the bulkhead where erosion could occur. Three soil grab samples were collected from the LDW side of the bulkhead where gaps in the bulkhead allowed collection of soil. The sample locations are shown on Figure 19. Photos of the cracks where the wooden bulkhead soil samples were collected are presented on Figures 20, 21, and 22. Soil samples were collected using procedures outlined in the Upland sampling and analysis plan (SAP) included in the RI/FS Work Plan and submitted for laboratory analysis as described below in Section 4.1.4.

4.1.2.4 General Soil Sample Collection Procedures

At all explorations, soil samples to be submitted for the analysis of VOCs and gasoline-range petroleum hydrocarbons were collected and preserved in accordance with EPA Method 5035 before disturbing the sample. The remaining portion of the selected soil sample interval was placed into a decontaminated stainless-steel bowl and homogenized using a decontaminated stainless-steel spoon. Larger-sized material [gravel or wood fragments greater than 2 millimeters (mm) in diameter] was removed by hand-sorting. The sample was then transferred to the appropriate laboratory-supplied sample containers. All soil sampling equipment was decontaminated using a tap water rinse, Alconox wash, and distilled water rinse between samples.

4.1.3 SOIL SAMPLE FIELD SCREENING

The soil classification of each soil sample collected was evaluated by the Landau Associates' field representative and recorded on a Log of Exploration form (Appendix C), and the sample was field-screened for indications of contamination. Field-screening was conducted by visually inspecting the soil for staining and other evidence of environmental impact, and monitoring soil vapors for VOCs by performing headspace analysis using a PID. Headspace analysis was conducted by placing a representative portion of the soil in a sealable plastic bag, allowing any volatile constituents in the soil to vaporize inside the sealed container for 5 minutes, then inserting the PID tip into the bag to measure total VOCs. Field screening results were recorded on the Log of Exploration form (provided in Appendix C).

4.1.4 SOIL SAMPLE ANALYSIS

Soil samples selected for laboratory analysis were analyzed for the Potential Contaminants of Concern (PCOCs) identified in the RI/FS Work Plan: VOCs; SVOCS; metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. Sample analysis was conducted in accordance with the RI/FS Work Plan and the Building 14-01 Work Plan. Except for the soil samples collected at SB-1, MW-1, MW-2, and MW-3, analytes detected in the soil samples at concentrations below the RL and above the method detection limit (MDL) were reported by the analytical laboratory. Results of soil sample laboratory analysis are discussed in Section 9.1.1.

4.2 GROUNDWATER INVESTIGATION

The groundwater investigation consisted of installing 25 additional monitoring wells; collecting groundwater samples from each of the new monitoring wells, from 5 of the existing monitoring wells, from each of the seven existing piezometers, and from 1 soil boring; laboratory analysis of the groundwater samples; monitoring groundwater levels; collecting seep samples at the western property boundary; decommissioning of 2 existing wells (TH-MW-1 and TH-MW-2); and re-evaluating tidal influences on Site groundwater.

The data gaps identified in the RI/FS Work Plan were filled by the completed groundwater investigation and included: 1) determining groundwater quality north of the King County storm drain, 2) evaluating groundwater quality near the Former Slip 5 Outfall Area, 3) evaluating the source of elevated dissolved arsenic concentrations in the vicinity of monitoring well I-104(s), 4) evaluating groundwater quality in the Former Hydraulic Test Pad Area, 5) providing better distribution of groundwater monitoring locations in the western and southern portions of the Site, 6) conducting extended laboratory analysis of groundwater and seep samples, and 7) evaluating the tidal efficiency anomaly observed in well I-205(s).

4.2.1 INSTALLATION AND CONSTRUCTION OF MONITORING WELLS

In April 2011, three of seven monitoring wells planned for the southern portion of the Site (MW-1 through MW-3) were installed and developed. The three wells were installed inside Building 14-01 and developed in accordance with the Building 14-01 Work Plan (Landau Associates 2011b). A fourth well was planned to be installed inside Building 14-01, but drilling was obstructed by the thickness of the concrete floor slab at the planned location. The location of the well was moved outside of the building near the southern property boundary and is identified as MW-5.

In October and November 2011, Landau Associates installed 22 monitoring wells, including Well MW-5, in accordance with the RI/FS Work Plan. Boreholes for groundwater monitoring wells were

LANDAU ASSOCIATES

drilled using hollow-stem auger drilling equipment. The borings were advanced to approximately 25 ft BGS. Monitoring wells were constructed by a drilling contractor licensed in the state of Washington, in accordance with the *Minimum Standards for Construction and Maintenance of Wells* (Chapter 173-160 WAC). Oversight of drilling and well installation activities was performed by a Landau Associates' environmental professional familiar with environmental sampling and construction of resource protection wells.

The monitoring wells were constructed with 2-inch diameter, flush-threaded, Schedule 40 polyvinyl chloride (PVC) pipe. With the exception of MW-6, MW-12 and MW-17, each well was constructed with a 10-ft screen and screened over a depth of 8 to 18 ft BGS or 10 to 20 ft BGS (wells MW-1, MW-2, and MW-3). Monitoring wells MW-6, MW-12 and MW-17 were constructed with 15-ft screens over a depth of 8 to 23 ft BGS. Depth intervals were modified at the time of construction so that the wells were screened across areas of suspected contamination observed in field screening. The well screens were constructed of a 0.010-inch machine-slotted casing. A filter pack material consisting of prewashed, pre-sized number #2-12 silica sand was placed from the bottom of the well to approximately 2 ft above the top of the screen in all wells except MW-5, MW-6, MW-7, and MW-9, and MW-12, for which 20/40 Colorado sand filter pack was used. A bentonite seal was placed above the filter sand pack material to within about 3 ft of ground surface. Concrete was used to backfill each boring to the subgrade. Each well was completed with a flush-mounted, traffic-rated protective well monument. The monitoring wells were developed after construction to remove formation material from the well borehole and the filter pack prior to groundwater level measurement and sampling using procedures described in the Upland SAP in the RI/FS Work Plan. Monitoring well construction details are presented in Appendix C. Well depths, well elevations, and screen lengths are summarized in Table 2.

4.2.2 MONITORING WELL LOCATIONS

The locations for the new monitoring wells are shown on Figure 23 and are as follows:

- MW-1 through MW-6 and MW-8 were installed in the southern portion of the Site to better determine groundwater flow direction and evaluate groundwater quality.
- MW-7, MW-9, MW-10, MW-19, and MW-20 were installed near the western Site boundary. MW-10 is located downgradient of the Former Hydraulic Test Pad Area.
- MW-11 was installed in the Former Hydraulic Test Pad Area.
- MW-12, MW-13, and MW-17 were installed within the limits of the Former Slip 5 Area.
- MW-14 was installed near the Former Slip 5 Outfall Area.
- MW-15 was installed immediately downgradient of the former paint storage areas on the Isaacson property, and MW-16 was installed approximately 500 ft downgradient of these former paint storage areas.

- MW-18 and MW-21 were installed upgradient (east) of well I-104(s) to evaluate potential sources for the elevated arsenic concentrations detected in groundwater at well I-104(s).
- MW-22 was installed along the northern Site property boundary.
- MW-23 and MW-24 were installed in the area containing stabilized arsenic-contaminated soil.
- MW-25 was installed in the courtyard area of the former Isaacson property.

All of the monitoring wells were installed at the planned locations identified in the Building 14-01 and RI/FS work plans except for well MW-6, as previously described, and monitoring well MW-13. The planned location for MW-13 was on the newly constructed airplane tow path, the location was, therefore, moved 40 ft east and 30 ft north. The new location was on the estimated historical main flow channel, but away from the tow path and is identified as MW-13 on Figure 19. During drilling at the revised location, an obstruction was encountered at 18.5 ft BGS prohibiting further advancement of the drilling auger. The soil boring for well MW-13 was then relocated 5 ft east, but an obstruction was encountered at 11 ft BGS at this location. After consultation with and as approved by Ecology on November 9, 2011, the well was relocated approximately 25 ft northeast of the location identified in the RI/FS Work Plan. The revised location is identified as MW-13B; however, an obstruction was encountered at 13.5 ft BGS and drilling at this location was aborted. Following consultation with and as approved by Ecology on November 14, 2011, monitoring well MW-13 was relocated to the same location as SB-4 (approximately 150 ft northwest of the location identified in the RI/FS Work Plan) and successfully installed at this location. Existing monitoring wells and piezometers included in the RI groundwater monitoring program are also shown on Figure 23.

4.2.3 WELL DEVELOPMENT

In April and November 2011, Landau Associates developed the 25 newly installed monitoring wells. The monitoring wells were developed after construction to remove formation material from the well borehole and the filter pack prior to groundwater level measurement and sampling. Development was achieved by repeatedly surging the well with a surge block and purging the well until the water ran clear, removing at least 5 well casing volumes. Additional details of well development procedures are described in the Upland SAP included as Appendix A of the RI/FS Work Plan.

4.2.4 Monitoring Well Groundwater Sampling

In December 2011, and March, June, and September 2012, Landau Associates conducted groundwater sampling activities. Water levels were measured and groundwater samples were collected from all 25 new monitoring wells, five existing monitoring wells, and seven existing piezometers. During each event, groundwater samples were collected from monitoring wells and piezometers located in the

western portion of the Site within 1 hour before and 1 hour after a 1.0 or lower low tide, at a time when groundwater should be flowing from the Site to the LDW, as shown in Table 3. These wells include I-104(s), I-203(s), I-205(s), I-206(s), MW-7, MW-9, MW-10, MW-11, MW-17, MW-18, MW-19, MW-20, MW-21, and MW-23 and piezometers PZ-7 and PZ-8; these wells are identified on Figure 23.

Procedures for collecting groundwater samples from new and existing monitoring wells and piezometers are described in the Upland SAP included in the RI/FS Work Plan. The samples were submitted for laboratory analysis as described in Section 4.2.7.

4.2.5 SOIL BORING GROUNDWATER GRAB SAMPLING

On November 14, 2011, Landau Associates collected a grab groundwater sample from soil boring SB-8 located near the Former Slip 5 Outfall Area (Figures 19 and 23). The groundwater sample was collected using procedures described in the Upland SAP included in the RI/FS Work Plan and analyzed for compounds described in Section 4.2.7. Soil boring groundwater grab sample results are discussed in Section 8.1.3.2.

4.2.6 SEEP SAMPLING

A groundwater sample was collected from a seep located at the LDW shoreline on March 15, June 20, and September 25, 2012 and submitted for laboratory analysis. A seep sample was not collected during the December 2011 groundwater sampling event due to insufficient low tides during daylight hours. A reconnaissance of the shoreline on March 12, 2012 did not identify other seeps along the shoreline. The seep sample location is shown on Figure 23.

The seep samples were submitted for laboratory analyses as described below in Section 4.2.7. Seep sampling analytical results are discussed in Section 8.1.3.2.

4.2.7 GROUNDWATER LABORATORY ANALYSIS

All groundwater samples, including the grab sample collected from soil boring SB-8 and seep samples, were analyzed for the PCOCs identified in the RI/FS Work Plan: VOCs; SVOCS; total and dissolved metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons.

Groundwater samples collected at each new and existing monitoring well were also analyzed for sulfate and nitrate, and ferrous iron was measured by using a field test kit to assist in evaluating the extent to which concentrations of arsenic in groundwater are the result of reducing groundwater conditions. Sample analysis was conducted in accordance with the RI/FS Work Plan and the Building 14-01 Work

Plan. Analytes detected in the groundwater samples at concentrations below the RL and above the MDL were reported. Groundwater analytical results are discussed in Section 8.1.3.

4.2.8 FIELD PARAMETERS

Field parameters, including pH, temperature, specific conductance, DO, and turbidity, were measured during groundwater sample collection using a flow cell and recorded on a sample collection form. After measurements stabilized, the average measurement for each parameter was calculated. The measurements are discussed in Section 8.1.4.

4.2.9 GROUNDWATER FLOW EVALUATION

To evaluate groundwater flow direction, depth to groundwater was measured at each new well, five existing wells, and each piezometer during each sampling event. Also, a tidal study was conducted to evaluate tidal influence on groundwater flow and to calculate hydraulic conductivity. Procedures for monitoring groundwater flow and evaluating tidal influence are discussed below and in the Upland SAP included in the RI/FS Work Plan.

4.2.9.1 Monitoring Well Surveying

The location of each new and existing monitoring well and each piezometer was surveyed using Differential Global Positioning System (DGPS) equipment and by a professional land surveyor to facilitate accurate placement of these features on project figures and drawings, as well as for submittal to Ecology. Monitoring well reference elevations at both new and existing monitoring wells were surveyed by a professional licensed surveyor to the nearest 0.01 ft for use in evaluating groundwater and lithologic unit elevations. Both the top of monitoring well casing elevation and ground surface elevation adjacent to the monitoring well were obtained. The well survey data are summarized in Table 2.

4.2.9.2 Water level Measurements

Water level measurements were obtained at each monitoring well and piezometer for each monitoring event prior to purging and sample collection. Water levels were recorded to the nearest 0.01 ft and were measured from the top of the well casing. Due to access limitations, surface water levels in the LDW were not measured. The water level measurements were used to develop groundwater elevation contour maps as discussed in Section 8.1.2.

4.2.9.3 Tidal Study

Pressure transducers were installed in six wells and in a PVC pipe attached to the existing dock in Slip 6 on the LDW. The monitoring wells identified in the RI/FS Work Plan for the study were selected

LANDAU ASSOCIATES

to provide a general understanding of the tidal influence on groundwater across the western portion of the Site. These locations included MW-7, MW-10, MW-20, I-205(s), PZ-4, and PZ-6. However, due to standing water in the monuments at piezometers PZ-4 and PZ-6, water levels at these piezometers were not included in the tidal study. As agreed by Ecology (Ecology 2012a), monitoring wells MW-8 and MW-12 were included in the study instead.

The pressure transducer in the PVC pipe in the LDW recorded the actual tide elevations. A barometer was also installed in MW-20, above the highest groundwater level, to correct pressure transducer data for changing barometric pressure.

Pressure transducers and the barometer were installed on Tuesday, January 24, 2012. Groundwater levels and approximate pressure transducer elevations were recorded at the time of installation. Data was collected over a 3-day period, from Tuesday, January 24 to Friday, January 27, 2012. A mixed semidiurnal tidal pattern resulted in the once-daily occurrence of a lower low tide during the study. Additional groundwater elevations were manually recorded in the field on January 24, 25, and 26, 2012, and when the pressure transducers were removed and data was downloaded.

Results of the tidal study are discussed in Section 8.1.2.3.

4.3 WELL DECOMMISSIONING

On November 15 2011, two wells (TH-MW-1 and TH-MW-2) located on the western Site boundary, as shown on Figure 12, were decommissioned. Well decommissioning was conducted in accordance with the requirements set forth in WAC 173-160-420 and WAC 173-160-460. Prior to the start of decommissioning activities, a Notice of Intent to Decommission Wells and an as-built well log for each well was submitted to Ecology at least 72 hours prior to the start of decommissioning activities. The wells were decommissioned by backfilling the well screens, casings, and filter pack with bentonite grout. Well monuments at each well were removed and the ground surface was repaired with concrete pavement to match the surrounding grade. A Water Well Report accompanied by as-built well decommissioning logs and a copy of the original Resource Protection Well Report form were subsequently submitted to Ecology.

4.4 SOIL VAPOR INVESTIGATION

In April 2011, five vapor samples, (SV-1 through SV-5) were collected beneath the Building 14-01 floor slab. Samples were collected at the sample locations identified in the Building 14-01 Work Plan, except sample SV-1, which was moved approximately 15 ft west due to the presence of underground utilities at the proposed location. All of the samples were located in the southwest corner of the building, as shown on Figure 24. The vapor samples were collected in

accordance with the Building 14-01 Work Plan with the following exception: 6-liter SUMMA canisters were used to collect samples instead of the planned 1-liter canisters. Six-liter canisters were required to provide the necessary sample volume to achieve the target RLs specified in the Building 14-01 Work Plan.

The vapor samples were analyzed for VOCs. Based on the results of the soil vapor samples (discussed in Section 8.3), no indoor air samples were deemed necessary and no indoor air samples were collected.

4.5 STORM DRAIN SYSTEM INVESTIGATION

The storm drain investigation was conducted to fill the following data gaps: 1) information on the Site storm drain system solids that have accumulated since the last cleaning, 2) characterization of stormwater discharged from Outfalls A and B for Site PCOCs, 3) information on the source of PCOCs in storm drain system solids, if found, and 4) information on the full length of the 12-inch-diameter corrugated pipe located south of Building 14-01.

4.5.1 STORM DRAIN SYSTEM SOLIDS

In September 2011, samples of solids present in 68 CBs, 2 oil/water separators, 2 Vortechs vaults, and 1 manhole connected to the Site's storm drain system were collected and analyzed for the Site PCOCs: VOCs; SVOCS; metals (antimony, arsenic, barium beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. In addition to the PCOCs, the storm drain solids were analyzed for TOC and solids from three locations were analyzed for dioxins/furans. Insufficient solids were present in 15 CBs and 18 storm drain system manholes; therefore, no samples were collected at these locations. A total of 28 discrete solids samples and eight composite solids samples were submitted for laboratory analysis. The locations where storm drain solids samples were collected are shown on Figure 25.

The results of the investigation were compared to SMS criteria to determine the potential for impacts to LDW sediments, in accordance with the RI/FS Work Plan. Although the SMS criteria are not applicable to solids contained within storm drain system structures, these criteria provided a conservative approach for evaluation of potential sources to the sediment offshore of the Site. Because the results of the investigation exceeded SMS criteria, in accordance with the RI/FS Work Plan, the source of the contaminants was investigated, as described in Section 4.5.3. Analytical results of storm drain system solids are discussed in Section 8.1.6.2.

4.5.2 STORMWATER

On March 14 and April 20, 2012, grab samples of stormwater discharged from Outfalls A and B were collected during a storm event. In accordance with the RI/FS Work Plan, samples representative of discharge at Outfall B were collected at manhole 80, shown on Figure 25. A sample representative of discharge at Outfall A was collected from MH-32 instead of from manhole MH 40 or MH 86, as indicated in the RI/FS Work Plan. The sample location was revised and the revision approved by Ecology (Ecology 2012b) because detailed information received during the RI shows MH-40 is part of the King County storm drain line and a stormwater sample at this location would not represent stormwater from Outfall A. The detailed information also indicates that stormwater at MH-86 flows into the oil/water separator and that MH-32 is downgradient of the oil/water separator.

All of the samples were collected when river water was absent from the storm drain pipes and flow direction at the sample locations was west toward the river. The stormwater samples were analyzed for the Site PCOCs: VOCs; SVOCS; metals (antimony, arsenic, barium beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. Analytes detected in the solids samples at concentrations below the RL and above the MDL were reported. Stormwater analytical results are discussed in Section 8.1.6.1.

4.5.3 SOURCE MATERIAL SAMPLING

The RI/FS Work Plan specifies collection of samples of building materials or other source material if exceedances of the SMS criteria are found in the storm drain system solids samples and analysis of the source material samples for those constituents in the storm drain solids that exceed the SMS criteria. A comparison of the storm drain solids data to the SMS indicated metals, PCBs, and SVOCs, primarily phthalates and benzyl alcohol, were present in some solids at concentrations exceeding the SMS criteria; therefore, a SAP for investigating potential source materials was prepared by Landau Associates and submitted to Ecology (provided in Appendix D). Ecology approved this SAP. The SAP identifies planned media to be sampled, the number of samples to be collected, the analyses to be performed, and the areas where the samples were to be collected. The media identified in the SAP include surface debris, paint chips, and concrete joint material (CJM). Also, at locations where these media were not present, storm drain system solids were to be collected from the structure where contaminants were previously present in the solids at concentrations exceeding the SMS criteria. Immediately following collection of the 36 storm drain solids in September 2011, solids present in the storm drain structures were removed; therefore, the storm drain solids sampled for source material evaluation represent solids collected in the structures since September 2011.

In April 2012, 29 source material samples were collected, including 16 surface debris samples, 6 paint chip samples, 2 concrete joint material samples, and 5 CB solids samples. Surface debris, paint chips, and storm drain structure solids were analyzed for SVOCs, PAHs, PCBs, and metals. Concrete joint material was analyzed for SVOCs, PAHs, and PCBs. Although the SAP did not include analysis for SVOCs and PAHs, these analyses were included at the request of Ecology. Source materials were sampled in eight general areas listed below:

- Building 14-01 South Area
- Building 14-01 East Area
- Building 14-01 North Area
- Building 14-01 West Area
- Building 14-13 Area
- Building 14-02/14-03 Area
- Isaacson East Area
- Isaacson West Area.

These general areas and source material sampling locations are shown on Figure 26.

Each of the general areas listed above was inspected by field personnel prior to sampling to identify potential source materials and sampling locations. The source material sampling was conducted in accordance with the RI/FS Work Plan (Landau Associates 2011a) and the *Source Material Sampling and Analysis Plan* Technical Memorandum (provided in Appendix D) with the following exceptions:

- Due to the absence of surface debris south of the Building 14-01, no surface debris could be collected as identified in the *Source Material Sampling and Analysis Plan* Technical Memorandum. Solids were collected from CBs instead.
- Due to the absence of peeling paint on the exterior north wall of Building 14-02/14-03, no exterior paint chips were collected as identified in the *Source Material Sampling and Analysis Plan* Technical Memorandum.
- In addition to source material samples identified in the *Source Material Sampling and Analysis Plan* Technical Memorandum, a sample was collected from paint peeling from a conex box located on the north side of Building 14-02/14-03.

Source material sample descriptions and detailed sample collection procedures for each of the sampling media are described in the *Storm Drain System Evaluation* Technical Memorandum and the *Source Material Sampling and Analysis Plan* Technical Memorandum that are provided in Appendix D of this report.

In addition to the source material samples collected in April 2012, two samples (SBW091710001 and SBW091710002) were collected of Galbestos exterior siding from Building 14-01 on September 17, 2010, prior to storm drain system solids sampling. Sample SBW091710001was submitted to the Boeing

Environmental Analysis laboratory for PCB analysis. Sample SBW091710002 was submitted to NVL Laboratories in Seattle, Washington for TCLP metals analysis.

A summary of the source material samples collected is presented in Table 4. Results of the source material sampling are discussed in Section 8.1.6.3.

4.5.4 12-INCH METAL CORRUGATED PIPE

On February 10, 2012, a video survey of the remaining portion of the 12-inch metal corrugated pipe located south of Building 14-01 that was not surveyed in 2008 was conducted. Information regarding the 2008 video tape investigation is provided in Section 3.3.2. The electrical plug blocking the eastern portion of the pipe in 2008 was bypassed using a smaller camera. Video survey of the full-length of the pipe was completed in 2012 (a DVD of the 2012 video survey is included in Appendix O) and results of the video survey are discussed in Section 8.1.7.1. The location of the 12-inch metal corrugated pipe relative to the parcel boundary and surrounding area is provided on Figure 18.

4.5.5 STORM DRAIN INSPECTION AND VIDEO SURVEY

In late September and early October 2012, all accessible lines and structures (CBs, manholes, oil/water separators, and Vortex vaults) of the Boeing storm drain system were cleaned and a video inspection conducted. Storm drain cleaning and video inspection work was performed by Bravo Environmental of Kenmore, Washington. Video inspection of the storm drain lines was performed to confirm that jet-cleaning activities had adequately removed solids and debris from the storm drain lines, and to inspect for cracks, fractures, or breaks in the storm drain line segments that could potentially allow intrusion or infiltration of soil or groundwater. Placement of plugs at the discharge pipes of the oil/water separators prevented discharge of jetting water to the LDW. All of the solids and water generated during the cleaning were processed at the North Boeing Field Decant Treatment Facility.

The storm drain inspection also included verification of connection of four CBs (CB-G, CB-H, CB-I, and CB-J) present on the eastern portion of the Isaacson property and one CB (CB-90B) present on the eastern portion of the Thompson property to a storm drain line. The storm drain system, and those segments that were video-inspected, are shown on Figure 27. Results of the video survey are discussed in Section 8.1.7.2.

4.6 SEDIMENT INVESTIGATION

The sediment investigation was conducted in accordance with the RI/FS Work Plan (Landau Associates 2011a), which was approved by Ecology in September 2011 (Ecology 2011a). A sediment investigation sample and analysis plan (Sediment SAP) was developed and included as Appendix B of the Work Plan (Landau Associates 2011a).

4.6.1 SAMPLE COLLECTION

Sediments were collected in January and February 2012 using the procedures specified in the Sediment SAP. Sampling locations were determined using a DGPS, with coordinates in the Washington State Plane Coordinate System (SPCS), North Zone, referenced to the North American Datum 1983 (NAD 83), survey feet (Table 5). The accuracy of the DGPS is approximately ±1 m. The operation of the DGPS unit was checked each day before work and at the conclusion of each day's operation by comparing the coordinates with a known reference point (Appendix E).

Recorded water depths during sampling were determined using either a lead line (at shallow stations) or a depth meter deployed by a diver (at deeper stations). Diver-obtained water depths are likely to be more accurate than lead-line measurements of water depth at the deeper sampling stations during periods of higher current flow.

Horizontal coordinates were converted from SPCS to latitude and longitude (NAD 83) using Corpscon Version 6.0.1. Estimated mudline elevations at the time of sampling were calculated from the recorded water depths and the predicted tidal elevations from published National Oceanic and Atmospheric Administration (NOAA) tide tables with correction for the Duwamish Waterway. Higher than normal river discharge rates during the sediment sampling field work may have resulted in the estimated mudline elevations being biased high.

All field forms from the collection of sediment are provided in Appendix E.

4.6.2 SEDIMENT IMPACT CORES

Successful sediment core samples were collected at the 15 proposed stations (Figure 28). The cores at each location were driven to refusal. The full penetration depth proposed in the RI/FS work plan was 15 ft below mudline, but that was achieved at only one location. Sediments were collected from 11 to 12 ft below mudline (i.e., 75 percent of the proposed sampling depth) at three locations. Additional sampling attempts were made to recover deeper samples at six locations. Duplicate cores were collected at two stations, SD-505 and SD-512 (duplicates were identified as SD-516 and SD-517, respectively).

Core penetration into the deeper sediments was difficult due to the dense nature of the deeper sand deposits. In addition, under some conditions, the lack of sediment cohesion allowed the deeper sandy sediments (characterized by a low percentage of silts) to be washed out past the core catcher.

4.6.3 SURFACE SEDIMENT GRAB SAMPLES

Acceptable surface (0 to 10 cm) sediment grab samples were collected at the 15 proposed grab sample locations using a 0.2 square meters (m²) stainless-steel van Veen grab sampler (Figure 28).

Duplicate grab samples were collected at two stations, SD-505G and SD-512G (duplicates were identified as SD-516G and SD-517G, respectively).

4.6.4 SEDIMENT SAMPLE ANALYSIS

Sample material from each grab sample or core segment scheduled for analysis was first homogenized before sample aliquots were removed for analysis. TOC was analyzed using the EPA Methods 9060 and Plumb 1981, as described in Analytical Resources, Inc. (ARI), Standard Operating Procedure 602S. Arsenic was analyzed using EPA Method 200.8. The remaining SMS metals (with the exception of mercury) were analyzed using EPA Method 6010. Mercury was analyzed using EPA Method 7471A. The organic compounds were analyzed using EPA Method 8270D. Dioxins and furans were analyzed using EPA Method 1613B. Several compounds were also quantified using a Selective Ion Monitoring (SIM) method to achieve lower RLs. Total low molecular weight PAH (LPAH) and high molecular weight PAH (HPAH) concentrations were summed using the SMS rules.

Samples were analyzed for PCB Aroclors according to EPA Method 8082. Total PCBs concentrations were summed from individual Aroclor concentrations using the SMS rules (i.e., the sum of the detected Aroclor concentrations or if all of the Aroclors were not detected, then the highest RL for any individual Aroclor was used as the RL for the total PCBs).

4.7 QUALITY ASSURANCE (QA) SAMPLES

In accordance with the RI/FS Work Plan, blind field duplicate samples were collected for groundwater and LDW sediment samples and matrix spike samples were collected for soil, groundwater, LDW sediment, and stormwater system solids samples. Blind field duplicate groundwater samples were collected at a frequency of one per 20 groundwater samples per sampling event for all analyses. Blind field duplicate sediment samples were collected at a frequency of at least one per 10 sediment samples. Matrix spike samples were collected at a rate of 1 per 20 samples. Field trip blanks accompanied samples collected for the analysis of VOCs and gasoline-range petroleum hydrocarbons during transportation to and from the field and were analyzed for VOCs and gasoline-range petroleum hydrocarbons.

5.0 CONSTRUCTION-RELATED SAMPLING ACTIVITIES

In August 2010, Boeing began Building 14-01 modification construction activities to accommodate Boeing's P-8 program operations. These activities included installation of underground utilities in Building 14-01, relocation of CBs east of Building 14-01, removal of the former loading dock and an AST west of Building 14-01, and construction of a new airplane towpath. Landau Associates assisted in documenting environmental conditions related to Building 14-01 construction activities that were not related to the Agreed Order. The following provides a summary of construction-related sampling activities. Laboratory analytical results of construction sampling activities are discussed in Section 8.0.

5.1 EXCAVATION SOIL SAMPLING

Construction activities associated with Building 14-01 modifications included several excavations in and around the building footprint from which soil samples were collected and submitted to ARI laboratory for analysis. The construction-related soil samples that were collected are summarized below and in Table 1; the locations of the soil samples are shown on Figure 19 and samples collected inside Building 14-01 are also shown on Figure 24:

- From September 2 through 7, 2010, six soil samples were collected from an excavation associated with the relocation of a hotbox located east of Building 14-01. Three of the samples (IT-HBE-1A-1, IT-HBE-2-1, and IT-HBE-3-1) were collected from a depth interval of 0 to 1 ft BGS. Samples IT-HBE-1A(4.5-5.5) and IT-HBE-3(4.5-5.5) were collected from the 4.5- to 5.5-ft depth interval and sample IT-HBE-2(4.0-5.0) was collected from the 4.0- to 5.0-ft depth interval. All of the samples were submitted to ARI laboratory for analysis of VOCs, SVOCs, PCBs, metals, and TCLP metals.
- On September 3, 2010, a sample was collected from a small soil stockpile located east of Building 14-01. The stockpiled soil was excavated from a small, shallow hole associated with construction activities. The soil sample (IT-HBE-SS1) was submitted to ARI laboratory for analysis of VOCs, SVOCs, PCBs, metals, and TCLP metals.
- On September 15, 2010, six soil samples were collected from excavations associated with reactivation of a CB located east of Building 14-01 (excavation locations are shown on Figure 19). Three of the soil samples [IT-EXT-1(0-1), IT-EXT-2(0-1), IT-EXT-3(0-1)], were collected from a depth interval of 0 to 1 ft BGS. Samples IT-EXT-2(3-4) and IT-EXT-3(3-4) were collected from the 3.0- to 4.0-ft depth interval and sample IT-EXT-1(4-5) was collected from the 4.0- to 5.0-ft depth interval. All of the samples were submitted to ARI laboratory for analysis of VOCs, SVOCs, PCBs, metals, and TCLP metals.
- In May 2011, four trenches, each approximately 47.5 ft in length, 4 to 6.5 ft wide, and 3 ft deep, were excavated inside Building 14-01 as part of construction activities related to building redevelopment. These trenches are identified by the construction contractor as trenches 2 through 5. Two soil samples were collected from the base of each excavation (one from the north end and one from the south end) and submitted for laboratory analysis in accordance with the SAP approved by Ecology via e-mail on April 22, 2011 (Ecology

LANDAU ASSOCIATES

2011c). The soil samples were labeled: IT-Bldg1401-Trench-2N, IT-Bldg1401-Trench-2S, IT-Bldg1401-Trench-3N, IT-Bldg1401-Trench-3N, IT-Bldg1401-Trench-4N, IT-Bldg1401-Trench-4S, ITBldg1401-Trench-5N, and IT-Bldg1401-Trench-5S. An additional excavation, approximately 80 ft in length, 4 ft wide, and 2 ft deep, was completed in the northern portion of Building 14-01, in an area currently used as a cafeteria. The cafeteria is named Outtakes and, therefore, the excavation was referred to as the Outtakes excavation. A plan for collecting soil samples from the excavation for laboratory analysis was submitted to Ecology via e-mail on May 9, 2011 (Landau Associates 2011c). Ecology approved the plan via e-mail on May 13, 2011. In accordance with the plan, four soil samples were collected from the base of the excavation at the locations shown on Figure 19. The samples were labeled: IT-Bldg1401-OuttakesExc-1(3.5), IT-Bldg1401-OuttakesExc-2(3.7), IT-Bldg1401-OuttakesExc-3(2.9), and IT-Bldg1401-OuttakesExc-4(3.05).

- In June 2011, 16 excavations ranging in size from 6 ft x 6 ft to about 12 ft x 12 ft were excavated inside the southern portion of the building where footings to support new building columns were to be installed; the approximate locations are shown on Figure 24. A plan for collecting 5 soil samples (a sidewall sample from one excavation and a bottom sample from each of the 4 excavations with depths of at least 3.5 ft) was submitted to Ecology via email on June 9, 2011 (Boeing 2011a) and approved by Ecology on June 21, 2011 (Ecology 2011d). Soil samples were collected in general accordance with the SAP with the following changes:
 - No soil samples were collected from the base of excavations # 4, #13, and #16 as planned because the final depths of these excavations were less than 2 ft BGS. Instead, soil samples were collected from the base of excavations #3, #14, and #15, where the final excavation depths were 4 ft BGS. No excavation sidewall sample was collected from excavation #13 as planned because the excavation was less than 2 ft BGS. Instead, sidewall samples were collected from a depth of 4.0 ft BGS at excavations #1 and #5.
 - Soil samples were collected from 6.0 ft BGS at excavations #1 and #5 where an asphalt surface was encountered at 7.0 ft BGS. The asphalt surface was also encountered at 7.0 ft BGS at excavation #9. At each of these three excavations, the asphalt was broken up in place and removed; therefore, the final depth of each of these three excavations was 7.5 ft BGS. A soil sample was collected from below the asphalt at 7.5 ft BGS at excavation #1.
 - No soil sample was collected from the base of excavation #11 as planned, but, instead, was collected from the base of excavation #10 for better spatial distribution of the samples.
 - A soil sample was collected from excavation #8 for better spatial distribution of the samples.
 - The depth of each of the 16 excavations is shown on Figure 24. All of the soil samples were submitted to ARI laboratory for analysis in accordance with the SAP.
- In July 2011, 11 soil samples were collected from areas where construction activities required soil excavation. These areas were located west and northwest of Building 14-01. The samples were identified as:

IT-TOWPATHEXC1-B(.8)	IT-TOWPATHEXC5-B(.7)	IT-TOWPATHEXC9-B(.7)
IT-TOWPATHEXC2-B(.7)	IT-TOWPATHEXC6-B(.7)	IT-TOWPATHEXC10-B(.7)
IT-TOWPATHEXC3-B(.7)	IT-TOWPATHEXC7-B(.7)	IT-TOWPATHEXC11-B(.7)
IT-TOWPATHEXC4-B(.7)	IT-TOWPATHEXC8-B(.7)	

- On July 26, 2011, one soil sample was collected from an area northwest of Building 14-14 where construction activities required additional soil excavation. This sample was collected from the base of the additional excavation and identified as IT-TOWPATH-EXC12-B(2.7)-110726. These samples were collected and submitted to ARI laboratory for analysis in accordance with the SAP submitted to Ecology on June 29, 2011 (Boeing 2011b) and approved by Ecology on July 11, 2011 (Ecology 2011e).
- In July 2011, four soil samples were collected from a utility trench related to construction activities and located south of Building 14-11. The soil samples were identified as IT-Bldg14-11-Exc1-B(2.1)-110728, IT-Bldg14-11-Exc2-B(2.5)-110728, IT-Bldg14-11-Exc3-B(3.0)-110728, and IT-Bldg14-11-Exc4-B(2.4)-110728. The samples were submitted to ARI laboratory for analysis consistent with previous construction-related SAPs submitted to and approved by Ecology.
- In August 2011, one soil sample was collected from an area northeast of Building 14-01 where construction activities required soil excavation. This sample was collected from the base of the excavation and identified as IT-TowpathExc13(1.3)110802. The sample was submitted to ARI laboratory for analysis consistent with previous construction-related SAPs submitted to and approved by Ecology.
- In August 2011, four soil samples were collected from two areas north of Building 14-01 where construction activities required soil excavation. The excavations were related to the removal of two post-indicator valves (PIVs). Samples were collected from the sidewall and the base of each excavation and were identified as IT-PIVEXC1-B(4.2)-110808, IT-PIVEXC1-SW(2.1)-110808, IT-PIVEXC2-SW(2.5)-110809, and IT-PIVEXC2-B(5.0)-110809. The samples were submitted to ARI laboratory for analysis consistent with previous construction-related SAPs submitted to and approved by Ecology.
- In August 2011, two soil sample were collected from the area of the former guard shack (Building 14-11) where construction activities required demolition of and excavation below the building. One sample was collected directly beneath the location where a sample of CJM was previously collected and another sample was collected from the base of the excavation. The samples were identified as IT-BLDG14-11-SURF-1108 and IT-BLDG14-11EXC5-B(.5)1108. The samples were collected and submitted to ARI laboratory for analysis in accordance with the SAP submitted to Ecology on June 29, 2011 (Boeing 2011b) and approved by Ecology on July 11, 2011 (Ecology 2011e).

5.2 CONCRETE AND CONCRETE JOINT MATERIAL SAMPLING

During Building 14-01 modification construction activities, several samples of concrete and CJM were collected and submitted to ARI laboratory for chemical analysis. The sample locations are shown on Figure 26:

- A sample, AXP054211-001, of the CJM located west of Building 14-01 was collected on May 24, 2011 and analyzed for PCBs.
- Six samples of the CJM located west and north of Building 14-01 and in the area of Building 14-11 (formerly used as a guard shack) were collected on June 6, 2011. The samples were identified as CJM-1 through CJM-6 and were analyzed for PCBS. The samples were also analyzed for PAHs for disposal characterization purposes.

• Six samples of concrete were collected on June 27, 2011 from areas or near areas where concrete was removed as part of the Building 14-01 construction activities. The samples were identified as CON-1 through CON-6. One of the concrete samples (CON-6) was collected adjacent to a CJM sample located in the Building 14-11 area (CJM-5). All of the samples were submitted to ARI laboratory for PCB analysis.

5.3 BUILDING MATERIAL SAMPLING

During Building 14-01 modification construction activities, samples of various building materials were collected as follows:

- In July 2010, eight samples of metals-based paint were collected from various locations on the outside of Building 14-01 and analyzed for metals.
- In September 2011, new roofing material was being installed over the existing roof of Building 14-01. One sample (IT-RoofMatBldg1401-110921) of the existing roof material was collected prior to placement of the new roofing material and archived at ARI laboratory. The sample has not been and is not planned to be analyzed.

6.0 PORT PROPERTY INVESTIGATION

In August 2012, an investigation was conducted on the Port property located immediately adjacent to the Site (Figures 19 and 23, Figure F-1 in Appendix F). The investigation was conducted separately from the Site RI, although the sample locations and results are included on RI figures. The purpose of the investigation was to determine if contaminants were present in soil or groundwater on the Port property; therefore, the scope of the investigation was limited to four explorations located on the eastern edge of the Port property, collection of soil and groundwater samples from each boring, and analysis of the samples for metals. A work plan for conducting the investigation was prepared by Landau Associates (Landau Associates 2012a) and approved by Ecology.

The four explorations consisted of soil borings (PS-SB-1 through PS-SB-4) advanced using a truck-mounted direct-push drill rig. Soil sampling locations are shown on Figure 19. Each boring extended below the groundwater table (generally encountered between 13 and 15 ft BGS) to a depth of 20 ft BGS; however, at soil boring PS-SB-1, the boring was discontinued at 15 ft BGS due to refusal. A second borehole, PS-SB-1a, was advanced approximately 2 ft south of PS-SB-1. Four soil samples were collected from each borehole from the following depth intervals: 2 to 3 ft BGS, 5 to 6 ft BGS, 8 to 9 ft BGS, and 13 to 14 ft BGS, and submitted for laboratory analysis, except at soil boring PS-SB-2 where a sample was collected from a depth interval of 7.5 to 8.5 ft BGS instead of from 8 to 9 ft BGS.

One groundwater sample was collected from each borehole (PS-SB-1a, PS-SB-2, PS-SB-3, and PS-SB-4). Groundwater sample locations are shown on Figure 23 with all RI groundwater monitoring locations. The groundwater samples were collected from temporary well points installed in each borehole. The temporary well points consisted of a 4-ft-long, wire-wrapped, stainless-steel screen (0.010-inch slot size) with a retractable protective steel sheath. Low-flow purging was performed for 10 minutes or until the purge water was clear, using a peristaltic pump. During purging, pH, conductivity, and temperature were measured using a flow-through cell and recorded on a field sample collection form. Groundwater samples were collected directly into the appropriate sample containers using disposable polyethylene tubing and a peristaltic pump. Groundwater samples for dissolved arsenic analyses were collected last and were field-filtered through a 0.45 micron, in-line disposable filter. Following collection of the groundwater samples, the temporary well point was removed and the soil boring was backfilled with bentonite chips.

The soil and groundwater samples were analyzed for priority pollutant metals (antimony, arsenic, beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc) and barium. The groundwater samples were analyzed for both the total and dissolved fractions of these metals.

A figure showing the sample locations, soil boring logs, and tables summarizing the analytical results are provided in Appendix F. Soil and groundwater results are also included on relevant concentration range figures (Figures 29, 45 through 64).

7.0 PRELIMINARY CLEANUPLEVELS PCULS

Groundwater, soil, and air preliminary cleanup levels (pCULs) and soil vapor screening levels for all of the constituents detected in these media are presented in Table 6 (groundwater and soil) and Table 7 (air and sub-slab soil vapor). The bases for the groundwater and soil pCULs are identified in Table G-16. The air pCULs are based on MTCA Method B or Plant 2 TMCLs as indicated in Table 6. The vapor attenuation factors used to calculate soil vapor screening levels from the air pCULs are also presented in Table 6. Sediment pCULs are presented in Table 8 and are based on SMS SCO and the sediment PRGs presented in the Proposed Plan for the LDW Superfund Site (EPA 2013).

The RI/FS Work Plan (Landau Associates 2011a) identifies preliminary screening levels that were used in the RI/FS Work Plan to screen existing data and to evaluate proposed MDLs and RLs for analytical data collected during the RI. These preliminary screening levels were not adjusted as allowed under MTCA [WAC 173-340-705(7)(c) and WAC 173-340-740(5)(c)] to be no less than the practical quantitation limits (PQLs) and natural background; that adjustment was to be done in the RI. Further adjustments to the preliminary screening levels, based on identification of appropriate receptors and exposure pathways, were also planned for the RI.

Some of the groundwater and soil pCULs included in this RI are based on the Target Media Cleanup Levels (TMCLs) for the Boeing Plant 2 facility (Plant 2). Plant 2 is located on the east bank of the LDW just north of the Jorgenson site and is a treatment, storage, and disposal (TSD) facility subject to RCRA regulation and permitting, which includes corrective action. Other groundwater and soil pCULs are calculated in accordance with MTCA Method B or are based on pCULs at other nearby sites, as requested by Ecology to provide consistency for various sites along the LDW. Table G-1 in Appendix G identifies the bases for groundwater and soil pCULs.

The Plant 2 TMCLs were developed consistent with RCRA, including EPA's Regional Screening Levels; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) *Risk Assessment Guidance for Superfund* (EPA 1989); *Framework for Selecting and Using Tribal Fish and Shellfish Consumption Rates for Risk-Based Decision Making at CERCLA and RCRA Cleanup Sites in Puget Sound and the Strait of Georgia* (EPA 2007); and MTCA regulations. The process used to develop the TMCLs is documented in the May 26, 2011 Boeing Plant 2 Target Media Cleanup Levels Technical Memorandum prepared by Boeing (Boeing 2011c). The TMCLs were approved by EPA on May 31, 2011. Several TMCLs were adjusted by EPA in early winter 2013 to update toxicity factors that were revised in 2011 and 2012 and to correct a few related issues (the barium bioconcentration factor, a calculation error for vinyl chloride, etc.). Appendix H includes the May 26, 2011 TMCL Technical Memorandum; the May 31, 2011 email indicating EPA approval of the May 26, 2011 TMCLs; and a

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

February 14, 2013 Memorandum from Floyd|Snider documenting the revisions to the 2011 TMCLs. Although written approval for the 2013 revisions has not yet been received, EPA has verbally approved the changes. These revisions have been included in the development of the pCUL.

For some constituents detected in Site groundwater or soil for which no Plant 2 TMCL was developed, a pCUL was developed using the same procedure used for TMCL development. Spreadsheets summarizing the development are provided in Appendix G. Groundwater and soil pCULs for other constituents were identified by Ecology in their comments on the draft RI report (Ecology 2013) for use in the RI or were agreed to during subsequent discussions with Ecology.

The pCULs for some metals in soil and groundwater have been adjusted for natural background, as appropriate. The pCULs have not been adjusted to be no less than PQLs as is provided for in MTCA. pCULs for some constituents including PCBs, most cPAHs, and a few other constituents are less than PQLs and RLs. PCULs will be adjusted after the RI to be no less than PQLs. Additional adjustments based on potential receptors, migration pathways, or exposure pathways may also be made at that time.

7.1 GROUNDWATER

Groundwater pCULs protective of human health and the environment were developed for all constituents detected in groundwater and are presented in Table 6. pCULs are based on protection of groundwater using the Plant 2 TMCLs, MTCA Method B, or modified Method B cleanup levels identified by Ecology for use at the Site. Under MTCA (WAC 173-340-720), groundwater cleanup levels are to be based on estimates of the highest beneficial use and the reasonable maximum exposure expected to occur under both current and potential future Site use conditions. Ecology has determined that, at most sites, use of groundwater as a source of drinking water is the beneficial use requiring the highest quality of groundwater and that exposure to hazardous substances through ingestion of drinking water and other domestic uses represents the reasonable maximum exposure. As described in Section 7.1.1, groundwater at or potentially affected by the Site is not considered potable. Groundwater at the Site discharges into the LDW; therefore, the highest beneficial use of groundwater at the Site is protection of surface water quality in the LDW.

At Plant 2, the maximum beneficial use of groundwater was also found to be protection of surface water quality in the LDW; therefore, the Plant 2 TMCLs are relevant for use at the Site. Plant 2 groundwater TMCLs are provided in Table I-2 of Appendix I. Specifically, the Plant 2 TMCLs considered the following pathways to define the surface water quality that needed to be protected by groundwater discharge:

- Protection of Aquatic Species based on standards for both marine and freshwater species contained in WAC 173-201A, the Federal National Toxics Rule, and the Federal Ambient Water Quality Criteria (promulgated under the Federal Clean Water Act).
- Protection of human health based on consumption of fish and shell fish harvested from the LDW at consumption rates protective of tribal families (the highest consumption rate). This also protects recreational and Asian/Pacific Island consumption rates.

The Plant 2 TMCLs only consider criteria protective of drinking water use when insufficient information exists to calculate a criterion protective of human health based on surface water Method B pCULs are also based on protection of human health based on discharge of groundwater to surface water.

7.1.1 POTABILITY OF SITE GROUNDWATER

Groundwater is to be considered potable unless it can be demonstrated that certain criteria can be met [WAC 173-340-720(2)(b)]. However, MTCA [WAC 173-340-720(2)(d)] acknowledges that, even if groundwater is considered potable under WAC 173-340-720(2)(b), groundwater near surface water that is not a drinking water source may be unlikely to be used as drinking water and provides criteria for classifying groundwater as non-potable. These criteria, together with a description of how the criteria are met, are provided below.

- The groundwater is not a current drinking water source. No one is currently using the groundwater at or near the Site as drinking water.
- It is unlikely that hazardous substances will be transported from contaminated groundwater to groundwater that is a current or potential future source of drinking water at concentrations that exceed groundwater quality criteria published in Chapter 173-200 WAC. Hydraulic gradients are generally upward between the upper and lower groundwater zones, limiting the potential for contaminants in the upper groundwater zone to migrate to the lower groundwater zone (Booth and Herman 1998).
- There are known or projected points of entry of the groundwater into the surface water. Shallow groundwater is known to discharge to the LDW (Booth and Herman 1998) and the RI included sampling a seep located at the LDW shoreline where groundwater from the Site was discharging.
- The surface water is not classified as a suitable domestic water supply source. As described in Section 7.1.2, the designated uses of the LDW do not include use as a domestic water supply (WAC 173-201A-602).
- The groundwater is sufficiently hydraulically connected to the surface water that the groundwater is not practicable to use as a drinking water source. Groundwater at the Site is hydraulically connected with the adjacent LDW; tidal effects on groundwater are described in Section 8.1.2.3. If groundwater at the Site was pumped for drinking water use, saltwater intrusion due to the juxtaposition of the Site to the marine surface water of the LDW is likely to result in increased salinity in groundwater at the Site.

Because groundwater at the Site meets these criteria, it should be considered non-potable, consistent with the determination made at the adjacent 8801 site [AMEC Environment and Infrastructure, Inc. (AMEC) 2011].

7.1.2 LOWER DUWAMISH WATERWAY SURFACE WATER DESIGNATION

The use designation of the LDW is set forth in WAC 173-201A-602 (see Table 602). The Washington State-designated uses of the Duwamish River from its mouth to River Mile 11.0 are: salmonid rearing and migration, industrial/agricultural water supply, stock watering, wildlife habitat, secondary contact recreation, boating and sport fishing, commerce, and navigation. Importantly, the LDW is not designated as a potential drinking-water source. Therefore, numerical surface water standards for human health are based on consumption of aquatic organisms (fish and shellfish), and do not include consumption of water. Although Chapter 173-201A WAC designates the Duwamish River as fresh surface water; the Duwamish Waterway in the vicinity of the Site is actually a tidally controlled marine embayment with a thin freshwater lens of outgoing river water on top of the denser (more saline) and more predominant marine waters. Consistent with decisions made at Plant 2, the surface water at the Site will be considered to include both "freshwater" and "marine" sections. Therefore, for determining water quality criteria, both freshwater and marine standards have been considered,

7.2 SOIL

Soil pCULs protective of human health and the environment were developed for all constituents detected in soil and are presented in Table 6. pCULs are based on direct human contact and protection of groundwater using the Plant 2 TMCLs, MTCA Method B, or other cleanup levels identified by Ecology for use at the Site. Plant 2 soil TMCLs are provided in Table I-1 of I. pCULs are not based on protection of terrestrial ecological receptors as described below.

Terrestrial ecological receptors (wildlife, soil biota, and plants) are currently not considered to be potential receptors for contaminants in soil at the Site. The Site is currently almost entirely covered with buildings and pavement, with only a small strip of undeveloped land along the western and southern portion of the Site (approximately 0.3 acres). The adjacent Port property (approximately 0.5 acres) is paved; however, the paving is in poor condition and vegetation is present. Contaminated soil at the Site is and will continue to be covered by buildings and pavement, preventing plants or wildlife from being exposed to soil contamination; as required, an institutional control to maintain the physical barriers at the Site will be implemented. Future Port land use plans, including remediation plans, are not known. Ecology's Terrestrial Ecological Evaluation form Table 749-1 documenting the exposure analysis

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

procedure is included as Appendix J. The analysis indicates that the simplified terrestrial ecological evaluation may be ended. If, during the remedy evaluation and selection process, exposure of terrestrial ecological receptors is determined to be important at the Site, cleanup levels will be adjusted, as appropriate, to provide for protection of terrestrial ecological receptors.

The Site is used for industrial purposes and, as described in Section 2.1.3, is located in an urban industrial area. The Site meets the criteria under MTCA [WAC 173-340-754(1)(a)(i)] for an industrial property as follows:

- No one lives at the Site.
- Access to the Site by the general public is not allowed and/or is highly limited since the perimeter of the Site is surrounded by a security fence with a guard at the entrance.
- No food is grown or raised on the Site.
- The majority of the surface of the land is covered by buildings and pavement.
- Support services at the facility are devoted to administrative functions necessary for the industrial use and employees (e.g., offices and a cafeteria).

Additionally, the Site is zoned Manufacturing Industrial Center/Heavy Industrial (MIC/H) and is located in an industrial corridor that is likely to remain industrial in the future. However, as required by Ecology, the pCULs are based on unrestricted land use; after the RI, the pCULs may be adjusted based on current and future land use, potential receptors, migration pathways, and exposure pathways. The Plant 2 TMCLs for soil used as pCULs for some constituents consider residential and industrial direct contact exposures and leaching of contaminants from soil to groundwater and subsequently to surface water. The Plant 2 TMCLs do not consider exposure of terrestrial ecological receptors to soil because at Plant 2, like at the Site, exposure is blocked by pavement and buildings.

Under WAC 173-340-740, Method B soil cleanup levels must be as stringent as:

- Concentrations established under applicable state and federal laws
- Concentrations protective of direct human contact with soil
- Concentrations protective of terrestrial ecological receptors
- Concentrations protective of groundwater.

As described above, the Site meets the criteria to end evaluation of terrestrial ecological exposure. The other criteria were considered during development of the pCULs. The only Applicable or Relevant and Appropriate Requirement (ARAR) for soil is the Toxic Substances Control Act (TSCA); there are no other soil concentrations established under applicable federal laws. Except for total petroleum hydrocarbon (TPH) and lead, standard MTCA Method B pCULs protective of direct human contact were determined in accordance with WAC 173-340-740(3) using Ecology's Cleanup Levels and Risk

Calculations (CLARC) database. MTCA Method A soil cleanup levels for unrestricted land uses were used for TPH and lead. Soil pCULs protective of groundwater were determined using the fixed parameter three-phase partitioning model in accordance with WAC 173-340-747(4). The three-phase model provides a conservative estimate of the concentration of a contaminant in soil that is protective of groundwater.

To develop a Method B pCUL, the lowest protective criterion was selected as the pCUL. WAC 173-340-740(5)(c) provides for adjustments to cleanup levels, as needed, so that cleanup levels are not less than the PQL and are not less than natural background. The pCULs have not yet been adjusted for PQL; the adjustment for natural background, if appropriate, has already been made. Adjustments for PQL, if appropriate, will be made after the RI. For those constituents where the lowest criterion is protection of groundwater, the criterion may not be applicable if it can be demonstrated empirically using the procedures specified in WAC 173-340-747 that soil concentrations do not cause an exceedance of the applicable groundwater pCULs. An empirical demonstration for some constituents is made in Section 9.1.

7.3 SOIL VAPOR

Soil vapor screening levels were developed by applying a vapor attenuation factor (VAF) to pCULs developed for indoor air. As shown in Table 7, the pCULs for indoor air are the MTCA Method B formula values, where available, and the Plant 2 residential ambient air TMCLs for those compounds for which Method B formula values are not available. Guidance on calculating screening levels for soil vapor is presented in Ecology's draft vapor intrusion guidance (Ecology 2009). The guidance provides an equation for calculating screening levels for shallow soil vapor where the screening level for soil vapor is equal to the cleanup level for indoor air divided by a shallow soil vapor-to-indoor air VAF. The shallow soil vapor-to-indoor air VAF value (0.1) recommended in Ecology's draft guidance was based on EPA's studies at the time of publication. EPA updated its study in March 2012, incorporating data that has been collected in recent years. EPA now recommends using a shallow soil vapor-to-indoor air VAF of 0.03 (EPA 2012b). The VAF of 0.03 was applied to the indoor air pCULs to develop the soil vapor screening levels presented in Table 7. Plant 2 residential ambient air TMCLs are provided in Table I-3 of Appendix I.

7.4 SEDIMENT

The pCULs for sediments offshore of the Site are expected to be the same as the PRGs that were established in the EPA's *Proposed Plan for the Lower Duwamish Waterway (LDW) Superfund Site* (EPA

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

2013). The PRGs identified in EPA's Proposed Plan were used to assess the likelihood that various cleanup alternatives considered in the LDW FS (AECOM 2012) could achieve the remedial action objectives (RAOs) identified for the LDW Superfund site. Those PRGs were based either on ARARs, which provide minimum legal requirements, or on other information such as toxicity thresholds that were identified in the LDW human health risk assessment (HHRA) or ecological risk assessment (ERA), both of which are part of the LDW RI (Windward 2010). The PRGs put forth in EPA's Proposed Plan for the LDW will be refined into final contaminant-specific cleanup levels in EPA's Record of Decision (ROD) for the LDW, which is anticipated to be completed in 2014.

The most significant ARARs for sediments within the LDW are those in the Washington State SMS. The SMS include numerical sediment standards (referred to as SCOs) for 47 individual sediment contaminants or classes of contaminants (Table 8). Contaminant concentrations in surface sediments that are below the SCOs are considered to not have any harmful effects on benthic organisms inhabiting the sediments. The SCO are equally applicable to surface sediments in both intertidal and subtidal areas throughout the LDW. Other than benthic invertebrates, the only other ecological receptor for which it was necessary to develop sediment PRGs was the river otter. River otters are exposed to PCBs through ingestion of contaminated prey (e.g., fish); sediment PRGs for the protection of river otters from PCBs in their prey were identified by estimating (using a food web model) the sediment PCB concentrations that would be associated with tissue PCB concentrations sufficiently low to result in no adverse effects on river otters. Those sediment PCB concentrations were expressed as a range (128 – 159 μ g/kg dw), depending on differences in the diet assumed for river otters (Table 8).

The Washington State SMS do not include numerical sediment standards for the protection of humans that may be directly exposed to contaminated sediments. In the absence of such standards, the LDW HHRA evaluated the potential for adverse effects to humans that might result from exposure through direct contact with contaminated sediments or incidental ingestion of those sediments. Although a broad range of sediment contaminants was considered, it was concluded that only four contaminants (PCBs, arsenic, dioxins/furans, and cPAHs) occurred in LDW sediments in high enough concentrations to warrant the development of sediment PRGs for the protection of human health. Human exposure to contaminated sediments was assumed to occur through activities such as netfishing, which might occur throughout the LDW, as well as clamming and beach play, which might occur only in intertidal areas [above -4 feet mean lower low water (MLLW)]. Human exposure to contaminated sediments through beach play is not expected to occur adjacent to the Site due to restricted public access and the industrial nature of the Site. The sediment PRGs for each of these human health contaminants varied (Table 8), depending on the exposure regime (both intertidal and subtidal areas site-wide for netfishing and intertidal areas site-wide for clamming) and the exposure parameters (e.g., frequency, duration) assumed in the LANDAU ASSOCIATES

HHRA for each activity. In the case of arsenic, the sediment concentrations that would be necessary to achieve acceptable risk levels for both direct contact exposure scenarios (netfishing and clamming) are below natural background. In such instances, the PRG defaults to natural background because the lower risk-based concentrations are assumed to be unattainable.

The same four human health contaminants were also considered to be present at sufficiently high concentrations in the tissues of resident seafood species that they would represent unacceptable risks to humans who might consume those species. In the case of PCBs and dioxins/furans, the sediment concentrations that would be associated with tissue concentrations of those contaminants sufficiently low to result in acceptable risks to human seafood consumers were assumed to be below natural background concentrations of those contaminants. Just as in the case of the direct contact PRGs for arsenic, the sediment PRGs for PCBs and dioxins/furans for the protection of human seafood consumers default to natural background because the lower risk-based concentrations are assumed to be unattainable. In the LDW HHRA, it was not possible to estimate the sediment concentrations of arsenic and cPAHs associated with tissue concentrations of those contaminants in resident seafood species that would represent acceptable risks to humans that might consume those species, so sediment PRGs for the protection of human seafood consumers were not identified for those contaminants.

The PRGs established for the LDW in the EPA Proposed Plan (EPA 2013) (and consequently the pCULs for sediments adjacent to the Site) represent long-term goals for sediment quality in the LDW. As indicated above, several of the human health PRGs (PCBs, dioxins/furans, and arsenic) defaulted to natural background concentrations because sediment concentrations sufficiently low to represent acceptable risks to humans were below natural background concentrations. It was recognized in EPA's Proposed Plan for the LDW that it would not be practical to interpret exceedances of the PRGs based on natural background as identifying sediments requiring active remediation [e.g., dredging, capping, enhanced natural recovery (ENR), or a combination thereof]. Given the urban, industrial nature of the LDW, sediments virtually everywhere within the LDW have concentrations of those contaminants that exceed natural background concentrations. Hence, there would be little reason to delimit areas offshore of the Site where sediment contaminant concentrations exceed one or more PRGs, because it is likely that all of the sediments exceed one or more of the human health PRGs that are based on natural background concentrations.

7.5 POINT OF COMPLIANCE

Under MTCA, the point of compliance is the point or points where the cleanup levels must be attained. For this RI, the point of compliance for soil is considered to be in soil throughout the Site and

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

the point of compliance for groundwater is considered to be in groundwater throughout the Site from the uppermost level of the saturated zone to the lowest depth, which could potentially be affected by contaminants from the Site. Conditional points of compliance different from these may be proposed after completion of the RI.

8.0 RIRESULTS

As previously mentioned in Section 4.0, the goal of the RI is to adequately characterize the Site, to evaluate the potential for recontamination of LDW sediments, and to provide sufficient data to support development and evaluation of cleanup action alternatives. The RI activities, when combined with information collected during previous Site investigations, are sufficient to meet the RI goal. The data gaps identified in the RI/FS Work Plan and the Building 14-01 Investigation Work Plan include the following: 1) information to assess the contaminant pathways to LDW sediment, 2) chemical data in specific areas of concern in the upland portion of the Site, 3) data regarding the extent to which VOCs are present in soil vapor below the building floor slab in Building 14-01, and 4) recent LDW sediment chemical data for the full list of SMS constituents. The RI results that address the information needed to assess the contaminant pathways to the LDW are presented in Section 8.1. The RI results that address data gaps for specific areas of concern are addressed in Section 8.2. Soil vapor results are discussed in Section 8.3 and the recent sediment data for the LDW is addressed in Section 8.4. Laboratory analytical data are included in Appendix S.

8.1 RIRESULTS FOR EVALUATING CONTAMINANT PATHWAYS TO LDW SEDIMENT

One of the data gaps identified in the RI/FS Work Plan was the need for additional information to adequately assess the potential for recontamination of LDW sediments and the potential need for source control. The potential pathways for recontamination of sediment from the Site include leaching of contaminants from soil to groundwater and transport in groundwater, transport of contaminants in stormwater, and transport of contaminants in soil via bank erosion. To evaluate these pathways, additional geologic and hydrogeologic data was obtained during the RI, chemical data for each of the media were obtained, and the physical condition of the Site storm drain system was evaluated.

8.1.1 GEOLOGIC CONDITIONS

During the RI, subsurface soil conditions were observed and documented at 50 exploration locations. Based on the conditions observed at these locations and at pre-RI subsurface explorations, the Site consists of approximately 2 to 19.5 ft of fill overlying river deposits with the thickest layers of fill occurring in the Former Slip 5 Area. The depth at which river deposits were encountered at each RI soil boring is summarized in Table 9. The fill generally consists of silty sand to sandy gravel. Fill materials within the Former Slip 5 Area include bricks, wood debris, and slag material. The native deposits typically consist of fine sand and silty fine sand with silt lenses. The native surficial deposits are characterized by the presence of small in-place roots, wood fragments, and peat, which are indicators of

LANDAU ASSOCIATES

the original ground surface elevation prior to filling. Underlying the silt and silty fine sand is a series of interbedded alluvial sand and silt layers that were deposited within the floodplain of the lower Duwamish River. Beneath the interbedded alluvial silt and fine sand is a layer of very dark to black, fine to medium sand. This naturally deposited sand is found throughout the lower Duwamish River valley and was likely deposited from flood waters. Three north-south trending cross-sections across the Site (extending into the 8801 site) and two east-west trending cross-sections across the Site (extending into the offshore sediments) at the locations shown on Figure 30, are presented on Figures 31, 32, 33, 34, 35, and 36.

8.1.2 Hydrogeologic Conditions

During the RI, water levels were measured at 37 well/piezometer locations (shown on Figure 23) and a tidal study was conducted to better understand groundwater flow at the Site and the potential for groundwater to discharge contaminants to LDW sediment. Two specific hydrogeologic data gaps identified in the RI/FS Work Plan were the lack of information on the groundwater flow direction in the southern half of the Site and an explanation for the tidal efficiency anomaly observed in well I-205(s) during the tidal study conducted in 2000. These data gaps are addressed below.

8.1.2.1 Groundwater Levels

The near-surface groundwater regime within the lower Duwamish River valley is generally characterized as a shallow, single-aquifer system. The Site is located at and near the east bank of the LDW, at approximately 16.5 to 19.5 ft above MLLW. Ground surface elevations were measured at each monitoring well location during the RI and are summarized in Table 2. Shallow groundwater is present throughout the area of the Site.

Water level measurements were recorded at each monitoring well and piezometer on December 5, 2011, and March 6, June 13, and September 10, 2012. For each event, water levels were measured during an intermediate tide. The estimated surface water level elevation (ft MLLW) for the LDW during the time that water levels were measured ranged from about 1.4 to 4.2 (December), 5.0 to 5.6 (March), 2.2 to 4.2 (June), and 2.1 to 4.4 (September). Also, the mean stage heights of the surface water (ft MLLW) measured upstream at the Green River, which is not tidally influenced, during groundwater level measurements on December 5, 2011, and March 6, June 12, and September 10, 2012 were 5.13, 8.12, 7.03, and 2.95 ft, respectively, indicating that surface water levels in the LDW may have been lowest in September. The measured mean stage heights of the Green River are summarized in Table 10.

The depth to water typically ranged from 11 ft to 17 ft BGS and on average was 13.5 ft BGS. Measured depths to groundwater are summarized in Table 11. As previously discussed, the groundwater levels during each event were measured during similar tidal fluctuation levels.

8.1.2.2 Groundwater Flow Direction

The measured water levels were converted to elevations (ft MLLW) so groundwater flow directions could be characterized throughout the Site. The calculated groundwater elevations for each event are presented in Table 11. Groundwater elevation contour maps for December 5, 2011 and March 6, June 13, and September 10, 2012 are presented on Figures 37, 38, 39, and 40, respectively. As shown on Figures 37 and 38, groundwater elevations ranged from 4.76 to 9.07 ft MLLW on December 5, 2011 and from 7.27 to 10.63 ft MLLW on March 6, 2012. During both of these events, groundwater generally flowed to the west toward the LDW, except at some locations along the immediate shoreline where groundwater is tidally influenced and groundwater flowed north or south prior to discharge to the LDW. Groundwater flow directions near the shoreline may be affected by existing bulkheads described in Section 2.3 and a sheetpile bulkhead present at the 8801 site (AMEC 2011).

As shown on Figures 39 and 40, on June 13 and September 10, 2012, groundwater elevations ranged from 2.89 to 8.81 ft MLLW and 5.70 to 8.33 ft MLLW, respectively. Groundwater flow patterns during the September 10, 2012 event (Figure 40) were similar to the groundwater flow patterns observed during the December 5, 2011 and March 6, 2012 events, except that groundwater flow in the southeastern portion of the Site was to the southeast. On June 13, 2012, groundwater flow patterns in the eastern half of the Site varied significantly from the groundwater flow patterns observed during the December 5, 2011 and March 6, 2012 events. On this date, the lowest groundwater elevation was observed at I-200 (the eastern-most monitoring well) and groundwater elevation contours indicated groundwater flow in the eastern portion of the Site to be to the east. Groundwater flow in the western portion of the Site, however, was similar to the other three events. The easterly groundwater flow in the eastern portion of the Site appears to be due to dewatering of an excavation immediately east of the Site on KCIA property. The excavation location is shown on Figure 38. According to a representative for the King County Airfield (Bergam, Mark, Personal Communication 2012), the dewatering began on April 20, 2012 and continued until June 30, 2012. The pumping rate was approximately 500 gallons/min or 720,000 gallons/day. The southeasterly flow of groundwater in the southeast corner of the Site in September may be a remnant of the dewatering activities because groundwater elevations had not fully recovered due to limited precipitation between June and September 2012.

The LDW is comprised of both marine and fresh surface water. Following the initial dredging and realignment of the LDW, saltwater from Puget Sound extended back into the waterway and infiltrated the upland groundwater (ERM and Exponent 2000). As a result of the saltwater intrusion into the LDW, a saltwater wedge is present in the LDW. The saltwater also intruded from the LDW to groundwater at properties along its shoreline. The presence of brackish or saline water in the aquifer can affect groundwater flow because the less dense fresh groundwater tends to move above the higher density saline

water. The density difference between the freshwater aquifer system and the saltwater of the LDW tends to concentrate the outflow of the surficial aquifer into the intertidal areas. Based on previous studies conducted along the LDW, including at Boeing Plant 2 (AMEC & Floyd Snider 2011), the shallow groundwater in the vicinity of the Site discharges to the waterway above -5 ft MLLW.

8.1.2.3 Tidal Influences

Tidal influences in upland groundwater monitoring wells are dependent on several factors including soil type, distance from the shoreline, and the presence of hydraulic barriers. These factors cause the magnitude of tidal influences in upland monitoring wells to be reduced, or altogether eliminated, in comparison to tidal fluctuations observed in water bodies like the LDW. In addition to attenuation of the magnitude of tidal influences, the timing of any observed tidal extremes (i.e., minimum or maximum groundwater elevation fluctuations caused by tidal influences) in upland monitoring wells typically lags behind the timing observed in the adjacent water body. A tidal study was conducted during the RI to observe the nature of tidal influences of the LDW in three types of groundwater monitoring wells at the Site:

- Near-shore wells east of the Thompson property wooden bulkhead (MW-7 approximately 35 ft and MW-20 approximately 65 ft from the bulkhead)
- Near-shore wells east of the steel bulkhead (MW-10 approximately 10 ft and I-205(s) approximately 75 ft from the bulkhead)
- Inland wells (MW-8 approximately 300 ft and MW-12 approximately 400 ft east from the bulkhead).

The tidal study was conducted by measuring water levels with pressure transducers at 2-minute (min) intervals at each of the above-listed monitoring wells and at the LDW over a 3-day period in January 2012. A mixed semidiurnal tidal pattern resulted in the once-daily occurrence of a lower low tide during the study.

The results of the tidal study show that groundwater elevations at all wells included in the study are influenced by tidal elevations by varying degrees. The amplitude of tidal fluctuations is dependent on the distance from the LDW (the amplitude decreases as distance increases) and the bulkhead material between the well and the LDW (the steel bulkhead appears to mute the amplitude more than the wooden bulkheads). Tidal fluctuations at MW-12, which is located approximately 400 ft from the LDW, were extremely small, indicating that groundwater east of this location may not be tidally influenced. Lag times also generally increase with distance from the LDW.

The surface water and groundwater fluctuations observed during the tidal study are discussed further below.

Lower Duwamish Waterway

The pressure transducer placed in the LDW measured tidal fluctuations generally comparable to those predicted by published tide tables. Measured high tides were up to 2 ft lower than predicted high tides and measured low tides were up to 1.3 ft lower than predicted low tides in the beginning of the study, but these discrepancies gradually lessened to 0.1 and 0.2 ft, respectively, by the end of the study. Transducer-measured tide elevations were used for comparison to groundwater elevations in monitoring wells. Figure 41 illustrates the LDW tidal fluctuations over the 3-day period in addition to fluctuations in all other measured wells.

Near-shore Wells East of the Wooden Bulkhead (MW-7 and MW-20)

Monitoring wells MW-7 and MW-20 are located near the western edge of the Site. MW-7 is located south of the Former Slip 5 Area and MW-20 is located north of the Former Slip 5 Area, as shown on Figure 23. The pressure transducers in MW-7 and MW-20 measured groundwater oscillations with a smaller amplitude and a slight time lag compared to the measured tide in the LDW (Figure 42). Groundwater highs and lows were observed in MW-7 and MW-20 approximately 1 hour after the tidal highs and lows.

Near-shore Wells East of the Steel Bulkhead [MW-10 and I-205(s)]

Monitoring well MW-10 is located near the western edge of the Site between MW-7 and MW-20, as shown on Figure 23. The well is located behind the steel bulkhead and within the Former Slip 5 Area. The pressure transducer in MW-10 measured groundwater oscillations with a smaller amplitude and a slight time lag compared to the measured tide in the LDW (Figure 43). Groundwater elevations in both wells were higher than tidal elevations a majority of the time, with LDW water levels higher only during tides above 10 ft MLLW. Groundwater highs and lows were observed in MW-10 approximately 1 hour after the tidal highs and lows.

Monitoring well I-205(s) is located approximately 70 ft from the western edge of the Site and approximately 85 ft south of MW-10, as shown on Figure 23. Although the well is located near the shoreline, the pressure transducer in this well only measured minor groundwater oscillations. The only notable oscillation appears to be at high tide. Once the rising tide reached approximately 11 ft MLLW, the groundwater level in I-205(s) increased by about 0.8 ft with a lag of approximately 1-½ hours behind the ultimate high tide. After a high tide peak, the groundwater level then decreased gradually until the next high tide reached approximately 11 ft MLLW (Figure 43). This asymmetrical cycle suggests that a hydraulic barrier extends from at least -3.7 ft MLLW (the bottom of the well screen) up to approximately

11 ft MLLW. The barrier is either located in the soil around the well or as fouling in the well itself. Once the barrier is topped and the groundwater level in the well rises to a high tide peak, the groundwater gradually drains away until the next high tide tops the hydraulic barrier. Aerial photographs taken in 1956, 1961, and 1965 indicate a bulkhead, oriented east to west, existed between the present location of I-205(s) and the Former Slip 5. This bulkhead may still be present and may be the hydraulic barrier.

Inland Wells (Wells MW-8 and MW-12)

Monitoring wells MW-8 and MW-12 are located approximately 300 ft and 400 ft inland, respectively, of the western edge of the Site, as shown on Figure 23. The pressure transducers in these wells measured minor groundwater oscillations. At MW-8, the oscillation had a muted wavelength, an amplitude of up to 0.8 ft, and a lag of approximately 1 ½ hours. The pressure transducer in MW-12 measured an oscillation of less than 0.2 ft during the swing between the highest high tide and the lowest low tide. A lag of approximately 3-½ to 4 hours was measured (Figure 44).

8.1.2.4 Estimated Transmissivity and Hydraulic Conductivity

Transmissivity and hydraulic conductivity of the shallow water-bearing zone was estimated from the data collected using a technique for estimating transmissivity in tidally influenced aquifers. Transmissivity using this technique is computed from the following equation (Ferris 1951):

$$T = (x^2 S t_0)/(4\pi t_1^2)$$

where:

 $T = transmissivity (L^2/t)$

S = specific yield (dimensionless)

x = distance from well to the LDW (L)

 t_0 = time between tidal maxima or minima in the LDW (t)

 t_1 = time lag between the occurrence of the maxima or minima in the LDW and in the monitoring well (t).

The time (t_0) between tidal maxima and minima in the LDW and the time lag (t_1) , or difference between the maxima or minima of a cyclical tidal fluctuation, at each well location was computed from the transducer data and the results are provided in Appendix K. Approximate distances from the monitoring wells to the mean tidal level of the LDW adjacent to the Site are also provided in Appendix K. Aquifer-specific yield was assumed to be 0.05. Based on the deepest exploration in the area, the saturated aquifer thickness (b) was estimated to be 130 ft. This saturated aquifer thickness estimation is an estimation for two reasons: first, the aquifer is unconfined and the thickness changes with time and distance; second, an aquitard below the uppermost hydrogeologic unit was not encountered, indicating

LANDAU ASSOCIATES

130 ft as only a minimum thickness. Transmissivity and hydraulic conductivity calculations and results are provided in Appendix K.

Based on the transducer data and assumptions described above, the transmissivity is estimated to be 921ft²/day and 1,263 ft²/day at near-shore wells east of the wooden bulkheads (MW-7 and MW-20); 2,001 ft²/day and 39 ft²/day at near-shore wells east of the steel bulkhead [I-205(s) and MW-10]; and 19,495 ft² day and 6,807 ft²/day at inland wells (MW-8 and MW-12). These values yield estimated values for the hydraulic conductivity (K) of 2.50 x 10^{-3} centimeters per second (cm/s) and 3.43 x 10^{-3} cm/s (MW-7 and MW-20), 5.43 x 10^{-3} cm/s and 1.05 x 10^{-4} cm/s [I-205(s) and MW-10[, 5.29 x 10^{-2} cm/s and 1.85 x 10^{-2} cm/s ft/day (MW-8 and MW-12) using the relationship K = T/b.

Estimated K values were generally consistent among the wells grouped by location, as described above. I-205(s) was the only outlier, with a K value with the same magnitude as the near-shore wells east of the wooden bulkhead. Overall, K values calculated at wells near both the wooden and steel bulkhead are one to two orders of magnitude lower than K values calculated at the inland wells, demonstrating that both bulkheads may influence the westward migration of groundwater. The steel bulkhead is most efficient, as the lowest K (by one order of magnitude) was calculated at MW-10.

Single-well hydraulic conductivity tests, performed by ERM in August 2000 (ERM and Exponent 2000) at piezometers PZ-1 through PZ-8 indicated that hydraulic conductivity values for the shallow water-bearing zone ranged from 1.52 x 10⁻⁴ cm/s to 1.89 x 10⁻³ cm/s, with an average hydraulic conductivity of 8.84 x 10⁻⁴ cm/s. Also in August 2000, ERM completed a tidal study at the Boeing Isaacson property (ERM and Exponent 2000). Tidal effects on groundwater elevations were observed at each of the wells and piezometers; however, the most significant tidal fluctuations were observed at locations within 400 ft of the LDW. Tidal efficiencies near the LDW were extremely variable, ranging from 0.93 percent at well I-205(s) to 37.84 percent at well I-203(s). The low tidal efficiency at well I-205(s) was considered an anomaly possibly due to equipment malfunction or aquifer heterogeneity, but, as previously discussed in Section 8.1.2.3, a hydraulic barrier at this location may be the cause of the tidal efficiency anomaly.

Hydraulic conductivities were calculated for the soil between the LDW and all measured wells. Lag times for the highest high tides and the lowest low tides were used for calculations. Additionally, hydraulic conductivities of the soil between the LDW and inland wells, including MW-8, MW-12, and I-205(s), were calculated by omitting the transit time and distance between the LDW and the closest nearwater well. Hydraulic conductivity calculations and results are presented in Appendix K. The lowest hydraulic conductivity, 0.06 cm/s, is through the steel bulkhead between the LDW and MW-10. Hydraulic conductivities through the wooden bulkhead are 0.28 cm/s and 0.34 cm/s at MW-7 and MW-20, respectively. Inland hydraulic conductivities between the Thompson property wooden bulkhead

and the nearest well included in the tidal study are 1.45 cm/s, 2.45 cm/s, and 1.38 cm/s at I-205(s), MW-8, and MW-12, respectively. As discussed in Section 8.1.2.3, groundwater fluctuations on the inland side of the bulkheads could be the result of either a difference in head between the LDW and near-shore wells or the lack of actual groundwater movement through the bulkhead. Although slower hydraulic conductivities through the steel and wooden bulkheads do not necessarily indicate groundwater flow through the bulkhead, they are useful indications of the hydraulic barrier quality of the bulkhead. The hydraulic conductivity of inland soil west of I-205(s) is comparable to that of the other inland soil, indicating the soil above the hydraulic barrier at elevation 11 ft MLLW discussed earlier is comparable to the remainder of the Site. Hydraulic conductivity was only calculated from high tides at this location due to the lack of a precise low tide, though it is likely that the gradual decrease in groundwater elevation after high tide is due to the lower hydraulic conductivity in the hydraulic barrier below 11 ft MLLW in elevation.

The data also confirm the existence of groundwater mounding behind the steel bulkhead. This mounding is indicated by the higher overall groundwater elevations at MW-10 and the low hydraulic conductivity between MW-10 and the steel bulkhead. Average groundwater levels decrease in wells to the north and south, in addition to wells to the east.

8.1.2.5 LDW Surface Water Effects on Groundwater Quality

This section provides an evaluation of the potential influence of marine surface water on RI monitoring well results. Near the shoreline, tidal pressure may result in groundwater elevation fluctuations and the near-shore mixing of marine surface water with groundwater. The tidal influence on near-shore, upland, and Former Slip 5 area groundwater quality was evaluated using standard groundwater parameters, which include conductivity, pH, temperature, turbidity, DO, ferrous iron, oxidation-reduction potential (ORP), and conventional analytical parameters (chloride, nitrate, sulfate, and total dissolved solid (TDS) concentrations). Review of results shows that the most applicable results for this evaluation are conductivity results (Figure T-1 in Appendix T). Monitoring results (Tables 12, 13, and 14) were reviewed and characteristics and constituents associated with marine surface water (including conductivity and chloride) noted. The results were also evaluated to determine if there was a clear association between the result and the sample location relative to the LDW.

Three groups of groundwater monitoring wells were used in the evaluation. All wells monitor the shallow groundwater zone. The wells are: near-shore wells (MW-7, MW-9, MW-10, MW-19, MW-20, PZ-7, PZ-8, and I-104); upland wells (MW-4, MW-5, PZ-2, and I-200); and wells located in the Former Slip 5 Area (MW-11, MW-12, MW-13). Wells in these groups were selected to best represent

groundwater parameters without influence from other areas or from other onsite features, such as the stabilized fill area on the Isaacson portion of the Site.

To limit the potential effects of surface water influence on upland groundwater quality samples collected during the RI, near-shore monitoring wells and piezometers were sampled within 1 hour before and 1 hour after a 1.0 ft MLLW or lower low tide. Field parameters and conventional parameters at the near-shore locations were not measured during higher tidal stages (when samples were not collected), and, therefore, the short-term influence of possible marine water intrusion at higher tide levels on groundwater quality cannot be evaluated with these data.

Marine surface water influence is not expected to extend a significant distance inland in the shallow groundwater zone. Groundwater quality data confirm this expectation. Appropriate parameters were used to compare results from near-shore wells to parameters at upland monitoring wells farther from the shoreline. Although the variability of results among wells appeared to be greatest in the near-shore wells (Tables 12, 13, and 14), data show no significant difference in results between near-shore wells at low tidal stages and wells in upland and the Former Slip 5 areas. The data plot for conductivity is included in Appendix T.

8.1.3 GROUNDWATER ANALYTICAL RESULTS

The following gaps in understanding the groundwater quality at the Site and the potential for recontamination of the LDW sediments were identified:

- A comprehensive soil and groundwater investigation at the Thompson property to evaluate the source of arsenic in groundwater at wells I-205(s) and I-206(s), and to evaluate the potential for other PCOCs to be present at the Site.
- Groundwater data for metals, other than arsenic, and for other PCOCs (SVOCs). Ecology notes that lead, silver, and zinc were detected in 1983 and 1988 groundwater investigations at concentrations above preliminary groundwater to sediment site screening levels (SSLs) developed in 2004 by SAIC for Ecology for Slip 4 of the LDW (SAIC 2004), and that metals, other than arsenic, may be present in fill material used at the Site.
- Groundwater data for PCOCs from additional wells near the western Thompson property boundary.
- Seep groundwater data for Site PCOCs. Two seep samples had previously been collected and analyzed for dissolved arsenic.

To address these data gaps, 25 monitoring wells were installed during the RI and groundwater samples were collected at each of these wells and the existing 12 wells and piezometers in December 2011, March 2012, June 2012, and September 2012. The samples were analyzed for an extended list of analytes, which included VOCs; SVOCS; total and dissolved metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; diesel-range, motor oil-range, and gasoline-range petroleum hydrocarbons; and

LANDAU ASSOCIATES

conventional parameters [chloride, nitrate, sulfate, and TDS]. Additionally, a groundwater sample was collected from the seep location in conjunction with the groundwater samples in March, June, and September 2012 and analyzed for the same list of analytes as the samples collected from the monitoring wells and piezometers. A seep sample was not collected during the December 2011 groundwater sampling event due to lack of sufficiently low tides during daylight hours.

The results of the groundwater and seep sampling are discussed in this section by three general areas: North of the Former Slip 5 Area, within the Former Slip 5 Area, and South of the Former Slip 5 Area. The analytical results for the constituents detected in groundwater in each of these areas are presented in Tables 12, 13, and 14. As previously mentioned in Section 4.2.7, analytical results were reported to the MDL. Concentrations detected above the MDL, but below the RL, were qualified as estimates (J flagged) due to uncertainty in the concentration and are included in Tables 12, 13, and 14. Concentrations that have been J flagged, but are above the pCUL, are included on figures as exceeding cleanup levels. For non-detected constituents, only the RLs are presented in Tables 12, 13, and 14. Analytical results for all constituents including the RLs and the MDLs are provided in tabular format in Appendix L. Except for some total metal analytical results, the groundwater analytical results were compared to the pCULs presented in Section 7.1 and these comparisons are presented in Tables 12, 13, and 14. For metals for which the ambient water quality criteria are based on dissolved concentrations, dissolved results are compared to the pCULs (antimony, arsenic, barium, beryllium, cadmium, copper, lead, nickel, selenium, silver, thallium, and zinc). For the remainder (mercury, chromium VI), the total results are compared to the pCULs. Figures showing concentration ranges for some of the constituents that exceed pCULs during the RI are shown on Figures 45 through 54. The constituents include total cPAHs (Figure 45); total PCBs (Figure 46); dissolved arsenic (Figure 47); dissolved cadmium (Figure 48); chromium VI (Figure 49); dissolved copper (Figure 50); dissolved lead (Figure 51); dissolved nickel (Figure 52); dissolved zinc (Figure 53); and TCE (Figure 54). Figures are not provided for constituents without widespread exceedances.

8.1.3.1 North of Former Slip 5 Area

Groundwater samples collected in the North of the Former Slip 5 Area include samples collected from 12 monitoring wells in the following areas:

- Western Property Boundary (West of Stabilized Soil Area): I-104(s) and MW-20
- Northern Property Boundary: MW-21, MW-22, and PZ-1
- Stabilized Soil Area: MW-23, MW-24, and MW-25
- South of Stabilized Soil Area: I-200(s), MW-15, MW-16, and MW-18.

Analytical results for constituents detected in groundwater in the North of the Former Slip 5 Area during the RI and a comparison to pCULs are provided in Table 12. Based on the comparison, the constituents detected at concentrations exceeding the pCULs in groundwater in the North of the Former Slip 5 Area during the RI include two VOCs (vinyl chloride and acrylonitrile); two SVOCs (BEHP and benzoic acid); total cPAHs; PCBs (Aroclors 1248 and 1260); dissolved metals (arsenic, cadmium, copper, lead, nickel, selenium, thallium, and zinc); total mercury; and chromium VI. TPHs were not detected at concentrations exceeding the pCULs. The occurrence of pCUL exceedances in groundwater at each well located in the North of the Former Slip 5 Area is summarized in Table 15. A discussion of the constituents detected and concentrations exceeding the pCULs is provided below.

VOCs, SVOCs, and TPH

TPH was not detected at concentrations exceeding the pCULs at any of the groundwater monitoring locations in the North of the Former Slip 5 Area. Only two SVOCs were detected above the pCUL during one monitoring event. BEHP was detected at $1.8~\mu g/L$ at MW-18 (south of the stabilized soil material) and benzoic acid was detected at $3,400~\mu g/L$ at MW-24 (in the stabilized soil material area) during the December 2011 sampling event. BEHP was not detected at concentrations above the RL or MDL during the three subsequent sampling events. Benzoic acid was detected at concentrations below the pCUL during the three subsequent sampling events. VOCs were detected above the pCULs in and south of the stabilized soil area. Vinyl chloride exceeded the pCUL at MW-18 during the December 2011 monitoring event; at MW-23, MW-16, and MW-25 during the June 2012 monitoring event; and at MW-25 during the September 2012 monitoring event. Acrylonitrile was detected in one sample (December 2011 sample from MW-18) at $0.059~\mu g/L$, slightly above the pCUL of $0.057~\mu g/L$; however, the detection had a low spectral match and was qualified as an estimate. Acrylonitrile was not detected in any other sample.

cPAHs

cPAHs were not detected in most groundwater samples collected from the North of the Former Slip 5 Area. cPAHs were detected in groundwater in the North of the Former Slip 5 Area at concentrations exceeding the pCULs (which are lower than the RLs) in March, June, and September 2012. The exceedances occurred once at I-104(s), twice at wells MW-23 and MW-24, and three times at well MW-25, as shown on Figure 45 and discussed below.

• Western Property Boundary (West of the Stabilized Soil Area). One cPAH, benzo(a)anthracene, was the only cPAH detected in groundwater samples from near the western property boundary. It was detected in only one groundwater sample from one well. The detection occurred in the blind field duplicate sample collected at well I-104(s) in September 2012. No cPAHs were detected in the other six samples from this well (four

LANDAU ASSOCIATES

- parent samples, two duplicate samples). The calculated cPAHs TEQ is $0.0005 \,\mu g/L$, which exceeds the cPAHs pCUL of $0.0002 \,\mu g/L$.
- **Northern Property Boundary**. No cPAHs were detected in groundwater samples from wells MW-21, MW-22, or PZ-1 during the RI.
- Stabilized Soil Area. Concentrations exceeding the pCULs were detected at each of the wells located within the stabilized soil area (MW-23, MW-24, and MW-25). The exceedances occurred in March, June, and September 2012. Concentrations of cPAHs (calculated cPAHs TEQ) exceeding the pCUL of 0.0002 μ g/L range from 0.0007 μ g/L to 0.008 μ g/L.
- South of the Stabilized Soil Area. No cPAHs were detected in samples from the groundwater at wells I-200(s), MW-15, MW-16, and MW-18 during the four RI sampling events.

PCBs

PCBs were not detected in most groundwater samples collected from the North of the Former Slip 5 Area. PCBs (Aroclors 1248 and 1260) were detected in groundwater in the North of the Former Slip 5 Area in March, June, and September 2012. The detections occurred once at piezometer PZ-1 and well I-104(s) and three times at well MW-25, as shown on Figure 46. The pCULs are below the RLs; all of the detected concentrations exceed the pCULs as described below.

- Western Property Boundary (West of the Stabilized Soil Area). No PCBs were detected in samples from one of the wells (MW-20) in this area. There was only one detection of PCBs (Aroclor 1260) in samples collected in this area. The detection was in the June 2012 duplicate sample collected from well I-104(s) at a concentration of 0.0075 μ g/L, which exceeds the pCUL of 0.00002 μ g/L. There were no PCB detections in the other six samples from this well (four parent samples and two duplicate samples).
- Northern Property Boundary. No PCBs were detected in samples from two of the wells in this area. There was only one detection of PCBs (Aroclor 1248) in a sample collected in this area. The detection was in the March 2012 sample collected from piezometer PZ-1 at a concentration of $0.0086~\mu g/L$, which exceeds the pCUL. This was the only PCB detection along the northern property boundary.
- Stabilized Soil Area. No PCBs were detected in samples from two of the wells in this area. PCBs (Aroclor 1260) were detected in samples collected during the March, June, and September 2012 sampling events from well MW-25. The concentrations were 0.017 µg/L, 0.024 µg/L, and 0.011 µg/L, respectively, which exceed the pCUL. No PCBs were detected in samples from this well during the December 2011 sampling event.
- **South of the Stabilized Soil Area.** No PCBs were detected in any samples from wells I-200(s), MW-15, MW-16, and MW-18 during the four RI sampling events.

Metals

There were no exceedances of pCULs for antimony, barium, beryllium, and silver in groundwater in the North of the Former Slip 5 Area. Metals that exceed pCULs in one or more groundwater samples

include arsenic, cadmium, copper, lead, mercury, nickel, selenium, thallium, and zinc. Chromium VI also exceeds the pCULs in groundwater in the North of the Former Slip 5 Area during the RI. Most of the exceedances occurred in groundwater below the stabilized soil material and lead, selenium, and thallium exceedances occurred only in groundwater samples from below the stabilized soil area. The concentrations above the pCULs are summarized by area below:

- Western Property Boundary (West of Stabilized Soil Area). Total mercury and arsenic were detected in groundwater samples from near the western property boundary at concentrations exceeding the pCULs. Total mercury slightly exceeded the cleanup level of 12 ng/L at a single sample from I-104 with a concentration of 12.8 ng/L; the concentration in the duplicate sample was 10.6 ng/L. Dissolved arsenic was detected at concentrations greater than the pCUL of 8 µg/L at both wells (I-104 and MW-20) located along the western property boundary during all four RI monitoring events. Detected concentrations of dissolved arsenic greater than the pCUL range from 135 µg/L to 2,460 µg/L. Total arsenic concentrations were similar to the dissolved arsenic concentrations at each location.
- Northern Property Boundary. Arsenic, cadmium, copper, nickel, zinc, and chromium VI were detected in one or more samples of groundwater from near the northern property boundary at concentrations greater than the pCULs. As shown on Figure 47, dissolved arsenic was detected at concentrations greater than the pCUL during all four RI monitoring events at wells MW-21 and MW-22; concentrations range from 4,000 µg/L to 24,000 µg/L. Arsenic was not detected at concentrations greater than the pCUL at PZ-1. As shown on Figures 48 (cadmium), 50 (copper), 52 (nickel), and 53 (zinc), the dissolved fractions of cadmium, copper, nickel, and zinc were detected at concentrations greater than the pCULs at piezometer PZ-1. As shown on Figure 49, chromium VI was detected at a concentration of 0.010 mg/L, which exceeds the pCUL of 0.00058 mg/L at well MW-21 in March 2012.
- Stabilized Soil Area. Arsenic, cadmium, chromium VI, copper, lead, mercury, nickel, selenium, thallium, and zinc were detected in groundwater samples from below the Stabilized Soil Area at concentrations exceeding the pCULs. As shown on Figure 47, dissolved arsenic was detected at concentrations several orders of magnitude greater than the pCUL (3,290 µg/L to 285,000 µg/L). The exceedances occurred at all three wells located in this area (MW-23, MW-24, and MW-25) during each of the four RI monitoring events. Dissolved copper (Figure 50), total mercury (no figure due to limited exceedances), dissolved nickel (Figure 52), and dissolved zinc (Figure 53) were also detected in at least one sample from each of the three wells at concentrations exceeding the pCULs. Dissolved copper was detected at a maximum concentration of 2,050 µg/L; total mercury was detected at a maximum concentration of 1750 ng/L; dissolved nickel was detected at a maximum concentration of 297 µg/L; dissolved zinc was detected at a maximum concentration of 290 µg/L. As shown on Figure 49, chromium VI was detected at concentrations (0.037 mg/L and 0.018 mg/L) that exceed the pCUL (0.00058 mg/L) at well MW-23 in December 2011 and March 2012. Other metals detected above the pCULs in the Stabilized Soil Area include cadmium (Figure 48), lead (Figure 51), selenium (no figure due to limited exceedances), and thallium (no figure due to limited exceedances). These exceedances occurred at wells MW-23 and MW-24 primarily during the first two monitoring events (December 2011 and March 2012).
- South of Stabilized Soil Area. There were no metals that exceeded pCULs in samples from well I-200(s). Arsenic, copper, and zinc were detected in groundwater from at least two wells south of the Stabilized Soil Area at concentrations exceeding the pCULs. As shown on Figure 47, dissolved arsenic was detected at concentrations greater than the pCUL during all

LANDAU ASSOCIATES

four RI monitoring events at MW-15 and MW-18 and during the December 2011 and September 2012 monitoring events at MW-16. Detected concentrations of dissolved arsenic exceeding the pCUL (8 μ g/L) range from 17.1 μ g/L to 6,650 μ g/L. No other metals were detected at concentrations exceeding pCULs at well MW-15. Dissolved zinc (Figure 53) was detected at concentrations exceeding the pCULs during two or three events, but not every event, at wells MW-16 and MW-18. Dissolved copper (Figure 50) and dissolved nickel (Figure 52) were detected at a concentration exceeding the pCUL at well MW-16. The dissolved copper exceedances occurred during three of the four monitoring events and the dissolved nickel exceedance occurred during one of the four monitoring events.

8.1.3.2 Former Slip 5 Area

Groundwater samples collected within the Former Slip 5 Area include samples collected from 15 monitoring locations in the following areas:

- Western Property Boundary: I-205(s), MW-9, MW-10, MW-19, PZ-7, and Seep-1
- Former Hydraulic Test Pad Area: MW-11
- Former Slip 5 Outfall Area: MW-14, PZ-3, and SB-8 (grab sample)
- Other: I-203(s), MW-12, MW-13, MW-17, and PZ-6.

Analytical results for constituents detected in groundwater within Former Slip 5 Area during the RI and a comparison to pCULs are provided in Table 13. Based on the comparison, the constituents detected at concentrations exceeding the pCUL in groundwater within Former Slip 5 Area include some SVOCs (chrysene and BEHP); cPAHs; PCBs (Aroclors 1248, 1254, and 1260); and metals (arsenic, cadmium, and nickel). VOCs and TPH were not detected at concentrations exceeding the pCULs. The occurrence of pCUL exceedances in groundwater at each well located within the Former Slip 5 Area is summarized in Table 16. A discussion of the constituents detected and the concentrations exceeding the pCULs is provided below.

VOCs, SVOCs, and TPH

VOCs, TPH, and most SVOCs were not detected at concentrations exceeding the pCULs at any of the groundwater monitoring locations located within the Former Slip 5 Area. The only SVOC detected above the pCUL (1.2 μ g/L) was BEHP, which was detected during the December 2011 sampling event at wells MW-12, MW-13, and MW-17 at concentrations of 1.5 μ g/L, 3.3 μ g/L and 3.7 μ g/L, respectively. BEHP was not detected at wells MW-12, MW-13, or MW-17 during the three subsequent sampling events.

cPAHs

No cPAHs were detected at nine locations within the Former Slip 5 Area. cPAHs concentrations greater than the pCULs were detected at six groundwater monitoring locations within the Former Slip 5

LANDAU ASSOCIATES

Area. The exceedances occurred in March, June, and September 2012. The detected cPAHs concentrations are shown on Figure 45 and summarized by area below:

- Western Property Boundary. cPAHs were not detected at three of the wells near the western property boundary. Three of the six locations where cPAHs were detected at concentrations exceeding the pCULs are located near the western property boundary (MW-10, PZ-7, and the seep). The cPAHs concentrations (calculated cPAHs TEQ) exceeding the pCUL (0.0002 μg/L) range from 0.0005 μg/L to 0.152 μg/L. The highest concentration occurred at the seep in September 2012.
- **Hydraulic Test Pad Area.** No cPAHs were detected in the groundwater at well MW-11 during the RI. As noted above, cPAHs were detected at concentrations exceeding the pCUL at well MW-10, which is located downgradient of the hydraulic test pad area.
- Former Slip 5 Outfall Area. Except for chrysene, cPAHs were not detected in the groundwater at wells MW-14 and PZ-3 or in the grab sample collected at boring SB-8. Chrysene was detected at a concentration (0.1 µg/L) slightly exceeding the pCUL (0.018 µg/L) during the June 2012 sampling event at well MW-14.
- Other. No cPAHs were detected in samples from wells MW-13 and PZ-6. cPAHs exceedances occurred twice at wells I-203(s) and MW-17 and once at well MW-12. The cPAHs TEQ concentrations range from 0.0005 µg/L to 0.0016 µg/L.

PCBs

PCBs were not detected in samples from 8 of the 14 sampling locations in the Former Slip 5 Area or in the grab sample collected from that area. PCBs (Aroclors 1248, 1254, and 1260) were detected in groundwater within the Former Slip 5 Area during all four RI monitoring events. The detections occurred at wells MW-10, MW-12, MW-13, and MW-17, and I-203(s) and the seep, as shown on Figure 46. All of the detected concentrations exceed the pCUL as described below.

- Western Property Boundary. PCBs were not detected in any samples from four of the wells in this area. PCBs were detected twice (June and September 2012) at well MW-10 and twice (March and June 2012) at the seep. The total PCBs concentration detected at well MW-10 (0.0060 μg/L) was less than the total PCBs concentrations detected at the seep (0.0097 μg/L and 0.011 μg/L).
- **Hydraulic Test Pad Area.** No PCBs were detected in the groundwater at well MW-11. As noted above, PCBs were detected at concentrations exceeding the pCUL at well MW-10, which is located downgradient of the hydraulic test pad area.
- **Former Slip 5 Outfall Area.** No PCBs were detected in the groundwater samples from wells MW-14 and PZ-3 or in the grab sample collected at boring SB-8.
- Other. PCBs were not detected in any samples from piezometer PZ-6. PCBs were detected at concentrations exceeding the pCULs during all four monitoring events at wells MW-13 and I-203(s). The concentrations range from 0.011 μg/L to 0.015 μg/L at well MW-13 and 0.010 μg/L to 0.024 μg/L at well I-203(s). PCBs concentrations exceeding the pCUL also occurred in the samples collected at MW-12 in December 2011, but were not detected in samples collected during the other three monitoring events. PCBs exceedances also occurred in well MW-17 in March 2012 (0.012 μg/L) and June 2012 (0.016 μg/L).

Metals

There were no exceedances of pCULs for antimony, barium, beryllium, chromium, copper, lead, mercury, selenium, silver, and zinc in groundwater in the Former Slip 5 Area. Dissolved fractions of the following metals were detected in groundwater within the Former Slip 5 Area at concentrations exceeding the pCULs: arsenic, cadmium, and nickel. Detected concentrations are summarized by area below:

- Western Property Boundary. Arsenic, cadmium, and nickel were detected at concentrations exceeding the pCULs along the western property boundary. As shown on Figure 47, dissolved arsenic was detected at concentrations exceeding the pCULs at three of the six monitoring well locations: I-205(s), MW-10, and MW-19. Detected concentrations of arsenic exceeding the pCUL range from 25.9 µg/L to 226 µg/L. Dissolved arsenic was not detected at concentrations exceeding the pCULs at the seep. As shown on Figures 48 and 52, dissolved fractions of cadmium and nickel were detected at concentrations exceeding the pCUL at MW-9 during the September 2012 sampling event.
- **Hydraulic Test Pad Area.** Only one exceedance of pCULs for metals at MW-11 was detected during the RI. Arsenic was detected at 9.4 µg/L during the December 2011 monitoring event. As noted above, dissolved arsenic was detected at concentrations exceeding the pCUL at well MW-10, which is located downgradient of the hydraulic test pad area, although the source is not likely to be the hydraulic test pad area.
- Former Outfall Area. Arsenic and cadmium were detected at concentrations exceeding the pCULs in groundwater in the Former Outfall Area. Dissolved arsenic was detected at a concentration of 14.4 µg/L at PZ-3 in September 2012. Dissolved cadmium was detected at concentrations greater than the pCUL (0.25 µg/L) at boring SB-8 and during the December 2011, March 2012, and September 2012 monitoring events at MW-14. Cadmium concentrations exceeding the pCULs range 0.30 µg/L to 0.4 µg/L.
- Other. Dissolved arsenic is the metal most frequently detected at concentrations greater than the pCULs in the Former Slip 5 Area. At wells MW-12, MW-13, and MW-17, and at piezometer PZ-6, arsenic concentrations exceeding the pCUL range from 9.6 µg/L to 8,010 µg/L.

8.1.3.3 South of Former Slip 5 Area

Groundwater samples collected in the South of the Former Slip 5 Area include samples collected from 12 monitoring locations in the following areas:

- Western Property Boundary: I-206(s), MW-7, PZ-8
- Southern Property Boundary: MW-5 and MW-6
- Eastern Property Boundary: MW-4, PZ-2
- Former Washdown/Aqueous Degreaser Area: MW-1, MW-2, and MW-3
- North of Building 14-01: PZ-4
- Storage Tank Area: MW-8.

Analytical results for constituents detected in groundwater in the South of the Former Slip 5 Area during the RI and a comparison to pCULs are provided in Table 14. Based on the comparison, the constituents detected at concentrations exceeding the pCUL in groundwater in the South of the Former Slip 5 Area during the RI include VOCs [acrylonitrile, TCE, cis-1,2-DCE, 1,1-dichloroethene, and vinyl chloride]; cPAHs [benzo(b)fluoranthene]; and metals (arsenic, nickel, total mercury, and chromium VI). SVOCs, TPH, and PCBs were not detected at concentrations exceeding the pCULs. The occurrence of pCUL exceedances in groundwater at each well located in the South of the Former Slip 5 Area is summarized in Table 17. A discussion of the constituents detected and concentrations exceeding the pCULs is provided below.

VOCs, SVOCs, and TPH

SVOCs and TPH were not detected at concentrations exceeding the pCULs at any of the groundwater monitoring locations located in the South of the Former Slip 5 Area. VOCs were detected in groundwater in the South of the Former Slip 5 Area during all four RI monitoring events. The only detections occurred at wells MW-6 and MW-7, near the southern property boundary. Figure 54 shows concentrations for TCE during all four monitoring events.

- Western Property Boundary. TCE was detected once at a concentration (1.8 μ g/L) exceeding the pCUL (1.4 μ g/L) at one well, MW-7, near the western property boundary and the southern property boundary. The exceedance occurred in December 2011.
- Southern Property Boundary. TCE; cis-1,2-DCE; 1,1-DCE; and vinyl chloride were detected at concentrations exceeding the pCULs in one well along the southern property, MW-6. The exceedances occurred during all four monitoring events, except for 1,1-DCE, which only had one exceedance at 4.3 μg/L (compared to a pCUL of 3.2 μg/L) in June 2012. Concentrations of TCE range from 71 μg/L to 150 μg/L (compared to a pCUL of 1.4 μg/L); concentrations of cis-1,2-DCE range from 140 μg/L to 260 μg/L (compared to a pCUL of 130 μg/L); and concentrations of vinyl chloride range from 94 μg/L to 140 μg/L (compared to a pCUL of 0.53 μg/L). A single acrylonitrile exceedance occurred at MW-6 in December 2011. This exceedance was J flagged as an approximate concentration.
- **Eastern Property Boundary.** No VOCs were detected at concentrations exceeding the pCULs in the groundwater at wells MW-4 and PZ-2.
- **Former Washdown/Aqueous Degreaser Area:** No VOCs were detected at concentrations exceeding the pCULs in the groundwater samples from wells MW-1, MW-2, and MW-3.
- **North of Building 14-01:** No VOCs were detected at concentrations exceeding the pCULs in the groundwater samples from piezometer PZ-4.
- **Storage Tank Area:** No VOCs were detected at concentrations exceeding the pCULs in the groundwater samples from well MW-8.

cPAHs

cPAHs were only detected once in one groundwater sample from near the southern property boundary, at well MW-5. In March 2012, benzo(b)fluoranthene was detected at a concentration of $0.007 \,\mu\text{g/L}$, which exceeds the pCUL of $0.002 \,\mu\text{g/L}$. The cPAHs TEQ $(0.0007 \,\mu\text{g/L})$ also exceeds the cPAHs TEQ pCUL (0.0002 µg/L). Benzo(b)fluoranthene was not detected during the other three monitoring events at well MW-5. The detected cPAHs concentrations are shown on Figure 45.

PCBs

As shown on Figure 46 and summarized in Table 14, PCBs were not detected in samples from any of the groundwater monitoring locations located in the South of the Former Slip 5 Area.

M etals

There were no exceedances of pCULs for antimony, barium, beryllium, cadmium, chromium, copper, lead, selenium, silver, thallium, and zinc in groundwater in the South of the Former Slip 5 Area. Dissolved arsenic and nickel, total mercury, and chromium VI, were detected in groundwater in the South of the Former Slip 5 Area at concentrations exceeding the pCULs. Detected concentrations exceeding the pCUL are summarized by area below:

- Western Property Boundary. No metals except arsenic were detected at concentrations exceeding the pCULs in samples from near the western property boundary. As shown on Figure 47, dissolved arsenic was detected at concentrations exceeding the pCUL only at wells I-206(s) and MW-7. No concentrations of arsenic exceeding the pCUL were detected at piezometer PZ-8. The exceedance at MW-7 occurred during the March 2012 monitoring event. The exceedances at I-206(s) occurred during all four monitoring events. Detected concentrations of arsenic exceeding the pCUL range from 8.7 µg/L to 464 µg/L.
- Southern Property Boundary. Nickel and total mercury were detected at concentrations exceeding the pCULs in samples from near the southern property boundary. As shown on Figure 52, a concentration of dissolved nickel (10.3 μg/L) exceeded the pCUL (8.2 μg/L) in a single sample collected from well MW-5 during the first monitoring event (December 2011). A single total mercury exceedance occurred in a duplicate sample at MW-6 during March 2012 with a concentration of 37.4 ng/L. The result was J flagged as an estimated value. The concentration in the primary sample collected at this time was below the mercury pCUL.
- Eastern Property Boundary. No metals except arsenic were detected at concentrations exceeding the pCUL in samples from near the eastern property boundary; dissolved arsenic was detected at concentrations exceeding the pCUL only at piezometer PZ-2. As shown on Figure 47, dissolved arsenic was detected at concentrations exceeding the pCUL (8 µg/L), in March and September 2012. The arsenic concentrations exceeding the pCUL range from $9.7 \mu g/L$ to $20.0 \mu g/L$.
- Former Washdown/ Aqueous Degreaser Area. No metals except dissolved arsenic and chromium VI were detected at concentrations exceeding the pCUL in samples from this area. As shown on Figure 49, the chromium VI exceedances occurred at all three wells (MW-1, MW-2, and MW-3) and concentrations range from 0.010 mg/L to 0.019 mg/L compared to a

LANDAU ASSOCIATES

pCUL of 0.00058 mg/L. As shown on Figure 47, dissolved arsenic was detected at concentrations exceeding the pCUL in samples from MW-1 during all four monitoring events. The arsenic concentrations exceeding the pCUL range from $10.7 \mu g/L$ to $11.9 \mu g/L$.

- North of Building 14-01. No metals except dissolved arsenic were detected at concentrations exceeding the pCUL in samples from the area north of Building 14-01; dissolved arsenic was detected at concentrations exceeding the pCUL in samples from PZ-4 during all four monitoring events. Dissolved arsenic concentrations range from 22.0 μ g/L to 26.2 μ g/L.
- **Storage Tank Area.** No dissolved metals were detected at concentrations above the pCUL in groundwater at the former storage tank area (well MW-8).

8.1.4 GROUNDWATER FIELD PARAMETERS.

Conductivity, pH, temperature, turbidity, DO, and ORP were measured in all monitoring wells, piezometers and the direct-push boring, SB-8, from which a groundwater sample was collected; the results are presented in Tables 12, 13, and 14.

Conductivity measured in groundwater ranges from 13.1 to 26,823 micro-Siemens per centimeter (μ S/cm). The highest conductivity measurement occurred during the first groundwater monitoring event at monitoring well MW-17 located in the Former Slip 5 Area. Elevated conductivity measurements also occurred at piezometer PZ-7 (16,504 μ S/cm) and monitoring well MW-13 (22,255 μ S/cm), located in the Former Slip 5 Area, and at well MW-5 (20,248 μ S/cm), located along the southern property boundary, during the first monitoring event. Conductivity measurements were much less during the other three groundwater monitoring events with a maximum of 9,596 μ S/cm measured at I-203(s), also located in the Former Slip 5 Area.

Groundwater pH ranges from 5.1 to 13.6, with the maximum measurement occurring at monitoring well MW-24. At this well, and well MW-23, which are both screened in the groundwater below the stabilized soil material, the groundwater pH levels were greater than 9.0 during each sampling event. Groundwater pH levels at or greater than 9.0 also occurred at wells MW-20 (9.8), MW-22 (9.0), MW-25 (10.5), and I-104 (9.0) All of these wells are located downgradient or adjacent to the Stabilized Soil Area.

Groundwater temperature ranges from 9.3 to 20.1 degrees Celsius. The warmest groundwater temperatures occurred during the September 2012 monitoring event. DO concentrations range from 0.22 mg/L to 8.8 mg/L, with the highest concentrations at each well generally occurring during the December 2011 monitoring event. Turbidity ranged from 0.08 nephelometric turbidity units (NTU) to 300 NTU.

ORP measurements range from -485 to 354 millivolt (mv). However, ORP was negative, indicating reduced groundwater conditions, in approximately three-quarters of the wells during the December 2011 and September 2012 monitoring events and in approximately two-thirds of the wells during the March 2012 and June 2012 monitoring events.

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

8.1.5 SOIL CHEMICAL AND FIELD SCREENING RESULTS

The following gaps in the understanding of the soil quality at the Site and the potential for recontamination of the LDW sediments by leaching of contaminants to groundwater or by erosion were identified:

- A comprehensive soil investigation at the Thompson property to evaluate the source of arsenic in groundwater at wells I-205(s) and I-206(s) and to evaluate the potential for other PCOCs to be present at the Site.
- Soil data for metals, other than arsenic, and other PCOCs (SVOCs). Ecology notes that lead, silver, and zinc were detected in 1983 and 1988 groundwater investigations at concentrations above preliminary groundwater to sediment SSLs developed in 2004 by SAIC for Ecology for Slip 4 of the LDW (SAIC 2004), and that metals, other than arsenic, may be present in fill material used at the Site.
- Evaluation of the potential for bank erosion to impact sediments.
- Characterization of the different fill materials placed in the Former Slip 5 Area during different periods and potentially imported from different sources.

To address these data gaps, 47 soil explorations (soil borings and test pits) were completed during the RI. A total of 179 soil samples were collected from the explorations and submitted to a laboratory for analysis and three samples were collected from behind the wooden bulkhead located at the southern portion of the Site and submitted to a laboratory for chemical analysis. The samples were analyzed for an extended list of constituents, which consisted of VOCs; SVOCS; metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, chromium VI, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc); PCBs; and gasoline-range, diesel-range, and motor oil-range petroleum hydrocarbons. Field-screening was also conducted by visually inspecting the soil for staining and other evidence of environmental impact, and monitoring soil vapors for VOCs by performing headspace analysis using PID.

The results for the soil samples are discussed in this section by three general areas: North of the Former Slip 5 Area, the Former Slip 5 Area, and South of the Former Slip 5 Area, and are presented in Tables 18 through 23. The results pertaining to the area around wells I-205(s) and I-206(s) and the wooden bulkhead at the southern portion of the Site are not discussed here, but, instead, are discussed with other areas of specific concern under Section 8.2. As previously mentioned in Section 4.1.4, analytical results were reported to the MDL. Concentrations detected above the MDL, but below the RL, were qualified as estimates (J flagged) due to uncertainty in the concentration and are included in Tables 18 through 23. For non-detected constituents, only the RLs are presented in Tables 18 through 23. Analytical results for all constituents including the RLs and the MDLs are provided in tabular format in Appendix M.

In addition to summarizing the results in tabular format, concentrations of cPAHs (calculated cPAHs TEQ) are shown on Figure 55; concentrations of PCBs in soil are shown on Figure 56; concentrations of arsenic, barium, cadmium, copper, lead, and zinc in soil are shown on Figures 57 through Figures 62; and concentrations of TCE and PCE in soil are shown on Figures 63 and 64. Concentrations that have been J flagged, but are above the pCUL, are included on figures as exceeding cleanup levels. Figures are not provided for constituents without widespread exceedances. Field screening results are provided in Table 1. PID measurements less than 50 ppm are not considered to be indications of potential contamination and are not included in Table 1 or discussed below. On Figures 55 through 64, the maximum concentrations detected in soil in samples during and prior to the RI are shown for the following depth intervals: 0 to 5 ft BGS, 5 to 11 ft BGS, and greater than 11 ft BGS. Depth intervals above 11 ft BGS are typically above the groundwater table.

In general, PCOCs were not frequently found in soil at concentrations exceeding the pCULs. Arsenic, TCE, PCBs, copper, and total cPAHs TEQ exceedances occurred in soil in the South of the Former Slip 5 Area. Arsenic and total cPAHs TEQ exceedances primarily occurred in soil within the Former Slip 5 Area and in the North of the Former Slip 5 Area.

8.1.5.1 North of the Former Slip 5 Area

Soil samples collected in the North of the Former Slip 5 Area include samples collected from nine explorations in the following areas:

- Western Property Boundary (West of Stabilized Soil Area): MW-20
- Northern Property Boundary: MW-21, MW-22
- Stabilized Soil Area: MW-23, MW-24, and MW-25
- South of Stabilized Soil Area: MW-15, MW-16, and MW-18.

Arsenic concentrations detected in the above explorations during the RI are provided in Table 18 and all other detected concentrations for the soil samples collected in these explorations are provided in Table 19. A comparison of the detected concentrations to pCULs is provided in both tables. Although VOCs, individual SVOCs, and TPH were detected in some samples, none of the concentrations exceed the pCULs. Based on the comparisons, the constituents detected at concentrations exceeding the pCUL in one or more samples collected from the above explorations include cPAHs, PCBs, and metals (arsenic, cadmium, copper, lead, and zinc). A discussion of the constituents detected and the concentrations exceeding the pCULs is provided below.

In addition to those explorations listed above, soil samples were collected from explorations located in specific areas of concern in the North of the Former Slip 5 Area. These areas include the Paint Storage Area (explorations SB-9, SB-10, SB-11); the Former Diesel and Gasoline Tanks Area

(exploration TP-109); the Observed Tar-Like Substance Area (explorations TP-107 and TP-108); and the Former Slip 5 Outfall Area (explorations SB-6, SB-7, and SB-8). Analytical results for these specific areas of concern are discussed in Section 8.2.

Field Screening

No visual signs of contamination were observed in the soil and no soil vapors were detected using the PID at most of the explorations in the North of the Former Slip 5 Area (MW-15, MW-16, MW-18, MW-20, MW-21, MW-22, and MW-25). A non-hydrocarbon odor was detected in the soil samples collected at MW-23 and MW-24, which were collected from soil below the stabilized material. No soil vapors were detected using the PID at MW-23. Concentrations ranging from 0.1 to 1.5 ppm were measured using the PID at MW-24. Although not necessarily a sign of contamination, a sulfur odor was detected at depth (17 to 18.5 ft BGS) at MW-21, which is also collected from soil below the stabilized material.

VOCs, SVOCs, and TPH

VOCs; SVOCs; and TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons) were detected in the soil samples from each soil boring except MW-15. At MW-15, only VOCs and SVOCs were detected in samples of the soil. None of the VOCs, SVOCs, and TPH concentrations exceed the pCULs.

CPAHs

As shown on Figure 55, cPAHs were detected in the soil in the North of the Former Slip 5 Area, primarily in soil above 8 ft BGS. Of the 33 soil samples collected from borings MW-15, MW-16, MW-18, MW-20, MW-21, MW-22, MW-23, MW-24, and MW-25, cPAHs concentrations (calculated total cPAHs TEQ) exceeding the total cPAHs TEQ pCUL (15 μg/kg) occurred in 14 samples. The concentrations exceeding the pCUL range from 15.8 μg/kg to 303 μg/kg. No exceedances of the total cPAHs TEQ pCUL occurred in the soil samples collected from below the stabilized material. Only one sample collected from a depth greater than 9.5 ft BGS contained cPAHs at a concentration that exceeds the pCUL. This sample was collected at MW-22 located near the northern property boundary.

Concentrations of cPAHs exceeding the total cPAHs TEQ pCUL also occurred in the Former Paint Storage Area, the Observed Tar-Like Substance Area, and the Former Slip 5 Outfall Area. These exceedances are discussed in Sections 8.2.2, 8.2.4, and 8.2.5, respectively.

PCBs

PCBs were detected in just one of the 33 soil samples collected from the nine soil borings. The sample was collected from the 8- to 9.5-ft depth interval at boring MW-18, which is located south of the Stabilized Soil Area. Only PCB Aroclor 1260 was detected; the concentration (29 μ g/kg) exceeds the Aroclor 1260 pCUL of 5.4 μ g/kg and the total PCB pCUL of 1.8 μ g/kg.

Concentrations of PCBs exceeding the pCULs also occurred in the Former Paint Storage Area and the Former Slip 5 Outfall Area. These exceedances are discussed in Sections 8.2.2 and 8.2.5, respectively.

Metals

Arsenic, cadmium, copper, lead, and zinc were detected at concentrations exceeding the pCULs in one or more soil samples from locations MW-15, MW-16, MW-18, MW-20, MW-21, MW-22, MW-23, MW-24, and MW-25. Copper exceedances occurred at seven of the nine locations (MW-16, MW-20, MW-21, MW-22, MW-23, MW-24, and MW-25). Arsenic and copper exceedances occurred in the deepest sample tested at locations MW-22, MW-23, MW-24, and MW-25 (i.e., between 13.5 and 17 ft BGS) and arsenic only at MW-21. Only one location, MW-15, had arsenic exceedances only at shallow depths and not deeper than 3.5 ft BGS. Other copper exceedances occurred to depths of 6.5 ft , 9.5 ft, and 15 ft BGS at MW-20, MW-16, and MW-21, respectively. The arsenic concentrations exceeding the pCUL (7 mg/kg) range from 7.3 mg/kg to 1,640 mg/kg, and the copper concentrations exceeding the pCUL (36 mg/kg) range from 44.4 mg/kg to 804 mg/kg. Cadmium, lead, and zinc exceedances occurred in one sample collected from the 2- to 3.5-ft depth interval at MW-20, which is located west of the Stabilized Soil Area. Cadmium also exceeded the pCUL in one sample collected from 2 to 3.5 ft BGS at MW-21, which is located east of MW-20 and near the stabilized soil area.

8.1.5.2 Former Slip 5 Area

Soil sampling explorations located within the Former Slip 5 Area include MW-9, MW-10, MW-11, MW-12, MW-13, MW-13B, MW-14, MW-17, MW-19, SB-2, SB-3, SB-4, SB-5, SB-12, TP-104, TP-105B, TP-106B, TOWPATHEXC1, TOWPATHEXC12, and PIVEXC1. These explorations are divided into groups based on their location within the different fill material placed in the Former Slip 5 Area during different periods as follows:

- Fill A (1900s-1946 random fill consisting of gravel, sand, slag, demolition waste, and crushed rocks): MW-14
- Fill B (1946-1960 random fill): MW-9, MW-10, MW-11, TP-104, TP-105B, TP-106B, and TOWPATHEXC1.

- Fill C (1946-1960 some random fill along with fill from offsite sources): MW-17, MW-19, SB-3, SB-4, and SB-12
- Fill D (1960-1965 slag, construction, demolition debris, and imported soil): PIVEXC1 and SB-5
- Fill E (1965-1966 Imported construction quality sand fill material): SB-2, MW-12, MW-13, MW-13B, and TOWPATHEXC12.

The exploration locations relative to the different fill materials are shown on Figure 65.

Arsenic concentrations detected in the above explorations during the RI are provided in Table 20 and all other detected concentrations for the soil samples collected in these explorations are provided in Table 21. A comparison of the detected concentrations to pCULs is provided in both tables. Based on the comparison, the constituents detected at concentrations exceeding the pCUL in one or more samples from the above explorations include cPAHs; PCBs; gasoline-range petroleum hydrocarbons; one SVOC (napthalene); and metals (arsenic, barium, cadmium, total chromium, chromium VI, copper, lead, nickel, mercury, thallium, and zinc). A discussion of the constituents detected and the concentrations exceeding the pCUL is provided below.

In addition to representing different fill material, exploration MW-11 was conducted in the Hydraulic Test Pad Area. Analytical results for MW-11 are discussed below and in Section 8.2.

Fill A

PCBs were not detected in any samples from this area. VOCs (acetone, methylene chloride, 2-butanone, and carbon disulfide); SVOCs; cPAHs; TPH (diesel-range and oil-range petroleum hydrocarbons); and metals were detected in the soil at MW-14, but only cPAHs (calculated total cPAHs TEQ), arsenic, and copper exceed pCULs. The concentrations exceeding the cPAHs TEQ pCUL (15 μg/kg) range from 19 μg/kg to 54 μg/kg. The exceedances occurred between 5 and 9.5 ft BGS. A single arsenic exceedance occurred from 8 to 9.5 ft BGS with a concentration (7.2 mg/kg) slightly over the pCUL (7 mg/kg). Copper exceedances with concentrations of 37.1 mg/kg and 42.8 mg/kg occurred at sample depths from 2 to 3.5 ft BGS and 13 to 14.5 ft BGS, respectively. No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at MW-14. No slag was observed at this location.

Fill B

VOCs (primarily acetone, methylene chloride, and carbon disulfide); SVOCs; cPAHs; PCBs (Aroclors 1248, 1254, and 1260); TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); and metals were detected in the soil at the explorations completed in the Fill B material.

Concentrations of VOCs; diesel-range, oil-range petroleum, and gasoline-range hydrocarbons; and SVOCs detected in the soil samples do not exceed the pCULs.

PCBs and gasoline-range petroleum hydrocarbons were only detected in soil samples from boring MW-10. The detections were at depth, between 8 ft and 15 ft BGS. The detected concentrations of gasoline-range petroleum hydrocarbons (7.8 mg/kg and 8.7 mg/kg) were well below the pCULs of 100 mg/kg and 30 mg/kg. The detected PCBs concentrations for Aroclor 1254 (160 μ g/kg) and Aroclor 1260 (64 μ g/kg) in a single sample exceed the pCULs of 0.29 μ g/kg and 5.4 μ g/kg, respectively. The total PCBs concentration (293 μ g/kg) also exceeds the total PCBs pCUL of 1.8 μ g/kg.

cPAHs were detected at concentrations exceeding the pCULs in one or more samples from MW-9, MW-10, MW-11, and IT-TOWPATHEXC1-B(.8). The only metals detected at concentrations exceeding a pCUL at the explorations completed in the Fill B material were arsenic and copper. Of the 16 soil samples collected from these explorations, three samples exceeded the pCUL for arsenic (7 mg/kg). Arsenic was detected at 11.1mg/kg and 7.8 mg/kg in samples collected from 8 to 9.5 ft BGS at MW-9 and MW-11, respectively. The other arsenic exceedance was detected in the MW-10 sample from a depth of 13.5 ft to 15 ft BGS at a concentration of 209 mg/kg pCUL. The soil boring log for MW-10, provided in Appendix C, indicates that wood chunks are present from about 12.5 to 17.5 ft BGS. Three samples exceeded the pCUL for copper of 36 mg/kg. These exceedances occurred in samples from MW-9, TOWPATHEXC1, and MW-11 with concentrations ranging from 38.7 to 54.2 mg/kg.

No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at any of the explorations. No slag material was observed at any of the explorations.

Fill C

VOCs (primarily acetone, methylene chloride, and carbon disulfide); SVOCs; cPAHs; PCBs (Aroclors 1254 and 1260); TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); and metals were detected in the soil at the explorations completed in the Fill C material. Concentrations of cPAHs; PCBs; TPH-G; and metals (arsenic, barium, cadmium, chromium VI, copper, lead, nickel, thallium, and zinc) exceed the pCULs in one or more samples.

Concentrations of cPAHs (calculated cPAHs TEQ) exceeding the cPAHs TEQ pCUL were detected. The maximum depth at which the exceedances occurred was 21.5-23 ft BGS at MW-17; however, no sample was tested below the deepest exceedance at MW-19. The cPAHs TEQ concentrations exceeding the pCUL range from 16 μ g/kg to 482 μ g/kg. The maximum concentration occurred at MW-17 at a depth of 14-15.5 ft BGS. A single TPH-G exceedance also occurred from 15.5-17 ft BGS at MW-17 with a concentration of 33 mg/kg.

Concentrations of PCB Aroclors 1254 and 1260 exceeding the pCUL were detected at soil borings MW-17, SB-3, SB-4, and SB-12. The total PCBs concentrations also exceed the total PCBs pCUL at these locations. At MW-17, the exceedances occurred between 2 ft and 17 ft BGS. At SB-3, the exceedances occurred between 5 ft and 7 ft BGS. A deeper sample was not collected at SB-3 due to an obstruction below 7 ft. At SB-4, the exceedances occurred between 2 ft and 6.5 ft and, at SB-12, exceedances only occurred in the 2- to 3.5-ft depth interval. The total PCBs concentrations range from 49 µg/kg to 1,780 µg/kg compared to a total PCBs pCUL of 1.8 µg/kg.

Arsenic, barium, cadmium, chromium VI, copper, lead, nickel, thallium, and zinc were detected at concentrations exceeding the pCULs in one or more of the explorations completed in Fill C material. The exceedances primarily occurred at MW-17 and extended to a depth of 17 ft BGS, although arsenic and copper were detected at a concentration exceeding the pCUL at 21.5 to 23 ft BGS. At SB-3, copper exceeded the pCUL in the sample from 5 to 5.5 ft BGS and arsenic, copper, and nickel exceedances occurred in the deepest sample tested (6.5 to 7 ft BGS). A deeper sample was not collected at SB-3 due to poor recovery of soil in the sampler and an obstruction at 11 ft BGS. At SB-12, lead was detected at a concentration exceeding the pCUL in the shallowest soil sample tested (2 to 3 ft BGS), cadmium and copper exceedances occurred at all sample intervals tested except the deepest, and an arsenic exceedance occurred in the shallowest sample tested (2 to 3.5 ft BGS) and copper, arsenic, and lead exceedances occurred in the shallowest sample tested (2 to 3.5 ft BGS) and copper and arsenic exceedances also occurred in the sample from 5 to 6.5 ft BGS. At MW-19, arsenic exceedances occurred in three samples and a single copper exceedance occurred from depths between 5 to 14.5 ft BGS.

No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at any of the explorations except MW-17, SB-3, and SB-12. Slag material was observed at borings MW-17 and SB-3. Slag material was encountered from 10 ft to 11 ft BGS at MW-17 and in the upper 7.0 ft at SB-3. At MW-17, a sulfur odor was observed between 14 and 20 ft BGS.

Fill D

VOCs (primarily acetone, methylene chloride, and carbon disulfide); SVOCs; cPAHs; PCBs (Aroclors 1254 and 1260); TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); and metals were detected in the soil at the explorations completed in the Fill D material. Concentrations of cPAHs, PCBs, copper, and mercury in one or more soil samples exceed the pCULs.

Concentrations of cPAHs (calculated cPAHs TEQ) exceeding the cPAHs TEQ pCUL occurred in each sample tested at SB-5, including the deepest sample, which was collected from the 16- to 17.5-ft depth interval. The cPAHs TEQ concentrations exceeding the pCUL range from 18 μ g/kg to 8,394 μ g/kg. Concentrations of PCB Aroclors 1254 and 1260 exceeding the pCUL were detected only in

the soil sample collected at the 2- to 3.5-ft depth interval at SB-5. The total PCBs concentration (82 μ g/kg) also exceeds the total PCBs pCUL (1.8 μ g/kg). Mercury, arsenic, and copper were the only metals detected at concentrations exceeding pCULs. A single exceedance of mercury and arsenic each occurred in the shallowest sample depth (2 to 3.5 ft BGS) at SB-5. Copper exceedances occurred in three samples down to a depth of 9.5 ft BGS.

No visual signs of potential contamination were observed in the soil, no soil vapors were detected using the PID, and no slag material was observed.

Fill E

VOCs (primarily acetone, methylene chloride, and carbon disulfide); SVOCs; cPAHs; PCBs (Aroclors 1254 and 1260); TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); and metals were detected in the soil at the explorations completed in the Fill E material. Concentrations of cPAHs, PCBs, TPH, and metals (arsenic, cadmium, chromium, copper, lead, and nickel) exceed the pCULs. None of the exceedances occurred at SB-2.

Concentrations of cPAHs (calculated cPAHs TEQ) exceeding the cPAHs TEQ pCUL were detected in samples from soil borings MW-12, MW-13, MW-13B, and TOWPATH-EXC12. The exceedances occurred at several depth intervals, but also in the deepest sample tested at each location. The deepest that an exceedance occurred was at depth interval 23 to 24.5 ft BGS at MW-12. cPAHs only exceed the pCULs in the two deepest samples at MW-12. PCBs and arsenic were also detected at concentrations exceeding the pCUL in these two samples and gasoline-range petroleum hydrocarbons exceed the pCUL of 30 mg/kg in the shallower of the two soil samples. The soil at these depths was black and contained organic material, whereas soil above the two samples was grey or brown and contained trace to no organics. The total PCBs concentrations for the two samples were 292 µg/kg and 40 µg/kg. PCBs were also detected at concentrations exceeding the pCULs at depth at MW-13B. The total PCBs concentrations range from 3,420 µg/kg to 12,000 µg/kg and occurred in samples collected from 6.5 to 13.5 ft BGS. A concentration of gasoline-range petroleum hydrocarbons exceeds the pCUL of 100 mg/kg in the soil sample collected from the 6.5- to 8-ft depth interval at MW-13B.

Concentrations of arsenic, lead, cadmium, chromium, copper, and nickel exceeding the pCULs were detected in the samples collected below 9.5 ft at boring MW-13 and cadmium, copper, and lead were detected at concentrations exceeding the pCUL in samples between 6.5 to 9.5 ft BGS at MW-13B. Cadmium and copper exceedances were detected at MW-12 from one sample at a depth of 18 to 19.5 ft BGS. Arsenic exceedances also occurred at MW-13B at three samples depths between 6.5 to 13.5 ft BGS.

No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at any of the explorations except MW-13 and MW-13B. Slag material was observed at borings MW-13 from 10 ft to 14 ft BGS and at MW-13B from 9.5 ft. Odors were noted at soil borings MW-13 and MW-13B. At MW-13, the odors were slight, but not identified. At MW-13B, a hydrocarbon-like odor was observed in the sample collected from 6.5 to 8 ft BGS.

8.1.5.3 South of the Former Slip 5 Area

Soil samples collected in the South of the Former Slip 5 Area include samples collected from 25 explorations in the following areas:

- Western Property Boundary: MW-7
- Southern Property Boundary: MW-5, MW-6
- Eastern Property Boundary: MW-4, HBE-1, HBE-2, HBE-3, HBE-SS1, EXT1, EXT2, EXT3, Bldg-14-11Exc1, Bldg-14-11Exc2, Bldg-14-11Exc3, Bldg-14-11Exc4, and Bldg-14-11Exc5, BLDG14-11-SURF, PIVExc2, TowpathExc13
- Northern Portion of Building 14-01: TRENCH2, TRENCH3, TRENCH4, TRENCH5, OuttakesExc-1, OuttakesExc-2, OuttakesExc-3, and OuttakesExc-4.

Arsenic concentrations detected in the above explorations during the RI are provided in Table 22 and all other detected concentrations for the soil samples collected in these explorations are provided in Table 23. A comparison of the detected concentrations to pCULs is provided in both tables. Based on the comparison, the constituents detected at concentrations exceeding the pCUL in one or more samples from the above explorations include TCE, cPAHs; PCBs; and metals (arsenic and copper). A discussion of the constituents detected and the concentrations exceeding the pCUL is provided below.

In addition to those explorations listed above, soil samples were collected from explorations located in specific areas of concern in the South of the Former Slip 5 Area. These include the Former Washdown/Aqueous Degreaser Area (SB-1, MW-1, MW-2, MW-3, and Bldg1401-Footing-Exc1, Bldg1401-FootingExc3, Bldg1401-Footing-Exc5, Bldg1401-FootingExc8, Bldg1401-FootingExc10, and Bldg1401-FootingExc15) and the Former Washdown System Collection Tanks/Loading Dock Area (MW-8 and TOWPATHEXC2 through TOWPATHEXC7). Analytical results for these specific AOCs are discussed in Section 8.2.

Field Screening

No visual signs of contamination were observed in the soil and no soil vapors were detected above 50 ppm using the PID at the explorations located in the South of the Former Slip 5 Area.

VOCs, SVOCs, and TPH

VOCs (primarily methylene chloride and acetone; TCE, PCE, and vinyl chloride close to southern property boundary); SVOCs; PCBs; and TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons) were detected in the soil in the South of the Former Slip 5 Area. Only TCE was detected at concentrations exceeding pCULs. As shown on Figure 63, the TCE exceedance occurred at soil boring MW-6, which is located on the southern property boundary, at depth intervals 8 to 9.5 ft and 14 to 15.5 ft.

cPAHs

As shown on Figure 55, cPAHs were detected in some soil samples collected from the South of the Former Slip 5 Area, primarily in soil above 9.5 ft BGS. No cPAHs were detected at depths greater than 11 ft BGS. Of the 39 soil samples collected and analyzed for cPAHs from the explorations located in the South of the Former Slip 5 Area, cPAHs concentrations (calculated cPAHs TEQ) exceeding the cPAHs TEQ pCUL (15 μg/kg) occurred in 14 soil samples. The exceedances occurred at soil borings MW-4, MW-5, MW-6, and MW-7; two excavations and one surface sample located in the former Building 14-11 area; the PIVEXC 2; and at three trench excavations located inside Building 14-01. The concentrations exceeding the pCUL range from 15.5 μg/kg to 537 μg/kg.

PCBs

As shown on Figure 56, PCBs were detected in eight of the 52 soil samples collected from the 27 soil explorations. All of the detected concentrations exceed pCULs. Two of the exceedances occurred in soil samples collected from the 8- to 9.5-ft depth interval at soil borings MW-5 and MW-6 (southern property boundary) and two exceedances occurred in the soil samples collected between 2 and 6.5 ft BGS at MW-7 (western property boundary). The remaining exceedances occurred in construction-related soil samples collected from two shallow excavations (TRENCH3 and TRENCH5), inside Building 14-01, and in two shallow samples collected in the former Building 14-11 area. The total PCBs concentrations range from 14 µg/kg to 660 µg/kg. The highest concentrations occurred in the shallow soil sample at MW-7.

Concentrations of PCBs exceeding the pCULs also occurred in the Former Washdown/Aqueous Degreaser Area and the Former Washdown System Collection Tanks/Loading Dock Area. These exceedances are discussed in Sections 8.2.9 and 8.2.10.

Metals

Arsenic and copper are the only metals detected at concentrations exceeding the pCULs in soil samples from the South of the Former Slip 5 Area. As shown on Figure 57, arsenic exceedances occurred

at soil boring MW-7 (24.5 mg/kg) and MW-5 (8.1 mg/kg) in the soil samples collected from 5 to 6.5 ft BGS. Copper exceedances occurred only near the eastern property boundary at HBE-SS1, EXT2, EXT3, Bldg14-11EXC1, and BLDG14-11-SURF. A total of six samples from these locations exceeded the pCUL (36 mg/kg) with concentrations ranging from 41.1 to 61.4 mg/kg.

Concentrations of arsenic exceeding the pCULs also occurred in the vicinity of I-206(s). These exceedances are discussed in Section 8.2.7.

8.1.6 STORM DRAIN SYSTEM CHEMICAL RESULTS

The storm drain investigation was conducted to fill the following data gaps:

- Data on the Site storm drain system solids that have accumulated since the last cleaning
- Characterization of stormwater discharged from Outfalls A and B for Site PCOCs
- Information on the source of PCOCs in storm drain system solids, if any
- Information on the full length of the 12-inch-diameter corrugated pipe located south of Building 14-01.

Stormwater and storm drain solid analytical results were reported to the MDL. Concentrations detected above the MDL, but below the RL, were qualified as estimates (J flagged) due to uncertainty in the concentration and are included in Table 24 (stormwater) and Table 25 (storm drain solids). For non-detected constituents, only the RLs are presented in Tables 24 and 25. Analytical results for all constituents including the RLs and the MDLs are provided in tabular format in Appendix N.

8.1.6.1 Stormwater

As previously discussed in Section 4.5.2, four stormwater samples were collected to evaluate the quality of stormwater discharging to the LDW via Outfalls A (MH32) and B (MH80). Sample locations are shown on Figure 25. The samples were analyzed for VOCs; SVOCs; metals (including mercury and chromium VI); petroleum hydrocarbons; PCBs; TDS; and total suspended solids (TSS). Only some VOCs, SVOCs, and metals were detected in the samples. A summary of the detected constituents and the concentrations is provided in Table 24. Although the stormwater samples were analyzed only for total metals and, except for mercury, the groundwater pCULs for metals apply only to the dissolved fraction, detected concentrations in the stormwater samples were compared to the groundwater pCULs. As shown in Table 24, during the March sampling event only BEHP, cadmium, and zinc, and during the April sampling event only zinc, were detected in stormwater samples collected at MH32 (Outfall A) at concentrations exceeding the pCULs.

During the March sampling event, only BEHP, and during the April sampling event no constituents, were detected in the stormwater samples collected at MH80 (Outfall B) at concentrations greater than the pCUL.

8.1.6.2 Storm Drain Solids

As previously discussed in Section 4.5.1, 36 samples of the solids present in the storm drain structures were collected in September 2011 and submitted for laboratory analysis. The data were compared to SMS criteria or LDW PRGs to evaluate the potential for storm drain solids, if they were transported to the LDW, to impact sediment. LDW PRGs were used instead of SMS criteria for PCBs, arsenic, cPAHs TEQ, and dioxins/furans TEQ when applicable. The comparison indicates that some metals, PCBs, cPAHs, and some SVOCs (primarily phthalates and benzyl alcohol) were present in some solids at concentrations exceeding the LDW PRG or SMS criteria. As shown on Figures 66 and 67, metals (arsenic, cadmium, chromium, mercury, and zinc) and PCBs were detected at concentrations exceeding the SMS criteria or PRGs in samples from some CBs located around Building 14-01 (North, South, East, and West) Areas and in four other areas identified as Building 14-13 Area, Building 14-02/14-03 Area, Isaacson West Area, and Isaacson East Area. Results are summarized in Table 25 and discussed by area below.

Building 14-01 South, East, and West Areas

Results for 2011 storm drain solids sampling in these areas indicate that benzyl alcohol; BEHP; butylbenzylphthalate; dimethylphthalate; n-nitrosodiphenylamine (East Area only); phenol (East and West Areas only); PAHs; cadmium; zinc; and mercury (East Area only) were present in the storm drain solids at concentrations exceeding the SMS criteria. Additionally, cPAHs, PCBs, and arsenic concentrations exceeded the LDW PRGs in these three areas. Dioxins/furans were detected in one sample from the South Area, but the TEQ concentration did not exceed the LDW PRG. Data for the storm drain solids collected from Building 14-01 South, East, and West areas are presented in Tables 26, 27, and 28, respectively.

Building 14-01 North Area

Results from 2011 storm drain solids sampling in this area indicate that benzyl alcohol; butylbenzylphthalate; dimethylphthalate; BEHP; 4-methylphenol; PAHs; zinc; and mercury were present in the storm drain solids at concentrations exceeding the SMS criteria. Additionally, cPAHs, PCBs, and arsenic concentrations exceeded the LDW PRGs. Data for the storm drain solids collected from Building 14-01 North Area is presented in Table 29.

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

Building 14-13 Area

Results from 2011 storm drain solids sampling in this area indicate that benzyl alcohol, butylbenzylphthalate, di-n-butylphthalate, dimethylphthalate, BEHP, pentachlorophenol (PCP), phenol, PAHs, cadmium, and zinc were present in the storm drain solids at concentrations exceeding the SMS criteria. Additionally, cPAHs, PCBs, and arsenic concentrations exceeded the LDW PRGs. Data for the storm drain solids collected from Building 14-13 Area is presented in Table 30.

Building 14-02/14-03 Area

Results from 2011 storm drain solids sampling in this area indicate that benzoic acid, benzyl alcohol, butylbenzylphthalate, dimethylphthalate, BEHP, 4-methylphenol, phenol, PAHs, cadmium, total chromium, copper, lead, mercury, and zinc were present in the storm drain solids at concentrations exceeding the SMS criteria. Additionally, cPAHs, PCBs, and arsenic concentrations exceeded the LDW PRGs. Data are presented in Table 31.

Isaacson East Area

Results from 2011 storm drain solids sampling in this area indicate that benzoic acid, benzyl alcohol, butylbenzylphthalate, BEHP, 4-methylphenol, PAHs, chromium, and zinc were detected in the storm drain solids at concentrations exceeding the SMS criteria. Additionally, cPAHs, PCBs, and arsenic concentrations exceeded the LDW PRGs. Data are presented in Table 32.

Isaacson West Area

Results from 2011 storm drain solids sampling in this area indicate that benzoic acid, benzyl alcohol, butylbenzylphthalate, BEHP, cadmium, chromium, and zinc were detected in the storm drain solids at concentrations exceeding the SMS criteria. Additionally, cPAHs, PCBs, and arsenic concentrations exceeded the LDW PRGs. Dioxins/furans where detected in one sample, but the TEQ concentration did not exceed the LDW PRG. Data are presented in Table 33.

8.1.6.3 Storm Drain System Contaminant Source Evaluation

As previously discussed in Section 4.5.3, the source evaluation was conducted in April 2012. Samples were collected of various media present at the Site that could be a potential source of contaminants to the storm drain system; sampled media included surface debris, paint chips, and CJM. At locations where these media were not present, storm drain solids were collected from the structures where contaminants were previously present in the solids at concentrations exceeding the SMS criteria. Source material data for samples collected in each of the areas (Building 14-01 South, Building 14-01 East,

LANDAU ASSOCIATES

Building 14-01 West, Building 14-01 North, Building 4-13, Building 14-02/14-03, Isaacson East, and Isaacson West) are presented in Tables 26 through 33, respectively, along with the 2011 storm drain structure data in each area to allow for direct data comparison. Results are summarized by area below.

Source material sample results were reported to the MDL. Concentrations detected above the MDL, but below the RL, were qualified as estimates (J flagged) due to uncertainty in the concentration and are included in Tables 26 through 33. Concentrations that have been J flagged, but are above the pCUL, are included on figures as exceeding cleanup levels. For non-detected constituents, only the RLs are presented in Tables 26 through 33. Analytical results for all constituents are provided in tabular format in Appendix N.

Building 14-01 South, East, and West Areas

Due to the lack of potential sources of contaminants to the storm drain system in these areas, and the lack of surface debris present at the time of sampling, storm drain solids samples were collected and analyzed to evaluate the quality of the solids relative to the SMS criteria or LDW PRGs. Data for the Building 14-01 South, East, and West areas are presented in Tables 26, 27, and 28, respectively.

CBs sampled in April 2012 did not directly correspond to CBs sampled in September 2011 due to the solids available for sampling and the need to composite some samples to provide sufficient material for analysis. In the Building 14-01 South Area, both CG-72 and CG-74 were sampled during the September 2011 and April 2012 events. In the Building 14-01 East Area, samples were collected from CB-60/61, CB-63, CB-66/67, and CB-B/62/68 in September 2011, but only CB-66/67 was sampled (as a composite sample) in April 2012; sufficient solids were not available in the other CBs. In the Building 14-01 West Area, CB-C, CB-D, and CB-E/77/77B were sampled in September 2011, and composite samples CB-C/D and CB-E/77/77B were collected in April 2012.

In the Building 14-01 South and East Areas, the concentrations of BEHP and PAHs were higher in the April 2012 solids samples than in the solids samples collected in September 2011. In the Building 14-01 South Area, concentrations of PCBs in the April 2012 solids samples were similar to the September 2011 samples, while in the Building 14-01 East Area, the concentration in 2012 samples was higher than in the 2011 solids samples. Concentrations of metals (cadmium and zinc) detected in April 2012 in the Building 14-01 South Area were similar to, or lower than, the concentrations detected in September 2011; concentrations of metals (cadmium and zinc) in the Building 14-01 East Area were similar to or higher than the concentrations detected in September 2011. The concentrations of mercury in the April 2012 solids samples collected from the South and East Areas do not exceed in the SMS criteria.

In the Building 14-01 West Area, the only SVOC detected that exceeds the SMS criteria was 4-methylphenol. Concentrations of cPAHs in the West Area were higher in the September 2011 solid

samples than in the April 2012 solid samples, and the concentrations of PCBs were slightly lower or about the same. Concentrations of cadmium and zinc were similar to or lower compared to the concentrations in solids samples collected in September 2011, and mercury was detected above the SMS criteria in one of the solids samples from this area.

In the galbestos siding samples collected in April 2012, PCBs (Aroclor 1254) were detected at a concentration of 1.3 mg/kg. TCLP metals results were 2.0 mg/L for barium and 7.0 mg/L for lead, and not detected for cadmium, chromium, and silver. Galbestos siding is not considered a potential source of contaminants to storm drain solids.

Building 14-01 North Area

Three surface debris samples were collected in the Building 14-01 North Area. Data are presented in Table 29. The analytical results indicate that surface debris in this area may be a source of PCBs, BEHP, cPAHs, arsenic, and zinc present in the storm drain solids; however, the zinc concentrations in the surface debris samples were significantly less than the zinc concentrations detected in the 2011 storm drain solids. Benzyl alcohol; butylbenzylphthalate; 2,4-dimethylphenol; and 4-methylphenol were detected at concentrations greater than SMS criteria in 2011 stormwater solids, but were not detected above the MDL or the RL in the surface debris solids.

Building 14-13 Area

One paint chip and one surface debris sample were collected from the Building 14-13 Area. Data are presented in Table 30. The paint chip sample (PAINT-06) was collected from peeling paint on the exterior of Building 14-13. The analytical results indicate that the paint may be a source of PCBs, cadmium, and zinc present in the storm drain solids. Analytical results for the surface debris indicate that the surface debris in this area may also be a contributing source of cPAHs, PCBs, arsenic, cadmium, and zinc, and may be a source of BEHP, PCP, and PAHs detected in the storm drain solids, although the PAHs concentrations in the surface debris sample are significantly less than the concentrations detected in the 2011 storm drain solids sample from OWS79, the only 2011 sample in which PAH concentrations exceed SMS criteria. Benzyl alcohol, butylbenzylphthalate, di-n-butylphthalate, dimethylphthalate, and phenol were detected at concentrations greater than SMS criteria in 2011 storm drain solids, but were not detected above the MDL or RL in the paint chip and surface debris samples.

Building 14-02/14-03 Area

Four surface debris samples and five paint chip samples were collected from the Building 14-02/14-03 Area. Data are presented in Table 31. Paint chip samples in this area were collected from a

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

variety of structures with peeling or degrading paint including bollards (PAINT-01 and PAINT-02), a conex box located north of Building 14-02 with multiple layers of beige and red paint (PAINT-03), a conex box located west of Building 14-02 with multiple layers of beige and green paint (PAINT-04), and the exterior south wall of Building 14-02 (PAINT-05). The analytical results for these samples indicate that the paint on the bollards, conex boxes, and the exterior wall of Building 14-02 may be a contributing source of the PCBs, arsenic, cadmium, mercury, and zinc in the storm drain solids. The analytical results do not suggest that the paint is a significant source of SVOCs and PAHs, except potentially for BEHP. No SVOCs or PAHs were detected in the paint chip sample collected from the exterior building wall.

The analytical results for the surface debris samples indicate that surface debris present in this area may be a contributing source of PCBs, BEHP, and metals and a potential source of PAHs. Except for BEHP, SVOCs were not generally detected in the surface debris samples at concentrations above the MDL or RL.

Isaacson East Area

Four surface debris samples and one CJM sample were collected from the Isaacson East Area. Data for the Isaacson East Area are presented in Table 32. The analytical results for these samples indicate that CJM present at some locations in this area may be a source of PCBs, BEHP, and cPAHs present in the storm drain solids and that surface debris present in this area may be a contributing source of PCBs and BEHP, as well as a source of arsenic, chromium, and zinc. Benzoic acid, benzyl alcohol, butylbenzylphthalate, and 4-methylphenol were not detected above the MDL or the RL in the CJM and surface debris solids.

Isaacson West Area

Four surface debris samples and one CJM sample were collected from the Isaacson West Area. Data for the Isaacson West Area are presented in Table 33. The analytical results for these samples indicate that CJM present in this area may be a source of PCBs in the storm drain solids and that surface debris present at some locations in this area may be a contributing source of the PCBs, as well as a source of the BEHP, arsenic, cadmium, chromium, and zinc contamination. Benzoic acid, benzyl alcohol, and butylbenzylphthalate were not detected above the MDL or the RL in the CJM and surface debris solids.

8.1.7 STORM DRAIN SYSTEM PHYSICAL CONDITION

The physical condition of the storm drain pipelines associated with Outfalls A and B and the 12-inch metal corrugated pipe located south of Building 14-01 were evaluated using video cameras. Because exceedances of the pCULs for some constituents (BEHP, arsenic, and barium)] were present in the

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

stormwater samples collected from Outfalls A and B, and because these constituents were also present in some samples of Site soil and/or groundwater, the pipelines associated with Outfalls A and B were inspected for cracks, fractures, or breaks in the storm drain line segments that could potentially allow intrusion or infiltration of soil or groundwater. A video survey of the 12-inch metal corrugated pipe was conducted to determine if there were any connections to the pipe and to evaluate the purpose of the pipe.

8.1.7.1 12-Inch Metal Corrugated Pipe

A video survey of the 12-inch metal corrugated pipe located south of Building 14-01 was conducted on February 10, 2012. The video survey identified debris in the pipe (the three-pronged electrical plug, sand, and dead rodents). Perforations on the top of the pipe were visible in the survey, but no tap connections were identified. The survey extended 346 ft inside the pipe until sand present in the pipe prohibited further advancement of the camera; however, daylight could be seen beyond the sand. After further inspection from the exterior, it was determined that the eastern end of the pipe daylights approximately 361 ft east of the western end of the pipe. The eastern pipe opening was mostly buried under large rocks and dirt. After removing the rock and dirt, a wire mesh screen covering the pipe opening was visible. A compact disk containing the video survey of the corrugated metal pipe and photos of the eastern end of the pipe are provided in Appendix O.

8.1.7.2 Storm Drain System Associated with Outfalls A and B

In late September and early October 2012 a video survey of the storm drain pipelines associated with Outfalls A and B was conducted. The Boeing-owned storm drain system and those segments that were video-inspected are shown on Figure 27. A compact disk containing the video survey of the storm drain pipelines is provided in Appendix P. Prior to the video survey, the storm drain lines and associated structures (CBs, manholes, oil/water separators, and the Vortechs vaults) were jet cleaned.

The video survey determined that the majority of the storm drain line segments are in good condition; however, some cracks, fractures, and other pipe defects, as well as soil inside the pipe line, were identified. The video survey also identified tap connections and attempted to verify the connections for CBs CB-G, CB-H, CB-I, CB-J, and CB-90B (shown on Figure 27). The results of the survey were documented in a technical memorandum prepared by Landau Associates for Boeing. This technical memorandum is provided in Appendix P. A summary of the upstream and downstream structures that identify each segment, the date the segment was video-inspected, and general notes and comments about the condition of the segment are provided in Table 1 of the technical memorandum. Photographs of storm drain lines in poor condition are included in the technical memorandum. Photographs of storm drain line segments in good condition are not included in this technical memorandum.

A summary of the tap connections identified during video inspection activities is provided in Table 2 of the technical memorandum. Tap connections identified in Table 2 as "not observed to be plugged or capped" were identified based on observations from the video inspection of the main storm drain pipe. This identification does not include an assessment of plugs or caps that may be present in other locations, but are not visible from inside the main storm drain pipe.

Storm drain video inspections did not verify connections for CB-G, CB-H, CB-I, CB-J, or CB-90B. At CB-G, a down-turned steel elbow was present on the sidewall of the structure, which prohibited access to the storm drain line that may be connected to this structure. At the remaining CBs, the following inspections were conducted:

- At CB-H, a storm drain line located on the west side of the CB was video-surveyed for approximately 8 ft until the survey was abandoned due to a fractured joint.
- At CB-I, a storm drain line located on the south side of the CB was video-surveyed for approximately 8 ft until the survey was abandoned due to blockage/obstruction. A storm drain line on the west side of the CB could not be video-surveyed due to the presence of a down-turned steel elbow.
- At CB-J, a storm drain line located on the north side of the CB was video-surveyed for approximately 18 ft until the survey was abandoned because the line connected to another structure.
- At CB-90B, a storm drain line located on the north side of the CB was video-surveyed for approximately 72 ft until the survey was abandoned due to a bend in the pipe.

Although the connections to the above-identified CBs were not verified, an overlay of these locations with the abandoned 48-inch storm drain line (abandoned and rerouted in 1990), as shown on Figure 27, indicates that these structures were likely associated with the old 48-inch storm drain line. Video surveys do not suggest that any of these locations are actively connected to the current Boeing storm drain system.

The video surveys identified existing connections that were not previously identified on the storm drain maps, including connections of the following structures:

- CB-A to MH-22
- CB-C to CB-D
- CB-D to CB-77
- CB-77 to CB-E
- CB-E to MH-75
- CB-B to MH-65.

The RI storm drain base maps have been updated to reflect the piping verifications identified during the storm drain video survey review.

8.2 DATA GAPS FOR SPECIFIC AREAS OF CONCERN

One of the data gaps identified in the RI/FS Work Plan was the lack of information in specific areas of concern at the Site. These areas include the Thompson property Wooden Bulkhead, the Former Paint Storage Area, the Former Diesel and Gasoline Tanks Area, the Area with Observed Tar-Like Substance, the Former Slip 5 Outfall Area, the Former Hydraulic Test Pad Area, Vicinity of Monitoring Wells I-205(s) and I-206(s), Monitoring Well I-104(s) Groundwater Arsenic Source Area, the Former Washdown/Aqueous Degreaser Area, and the Former Washdown System Collection Tanks/Loading Dock Area. Each of these areas is shown on either Figure 19 or Figure 23.

8.2.1 THOMPSON PROPERTY WOODEN BULKHEAD

Three soil samples were collected from outside of the bulkhead through gaps in the wooden bulkhead located at the southern portion of the Thompson property. The samples were collected from gaps in the bulkhead where soil was present. The sample locations are shown on Figure 19. Sampling results were compared to sediment pCULs (SMS SCO criteria and LDW PRGs) to evaluate the potential for LDW sediment contamination from soil eroding through the gaps in the bulkhead. A single arsenic exceedance occurred with a concentration (7.6 mg/kg) slightly above the LDW PRG of 7 mg/kg dw. The detected cPAHs concentrations are less than the SCO LDW PRG of 150 mg total cPAH TEQ/kg dw. The analytical results for constituents detected in the wooden bulkhead samples are summarized in Table 34.

8.2.2 FORMER PAINT STORAGE AREAS

Three soil borings were located in the Former Paint Storage Area: one in each of the paint storage areas (SB-9 and SB-10) and one located where the former paint sludge sumps were located (SB-11). One monitoring well, MW-15, was located downgradient of the Former Paint Storage Area, as shown on Figure 19. The analytical results for constituents in soil samples from this area are summarized in Table 35.

8.2.2.1 Soil

Analytical results for 12 soil samples collected from soil borings SB-9, SB-10, and SB-11 indicate that VOCs (primarily TCE, methylene chloride, acetone, and carbon disulfide); SVOCs; cPAHs; TPH (diesel-range and oil-range petroleum hydrocarbons); PCBs; and metals are present in one or more of the soil samples, but only cPAHs, PCBs, arsenic, and copper are present at concentrations exceeding the pCULs. PCB and cPAH exceedances generally occurred in the upper 3.5 ft of soil, although cPAHs and PCB (Aroclor 1254) exceedances occurred in the sample collected from the 5- to 6.5-ft depth interval at SB-9. Total PCBs were not detected in shallower or deeper intervals at SB-9 and were not detected at

soil borings SB-10 or SB-11. Arsenic and copper exceedances occurred as deep as 15 ft at SB-10 and 15.5 ft at SB-11. Analytical results for constituents detected in the soil samples collected from the Former Paint Storage Area are summarized in Table 35.

8.2.2.2 Groundwater

Only arsenic was detected in the groundwater at concentrations exceeding the pCUL. Dissolved arsenic concentrations range from $20.0 \,\mu\text{g/L}$ to $76.8 \,\mu\text{g/L}$. The analytical results for constituents detected in the groundwater at well MW-15 are summarized in Table 12.

8.2.3 FORMER DIESEL AND GASOLINE TANKS AREA

One test pit (TP-109) was excavated in the Former Diesel and Gasoline Tanks Area (Figure 19) to determine if the tanks are still present and to collect soil samples for laboratory analysis. No monitoring wells were installed in this area. The test pit was approximately 6.5 ft by 10.5 ft and extended to a depth of 10 ft BGS. No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID. No USTs were encountered. Based on the analytical results for the soil sample collected near the base of the test pit, no constituents are present at concentrations exceeding a pCUL. Gasoline-range petroleum hydrocarbons (without associated benzene) were present at 17 mg/kg, well below the pCUL of 100 mg/kg. Diesel-range and motor oil-range petroleum hydrocarbons were not detected. The analytical results for constituents detected in the RI soil samples collected from the Former Diesel and Gasoline Tanks Area are summarized in Table 35.

8.2.4 AREA WITH OBSERVED TAR-LIKE SUBSTANCE

Two test pits (TP-107 and TP-108) were excavated north of the eastern Vortechs vault (Figure 19) to evaluate the extent of a tar-like substance previously discovered outside of the stabilized soil perimeter. The test pits were approximately 4 by 10 ft wide and extended 12 ft BGS. A dark brown-to-black, tar and asphalt-like material, as well as bricks, burnt wood debris, and a petroleum odor were encountered at the 1- to 2-ft depth interval on each sidewall of TP-108. Burnt wood and an oil-like odor were observed on the north and east sidewalls of TP-107 at the 1- to 2-ft depth interval. Soil samples were collected for laboratory analysis from this depth interval from each sidewall at test pits TP-107 and TP-108 and from the depth interval directly below it (2 to 3 ft BGS) from the north sidewall of each test pit. A soil sample was also collected from the base of each test pit.

Elevated concentrations of cPAHs (up to 6,593 µg/kg) were detected in the soil samples collected where the tar-like material and burnt wood debris were encountered. Diesel-range, oil-range, and gasoline-range petroleum hydrocarbons were also detected in the samples. The concentration of diesel-

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

range petroleum hydrocarbons in one sample, oil-range petroleum hydrocarbons in one sample, and gasoline-range petroleum hydrocarbons in one sample collected from the 1- to 2-ft depth interval at TP-108 exceed the pCULs. The maximum gasoline-range petroleum hydrocarbon concentration detected was 36 mg/kg; benzene was detected in this sample at a concentration of 4.4 µg/kg so the gasoline-range petroleum concentration was compared to the pCUL of 30 mg/kg. Concentrations of arsenic and copper exceeding the pCULs are also present in soil samples collected from the depth intervals where the tar-like material and burnt wood debris were present. No constituents were detected at concentrations exceeding the pCUL in the soil samples collected from the 2- to 3-ft interval at either test pit. The analytical results for constituents detected in the soil samples collected from the Area with Observed Tar-Like Substance are summarized in Table 36.

8.2.5 FORMER SLIP 5 OUTFALL AREA

Soil samples were collected from four soil borings located in the Former Slip 5 Outfall Area (SB-6, SB-7, SB-8, and MW-14), as shown on Figure 19. One groundwater sample was collected from a temporary well point installed in soil boring SB-8 and four quarterly groundwater samples were collected from well MW-14 and from piezometer PZ-3, which are located in the Former Slip 5 Outfall Area. The samples were collected to evaluate if discharge from the Former Slip 5 Outfall Area may have impacted soil and groundwater in this area.

8.2.5.1 Soil

No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at the explorations completed within the Former Slip 5 Outfall Area. Except for some crushed concrete at 2 ft BGS at soil boring SB-6 and some asphalt at 2.5 ft BGS at MW-14, no debris was encountered in the explorations.

VOCs; SVOCs; TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); cPAHs; PCBs; and metals were detected in soil samples from this area. cPAHs and PCBs were detected in one or more soil samples at concentrations exceeding the pCULs. The cPAHs exceedances occurred at depths between 2 ft and 6.5 ft BGS except at MW-14 where cPAHs also exceed the pCULs in the 8- to 9.5-ft sample depth interval. PCB Aroclor 1260 was detected in the 2- to 3.5-ft sample depth interval at SB-6. The detected concentration (56 μg/kg) and the total PCBs concentration (56 μg/kg) exceed the PCBs pCULs of 5.4 μg/kg and 1.8 μg/kg, respectively. Arsenic, cadmium, and chromium were detected in soil samples to a depth of 6.5 ft BGS at SB-6 at concentrations exceeding pCULs. Arsenic and copper also exceeded the pCULs in samples from MW-14 and arsenic only at SB-7 and SB-8. The analytical

results for constituents detected in the soil samples collected from the Former Slip 5 Outfall Area are summarized in Table 37.

8.2.5.2 Groundwater

Metals were the primary constituents detected in groundwater in this area. Dissolved arsenic was only detected once (at PZ-3) at a concentration exceeding the pCUL. Dissolved cadmium was detected at concentrations exceeding the pCUL at well MW-14 and at soil boring SB-8. The only other pCUL exceedance in groundwater in this area was chrysene, which occurred once at MW-14. The analytical results for constituents detected in the groundwater samples collected at well MW-14, piezometer PZ-3, and soil boring SB-8 are summarized in Table 13.

8.2.6 FORMER HYDRAULIC TEST PAD AREA

One monitoring well (MW-11) was located in the Former Hydraulic Test Pad Area, as shown on Figure 19, to evaluate the presence of hydrocarbons previously present in groundwater in this area. Two test pits (TP-106 and TP-106B) and one monitoring well, MW-10, were located downgradient of the Former Hydraulic Test Pad Area to evaluate whether free product may have migrated prior to the remedial action in this area. A concrete block was encountered in TP-106 at 4.5 ft BGS preventing further excavation; therefore, TP-106B was excavated directly adjacent to the west of TP-106 to 12 ft BGS. The lateral extent of the combined test pits was approximately 8.5 ft by 10 ft.

8.2.6.1 Soil

No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at the explorations completed within the Former Hydraulic Test Pad Area (MW-11) and downgradient of the Former Hydraulic Test Pad Area (TP-106, TP-106B, and MW-10). Except for the concrete block encountered at TP-106, no debris or underground structures were encountered at the explorations.

VOCs; SVOCs; TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); cPAHs; PCBs; and metals were detected in soil in this area. Except for cPAHs, arsenic, and copper at MW-11, none of the detected concentrations exceed the pCULs at TP-106B and MW-11. The cPAHs exceedances at MW-11 occurred at depth (8 ft to 15 ft BGS). The arsenic and copper exceedances at MW-11 were detected in the sample from 8 to 9.5 ft BGS. PCBs, cPAHs, and arsenic exceed the pCULs at MW-10. All of the exceedances occurred at depth (13.5 to 15 ft BGS); although cPAHs exceedances also occurred in the 2- to 3.5-ft and 8- to 9.5-ft depth intervals. The analytical results for constituents

detected in the soil samples collected from the Former Hydraulic Test Pad Area are summarized in Table 38.

8.2.6.2 Groundwater

Metals were the primary constituents detected in groundwater at well MW-11. A single arsenic concentration (9.4 μ g/L) was detected slightly above the pCUL of 8 μ g/L. None of the concentrations of other detected constituents exceed the pCULs. Concentrations of cPAHs, PCBs, and dissolved arsenic were detected at concentrations exceeding the pCUL at well MW-10. The analytical results for constituents detected in the groundwater at wells MW-10 and MW-11 are summarized in Table 13.

8.2.7 VICINITY OF MONITORING WELLS I-205 (S) AND I-206(S)

Three test pits (TP-101, TP-102, and TP-103) were located in the upgradient groundwater flow direction (east) of I-206(s) and two test pits (TP-104 and TP-105B) were located in the upgradient groundwater flow direction (east) of well I-205(s), as shown on Figure 19. The purpose of the test pits was to identify a potential source for arsenic detected in groundwater at these wells.

The test pits were generally 4 ft x 10 ft and extended to depths ranging from 12 ft to 14 ft. Soil samples were collected from the base of test pits TP-101, TP-102, TP-104, and TP-105B. Sidewall samples were collected at TP-103; one of the sidewall samples was near the base of the excavation.

No visual signs of potential contamination were observed in the soil and no soil vapors were detected using the PID at the explorations completed in the vicinity of monitoring wells I-205(s) and I-206(s). No debris or buried structures were encountered in the explorations, except for a water pipe at test pit TP-104.

VOCs, SVOCs, cPAHs, and metals were detected in soil at each of the test pits. TPH (diesel-range and oil-range petroleum hydrocarbons) was detected in soil at TP-103 [near well I-206(s)]. Except cPAHs, arsenic, and copper at test pit TP-103, none of the detected concentrations exceed the pCULs. cPAH, arsenic, and copper exceedances occurred in the unsaturated zone between depths of 5 and 7 ft BGS at test pit TP-103. The analytical results for constituents detected in the soil samples collected from the vicinity of monitoring wells I-205(s) and I-206(s) are summarized in Table 39.

8.2.8 Monitoring Well I-104(S) Groundwater Arsenic Source

Three wells were installed upgradient (east) of well I-104(s) to evaluate potential sources for the elevated arsenic concentrations detected in groundwater at well I-104(s). Monitoring well MW-23 is located within an area of stabilized soil material directly upgradient of well I-104(s). Monitoring well MW-21 is located between the area of stabilized soil and well I-104(s), and well MW-18 is located west

and south of the stabilized soil, near previous direct-push boring IDP-8 (an elevated concentration of arsenic was previously detected in groundwater at location IDP-8). The locations of wells MW-18, MW-21, and MW-23 are shown on Figure 23. Elevated concentrations of dissolved arsenic (significantly above the pCUL of 8 μ g/L) were detected at all three monitoring wells during each of the RI groundwater monitoring events. Dissolved concentrations range from 2,980 μ g/L to 6,650 μ g/L at well MW-18; from 17,000 μ g/L to 22,600 μ g/L at well MW-21; and from 34,400 μ g/L to 80,000 μ g/L at well MW-23. Arsenic concentrations in groundwater at well I-104(s) range from 844 μ g/L to 2,460 μ g/L, less than the concentrations at wells MW-18, MW-21, and MW-23. At well MW-20, which was installed during the RI at a location immediately adjacent to well I-104(s), the dissolved arsenic concentrations are significantly less, ranging from 135 μ g/L to 449 μ g/L. The analytical results for constituents detected in the groundwater at wells I-104(s), MW-18, MW-21, and MW-23 are summarized in Table 12.

Soil samples were collected during installation of wells MW-18, MW-21, and MW-23, as well as at MW-20, which is adjacent to well I-104. Arsenic concentrations above the pCUL of 7 mg/kg were detected in soil at the borings for well MW-18 (maximum 35.5 mg/kg at the 5- to 6.5-ft BGS interval); well MW-21 (maximum 221 mg/kg at the 13.5 to 15-ft BGS interval); and well MW-23 (maximum 331 mg/kg at the 12.5- to 14-ft BGS interval, beneath the stabilized soil material and below the water table). Arsenic was also detected at the boring for well MW-20, located adjacent to well I-104(s). Arsenic concentrations in soil at MW-20 were 139 mg/kg at the 5.5- to 6-ft BGS interval; however, below the water table, at the 14.5- to 16-ft BGS interval, arsenic was detected at a concentration of 10.5 mg/kg, only slightly above the pCUL. The analytical results for arsenic detected in soil at wells MW-18, MW-20, MW-21, and MW-23 are summarized in Table 18. Arsenic mobility and possible sources of the elevated arsenic in groundwater at wells I-104, MW-18, MW-20, MW-21, and MW-23 are discussed below.

Arsenic mobility may be affected by arsenic concentration in soil, arsenic speciation, redox and pH conditions, as well as soil composition and permeability. Arsenic speciation was not performed on soil or groundwater samples as part of this RI. However, of four possible arsenic oxidation states, arsenic in soil typically occurs in the +3 and +5 states [As (III) and As(V)]. Under oxidized conditions, such as in shallow soil, arsenic primarily exists in the As(V) form. In reduced conditions, there may be a higher proportion of As(III), which is generally more mobile.

ORP in groundwater was measured at wells I-104, MW-18, MW-20, MW-21, and MW-23 during quarterly groundwater sample collection. ORP values at wells I-104, MW-18, MW-21, and MW-23 range from -316 mV to 14.6 mV, with a mean ORP at these four wells during all four quarters of -146 mV, suggesting reducing conditions within the aquifer in the area of these four wells, which is likely to increase the mobility of arsenic within the groundwater. ORP values at MW-20 are more positive than

at the other wells and range from -12.7 mV to 143 mV. Soil above the water table likely has a higher redox potential; redox potential under oxidized conditions (e.g., shallow, not flooded soil) typically ranges from approximately +400 to +700 mV (Dempsey 1991, Peryea 1989).

Although pH was not analyzed in soil samples at these five well locations, pH in groundwater during quarterly groundwater monitoring ranged from 5.18 to 11.91. At well MW-23, groundwater conditions were alkaline, and pH ranged from 9.39 to 11.91. At well I-104 and well MW-20, pH was slightly acidic (5.42 to 6.67) during three quarters of sampling (first, second, and fourth quarters), but was slightly alkaline (9.01 and 9.42, respectively) during the third quarter sampling. Groundwater at wells MW-18 and MW-21 was slightly acidic to neutral during quarterly sampling (5.18 to 7.73).

Arsenic generally has low mobility in soil with pH within the acidic to neutral range and with a high redox potential (Tokunaga 2005). As pH increases, however, As(V) is increasingly mobile and less readily adsorbed. This effect is less apparent with the generally more mobile As(III), which is the species likely to exist in reducing conditions. Consequently, arsenic is expected to be more mobile at higher pH.

Arsenic concentrations at the five wells (I-104, MW-18, MW-20, MW-21, and MW-23) were compared to pH and ORP values over the four quarterly sampling events. Arsenic concentrations generally increase with increasing pH, and decrease with increasing ORP values. Scatter plots are presented on Figure T-2, in Appendix T.

One likely source of elevated arsenic in downgradient wells I-104 and MW-20 is the mobilization of arsenic from near, within, or beneath the stabilized soil material as a result of elevated pH conditions and low ORP. The area upgradient of well I-104 is paved, limiting the infiltration of stormwater and decreasing the mobility of arsenic in shallow soil above the groundwater table. The highest proximal arsenic concentrations in soil were located beneath the water table at wells MW-23 (331 mg/kg; beneath the stabilized soil material) and MW-21 (221 mg/kg; northwest of the stabilized soil material). The soil in this area was excavated and treated using a stabilization process in 1991 to reduce the leachability of arsenic within the soil (TCLP test results indicated leachate concentrations of arsenic in excess of 5 mg/L for untreated soil). After stabilization, the TCLP arsenic results for the treated soil were less than the characteristic waste limit of 5 mg/L. As described in Section 3.1.12, the depth of the excavated soil that was treated was limited by the depth of groundwater. Sampling and analysis of stabilized soil conducted in January 2008 by Landau Associates confirmed that TCLP arsenic concentrations in the stabilized soil were below the universal treatment standard of 5 mg/L (Landau Associates 2008a). However, correlation between arsenic concentrations and high pH in groundwater may indicate that increases in pH have mobilized arsenic in untreated soil.

8.2.9 FORMER WASHDOWN/AQUEOUS DEGREASER AREA

One soil boring, SB-1, was advanced and three monitoring wells (MW-1 through MW-3) were installed inside Building 14-01 in the Former Washdown/Aqueous Degreaser Area, as shown on Figure 24. As shown on Figure 24, well MW-1 was located near the former aqueous cleaner (aqueous degreaser) and associated sump to address the data gap identified in the Building 14-01 Investigation Work Plan, which was the lack of soil and groundwater quality data near these two structures. Soil samples were collected from the soil borings associated with the monitoring wells and groundwater samples were collected from each well during the four RI monitoring events. Additionally, soil samples were collected from seven construction-related excavations identified as Bldg1401-FootingExc1, Bldg1401-FootingExc3, Bldg1401-FootingExc5, Bldg1401-FootingExc8, Bldg1401-FootingExc10, Bldg1401-FootingExc14, and Bldg1401-FootingExc15. The excavations were located just east of the Former Washdown/Aqueous Degreaser Area, as shown on Figure 24. The depth of the soil samples range from 1.5 to 6.0 ft BGS.

8.2.9.1 Soil

VOCs; TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); SVOCs; cPAHs; and metals were detected in soil in this area. The primary VOCs that were detected are methylene chloride and acetone; however, TCE and PCE were detected in two samples collected from the Bldg1401-FootingExc14 and Bldg1401-FootingExc15 excavations. The detected TCE concentration at Bldg1401-FootingExc14 (93 μ g/kg) exceeded the pCUL (51 μ g/kg). Excavation Bldg1401-FootingExc14was located along the southern wall of Building 14-01 and the sample was collected from 4.0 ft BGS.

Gasoline-range petroleum hydrocarbons, cPAHs, and PCBs were also detected in the soil at concentrations exceeding the pCULs. One exceedance of the gasoline-range petroleum hydrocarbon pCUL of 100 mg/kg occurred at Bldg1401-FootingExc5. Gasoline-range petroleum hydrocarbons were detected in one additional sample collected in this area, but the concentration was low (9.7 mg/kg). Concentrations of cPAHs exceeding the pCULs were detected in the soil samples collected at a depth of 4 ft BGS at Bldg1401-FootingExc3 and Bldg1401-FootingExc5, at a depth of 7.5 ft BGS at Bldg1401-FootingExc1, and at a depth interval of 8 to 9 ft at MW-2. Concentrations of PCB Aroclor 1254 (39 μg/kg), PCB Aroclor 1260 (36 μg/kg), and total PCBs (75 μg/kg) were detected at concentrations exceeding the pCULs (0.29 μg/kg, 5.4 μg/kg, and 1.8 μg/kg, respectively) at soil boring SB-1. The exceedances occurred in the soil sample collected from the 8- to 9-ft depth interval. A deeper sample was not analyzed for PCBs at this exploration. The analytical results for constituents detected in the soil samples collected from the Former Washdown/Aqueous Degreaser Area are summarized in Table 40.

8.2.9.2 Groundwater

Arsenic, chromium VI, and vinyl chloride were detected in groundwater in this area at concentrations exceeding the pCULs. The arsenic exceedances occurred at well MW-1 during all four RI monitoring events. The chromium VI exceedances occurred once at well MW-1, twice at well MW-2, and once at well MW-3. Chromium VI concentrations exceeding the pCUL (0.00058 mg/L) range from 0.010 mg/L to 0.019 mg/L. A single vinyl chloride concentration (0.81 μ g/L) was detected above the pCUL (0.53 μ g/L) at MW-2 in June 2012. The analytical results for constituents detected in the groundwater at wells MW-1, MW-2, and MW-3 are summarized in Table 14.

8.2.10 FORMER WASHDOWN SYSTEM COLLECTION TANKS/LOADING DOCK AREA

One monitoring well (MW-8) and several construction-related excavations (TOWPATHEXC2 through TOWPATHEXC7) were located in the area where two 10,000-gallon ASTs that contained wastewater from the washdown system were formerly located and where a loading dock was also formerly located. The exploration locations are shown on Figure 19. Soil samples were collected from the soil boring associated with the monitoring well and groundwater samples were collected from the well during the four RI monitoring events. Soil samples were collected from the base of the construction-related excavations, which were 0.7 ft BGS.

8.2.10.1 Soil

VOCs; TPH (diesel-range, oil-range, and gasoline-range petroleum hydrocarbons); SVOCs; cPAHs; PCBs; and metals were detected in soil in this area. The primary VOCs that were detected are methylene chloride and acetone; however, PCE was detected in three samples collected from the TOWPATHEXC3, TOWPATHEXC4, and TOWPATHEXC5 excavations. The detected PCE concentrations ($5.6 \,\mu g/kg$, $9.1 \,\mu g/kg$, and $1.1 \,\mu g/kg$, respectively) do not exceed the PCE pCUL ($260 \,\mu g/kg$).

cPAHs and PCBs were also detected in the soil at concentrations exceeding the pCULs. Concentrations of cPAHs exceeding the pCULs were detected in the soil samples collected at TOWPATHEXC3, TOWPATHEXC4, TOWPATHEXC5, and TOWPATHEXC6. Concentrations of PCB Aroclor 1254 and total PCBs were detected at concentrations exceeding the pCULs at TOWPATHEXC3, TOWPATHEXC4, and TOWPATHEXC6. The concentrations range from 28 μ g/kg to 88 μ g/kg compared to the pCULs of 0.29 μ g/kg and 1.8 μ g/kg for Aroclor 1254 and total PCBs, respectively. Metals were not detected at concentrations exceeding the pCULs in the soil in this area. The

analytical results for constituents detected in the soil samples collected from the Former Washdown System Collection Tanks/Loading Dock Area are summarized in Table 41.

8.2.10.2 Groundwater

No COCs were present at concentrations exceeding pCULs at MW-8. The analytical results for constituents detected in the groundwater at well MW-8 are summarized in Table 14.

8.3 SOIL VAPOR INVESTIGATION

As described in Section 4.4, five vapor samples (SV-1 through SV-5) were collected from beneath the Building 14-01 floor slab to determine the extent, if any, that VOCs are present in soil vapor below the building floor slab. The sample locations are shown on Figure 24. The vapor samples were analyzed for VOCs. A summary of the detected constituents and the concentrations are provided in Table 42. The results were compared to the screening levels for soil vapor and, as shown in Table 42, none of the detected concentrations exceed the soil vapor screening pCULs. Based on the results of the soil vapor samples, no indoor air samples were deemed necessary and no indoor air samples were collected.

8.4 SEDIMENT

Sediment samples were collected from 15 surface and subsurface locations to provide recent analytical data for the entire suite of SMS analytes. The physical and analytical results are described below.

8.4.1 PHYSICAL DESCRIPTION

Surficial sediments (top 0 to 10 cm) across the investigation area consisted of a thin layer of wet to very wet silts over sediments with slightly lower water content that varied from very soft to medium stiff sandy silts or clays (Appendix E-Qualitative Sample Characteristics Forms). An exception was found in the sediments collected at SD-502G. The thin surface layer of wet silt rapidly transitioned to a medium dense, silty, fine to medium sand with lower water content. TOC in the surface sediments (0 to 10 cm) ranges from 1.05 to 1.85 percent, with an average value of 1.57 percent.

At each location, the sediment units present in the cores varied with depth (Appendix E). The shallow surface units were primarily silts or sandy silts (with the exception of the predominantly sand unit that appeared immediately below the shallow silt layer at SD-502). The percentage of sand increased in the deeper sediment units (becoming the dominant constituent), while the silt and clay fraction decreased with depth. The overall thickness of the shallow silt units varied from less than 2 inches at SD-502 to

greater than 12 ft (at SD-511) below mudline. The average thickness of the silt units in the inshore samples at the Site was approximately 2.5 ft (with a range from 2 inches or less to approximately 5.8 ft in thickness). The average thickness of the silt units in the cores located offshore near the navigation channel was approximately 7.6 ft (with a range from 6.1 ft to greater than 12 ft). At a majority of the sample locations, the deepest sediment units sampled consisted of either a poorly graded sand unit or a silty sand unit with interbedded layers.

TOC appeared to be correlated with the presence of silts in the core samples. The TOC in samples from sediment units that are predominantly silt ranges from 0.97 percent to 3.07 percent, with an average value of 1.97 percent. TOC in the deeper sand units ranges from 0.1 percent to 2.75 percent, with an average value of 0.95 percent.

8.4.2 LABORATORY ANALYTICAL RESULTS

All sediment samples collected and initially scheduled for analysis were analyzed for TOC, the SMS list of chemicals, and carbazole. Sediments from five surface grab locations were analyzed for dioxins and furans. Archived samples representing the 10- to 11-ft interval at three locations [SD-516 (field duplicate of station SD-505), SD-507, and SD-509] were analyzed for TOC and PCBs following a review of the initial results. The samples were analyzed to further investigate the maximum depth of sediments with elevated concentrations of PCBs at the sample locations. Sediments with elevated concentrations (characterized as detected concentrations above the SCO) for the other SMS chemicals were limited to the shallow subsurface sediments less than 4 ft below mudline.

The chemistry results (SMS list of chemicals plus carbazole) for the surface grab samples are presented in Table 43 and for the subsurface core samples in Table 44. The results of the dioxin and furan analyses for the surface grab samples are presented in Table 45.

The surface grab sample results were compared to the sediment pCULs (see Section 7.4; Table 8). The pCULs apply to the surface sediments (either the top 10 cm of sediment or the top 45 cm of sediment in clamming areas above -4 feet MLLW). The sediment pCULs do not apply to the deeper subsurface sediments; however, for screening purposes, the subsurface core sample results (starting at 2 ft below the sediment surface and continuing deeper) were compared to the SMS criteria where appropriate.

The results for the metals are expressed in units of mg/kg dw. The results for the SMS list of non-ionizable organic compounds are typically expressed as an organic-carbon-normalized value (in units of mg/kg OC); however, the dw values (expressed in units of μ g/kg dw) are also presented. The results for the ionizable organic compounds are expressed in units of μ g/kg dw. The results for total PCBs are expressed in units of μ g/kg dw or in units of mg/kg OC. In the subsurface core samples where the TOC

values were exceptionally low (less than 0.5 percent TOC), Ecology guidance recommends using the dw values rather than carbon-normalized values for the non-ionizable organic compounds.

The cPAHs include benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)anthracene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, and chrysene. The results for the cPAHs are expressed in units of μg TEQ/kg dw. The TEQ for the cPAHs was calculated using the Toxicity Equivalence Factors (TEFs) that were used in the LDW RI (Windward 2010). The TEQ was calculated using ½ the RL for non-detected cPAHs, consistent with the LDW RI.

The results for dioxins/furans are expressed in units of ng TEQ/kg dw. The TEQ for dioxins and furans was calculated using the World Health Organization 2005 (Van den Berg et al. 2006) TEFs, consistent with the LDW RI. The dioxins/furans TEQ values were calculated in two ways: using ½ the RL for non-detected congeners and using zero for the non-detected congeners (Table 45).

Table 46 presents a summary table of results by chemical. The minimum and maximum values for each chemical (detected or not detected), the minimum and maximum detected value (dw and OC-normalized, if appropriate) are provided. In addition, the number of surface samples (0 to 10 cm or 0 to 45 cm) that exceed the pCULs for human seafood consumption, human direct contact, and benthic organisms for each chemical (detected or not detected) is provided. The number of samples (surface and subsurface) that exceed either the SMS SCO or the CSL criteria (detected and not detected) are provided for all the surface and subsurface sediment samples analyzed.

9.0 NATURE AND EXTENT OF CONTAMINATION

The nature and extent of contamination at the Site has been defined based on the results of chemical testing of soil, groundwater, soil vapor, storm drain solids, stormwater, and sediment and a comparison of the results to the pCULs and screening levels presented in Section 8.0. The discussion of the nature and extent of contamination below includes the Site upland area and LDW sediment area offshore of the Site.

9.1 UPLAND AREA

The extent of contamination in the Site uplands is discussed in the following sections by media (soil, groundwater, soil vapor, storm drain solids, and stormwater).

9.1.1 SOIL

The extent of soil contamination presented is based on the analytical results for soil samples collected during and prior to the RI that are representative of soil that remains at the Site following completion of the previously described interim actions. The locations for samples representing soil remaining are shown on Figure 68. Soil is considered to be contaminated if a constituent is present at a concentration exceeding the pCUL. A comparison of the pCULs to the analytical results for soil samples representing soil remaining at the Site is provided in tabular format in Appendix Q. Constituents present in soil at the Site at concentrations exceeding the pCULs include one SVOC (naphthalene); one VOC (TCE); cPAHs; PCBs; metals (arsenic, barium, cadmium, chromium VI, total chromium, copper, lead, mercury, nickel, thallium, and zinc); and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons. The majority of total chromium exceedances occurred in historical soil samples collected from the Former Slip 5 Area; these samples were not tested for chromium VI. Two of the total chromium exceedances were detected in samples from 2011 at MW-13; these samples were tested for chromium VI and concentrations were below the chromium VI pCUL. As discussed in Section 7.2, the preliminary soil cleanup levels consider residential and industrial direct contact exposures and leaching of contaminants from soil to groundwater. Some of the constituents detected in soil at concentrations exceeding the soil pCULs are not detected in groundwater at concentrations exceeding the groundwater pCULs during the RI; these include naphthalene; barium; total chromium; and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons. Further evaluation of the potential for these constituents to migrate to the LDW is provided in Section 10.1. A summary of those constituents found in soil and those found in groundwater at concentrations exceeding the pCULs is provided in Table 47.

The extent of soil contamination is discussed below by area: North of the Former Slip 5 Area, the Former Slip 5 Area, South of the Former Slip 5 Area, and the wooden bulkhead located in the southern portion of the Site.

9.1.1.1 North of the Former Slip 5 Area

Constituents present in soil at some locations in the North of the Former Slip 5 Area at concentrations exceeding the pCULs include cPAHs; PCBs; metals (arsenic, cadmium, copper, lead, mercury, zinc); and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons. Table 48 summarizes the number of samples analyzed, the percentage of the samples with concentrations exceeding the pCULs, and the maximum concentration detected for each of the above constituents. As shown in Table 48, the constituents that most frequently exceed the cleanup levels are cPAHs (41 percent of samples), arsenic (66 percent of samples), and copper (51 percent of samples). As shown on Figures 55, 57, and 60, exceedances occur throughout most of the North of the Former Slip 5 Area. The vertical extent of the exceedances is limited to the unsaturated zone (above 11 ft BGS) for cPAHs except at one location (MW-22), but arsenic and copper exceedances extend into the saturated soil zone (below the groundwater table) at several locations. As shown on Figure 57, most of the highest concentrations of arsenic occur at depths between 5 and 11 ft BGS at locations west and north of the stabilized soil area. Another area with elevated concentrations of arsenic at this depth is a small section of soil that was not stabilized adjacent to the Stabilized Soil Area. This is also the location of the former steam cleaning rack and sump associated with the former Isaacson property building (more information on these structures is provided in Section 3.1). The arsenic concentrations discussed in this small area are based on historical data except for one soil sample collected during the RI from 8 to 9.5 ft BGS at soil boring MW-25.

Concentrations of other metals (cadmium, lead, mercury, and zinc) exceed the pCULs less frequently. There was only one exceedance of mercury; it occurred in a sample of the stabilized soil material collected in 2008 (sample location IMR-11). Zinc exceedances occurred in two shallow samples located along the western property boundary (sample locations PBI-2 and MW-20). Only five exceedances of lead occurred in soil in the North of Former Slip 5 Area. Lead exceedances occurred in the two soil samples where zinc exceeded the pCUL and in two samples collected from south of the stabilized soil material in 2008 (sample location IMR-16 and IMR-14). Lead also exceeded the pCUL in one shallow soil sample (3 ft BGS) collected from west of the stabilized soil material in 2009 (sample location IDP-7). Diesel-range, oil-range, and gasoline-range petroleum hydrocarbons exceedances occurred in 3 percent or less of the soil samples, all from the Observed Tar-Like Substance Area. These exceedances, as well other exceedances in this area (cPAHs, arsenic, and copper), appear to be associated with the tar-like substance encountered at a depth interval between 1 to 2 ft BGS. No constituents were

detected at concentrations exceeding the pCULs in samples collected below the tar-like substance (2 to 3 ft BGS). The tar-like substance did not appear to extend farther west than TP-107 since there was no observation of the substance on the west sidewall of TP-107. The extent of the tar-like substance was not defined in the other directions.

PCBs (Aroclors 1254 and 1260) were detected in less than 5 percent of the soil samples analyzed for PCBs in the North of the Former Slip 5 Area. All detected concentrations exceed the pCUL. The locations of the exceedances are widely separated. Two of the exceedances occurred in shallow soil (above 5 ft BGS). One of the shallow samples was collected during the RI at soil boring SB-6 (near the former Slip 5 Outfall) and the other sample was collected in 2006 from the northeast corner of the Site where a sump was previously located (see Section 3.1.20 for discussion of the sump). Two of the exceedances occurred between depths of 5 ft and 9.5 ft BGS. One of the samples was collected at soil boring SB-9 located in the Former Paint Storage Area and the other sample was collected at soil boring MW-18 located just south of the Stabilized Soil Area in the western portion of the Site.

In summary, concentrations of arsenic exceeding the pCUL are found in two-third of the soil samples and from locations throughout the North of the Former Slip 5 Area. Most samples with concentrations greater than the pCUL were collected from the unsaturated zone; however, several arsenic exceedances extend below the groundwater table. cPAHs and copper are detected at concentrations exceeding the pCULs in soil in 41 and 51 percent of the samples from this area. Copper exceedances extend below the groundwater table, but the cPAH exceedances generally do not.

The areas of specific concern in this area, as identified in the RI/FS Work Plan, are the Former Paint Storage Area, the Former Diesel and Gasoline Tanks Area, the Observed Tar-Like Substance Area, and the Former Slip 5 Outfall Area. The nature and extent of soil contamination in these areas are as follows:

- Former Paint Storage Area. Soil samples from the four locations in the Former Paint Storage Area contain cPAHs, PCBs, arsenic, and copper at concentrations exceeding the pCULs. Except for arsenic and copper, the exceedances only occurred in the unsaturated soil zone and generally occurred in the upper 3.5 ft of soil.
- **Former Diesel and Gasoline Tanks Area.** No constituents were detected at concentrations exceeding the pCULs in the Former Diesel and Gasoline Tanks Area.
- Area of Observed Tar-Like Substance. Soil contamination in the area of the Observed Tar-Like Substance consists of diesel-range, oil-range, and gasoline-range petroleum hydrocarbons, cPAHs, arsenic, and copper. The contamination appears to be associated with the tar-like substance and does not extend below a depth of 2 ft BGS.
- Former Slip 5 Outfall Area. Soil samples from the four locations in the Former Slip 5 Outfall Area contain cPAHs, PCBs, arsenic, cadmium, and copper at concentrations greater than the pCULs. Soil contamination in this area does not extend below the groundwater table.

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

9.1.1.2 Former Slip 5 Area

Constituents present in soil within the Former Slip 5 Area at concentrations exceeding the pCULs include one SVOC (naphthalene); cPAHs; PCBs (Aroclors 1242, 1254, and 1260); metals (arsenic, barium, cadmium, chromium VI, total chromium, copper, lead, mercury, nickel, thallium, and zinc); and gasoline-range petroleum hydrocarbons. Table 49 summarizes the number of samples analyzed, the percentage of the samples with concentrations exceeding the pCULs, and the maximum concentration detected for each of the above constituents. As shown in Table 49, the constituents that most frequently exceed the cleanup levels are cPAHs (58 percent of samples), total PCBs (33 percent of samples), arsenic (55 percent of samples), copper (54 percent of samples), cadmium (28 percent of samples), and lead (22 percent of samples). As discussed in Section 2.2, filling of the slip was conducted in phases between 1936 and 1966. There were five documented fill episodes and, for simplicity, the material associated with each episode are referred to as Fill A, B, C, D, and E. A description of the fill material and the approximate areas where the fill was placed are provided on Figure 65.

The majority of the pCULs exceedances occurred in the fill materials identified as Fill C and Fill E. For example, all of the barium, chromium VI, and zinc exceedances; about 92 percent of cadmium exceedances; about 85 percent of the lead exceedances; and about 75 percent of the PCB, arsenic, and copper exceedances occurred in samples of the Fill C material. All of the remaining lead exceedances and 57 percent of the remaining copper exceedances occurred in Fill E. Arsenic and cPAH exceedances occurred in each of the five fill material types. A single mercury exceedance occurred in Fill E from a 1983 sample at B-20. The areal extent of the Fill C and E materials is greater than the extent of the other fill materials and most of the samples were collected from these fill materials. PCBs exceedances also occurred in fill materials B (1 percent), D (6 percent), and E (16 percent). Fifty-five percent of the Fill C material samples and 50 percent of the Fill D material samples containing PCB exceedances were collected over 25 years ago (in 1983 or 1988).

There are two locations in the Fill C material and three locations in the Fill E material where many of the pCUL exceedances occurred. In the Fill C material, 11 of the 24 PCBs exceedances occurred in soil samples collected at RI soil boring MW-17 and the 1988 soil boring associated with former well I-202(s). At these locations, PCBs exceedances occurred in each sample collected between 2 ft BGS and 17 ft BGS (MW-17) and between 2.5 ft BGS and 27.5 ft BGS [I-202(s)]. Arsenic, barium, cadmium, copper, lead, nickel, thallium, zinc, chromium VI, gasoline-range petroleum hydrocarbon, and cPAHs exceedances also occurred at soil boring MW-17. Except for PCBs, cPAHs, and a few metals, the exceedances at location MW-17 occurred below the groundwater table. As previously described in Section 8.1.5.2, slag was observed at 10 to 11 ft BGS at MW-17. Fragments of wood and sawdust were

observed at MW-17 between 12.5 and 24.5 ft BGS. Arsenic, cadmium, total chromium, copper, lead, nickel, and zinc exceedances also occurred at I-202(s) at depths above and below the groundwater table. Metal scrap, wire, and white grain-sized material were observed at this soil boring. Soil samples collected from soil boring I-202(s) were only analyzed for PCBs and metals.

The three locations in the Fill E material where many of the pCULs occurred were soil borings MW-12, MW-13, and MW-13B. It should be noted that, as described previously in Section 4.2.2, monitoring well MW-13 was not installed in soil borings MW-13 or MW-13B. Both borings were located along the historic main river channel, as shown on Figure 68, but, due to obstructions in the subsurface that prohibited advancement of the borings to the desired depth for well installation, well MW-13 was installed at the location of soil boring SB-4. At soil borings MW-12 and MW-13B, PCBs, cPAHs, and gasoline-range petroleum hydrocarbon exceedances occurred. Cadmium and copper exceedances occurred at all three locations. Lead exceedances occurred at soil borings MW-13 and MW-13B. Nickel, total chromium, and cPAHs exceedances also occurred at MW-13. At MW-13B, the exceedances primarily occurred between depths of 6.5 and 13.5 ft BGS. At MW-13, the exceedances primarily occurred between depths of 12.5 to 16.5 ft BGS. At MW-12, the exceedances occurred much deeper, between 18.5 to 24.5 ft BGS. No visual signs of potential contamination were observed at MW-12, but slag material was observed at MW-13 and MW-13B at depths of 10 to 14 ft BGS and 9.5 to 11 ft BGS, respectively. A slight hydrocarbon odor was observed at MW-13B at a depth interval of 6.5 to 8 ft BGS, which is the depth interval that a gasoline-range petroleum hydrocarbon exceedance occurred.

cPAHs exceedances occurred in samples from all of the five different fill materials including samples from below the groundwater table in each. Except for cPAHs, copper, and arsenic, no other constituents were detected in the Fill A material at concentrations exceeding the pCULs. In addition to cPAHs, copper, and arsenic, the only other exceedances that occurred in the Fill B and Fill D materials were PCBs (one exceedance in Fill B and two exceedances in Fill D) and a single mercury exceedance in the Fill D material.

In summary, concentrations of cPAHs exceeding the pCULs are found in slightly over half of the soil samples and are from throughout the Former Slip 5 Area, including in samples from below the groundwater table. PCBs exceedances, detected in about one-third of the samples, are also found in several of the fill materials and extend below the groundwater table. Arsenic, copper, and a single mercury exceedance are the only metals that were detected over pCULs in Fill A or Fill D materials.

The areas of specific concern in the Former Slip 5 Area, as identified in the RI/FS Work Plan, are the Former Hydraulic Test Pad Area, the Hazardous Waste/Hazardous Materials Storage Sheds Area, and the Area in the Vicinity of I-205(s) Area. The nature and extent of soil contamination in these areas are as follows:

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

- Former Hydraulic Test Pad Area. Analytical results for soil samples collected within the Former Hydraulic Test Pad Area prior to the RI do not exceed the pCULs, except for arsenic at TDP31. Therefore, based on RI results as described in Section 8.2.6, cPAHs, arsenic, and copper exceedances occur in soil in the Former Hydraulic Test Pad Area. The exceedances occurred at MW-11 from 8 to 15 ft BGS.
- Former Hazardous Waste/Hazardous Materials Storage Sheds Area. No constituents were detected at concentrations exceeding the pCULs in soil samples collected at pre-RI soil borings (TDP-27 through TDP-30) located within the Former Hazardous Waste Storage Sheds Area. One soil sample was collected from this area during the RI, IT-TOWPATHEXC1-B(.8), that exceeded cleanup level for cPAHs and copper. Additionally, test pit TDP-105 was located just southwest of this area. No visual signs of contamination were observed in the test pit and no constituents were detected at concentrations exceeding the pCUL in the soil sample collected at the base of the excavation (11 ft BGS).
- Area in Vicinity of I-205(s). No constituents were detected at concentrations exceeding the pCULs in soil samples collected from two test pits located upgradient of well I-205(s). Arsenic and copper exceedances occurred at boring I-205s in the soil sample collected at depth (27.5 ft BGS) with concentrations of 393 mg/kg and 71 mg/kg, respectively. The I-205s sample collected at 12.5 ft BGS exceeded the cleanup level for arsenic with a concentration of 9 mg/kg, but the field duplicate at this location was below the pCUL at 3 mg/kg.

9.1.1.3 South of the Former Slip 5 Area

Constituents present in soil in the South of the Former Slip 5 Area at concentrations exceeding the pCULs include cPAHs, PCBs, TCE, arsenic, copper, and gasoline-range petroleum hydrocarbons. Table 50 summarizes the number of samples analyzed, the percentage of the samples with concentrations exceeding the pCULs, and the maximum concentration detected for each of the above constituents. As shown in Table 50, the constituents that most frequently exceed the cleanup levels are cPAHs (24 percent of samples), PCBs (12 percent of samples), arsenic (10 percent of samples), and copper (13 percent of samples). The concentration of gasoline-range petroleum hydrocarbons exceeds the pCUL in about 1 percent of the samples. TCE exceeds the pCULs in 3 percent of the samples. All of the TCE exceedances occurred along the southern property boundary at locations MW-6 and TDP26 (at the construction-related excavation), and at Building 14-01 Footing Exc14 (located inside Building 14-01, adjacent to the southern wall of the building). Each of the TCE exceedances occurred at depth (near or below the groundwater table), except at the construction-related excavation where the exceedance occurred at 4 ft BGS.

PCBs and cPAHs exceedances occurred in soil along the southern property boundary at MW-5, MW-6, and MW-7; along the eastern property boundary at MW-4; in the Former Washdown System Collection Tanks/Loading Dock Area at the construction-related excavations TowpathExc3, TowpathExc4, TowpathExc5 (cPAHs only), and TowpathExc6; the shallow construction-related

excavations in the former Building 14-11 area (Bldg-14-11Exc1, Bldg-14-11Exc2, IT-PIVExc2-B(5.0), and a surface sample collected just below where PCBs were detected in a sample of the CJM); and in samples collected from soil inside Building 14-01. Inside Building 14-01, PCBs and cPAHs exceedances occurred at two construction-related trenches (TRENCH3 and TRENCH5); cPAHs exceedances also occurred at TRENCH 4 and PCBs exceedances occurred at soil boring SB-1. cPAHs exceedances occurred in construction-related excavations Bldg1401-FootingExc 1, -3, and -5 and RI soil boring MW-2. All of the cPAHs and PCB exceedances occurred in soil within the unsaturated zone.

Very few metals exceed pCULs in soil in the South of the Former Slip 5 Area. The exceedances consist of arsenic in 20 samples and copper in 15 samples each. The highest arsenic concentrations were detected in samples from the western portion of the Site at locations MW-7, HP-3, and I-206(s). Concentrations exceeding the pCUL at these locations range from 9 to 43 mg/kg. Exceedances at I-206(s) and HP-3 were detected at the deepest sample depths, 27.5 and 20 ft BGS, respectively. The majority of copper exceedances were detected in the former washdown/aqueous degreaser area and near the eastern property boundary.

One gasoline-range petroleum hydrocarbon exceedance occurred in soil inside Building 14-01. The exceedance occurred in a construction-related excavation (Bldg1401-FootingExc 5).

In summary, concentrations of cPAHs and PCBs exceeding the pCULs are detected in about 24 percent and 12 percent of the samples, respectively. Concentrations of VOCs (TCE, PCE, and vinyl chloride) were detected in soil near the southern property boundary. TCE exceedances occurred in soil in both the saturated and unsaturated zones. Arsenic and copper are the only metals that exceed pCULs in the South of Former Slip 5 Area. PCBs, cPAHs, and gasoline-range petroleum hydrocarbons are detected at concentrations exceeding the pCULs in shallow soil at locations inside Building 14-01. Only the gasoline-range petroleum hydrocarbon exceedance occurred within the Former Washdown/Aqueous Degreaser Area. PCBs and cPAHs were detected in shallow soil in the area of former Building 14-11.

The areas of specific concern in the South of Former Slip 5 Area, as identified in the RI/FS Work Plan, are the area in the Vicinity of I-206(s), the Former Washdown/Aqueous Degreaser Area, and the Former Washdown System Collection Tanks/Loading Dock Area. The nature and extent of soil contamination in these areas are as follows:

- Area in Vicinity of I-206(s). Arsenic was detected at concentrations exceeding the pCUL in soil samples collected prior to the RI. The arsenic exceedances occurred in 9 of 68 soil samples analyzed for arsenic. Exceedances occurred at depths ranging from 3 to 27.5 ft BGS. The highest concentration was detected at 16 ft BGS at boring HP-3.
- Former Washdown/Aqueous Degreaser Area. Analytical results for soil samples collected within the Former Washdown/Aqueous Degreaser Area indicate cPAHs, PCBs, TCE, gasoline-range petroleum hydrocarbons, arsenic, and copper are present in soil at concentrations exceeding the pCULs, but the exceedances are very limited. PCBs

exceedances occurred in one soil sample collected from the unsaturated zone at SB-1; a TCE exceedance occurred in one shallow soil sample (4 ft BGS) at one construction-related excavation located along the southern interior wall; gasoline-range petroleum hydrocarbons exceedances occurred in one of the construction-related excavations located along the southern interior wall; cPAHs exceedances occurred in shallow soil samples collected from three construction-related excavations; and three copper and two arsenic exceedances occurred in soil samples collected from the unsaturated zone (7.5 to 9 ft BGS).

• Former Washdown System Collection Tanks/Loading Dock Area. As shown in Table 41, cPAHs and PCBs exceedances occurred in soil samples collected from 0.7 ft BGS in shallow construction-related excavations. cPAHs exceedances occurred in four samples and PCB exceedances occurred in three samples.

9.1.1.4 Wooden Bulkhead

The extent of contamination in soil behind the wooden bulkhead on the Thompson property was evaluated based on samples collected through gaps in the bulkhead. Because soil erosion to the sediments is the pathway of concern, results were compared to the sediment pCULs. Arsenic was detected in one sample at a concentration slightly above the sediment pCUL. Arsenic concentrations in the other samples did not exceed the pCUL.

9.1.2 GROUNDWATER

The extent of groundwater contamination presented is based on the analytical results for groundwater samples collected during the RI. Groundwater is considered to be contaminated if a constituent is present at concentrations exceeding the pCULs. Tables 51, 52, and 53 provide statistics for groundwater constituents that exceed pCULs. The tables include number of samples analyzed, number of detections, the frequency of exceedances, and the maximum detected concentration for all groundwater constituents that had at least one exceedance.

9.1.2.1 Site Wide

The constituents detected at concentrations exceeding the pCULs in groundwater at one or more of the locations during the RI include two SVOCs (benzoic acid and BEHP); cPAHs; PCBs; metals (arsenic, cadmium, chromium VI, copper, lead, nickel, mercury, selenium, thallium, and zinc); acrylonitrile, TCE; cis-1,2-DCE; 1,1-dichloroethene; and vinyl chloride. A summary of those constituents found in groundwater at concentrations exceeding the pCULs is provided in Table 47. PCBs exceedances occurred only in groundwater at wells located in the Former Slip 5 Area [I-203(s), MW-10, MW-12, MW-13, and MW-17] and in wells located in the North of the Former Slip 5 Area [I-104(s) and MW-25 and piezometer PZ-1]. PCB exceedances most frequently occurred during the June 2012 event.

Metals exceedances primarily occurred in groundwater in the North of the Former Slip 5 Area in wells located within the Stabilized Soil Area (MW-23, MW-24, and MW-25) and at piezometer PZ-1 located along the northern property boundary. Dissolved arsenic exceedances occurred in groundwater throughout the property. The most elevated arsenic concentrations occurred at the wells located within and immediately west (downgradient) of the Stabilized Soil Area and at piezometer PZ-6 located within the Former Slip 5 Area. Dissolved arsenic concentrations in groundwater below and immediately west of the Stabilized Soil Area range from 3,290 μ g/L to 285,000 μ g/L. Dissolved arsenic concentrations at PZ-6 range from 437 μ g/L to 8,010 μ g/L.

The majority of groundwater samples with VOCs detected above pCULs were in samples from MW-6, located along the southern property boundary; the remaining exceedances occurred in the South of Slip 5 Area and North of the Slip 5 Area. pCUL TCE exceedances only occurred at wells MW-7 (once) and MW-6 (all four monitoring events). Vinyl chloride exceedances occurred at well MW-6 and MW-2 along the southern property boundary and at MW-16, MW-18, MW-23, and MW-25 south of and in the stabilized soil area. Cis-1,2-DCE was also exceeded at MW-6 during all four monitoring events. Other volatiles that were detected above pCULs include acrylonitrile at MW-18 south of the stabilized soil area, and acrylonitrile and 1,1-DCE at MW-6 along the southern property boundary.

9.1.2.2 Western Property Boundary

Except for the single seep location, the wells and piezometers located along the western property boundary are the groundwater monitoring locations nearest the LDW and provide the best information regarding what constituents may be discharging to the LDW surface water and sediment via groundwater. As shown on Figure 23, seven groundwater monitoring wells [MW-7, MW-9, MW-10, MW-19, MW-20, I-104(s), and I-205(s)] and two piezometers (PZ-7, PZ-8) are located near the western property boundary, nearest the LDW shoreline. The constituents detected at concentrations exceeding the pCULs in groundwater at one or more of the western-most well locations during the RI include cPAHs; PCBs; metals (arsenic, cadmium, and nickel); and TCE. The locations where these constituents exceed the pCULs along the western property boundary are identified on Figure 69. Mercury was detected at a concentration greater than the pCUL in the parent sample, but not the duplicate sample from well I-104 during one quarter; mercury concentrations did not exceed the pCUL in any other western property groundwater samples and mercury is not shown as an exceedance on Figure 69.

As shown on Figure 69, the cPAHs and PCBs exceedances occurred in groundwater in the center of the western property boundary [MW-10, PZ-7 (cPAHs only), and the seep]. cPAHs and PCB exceedances also occurred in groundwater in the northwest corner of the property [I-104(s)]. During the December 2011 monitoring event (the first RI groundwater monitoring event), PCBs exceedances did not

occur in any of the western-most wells. PCBs exceedances occurred at the seep in March and June 2012, at well MW-10 in September 2012, and at I-104(s) in June 2012.

As shown on Figure 69, the arsenic exceedances primarily occurred in those wells and piezometers located north of MW-9 [I-205(s), MW-10, MW-19, MW-20, I-104(s)]. No arsenic exceedances occurred at well MW-9 or piezometer PZ-8 (located south of MW-9) during the RI. Arsenic exceedances only occurred during the March 2012 monitoring event at MW-7 (located in the southwest corner of the Site) and the magnitude of the exceedance was small (less than twice the pCUL). The only other pCUL exceedance at well MW-7 was TCE in December 2011 (the first RI groundwater monitoring event). This exceedance was less than twice the pCUL. TCE exceedances did not occur in groundwater at any other location during the RI. Dissolved cadmium and nickel exceed the pCULs in groundwater at well MW-9 in September 2012 (the fourth RI groundwater monitoring event). All of the exceedances were less than twice the pCUL.

The highest arsenic concentrations in the western-most wells occurred at wells MW-19, MW-20, and I-104(s), which are located downgradient of the Stabilized Soil Area. Dissolved arsenic concentrations range from 25.9 μ g/L (well MW-19) to 2,460 μ g/L [well I-104(s)]. Although wells I-104(s) and MW-20 are located immediately adjacent to each other, dissolved arsenic concentrations are typically an order of magnitude higher at I-104(s), indicating the variability of groundwater concentrations. As shown in Table 2, monitoring well I-104(s) is screened at a deeper depth (15 to 25 ft BGS) than well MW-20, which is screened at 8 to 18 ft BGS.

9.1.3 SOIL VAPOR

The RI included collection of five soil vapor samples collected from beneath the Building 14-01 floor slab. VOCs were detected in each of the five samples, but all of the concentrations were below the soil vapor screening levels. Based on the results of the soil vapor samples, no indoor air samples were deemed necessary and no indoor air samples were collected. Soil vapor and indoor air area not considered contaminated media at the Site.

9.1.4 STORMWATER

As discussed in Section 8.1.6.1, a comparison of the analytical results for the stormwater samples collected from Outfalls A (MH32) and B (MH80) to groundwater pCULs indicates that BEHP, cadmium, and zinc were present in stormwater at Outfall A at concentrations exceeding the pCULs and BEHP was present in the stormwater at Outfall B at concentrations exceeding the pCULs.

9.1.5 STORM DRAIN SYSTEM SOLIDS

As discussed in Section 8.1.6.2, a comparison of the analytical results for the storm drain solids collected in September 2011 to SMS criteria and LDW PRGs indicates that metals, PCBs, cPAHs, and SVOCs (primarily phthalates and benzyl alcohol) were present in some solids at concentrations exceeding the SMS criteria or LDW PRGs. As shown on Figure 66, metals (cadmium, chromium, copper, lead, mercury, and zinc) were detected at concentrations exceeding the SMS criteria in samples from CBs located around Building 14-01 and in four other areas identified as Building 14-12 Area, Building 14-02/14-03 Area, Isaacson West Area, and Isaacson East Area. Additionally, arsenic was detected above the LDW PRG in most CBs that also had SMS metal exceedances. As shown on Figure 67, total PCBs were detected above the PRG throughout the Site.

9.2 LOWER DUWAMISH WATERWAY SEDIMENT

The RI sediment investigation included collection of surface samples (representing the surficial 0 to 10 cm) and subsurface core samples (compositing sediment in 1-ft depth intervals (beginning 2 ft below the sediment surface and continuing deeper). The sampling was used to evaluate the vertical and horizontal distribution of the SMS chemicals (and carbazole) within the sediment offshore of the Site. Selected surface samples were analyzed for dioxins/furans to further refine the distribution of historical dioxin/furan results. Duplicate surface sediment grab and core samples were collected at two of the locations.

Data collected within and immediately adjacent to the sediment offshore from the Site prior to this RI are discussed in Section 3.2. The following discussion focuses primarily on the RI data; however, the historical data are used in the geospatial analyses for selected contaminants that are described below.

Surface sediments from the RI investigations are compared to the sediment pCULs (Table 8). Four contaminants (arsenic, cPAHs, total PCBs, and dioxins/furans) have pCULs that are based on human health risk PRGs. Total PCBs and arsenic have additional pCULs based on benthic organism PRGs (SMS criteria). In addition, an ecological risk-based PRG was developed for total PCBs for the river otter. The remaining SMS contaminants have pCULs based on benthic organism PRGs (SMS criteria).

All of the surface sediment samples collected during the RI sediment investigation had detected concentrations of total PCBs and arsenic that were above the pCULs (based on human health risk PRGs). Surface sediments at four locations had cPAH results (expressed in units of µg TEQ/kg dw) that were above the pCULs (based on human health risk PRGs). The calculated TEQ for dioxin and furan congeners analyzed in five surface samples (expressed in units of ng/kg dw TEQ) were above the pCULs (based on human health risk PRGs).

In addition, the RI sediment investigation found detected exceedances of the pCULs based on benthic organism PRGs (SMS criteria) for two of the metals (arsenic and zinc); two of the LPAHs (acenapthene and phenanthrene); four of the HPAHs (fluoranthene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene); three of the phthalate esters (diethyl phthalate, butyl benzyl phthalate and BEHP); two of the chlorinated benzenes (1,2-dichlorobenzene and 1,4-dichlorobenzene); two of the ionizable organic compounds (benzyl alcohol and phenol); and total PCBs (by Aroclor) (Table 46). The remaining SMS compounds were found at concentrations below the pCULs (SMS criteria) or were not detected (Table 46).

The RI sediment investigation found carbazole concentrations that ranged from 9.6 J to 320 μ g/kg dw (Table 46). The mean of the surface (0 to 10 cm) carbazole concentration is 40.6 μ g/kg dw and the mean of the subsurface concentration is 30.4 μ g/kg dw.

In general, chemical concentrations demonstrate either a steady decrease with depth or the concentrations remain stable within a sediment unit (e.g., silt or sandy silt unit) before dropping to nondetected concentrations in deeper sediment units with lower percentages of silt and TOC (e.g., poorly sorted sands or silty sands).

The extraction and analytical methods chosen in the RI/FS Work Plan to achieve the Data Quality Objectives (DQOs) provide laboratory-developed RLs that are below the SCO for the SMS chemicals of concern under most conditions. RLs for hexachlorobenzene, benzyl alcohol, and benzoic acid are elevated in one or more samples due to matrix interference and result in non-detected exceedances of the SCO or the CSL. The SMS criteria for hexachlorbenzene are based on an OC-normalized value.

There are non-detected exceedances of hexachlorobenzene in an additional seven samples with TOC at the low end of the range of TOC concentrations where OC-normalization is appropriate (above 0.5 percent; see discussion in Section 8.4.2). The typical RL for hexachlorobenzene using EPA Method 8270D and SIM is between 4.6 and 4.9 µg/kg dw. Organic carbon normalization of the RL value in samples where the TOC is between 1.27 and 0.5 percent results in an OC-normalized value that exceeds the SCO. Hexachlorobenzene is not detected in any of the other surface or subsurface samples analyzed. Re-analysis of the samples with the non-detected exceedances of the SCO using an alternative method with a lower RL was not conducted.

Additional chemicals that had one or more exceedances of the pCULs are found in a review of the available historical sediment data (Landau Associates 2011a). Historical sediment samples collected upstream (south) of the sediment site had exceedances of the SMS criteria for cadmium, chromium, mercury, and lead, in addition to the arsenic and zinc found during the RI. Several additional organic chemicals (including the ionizable organic compound dibenzofuran and several additional LPAH and HPAH compounds) that exceeded the SMS criteria were found in historical samples within and adjacent

to the Site; however, the elevated concentrations occurred in samples that contained concentrations of PCBs or arsenic that exceeded the pCULs or where the concentrations found in deeper samples also exceeded the SMS criteria.

A majority of the SMS chemicals are either not detected or are present at concentrations well below the SMS criteria in a majority of the samples (Table 46). Of the 47 chemicals on the SMS list, 16 have detected exceedances of the SMS criteria. Eleven detected chemicals have a single exceedance of the SMS criteria. Zinc and butyl benzyl phthalate have detected exceedances of the SMS criteria in two separate samples (Table 46).

Table 54 summarizes the sample locations and sample intervals with the chemicals exceeding the pCULs. The SMS chemicals detected at concentrations that exceed the SMS criteria in the greatest number of samples are total PCBs (in 30 samples), arsenic (in 7 samples), and benzyl alcohol (in five samples). Detected concentrations of PCBs are widespread in the sediment offshore of the Site and exceed the SMS criteria in approximately 39 percent (30 of the 76) of the samples analyzed. At a majority of the sample locations, total PCB concentrations that exceed the SMS criteria are found in deeper samples than other chemicals with exceedances of the SMS criteria; however, at four sample locations arsenic concentrations that exceed the SMS criteria are found in deeper sample intervals where total PCB concentrations are below the SMS criteria.

The vertical distribution of sediments with total PCB concentrations that exceed the SMS criteria consistently overlap the distribution of other compounds that exceed the SMS criteria, with the exception of the arsenic concentrations mentioned above. The distribution of samples with total PCB and arsenic concentrations that exceed the pCULS (including the SMS criteria) can be used to define the maximum horizontal and vertical extent of sediment contamination offshore of the Site. A discussion of the horizontal and vertical distribution of total PCB and arsenic concentrations across the sediment offshore of the Site is presented in greater detail below.

9.2.1 POLYCHLORINATED BIPHENYLS (BY AROCLOR)

Concentrations of total PCBs exceed the pCUL (2 μ g/kg dw –based on the human health risk PRG for seafood consumption) in all of the surface samples collected during the RI. In addition, total PCBs exceed the benthic organism PRG (SCO) in 30 of the 76 RI samples analyzed (17 surface sediment samples and 59 core samples) and exceed the SMS CSL in 3 samples (Table 46). The total PCB concentrations range from an estimated concentration (with a "J" qualifier) of 12 μ g/kg dw to 2,070 μ g/kg dw. The OC-normalized values range from not detected at 0.8 mg/kg OC to 111.9 mg/kg OC (Table 46). Aroclors 1248, 1254, and 1260 are the only Aroclors detected.

A geospatial interpolation was conducted using Spatial Analysis Decision Assistance (SADA) software (Version 5.0) developed by The University of Tennessee Research Corporation. Sediment data from the current RI investigation include the results from RI surface grab samples (0 to 10 cm) and the core samples. Core samples representing sediments from 2 to 3 ft, 4 to 5 ft, 6 to 7 ft, and 8 to 9 ft were used in the interpolation if there were available data. At three locations where the 8- to 9-ft sample have total PCB concentrations that exceed the SCO, an archived 10- to 11- ft sample was analyzed to further investigate the depth of PCB contamination at that location. At locations where the deepest sample collected and analyzed has total PCB concentrations that exceeded the SCO, additional sampling using different equipment may be required to fill this data gap.

The historical data available within and adjacent to the project boundaries were also used when the location fell within the geospatial analysis search ellipse. Historical data, including both surface grab samples (0 to 10 cm) and surface core segments (representing the 0- to 0.9-ft or 0- to 1-ft intervals) were used to supplement the RI sediment investigation surface data. At a single location, the chemical results from a historical core segment representing the 0- to 2-ft interval were used in the geospatial interpolation of surface samples. Additional historical core data were used when the available sample intervals overlapped the depth intervals used in the geospatial interpolation. For example, a historical core sample representing a 3.5- to 4.5-ft interval was used in the geospatial interpolation with the 4- to 5-ft core data collected during the RI.

The total PCB concentrations were OC-normalized where appropriate (TOC levels greater than or equal to 0.5 percent). OC-normalized PCBs values were used in the interpolation and contouring to allow a direct comparison of the interpolated values against the SMS criteria.

The inverse distance weighting (IDW) was conducted on a 10-ft by 10-ft grid with a search ellipse of 200 ft by 75 ft (major and minor axis radii, respectively). The search ellipse was oriented approximately parallel to the river flow (166°N). The minimum number of surrounding data points (neighbors) included in the IDW was 2 and the maximum was 8. The power for the IDW was set at 4.

Using a power of 4 minimized the number of stations where there was a significant difference between the interpolated value of surrounding grid cells and the sample results within a grid cell. This geospatial methodology was developed for Boeing Plant 2 jointly by EPA, Ecology, USACE, and Boeing.

The geospatial analysis was run using SADA as a series of 2-D layers. Data from each sample interval were interpolated independent of the other data intervals, resulting in a 2-D layered interpolation. The data set used in the interpolations used fill-down surrogate values for RI sediment investigation sample locations where sample intervals were not collected or where it was inappropriate to OC normalize the values. Fill-down surrogate values were not used for the historical data sets.

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

The use of fill-down surrogate values is a conservative approach to allow improved coverage in the deeper intervals where fewer samples were collected. At each sample location, the concentration found in the deepest available sample is used to represent the maximum concentration present in all the deeper sample intervals not analyzed. In general, COC concentrations show either a steady decrease with depth or the concentrations remain stable within a sediment unit. This approach is likely to bias the interpolated values surrounding the surrogate sample high, but is unlikely to bias the results low.

The vertical search ellipse axis for the interpolation was set to 1 ft. A vertical search ellipse of 1 ft or less excludes data from shallower or deeper intervals or layers from being used in the interpolation of a cell value.

Figure 70 presents the results of the geospatial interpolation of total PCBs concentration (in mg/kg OC) compared to the SMS criteria. Grid cells are coded to represent areas with interpolated concentrations within defined ranges. The measured concentration (in mg/kg OC) at each location and depth interval is presented. An asterisk next to the concentration (in mg/kg OC) identifies a surrogate value carried down from a shallower sample interval.

The surface sediments in the inshore area have total PCB concentrations above the SCO over wide areas (Figure 70). The offshore surface sediments have lower total PCB concentrations, below the SCO. This pattern in total PCB concentrations changes with depth. The distribution of sediments with elevated total PCB concentrations in the inshore areas decreases with depth. Total PCB concentrations are below the SCO in the 4- to 5-ft interval within the inshore sediment cores. In the offshore areas, the distribution of sediments with elevated total PCB concentrations extends deeper and at two of the RI sample locations, the maximum depth of sediment with total PCB concentrations above the SCO could not be determined.

9.2.2 ARSENIC

Concentrations of arsenic exceed the pCUL (7 µg/kg dw –based on the human health risk PRG for direct contact) in all of the surface samples collected during the RI. In addition, arsenic exceeds the benthic organism PRG (SCO) and the SMS CSL in 7 of the 73 RI samples (Table 46). Arsenic concentrations range from 0.9 mg/kg dw to 684 mg/kg dw (Table 46). A geospatial interpolation of the available surface and subsurface data from the current RI and the available historical data was conducted using the same procedures, grid specifications, search ellipse, and power used for the PCB geospatial interpolation. Arsenic concentrations in mg/kg dw were used in the geospatial interpolation.

Figure 71 presents the results of the geospatial interpolation of arsenic concentrations (in mg/kg dw) at the Site. Grid cells are coded to represent areas with interpolated concentrations within defined ranges. The measured concentration (in mg/kg) at each location and depth interval is presented. An

asterisk next to the concentration (in mg/kg) identifies a surrogate value carried down from a shallower sample interval. Sediments with arsenic concentrations above the SCO were limited to the inshore areas and were found in sediments shallower than 6 ft below the sediment surface. Sediments with arsenic concentrations above the SCO were not found in the offshore sediments or deeper than the 4- to 5-ft sample interval.

9.2.3 cPAHs

The calculated cPAHs TEQs exceed the pCUL [380 µg TEQ/kg dw site-wide and 150 µg TEQ/kg dw intertidal (based on the human health risk PRG for direct contact]) in four of the surface samples collected during the RI. The calculated cPAHs TEQs range from 12.7 µg TEQ/kg dw to 1,703 µg TEQ/kg dw (Table 46) in the 73 RI samples analyzed for the SMS HPAHs (includes the individual cPAHs; see Section 8.4.2). A geospatial interpolation of the available surface data from the current RI and the available historical data was conducted using the same procedures, grid specifications, search ellipse, and power used for the PCB and arsenic geospatial interpolation.

Figure 72 presents the results of the geospatial interpolation of the surface cPAHs TEQs (in μ g TEQ/kg dw). Grid cells are coded to represent areas with interpolated concentrations within defined ranges.

9.2.4 DISTRIBUTION OF SEDIMENTS THAT EXCEED THE SCO

All of the surface sediment samples collected during the RI sediment investigation had detected concentrations of total PCBs and arsenic that are above the pCULs (based on human health risk PRGs). Sediments containing elevated total PCB concentrations (characterized as detected concentrations above the SCO) were widespread both horizontally and vertically offshore of the Site. For a majority of the samples that have one or more SMS chemicals with concentrations greater than the SCO, total PCB concentrations either exceed the SCO in the sample or the total PCB concentration in a deeper sample at the location exceeds the SCO. At locations where the total PCB concentration are below the SCO or drops below the SCO in the deeper samples and concentrations of other SMS chemicals remained above the SCO, arsenic can be used to define the maximum depth of sediments with SMS chemical concentrations above the SCO. Arsenic defines the maximum depth of sediments with concentrations of one or more SMS chemicals above the SCO at four locations (Table 54).

10.0 CONCEPTUAL SITE MODEL

The conceptual Site model (CSM) was developed based on historical land use, environmental data, and the contaminant fate and transport processes that control the migration of contaminants in the natural environment. A schematic representation of the Site CSM is presented on Figure 73, and the following sections discuss the factors affecting the CSM including contaminant migration pathways, contaminant receptors, exposure pathways, contaminants present at the Site and in sediment offshore of the Site, and potential sources for the contaminants.

10.1 CONTAMINANT MIGRATION PATHWAYS

Several pathways that may cause contaminants to migrate at the Site were evaluated. Those evaluated consisted of the following:

- Leaching of contaminants from soil to groundwater
- Transport of contaminants in groundwater to adjacent surface water and sediment
- Transport of contaminants in stormwater to adjacent surface water and sediment
- Transport of contaminants in soil to sediment via bank erosion
- Transport of contaminants in soil and groundwater to indoor air via volatilization.

Based on the evaluation, all of the above pathways are considered to be potential migration pathways except for the volatilization of contaminants in soil and groundwater to indoor air, as discussed below.

10.1.1 POTENTIAL CONTAMINANT MIGRATION PATHWAYS

This section discusses each of the pathways considered to be potential migration pathways at the Site.

10.1.1.1 Leaching From Soil to Groundwater

Because groundwater is encountered at shallow depths (typically between 11 ft and 17 ft BGS), contaminants found in soil may leach to groundwater and, therefore, leaching of contaminants from soil to groundwater is considered a potential migration pathway. However, as described in Section 9.1.1, some of the constituents detected in soil at concentrations exceeding the soil pCULs were not detected in groundwater at concentrations exceeding the groundwater pCULs during the RI. These constituents include barium; mercury (Former Slip 5 Area only); and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons. The lack of these constituents in groundwater at concentrations exceeding the pCULs indicates that these constituents are not leaching from soil to groundwater and existing concentrations in soil are adequately protective of groundwater.

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

10.1.1.2 Transport of Contaminants in Groundwater to Adjacent Surface Water and Sediment

As discussed in Section 8.1.2, groundwater at the Site flows to the west toward the LDW and, based on previous studies conducted along the LDW including at Boeing Plant 2, the shallow groundwater in the vicinity of the Site discharges to the LDW above -5 ft MLLW. One groundwater seep is present at low tide in the intertidal zone at about 0.0 ft MLLW. Because groundwater at the Site discharges to the LDW, contaminants in groundwater may be transported to LDW surface water and sediment and, therefore, groundwater is a potential migration pathway for contaminants.

10.1.1.3 Transport of Contaminants in Stormwater to Adjacent Surface Water and Sediment

As discussed in Section 2.1, stormwater from the Site is discharged to the LDW via two outfalls: Outfall A and Outfall B. Prior to discharge to the LDW, the stormwater is collected in CBs where the solids suspended in stormwater are settled out. The stormwater also passes through oil/water separators where additional solids and oil are separated from the stormwater prior to discharge to the LDW. Stormwater from the Isaacson property also passes through two treatment vaults (Vortechs) that treat stormwater by allowing suspended solids to settle out prior to discharge to the LDW. Although analytical results from the stormwater monitoring and the CB solids indicate that stormwater discharging to the LDW via Outfall A and Outfall B is currently not contributing to the offshore sediment contamination adjacent to the Site, historical stormwater discharge may have contributed to contaminants in the offshore sediment and, therefore, stormwater is a potential migration pathway for contaminants.

10.1.1.4 Transport of Contaminants in Soil to Sediment via Bank Erosion

Soil erosion at most of the Site is prevented by paving and buildings. A majority of the shoreline at the Site is currently protected from significant bank erosion by wooden and metal bulkheads; however; because there are some gaps in the wooden bulkhead on the south portion of the Site, some soil from behind the bulkhead may erode through the gaps to the LDW; therefore, soil erosion is a potential migration pathway for contaminants.

10.1.2 Non-Potential Contaminant Migration Pathways

Because there is an approximately 11- to 15-ft zone of unsaturated soil at the Site, migration of contaminants from soil and groundwater to indoor air via volatilization was evaluated. As described in Section 4.4, five vapor samples were collected from beneath the Building 14-01 floor slab to determine the extent, if any, that VOCs are present in soil vapor below the building floor slab. The results for the soil vapor samples were compared to the soil vapor screening levels presented in Section 7.3, and, as discussed in Section 8.3, all of the detected VOC concentrations were below the screening pCULs.

Because the soil vapor concentrations were below the screening levels, volatilization of contaminants from soil and groundwater to indoor air is not considered a migration pathway for the Site.

10.2 CONTAMINANT RECEPTORS

Potential receptors of contaminants found at the Site and in the sediment offshore of the Site were evaluated based on the current and likely future uses of the Site (described in Section 2.1) and of the areas offshore of the Site. Those receptors identified as potential receptors and those receptors evaluated, but determined not to be potential receptors based on this evaluation, are identified below.

10.2.1 POTENTIAL RECEPTORS

Only humans have been identified as potential receptors for Site contaminants in soil. Humans are considered potential receptors because current and future land use includes people working at the Site (either as construction workers or for industrial operations). Although the current Site use is industrial, for this report unrestricted potential property uses are considered that may include residential or commercial uses. Prior to completing the FS, a demonstration may be made that Site use should be limited to industrial, consistent with current and likely future land use.

Humans; terrestrial ecological receptors (birds, mammals); and aquatic organisms (fish, shellfish, and benthic invertebrates) have been identified as potential receptors for sediment contaminants. Humans are considered to be potential receptors of sediment contaminants because people may be present in the area offshore of the Site either during tribal fishing or recreational activities, although, because there is no readily available public access to the LDW from the shoreline in the vicinity of the Site, recreational activities are not likely. Terrestrial ecological receptors (birds or mammals) and aquatic organisms may be present in the area offshore of the Site.

10.2.2 Non-Potential Receptors

Receptors that were considered, but not identified as potential receptors for Site contaminants, are terrestrial ecological receptors (wildlife, soil biota, and plants). As described in Section 7.2, these are not currently considered to be potential receptors. Contaminated soil at the Site is and will continue to be covered by buildings and pavement, preventing plants or wildlife from being exposed to soil contamination. As described in Section 7.2, a terrestrial ecological evaluation was ended based on an exposure analysis.

No additional receptors beyond those discussed in Section 10.2.1 were evaluated for sediment contaminants.

10.3 EXPOSURE PATHWAYS

The exposure pathways for those potential receptors identified in Section 10.2.1 (humans, terrestrial ecological receptors; and aquatic organisms) also depend on the current and likely future uses for the Site and of the areas offshore of the Site.

10.3.1 POTENTIAL EXPOSURE PATHWAYS

The potential pathways for exposure to contaminants from the Site include the following:

- Human direct contact with contaminated soil by construction or industrial workers.
- Human direct contact with LDW surface waters and sediments by tribal and recreational users.
- Direct contact with surface water and sediment by terrestrial ecological receptors (i.e., birds or mammals).
- Uptake of surface water/sediment contaminants into aquatic species such as fish and shellfish (i.e., aquatic organism bioaccumulation), which then would be consumed as food by humans.
- Uptake of surface water/sediment contaminants into aquatic species, which then would be consumed as prey by higher trophic level receptors.

10.3.1.1 Soil Direct Contact

Contaminants are present in shallow soil at the Site; however, nearly all of the Site is covered with buildings or pavement; only a narrow strip of undeveloped land along the western and southern portion of the Site is undeveloped. Direct human contact with soil would not occur under normal conditions, but may occur during excavation for construction or repair of Site buildings and utilities and, therefore, human direct contact with contaminated soil by construction or industrial workers is considered a potential exposure pathway.

10.3.1.2 Sediment Direct Contact

Direct contact with intertidal sediments by humans, terrestrial ecological receptors (birds and mammals), and aquatic organisms may occur, but exposure to contaminated sediments is usually limited to the shallow surface sediments. Direct human contact with sediment is typically limited to surface and shallow subsurface sediments in the intertidal zone (approximately -4 ft MLLW elevation and above); however, the lack of available public access to the LDW from the shoreline in the vicinity of the Site would limit exposure. Activities such as beach play or clamming are generally limited to intertidal areas (approximately 1.85 acres with restricted upland access), but direct exposure to sediments may also occur during recreational boating or net fishing activities in deeper waters. During clamming activities, sediments to a depth of 45 cm may be excavated and human direct contact with the exposed sediments can occur. Direct contact with sediment by terrestrial ecological receptors (birds and mammals) may also

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

occur, but exposure to contaminated sediments during foraging is usually limited to the shallow surface sediments (10 cm or less). Exposure to aquatic species (benthic infauna and higher trophic level receptors) is typically limited to shallow sediments. Humans, terrestrial ecological receptors, and aquatic organisms would seldom be exposed to deep sediments unless the sediments were physically exposed during disturbance events or by erosion. Activities such as swimming may also expose humans, birds, and mammals to waters containing suspended sediments.

10.3.1.3 Surface Water Uptake

Aquatic species such as fish and shellfish may be exposed to sediment contaminants by uptake of surface water containing suspended sediment.

10.3.1.4 Ingestion of Fish and Shellfish

Humans and aquatic species (birds and mammals) may be exposed to sediment contaminants by ingestion of fish and shellfish exposed to sediment contaminants. However, the sediment contaminants that humans would be exposed to by ingestion of fish and shellfish are limited to those that bioaccumulate (PCBs, dioxins/furans, cPAHs and arsenic).

10.3.2 Non-Potential Exposure Pathways

One exposure pathway that was evaluated, but not identified as a potential exposure pathway for Site contaminants, was human ingestion of groundwater. As described in Section 7.1, groundwater is not considered to be a current or reasonable future source of drinking water; therefore, human ingestion of drinking water is not included as an exposure pathway

No additional exposure pathways beyond those previously discussed were evaluated for sediment contaminants.

10.4 UPLAND AREA CONTAMINANTS

The contaminants present in soil, groundwater, or stormwater at more than one Site location at concentrations exceeding the pCULs include BEHP; cPAHs; PCBs; metals (arsenic, barium, cadmium, chromium VI, total chromium, copper, lead, mercury, nickel, selenium, thallium, and zinc); VOCs (TCE, cis-1,2-DCE, vinyl chloride, and acrylonitrile); and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons.

10.4.1 POTENTIAL UPLAND CONTAMINANT SOURCES

Potential past or current sources for contaminants in Site soil and groundwater include historical operations, former tanks and sumps, contaminated soil, and offsite sources. Potential sources for

LANDAU ASSOCIATES

AMEC Environment & Infrastructure, Inc.

contaminants in stormwater or storm drain solids include building materials, infiltrating soil or groundwater if cracks in the storm drain piping are present at locations where soil or groundwater constituents exceed pCULs, and offsite sources.

10.4.1.1 Soil and Groundwater

Potential sources that may have in the past or may currently contribute to soil and groundwater contamination at the Site are identified in the RI/FS Work Plan including historical Site operations; ASTs, USTs, and sumps; contaminated soil and fill material; stabilized soil fill material; a tar-like substance observed in one location at the Site; offsite sources (e.g., the Jorgensen site located north of the Site, and the 8801 site located south of the Site); and the Former Slip 5 Outfall Area. The potential for the sources to contribute to soil and groundwater contamination is discussed by area below. Additionally, some RI explorations were conducted to evaluate potential sources for elevated arsenic concentrations in groundwater at wells I-104(s), I-205(s), and I-206(s). The potential sources identified, if any, are evaluated following the general discussion of potential groundwater and soil contaminant sources by area.

North of the Former Slip 5 Area

cPAHs; PCBs; metals (arsenic, cadmium, copper, lead, mercury, and zinc); and diesel-range, oil-range, and gasoline-range petroleum hydrocarbons were detected in the soil in the North of the Former Slip 5 Area at concentrations exceeding the pCULs. Except for diesel-range, oil-range, and gasoline-range petroleum hydrocarbons, these contaminants were also detected in groundwater in the North of the Former Slip 5 Area at concentrations exceeding groundwater pCULs. The lack of diesel-range, oil-range, and gasoline-range petroleum hydrocarbons exceedances in groundwater in the North of the Former Slip 5 Area indicates that these contaminants are not leaching from soil to groundwater. A summary of those contaminants found in soil and those found in groundwater in the North of the Former Slip 5 Area is provided in Table 47. The potential sources for the contaminants found in soil and groundwater in the North of the Former Slip 5 Area include historical operations, former USTs and sumps, the observed tarlike substance found in soil, material used to fill the former river meander, and stabilized soil material. These sources are evaluated below.

Historical Operations

As described in Sections 2.2 and 2.3, the Site was previously occupied by several sawmills; a wood treatment operation; a steel melting, forging, and fabricating facility; and a galvanizing plant. Boeing has not operated on the property in the North of the Former Slip 5 Area except to conduct cleanup activities and to utilize the area for equipment storage after the property was paved. Boeing operations on the property are not considered a likely source of contamination. Features and operations associated with

the historical facilities that may have contributed to the release of contaminants at the Site are described below:

- hydrocarbons from the use of hydraulic fluids and diesel or heavier petroleum fuel used to run heavy equipment. Although petroleum hydrocarbons were present in the soil at concentrations exceeding the pCULs in a few locations, they were not present in groundwater at concentrations exceeding the pCULs. Boiler tanks were used at both the Duwamish Lumber Company Sawmill and the Tyee Lumber Company Sawmill (Figure 6) and, because these sawmills operated in the early 1900's, it is possible that coal was used as fuel for the tanks. The combustion of coal may result in the release of cPAHs, cadmium, and other heavy metals, which were detected in the soil in the North of the Former Slip 5 Area at concentrations exceeding the pCULs.
- Former Wood Preserving. The Mineralized Cell Wood Preserving Company that operated on the northern side of the Slip 5 Area used a solution of arsenic and sulfate salts of copper and zinc to preserve wood. Storage tanks associated with this operation were reportedly cleaned twice per day and sludge and remaining chemicals in the tanks were reportedly drained directly to the ground surface. The operations associated with the wood preserving are likely the primary source of elevated levels of arsenic and copper detected in soil throughout the North of the Former Slip 5 Area.
- Former Steel Forging and Galvanizing Plant. Structures associated with the former Isaacson Iron Works Facility included a tractor repair shop, a welding shop, tractor sheds, a storage shed, a tractor parts warehouse, offices, a scrap iron yard, a galvanizing plant, a general warehouse, a paint shop and a paint storage area. Facilities and operations that may have been a potential source of contaminants in soil in the North of the Former Slip 5 Area include the galvanizing plant and the paint shop and storage facility. It is not clear if the former paint shop operations and storage sheds may have contributed to soil contamination. cPAHs, PCBs, arsenic, and copper were detected in soil in this area at concentrations exceeding the pCULs. Other than PCBs, these contaminants are not typically associated with paint; PCBs were used in paint in the past to enhance the structural integrity of the paint and reduce flammability.

Former USTs and Sumps

There are currently no USTs, ASTs, or sumps located in the North of the Former Slip 5 Area. Former USTs and sumps include the sump associated with the former Isaacson Iron Works steam cleaning rack; three sumps associated with the Former Paint Storage Area (identified as TS-09, TS-10, and TS-11 on Figure 4); a sump located in the northeast corner of the Site; four diesel and gasoline tanks (identified as TS-05 through TS-08 on Figure 4); and two boiler fuel tanks (identified as TS-12 on Figure 4). A comparison of the RI and/or pr-RI analytical results for soil samples collected in the areas of the four former diesel and gasoline tanks and the two boiler fuel tanks to pCULs indicates that the tanks were not sources of current contamination in the North of the Former Slip 5 Area. The sumps and their potential as contaminant sources are described below:

• The steam cleaning rack and associated sump were located in the northern portion of the Isaacson property as shown on Figure 4. As described in Section 3.1.1, the steam cleaning rack was used by Isaacson to clean equipment. Water, waste sludge, and solvents from the cleaning filtered into a 5-ft deep sand and gravel unlined sump. In about 1979 or 1980, a

catch pan was placed above the sand and gravel in the sump to facilitate collection and disposal of waste sludge and solvent, but the sump was never connected to the sewer (Dames & Moore 1983). The sump and associated soil were later removed. Soil samples collected from this area and analyzed prior to the RI and one soil sample collected from MW-25 during the RI, indicate elevated concentrations of arsenic in soil where the steam cleaning rack and sump were previously located. Petroleum hydrocarbons and VOCs were not detected in soil in this area at concentrations exceeding the pCULs.

- As previously mentioned, it is not clear whether the painting operations may have contributed to soil contamination based on the types of contaminants detected in media in this area and, therefore, it is not clear if the associated sumps were a potential contaminant source.
- As discussed in Section 3.1.20, a sump was previously located in the northeastern corner of the Site (Figure 4) and removed by Boeing in 2006; this sump may have been a source of PCBs detected in soil at concentrations exceeding the pCULs. The sump was a below-grade, open-to-the-surface 55-gallon drum that was discovered under a steel plate. The sump reportedly had an inlet pipe and an outlet pipe (Landau Associates 2007). The purpose or use of the sump is unknown.

Observed Tar-Like Substance

Based on the RI results, the vein of tar-like substance discovered outside of the stabilized soil perimeter on the northern side of the excavation for the eastern Vortechs vault (shown on Figure 19), is a likely source for the diesel-range, oil-range, and gasoline-range petroleum hydrocarbons and cPAHs detected in soil in this area at concentrations exceeding the pCULs.

Fill Material

Fill material used to fill the former river meander, which was likely material hydraulically dredged from the LDW during channel modification, may be a source of contaminants in soil and groundwater in the North of the Former Slip 5 Area.

Stabilized Soil Material

Soil above the groundwater table containing elevated concentrations of arsenic that was excavated, stabilized, and used as excavation backfill may be a potential contaminant source to groundwater, although TCLP results indicate little impact to groundwater by this material. Alternatively, soil below the groundwater table that was not stabilized may be a source of elevated arsenic concentrations found in groundwater in the North of the Former Slip 5 Area. Elevated pH levels in groundwater under the stabilized soil may increase the water solubility of some metals including arsenic, lead, and zinc.

Former Slip 5 Outfall

cPAHs, PCBs, arsenic, cadmium, and copper were detected in soil in the vicinity of the Former Slip 5 Outfall Area. Because these contaminants were detected in nearby soil in the Former Slip 5 Area, it is unclear whether the outfall was a source of these contaminants.

Former Slip 5 Area

One SVOC (naphthalene); cPAHs; PCBs; metals (arsenic, barium, cadmium, chromium VI, total chromium, copper, lead, mercury, nickel, thallium, and zinc); and gasoline-range petroleum hydrocarbons were detected in the soil within the Former Slip 5 Area at concentrations exceeding the pCULs. cPAHs; PCBs; and metals (arsenic, cadmium, and nickel) were also detected in groundwater in the Former Slip 5 Area at concentrations exceeding the pCULs. The lack of naphthalene, barium, chromium VI, total chromium, copper, lead, mercury, thallium, zinc, and gasoline-range petroleum hydrocarbons exceedances in groundwater indicates that these contaminants are not leaching from soil to groundwater. A summary of those contaminants found in soil and those found in groundwater within the Former Slip 5 Area is provided in Table 47. The potential sources for those contaminants in soil and groundwater within the Former Slip 5 Area are historical operations, debris and contaminants present in material used to fill the slip, as described below.

Historical Operations

Historical operations that may have contributed to contaminants present in the soil and groundwater within the Former Slip 5 Area include those associated with the sawmills; the wood treatment facility; the steel melting, forging, and fabricating facility and galvanizing plant. Historical operations by Boeing are also evaluated as a potential source of contaminants.

- Former Sawmills. In addition to potential coal combustion to heat the boilers used at the sawmills, a waste burner that was operated by the former Duwamish Lumber Company Sawmill in the western portion of the property (Figure 6), may have resulted in a release of contaminants to the environment. The soil boring associated with RI well MW-17 and the soil boring associated with former well I-202(s) are located in the area of the waste burner. As described in Section 8.1.5.2, many of the pCUL exceedances in soil within the Former Slip 5 Area occurred at these two soil borings, including PCBs, cPAHs, gasoline-range petroleum hydrocarbons, chromium VI, and several other metals.
- **Former Wood Preserving Plant**. As discussed above in Section 8.1.3.1, the Mineralized Cell Wood Preserving Company operations, which extended into the Former Slip 5 Area, may have been a contributing source of arsenic contamination in soil within the Former Slip 5 Area.
- Former Steel Forging and Galvanizing Plant. Slag associated with the former Isaacson Iron Works facility was observed at four locations within the Former Slip 5 Area during the RI (soil borings MW-13, MW-13B, MW-17, and SB-3) and in several locations during earlier investigations. As previously discussed in Sections 3.1.1 and 3.1.2, samples of slag were collected in 1983 and analyzed. Analytical results for the slag material indicate that it may be

- a source of barium, chromium, copper, and lead in soil. However, based on EP Toxicity tests performed on the slag samples, which did not detect any metals, the slag may not be a direct source of contaminants in groundwater.
- **Former Boeing Operations.** Boeing formerly operated two facilities that were located in the Former Slip 5 Area that had the potential for releasing contaminants to the Site: the Former Hazardous Waste/Hazardous Materials Sheds and the Former Hydraulic Test Pad Area. Based on results primarily from pre-RI soil investigations, the storage of hazardous waste/hazardous materials in the sheds did not result in a release of contaminants to the Site. In the 1990s, Boeing used the area east of Building 14-03 for hydraulic testing. In 1992, a release of hydraulic oil occurred from a holding tank associated with an oil/water separator located in this area (identified as TS-04 and TS-92 on Figure 4). The oil/water separator (TS-92), holding tank (TS-04), and associated piping were removed in 1995. The area that was impacted is shown on Figure 4. Approximately 900 tons of petroleum-contaminated soil was excavated from the area surrounding the oil/water separator and holding tank. Based on pre-RI and RI analytical results, the only residual contamination in soil in this area that may be related to the release is cPAHs. RI investigations conducted downgradient of the Former Hydraulic Test Pad Area indicate the presence of cPAHs and PCBs in groundwater; however, it is unlikely that the source of PCBs is the 1992 release of hydraulic oil because PCBs were never detected in soil and groundwater in that area.

Former and Existing USTs and Sumps

Two storage tanks currently exist within the Former Slip 5 Area. These are associated with current and/or past Boeing operations and include a 20,000-gallon boiler fuel UST (TS-01), which was decommissioned in-place in 2003, and a 500-gallon diesel AST (TS-57). Both are located on the west side of Building 14-02. A 1,000-gallon gasoline UST and a diesel 500-gallon UST were also located west of Building 14-01, but have been removed. Petroleum hydrocarbons were not detected in soil or groundwater in explorations conducted in the area of these USTs during the RI or during previous investigations indicating that these USTs are not a source of contamination. PCBs, cPAHs, and arsenic were detected in soil and groundwater at concentrations exceeding the pCULs during the RI; however, the former and existing USTs are not likely to be a source of these constituents.

South of the Former Slip 5 Area

cPAHs; PCBs; TCE; metals (arsenic and copper); and gasoline-range petroleum hydrocarbons were detected in soil and acrylonitrile, TCE, cis-1,2-DCE, 1,1-DCE, vinyl chloride, cPAHs, dissolved arsenic, chromium VI, and dissolved nickel were detected in groundwater in the South of the Former Slip 5 Area at concentrations exceeding the pCULs. The lack of PCBs, copper, and gasoline-range petroleum hydrocarbons in groundwater indicates that these contaminants are not leaching from soil to groundwater. A summary of those contaminants found in soil and those found in groundwater in the South of the Former Slip 5 Area is provided in Table 47. The potential sources for those contaminants in soil and groundwater in the South of the Former Slip 5 Area, including offsite sources (i.e., the 8801 site), are evaluated below.

Off-Site Sources

The most likely source for the VOCs (TCE, cis-1,2 –DCE, 1,1-DCE, and vinyl chloride) detected in soil and/or groundwater at concentrations exceeding the pCULs near the southern property boundary is located on the adjacent former PACCAR property (8801 site). As presented in a draft focused FS (DFFS) performed by AMEC for PACCAR Inc. (AMEC 2012), PCE, TCE, and vinyl chloride are present in soil in two areas of concern that are adjacent to the Thompson property, identified as the Northwest Corner and the Northern Boundary areas of concern. On the 8801 site, there are 10 locations along the property boundary with TCE concentrations greater than 100 μ g/kg and only one location on the Thompson property. The maximum TCE concentration in unsaturated soil along the property boundary on the 8801 site is 78,200 μ g/kg; the maximum concentration in unsaturated soil along the property boundary on the Thompson Property is 270 μ g/kg.

Based on the most recent groundwater data collected at the 8801 site that is available to Boeing (collected in September and October 2011), the highest TCE concentration in groundwater at the 8801 site is $280 \,\mu\text{g/L}$. This concentration is almost four times greater than the highest concentration detected at the Thompson Property (71 $\mu\text{g/L}$) in December 2011. The groundwater concentrations found at the 8801 site are more indicative of a nearby release than the concentrations detected in groundwater at the Thompson property. Furthermore, the DFFS states that a potential VOC source area is located in the vicinity of monitoring well MW-28A located on the 8801 site and, based on the data collected at the Site, there is not an identifiable source of VOCs on the Thompson property.

Concrete Joint Material

PCBs were detected in two CJM samples collected from the former Building 14-11 Area and in three CJM samples collected from the Former Loading Dock Area. PCBs were also detected in soil samples collected from shallow construction-related excavations in these areas; the soil detections may be due to PCBs in the CJM.

Fill Material

The source of the cPAHs and copper in soil in the South of the Former Slip 5 Area, as well as the source of the PCBs in shallow soil near the southern property boundary, are unknown, but may be related to fill material.

10.4.1.2 Storm Drain Solids

Constituents have been detected in the storm drain solids at the Site at concentrations that exceed the sediment pCULs. As previously discussed in Section 4.5.3, samples of various media present at the Site that could be a potential source of the contaminants present in the storm drain solids were collected

for laboratory analysis. The media sampled included surface debris, paint chips, and CJM. Surface debris, paint chips, and storm drain structure solids were analyzed for SVOCs, PAHs, PCBs, and metals. CJM was analyzed for SVOCs, PAHs, and PCBs. A discussion of the source material data for samples collected in eight areas (Building 14-01 South, Building 14-01 East, Building 14-01 North, Building 14-01 West, Building 14-13, Building 14-02/14-03, Isaacson East, and Isaacson West) is provided in Appendix R and summarized in tabular format in Appendix R along with the 2011 storm drain structure data in each area to allow for direct data comparison. Based on the results of the source material sampling, peeling paint, CJM on the Isaacson property and surface debris may be a source of contaminants found in the storm drain solids. In areas where soil is contaminated and cracks or holes are present in storm drain piping, soil infiltration may be a source of contaminants in storm drain solids. Storm drain lines where this may occur include the segment west of Building 14-01 between CB-82 and CB-81, the segment north of Building 14-02/14-03 between CB-30 and CB-29, and the segment north of Building 14-14 between CB-F and MH-18; however, no metals detected in these storm drain structures at concentrations greater than the sediment pCULs were detected in nearby soil at concentrations greater than the sediment pCULs.

Air deposition is also likely to be a source of contaminants in storm drain solids. An evaluation of air deposition at Boeing Plant 2 identified moderate to high impacts from copper and zinc in dry deposition particulate samples (Golder 2010). Other studies have identified air deposition as a source of PAHs, PCBs, metals, and phthalates (Brandenberger et al 2012a; Brandenberger et al 2012b; Sediment Phthalates Work Group 2007).

10.4.1.3 Stormwater

Constituents have been detected in the storm drain solids at the Site at concentrations that exceed the sediment pCULs. Analytical results for the stormwater samples indicate that constituents detected in storm drain solids at concentrations above the sediment pCULs are not present in the stormwater at concentrations that result in stormwater concentrations above the pCULs for groundwater, except BEHP (Outfalls A and B) and cadmium and zinc (Outfall A only). Because these two constituents were detected in the storm drain solids, although BEHP was only detected sporadically, particulates entrained in the stormwater samples may be the source of the constituents in the stormwater. Soil infiltration into the storm drain system is not likely to be a source of these contaminants because BEHP was only sporadically detected in soil at concentrations less than the pCUL and cadmium and zinc were not detected at concentrations greater than the pCULs in areas where cracks or holes in the storm drain piping that might allow soil intrusion were present.

In areas where the storm drain piping is below the groundwater table and contaminants are present in groundwater at concentrations exceeding the groundwater pCULs, groundwater infiltration is a

potential source of stormwater contaminants, especially at times when stormwater flow is low. However, BEHP is only detected sporadically in groundwater at concentrations exceeding the pCULs and concentrations of cadmium and zinc in groundwater do not exceed the pCULs in areas where cracks were observed in the stormdrain piping and the piping is likely to be submerged at some times of the year; therefore, groundwater infiltration is unlikely to be a source for these contaminants.

Air deposition is also likely to be a source of contaminants in stormwater. An evaluation of air deposition at Boeing Plant 2 identified moderate to high impacts from copper and zinc in dry deposition particulate samples (Golder 2010). Other studies have identified air deposition as a source of PAHs, PCBs, metals, and phthalates.

10.4.2 POTENTIAL SEDIMENT CONTAMINANT SOURCES

Potential past or current sources for contaminants in sediments offshore of the Site include discharge of Site groundwater and stormwater, erosion of bank soil, and offsite sources.

10.4.2.1 Contaminants in Groundwater

Contaminants present at concentrations exceeding the pCULs in groundwater in the western-most portion of the Site that are also present in sediment at concentrations exceeding the sediment pCULs include arsenic, cPAHs, and PCBs. Because groundwater discharges to the LDW, shallow groundwater may be a potential source of contaminants found in sediment in shallow areas of the waterway adjacent to the shoreline. However, except for arsenic, the concentrations of PCBs and cPAHs detected in groundwater along the western-most property boundary are low and exceed the pCULs only because the pCULs are very low. Because of the low concentrations of PCBs and cPAHs in groundwater, the contribution of these contaminants to sediment via groundwater is likely very low.

10.4.2.2 Contaminants in Stormwater

Chemical results from the stormwater monitoring and the CB solids indicate that Boeing Outfall B located at the south end of the Site and Boeing Outfall A located near the middle of the Site are currently not contributing to the sediment contamination within the Site. However, historical releases may have resulted in past contamination. Available information regarding the King County Outfall (King County International Airport Storm Drain #2) indicates stormwater from KCIA may be a past and continuing source. The drainage basin served by the outfall is about 235 acres and includes the central portion of the airport property. Contaminant concentrations detected in storm drain solids in 2009 at concentrations greater than the SCO and CSL include arsenic (90 mg/kg dw), PCBs (3,400 ug/kg dw), cPAH TEQ (38,000 ug/kg dw), and HPAHs (284,000 ug/kg dw) (SAIC and Newfields 2011, Lower Duwamish Waterway Source Tracing Data Evaluation: Stormwater Pathway, December 2011).

LANDAU ASSOCIATES AMEC Environment & Infrastructure, Inc.

10.4.2.3 Contaminants in Erodible Bank Soil

As previously discussed, a majority of the shoreline at the Site is currently protected from significant bank erosion by wooden and metal bulkheads. Gaps in the wooden bulkhead at the southern portion of the Thompson property may allow some soil to erode and migrate to the LDW. Gaps in the wooden bulkhead at the Port property between the northern portion of the Site and the LDW may also allow soil to erode and migrate to the LDW. Except for arsenic in one soil sample at a concentration slightly above the sediment pCULs, soil samples collected through holes in the wooden bulkhead at the Thompson property did not contain metals or PCBs at concentrations exceeding the sediment pCULs, and, therefore, erosion from this area is not likely to be a source of these contaminants in sediment. Concentrations in soil behind the Port bulkhead have not been determined. The placement of fill material within the footprint of the Former Slip 5 Area (a relic portion of a lower Duwamish River meander) may also have contributed to the elevated concentrations of some contaminants (e.g., arsenic) near the central portion of the offshore sediments prior to placement of the bulkheads.

10.4.2.4 Contaminant Releases from Offsite Sources

Historical accounts of releases of contaminants into the LDW are well documented. Releases have occurred from investigated sites located upriver and downriver of the Site. Tidal current flow may be responsible for upriver or downriver movement of sediment-associated contaminants from released offsite sources. Downstream river flows may result in migration of contaminants from upstream sources to sediments offshore of the Site.

The distribution of contaminants within the sediments offshore of the Site is determined primarily by the source of the contamination (onsite versus offsite sources) and by the timing of the release (short-term or long-term). Short-term releases may result in contamination that has limited horizontal distribution due to reduced sediment movement and subsequent burial by cleaner sediments. Accumulation of cleaner sediments in a net depositional environment may also limit the vertical distribution of a contaminant restricting the contaminated sediments to a thin sediment horizon. Longer term releases of potential contaminants may result in a wider distribution and a greater vertical distribution of contamination within a sediment unit, particularly under more dynamic sediment conditions.

An evaluation of available bathymetric surveys, which were conducted by the USACE and other parties in the LDW, was performed by Windward (Windward 2003) for the LDW Superfund project under a CERCLA Order with EPA. This review suggested that intertidal benches along the LDW appeared to be relatively stable over time with some net deposition. Along the navigation channel slopes adjacent to the intertidal benches, elevations were generally more variable for the time period that was

evaluated. Windward (Windward 2003) concluded that changes in elevations outside the authorized navigation channel (between the navigation channel and the intertidal benches) may have been attributable to "...maintenance dredging adjacent to the navigation channel, other dredging activities conducted to improve ship access to berthing areas or marinas, or other erosive events."

The low rates of net deposition on the shallow inshore benches may explain the elevated concentrations of some contaminants in the nearshore. The sediments offshore and closer to the navigation channel may show lower surface concentrations because the surface sediments are more dynamic (undergoing periodic erosion and re-deposition) or have higher sediment accumulation rates. The maximum depth of contamination in sediments near the navigation channel may also be the result of the dynamic nature of the sediments in the deeper water adjacent to the navigation channel. Periodic dredging activities to maintain navigational working depths or for improving vessel access to near-shore areas may have temporarily deepened selected areas along the channel. The accumulation of mobile (and potentially contaminated) sediments within these dredged areas may provide an explanation of the greater depth of contamination near the channel edge. This long-term accumulation and periodic re-suspension of sediments in a dynamic environment may result in a mixing and averaging of chemical concentrations within thicker sediment units.

11.0 AREAS FOR CONSIDERATION IN THE FS

The soil and groundwater pCULs used in this RI were determined, as described in Section 7.0, based on TMCLs developed for the Boeing Plant 2 site, MTCA Method B, and pCULs at nearby sites. Soil pCULs are based on residential and industrial land uses and protection of groundwater. Groundwater pCULs are based on discharge to the fresh and marine waters of the LDW and protection of LDW sediment. PCULs have not yet been adjusted to be no lower than PQLs as provided for in MTCA. Groundwater pCULs are used to evaluate stormwater quality for the RI.

Constituents present in soil, groundwater, and stormwater at concentrations exceeding the pCULs are described in Section 9.0. Based on the evaluation of data presented in this RI compared to the pCULs, areas, contaminants, and source areas have been identified for further consideration in the FS. These are described below by general area and/or media:

- North of the Former Slip 5 Area. Contaminants in soil samples that represent soil remaining at the Site at concentrations greater than the pCULs include metals, cPAHs, PCBs, and total petroleum hydrocarbons. The COCs in soil for this area are arsenic, cadmium, copper, and cPAHs, because these exceedances are the most numerous and widespread. Contaminants in groundwater samples at concentrations greater than the pCULs include metals, cPAHs, PCBs, vinyl chloride, acrylonitrile, and two SVOCs. Detected SVOCs and acrylonitrile exceeded pCULs in a single sample each. COCs in groundwater for this area are metals, cPAHs, PCBs, and vinyl chloride, because these exceedances are the most numerous and widespread. Under and downgradient of the stabilized soil, the groundwater pH is elevated, which may affect the solubility of some metals. A specific source area to be considered in the FS is the area with the observed tar-like substance.
- Former Slip 5 Area. Contaminants in soil samples that represent soil remaining at the Site at concentrations greater than the pCULs include metals, cPAHs, PCBs, gasoline-range petroleum hydrocarbons, and naphthalene. The COCs in soil for this area are arsenic, cadmium, chromium, copper, lead, nickel, zinc, cPAHs, and PCBs, because these exceedances are the most numerous and widespread. Contaminants in groundwater samples at concentrations greater than the pCULs include metals, cPAHs, PCBs, and BEHP. COCs in groundwater for this area are arsenic, cadmium, cPAHs, and PCBs, because these exceedances are the most numerous and widespread. No specific source area was identified for consideration in the FS.
- South of Former Slip 5 Area. Contaminants present in soil samples that represent soil remaining at the Site at concentrations greater than the pCULs include cPAHs, PCBs, metals, trichloroethene, and gasoline-range petroleum hydrocarbons. The COCs in soil for this area are cPAHs, PCBs, arsenic, and copper, because these exceedances are the most numerous and widespread. Contaminants in groundwater samples at concentrations greater than the pCULs include TCE and its breakdown products cis-1,2-DCE, 1,1-DCE, and vinyl chloride; metals; cPAHs; and, in a single sample, acrylonitrile. Of these, acyrylonitrile; cis-1,2-DCE; and vinyl chloride were found only near the southern property boundary. The source for TCE and its breakdown products is likely to be on the 8801 site and they are therefore not considered COCs for the Site. The COCs in groundwater for this area are arsenic and chromium VI, because these exceedances are the most numerous and widespread.

- Stormwater. Contaminants detected in stormwater at concentrations greater than the pCULs for groundwater are BEHP and, only at Outfall A at the northwestern portion of the Thompson property, cadmium and zinc. Stormwater samples were analyzed for total metals; however, pCULs for cadmium and zinc apply to the dissolved fraction. BEHP is detected sporadically in groundwater, stormwater, storm drain solids, and source material samples at the Site.
- Storm Drain Solids. Contaminants present in storm drain solids at concentrations greater than the sediment pCULs include metals, PCBs, cPAHs, and SVOCs. Peeling paint, CJM on the Isaacson property, and surface debris may be a source of these contaminants in storm drain solids.

Based on the data collected during the RI, contaminants are present in sediment located offshore of the Site at concentrations exceeding the pCULs. The need for cleanup and cleanup options will be evaluated and implemented, as necessary, as part of the LDW process and any sediment cleanup necessary offshore of the Isaacson-Thompson property will be conducted under the EPA Record of Decision for the LDW.

The pCULs used in this RI are the same as the PRGs that were established in the EPA's Proposed Plan for the LDW Superfund site (EPA 2013). It was recognized in EPA's Proposed Plan for the LDW that it would not be practical to interpret exceedances of the PRGs based on natural background as identifying sediments requiring active remediation (e.g., dredging, capping, ENR, or a combination thereof). Given the urban, industrial nature of the LDW, sediments virtually everywhere within the LDW have concentrations of those contaminants that exceed natural background concentrations.

In lieu of using exceedances of the PRGs to identify areas requiring active remediation, EPA's Proposed Plan (EPA 2013) established remedial action levels (RALs) for each sediment contaminant (Table 55). The RALs were set by EPA at concentrations such that the PRGs are expected to be met either immediately after construction or in the long- term after natural recovery, to the extent practicable considering some uncertainties. In some cases, the RALs are equal to the PRGs; this is true for all of the PRGs set at the SCO of the Washington State SMS, with the exception of the PRGs for total PCBs and arsenic, which are based on human health protection, as described above. Some of the RALs for human health contaminants are greater than the PRGs, in recognition of the impossibility of achieving natural background concentrations in an urban environment through active sediment remediation alone. Some of the RALs are also above the PRGs because some degree of reduction in contaminant concentrations is expected to occur through natural recovery, thus, obviating the need for active remediation. Use of the RALs to identify sediment areas requiring active remediation in EPA's Proposed Plan (EPA 2013) is a complex issue because not only did the RALs vary depending upon the receptor intended to be protected (i.e., humans, benthic invertebrates, river otters) and the exposure pathway (i.e., seafood consumption, direct contact during netfishing, clamming, or beach play), but the RALs were considered differently depending on whether an area was intertidal or subtidal, as well as whether it had more or less potential

for disturbance via natural erosion or vessel scour (see footnote to Table 55 regarding the recovery categories identified in EPA's Proposed Plan). The degree of exceedances of the RALs also factors into the type of active remediation (i.e., dredging, capping, ENR) that may ultimately be selected. Boeing expects that any sediment remediation that may be required at the Site will be conducted in accordance with EPA's ROD for the LDW Superfund site, and the ROD is not expected to be completed until mid-2014. Although the PRGs, RALs, and flowcharts describing their use in deciding on appropriate remedial actions were described in detail in EPA's Proposed Plan for the LDW (EPA 2013), it is not yet known whether EPA will modify any of those in the ROD. Hence, it is likely premature to attempt to identify those sediments offshore of the Site that will require active remediation. Once EPA's ROD is completed, Boeing expects that the final PRGs, RALs, and flowcharts therein will provide the basis for the selection of appropriate sediment cleanup levels and for the identification of applicable remedial alternatives for sediments at the Site.

Prior to preparation of the FS, proposed cleanup levels and points of compliance will be developed and submitted to Ecology for review and approval, incorporating adjustments for PQLs, cross-media protection, and current and likely receptors, migration pathways, and exposure pathways, as appropriate. To the extent the proposed cleanup levels are higher than the pCULs, the contaminants and areas to be considered in the FS may change.

12.0 USE OF THIS REPORT

This RI report has been prepared for the exclusive use of The Boeing Company and applicable regulatory agencies for specific application to the Isaacson-Thompson Site located in Tukwila, Washington. The use of this report by others or for another project is at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

This report has been prepared under the supervision and direction of the undersigned. If you have any questions or comments regarding this report, please contact us at (425) 778-0907.

LANDAU ASSOCIATES, INC.

Kristy J. Hendrickson, P.E.

Principal

Stacy J. Lane, L.G. Senior Geologist

Evelyn H. Ives Senior Staff Engineer

KJH/SJL/EHI/tam

AMEC Environment & Infrastructure, Inc.

Cliff Whitmus Principal Scientist

Robert Gilmour Senior Scientist

13.0 REFERENCES

AECOM. 2012. Final Feasibility Study, Lower Duwamish Waterway, Seattle, Washington. Prepared for The Lower Duwamish Waterway Group by AECOM, for submittal to the U.S. Environmental Protection Agency, Region 10, Seattle, Washington and the Washington State Department of Ecology, Northwest Regional Office, Bellevue, Washington. October 31.

AECOM. 2010. Lower Duwamish Waterway Group; Draft Final Feasibility Study Report. Prepared for The Lower Duwamish Waterway Group by AECOM, Seattle, Washington.

Alpha Engineers. 1989. Final Report, Thompson-Isaacson Seawall, Boeing Advanced Systems, Tukwila, Washington. December 29.

AMEC. 2012. Ecology Review Draft Focused Feasibility Study, 8801 East Marginal Way South, Tukwila, Washington. Agreed Order No. 6069. AMEC Environment & Infrastructure, Inc. February 2.

AMEC. 2011. Final Remedial Investigation Report, 8801 East Marginal Way South, Tukwila, Washington, Agreed Order Number 6069. AMEC Earth & Environmental, Inc. March 18.

AMEC. 2008. DSOA Additional Characterization Water Sample Collection, Boeing Plant 2 Duwamish Sediment Other Area, Tukwila, Washington. AMEC Geomatrix, Inc. Prepared for The Boeing Company. December.

AMEC and Floyd-Snider. 2011. Duwamish Sediment Other Area and Southwest Bank Corrective Measure Alternatives Study, Boeing Plant 2, Seattle/Tukwila, Washington. Volume 1. Prepared for The Boeing Company. March.

Anchor QEA. 2011. Final Engineering Evaluation/Cost Analysis, Jorgensen Forge Facility, 8531 East Marginal Way South, Seattle, Washington. Prepared for the U.S. Environmental Protection Agency, Region 10 on behalf of Earle M. Jorgensen Company and Jorgensen Forge Corporation. Anchor QEA, LLC. March.

Anchor QEA. 2009. *Draft Source Control Evaluation Addendum Report Jorgensen Forge Facility*. Prepared for the Washington State Department of Ecology. Anchor QEA, LLC and Farallon Consulting, LLC. December.

Barrick, R.C., D.S. Becker, L.B. Brown, H. Beller, and R. Pastorok. 1988. *Sediment quality values refinement: 1988 update and evaluation of Puget Sound AET.* Volume 1. Final Report. Prepared for Tetra Tech, Inc., Bellevue, WA, and the U.S. Environmental Protection Agency, Seattle, WA. PTI Environmental Services, Bellevue, WA.

Bergam, Mark. 2012. Personal Communication (telephone conversation with Steve Shaw, Landau Associates, re: *Dewatering activities at the King County Airport during June of 2011*). Mark Bergam, Washington State Department of Transportation, Airport Division (subdivision Airport Engineering). December 11.

Boeing. 2011a. Email to Ronald W. Timm, Washington State Department of Ecology, re: *Isaacson-Thompson Construction Support Sampling – Bldg 14-01 Footings Excavation*. From Kathryn L. Moxley, The Boeing Company. June 9.

Boeing. 2011b. Email to Ronald W. Timm, Washington State Department of Ecology, re: *I-T Tow Path Construction Sampling and Analysis Plan*. From Kathryn L. Moxley, The Boeing Company. June 29.

Boeing. 2011c. Boeing Plant 2 Seattle, WA Target Media Cleanup Levels Technical Memorandum Final. Prepared for the U.S. Environmental Protection Agency. The Boeing Company; based on an approval with modifications from EPA dated September 28th, 2010. May 26.

Booth, D. and L. Herman. 1998. *Duwamish Industrial Area Hydrogeologic Pathways Project, Duwamish Basin Groundwater Pathways Conceptual Model Report.* Derek Booth, Ph.D., University of Washington, and Lori Herman, CGWP, Hart Crowser, Inc. Prepared for City of Seattle Office of Economic Development and King County Office of Budget and Strategic Planning. Produced by Hart Crowser, Inc. April.

Brandenberger, J.M., P. Louchouarn, L-J Kuo, E.A. Crecelius, V. Cullinan, G.A. Gill, C. Garland, J. Williamson, and R. Dhammapala. 2012a. *Control of Toxic Chemicals in Puget Sound, Phase 3: Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound.* Washington State Department of Ecology, Air Quality Program, Publication no.10-02-012. October.

Brandenberger, J.M., P. Louchouarn, L-J Kuo, E.A. Crecelius, V. Cullinan, G.A. Gill, C. Garland, J. Williamson, and R. Dhammapala. 2012b. *Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound, PCB Atmospheric Deposition Rates and Loads*. Washington State Department of Ecology, Air Quality Program, Publication No. 10-02-012 Appendix G

Dames & Moore. 1983. The Report of the Evaluation of Site Contamination, Isaacson Steel Property For the Boeing Aerospace Company. October 4.

Dempsey, J.E. 1991. Fate of Arsenic and Cadmium in Forest Soils Downwind from the Tacoma Copper Smelter. Master of Science Thesis, University of Washington. September.

Ecology. 2013. Letter re: *Ecology Review of Draft Remedial Investigation Report, Boeing Isaacson-Thompson Site, Tukwila, WA, Agreed Order #DE 7088.* From Ronald W. Timm, L.Hg., M.S., Toxics Cleanup Program, Washington State Department of Ecology, Bellevue, Washington, to James Bet, The Boeing Company, Seattle, Washington. June 17.

Ecology Website. 2013a. 8801 East Marginal Way South Site. https://test-fortress.wa.gov/ecy/testpublications/SummaryPages/0809066.html. Washington State Department of Ecology Publication Number: 08-09-066. October.

Ecology Website. 2013b. *Jorgensen Forge Corporation*; Facility ID #2382. https://fortress.wa.gov/ecy/gsp/Sitepage.aspx?csid=3689. Washington State Department of Ecology.

Ecology. 2012a. Email to James N. Bet, The Boeing Company, re: I-T Revsied Transducer Locations. Ronald Timm, Washington State Department of Ecology. March 1.

Ecology. 2012b. Email to James N. Bet, The Boeing Company, re: I-T Stormwater Sampling. Ronald Timm, Washington State Department of Ecology. January 25.

Ecology. 2011a. Email to Kathryn L. Moxley, The Boeing Company, re: *Final RI/FS Work Plan – Boeing Isaacson Thompson – AO #7088*. From Ronald W. Timm, Washington State Department of Ecology. September 21.

Ecology. 2011b. Email to Kathryn L. Moxley, The Boeing Company, re: *Boeing-Isaacson-Thompson* (*Order No. DE 7088*) – *RI Work Plan for Building 14-01*. From Ronald W. Timm, Washington State Department of Ecology. March 24.

Ecology. 2011c. Email to Kathryn L. Moxley, The Boeing Company, re: *Boeing I-T Bldg 14-01 Trenching SAP*. From Ronald W. Timm, Washington State Department of Ecology. April 22.

Ecology. 2011d. Email to Kathryn L. Moxley, The Boeing Company, re: *Isaacson-Thompson Construction Support Sampling – Bldg 14-01 Footings Excavation*. From Ronald W. Timm, Washington State Department of Ecology. June 21.

Ecology. 2011e. Email to Kathryn L. Moxley, The Boeing Company, re: *Boeing Isaacson-Thompson – REVISED Tow Path Construction Sampling and Analysis Plan*. From Ronald W. Timm, Washington State Department of Ecology. July 11.

Ecology. 2010. Agreed Order No. DE 7088; In the Matter of Remedial Action by: The Boeing Company. Washington State Department of Ecology. April 23.

Ecology. 2009. Review Draft. *Guidance for Evaluating Soil Vapor Intrusion in WashingtonState: Investigation and Remedial Action.* Washington State Department of Ecology, Toxics Cleanup Program. Publication no. 09-09-047. October.

Ecology. 1988. Letter to Mr. J.T. Johnstone, P.E., Facilities Manager Environmental Affairs, Boeing Advanced Systems, Seattle, WA, re: *Issacson Bldg. 1405*. Richard Koch, Acting Metro District Supervisor, Northwest Regional Office, Washington State Department of Ecology. May 10.

Ecology 1985. Letter to Mr. Dan Heglund, Isaacson Corporation, re: *Cleanup of Arsenic Contaminated Soil*. From Joan K. Thomas, Regional Manager, Washington State Department of Ecology, Northwest Regional. February 13.

EPA. 2013. *Proposed Plan, Lower Duwamish Waterway Superfund Site*. United States Environmental Protection Agency, Region 10. February 28.

EPA. 2012. EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. Publication No. EPA 530-R-10-002. March.

EPA. 2007. Working Draft. Framework for Selecting and Using Tribal Fish and Shellfish Consumption Rates for Risk-Based Decision Making at CERCLA and RCRA Cleanup Sites in Puget Sound and the Strait of Georgia. Revision 0.0. To be applied in consultation with Tribal Governments on a site-specific basis. United States Department of Environmental Quality, Office of Environmental Cleanup, Office of Air, Waste and Toxics, Office of Environmental Assessment.

EPA. 1989. Risk Assessment Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A), Interim Final. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency Washington, D.C. 20450. EPA/540/1-89/002. December.

ERM. 2002. Report: *Comprehensive Data Summary Report, Boeing Isaacson Site, VCP ID # NW0453*. Environmental Management Resources. August.

ERM and Exponent. 2000. Request for Groundwater NFA Determination, Hydrogeologic Investigation and Site-Specific Action Level for Arsenic in Groundwater, Boeing Isaacson Site, VCP ID# NW0453. Environmental Resources Management and Exponent. November.

Ferris, J.G. 1951. Cyclic fluctuations of water levels as a basis for determining aquifer transmissibility. International Union of Geodesy and Geophysics, Association of Science Hydrology, Pub. 33, 148-155.

GeoEngineers. 1997. Evaluation of Ground Water Compliance Monitoring Program, Boeing Thompson-Isaacson Site, Seattle, Washington. Prepared for The Boeing Company. May 27.

GeoEngineers. 1994. Report: Report of Geotechnical Services, Subsurface Investigation, Oil/Water Separator Area, Building 14-03, Thompson-Isaacson Facility, Seattle, Washington. March 13.

Golder. 2010. Boeing Atmospheric Deposition Assessment Project Data Report, Boeing Plant 2 Stormwater Management Program. Golder Associates, Inc. September.

KCDNRP. 2005. King County Surface Water Design Manual. King County Department of Natural Resources and Parks. January 24.

King County. 2013. Stream and River Water Quality Monitoring. http://green.kingcounty.gov/WLR/Waterres/StreamsData/WaterShedInfo.aspx?Locator=0311. King County. Accessed December.

Landau Associates. 2012a. Work Plan, Port of Seattle Property Investigation, Tukwila, Washington. *Prepared for The Boeing Company*. April 27.

Landau Associates. 2012b. October 2012 Progress Report, Boeing Isaacson-Thompson Site, Agreed Order No. DE 7088. Submitted on behalf of The Boeing Company to Ron Timm, Washington State Department of Ecology. November 15.

Landau Associates. 2011a. Final Work Plan, Remedial Investigation/Feasibility Study, Boeing Isaacson-Thompson Site, Tukwila, Washington. Prepared for The Boeing Company. Landau Associates. September 16.

Landau Associates. 2011b. Final Work Plan, Building 14-01 Investigation, Boeing Isaacson-Thompson Site, Tukwila, Washington. Prepared for The Boeing Company. March 29.

Landau Associates. 2011c. Email to Kathryn L. Moxley, The Boeing Company, re: Boeing I-`T Bldg 14-01 Trenching SAP. From Stacy Lane, Landau Associates. April 20, 2011.

Landau Associates. 2009a. Data Summary Report, Thompson-Isaacson Property, Tukwila, Washington. Prepared for The Boeing Company. September 2.

Landau Associates. 2009b Phase II Environmental Site Assessment, Boeing Thompson Property, 8625 East Marginal Way South, Tukwila, Washington. April 2.

Landau Associates. 2009c. Phase II Environmental Site Assessment, Boeing Isaacson Property, 8625 East Marginal Way South, Tukwila, Washington. April 2.

Landau Associates. 2009d. Report, Property Boundary Investigation, Thompson-Isaacson Property, Tukwila, Washington. Prepared for The Boeing Company. September 9.

Landau Associates. 2008a. Report: Environment, Health, and Safety Assessment/Phase I Environmental Site Assessment, Boeing Isaacson Property, Tukwila, Washington. September 15.

Landau Associates. 2008b. Report: Environment, Health, and Safety Assessment/Phase I Environmental Site Assessment, Boeing Thompson Property, Tukwila, Washington. August 11.

Landau Associates. 2008c. Report, Redevelopment Activities: Stabilized Soil Mound Removal and Stormwater System Upgrades, Boeing Isaacson Property, Tukwila, Washington. March 24.

Landau Associates. 2008d. Technical Memorandum: Focused Disposal Characterization Sampling, Asphalt-Capped, Treated Soil Mound, Boeing Isaacson Property, Seattle, Washington. From Tim Syverson, L.G., David M. Nelson, L.G., and Kathryn F. Hartley. March 7.

Landau Associates. 2007. Technical Memorandum: *Sump Removal and Soil Excavation, Boeing Isaacson Property, Seattle, Washington*. From Tim Syverson, L.G., and Ken Reid, L.G., to Paul Johansen, The Boeing Company. February

Landau Associates. 2004. Technical Memorandum: *Tank Closure Confirmation and Sampling, Former 2000 Gallon Heating Oil Tank, Thompson Site*. From William Enkeboll, P.E., and David Nelson, to Paul Johansen, P.E., and Wayne Schlappi, P.E, The Boeing Company. April 21.

Landau Associates 1989a. Thompson-Isaacson Site Soil Excavation Work Plan Final Report. March 21

Landau Associates. 1989b. Draft Thompson-Isaacson Site Soil Excavation Summary Report. October 11.

Landau Associates. 1988. Data Report, Building 14-09, Thompson-Isaacson Site Investigation. Prepared for The Boeing Company. May 4.

Landau Associates. 1986. First Annual Report, Groundwater Monitoring Program, Boeing Isaacson Property, 8541 East Marginal Way South, Seattle, Washington. June.

Landau Associates. 1985. *Draft Groundwater Monitoring Plan, Boeing Isaacson Property, Seattle, Washington*. Prepared for The Boeing Company. October 8.

Peryea, F.J. 1989. Leaching of Lead and Arsenic in Soils Contaminated with Lead and Arsenic Pesticide Residues. Report submitted to the State of Washington Water Research Center and U.S. Department of Interior. Report A-158-WASH. May.

Risk Science International. 1985. Environmental Risk Assessment of the Boeing Field Division, Boeing Commercial Airplane Company, The Boeing Company, in Seattle, Washington. Final Report. July 26.

SAIC and NewFields. 2011. Lower Duwamish Waterway Source Tracing Data Evaluation: Stormwater Pathway. Volume 1: Text and Tables. Prepared for the Washington State Department of Ecology, Toxics Cleanup Program, Northwest Regional Office, Bellevue, Washington. Science Applications International Corporation, Bothell, Washington and NewFields, Edmonds, Washington. December.

SAIC. 2004. Draft, Source Control Action Plan, Slip 4, Lower Duwamish Waterway, Task 2.3 Soil and Groundwater Screening Criteria.

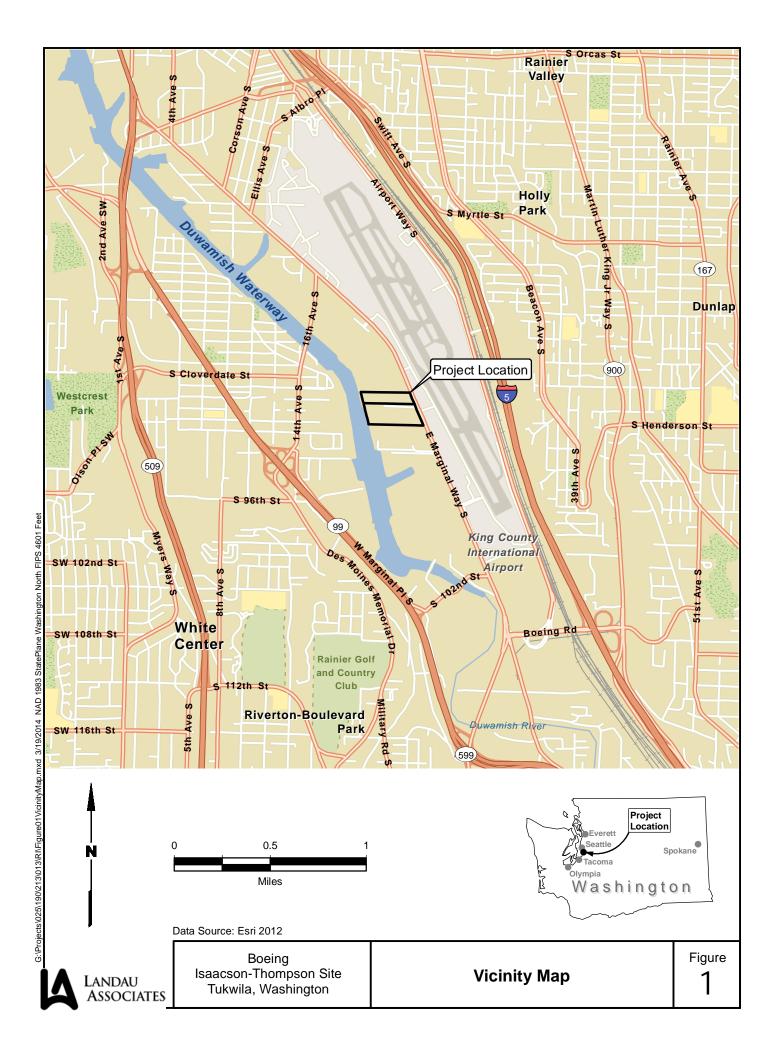
Sediment Phthalates Work Group. 2007. *Summary of Findings and Recommendations*. Prepared by: City of Tacoma, City of Seattle, King County, Washington State Department of Ecology, U.S. Environmental Protection Agency, with assistance from Floyd Snider. September.

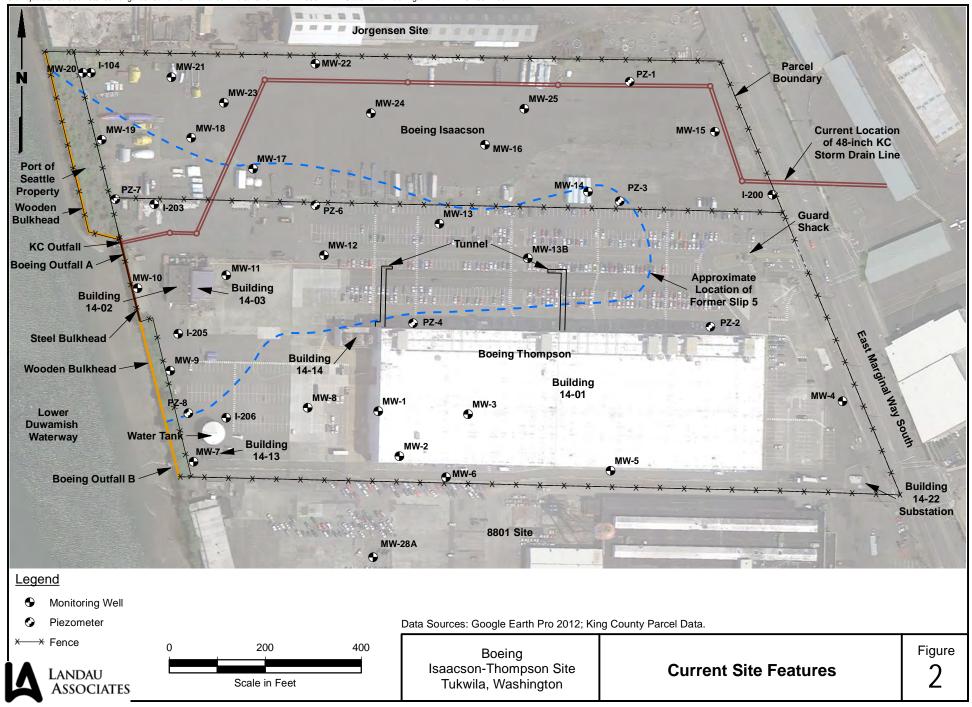
Sweet Edwards. 1984. Letter to Pat Wicks, Redmond, WA, re: *Isaacson Steel – Monitoring Wells*. Craig E. Wells, Geologist, Sweet, Edwards & Associates, Inc., Kelso, WA. December 7.

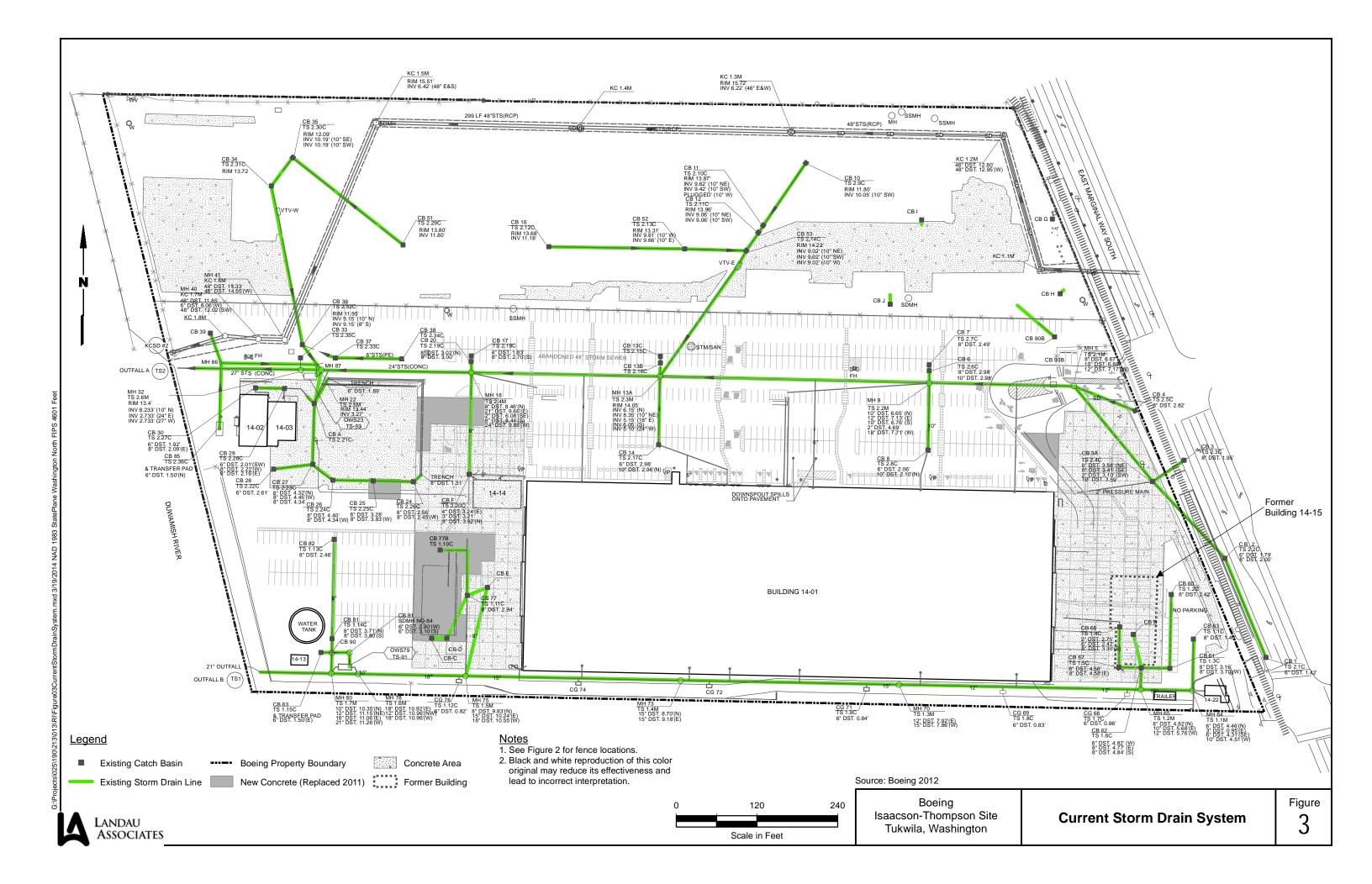
Technical Dryer. 1991. Thompson-Isaacson Site Storm Drain Line and Soil Core Sampling Summary Report. March 6.

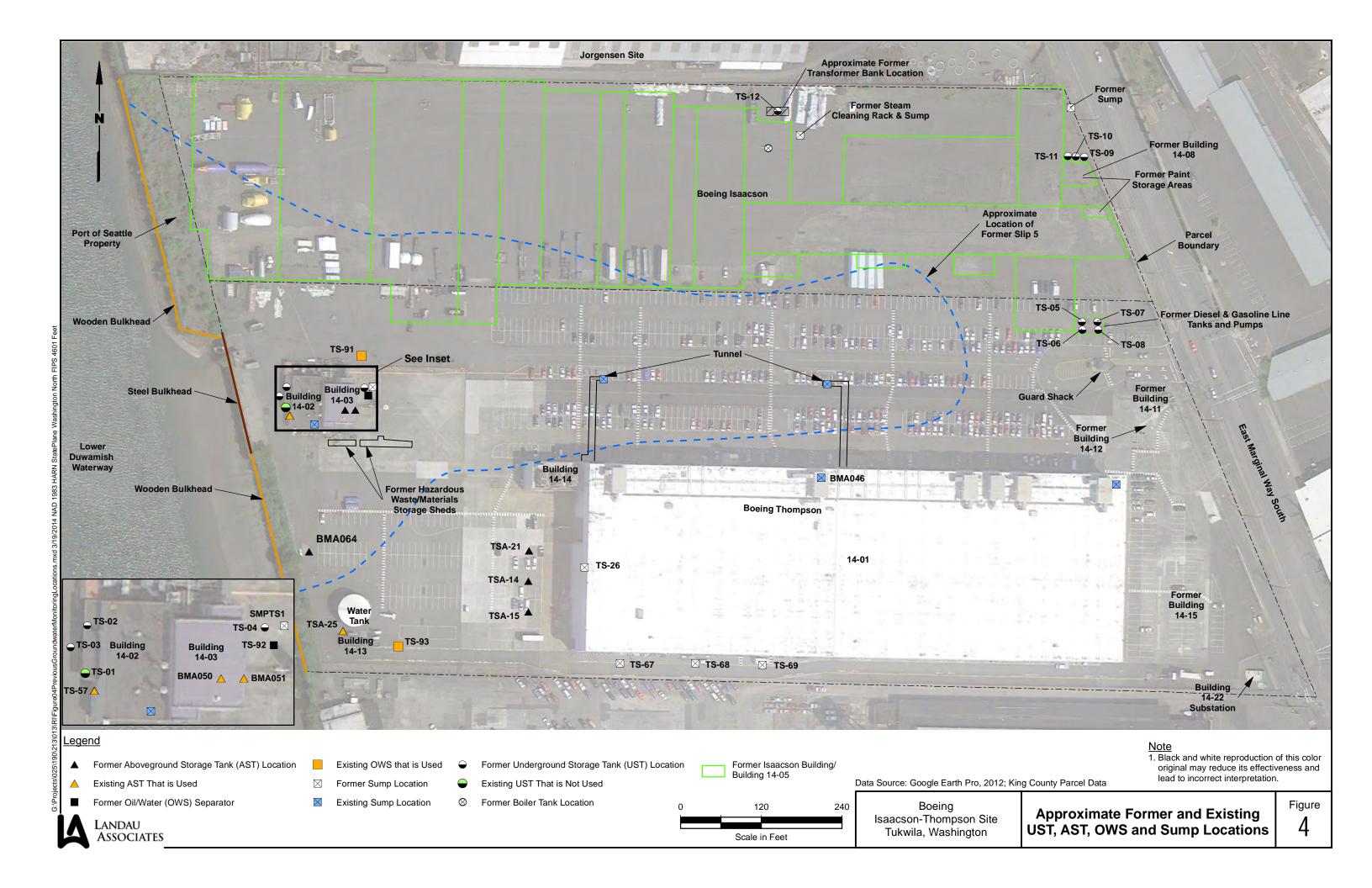
Tokunaga, S. 2005. Interaction of Anionic Pollutants with Soils – Sorption of As(III), As(V), Sb(III), Sb(V), Se(IV) Ions by Six Soils. Proceedings of the 9^{th} International Conference on Environmental Science and Technology. Rhodes Island, Greece. September.

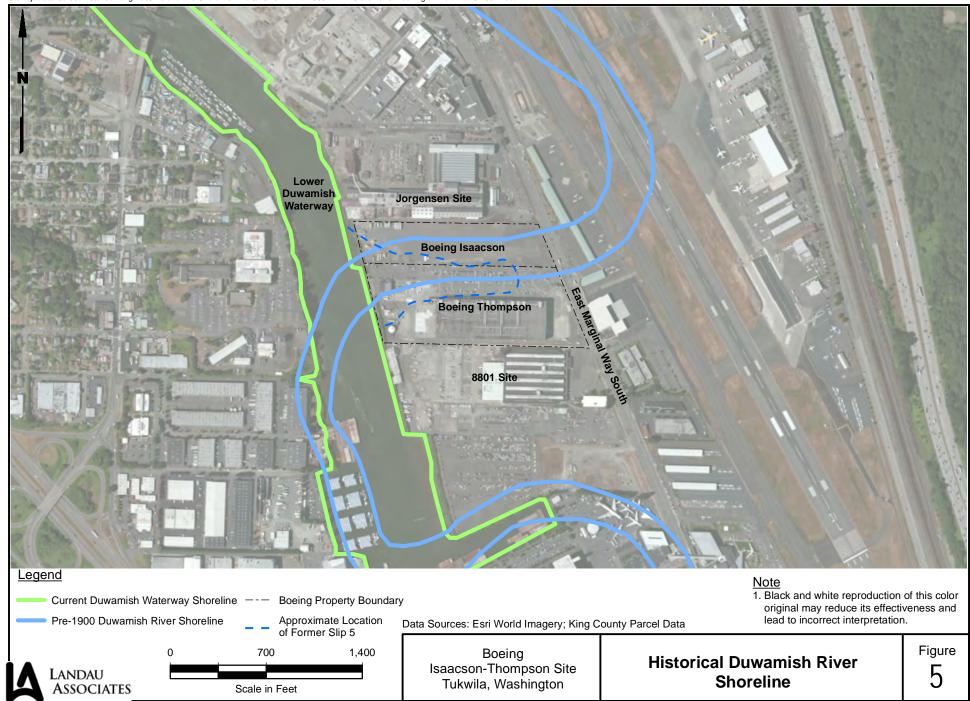
USGS. 1983. 7.5-Minute Topographic Map, Seattle, Washington Quadrangle. U.S. Geological Survey.

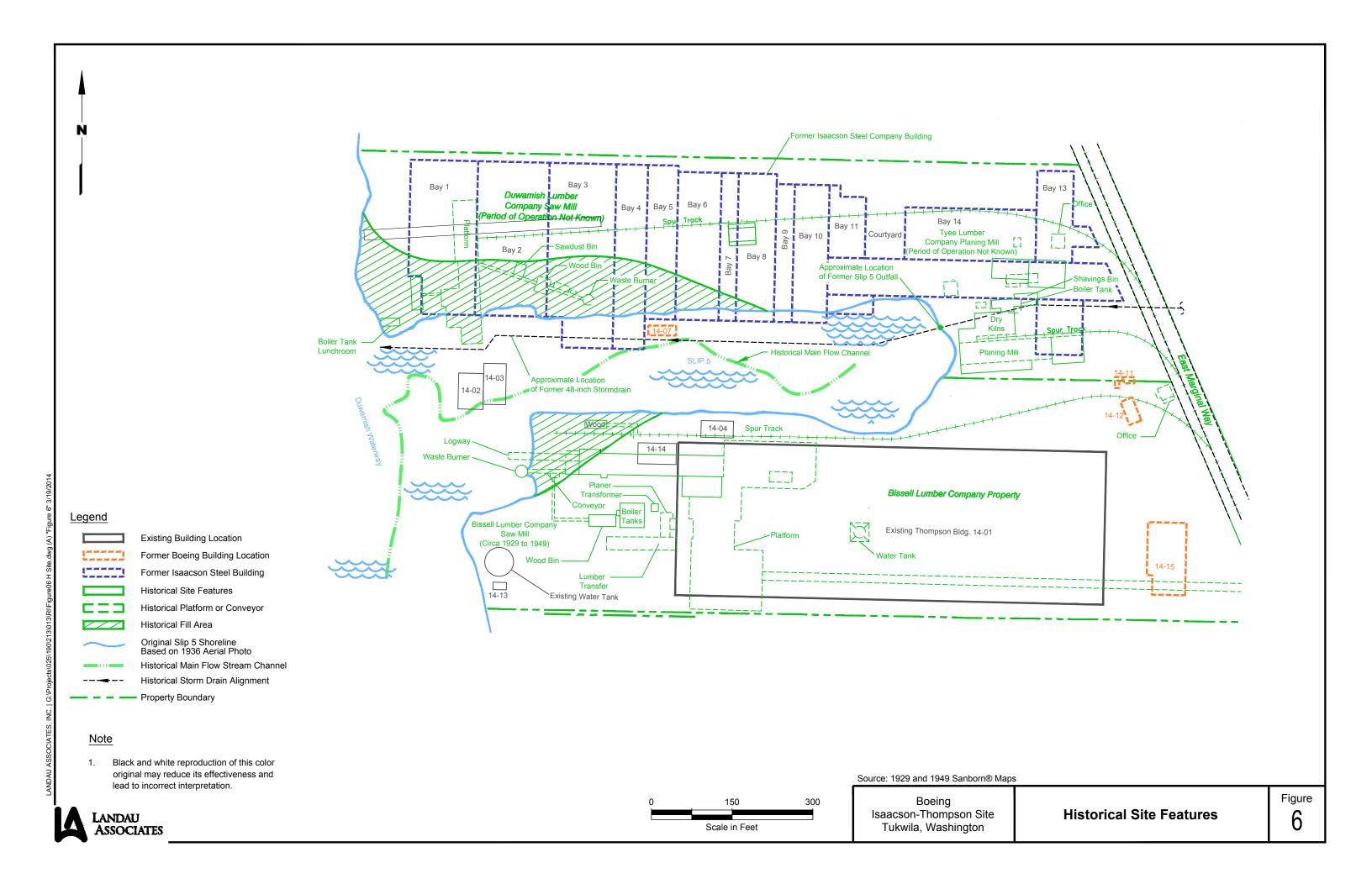

Wicks. 1984a. Project Description for Remedial Work. June.

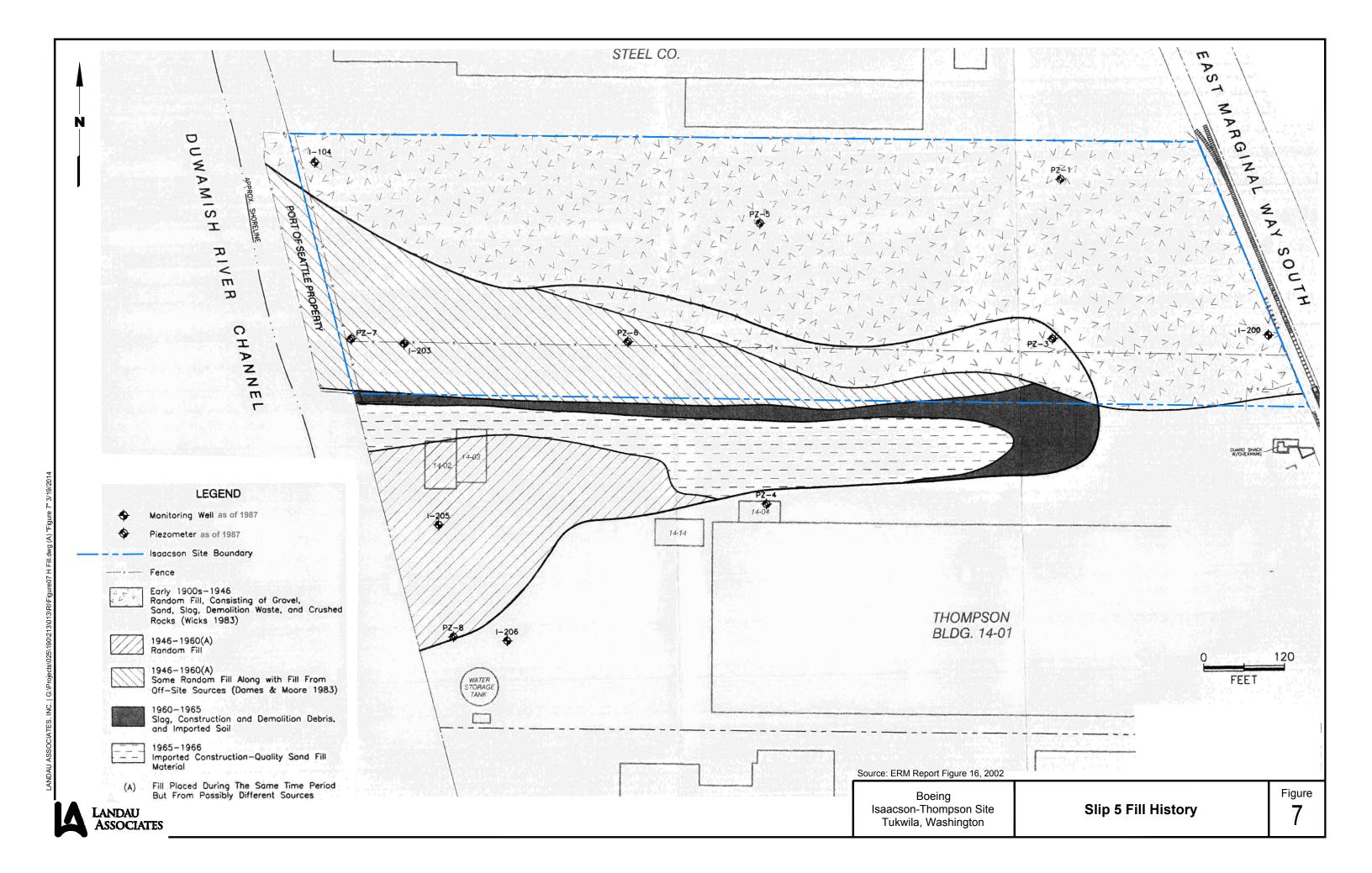

Wicks. 1984b. Report on Remedial Project and Recommendation for Project Completion at Isaacson Corporation Property, 8541 East Marginal Way South, Seattle, Washington. October.

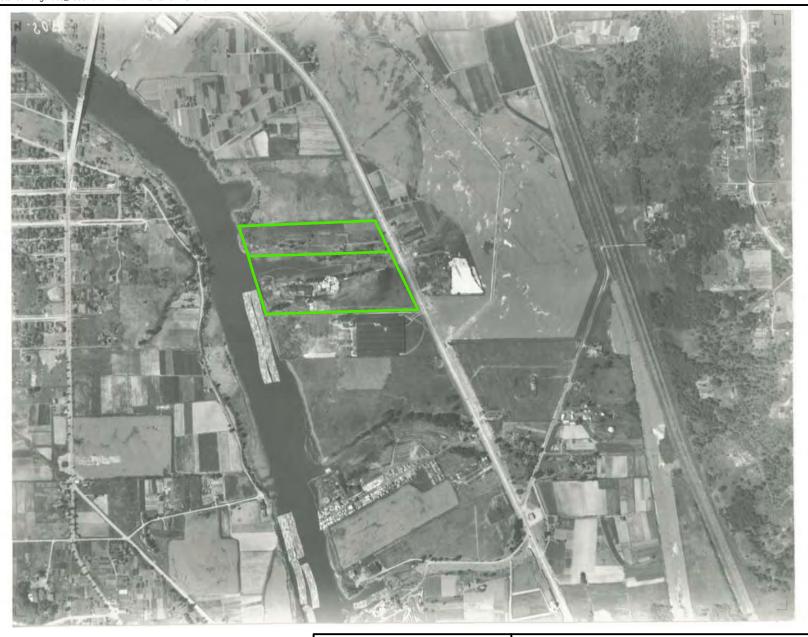

Windward. 2010. Lower Duwamish Waterway Remedial Investigation, Remedial Investigation Report, Final. For submittal to the U.S. Environmental Protection Agency, Region 10, Seattle, Washington and the Washington State Department of Ecology, Northwest Field Office, Bellevue, Washington. Prepared for the Lower Duwamish Waterway Group by Windward Environmental LLC. July 9.

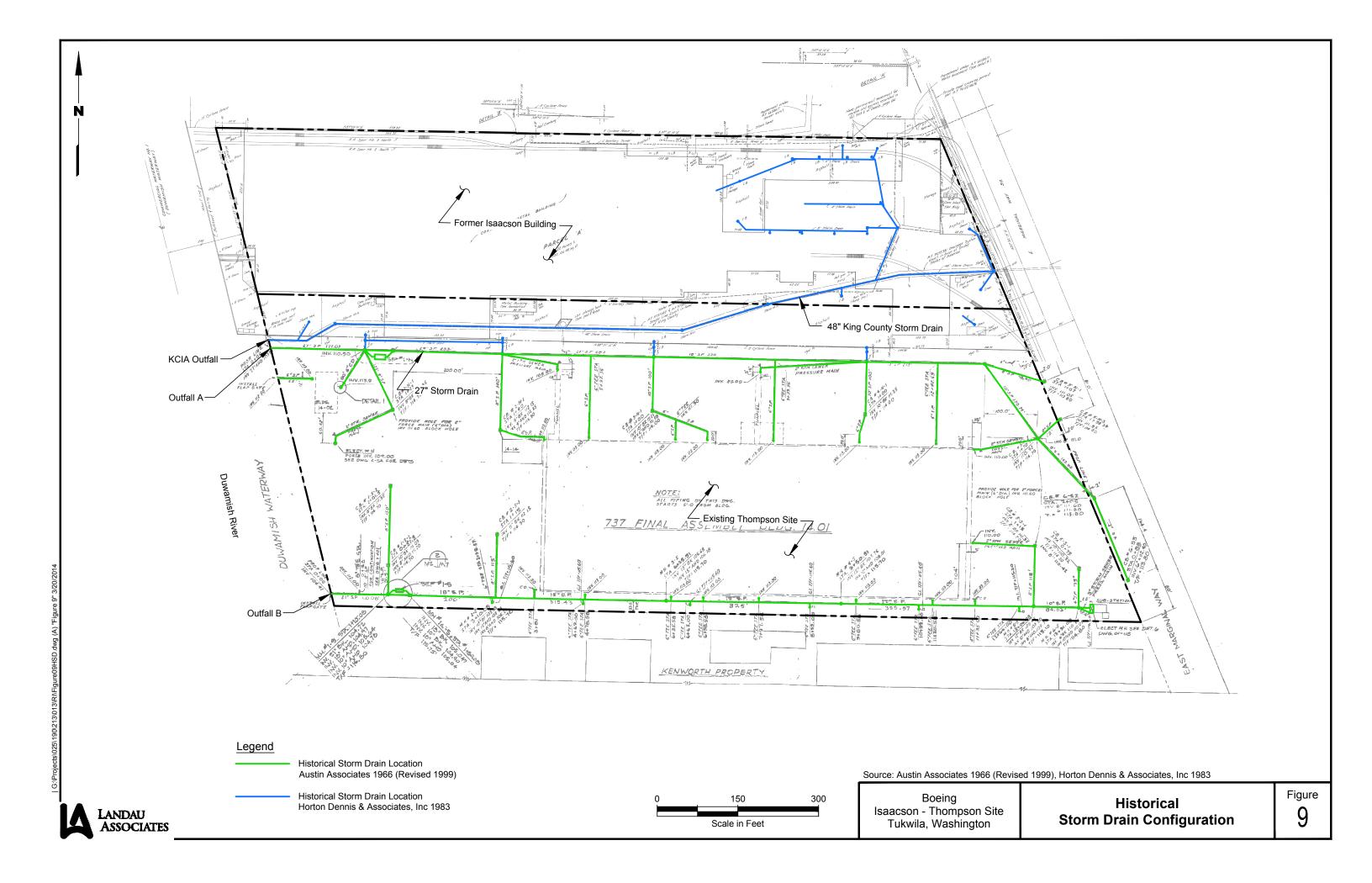

Windward. 2003. *Phase I Remedial Investigation Report, Final*. Prepared for The Lower Duwamish Waterway Group by Windward Environmental, LLC, Seattle, Washington.

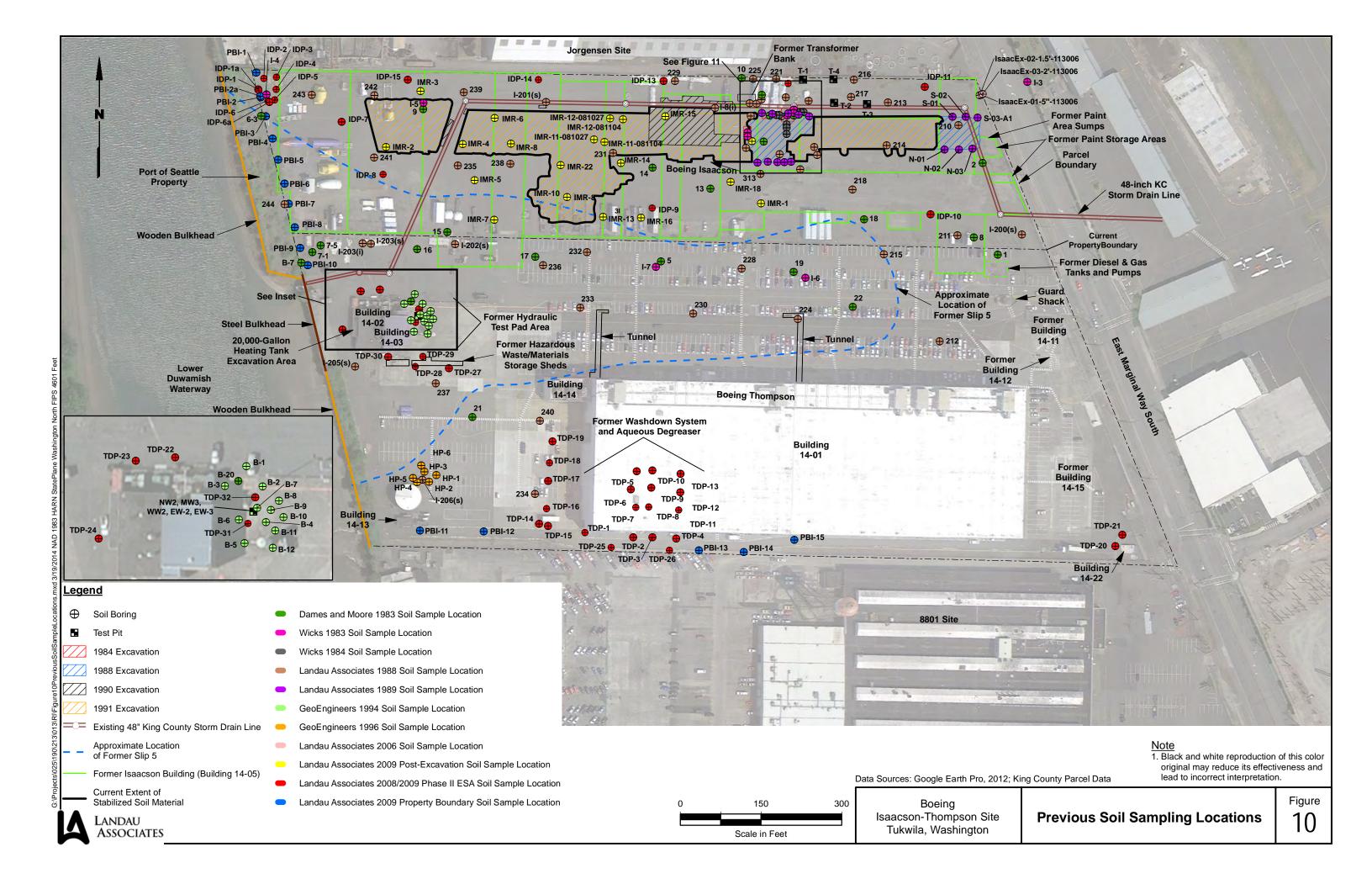

Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Toumisto, J., Tysklind, M., Walker, N., and Peterson, R.E. 2006. *The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds*: Toxicological Sciences, v. 93(2), p. 223-241.

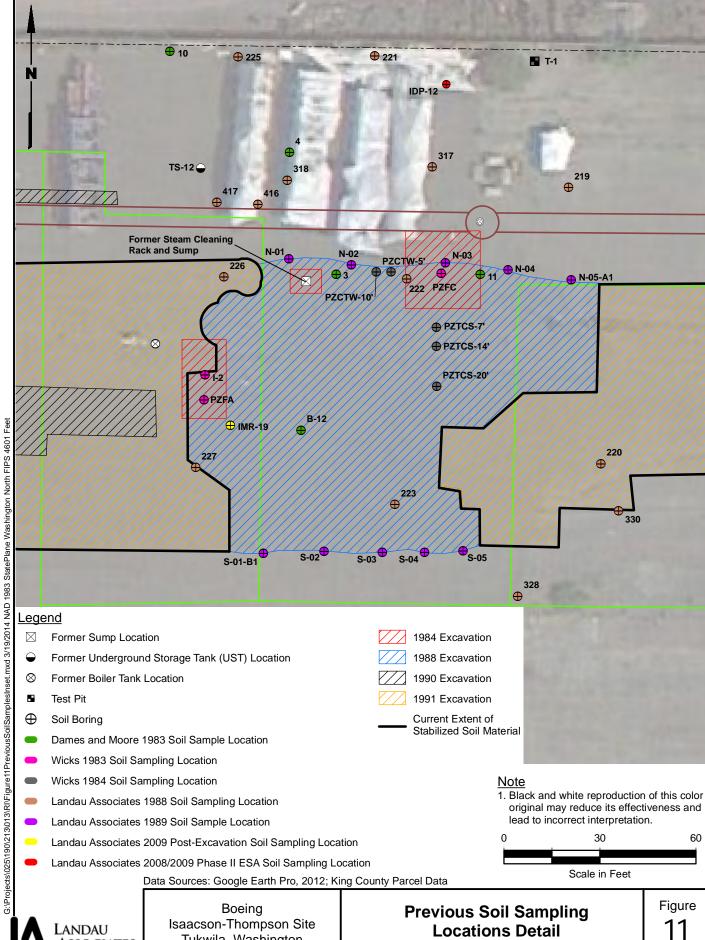






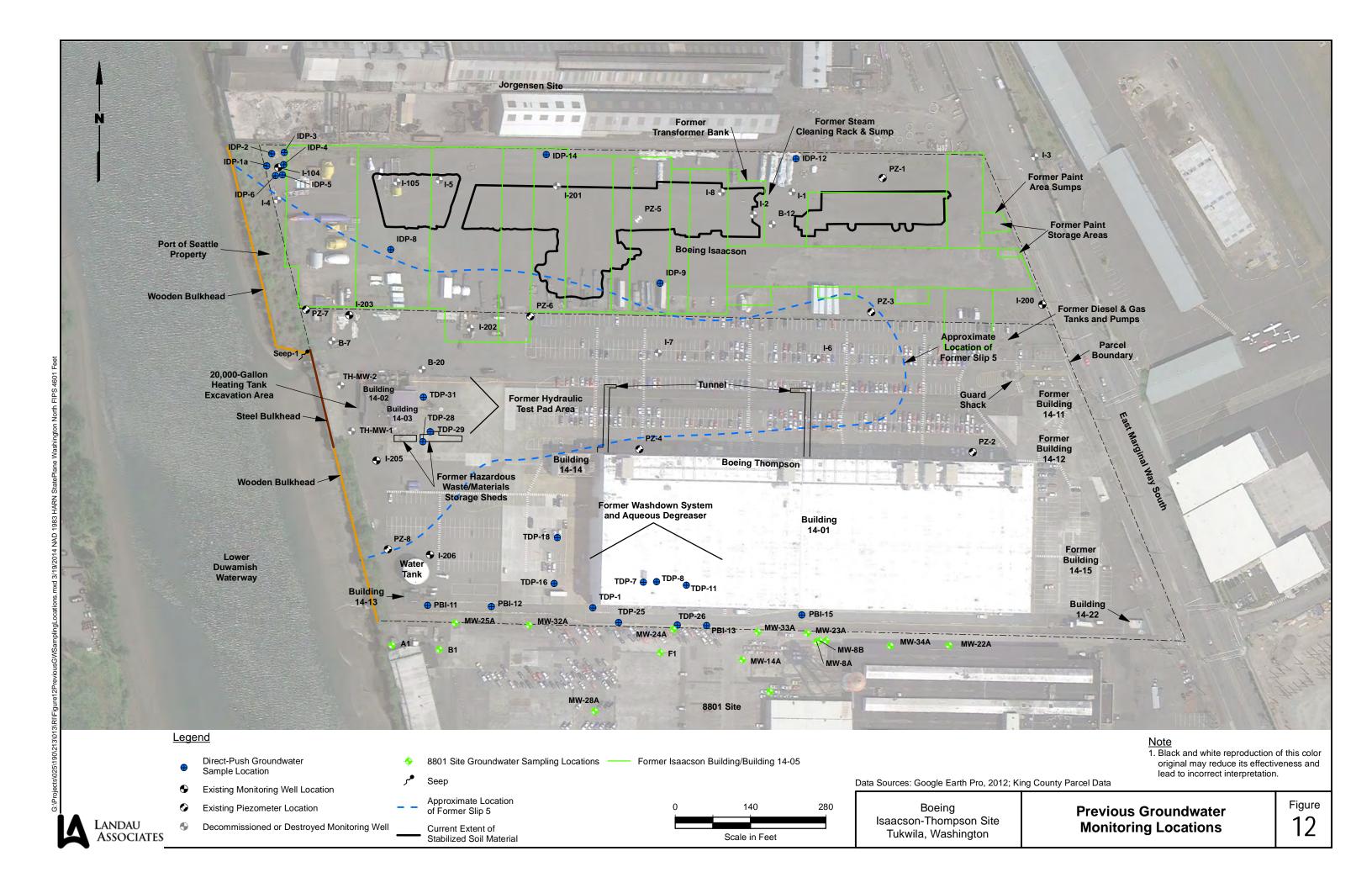

<u>Legend</u>

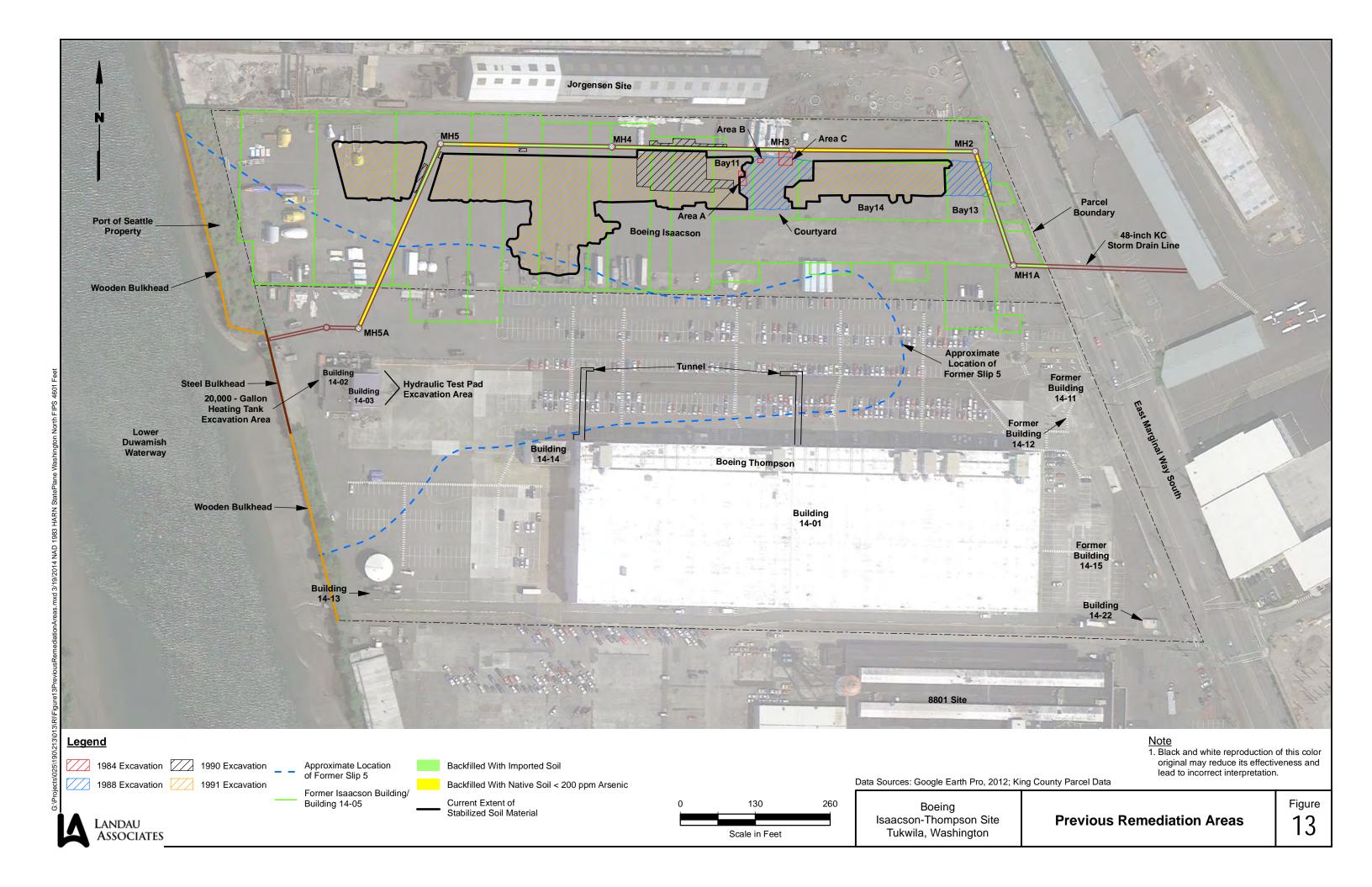

Approximate Site Boundary

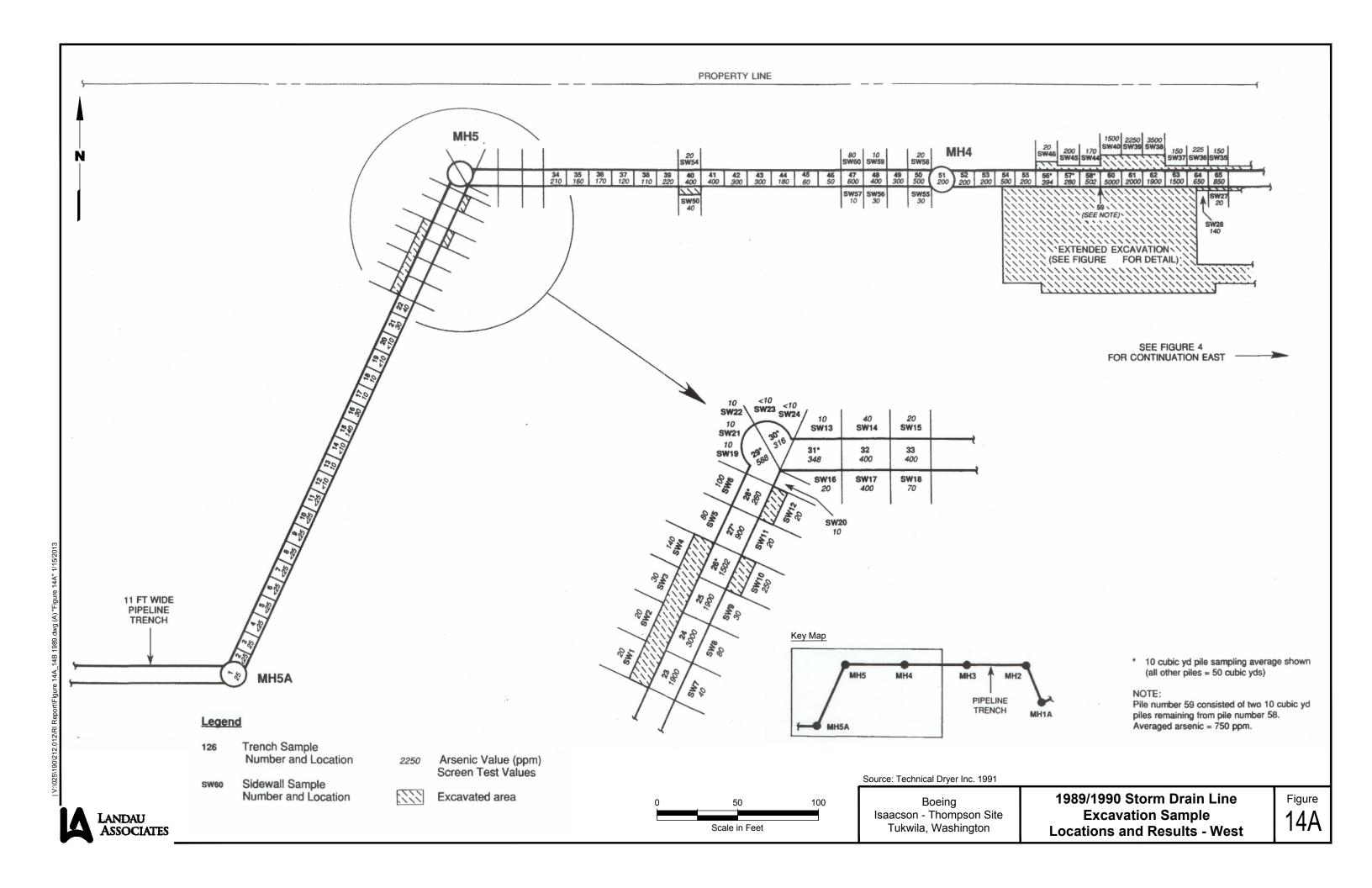

Boeing Isaacson-Thompson Site Tukwila, Washington

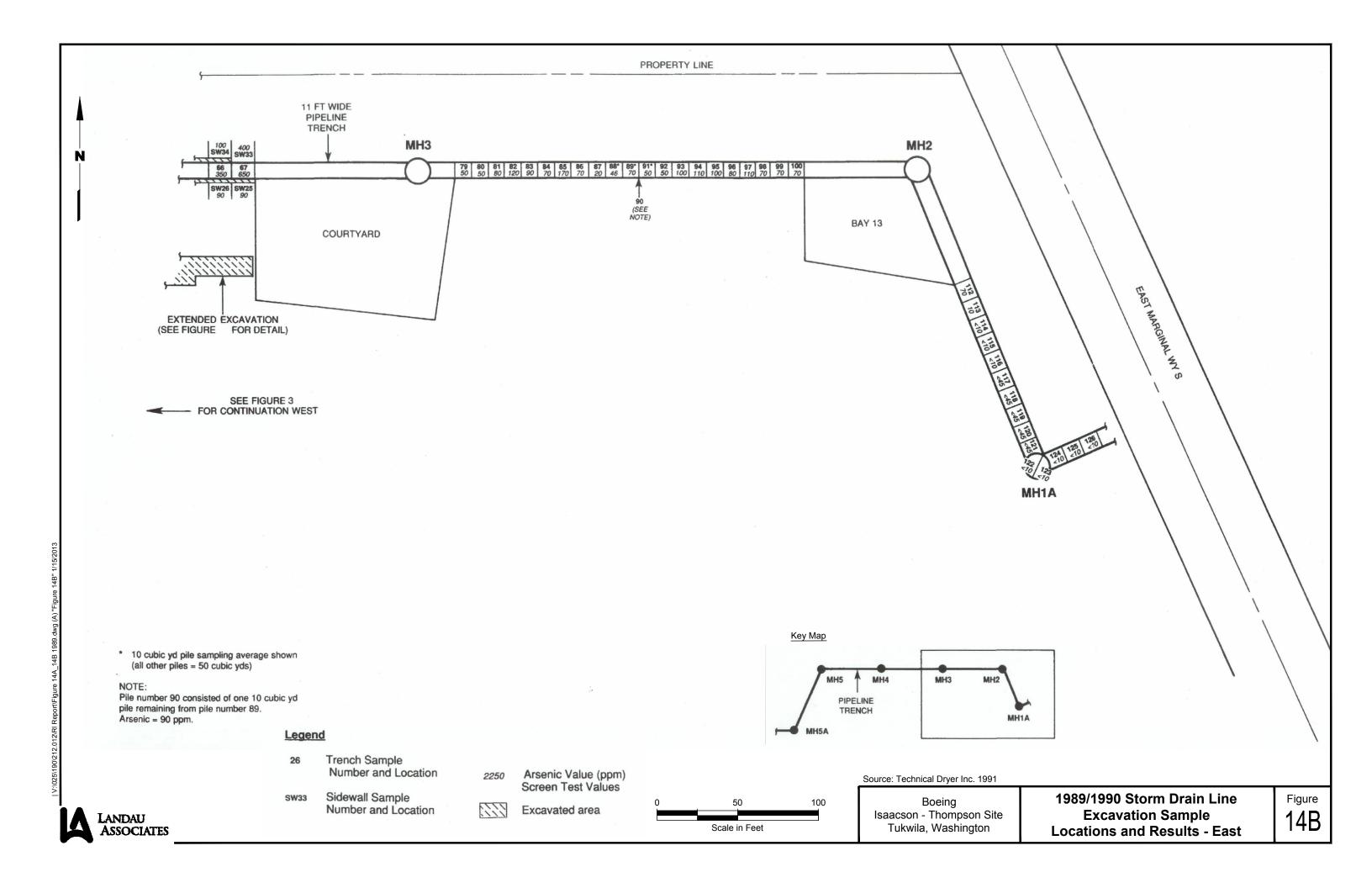
1936 Aerial Photograph

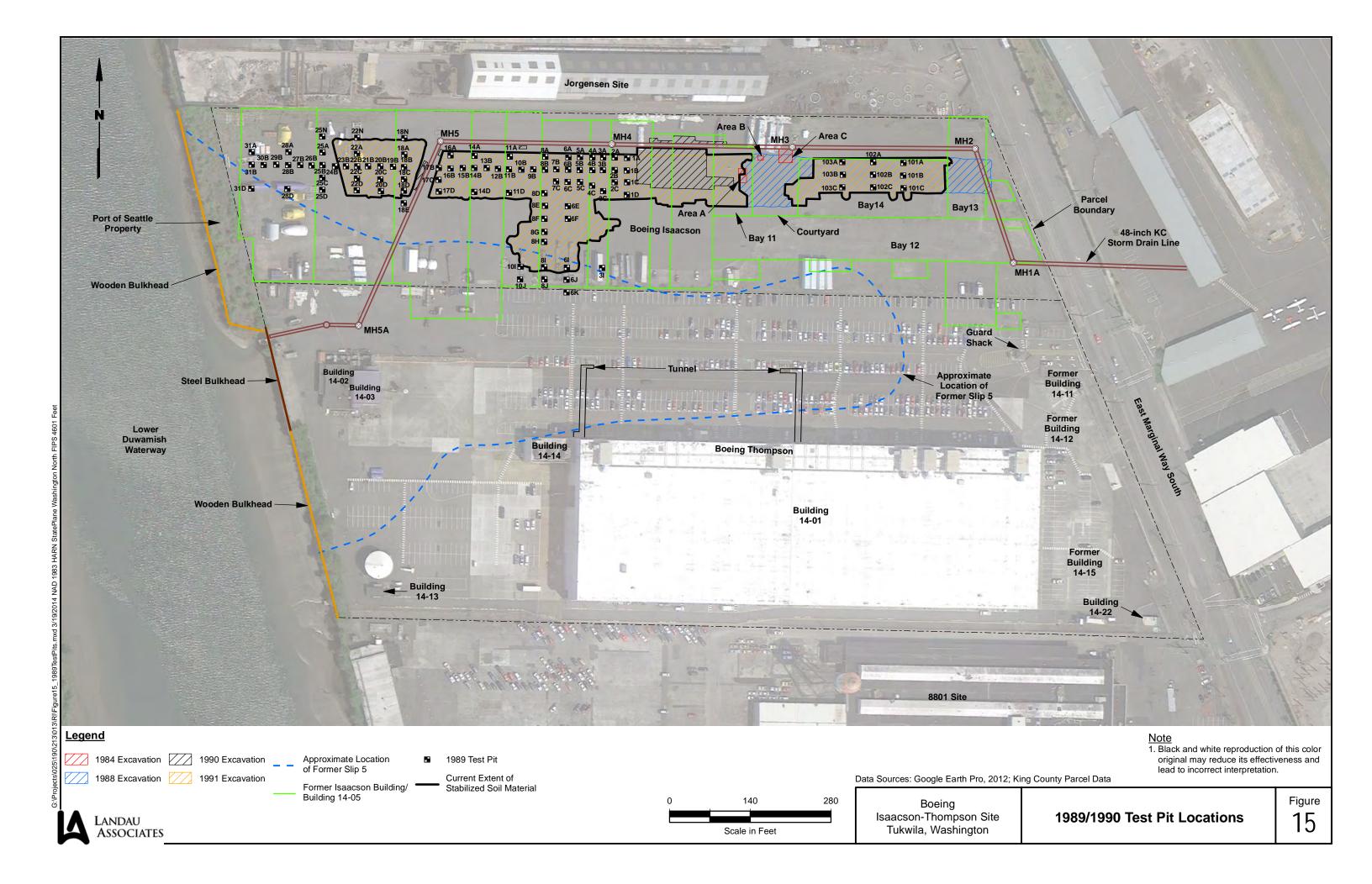
Figure

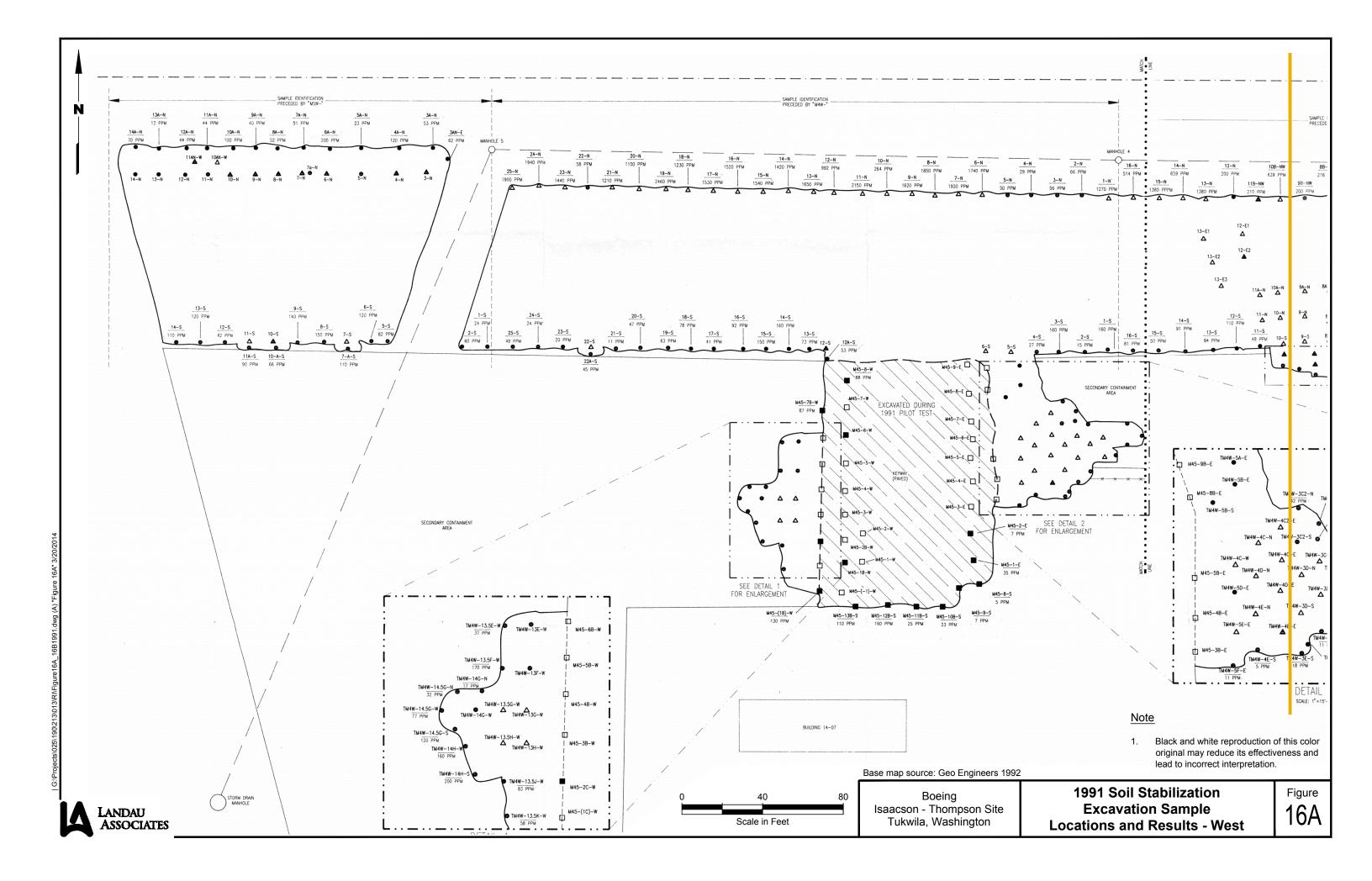


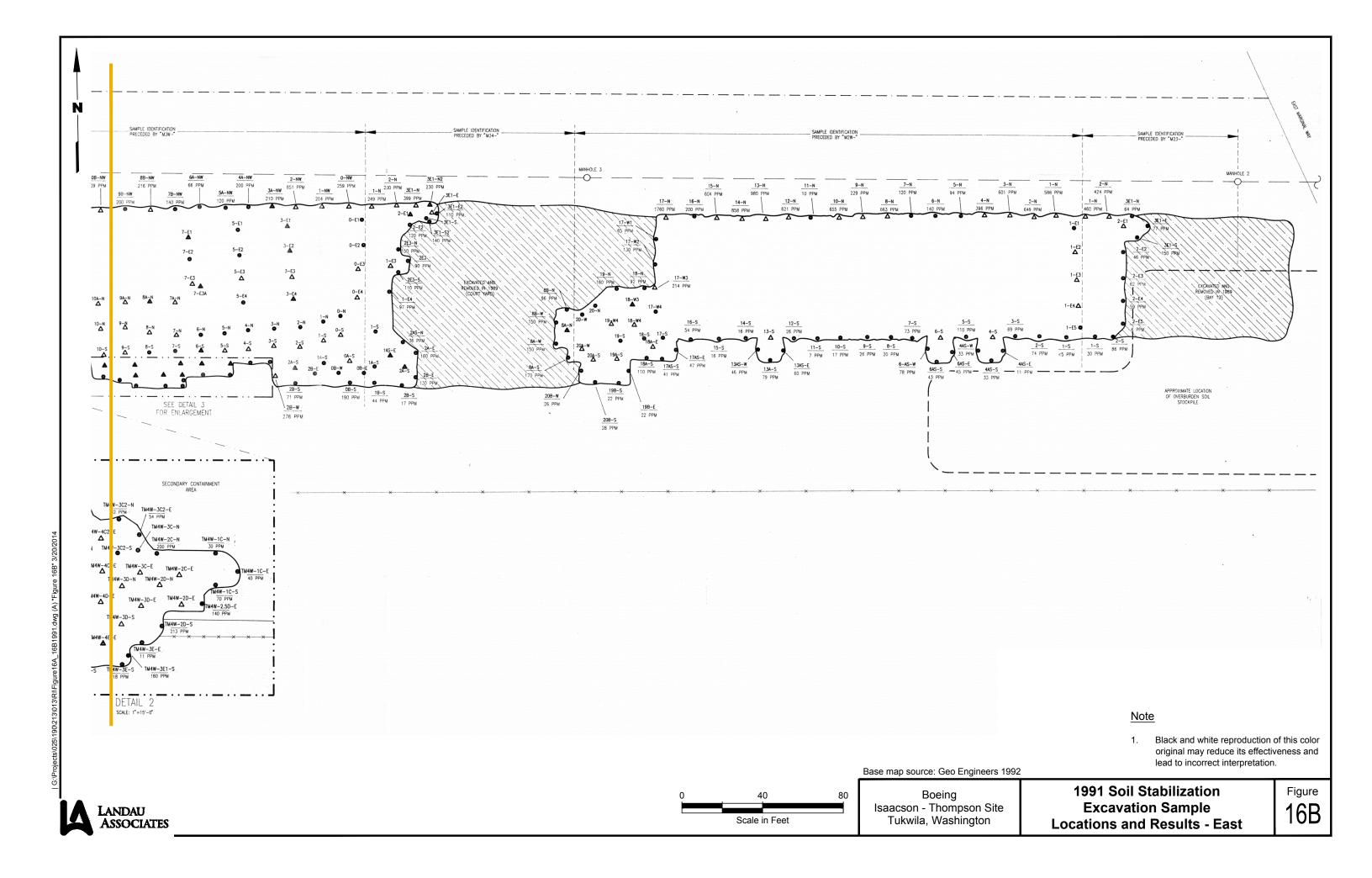


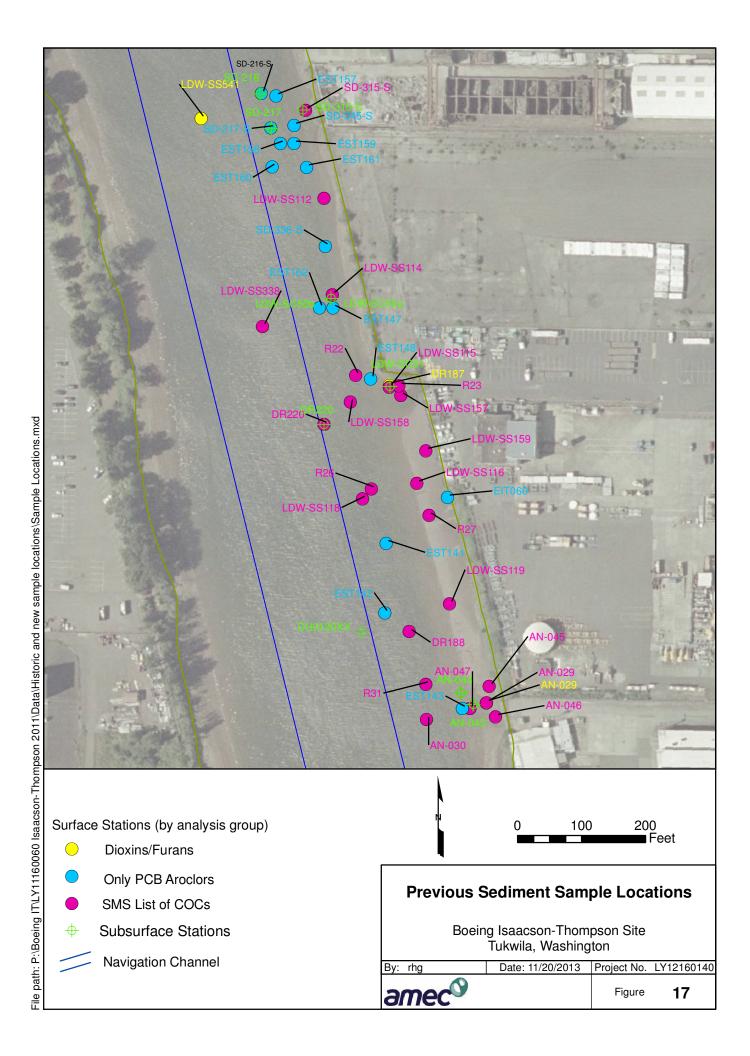


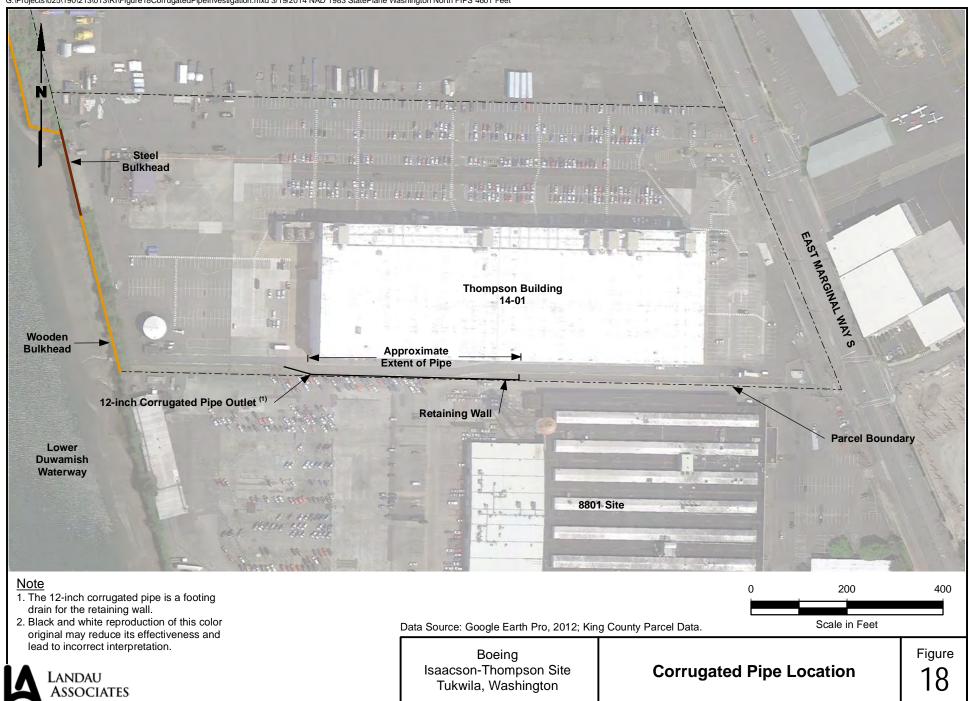

ASSOCIATES

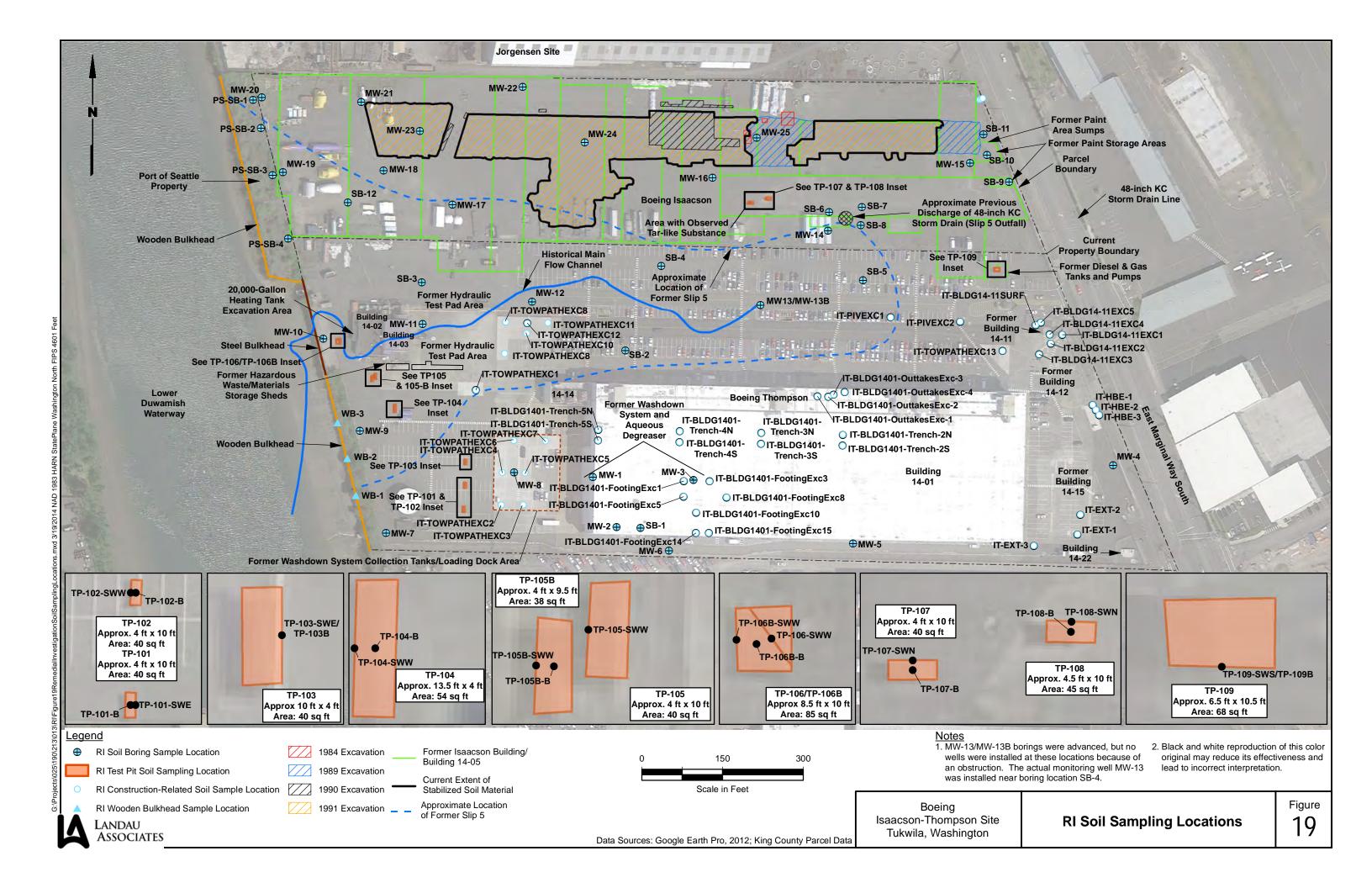

Tukwila, Washington



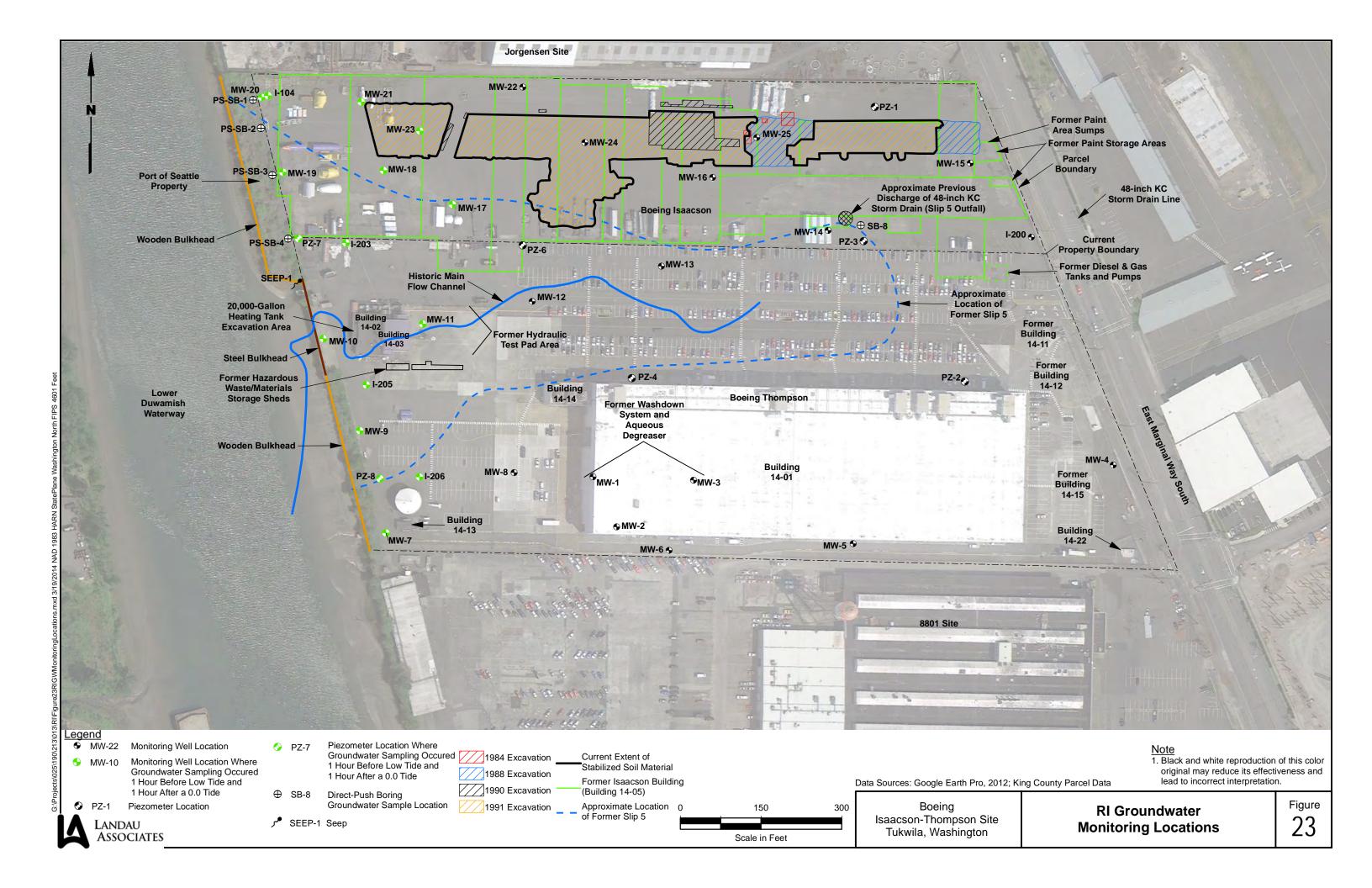


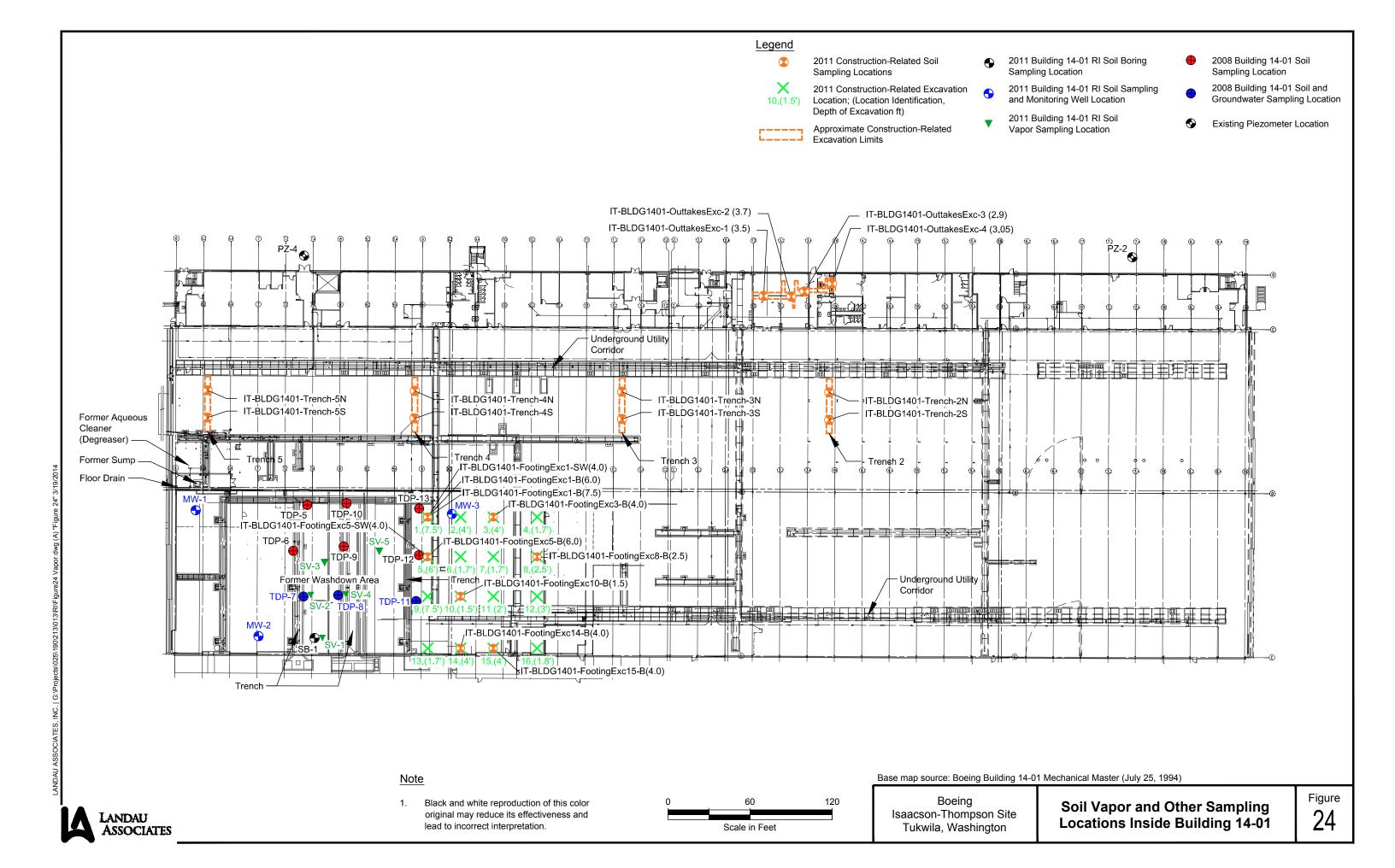


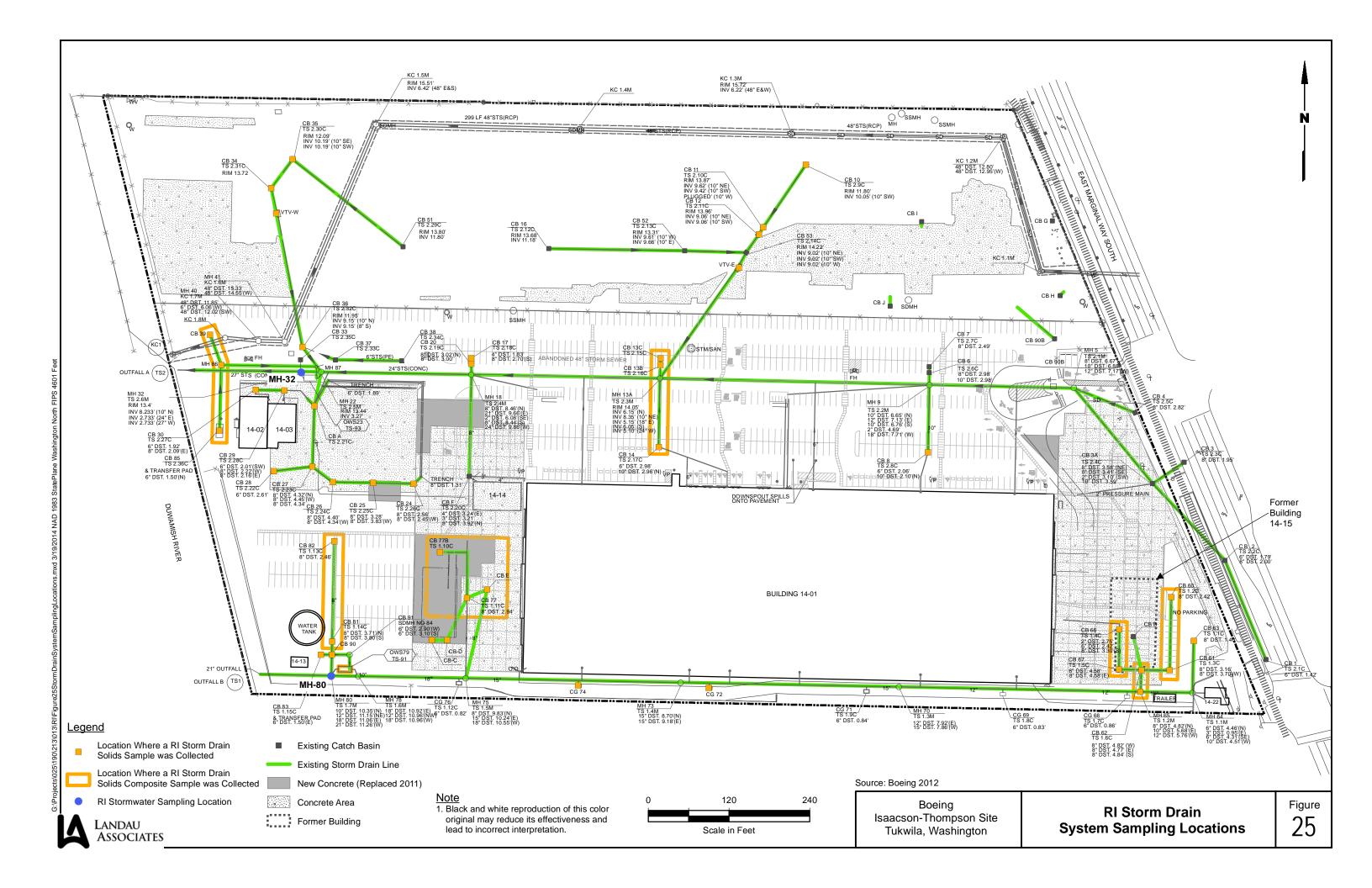


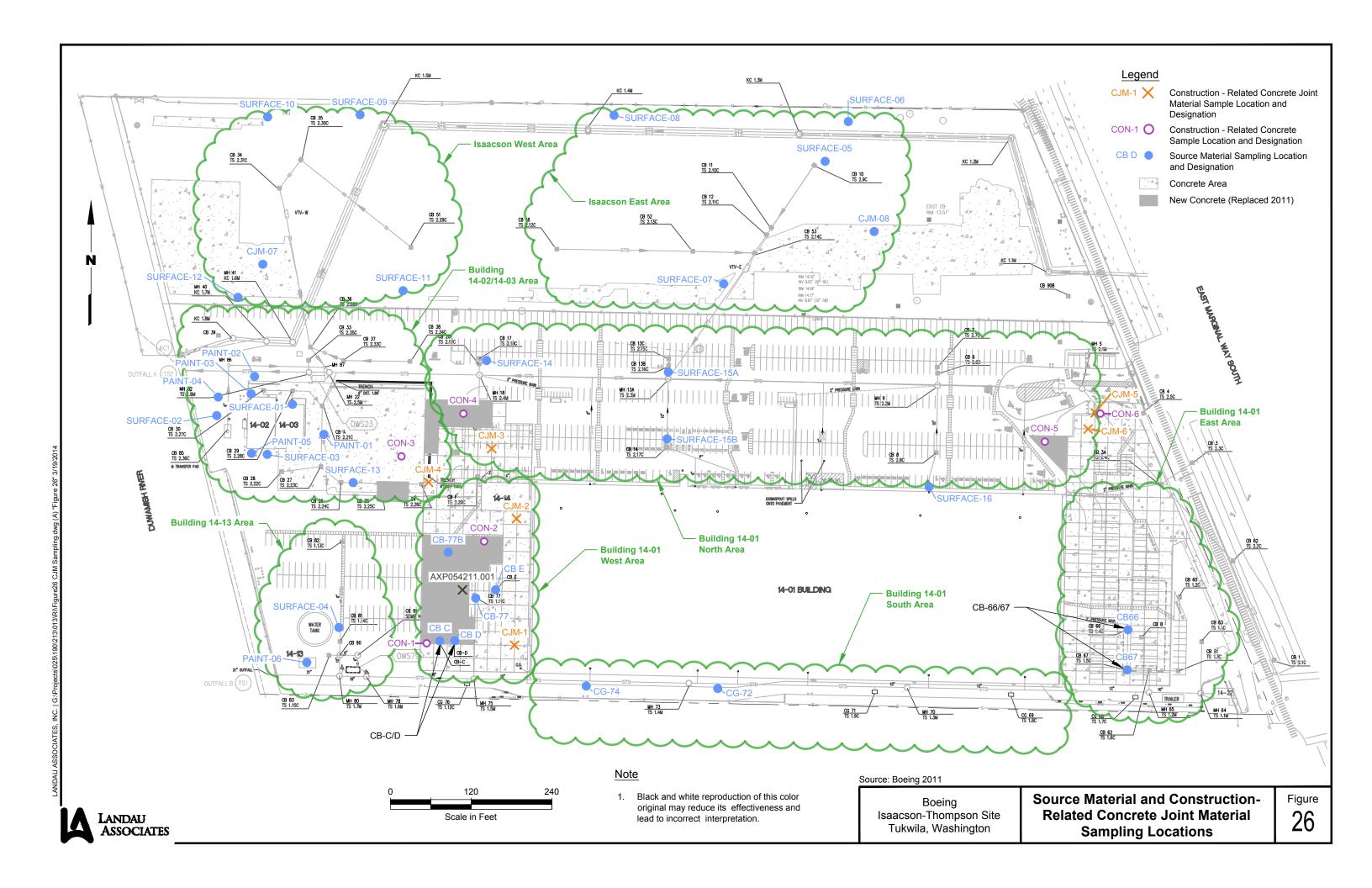


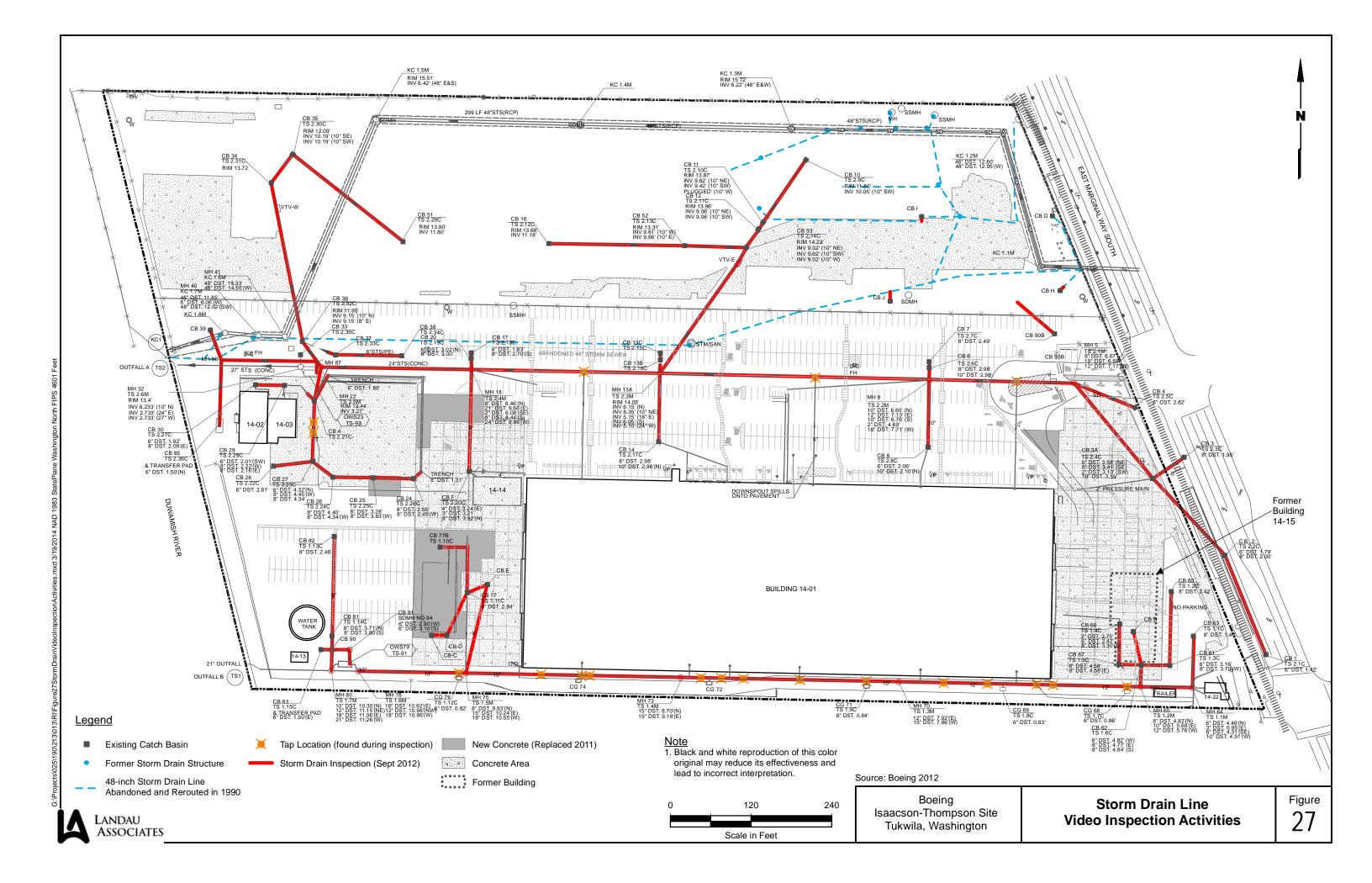
Thompson Wooden Bulkhead Soil Sample Location - WB-1 March 3, 2012

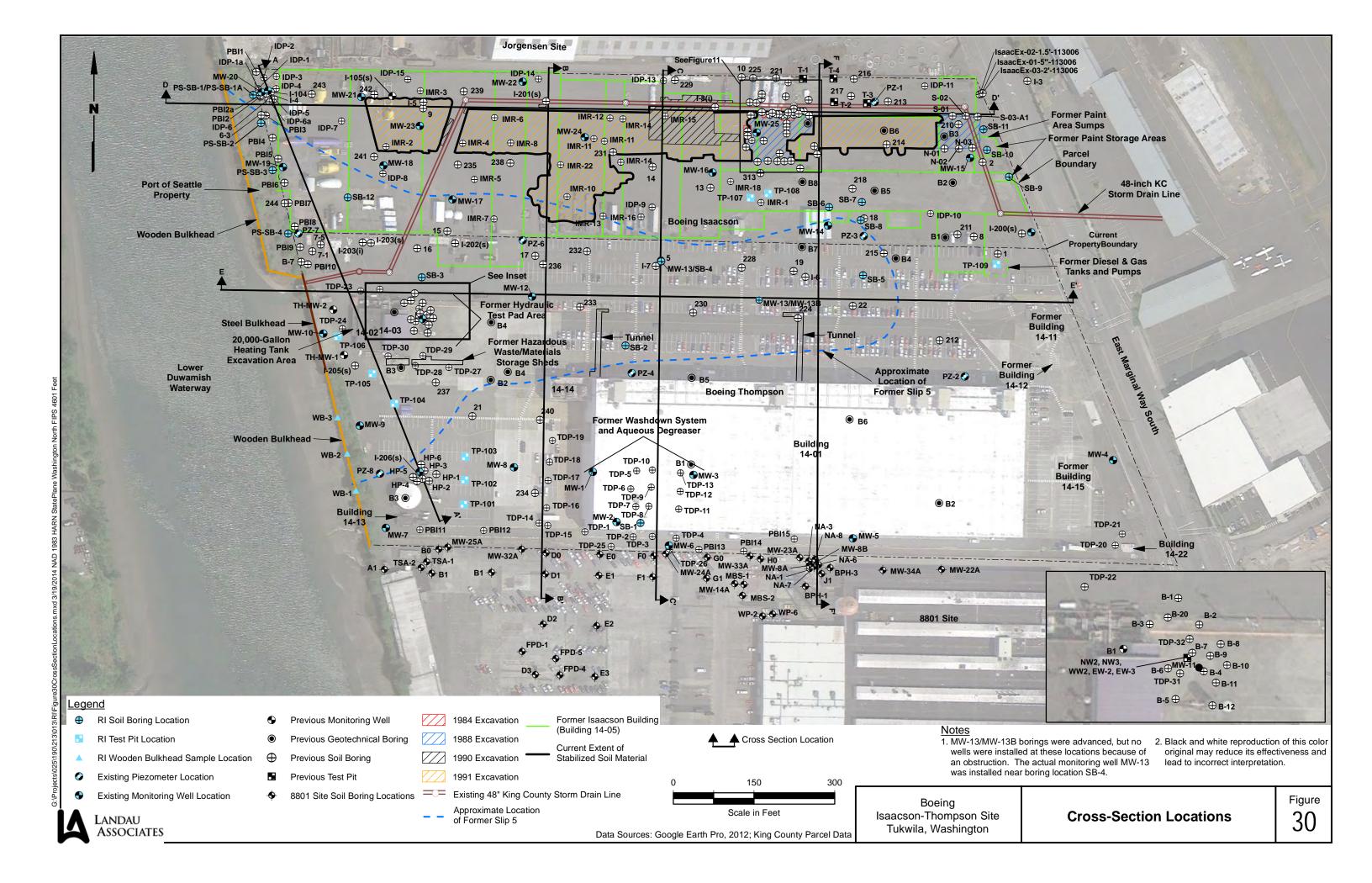


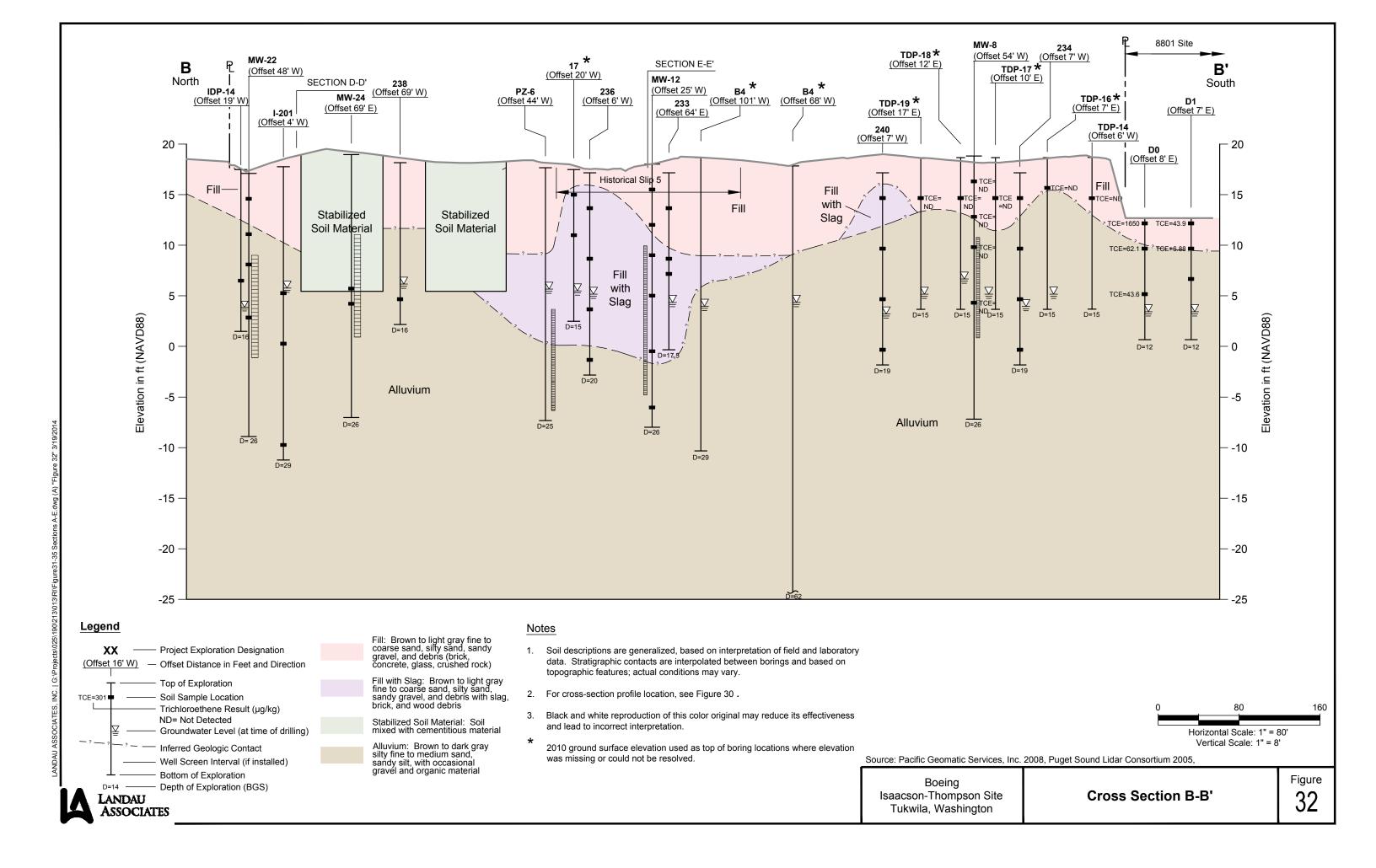

Thompson Wooden Bulkhead Soil Sample Location - WB-2 March 3, 2012

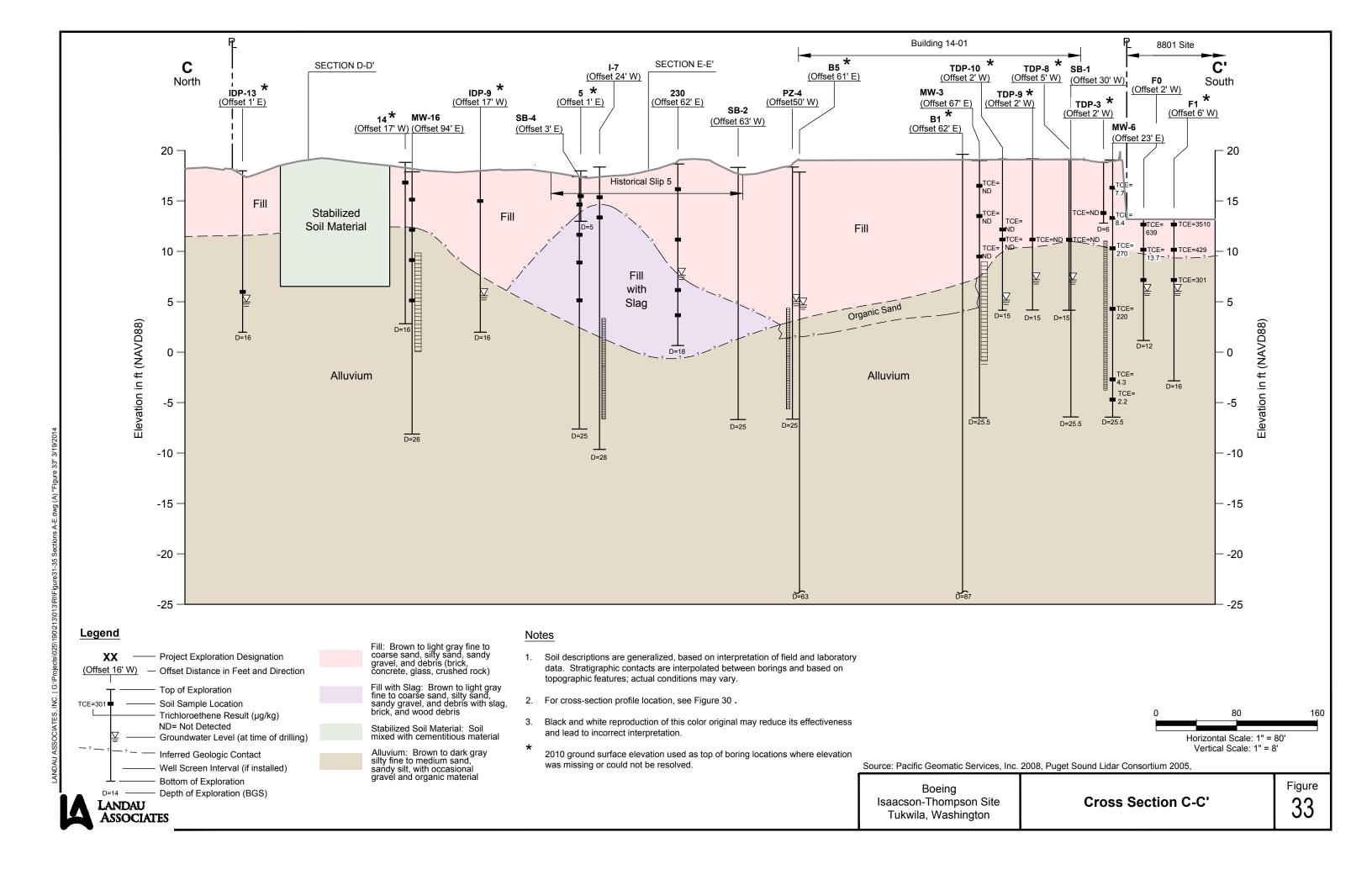


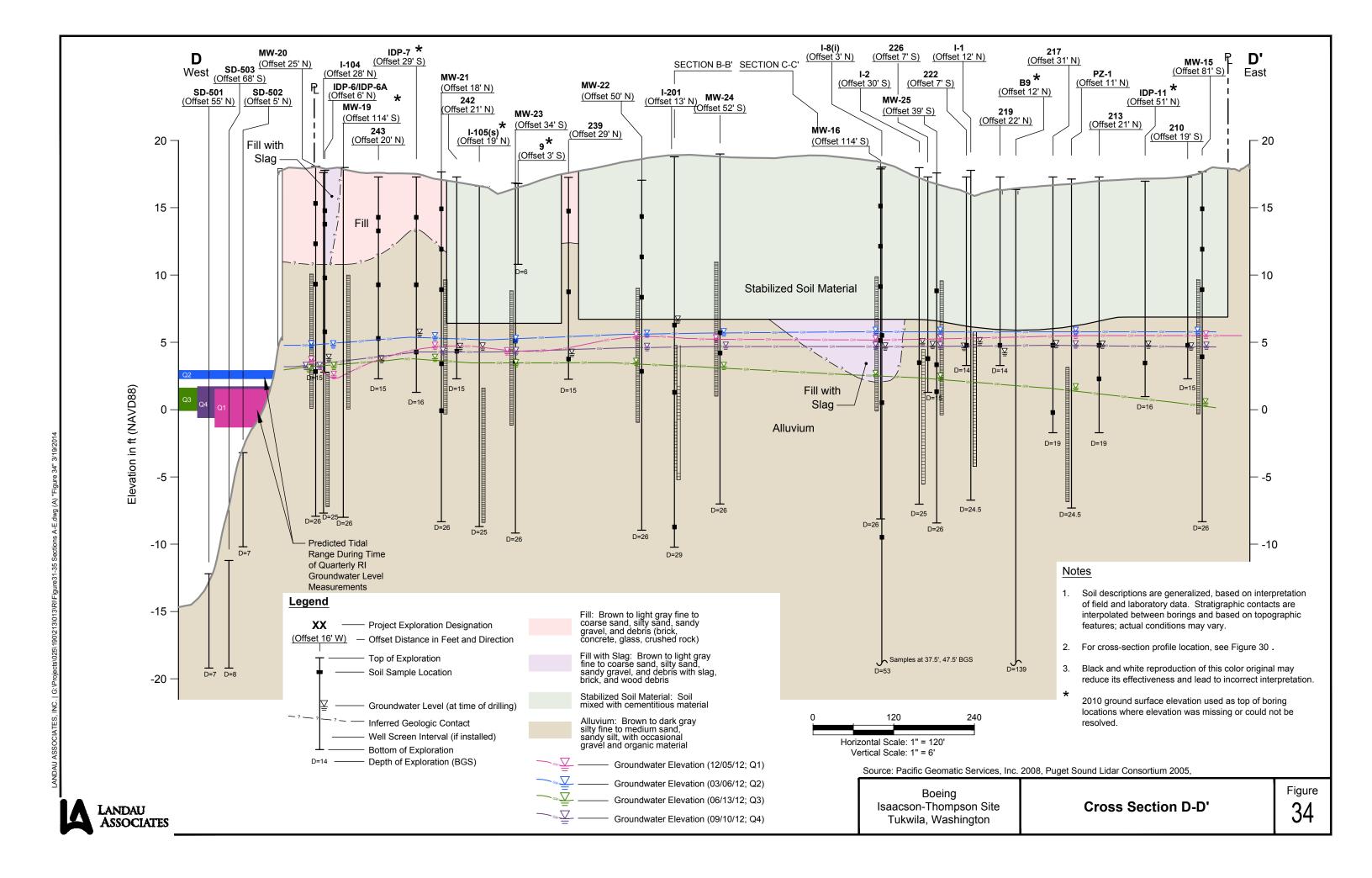



Thompson Wooden Bulkhead Soil Sample Location - WB-3 March 3, 2012









MW-11

TP-104

(Offset 59'E)

B7

SB-6

(Offset 19'E)

(Offset 31'W)

(Offset 46'W)

317

217

North

216

(Offset 62'W)

(Offset 59'E)

220

(Offset 19'W)

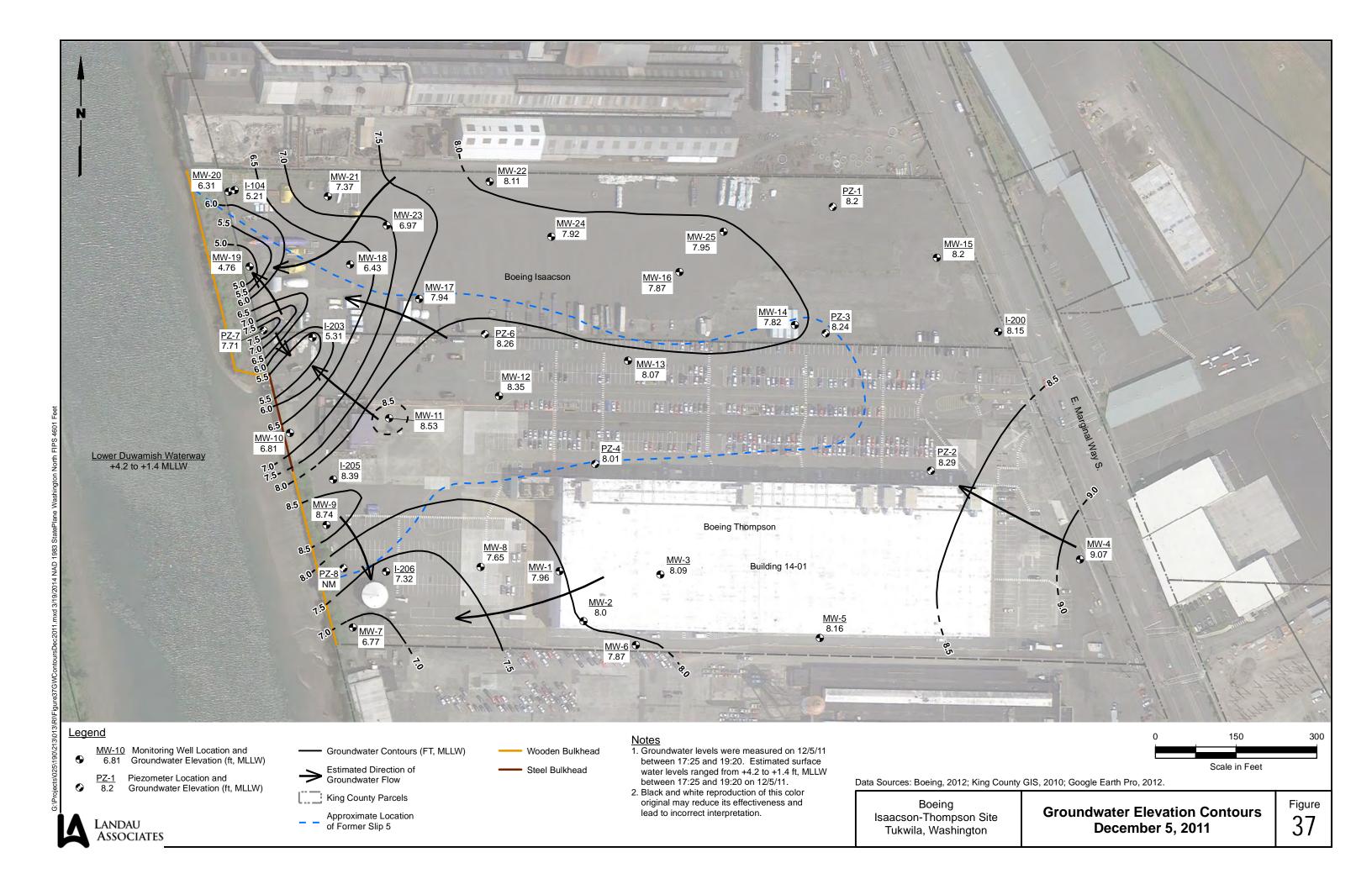
219

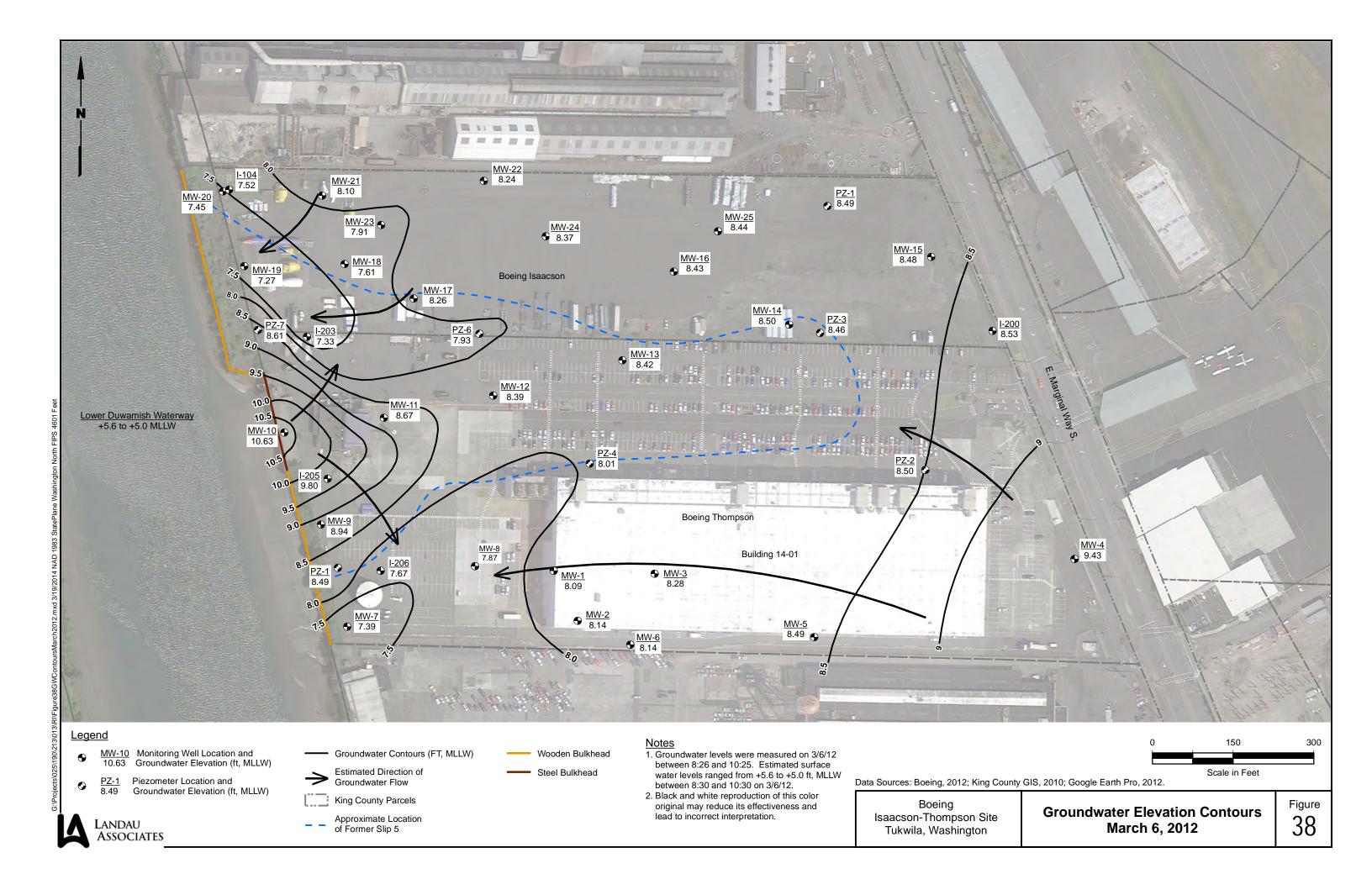
(Offset 9'W)

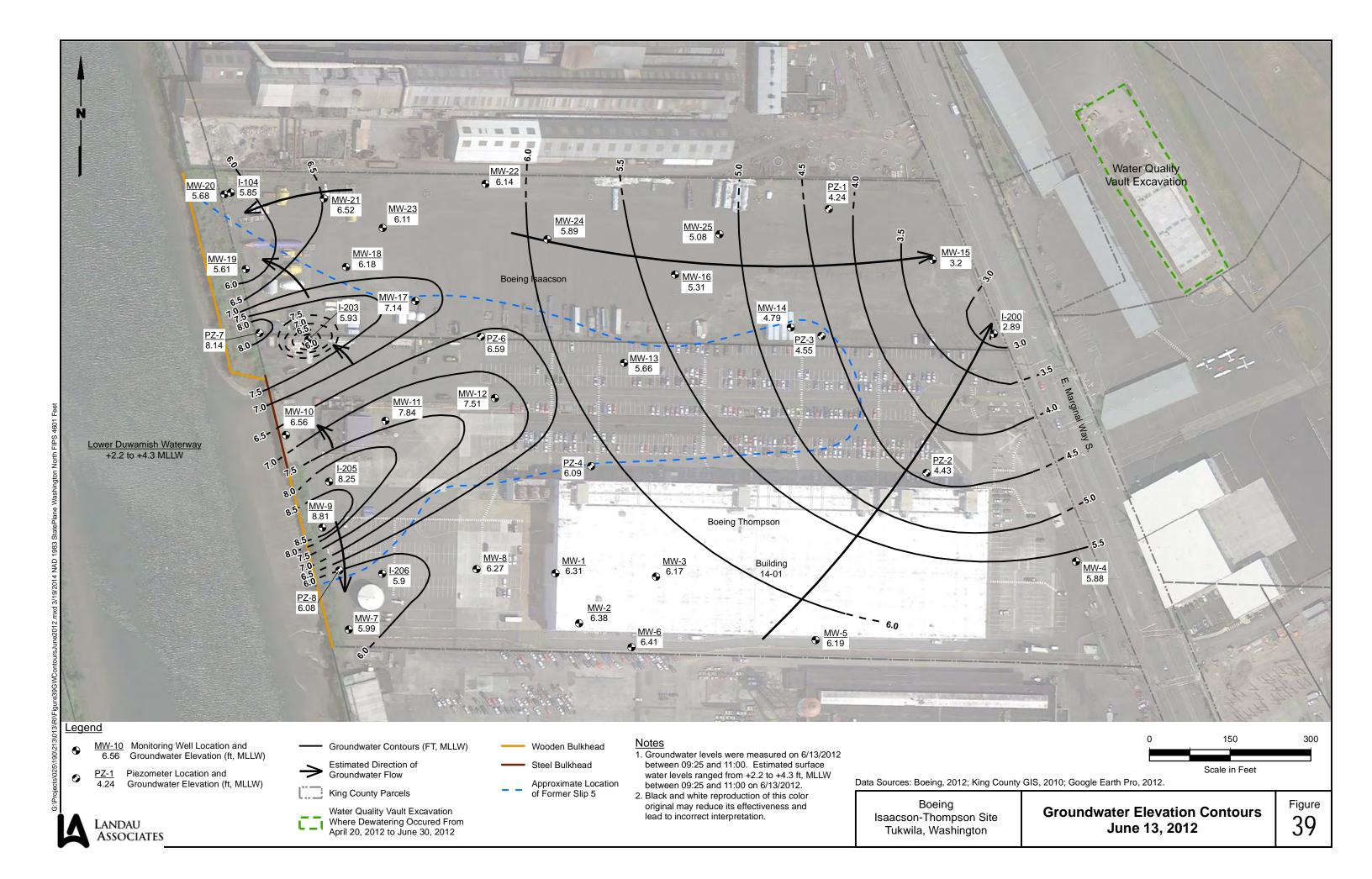
328

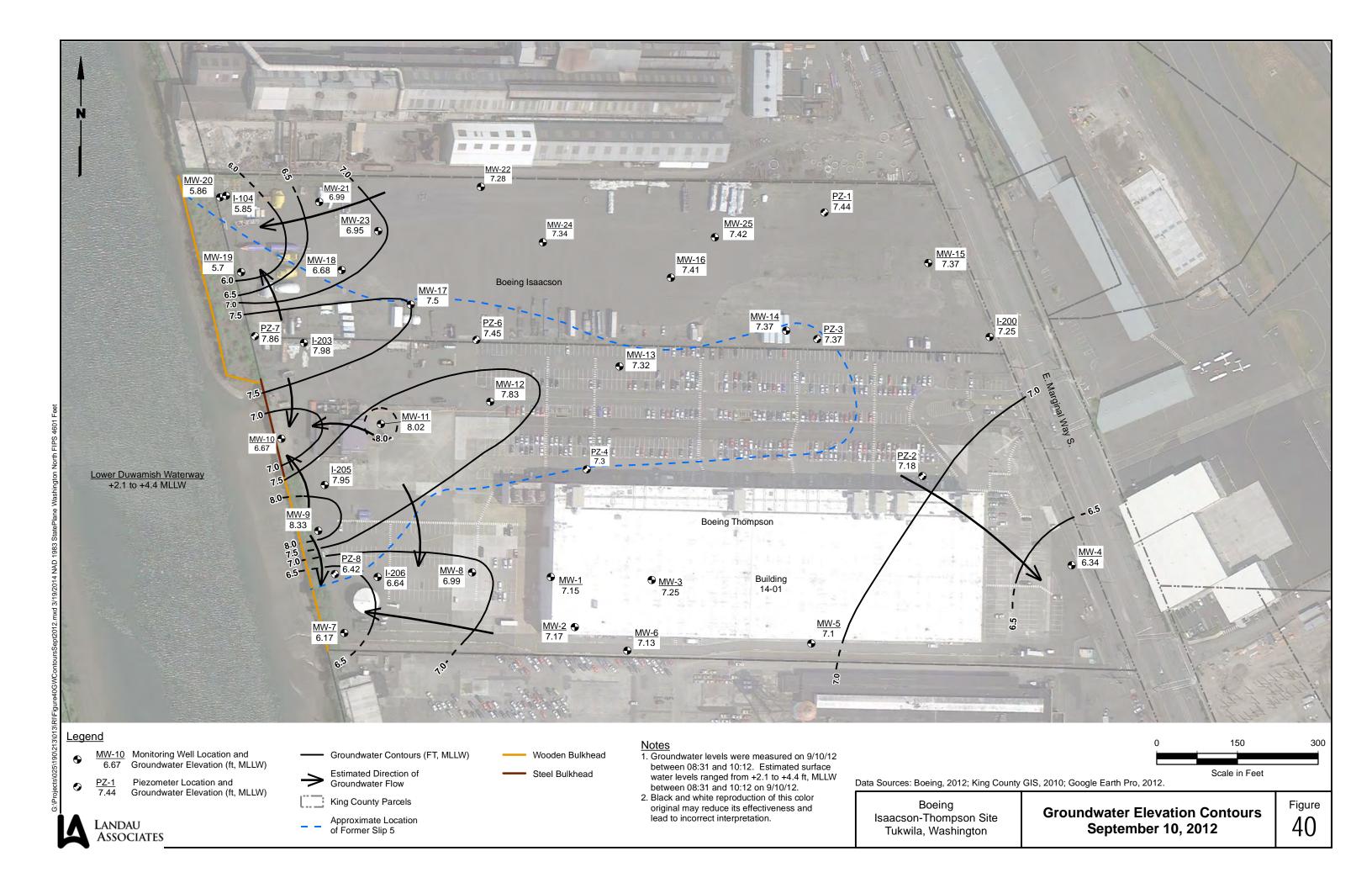
(Offset 35'W)

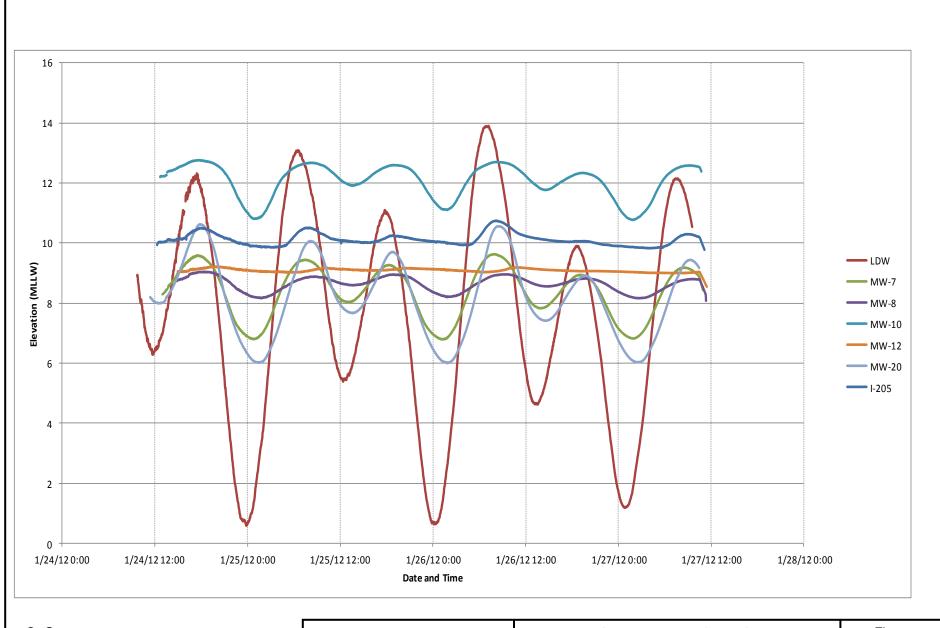
F'

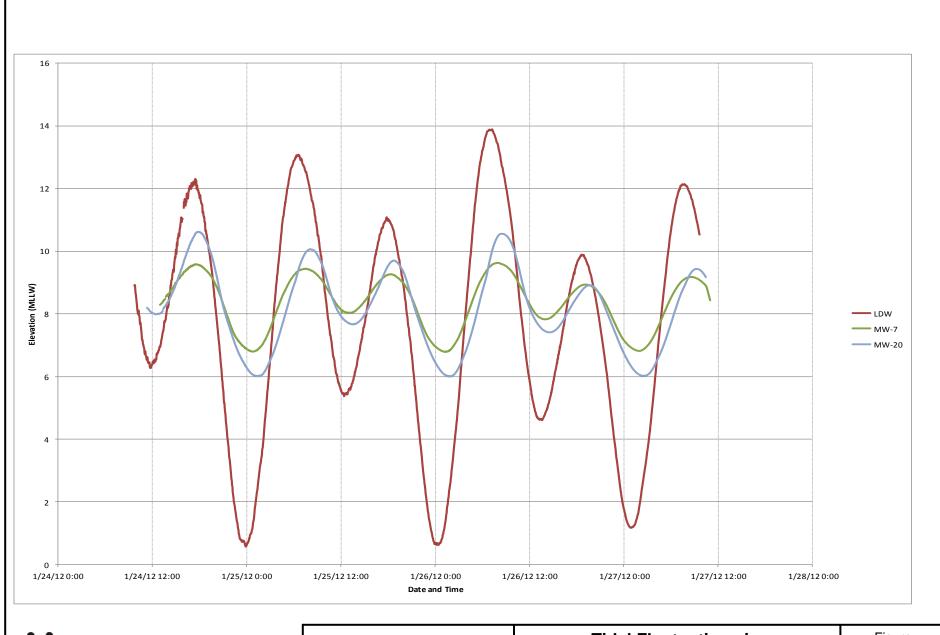

South

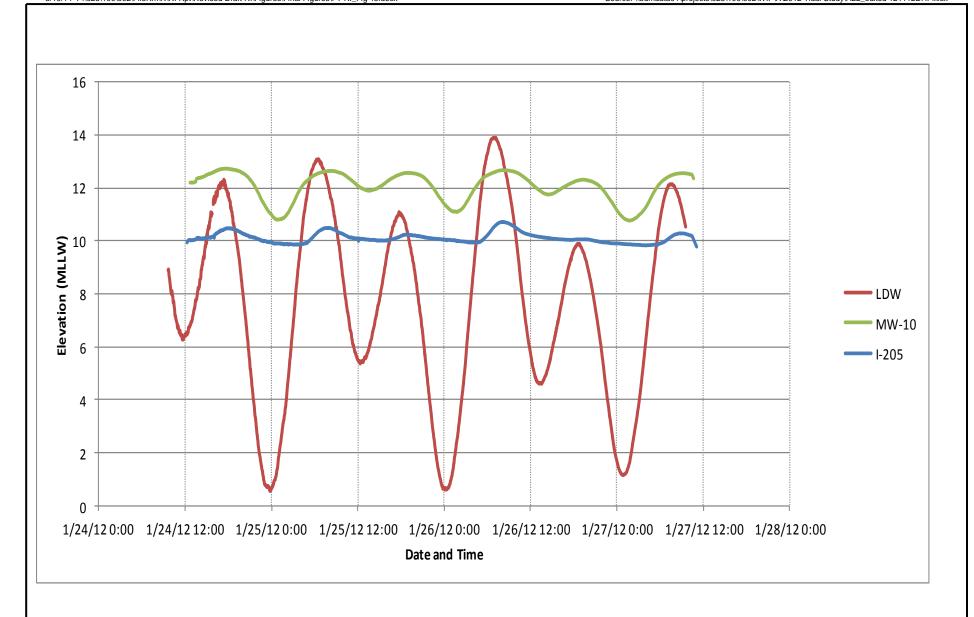

PBI15


(Offset 43'W)

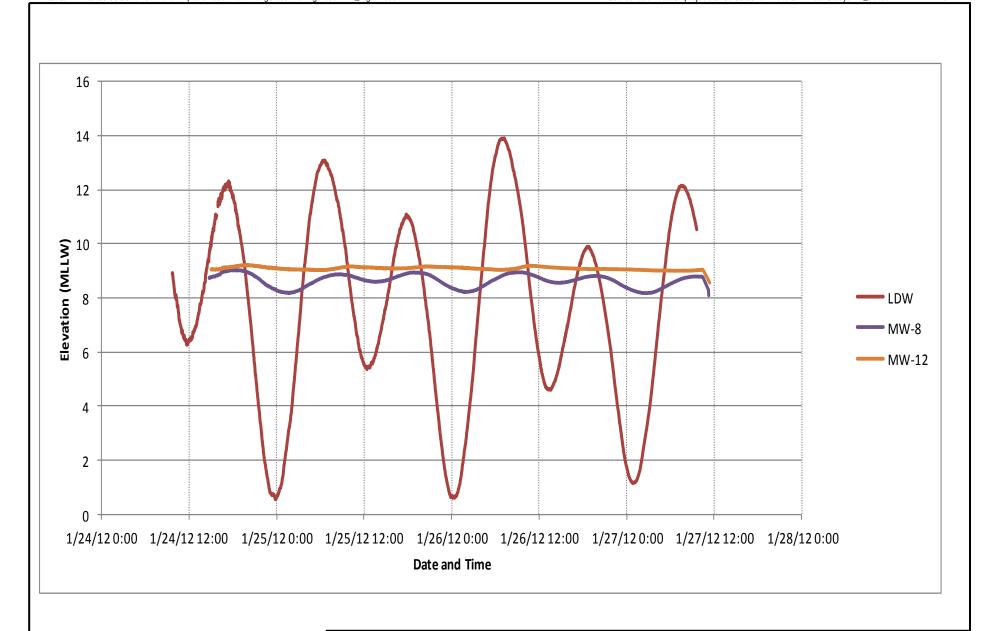

MW-23A


(Offset 33'W)

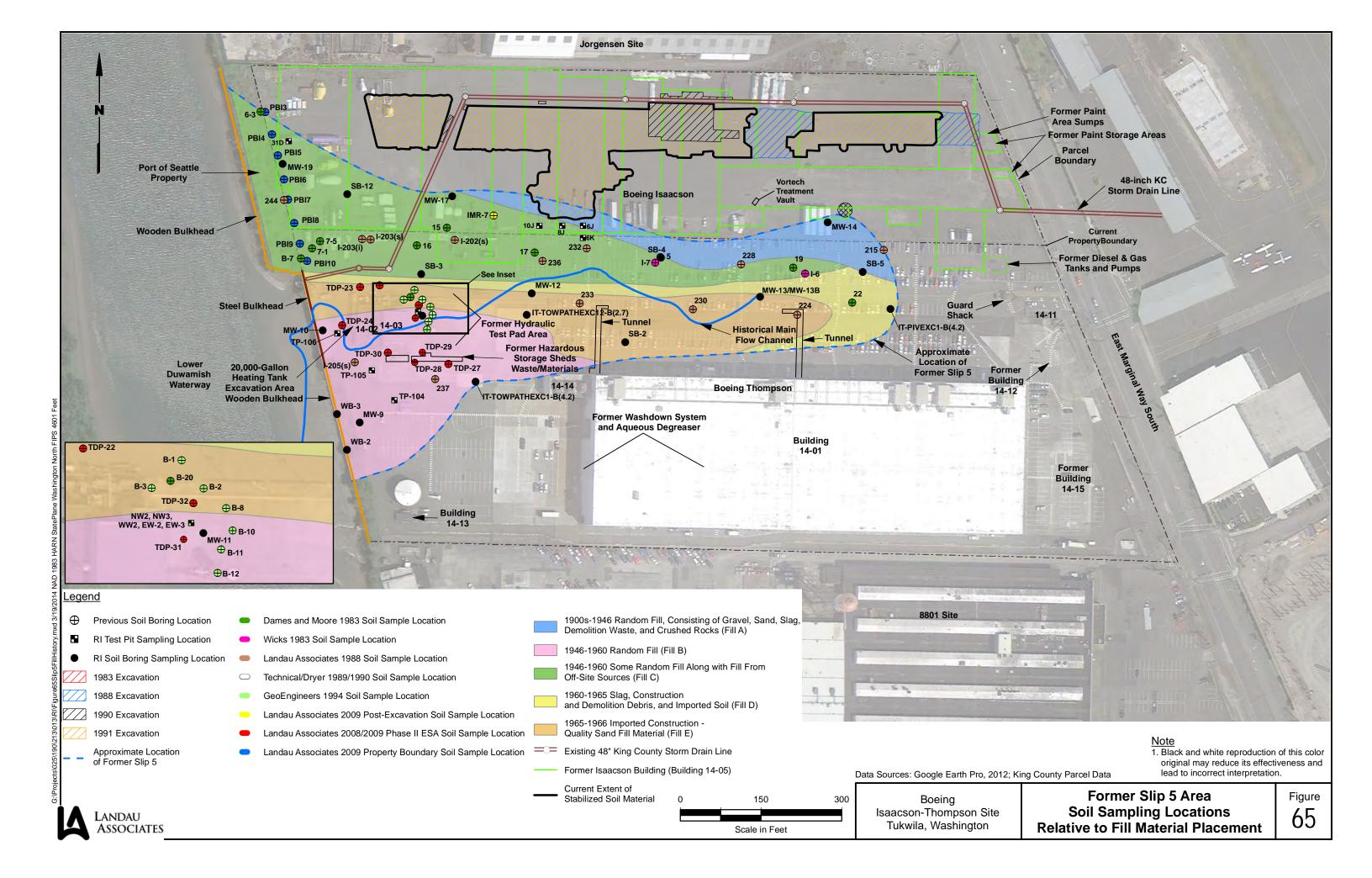


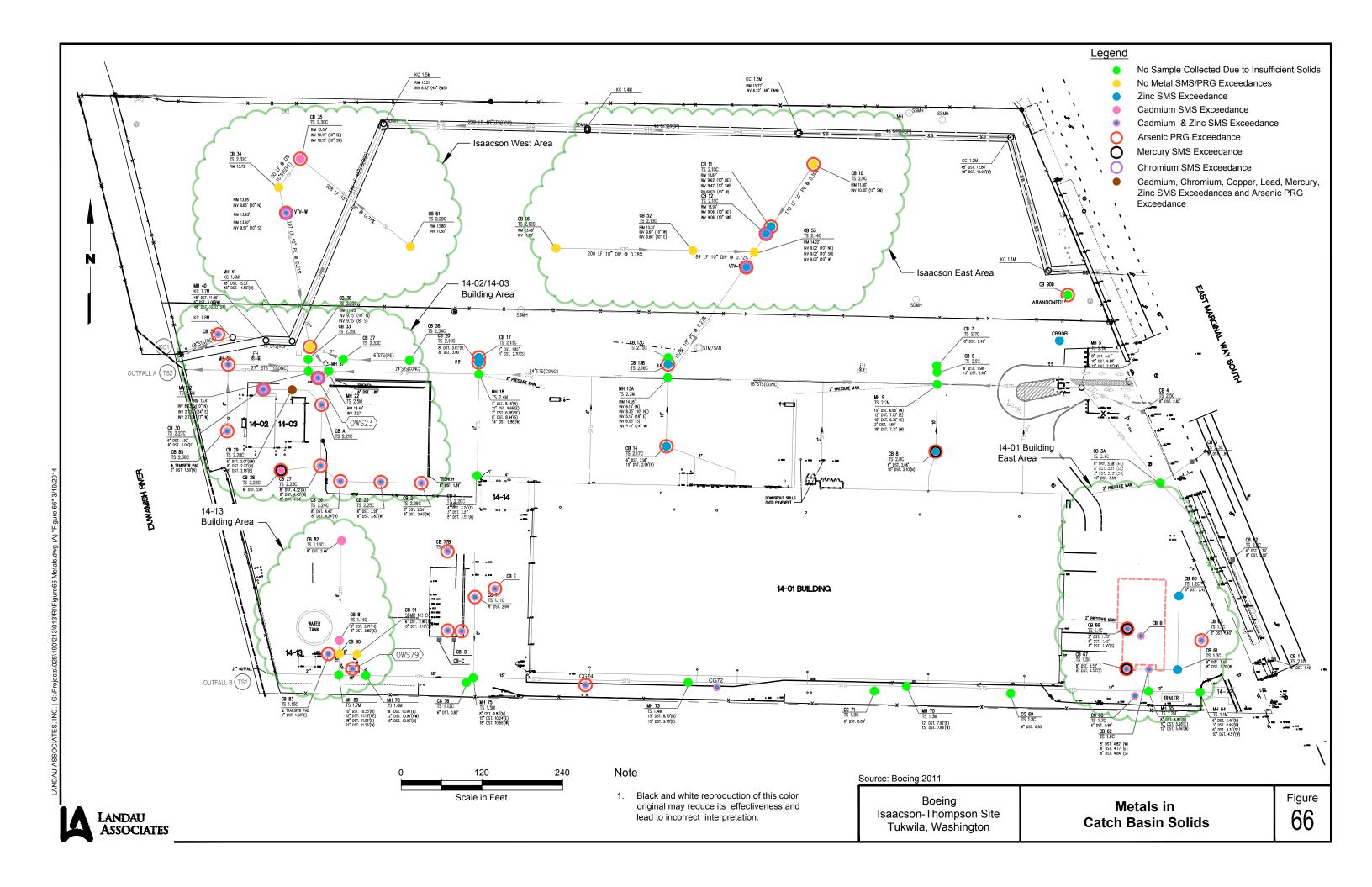

Tidal Fluctuations in Lower Duwamish Waterway vs All Measured Wells Figure

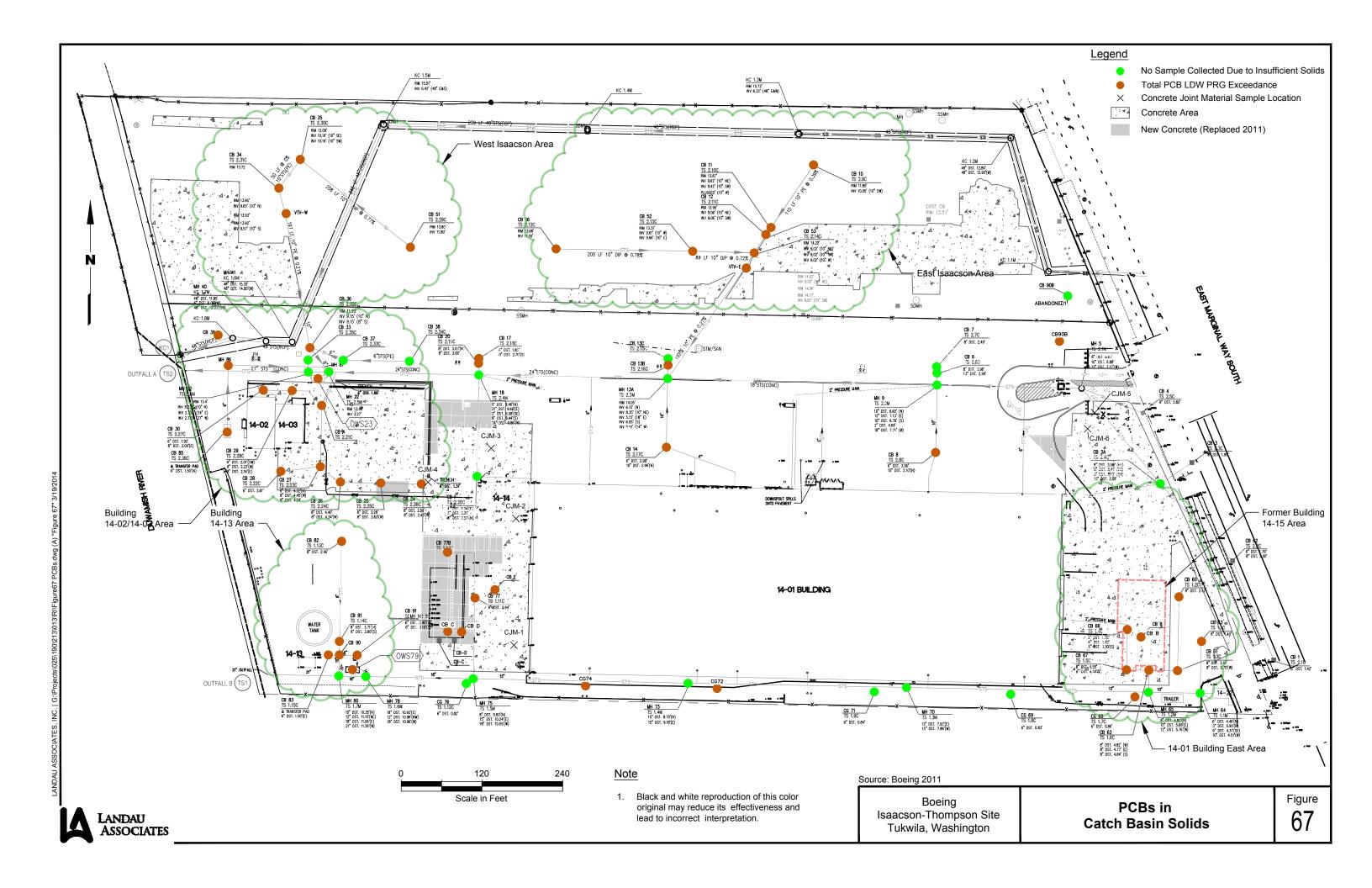
41

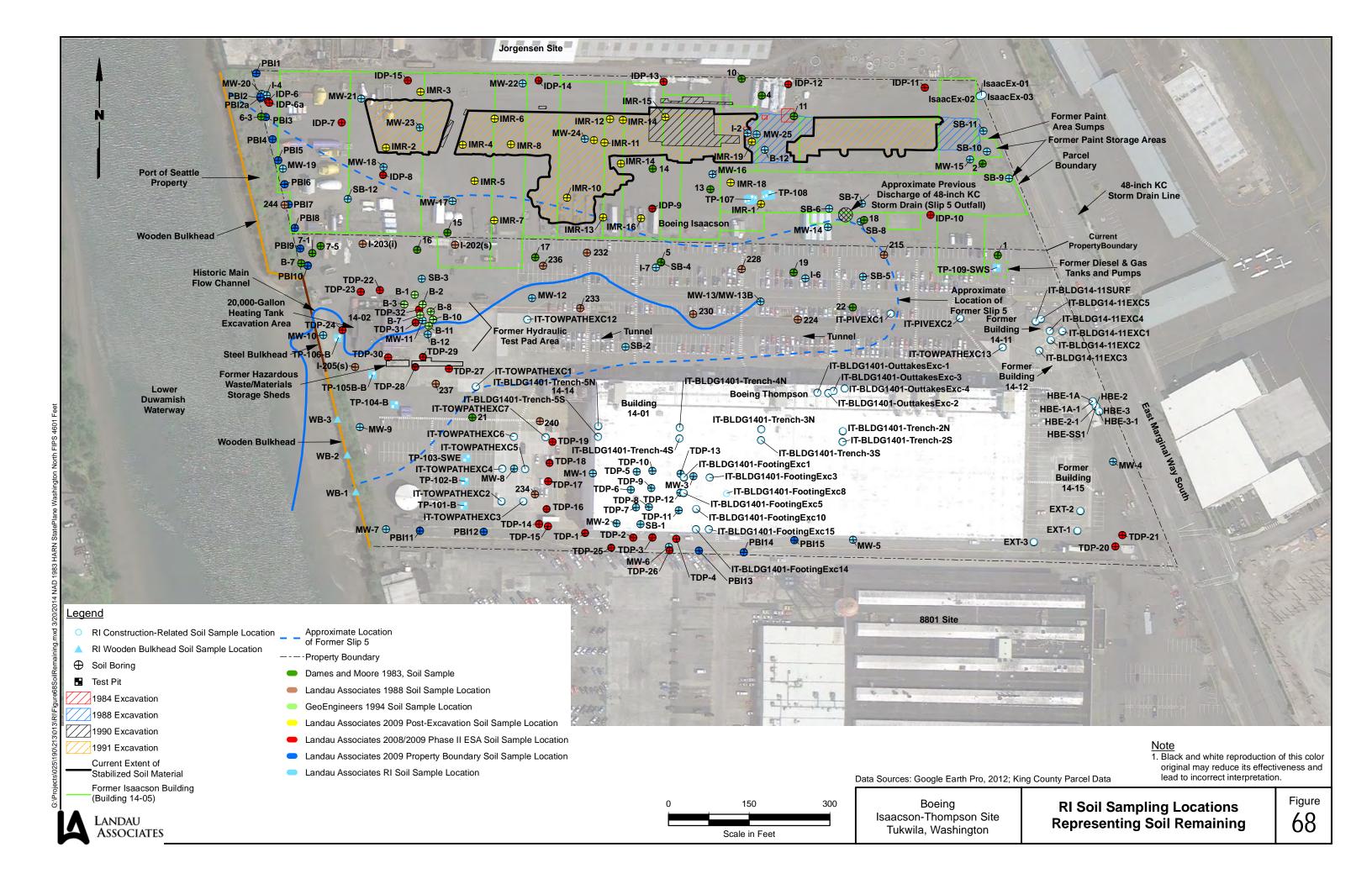

LANDAU ASSOCIATES

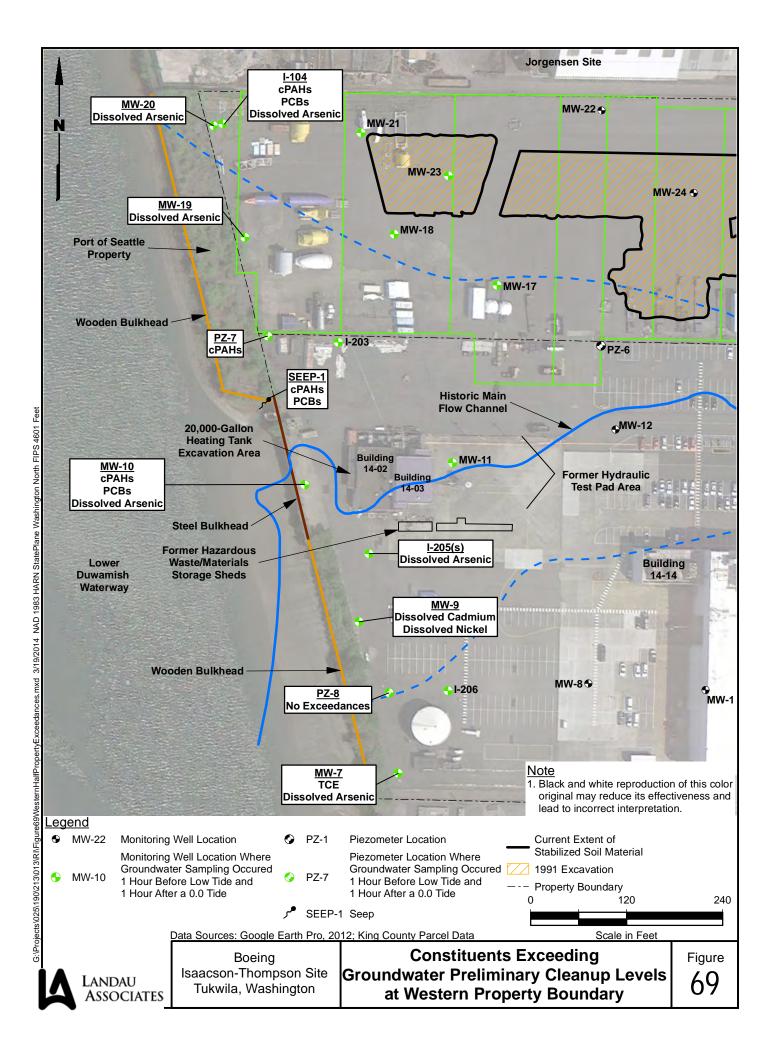
Boeing Isaacson-Thompson Site Tukwila, Washington Tidal Fluctuations in Lower Duwamish Waterway vs MW-7 and MW-20

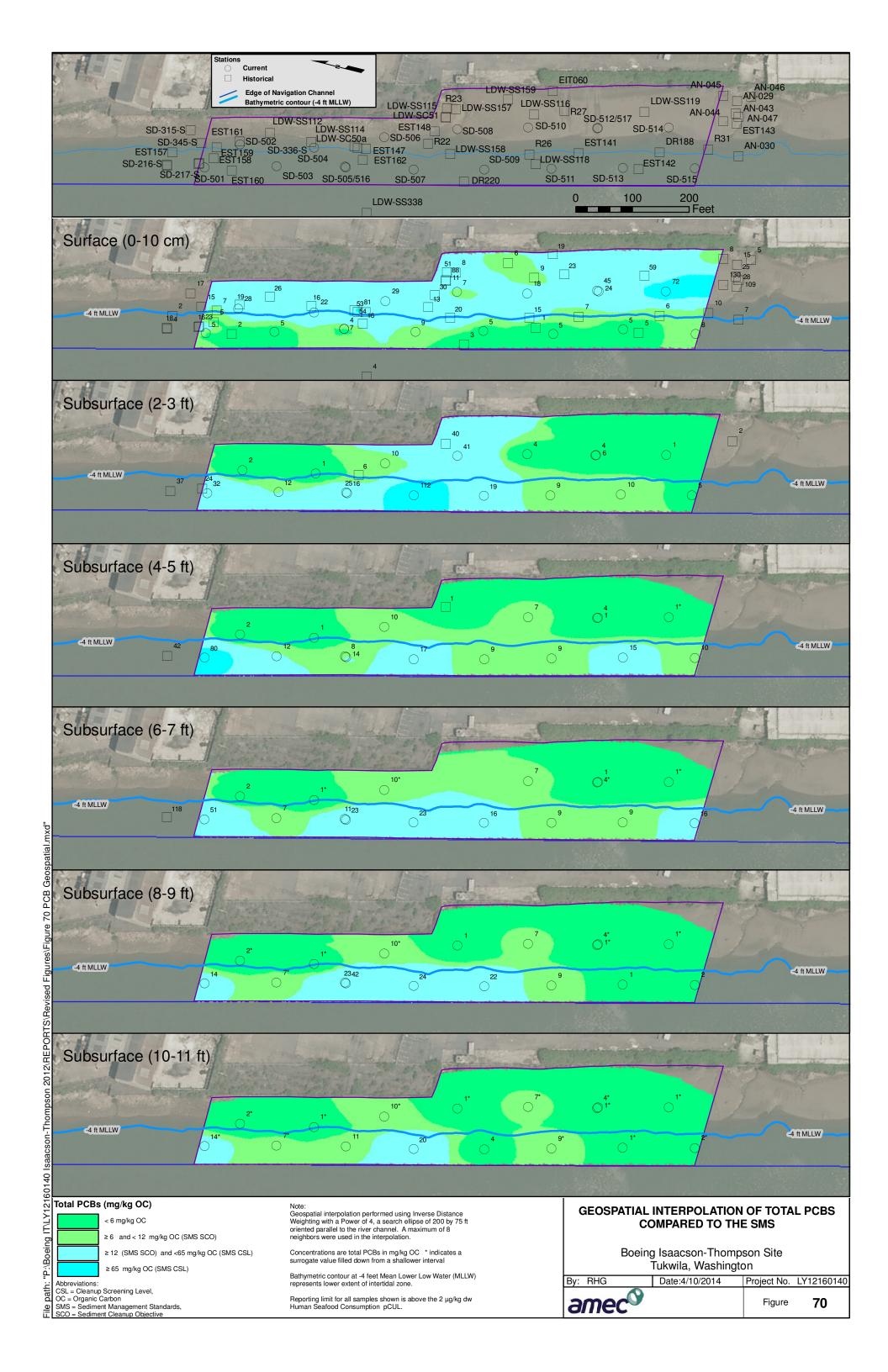

Tidal Fluctuations in Lower Duwamish Waterway vs MW-10 and I-205

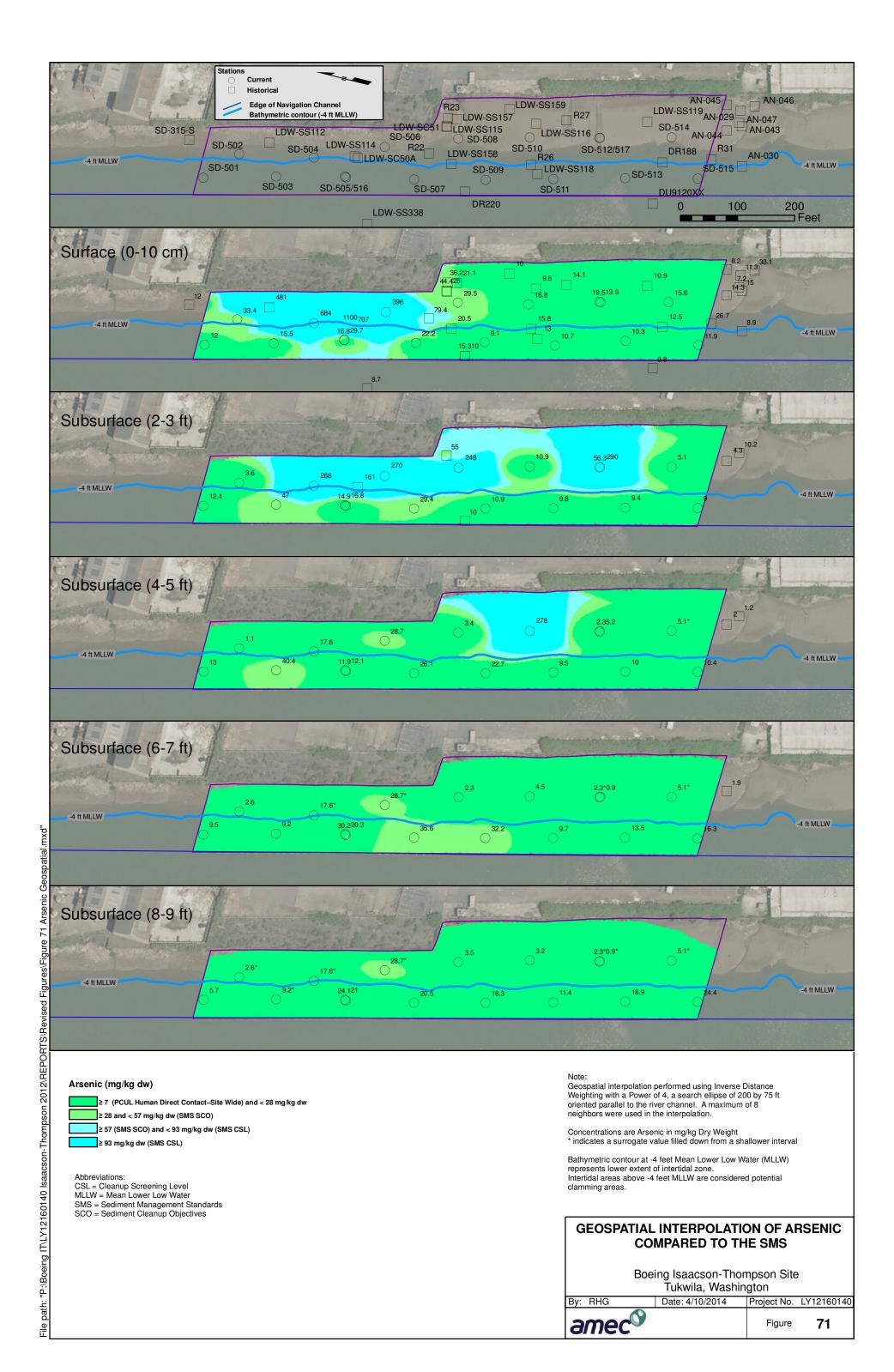


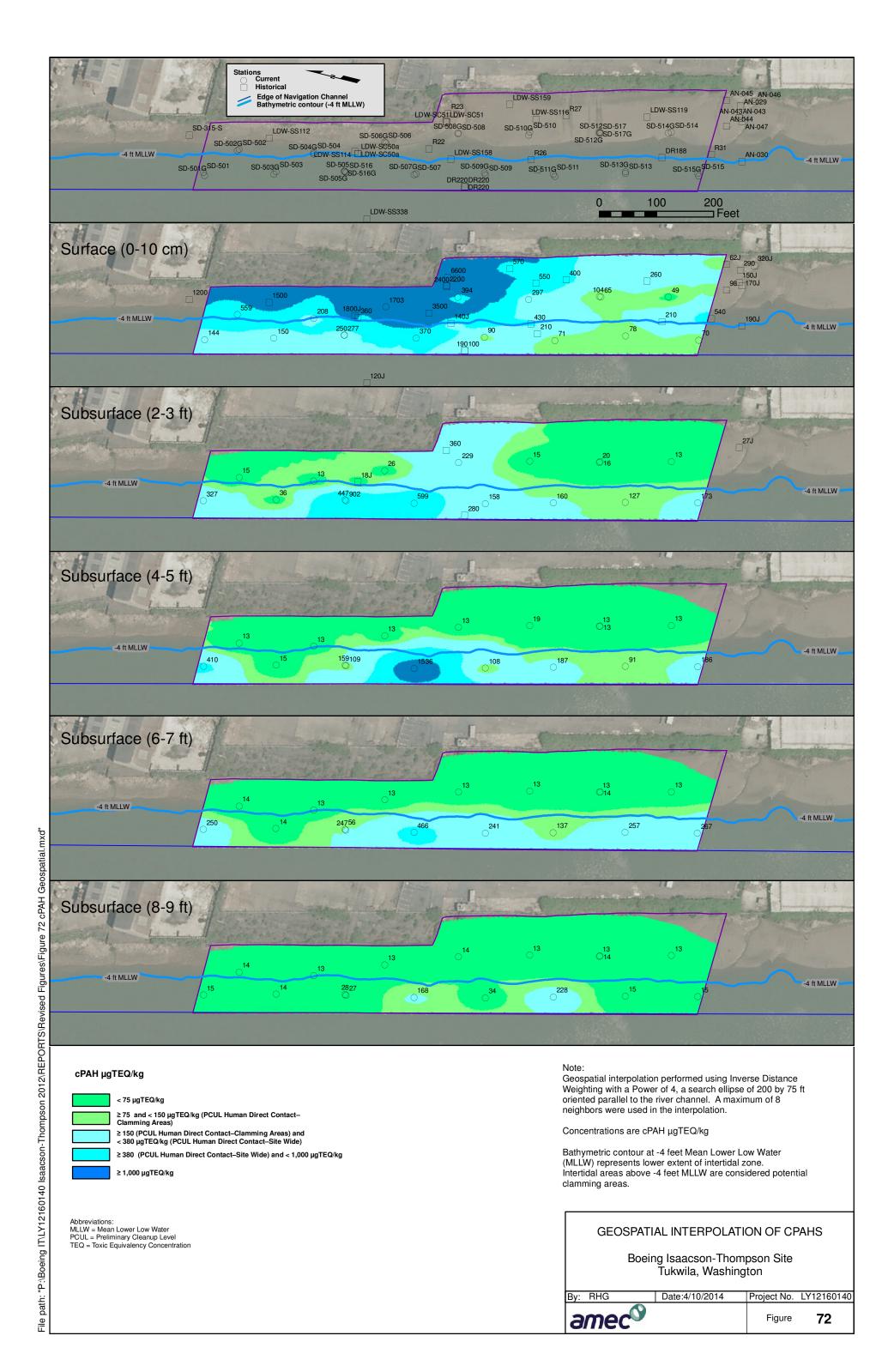


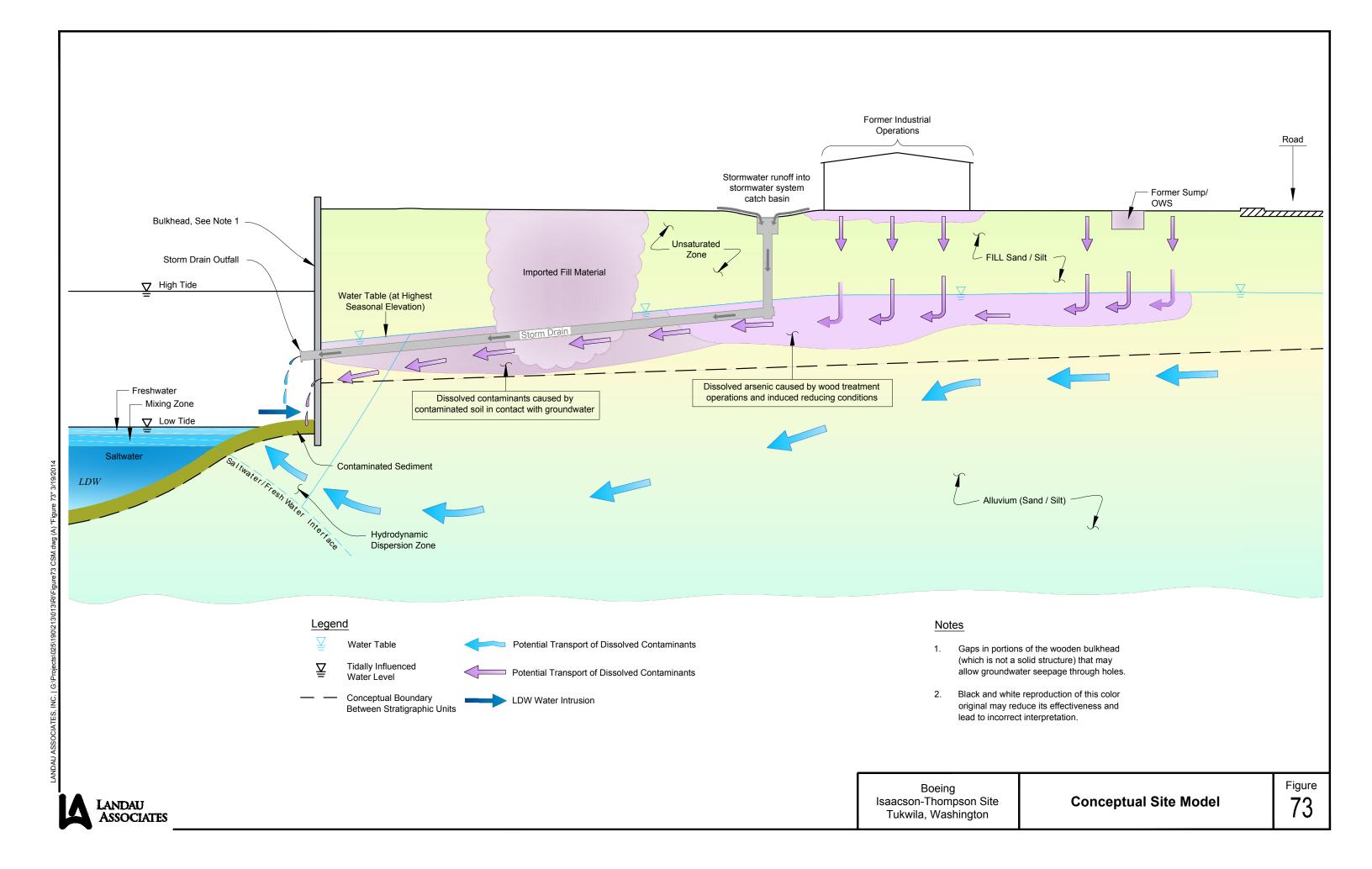

Tidal Fluctuations in Lower Duwamish Waterway vs MW-8 and MW-12 Figure


44









Sample Date	Field Sample ID	Depth or Depth Range (ft, BGS)	Exploration Depth (ft, BGS)	Drilling Equipment	Depth to Groundwater (ft BGS)	Field Screening Results
NORTH OF	FORMER SLIP 5 AREA					
Western Proper	ty Boundary (West of Stablizized Soil Area)					
11/09/11	IT-MW-20(2-3.5)-111109	2-3.5	26	Hollow-Stem Auger	13.5	none
11/09/11	IT-MW-20(5-6.5)-111109	5-6.5	26	Hollow-Stem Auger	13.5	none
11/09/11	IT-MW-20(8-9.5)-111109	8-9.5	26	Hollow-Stem Auger	13.5	none
11/09/11	IT-MW-20(14.5-16)-111109	14.5-16	26	Hollow-Stem Auger	13.5	none
Northern Prope	rty Boundary					
11/11/11	IT-MW-21(2-3.5)-111111	2-3.5	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-21(5-6.5)-111111	5-6.5	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-21(8-9.5)-111111	8-9.5	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-21(13.5-15)-111111	13.5-15	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-21(17-18.5)-111111	17-18.5	26	Hollow-Stem Auger	12.5	(sulfur odor, no sheen)
11/11/11	IT-MW-21(24.5-26)-111111	24.5-26	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-22(2-3.5)-111111	2-3.5	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-22(5-6.5)-111111	5-6.5	26	Hollow-Stem Auger	12.5	none
11/11/11	IT-MW-22(8-9.5)-111111	8-9.5	26	Hollow-Stem Auger	12.5	none
11/11/11	No sample collected for chemical analysis	9-9.5	26	Hollow-Stem Auger	12.5	wood
11/11/11	IT-MW-22(13.5-15)-111111	13.5-15	26	Hollow-Stem Auger	12.5	none
Stabilized Soil A	Area					
11/09/11	No sample collected for chemical analysis	5-12.5	26	Hollow-Stem Auger	11.5	(non-hydrocarbon odor, no sheen)
11/09/11	IT-MW-23(11-12.5)-111109	11-12.5	26	Hollow-Stem Auger	11.5	(non-hydrocarbon odor, no sheen)
11/09/11	IT-MW-23(12.5-14)-111109	12.5-14	26	Hollow-Stem Auger	11.5	(slight non-hydrocarbon odor, no sheen)
11/09/11	No sample collected for chemical analysis	14-24	26	Hollow-Stem Auger	11.5	(slight non-hydrocarbon odor, no sheen)
11/14/11	No sample collected for chemical analysis	5-26	26	Hollow-Stem Auger	13	(non-hydrocarbon odor, no sheen)
11/14/11	No sample collected for chemical analysis	5.5	26	Hollow-Stem Auger	13	PID = 1.5ppm
11/14/11	No sample collected for chemical analysis	8.5	26	Hollow-Stem Auger	13	PID = 1.8ppm
11/14/11	No sample collected for chemical analysis	10.5	26	Hollow-Stem Auger	13	PID = 1.1ppm
11/14/11	No sample collected for chemical analysis	11.5	26	Hollow-Stem Auger	13	PID = 1.2ppm
11/14/11	IT-MW-24(12.5-14)-111114	12.5-14	26	Hollow-Stem Auger	13	(non-hydrocarbon odor, no sheen)
11/14/11	IT-MW-24(14-15.5)-111114	14-15.5	26	Hollow-Stem Auger	13	(non-hydrocarbon odor, no sheen)

Samula Data	Fid Down LID	Depth or Depth Range	Exploration Depth	Drilling Equipment	Depth to Groundwater (ft BGS)	Field Sevening Deculto
Sample Date	Field Sample ID	(ft, BGS)	(ft, BGS)	Equipment	(It BGS)	Field Screening Results
IORTH OF	FORMER SLIP 5 AREA Con't					
11/14/11	IT-MW-25(8-9.5)-111114	8-9.5	26	Hollow-Stem Auger	12.5	none
11/14/11	IT-MW-25(13.5-15)-111114	13.5-15	26	Hollow-Stem Auger	12.5	none
11/14/11	No sample collected for chemical analysis	13.5-14.5	26	Hollow-Stem Auger	12.5	PID = 1.5 @ 14 ft (slight odor and sheen)
11/14/11	IT-MW-25(15.5-17)-111114	15.5-17	26	Hollow-Stem Auger	12.5	none
outh of Stabiliz	zed Soil Area					
11/15/11	IT-MW-15(2-3.5)-111115	2-3.5	26	Hollow-Stem Auger	11.5	none
11/15/11	IT-MW-15(5-6.5)-111115	5-6.5	26	Hollow-Stem Auger	11.5	none
11/15/11	IT-MW-15(8-9.5)-111115	8-9.5	26	Hollow-Stem Auger	11.5	none
11/15/11	IT-MW-15(12.5-14)-111115	12.5-14	26	Hollow-Stem Auger	11.5	none
11/10/11	IT-MW-16(2-3.5)-111110	2-3.5	26	Hollow-Stem Auger	11	none
11/10/11	IT-MW-16(5-6.5)-111110	5-6.5	26	Hollow-Stem Auger	11	none
11/10/11	IT-MW-16(8-9.5)-111110	8-9.5	26	Hollow-Stem Auger	11	none
11/10/11	IT-MW-16(12-13.5)-111110	12-13.5	26	Hollow-Stem Auger	11	none
11/08/11	IT-MW-18(2-3.5)-111108	2-3.5	26	Hollow-Stem Auger	10.5	none
11/08/11	IT-MW-18(5-6.5)-111108	5-6.5	26	Hollow-Stem Auger	10.5	none
11/08/11	IT-MW-18(8-9.5)-111108	8-9.5	26	Hollow-Stem Auger	10.5	none
11/08/11	IT-MW-18(11.5-13)-111108	11.5-13	26	Hollow-Stem Auger	10.5	none
Former Paint St	orage Area					
11/14/11	IT-SB-9(2-3.5)-111114	2-3.5	25	Direct Push	13	none
11/14/11	IT-SB-9(5-6.5)-111114	5-6.5	25	Direct Push	13	none
11/14/11	IT-SB-9(8-8.5)-111114	8-8.5	25	Direct Push	13	none
11/14/11	IT-SB-9(14-15.5)-111114	14-15.5	25	Direct Push	13	solid wood debris
11/14/11	No sample collected for chemical analysis	2.5-22.5	25	Direct Push	13	PID = 1.3-1.8 ppm (max at 12.5 ft BGS)
11/01/11	IT-SB-10(2-3.5)-111101	2-3.5	25	Direct Push	11.5	none
11/01/11	IT-SB-10(5-6.5)-111101	5-6.5	25	Direct Push	11.5	none
11/01/11	IT-SB-10(8-9.5)-111101	8-9.5	25	Direct Push	11.5	none
11/01/11	IT-SB-10(13.5-15)-111101	13.5-15	25	Direct Push	11.5	none
11/14/11	IT-SB-11(2-3.5)-111114	2-3.5	25	Direct Push	13	none
11/14/11	No sample collected for chemical analysis	2.5-22.5	25	Direct Push	13	PID = 2.2-3.3 ppm (max at 7.5 ft BGS)
11/14/11	IT-SB-11(5-6.5)-111114	5-6.5	25	Direct Push	13	none
11/14/11	IT-SB-11(8-9)-111114	8-9	25	Direct Push	13	none
11/14/11	IT-SB-11(14-15.5)-111114	14-15.5	25	Direct Push	13	none
ormer Diesel a	nd Gasoline Tanks Area					
10/25/11	IT-TP-109-SWS(9-10)-111025	9-10	10	Excavator	NE	none

Sample Date	Field Sample ID	Depth or Depth Range (ft, BGS)	Exploration Depth (ft, BGS)	Drilling Equipment	Depth to Groundwater (ft BGS)	Field Screening Results
<u> </u>	·					-
NORTH OF	FORMER SLIP 5 AREA (Cont.)					
Observed Tar-Li	ike Substance Area					
10/26/11	IT-TP-107-SWE(1-2)-111026	1-2	12	Excavator	NE	none
10/26/11	IT-TP-107-SWN(1-2)-111026	1-2	12	Excavator	NE	none
10/26/11	IT-TP-107-SWS(1-2)-111026	1-2	12	Excavator	NE	none
10/26/11	IT-TP-107-SWW(1-2)-111026	1-2	12	Excavator	NE	burnt wood (mild oil-like odor)
10/26/11	IT-TP-107-SWN(2-3)-111026	2-3	12	Excavator	NE	none
10/26/11	IT-TP-107-B(11-12)-111026	11-12	12	Excavator	NE	none
10/26/11	IT-TP-108-SWS(1-2)-111026	1-2	12	Excavator	NE	tar and asphalt-like waste, bricks, burnt wood
10/26/11	IT-TP-108-SWE(1-2)-111026	1-2	12	Excavator	NE	tar and asphalt-like waste, bricks, burnt wood
10/26/11	IT-TP-108-SWN(1-2)-111026	1-2	12	Excavator	NE	none
10/26/11	IT-TP-108-SWW(1-2)-111026	1-2	12	Excavator	NE	tar and asphalt-like waste, bricks, burnt wood
10/26/11	IT-TP-108-SWN(2-3)-111026	2-3	12	Excavator	NE	none
10/26/11	IT-TP-108-B(11-12)-111026	11-12	12	Excavator	NE	none
Former Slip 5 O	utfall Area					
11/01/11	IT-SB-6(2-3.5)-111101	2-3.5	25	Direct Push	12.5	none
11/01/11	IT-SB-6(5-6.5)-111101	5-6.5	25	Direct Push	12.5	none
11/01/11	IT-SB-6(8-9.5)-111101	8-9.5	25	Direct Push	12.5	none
11/01/11	IT-SB-6(13.5-15)-111101	13.5-15	25	Direct Push	12.5	none
11/01/11	IT-SB-7(2-3.5)-111101	2-3.5	25	Direct Push	12	none
11/01/11	IT-SB-7(5-6.5)-111101	5-6.5	25	Direct Push	12	none
11/01/11	IT-SB-7(8-9.5)-111101	8-9.5	25	Direct Push	12	none
11/01/11	IT-SB-7(13-14.5)-111101	13-14.5	25	Direct Push	12	none
11/14/11	IT-SB-8(2-3.5)-111114	2-3.5	25	Direct Push	13	none
11/14/11	No sample collected for chemical analysis	2.5-22.5	25	Direct Push	13	PID = 1.5 - 2.4 (max at 12.5 ft BGS)
11/14/11	IT-SB-8(5-6.5)-111114	5-6.5	25	Direct Push	13	none
11/14/11	IT-SB-8(8-9.5)-111114	8-9.5	25	Direct Push	13	none
11/14/11	IT-SB-8(14-15.5)-111114	14-15.5	25	Direct Push	13	none

		Depth or Depth Range	Exploration Depth	Drilling	Depth to Groundwater		
Sample Date	Field Sample ID	(ft, BGS)	(ft, BGS)	Equipment	(ft BGS)	Field Screening Results	
ORMER S	LIP 5 AREA						
	6 Random Fill Consisting of Gravel, Sand, Slag	, Demolition Waste, and	d Crushed Rocks				
11/08/11	IT-MW-14(2-3.5)-111108	2-3.5	26	Hollow-Stem Auger	12	none	
11/08/11	IT-MW-14(5-6.5)-111108	5-6.5	26	Hollow-Stem Auger	12	none	
11/08/11	IT-MW-14(8-9.5)-111108	8-9.5	26	Hollow-Stem Auger	12	none	
11/08/11	IT-MW-14(13-14.5)-111108	13-14.5	26	Hollow-Stem Auger	12	none	
FILL B: 1946-196	0 Random Fill Material						
10/31/11	IT-MW-9(2-3.5)-111031	2-3.5	26	Hollow-Stem Auger	12	none	
10/31/11	IT-MW-9(5-6.5)-111031	5-6.5	26	Hollow-Stem Auger	12	none	
11/04/11	IT-MW-9(8-9.5)-111104	8-9.5	26	Hollow-Stem Auger	12	none	
11/04/11	IT-MW-9(13-14.5)-111104	13-14.5	26	Hollow-Stem Auger	12	none	
10/31/11	IT-MW-10(2-3.5)-111031	2-3.5	26	Hollow-Stem Auger	12	none	
10/31/11	IT-MW-10(5-6.5)-111031	5-6.5	26	Hollow-Stem Auger	12	none	
11/07/11	IT-MW-10(8-9.5)-111107	8-9.5	26	Hollow-Stem Auger	12	none	
11/07/11	No sample collected for chemical analysis	12.5-17.5	26	Hollow-Stem Auger	12	wood chunks	
11/07/11	IT-MW-10(13.5-15)-111107	13.5-15	26	Hollow-Stem Auger	12	none	
10/31/11	IT-MW-11(2-3.5)-111031	2-3.5	26	Hollow-Stem Auger	12.5	none	
10/31/11	IT-MW-11(5-6.5)-111031	5-6.5	26	Hollow-Stem Auger	12.5	none	
11/07/11	IT-MW-11(8-9.5)-111107	8-9.5	26	Hollow-Stem Auger	12.5	none	
11/07/11	IT-MW-11(13.5-15)-111107	13.5-15	26	Hollow-Stem Auger	12.5	none	
11/07/11	No sample collected for chemical analysis	23.5-26	26	Hollow-Stem Auger	12.5	(slight organic sheen, no odor)	
10/27/11	IT-TP-104-B(12-13)-111027	12-13	13	Excavator	13	Pipe in northern portion, punctured, with water flowing out	
10/27/11	IT-TP-105B-B(11-12)-111027	11-12	12	Excavator	NE	none	
10/28/11	IT-TP-106B(11-12)-111028	11-12	12	Excavator	NE	none	
07/15/11	IT-TOWPATHEXC1-B(.8)-110715	.8	0.8	Excavator	NE	PID = 1.0 ppm (no odor, no sheen)	
TLL C: 1946-196	0 Some Random Fill Along With Fill From Off-S	Site Sources (Cont.)					
11/10/11	IT-MW-17(2-3.5)-111110	2-3.5	26	Hollow-Stem Auger	13	none	
11/10/11	IT-MW-17(5-6.5)-111110	5-6.5	26	Hollow-Stem Auger	13	brick fragments	
11/10/11	IT-MW-17(8-9.5)-111110	8-9.5	26	Hollow-Stem Auger	13	none	
11/10/11	No sample collected for chemical analysis	10-11	26	Hollow-Stem Auger	13	brick and slag material (no odor, no sheer	
11/10/11	IT-MW-17(11-12.5)-111110	11-12.5	26	Hollow-Stem Auger	13	wood fragments (no odor, no sheen)	
11/10/11	IT-MW-17(14-15.5)-111110	14-15.5	26	Hollow-Stem Auger	13	(sulfur-like odor, slight organic sheen)	
11/10/11	IT-MW-17(15.5-17)-111110	15.5-17	26	Hollow-Stem Auger	13	(sulfur-like odor, slight organic sheen)	
11/10/11	IT-MW-17(18.5-19.75)-111110	18.5-19.75	26	Hollow-Stem Auger	13	(sulfur-like odor, no sheen)	
11/10/11	IT-MW-17(21.25-21.5)-111110	21.25-21.5	26	Hollow-Stem Auger	13	PID = 50.6 ppm	
11/10/11	IT-MW-17(21.5-23)-111110	21.5-23	26	Hollow-Stem Auger	13	none	

Sample Date	Field Sample ID	Depth or Depth Range (ft, BGS)	Exploration Depth (ft, BGS)	Drilling Equipment	Depth to Groundwater (ft BGS)	Field Screening Results
	·		· · · · · · · · · · · · · · · · · · ·			-
FORMER S	SLIP 5 AREA Con't					
11/09/11	IT-MW-19(2-3.5)-111109	2-3.5	26	Hollow-Stem Auger	12	none
11/09/11	IT-MW-19(5-6.5)-111109	5-6.5	26	Hollow-Stem Auger	12	none
11/09/11	IT-MW-19(8-9.5)-111109	8-9.5	26	Hollow-Stem Auger	12	none
11/09/11	IT-MW-19(13-14.5)-111109	13-14.5	26	Hollow-Stem Auger	12	none
11/14/11	No sample collected for chemical analysis	0-4	11	Direct Push	NE	trace slag material (no odor, no sheen)
11/08/11	IT-SB-3(2-3.5)-111108	2-3.5	11	Direct Push	NE	trace slag material (no odor, no sheen)
11/14/11	No sample collected for chemical analysis	4-7	11	Direct Push	NE	trace slag material (no odor, no sheen)
11/14/11	IT-SB-3(5-5.5)-111114	5-5.5	11	Direct Push	NE	slag material (no odor, no sheen)
11/14/11	IT-SB-3(6.5-7)-111114	6.5-7	11	Direct Push	NE	PID = 1.7 ppm, slag material (no odor, no sheen)
11/01/11	IT-SB-4(2-3.5)-111101	2-3.5	25	Hollow-Stem Auger	10.5	none
11/01/11	IT-SB-4(5-6.5)-111101	5-6.5	25	Hollow-Stem Auger	10.5	none
11/01/11	IT-SB-4(8-9)-111101	8-9	25	Hollow-Stem Auger	10.5	none
11/01/11	IT-SB-4(11.5-13)-111101	11.5-13	25	Hollow-Stem Auger	10.5	none
11/14/11	IT-SB-12(2-3.5)-111114	2-3.5	25	Direct Push	13	none
11/14/11	IT-SB-12(5-6.5)-111114	5-6.5	25	Direct Push	13	none
11/14/11	No sample collected for chemical analysis	7.5	25	Direct Push	13	PID= 1.8
11/14/11	IT-SB-12(8-9.5)-111114	8-9.5	25	Direct Push	13	none
11/14/11	No sample collected for chemical analysis	13.5	25	Direct Push	13	PID= 6.3
11/14/11	IT-SB-12(14-15.5)-111114	14-15.5	25	Direct Push	13	PID = 2.2
11/14/11	No sample collected for chemical analysis	17.5	25	Direct Push	13	PID = 4.2
11/14/11	No sample collected for chemical analysis	22.5	25	Direct Push	13	PID = 1.2
	55 Slag, Construction, Demolition Debris, and I	•				
08/08/11	IT-PIVEXC1-SW(2.1)-110808	2.1	4.2	Excavator	NE	none
08/08/11	IT-PIVEXC1-B(4.2)-110808	4.2	4.2	Excavator	NE	none
10/31/11	IT-SB-5(2-3.5)-111031	2-3.5	25	Direct Push	15.3	none
10/31/11	IT-SB-5(5-6.5)-111031	5-6.5	25	Direct Push	15.3	PID = 93.6 ppm, (hydrocarbon odor, no sheen)
10/31/11	No sample collected for chemical analysis	7.5	25	Direct Push	15.3	PID = 88.1 ppm
10/31/11	IT-SB-5(8-9.5)-111031	8-9.5	25	Direct Push	15.3	none
10/31/11	IT-SB-5(16-17.5)-111031	16-17.5	25	Direct Push	15.3	none
	5 Imported Construction-Quality Sand Fill Mat					
10/31/11	IT-SB-2(2-3.5)-111031	2-3.5	25	Direct Push	13	none
10/31/11	IT-SB-2(5-6.5)-111031	5-6.5	25	Direct Push	13	none
10/31/11	IT-SB-2(8-9.5)-111031	8-9.5	25	Direct Push	13	none
10/31/11	IT-SB-2(14-15.5)-111031	14-15.5	25	Direct Push	13	none

FORMER SLIP 5 AREA Con't 11/03/11			Depth or Depth Range	Exploration Depth	Drilling	Depth to Groundwater		
11/03/11 IT-MW-12(2-3.5)-111103 2-3.5 26 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-12(6-6.5)-111103 8-9.5 26 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-12(6-6.5)-111103 8-9.5 26 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-12(18-18-5)-111103 13-14.6 26 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-12(18-18-5)-111103 13-14.6 26 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-12(18-18-5)-111103 13-14.6 26 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-12(2-3.6)-111103 2-3.5 18.5 Hollow-Stern Auger 12.5 none 11/03/11 IT-MW-13(2-3.5)-111103 2-3.5 18.5 Hollow-Stern Auger 14 none 11/03/11 IT-MW-13(8-5.5)-111103 8-9.5 18.5 Hollow-Stern Auger 14 none 11/03/11 No sample collected for chemical analysis 10-12.5 18.5 Hollow-Stern Auger 14 slap material (elight odor, slaght 11/03/11 IT-MW-13(2-5-14)-11103 12-5-14 18.5 Hollow-Stern Auger 14 slap material (elight odor, slaght 11/03/11 IT-MW-13(2-5-14)-11103 15-16.5 18.5 Hollow-Stern Auger 14 slap material (elight odor, slaght 11/03/11 IT-MW-13(2-5-15)-111110 2-3.5 13.5 Hollow-Stern Auger 14 (elight color, no sheen 11/10/11 IT-MW-13(8-5-5)-111110 2-3.5 13.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-13(8-5-1111111 6-5.6 13.5 Hollow-Stern Auger 12.5 (hydrocarbon odor, slaght 11/10/11 IT-MW-13(8-5-111111) 6-5.6 13.5 Hollow-Stern Auger 12.5 (hydrocarbon odor, slaght 11/10/11 IT-MW-13(8-5-111111) 6-5.6 13.5 Hollow-Stern Auger 12.5 (hydrocarbon odor, slaght 11/10/11 IT-MW-13(8-5-111111) 6-5.6 13.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-13(18-5-111103) 6-5.5 2.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-13(18-5-111103) 6-5.5 2.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-13(18-5-111103) 6-5.5 2.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-13(18-15-15-111104) 13.5-15 2.5 Hollow-Stern Auger 12.5	Sample Date	Field Sample ID	(ft, BGS)	(ft, BGS)	Equipment	(ft BGS)	Field Screening Results	
11/03/11 IT-MW-12(6-6-5)-111103 5-6.5 26	FORMER S	SLIP 5 AREA Con't						
11/03/11	11/03/11	IT-MW-12(2-3.5)-111103	2-3.5	26	Hollow-Stem Auger	12.5	none	
11/03/11	11/03/11	IT-MW-12(5-6.5)-111103	5-6.5	26	Hollow-Stem Auger	12.5	none	
1103/11 IT-MW-12(18-18.5)-111103 18-19.5 26 Hollow-Stem Auger 12.5 none	11/03/11	IT-MW-12(8-9.5)-111103	8-9.5	26	Hollow-Stem Auger	12.5	none	
11/03/11	11/03/11	IT-MW-12(13-14.5)-111103	13-14.5	26	Hollow-Stem Auger	12.5	none	
11/03/11	11/03/11	IT-MW-12(18-19.5)-111103	18-19.5	26	Hollow-Stem Auger	12.5	none	
11/03/11	11/03/11	IT-MW-12(23-24.5)-111103	23-24.5	26	Hollow-Stem Auger	12.5	none	
11/03/11	11/03/11	IT-MW-13(2-3.5)-111103	2-3.5	18.5	Hollow-Stem Auger	14	none	
11/03/11 No sample collected for chemical analysis 10-12.5 18.5 Hollow-Stern Auger 14 slag material (slight odor, slight 11/03/11 IT-MW-13(12.5-4)-111103 12.5-14 18.5 Hollow-Stern Auger 14 slag material (slight odor, slight 11/03/11 IT-MW-13(12.5-6)-111103 15-16.5 18.5 Hollow-Stern Auger 14 slag material (slight odor, on sight 11/03/11 IT-MW-138(15-6.5)-111101 2-3.5 18.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-138(5-6.5)-111110 5-6.5 13.5 Hollow-Stern Auger 12.5 (hydrocarbon odor, slight 11/10/11 IT-MW-138(5-6.5)-111111 6.5-8 13.5 Hollow-Stern Auger 12.5 (hydrocarbon odor, slight 11/11/11 IT-MW-138(5-6.5)-111111 8.9-5 13.5 Hollow-Stern Auger 12.5 (hydrocarbon odor, slight 11/11/11 IT-MW-138(5-5.5)-111111 12.5-13.5 13.5 Hollow-Stern Auger 12.5 slag material, brick 11/11/11 IT-MW-138(5-5.5)-111111 12.5-13.5 13.5 Hollow-Stern Auger 12.5 slag material, brick 11/11/11 IT-MW-138(5-5.5)-111111 12.5-13.5 13.5 Hollow-Stern Auger 12.5 none 11/11/11 IT-MW-138(12.5-13.5)-111111 12.5-13.5 13.5 Hollow-Stern Auger 12.5 none 11/11/11 IT-MW-138(12.5-13.5)-111111 12.5-13.5 13.5 Hollow-Stern Auger 12.5 none 11/11/11 IT-MW-7(5-6.5)-111031 2-3.5 26 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-7(6-6.5)-111031 2-3.5 26 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-7(6-6.5)-111104 13.5-15 26 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-7(6-6.5)-111104 13.5-15 26 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-7(6-6.5)-111101 2-3.5 2.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-6(6-8)-111102 8-9 25.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-6(6-8)-111101 2-3.5 2.5 Hollow-Stern Auger 12.5 none 11/10/11 IT-MW-6(6-8)-111101 2-3.5 2.5 Hollow-Stern Auger 13 none 11/10/11 IT-MW-6(6-8)-111101 2-3.5 2.5 Hollow-Stern Auger 13 none 11/10/11 IT-MW-6(6-8)	11/03/11	IT-MW-13(5-6.5)-111103	5-6.5	18.5	Hollow-Stem Auger	14	none	
11/03/11	11/03/11	IT-MW-13(8-9.5)-111103	8-9.5	18.5	Hollow-Stem Auger	14	none	
11/03/11	11/03/11	No sample collected for chemical analysis	10-12.5	18.5	Hollow-Stem Auger	14	slag material (slight odor, slight sheen)	
11/10/11	11/03/11	IT-MW-13(12.5-14)-111103	12.5-14	18.5	Hollow-Stem Auger	14	slag material (slight odor, slight sheen)	
11/10/11	11/03/11	IT-MW-13(15-16.5)-111103	15-16.5	18.5	Hollow-Stem Auger	14	(slight odor, no sheen)	
11/11/11	11/10/11	IT-MW-13B(2-3.5)-111110	2-3.5	13.5	Hollow-Stem Auger	12.5	none	
11/11/11 IT-MW-13B(8-9.5)-111111 8-9.5 13.5 Hollow-Stem Auger 12.5 (non-hydrocarbon odor, no start 11/11/11 No sample collected for chemical analysis 9.5-11 13.5 Hollow-Stem Auger 12.5 slag material, brick 11/11/11 IT-MW-13B(12.5-13.5)-111111 12.5-13.5 13.5 Hollow-Stem Auger 12.5 none 11/11/11 IT-MW-13B(12.5-13.5)-111111 12.5-13.5 13.5 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(3-5)-11104 8-9.5 26 Hollow-Stem Auger 12.5 None 11/04/11 IT-MW-7(3-5)-111104 13.5-15 12.5 None 11/04/11 IT-MW-5(5-6.5)-111101 2-3.5 None 11/04/11 IT-MW-5(5-6.5)-111101 2-3.5 None 11/04/11 IT-MW-5(5-6.5)-111101 2-3.5 None 11/04/11 IT-MW-5(5-6.5)-111101 2-3.5 None 11/04/11 IT-MW-5(4-6.5)-111102 14-15.5 None 11/04/11 IT-MW-6(3-5)-111101 2-3.5 None 11/04/11 IT-MW-6(3-5)-111101 2-3.5 None 11/04/11 IT-MW-6(3-6.5)-111101 2-3.5 None 11/04/11 IT-MW-6(3-5)-111101 2-3.5 None 11/04/11 IT-MW-6(3-6)-111101 2-3.5 None 11/04/11 IT-MW-6(3-6)-111101 3-6.5 None 11/04/11 I	11/10/11	IT-MW-13B(5-6.5)-111110	5-6.5	13.5	Hollow-Stem Auger	12.5	none	
11/11/11	11/11/11	IT-MW-13B(6.5-8)-111111	6.5-8	13.5	Hollow-Stem Auger	12.5	(hydrocarbon odor, slight sheen)	
11/11/11	11/11/11	IT-MW-13B(8-9.5)-111111	8-9.5	13.5	Hollow-Stem Auger	12.5	(non-hydrocarbon odor, no sheen)	
O7/26/11 IT-TOWPATH-EXC12-B(2.7)-110726 2.7 2.7 Excavator NE	11/11/11	No sample collected for chemical analysis	9.5-11	13.5	Hollow-Stem Auger	12.5	slag material, brick	
Court	11/11/11	IT-MW-13B(12.5-13.5)-111111	12.5-13.5	13.5	Hollow-Stem Auger	12.5	none	
	07/26/11	IT-TOWPATH-EXC12-B(2.7)-110726	2.7	2.7	Excavator	NE		
10/31/11 IT-MW-7(2-3.5)-111031 2-3.5 26 Hollow-Stem Auger 12.5 none 10/31/11 IT-MW-7(5-6.5)-111031 5-6.5 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(8-9.5)-111104 8-9.5 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(13.5-15)-111104 13.5-15 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(13.5-15)-111104 13.5-15 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-5(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-5(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(8-9)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(6-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(6-6.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(6-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(6-6.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(2-2.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(2-2.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(2-2.5)-111102 2-20-21.5 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(2-2.5)-111102 2-20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm	SOUTH OF	FORMER SLIP 5 AREA						
10/31/11 IT-MW-7(5-6.5)-111031 5-6.5 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(8-9.5)-111104 8-9.5 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(13.5-15)-111104 13.5-15 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(13.5-15)-111104 13.5-15 26 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-5(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-5(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5 20-21.5	estern Propery	y Boundary-South of Slip 5						
11/04/11 IT-MW-7(8-9.5)-111104 8-9.5 26 Hollow-Stem Auger 12.5 none 11/04/11 IT-MW-7(13.5-15)-111104 13.5-15 26 Hollow-Stem Auger 12.5 none couthern Property Boundary/Former Washdown System Collection Sumps 11/01/11 IT-MW-5(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-5(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(8-9)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-M	10/31/11	IT-MW-7(2-3.5)-111031	2-3.5	26	Hollow-Stem Auger	12.5	none	
11/04/11 IT-MW-7(13.5-15)-111104 13.5-15 26 Hollow-Stem Auger 12.5 none outhern Property Boundary/Former Washdown System Collection Sumps Use of the property of the propert	10/31/11	IT-MW-7(5-6.5)-111031	5-6.5	26	Hollow-Stem Auger	12.5	none	
outhern Property Boundary/Former Washdown System Collection Sumps 11/01/11 IT-MW-5(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-5(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(8-9)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11	11/04/11	IT-MW-7(8-9.5)-111104	8-9.5	26	Hollow-Stem Auger	12.5	none	
11/01/11 IT-MW-5(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-5(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(8-9)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auge	11/04/11	IT-MW-7(13.5-15)-111104	13.5-15	26	Hollow-Stem Auger	12.5	none	
11/01/11 IT-MW-5(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(8-9)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm	•	rty Boundary/Former Washdown System Colle	ction Sumps					
11/02/11 IT-MW-5(8-9)-111102 8-9 25.5 Hollow-Stem Auger 12.5 none 11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm		, ,			•		none	
11/02/11 IT-MW-5(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 12.5 none 11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm		IT-MW-5(5-6.5)-111101	5-6.5	25.5	Hollow-Stem Auger	12.5	none	
11/01/11 IT-MW-6(2-3.5)-111101 2-3.5 25.5 Hollow-Stem Auger 13 none 11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm		, ,			•			
11/01/11 IT-MW-6(5-6.5)-111101 5-6.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm	11/02/11	IT-MW-5(14-15.5)-111102	14-15.5	25.5	Hollow-Stem Auger	12.5	none	
11/02/11 IT-MW-6(8-9.5)-111102 8-9.5 25.5 Hollow-Stem Auger 13 none 11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm		, ,			Hollow-Stem Auger		none	
11/02/11 IT-MW-6(14-15.5)-111102 14-15.5 25.5 Hollow-Stem Auger 13 none 11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm		IT-MW-6(5-6.5)-111101	5-6.5	25.5	Hollow-Stem Auger	13	none	
11/02/11 No sample collected for chemical analysis 19 25.5 Hollow-Stem Auger 13 PID = 21.3 ppm 11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm	11/02/11	IT-MW-6(8-9.5)-111102	8-9.5	25.5	Hollow-Stem Auger	13	none	
11/02/11 IT-MW-6(20-21.5)-111102 20-21.5 25.5 Hollow-Stem Auger 13 PID = 25.0 ppm	11/02/11	IT-MW-6(14-15.5)-111102	14-15.5	25.5	Hollow-Stem Auger	13	none	
	11/02/11	No sample collected for chemical analysis	19	25.5	Hollow-Stem Auger	13	PID = 21.3 ppm	
11/02/11 IT-MW-6(23-24.5)-111102 23-24.5 25.5 Hollow-Stem Auger 13 none	11/02/11	IT-MW-6(20-21.5)-111102	20-21.5	25.5	Hollow-Stem Auger	13	PID = 25.0 ppm	
	11/02/11	IT-MW-6(23-24.5)-111102	23-24.5	25.5	Hollow-Stem Auger	13	none	

Sample Date	Field Sample ID	Depth or Depth Range (ft, BGS)	Exploration Depth (ft, BGS)	Drilling Equipment	Depth to Groundwater (ft BGS)	Field Screening Results
Campio Date	i ieiu Sailipie ID	(, 500)	(, 500)	-quipment	(250)	riola Solosining Results
SOUTH OF	FORMER SLIP 5 AREA Con't					
astern Property						
09/03/10	IT-HBE-1A-1-090310	0-1	5.5	Excavator	NE	none
09/03/10	IT-HBE-1A(4.5-5.5)-090310	4.5-5.5	5.5	Excavator	NE	none
09/02/10	IT-HBE-2-1-090210	0-1	5.5	Excavator	NE	none
09/07/10	IT-HBE-2(4.0-4.5)-090710	4-4.5	5.5	Excavator	NE	none
09/03/10	IT-HBE-3-1-090310	0-1	5.5	Excavator	NE	none
09/07/10	IT-HBE-3(4.5-5.5)-090710	4.5-5.5	5.5	Excavator	NE	none
09/15/10	IT-EXT1(0-1)-091510	0-1	5	Excavator	NE	none
09/15/10	IT-EXT1(4-5)-091510	4-5	5	Excavator	NE	none
09/15/10	IT-EXT2(0-1)-091510	0-1	5	Excavator	NE	none
09/15/10	IT-EXT2(3-4)-091510	3-4	5	Excavator	NE	none
09/15/10	IT-EXT2(3-4)-091510RE	3-4	5	Excavator	NE	none
09/15/10	IT-EXT3(0-1)-091510	0-1	5	Excavator	NE	none
09/15/10	IT-EXT3(3-4)-091510	3-4	5	Excavator	NE	none
08/09/11	IT-PIVExc2-B(5.0)-110809	5	5	Excavator	NE	none
08/09/11	IT-PIVExc2-SW(2.5)-110809	2.5	5	Excavator	NE	none
08/02/11	IT-TowpathExc13-(1.3)110802	1.3	1.3	Excavator	NE	none
07/28/11	IT-Bldg-14-11Exc2-B(2.5)110728	2.5	2.5	Excavator	NE	PID = 2.7 ppm (no odor, no sheen)
07/28/11	IT-Bldg-14-11Exc3-B(3.0)110728	3	3	Excavator	NE	PID = 1.9 ppm (no odor, no sheen)
07/28/11	IT-Bldg-14-11Exc4-B(2.4)110728	2.4	2.4	Excavator	NE	PID = 1.4 ppm (no odor, no sheen)
07/28/11	IT-Bldg-14-11Excl-B(2.1)110728	2.1	2.1	Excavator	NE	PID = 1.0 ppm (no odor, no sheen)
08/18/11	IT-BLDG14-11-SURF-110818	surface	0.5	Excavator	NE	PID = 0.2 ppm (no odor, no sheen)
08/18/11	IT-BUILDING14-11EXC5-B(.5)-110818	0.5	0.5	Excavator	NE	PID = 0.2 ppm (no odor, no sheen)
11/08/11	IT-MW-4(2-3.5)-111108	2-3.5	26	Hollow-Stem Auger	11.5	none
11/08/11	IT-MW-4(5-6.5)-111108	5-6.5	26	Hollow-Stem Auger	11.5	none
11/08/11	IT-MW-4(8-9.5)-111108	8-9.5	26	Hollow-Stem Auger	11.5	none
11/08/11	IT-MW-4(13.5-15)-111108	13.5-15	26	Hollow-Stem Auger	11.5	none
03/12/12	IT-WB-1-120312	surface	surface	SS Spoon	NE	none
03/12/12 03/12/12	IT-WB-2-120312 IT-WB-3-120312	surface surface	surface surface	SS Spoon SS Spoon	NE NE	none none

Orange Bar		Depth or Depth Range	Exploration Depth	Drilling	Depth to Groundwater	Edd Owner to Burning
Sample Date	Field Sample ID	(ft, BGS)	(ft, BGS)	Equipment	(ft BGS)	Field Screening Results
	FORMER SLIP 5 AREA Con't					
	n of 14-01 Building					
05/20/11	IT-Bldg1401-OutakesExc-1(3.5)-11052	3.5	3.5	Excavator	NE	none
05/20/11	IT-Bldg1401-OutakesExc-2(3.7)-11052	3.7	3.7	Excavator	NE	none
05/23/11	IT-Bldg1401-OutakesExc-3(2.9)110523	2.9	2.9	Excavator	NE	none
05/23/11	IT-Bldg1401-OutakesExc-4(3.05)11052	3.05	3.05	Excavator	NE	none
05/02/11	IT-BLDG1401-TRENCH-2N-110502	3	3	Excavator	NE	none
05/02/11	IT-BLDG1401-TRENCH-2S-110502	3	3	Excavator	NE	none
05/03/11	IT-Bldg1401-Trench-3N-110503	3	3	Excavator	NE	none
05/03/11	IT-Bldg1401-Trench-3S-110503	3	3	Excavator	NE	none
05/12/11	IT-Bldg1401-Trench-4N-110512	3	3	Excavator	NE	none
05/12/11	IT-Bldg1401-Trench-4S-110512	3	3	Excavator	NE	none
05/13/11	IT-Bldg1401-trench5N-110513	3	3	Excavator	NE	none
05/13/11	IT-Bldg1401-trench5S-110513	3	3	Excavator	NE	none
Former Washdov	wn/Degreaser Area					
04/25/11	IT-MW-1(3-4)-110425	3-4	25.5	Hollow-Stem Auger	12.5	none
04/25/11	IT-MW-1(5-6)-110425	5-6	25.5	Hollow-Stem Auger	12.5	brick fragments
04/25/11	No sample collected for chemical analysis	6-6.5	25.5.	Hollow-Stem Auger	12.5	brick fragments
04/25/11	IT-MW-1(8-9)-110425	8-9	25.5	Hollow-Stem Auger	12.5	none
04/26/11	IT-MW-2(2-3)-110426	2-3	25.5	Hollow-Stem Auger	8	none
04/26/11	IT-MW-2(5-6)-110426	5-6	25.5	Hollow-Stem Auger	8	none
04/26/11	IT-MW-2(8-9)-110426	8-9	25.5	Hollow-Stem Auger	8	none
04/26/11	IT-MW-3-(2-3)-110426	2-3	25.5	Hollow-Stem Auger	13	none
04/26/11	IT-MW-3-(5-6)-110426	5-6	25.5	Hollow-Stem Auger	13	none
04/26/11	IT-MW-3-(9-10)-110426	9-10	25.5	Hollow-Stem Auger	13	none
04/25/11	IT-SB-1(2-3)-110425	2-3	25.5	Hollow-Stem Auger	13	none
04/25/11	No sample collected for chemical analysis	4-4.5	25	Hollow-Stem Auger	13	black brick fragment
04/25/11	IT-SB-1(5-6)110425	5-6	25.5	Hollow-Stem Auger	13	none
04/25/11	IT-SB-1(8-9)-110425	8-9	25.5	Hollow-Stem Auger	13	(slight organic odor, no sheen)

Comple Date		Depth or Depth Range	Exploration Depth	Drilling	Depth to Groundwater	Field Consuming Possible
Sample Date	Field Sample ID	(ft, BGS)	(ft, BGS)	Equipment	(ft BGS)	Field Screening Results
SOUTH OF	FORMER SLIP 5 AREA Con't					
06/24/11	IT-BLDG1401-FOOTINGEXC10-B(1.5)1106	1.5	1.5	Excavator	NE	none
06/22/11	IT-BLDG1401-FOOTINGEXC8-B(2.5)-110	2.5	2.5	Excavator	NE	none
06/23/11	IT-Bldg1401-FootingExc1-SW(4.0)	4	7.5	Excavator	NE	none
06/22/11	IT-BLDG1401-FOOTINGEXC14-B(4.0)-110	4	4	Excavator	NE	none
06/22/11	IT-BLDG1401-FOOTINGEXC15-B(4.0)-110	4	4	Excavator	NE	none
06/22/11	IT-BLDG1401-FOOTINGEXC3-B(4.0)-110	4	4	Excavator	NE	none
06/23/11	IT-Bldg1401-FootingExc5-SW(4.0)	4	6	Excavator	NE	none
06/23/11	IT-Bldg1401-FootingExc5-B(6.0)	6	6	Excavator	NE	none
06/23/11	IT-Bldg1401-FootingExc1-B(6.0)	6	7.5	Excavator	NE	none
06/27/11	IT-Bldg1401-FootingExc1-B(7.5)-1106	7.5	7.5	Excavator	NE	none
Former Washdo	wn System Collection Tanks/Loading Dock Area	а				
07/19/2011	IT-TOWPATHEXC2-B(.7)	0.7	0.7	Excavator	NE	none
07/19/2011	IT-TOWPATHEXC3-B(.7)	0.7	0.7	Excavator	NE	none
07/19/2011	IT-TOWPATHEXC4-B(.7)	0.7	0.7	Excavator	NE	none
07/19/2011	IT-TOWPATHEXC5-B(.7)	0.7	0.7	Excavator	NE	none
07/19/2011	IT-TOWPATHEXC6-B(.7)	0.7	0.7	Excavator	NE	PID = 1.7 ppm (no odor, no sheen)
07/19/2011	IT-TOWPATHEXC7-B(.7)	0.7	0.7	Excavator	NE	PID = 1.0 ppm (no odor, no sheen)
11/07/11	IT-MW-8(2-3.5)-111107	2-3.5	26	Hollow-Stem Auger	12.5	none
11/07/11	IT-MW-8(5-6.5)-111107	5-6.5	26	Hollow-Stem Auger	12.5	none
11/07/11	IT-MW-8(8-9.5)-111107	8-9.5	26	Hollow-Stem Auger	12.5	none
11/07/11	IT-MW-8(14-15.5)-111107	14-15.5	26	Hollow-Stem Auger	12.5	none
Vicinity of I-206	(s)					
10/24/11	IT-TP-101-B(12-13)111024	12-13	13	Excavator	13.25	none
10/25/11	IT-TP-102-B(13-14)-111025	13-14	14	Excavator	NE	none
10/25/11	IT-TP-103-SWE(5-6)-111025	5-6	13	Excavator	NE	none
10/25/11	IT-TP-103-SWE(6-7)-111025	6-7	13	Excavator	NE	none
10/25/11	IT-TP-103-SWE(12-13)-111025	12-13	13	Excavator	NE	none

ft = feet

max = maximum

BGS = below ground surface

ppm = parts per million

PID = photoionization detector

TABLE 2 MONITORING WELL AND PIEZOMETER SURVEY INFORMATION AND CONSTRUCTION SUMMARY BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	System, North	te Plane Coordinate Zone- NAD 83(91)	Well Rim/Ground Elevation	Top of 2-inch PVC Elevation	Well Screen Interval (Top)	Well Screen Interval (Bottom)	Well Screen Interval Elevation (Top)	Well Screen Interval Elevation (Bottom)	Well Depth
Well ID	Northing	Easting	(NAVD88)	(NAVD88)	(ft, BGS)	(ft, BGS)	(ft, NAVD88)	(ft, NAVD88)	(ft, BGS)
I-104(s)	1276122	195089.4	17.83	17.35	15	25	2.35	-7.65	25.3
I-200(s)	1277540.8	194826.3	18.13	17.77	14	24	3.77	-6.23	24.3
I-203(s)	1276266.3	194815.7	17.68	17.32	16	26.5	1.32	-9.18	26.8
I-205(s)	1276304.8	194551.4	18.61	18.32	14	24.5	4.32	-6.18	24.8
I-206(s)	1276403.5	194380.5	18.82	18.47	14	24.5	4.47	-6.03	24.8
MW-1	1276722.9	194380.7	19.31	18.95	10	20	8.95	-1.05	20.3
MW-2	1276767.2	194287.8	19.41	19.04	10	20	9.04	-0.96	20.3
MW-3	1276910.2	194374.7	19.35	19.03	10	20	9.03	-0.97	20.3
MW-4	1277693.1	194402.7	18.28	17.8	8	18	9.8	-0.2	18.3
MW-5	1277209.3	194257.2	18.93	18.52	8	18	10.52	0.52	18.3
MW-6	1276867.2	194243.8	19.24	18.91	8	23	10.91	-4.09	23.3
MW-7	1276341.2	194276.7	19.14	18.81	8	18	10.81	0.81	18.3
MW-8	1276578.9	194389.1	18.85	18.34	8	18	10.34	0.34	18.3
MW-9	1276292.6	194466.5	18.65	18.26	8	18	10.26	0.26	18.3
MW-10	1276224.3	194638	18.2	17.73	8	18	9.73	-0.27	18.3
MW-11	1276409.2	194665.2	18.64	18.21	8	18	10.21	0.21	18.3
MW-12	1276612.8	194706.7	18.18	17.91	8	23	9.91	-5.09	23.3
MW-13	1276852.8	194772.7	17.62	17.17	8	18	9.17	-0.83	18.3
MW-14	1277163	194838.4	17.71	17.25	8	18	9.25	-0.75	18.3
MW-15	1277426.8	194964.1	17.89	17.54	8	18	9.54	-0.46	18.3
MW-16	1276948.2	194936.9	18.1	17.67	8	18	9.67	-0.33	18.3
MW-17	1276464.8	194887.1	18.62	18.12	8	23	10.12	-4.88	23.3
MW-18	1276336.4	194950.9	17.85	17.26	8	18	9.26	-0.74	18.3
MW-19	1276149.7	194947.1	18.2	17.84	8	18	9.84	-0.16	18.3
MW-20	1276110.2	195086.6	18.3	17.79	8	18	9.79	-0.21	18.3
MW-21	1276295	195078.2	17.91	17.49	8	18	9.49	-0.51	18.3
MW-22	1276595.3	195105.6	17.26	16.81	8	18	8.81	-1.19	18.3
MW-23	1276404.3	195024.1	16.88	16.43	8	18	8.43	-1.57	18.3
MW-24	1276710.5	195002.5	19.21	18.74	8	18	10.74	0.74	18.3
MW-25	1277030.5	195011.9	17.75	17.3	8	18	9.3	-0.7	18.3
PZ-1	1277233.6	195058.7	17.36	17.06	14	24	3.06	-6.94	24.3
PZ-2	1277415.7	194568.2	18.47	17.95	14	24	3.95	-6.05	24.3
PZ-3	1277220.3	194822.9	17.43	17.15	14	24	3.15	-6.85	24.3
PZ-4	1276791.9	194580.3	18.63	17.86	14	24	3.86	-6.14	24.3
PZ-6	1276587	194821.4	18.59	18.19	14	24	4.19	-5.81	24.3
PZ-7	1276175.4	194828.5	17.94	17.44	14	24	3.44	-6.56	24.3
PZ-8	1276324	194386.6	19.07	18.83	14	24	4.83	-5.17	24.3

BGS = below ground surface ft = feet PVC = poly vinyl chloride

TABLE 3 TIDE HEIGHT DURING NEARSHORE GROUNDWATER SAMPLE COLLECTION BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

						Tide Height D	Ouring Sam	ple Collection				
Well Name		1Q12			2Q12		3Q12				4Q12	
	Date	Time	Tide Height (ft MLLW)	Date	Time	Tide Height (ft MLLW)	Date	Time	Tide Height (ft MLLW)	Date	Time	Tide Height (ft MLLW)
IT-I-104	12/8/2011	22:18	-0.7	03/13/12	15:00	-0.1	06/14/12	8:58	0.8	09/12/12	9:14	0.9
IT-I-203	12/7/2011	20:50	-0.3	03/15/12	18:06	0.1	06/15/12	10:21	0.4	09/13/12	9:31	0.7
IT-I-205	12/6/2011	21:30	0.6	03/15/12	17:05	0.6	06/15/12	8:55	0.2	09/13/12	9:20	0.8
IT-I-206	12/06/11	20:30	0.3	03/12/12	14:15	-0.3	06/19/12	10:50	-1.1	09/14/12	10:48	0.8
IT-MW-7	12/05/11	20:50	1.3	03/12/12	14:01	0.1	06/19/12	11:31	-1.6	09/14/12	9:26	1.3
IT-MW-9	12/06/11	20:15	0.4	03/12/12	15:30	-0.5	06/15/12	8:39	0.4	09/13/12	10:01	0.7
IT-MW-10	12/06/11	21:35	0.3	03/15/12	18:15	0.1	06/14/12	9:30	0.9	09/13/12	9:35	0.7
IT-MW-11	12/07/11	20:03	0.4	03/15/12	17:02	0.6	06/19/13	11:20	-1.5	09/13/12	10:41	1.2
IT-MW-17	12/12/11	23:00	-0.8	03/14/12	16:00	0.2	06/18/12	10:11	-0.8	09/12/12	9:50	1.2
IT-MW-18	12/08/11	22:40	-0.3	03/14/12	17:01	-0.3	06/18/12	11:16	-1.3	09/12/12	9:05	0.9
IT-MW-19	12/07/11	22:00	0.0	03/13/12	16:23	-0.5	06/14/12	7:58	1.1	09/12/12	9:56	1.3
IT-MW-20	12/08/11	21:03	-0.6	03/13/12	14:55	0.0	06/14/12	7:59	1.1	09/12/13	7:57	1.3
IT-MW-21	12/08/11	21:40	-0.9	03/14/12	16:05	0.1	06/18/12	11:15	-1.3	09/12/12	9:31	1.0
IT-MW-23	12/12/11	23:55	-1.6	03/14/12	17:10	-0.3	06/18/12	10:20	-0.9	09/13/12	10:40	1.2
IT-PZ-7	12/07/11	21:23	-0.3	03/13/12	16:40	-0.2	06/14/12	8:40	0.8	09/12/12	8:15	1.1
IT-PZ-8	12/05/11	20:45	1.2	03/12/12	15:45	-0.3	06/15/12	9:50	0.1	09/13/12	10:38	1.2

TABLE 4 SOURCE MATERIAL SAMPLING LOCATION DESCRIPTIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Sample Name	Sample Media	Date Sampled	Site	Sample Location Notes/Comments
IT-CB-66/67	Storm Drain Solids	4/3/2012	Thompson	Composite catch basin solids from CB66 and CB67; both structures have filters, filter at CB66 is defective/not fitted properly.
IT-CB-77/77B/77E	Storm Drain Solids	4/3/2012	Thompson	Composite catch basin solids from CB77, CB77B, and CB77E; 75 percent of volume from CB77, 25 percent of volume from CB77B/77E. All structures are fitted with filters.
IT-CB-C/D	Storm Drain Solids	4/3/2012	Thompson	Composite catch basin solids from CBC/CBD; 75 percent of volume from CBC, 25 percent of volume from CBD. Both structures are fitted with filters.
IT-CG-72	Storm Drain Solids	4/4/2012	Thompson	Catch basin solids (no surface solids present to sample).
IT-CG-74	Storm Drain Solids	4/4/2012	Thompson	Catch basin solids (no surface solids present to sample).
IT-CJM-07	Concrete Joint Material	4/10/2012	Isaacson	Weathered/old concrete joint material, dark black with tar-like appearance, collected from concrete panel remnants on west side of Isaacson. Asbestos containing, collected by the Boeing Asbestos Abatement team.
IT-CJM-08	Concrete Joint Material	4/10/2012	Isaacson	Weathered/old concrete joint material, dark black with tar-like appearance, collected from concrete panel remnants on east side of Isaacson. Asbestos containing, collected by the Boeing Asbestos Abatement team.
IT-PAINT-01	Paint Chips	4/10/2012	Thompson	Yellow-painted bollard surrounding large white tank on the east side of the 14-03 building, layer of white paint visible under yellow.
IT-PAINT-02	Paint Chips	4/10/2012	Thompson	Yellow-painted bollards and railing surrounding hydrant north of the 14-02/14-03 buildings, multiple layers of yellow paint visible.
IT-PAINT-03	Paint Chips	4/10/2012	Thompson	Beige-painted conex box on the north side of the 14-02 building, layers of red paint visible under beige, in very poor/peeling condition.
IT-PAINT-04	Paint Chips	4/10/2012	Thompson	Grey-painted conex box on the west side of the 14-02 building in poor condition, layers of green and beige paint visible, in very poor/peeling condition.
IT-PAINT-05	Paint Chips	4/10/2012	Thompson	Beige peeling paint on the concrete exterior of the south side of the 14-02 building.
IT-PAINT-06	Paint Chips	4/10/2012	Thompson	Beige peeling paint on the concrete exterior of the 14-13 building, composite paint chip sample from all sides of the building, visibly appears to be the same paint covering the entire building.
IT-SURFACE-01	Surface Debris	4/3/2012	Thompson	North side of 14-02/14-03 buildings, from mossy debris inside the chain-link fence housing equipment, some orange/blue paint chips in sample.
IT-SURFACE-02	Surface Debris	4/3/2012	Thompson	West side of 14-02/14-03 buildings, dirt/needle/dust debris along concrete joint.
IT-SURFACE-03	Surface Debris	4/3/2012	Thompson	South side of 14-02/14-03 buildings, mossy dirt and debris at the base of exterior equipment.
IT-SURFACE-04	Surface Debris	4/3/2012	Thompson	East side of the water tank and 14-13 building, dirt/dust/debris.
IT-SURFACE-05	Surface Debris	4/3/2012	Isaacson	Surface debris consisting of dirt, wet solids, and mossy material, near CB10.
IT-SURFACE-06	Surface Debris	4/3/2012	Isaacson	Surface debris consisting of wet dirt, dust, and mossy material, north-east of CB10, along Isaacson fenceline.
IT-SURFACE-07	Surface Debris	4/3/2012	Isaacson	Surface debris consisting of wet dirt, dust, and mossy material, near/southwest of VTV-E.
IT-SURFACE-08	Surface Debris	4/3/2012	Isaacson	Surface debris near north fenceline of Isaacson consisting of wet, mossy, dirt and dust debris.
IT-SURFACE-09	Surface Debris	4/3/2012	Isaacson	Surface debris near on fenceline of Isaacson consisting of wet, mossy, dirt and dust debris.
IT-SURFACE-10	Surface Debris	4/3/2012	Isaacson	Surface debris on north fenceline of Isaacson, northwest of CB35, consisting of wet, mossy dirt and debris.
IT-SURFACE-11	Surface Debris	4/3/2012	Isaacson	Surface debris consisting of mossy dirt/debris on south side of Isaacson along fenceline, south of CB51.
IT-SURFACE-12	Surface Debris	4/3/2012	Isaacson	Surface debris consisting of mossy dirt/debris on south side of Isaacson along fenceline.
IT-SURFACE-13	Surface Debris	4/4/2012	Thompson	Surface debris collected from dirt and solids built up near CB26, small blue paint flecks visible in sample.
IT-SURFACE-14	Surface Debris	4/4/2012	Thompson	Surface debris collected from dirt and solids built up near CB17/CB20.
IT-SURFACE-15	Surface Debris	4/4/2012	Thompson	Surface debris from dirt and solids built up near CB13/CB14; 10% of volume from CB13 area, 90% of volume from CB14 area.
IT-SURFACE-16	Surface Debris	4/10/2012	Thompson	Surface debris consisting of gravelly dirt/dust/small rock chips along the north side of the 14-01 building, south of CB-08.

TABLE 5

SUMMARY OF SEDIMENT GRAB AND CORE SAMPLE LOCATIONS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Proposed Sample	Coord (WA SPC	Plane linates North NAD vey Feet)	Estimated Mudline Elevation (feet		Samples	
Location	Easting	Northing	MLLW) 1	Sample Date	Collected ²	Comments
Grab Samples	Grab Samples					
SD-501G	1275941	195116	-12.4	2/6/2012	0 to 10 cm	
SD-502G	1275997	195071	-2.8	2/6/2012	0 to 10 cm	
SD-503G	1275973	194998	-11.6	2/6/2012	0 to 10 cm	
SD-504G	1276024	194939	-4.1	2/6/2012	0 to 10 cm	
SD-505G ³	1276008	194881	-10.5	2/6/2012	0 to 10 cm	Duplicate station
SD-516G	1276008	194880	-10.5	2/7/2012	0 to 10 cm	
SD-506G	1276073	194822	-0.7	2/7/2012	0 to 10 cm	
SD-507G	1276033	194757	-10.0	2/7/2012	0 to 10 cm	Station selected for dioxin/furan analysis
SD-508G	1276120	194703	-2.0	2/7/2012	0 to 10 cm	Station selected for dioxin/furan analysis
SD-509G	1276063	194641	-9.8	2/7/2012	0 to 10 cm	Station selected for dioxin/furan analysis
SD-510G	1276149	194582	0.2	2/7/2012	0 to 10 cm	,
SD-511G	1276088	194520	-10.7	2/7/2012	0 to 10 cm	
SD-512G ⁴	1276181	194461	0.1	2/7/2012	0 to 10 cm	Duplicate station
SD-517G	1276182	194463	0.2	2/7/2012	0 to 10 cm	·
SD-513G	1276126	194402	-9.1	2/7/2012	0 to 10 cm	
SD-514G	1276210	194346	0.0	2/7/2012	0 to 10 cm	Station selected for dioxin/furan analysis
SD-515G	1276149	194276	-9.7	2/7/2012	0 to 10 cm	Station selected for dioxin/furan analysis
Core Samples						
SD-501	1275945	195119	-11.7	1/30/2012	1 to 7 feet	
SD-501R2	1275946	195119	-11.5	2/17/2012	7 to 9 feet	Second core collected at SD-501
SD-502	1276000	195068	-2.6	1/30/2012	1 to 7 feet	
SD-503	1275978	194996	-10.8	2/1/2012	1 to 8 feet	
SD-504	1276026	194940	-3.8	1/30/2012	1 to 6 feet	
SD-505 ⁵	1276007	194879	-10.6	2/2/2012	1 to 10 feet	Duplicate station
SD-516	1276006	194877	-10.8	2/2/2012	1 to 11 feet	
SD-506	1276074	194824	-0.5	1/31/2012	1 to 5 feet	
SD-507	1276031	194760	-10.4	2/1/2012	1 to 11 feet	
SD-508	1276119	194702	-2.0	1/31/12	1 to 10 feet	
SD-509	1276061	194639	-10.2	2/1/2012	1 to 11 feet	
SD-510	1276152	194582	0.4	1/31/2012	1 to 10 feet	
SD-511	1276091	194524	-10.2	2/1/2012	1 to 15 feet	
SD-512 ⁶	1276181	194462	0.2	2/2/2012	1 to 7 feet	Duplicate station
SD-512 SD-517	1276180	194463	0.1	2/2/2012	1 to 5 feet	-1
SD-517	1276123	194402	-9.5	2/1/2012	1 to 12 feet	
SD-514	1276212	194341	0.0	2/3/2012	1 to 4 feet	
SD-515	1276153	194279	-9.0	2/3/2012	1 to 12 feet	

Notes:

- 1. Estimated from bathymetric survey.
- 2. Surficial sediment (0 to 10 cm) was composited to represent the surface sample. Core samples were collected to represent 1 foot sample intervals.
- 3. Duplicate grab collected at this location (sample designated SD-516G).
- 4. Duplicate grab collected at this location (sample designated SD-517G).
- 5. Duplicate core collected at this location (sample designated SD-516).
- 6. Duplicate core collected at this location (sample designated SD-517).

Abbreviations:

cm = centimeter

MLLW = mean lower low water

NAD = North American Datum

WA SPC = Washington State Plane Coordinates

TABLE 6 UPLAND PRELIMINARY CLEANUP LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	<u> </u>	ndwater	Soil (a)	
VOLATILES				
Acetone	110,000	μg/L	510,000	μg/kg
Acrylonitrile	0.057	μg/L		μg/kg
Benzene	2	μg/L	93	μg/kg μg/kg
Bromodichloromethane	17	μg/L	89	μg/kg μg/kg
2-Butanone	73,000	μg/L μg/L	430,000	μg/kg μg/kg
n-Butylbenzene	780	μg/L μg/L	27,000	μg/kg μg/kg
sec-Butylbenzene		μg/L μg/L	27,000	
Carbon Disulfide	3900		75,000	μg/kg
Carbon Distillide Carbon Tetrachloride		μg/L	· ·	μg/kg
	0.46	μg/L	21	μg/kg
Chlorobenzene	270	μg/L	26,000	μg/kg
Chloroethane	21,000	μg/L	280,000	μg/kg
Chloroform	9.4	μg/L "	200	μg/kg "
Chloromethane	10.3	μg/L 	1,600	μg/kg
4-Chlorotoluene	2600	μg/L	400000	μg/kg
1,2-Dichlorobenzene	440	μg/L	68,000	μg/kg
1,3-Dichlorobenzene	960	μg/L	3,840	μg/kg
1,4-Dichlorobenzene	1.7	μg/L	3,500	μg/kg
1,1-Dichloroethane	33	μg/L	710	μg/kg
1,2-Dichloroethane	3.6	μg/L	70	μg/kg
1,1-Dichloroethene	3.2	μg/L	81	μg/kg
cis-1,2-Dichloroethene	130	μg/L	2600	μg/kg
trans-1,2-Dichloroethene	940	μg/L	19000	μg/kg
1,2-Dichloropropane	3.7	μg/L	92	μg/kg
Ethylbenzene	1.7	μg/L	230	μg/kg
Ethylene Dibromide		μg/L		μg/kg
2-Hexanone	3200	μg/L	32000	μg/kg
Isopropylbenzene	270	μg/L	78,000	μg/kg
4-Isopropyltoluene		μg/L		μg/kg
Methyl Iodide		μg/L		μg/kg
4-Methyl-2-Pentanone (MIBK)	19,000	μg/L	170,000	μg/kg
Methylene Chloride	230	μg/L	2400	μg/kg
Naphthalene	26	μg/L	2,100	μg/kg
n-Propylbenzene	530	μg/L	11,000	μg/kg
Styrene	77,000	μg/L	16,000,000	μg/kg
1,1,2,2-Tetrachloroethane	0.33	μg/L	13	μg/kg
Tetrachloroethene	3.3	μg/L	260	μg/kg
Toluene	1300	μg/L	100,000	μg/kg
1,1,2-Trichloro-1,2,2-trifuoroethane	59,000	μg/L	1,000,000,000	μg/kg
1,2,4-Trichlorobenzene	1.13	μg/L	80	μg/kg
1,1,1-Trichloroethane	46,000	μg/L	1,900,000	μg/kg
1,1,2-Trichloroethane	2.3	μg/L	73	μg/kg
Trichloroethene	1.4	μg/L	51	μg/kg
Trichlorofluoromethane	6900	μg/L	200,000	μg/kg μg/kg
1,2,4-Trimethylbenzene	303	μg/L	800,000	μg/kg μg/kg
1,3,5-Trimethylbenzene	303	μg/L μg/L	800,000	μg/kg μg/kg
Vinyl Chloride	0.53	μg/L μg/L	7.4	μg/kg μg/kg
m,p-Xylene	1300	μg/L μg/L	160,000	μg/kg μg/kg
III'h-Wilette				
o-Xylene	1600	μg/L	200,000	μg/kg

TABLE 6 UPLAND PRELIMINARY CLEANUP LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Grour	dwater	Soil (a)
SEMIVOLATILES		-		
Acenaphthene	120	μg/L	230,000	μg/kg
Acenaphthylene		μg/L		μg/kg
Anthracene	200	μg/L	1,600,000	μg/kg
Benzo(a)anthracene	0.0018	μg/L	(b)	μg/kg
Benzo(a)pyrene	0.00018	μg/L	(b)	μg/kg
Benzo(b)fluoranthene	0.0018	μg/L	(b)	μg/kg
Benzo(g,h,i)perylene		μg/L		μg/kg
Benzo(k)fluoranthene	0.0018	μg/L	(b)	μg/kg
Total Benzofluoranthenes	0.0018	μg/L	(b)	μg/kg
Benzoic Acid	2,240	μg/L	9,000	μg/kg
Benzyl Alcohol	182	μg/L	8,000,000	μg/kg
Butylbenzylphthalate	0.41	μg/L	1700	μg/kg
Di-n-Butylphthalate	47	μg/L	26,000	μg/kg
Carbazole		μg/L	50,000	μg/kg
4-Chloro-3-methylphenol	3700	μg/L	740000	μg/kg
Chrysene	0.018	μg/L	(b)	μg/kg
Dibenz(a,h)anthracene	0.0018	μg/L	(b)	μg/kg
Dibenzofuran	1.3	μg/L	80,000	μg/kg
1,2-Dichlorobenzene	440	μg/L	68,000	μg/kg
1,3-Dichlorobenzene		μg/L	3,840	μg/kg
1,4-Dichlorobenzene	1.7	μg/L	3,500	μg/kg
Diethylphthalate	4,236	μg/L	178,000	μg/kg
2,4-Dimethylphenol	660	μg/L	95,000	μg/kg
Dimethylphthalate	1,100,000	μg/L	71	μg/kg
bis(2-Ethylhexyl)phthalate	1.2	μg/L	56,600	μg/kg
Fluoranthene	11	μg/L	230,000	μg/kg
Fluorene	45	μg/L	150,000	μg/kg
Indeno(1,2,3-cd)pyrene	0.0018	μg/L	(b)	μg/kg
Isophorone		μg/L		μg/kg
1-Methylnaphthalene	2.3	μg/L	16,000	μg/kg
2-Methylnaphthalene	64	μg/L	320,000	μg/kg
2-Methylphenol	3100	μg/L	250,000	μg/kg
4-Methylphenol	330	μg/L	41,000	μg/kg
Naphthalene	26	μg/L	2,100	μg/kg
N-Nitrosodiphenylamine	1.96	μg/L	204,000	μg/kg
Di-n-Octyl phthalate		μg/L		μg/kg μg/kg
Phenanthrene		μg/L		μg/kg μg/kg
Phenol	41000	μg/L	1,900,000	μg/kg μg/kg
Pyrene	9.8	μg/L	240,000	μg/kg μg/kg
1,2,4-Trichlorobenzene	1.13	μg/L	80	μg/kg μg/kg
Total cPAH TEQ	0.00018	μg/L	15	μg/kg μg/kg
Total of All TEQ	0.00010	μg/ L		μg/Ng
PCBs				
Aroclor 1242	0.000023	μg/L	0.72	μg/kg
Aroclor 1248	0.000023	μg/L	220	μg/kg
Aroclor 1254	0.0000055	μg/L	0.29	μg/kg
Aroclor 1260	0.000023	μg/L	5.4	μg/kg
Total PCBs	0.000023	μg/L	1.8	μg/kg

TABLE 6 UPLAND PRELIMINARY CLEANUP LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Grou	ndwater	Soil (a)
TOTAL PETROLEUM HYDROCARBONS				
Diesel-Range Organics	0.5	mg/L	2000	mg/kg
Oil-Range Organics	0.5	mg/L	2000	mg/kg
Gasoline-Range Organics	1.0/0.8	mg/L	100/30	mg/kg
METALS				
Antimony	150	μg/L	5	mg/kg
Arsenic	8	μg/L	7	mg/kg
Barium	770	μg/L	640	mg/kg
Beryllium	12	μg/L	160	mg/kg
Cadmium	0.25	μg/L	1.3	mg/kg
Chromium	74	μg/L	1,480	mg/kg
Chromium VI	0.00058	mg/L	3.8	mg/kg
Copper	8	μg/L	36	mg/kg
Lead	2.5	μg/L	250	mg/kg
Mercury	12	ng/L	1.5	mg/kg
Nickel	8.2	μg/L	210	mg/kg
Selenium	5	μg/L	1.0	mg/kg
Silver	22	μg/L	170	mg/kg
Thallium	0.47	μg/L	0.67	mg/kg
Zinc	56	μg/L	1400	mg/kg

--- = Not available

mg/L = millograms per liter

 μ g/L = micrograms per liter

ng/L = nanograms per liter

mg/kg = milligrams per kilogram

 μ g/kg = micrograms per kilogram

PCBs = polychorinated biphenyls

cPAHs = carcinogenic polycyclic hydrocarbons

TEQ = Total Equivalency Quotient

cPUL = preliminary Cleanup Level

- (a) Soil cleanup levels are based on direct human contact and protection of groundwater. If during the remedy evaluation and selection process, exposure of terrestrial ecological receptors is determined to be an important exposure pathway at the Site, the soil cleanup levels for some constituents may be reduced.
- (b) Use pCUL for total cPAH TEQ

TABLE 7 AIR PRELIMINARY CLEANUP LEVELS AND SUB-SLAB VAPOR SCREENING LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Air pCUL (μg/m³)	Vapor Attenuation Factor (a)	Sub-Slab Soil Vapor Screening Level (µg/m³) (b)
VOLATILES			
acetone	32000 (c)	0.03	1100000
benzene	0.32 (d)	0.03	11
2-butanone (MEK)	2300 (d)	0.03	77000
carbon disulfide	320 (d)	0.03	11000
carbon tetrachloride	0.42 (d)	0.03	14
chlorobenzene	23 (d)	0.03	770
chloroethane (ethyl chloride)	4600 (d)	0.03	150000
chloroform	0.11 (d)	0.03	3.7
chloromethane	41 (d)	0.03	1400
cyclohexane	2700 (d)	0.03	90000
dichlorobenzene;1,2-	91 (d)	0.03	3000
dichlorobenzene;1,4-	370 (d)	0.03	12000
dichloroethane;1,1-	1.5 (c)	0.03	50
dichloroethane;1,2-	0.1 (d)	0.03	3.3
dichloroethylene;1,1-	91 (d)	0.03	3000
dichloropropane;1,2-	1.8 (d)	0.03	60
1,4-dioxane			
ethanol			
ethylbenzene	460 (d)	0.03	15000
4-ethyltoluene			
freon 11	320 (d)	0.03	11000
freon 12	91 (d)	0.03	3000
heptane			
hexane	320 (d)	0.03	11000
2-hexanone	31 (c)	0.03	1000
methylene chloride	5.3 (d)	0.03	180
4-methyl-2-pentanone (MIBK)	1400 (d)	0.03	47000
2-propanol			
propylbenzene	460 (d)	0.03	15000
styrene	460 (d)	0.03	15000
tetrachloroethane;1,1,2,2-	0.042 (c)	0.03	1.4
tetrachloroethylene	9.6 (d)	0.03	320
tetrahydrofuran			
toluene	2300 (d)	0.03	77000
trichloroethane;1,1,1-	2300 (d)	0.03	77000
trichloroethane;1,1,2-	0.16 (d)	0.03	5.3
trichloroethylene	0.37 (d)	0.03	12
1,2,4-trimethylbenzene	3.2 (d)	0.03	110
1,3,5-trimethylbenzene			
vinyl chloride	0.28 (d)	0.03	9.3
xylene;m-	see total xylenes		==
xylene;o-	see total xylenes		==
xylene;p-	see total xylenes		
xylenes (total)	46 (c)	0.03	1500

(μg/m³) = micrograms per cubic meter pCUL = Preliminary Cleanup Level

⁽a) From EPA 2012

⁽b) Screening levels were calculated by dividing the pCULs for air by the sub-slab-to-indoor air vapor attenuation factor of 0.03.

⁽c) Residential TMCL from Table I-3

⁽d) MTCA Method B Air Cleanup Level

TABLE 8

PRELIMINARY CLEANUP LEVELS IN SURFACE SEDIMENTS BOEING ISAACSON-THOMPSON SITE **TUKWILA, WASHINGTON**

	RAO 1: Human Seafood Consumption	RAO 2: Hui Con	tact	RAO 3: Benthic (Sediment Man Standar	agement	RAO 4:	Preliminary
Chemical Parameter	Site-wide	Site-wide	Clamming areas 1	SCO ²	LAET 3	Ecological (River Otter Site-wide)	Cleanup Levels (pCUL)
Metals		mg/k	g dw	mg/kg dw	mg/kg dw	•	mg/kg dw
Arsenic	NC	7	7	57	57	1	7
Cadmium	_	_	_	5.1	5.1	_	5.1
Chromium	_	_	_	260	260	_	260
Copper	_	_	_	390	390	_	390
Lead	_	_	_	450	450	_	450
Mercury			_	0.41	0.41	_	0.41
Silver	_	_	_	6.1	6.1	_	6.1
Zinc	_	_	_	410	410	_	410
Nonionizable Organic Compounds							
Aromatic Hydrocarbons				mg/kg OC	μg/kg dw		mg/kg OC
Total LPAH	_	_	_	370	5,200	_	370
Naphthalene		_	_	99	2,100		99
Acenaphthylene				66	1,300		66
Acenaphthene		_		16	500	_	16
Fluorene		_		23	540	_	23
Phenanthrene		_	_	100	1,500		100
Anthracene	_	_	_	220	960	_	220
2-Methylnaphthalene	_	_	_	38	670	_	38
Total HPAH	_	_	_	960	12,000	_	960
Fluoranthene				160	1,700		160
Pyrene	_	_	_	1,000	2,600		1,000
Benz[a]anthracene	_			110	1,300	_	110
Chrysene	_	_	_	110	1,400	_	110
Total benzofluoranthenes				230	3,200		230
Benzo[a]pyrene	_	_		99	1,600	_	99
Indeno[1,2,3-c,d]pyrene			_	34	600		34
Dibenzo[a,h]anthracene	_	_	_	12 31	230	_	12
Benzo[g,h,i]perylene				31	670	_	31
Carcinogenic Polycyclic Aromatic		μg TEQ					μg TEQ/kg dw
cPAH	NC	380	150			_	150 ¹ /380
Chlorinated Benzenes				mg/kg OC	μg/kg dw		mg/kg OC
1,2-Dichlorobenzene 1,4-Dichlorobenzene				2.3 3.1	35 110		2.3 3.1
1,2,4-Trichlorobenzene			_	0.81	31		0.81
Hexachlorobenzene	_	_	_	0.38	22		0.38
Phthalate Esters	_			mg/kg OC	μg/kg dw		mg/kg OC
Dimethyl phthalate				53	71		53
Diethyl phthalate Diethyl phthalate	_		_	61	200	_	61
Di-n-butyl phthalate				220	1,400	_	220
Butyl benzyl phthalate				4.9	63		4.9
Bis[2-ethylhexyl]phthalate				47	1,300		4.9
Di-n-octyl phthalate				58	6,200		58
Miscellaneous	_			mg/kg OC	μg/kg dw		mg/kg OC
Dibenzofuran	 			15	540	_	15
Hexachlorobutadiene	 			3.9	11	_	3.9
N-nitrosodiphenylamine	_			11	28		11
Carbazole ⁴	<u> </u>						
Polychlorinated Biphenyls	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	μg/kg dw	μg/kg dw	μg/kg dw
Total PCBs	2	1,300	μ g/kg uw 500	12	130	128-159	2
Ionizable Organic Compounds		.,		μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw
Phenol	_	_		420	420	— —	420
2-Methylphenol	t _	_		63	63	_	63
4-Methylphenol	_	_	_	670	670	_	670
2,4-Dimethylphenol	_	_	_	29	29	_	29
Pentachlorophenol	_	_	_	360	360	_	360
Benzyl alcohol	_	_	_	57	57	_	57
Benzoic acid	_	_	_	650	650	_	650
	μg TEQ/kg dw	μg TEQ	/ka dw				μg TEQ/kg dw
Dioxins/Furans	2	37	13	_	1 _	_	2

Notes:

- Clamming areas above -4 feet Mean Lower Low Water
 Sediment Management Standards Sediment Cleanup Objectives (173-204-560) WAC.
- 3. LAET = Lowest-Apparent-Effects Threshold.

Abbreviations:

obreviations:

cPAH = carcinogenic polycyclic aromatic hydrocarbon
HPAH = high-molecular-weight polycyclic aromatic hydrocarbon
LAET = lowest-apparent-effects threshold
LPAH = low-molecular-weight polycyclic aromatic hydrocarbon
mg/kg dw = milligrams per kilogram dry weight
mg/kg OC = milligrams per kilogram organic carbon normalized

PCBs = polychlorinated biphenyls

RAO = remedial action objective

RAO = terriedial action objective
SCO = sediment cleanup objective
TEQ = toxic equivalent concentration
µg/kg dw = micrograms per kilogram dry weight
WAC = Washington Administrative Code

TABLE 9
SUMMARY OF DEPTHS TO RIVER DEPOSITS/ALLUVIUM IN RI EXPLORATIONS
BOEING ISAACSON-THOMPSON SITE
TUKWILA, WASHINGTON

North	of Slip 5		Slip 5	Sout	th of Slip 5
Location	Depth to Alluvium (ft, BGS)	Location	Depth to Alluvium (ft, BGS)	Location	Depth to Alluvium (ft, BGS)
IT-MW-15	10	IT-MW- 9	10.5	IT-MW- 1	5.5
IT-MW-16	4	IT-MW-10	10.5	IT-MW- 2	8
IT-MW-18	5	IT-MW-11	12.5	IT-MW- 3	8
IT-MW-20	5.5	IT-MW-12	13	IT-MW- 4	10.5
IT-MW-21	7	IT-MW-13	NE	IT-MW- 5	9.5
IT-MW-22	4.5	IT-MW-13B	NE	IT-MW- 6	9.5
IT-MW-23	NE	IT-MW-14	13	IT-MW- 7	5
IT-MW-24	24	IT-MW-17	12.5	IT-MW- 8	11
IT-MW-25	24.5	IT-MW-19	11.5	IT-SB- 1	8
IT-SB- 6	9	IT-SB- 2	19.5	IT-TP-101	6
IT-SB- 7	13.5	IT-SB- 3	NE	IT-TP-102	6
IT-SB- 8	5	IT-SB- 4	5	IT-TP-103	6
IT-SB- 9	2	IT-SB- 5	8.5		
IT-SB-10	3	IT-SB-12	14.5		
IT-SB-11	6.5	IT-TP-104	6		
IT-TP-107	10	IT-TP-105	NE		
IT-TP-108	6	IT-TP-105B	6		
IT-TP-109	NE	IT-TP-106	NE		
		IT-TP-106B	6		

ft BGS = feet below ground surface

NE = Alluvium not encountered at this location

TABLE 10 SURFACE WATER LEVEL AND PRECIPITATION DATA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

RI Groundwater	Measurement	Green River Mean	Grou	Total Precipit	tation Prior to	s) (c)		Daily Range		Daily Range
Monitoring Event	Date	Stage Height (feet) (a) (b)	2 days	1 week	2 week	4 weeks	(feet I	MLLW)	(feet N	AVD88)
1st	12/5/2012	5.13	0.00	0.06	4.00	4.52	1.1	10.7	-1.38	8.22
2nd	3/6/2012	8.12	0.41	0.71	1.42	2.95	0.2	10.8	-2.28	8.32
3rd	6/13/2012	7.03	0.03	0.63	1.44	2.68	1.5	10.8	-0.98	8.32
4th	9/10/2012	2.95	0.01	0.01	0.01	0.01	1.3	9.4	-1.18	6.92

LDW = Lower Duwamish Waterway
MLLW = mean lower low water

(a) mean stage height during data collection

(b) source: http://nwis.waterdata.usgs.gov/wa/nwis USGS Station 12113350 (Green River at Tukwila, WA) accessed December 2012

(c) source: http://mesowest.utah.edu Station KBFI (Seattle Boeing Field) accessed December 2012

TABLE 11 SUMMARY OF MEASURED DEPTHS TO GROUNDWATER AND CALCULATED GROUNDWATER ELEVATIONS (FT, MLLW) BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Well Rim/Ground	Top of 2-inch			Mea	sured Dep	th to Water (ft)			Gr	oundwater Ele	vation (ft, MLL	W)	D	epth to Groun	dwater (BGS; f	t)
Well Name	Elevation (MLLW)	PVC Elevation (MLLW)	1Q12 (12/5/11)	Time	2Q12 (3/6/12)	Time	3Q12 (6/13/12)	Time	4Q12 (9/10/12)	Time	1Q12 (12/5/11)	2Q12 (3/6/12)	3Q12 (6/13/12)	4Q12 (9/10/12)	1Q12 (12/5/11)	2Q12 (3/6/12)	3Q12 (6/13/12)	4Q12 (9/10/12)
I-104	20.31	19.83	14.62	17:25	12.31	8:00	13.98	10:02	13.98	8:31	5.21	7.52	5.85	5.85	15.10	12.79	14.46	14.46
I-200	20.61	20.25	12.10	17:30	11.72	8:10	17.36	9:25	13.00	8:32	8.15	8.53	2.89	7.25	12.46	12.08	17.72	13.36
I-203	20.16	19.80	14.49	17:33	12.47	8:15	13.87	10:07	11.82	8:32	5.31	7.33	5.93	7.98	14.85	12.83	14.23	12.18
I-205	21.09	20.80	12.41	17:35	11.00	8:16	12.55	10:34	12.85	8:33	8.39	9.80	8.25	7.95	12.70	11.29	12.84	13.14
I-206	21.30	20.95	13.63	17:35	13.28	8:26	15.05	10:25	14.31	8:34	7.32	7.67	5.90	6.64	13.98	13.63	15.40	14.66
MW-1	21.79	21.43	13.47	17:36	13.34	8:28	15.12	10:29	14.28	8:42	7.96	8.09	6.31	7.15	13.83	13.70	15.48	14.64
MW-2	21.89	21.52	13.52	17:38	13.38	8:30	15.14	12:10	14.35	8:44	8.00	8.14	6.38	7.17	13.89	13.75	15.51	14.72
MW-3	21.83	21.51	13.42	17:40	13.23	8:32	15.34	10:32	14.26	8:44	8.09	8.28	6.17	7.25	13.74	13.55	15.66	14.58
MW-4	20.76	20.28	11.21	17:44	10.85	8:32	14.4	10:40	13.94	8:45	9.07	9.43	5.88	6.34	11.69	11.33	14.88	14.42
MW-5	21.41	21.00	12.84	17:50	12.51	8:35	14.81	10:32	13.90	8:51	8.16	8.49	6.19	7.10	13.25	12.92	15.22	14.31
MW-6	21.72	21.39	13.52	17:50	13.25	8:39	14.98	10:27	14.26	8:53	7.87	8.14	6.41	7.13	13.85	13.58	15.31	14.59
MW-7	21.62	21.29	14.52	17:56	13.90	8:40	15.3	10:20	15.12	9:00	6.77	7.39	5.99	6.17	14.85	14.23	15.63	15.45
MW-8	21.33	20.82	13.17	17:56	12.95	8:43	14.55	10:22	13.83	9:04	7.65	7.87	6.27	6.99	13.68	13.46	15.06	14.34
MW-9	21.13	20.74	12.00	18:00	11.80	8:50	11.93	10:10	12.41	9:05	8.74	8.94	8.81	8.33	12.39	12.19	12.32	12.80
MW-10	20.68	20.21	13.4	18:00	9.58	8:50	13.65	10:08	13.54	9:08	6.81	10.63	6.56	6.67	13.87	10.05	14.12	14.01
MW-11	21.12	20.69	12.16	18:05	12.02	8:55	12.85	10:16	12.67	9:10	8.53	8.67	7.84	8.02	12.59	12.45	13.28	13.10
MW-12	20.66	20.39	12.04	18:12	12.00	9:00	12.88	10:44	12.56	9:16	8.35	8.39	7.51	7.83	12.31	12.27	13.15	12.83
MW-13	20.10	19.65	11.58	18:14	11.23	9:25	13.99	11:00	12.33	9:18	8.07	8.42	5.66	7.32	12.03	11.68	14.44	12.78
MW-14	20.19	19.73	11.91	18:14	11.23	9:30	14.94	9:40	12.36	9:24	7.82	8.50	4.79	7.37	12.37	11.69	15.40	12.82
MW-15	20.37	20.02	11.82	18:15	11.54	9:34	16.82	9:29	12.65	9:32	8.20	8.48	3.20	7.37	12.17	11.89	17.17	13.00
MW-16	20.58	20.15	12.28	18:18	11.72	9:35	14.84	9:43	12.74	9:38	7.87	8.43	5.31	7.41	12.71	12.15	15.27	13.17
MW-17	21.10	20.60	12.66	18:20	12.34	9:38	13.46	9:50	13.10	9:40	7.94	8.26	7.14	7.50	13.16	12.84	13.96	13.60
MW-18	20.33	19.74	13.31	18:25	12.13	9:40	13.56	9:53	13.06	9:42	6.43	7.61	6.18	6.68	13.90	12.72	14.15	13.65
MW-19	20.68	20.32	15.56	18:27	13.05	9:45	14.71	9:56	14.62	9:44	4.76	7.27	5.61	5.70	15.92	13.41	15.07	14.98
MW-20	20.78	20.27	13.96	18:30	12.82	9:45	14.59	9:58	14.41	9:45	6.31	7.45	5.68	5.86	14.47	13.33	15.10	14.92
MW-21	20.39	19.97	12.60	18:33	11.87	9:48	13.45	9:55	12.98	9:46	7.37	8.10	6.52	6.99	13.02	12.29	13.87	13.40
MW-22	19.74	19.29	11.18	18:35	11.05	9:49	13.15	9:45	12.01	9:52	8.11	8.24	6.14	7.28	11.63	11.50	13.60	12.46
MW-23	19.36	18.91	11.94	18:39	11.00	9:50	12.80	9:48	11.96	9:53	6.97	7.91	6.11	6.95	12.39	11.45	13.25	12.41
MW-24	21.69	21.22	13.3	18:40	12.85	9:50	15.33	9:36	13.88	9:53	7.92	8.37	5.89	7.34	13.77	13.32	15.80	14.35
MW-25	20.23	19.78	11.83	18:56	11.34	9:51	14.70	9:33	12.36	9:56	7.95	8.44	5.08	7.42	12.28	11.79	15.15	12.81
PZ-1	19.84	19.54	11.34	19:03	11.05	9:52	15.30	9:31	12.10	10:00	8.20	8.49	4.24	7.44	11.64	11.35	15.60	12.40
PZ-2	20.95	20.43	12.14	19:05	11.93	10:00	16.00	10:45	13.25	10:00	8.29	8.50	4.43	7.18	12.66	12.45	16.52	13.77
PZ-3	19.91	19.63	11.39	19:10	11.17	10:05	15.08	9:29	12.26	10:02	8.24	8.46	4.55	7.37	11.67	11.45	15.36	12.54
PZ-4	21.11	20.34	12.33	19:11	12.33	10:10	14.25	10:56	13.04	10:05	8.01	8.01	6.09	7.30	13.10	13.10	15.02	13.81
PZ-6	21.07	20.67	12.41	19:15	12.74	10:20	14.08	9:47	13.22	10:08	8.26	7.93	6.59	7.45	12.81	13.14	14.48	13.62
PZ-7	20.42	19.92	12.21	19:20	11.31	10:20	11.78	9:59	12.06	10:10	7.71	8.61	8.14	7.86	12.71	11.81	12.28	12.56
PZ-8	21.55	21.31	NM		13.73	10:25	15.23	10:16	14.89	10:12	NM	7.58	6.08	6.42	NM	13.97	15.47	15.13

MLLW = Mean Lower Low Water

BGS = Below Ground Surface

PVC = polyvinyl chloride

ft = feet

NM = Not Measured

						We	estern Property Boun	darv						Northern Pro	perty Boundary	
Location:		IT-I-104	IT-I-104	IT-DUP-2 (IT-I-104)	IT-I-104	IT-DUP-1 (IT-I-104)	IT-I-104	IT-DUP-1 (IT-I-104)	IT-MW-20	IT-MW-20	IT-MW-20	IT-MW-20	IT-MW-21	IT-MW-21	IT-MW-21	IT-MW-21
		UA54G/UA54P/							UA54E/UA54N/				UA54F/UA54O/			
Laborator Operator ID	D. F. C.	UA55G/UA55O/	6578917/6578918/	6578923/6578924/	6689134/6689135/	6689137/6689138/	6788036/6788037/	6788054/678805	UA55E/UA55M/	6578915/6578916/	6689131/6689132/	6788030/6788031/	UA55F/UA55N/	6580634/6580635/	6692728/6692729/	6788048/6788049/
Laboratory Sample ID: Laboratory Data Package ID:	Preliminary Cleanup	UB47G/UB47O UA54/UA55/UB47	UM31B 1295418/UM31	UM31E 1295418/UM31	6689136/UY55B 1316071/UY55	6689139/UY55C 1316071/UY55	6788038/VJ32C 1335483/VJ32	/6788056/VJ32J 1335483/VJ32	UB47E/UB47M UA54/UA55/UB47	UM31A 1295418/UM31	6689133/UY55A 1316071/UY55	6788032/VJ32A 1335483/VJ32	UB47F/UB47N UA54/UA55/UB47	UM54C 1295735/UM54	6692730/UZ18D 1316786/UZ18	6788050/VJ32G 1335483/VJ32
Sample Date:	Levels	12/08/2011	3/13/2012	3/13/2012	6/14/2012	6/14/2012	9/12/2012	9/12/2012	12/08/2011	3/13/2012	6/14/2012	9/12/2012	12/08/2011	3/14/2012	6/18/2012	9/12/2012
Tide Level (ft MLLW):	2010.0	-0.7	-0.1	-0.1	0.8	0.9	0.9	0.9	-0.6	0.0	1.1	1.3	-0.9	0.1	-1.3	1.0
VOLATILES (µg/L)																
Method SW8260C																
Acetone	110,000	5.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U	3.7 J1	15 U	3.0 U
Benzene	2	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
2-Butanone 1,1-Dichloroethane	73,000 33	5.0 UJ 0.2 U	1.0 U 0.1 U	1.0 U 0.1 U	1.0 U 0.1 U	1.0 U 0.1 U	1.0 U 0.1 U	1.0 U 0.1 U	5.0 UJ 0.2 U	1.0 U 0.1 U	1.0 U 0.1 U	1.0 U 0.1 U	5.0 UJ 0.2 U	1.0 U 0.1 U	5.0 U 0.5 U	1.0 U 0.1 U
1,1-Dichloroethane	3.2	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
cis-1,2-Dichloroethene	130	0.2 J1	0.2 J1	0.2	0.2 J1	0.2	0.1 J1	0.2 J1	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
Methylene Chloride	230	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	1.0 U	0.2 U
Tetrachloroethene	3.3	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U 0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U 0.1 U
Toluene Trichloroethene	1300 1.4	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.5 U 0.5 U	0.1 U 0.1 U
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2	0.1 J1	0.5 U	0.1 U
1,3,5-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
Vinyl Chloride	0.53	0.2 U	0.1 U	0.1 U	0.1 U	0.1 J1	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
o-Xylene	1600	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.5 U	0.1 U
VOLATILES (μα/L)																
Method SW8260C-SIM																
Tetrachloroethene	3.3	0.020 U	0.010 UJ	0.010 U	0.024	0.033	0.010 U	0.010 U	0.020 U	0.010 U	0.043	0.010 U	0.020 U	0.010 U	0.021 U	0.010 U
Vinyl Chloride	0.53	0.085	0.090 J	0.085	0.075	0.084	0.082	0.091	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U
Acrylonitrile	0.057	0.050 U	NA	NA	NA	NA	NA	NA	0.050 U	NA	NA	NA	0.050 U	NA	NA	NA
SEMIVOLATILES (µg/L)																
Method SW8270D																
Acenaphthene	120	1.0 U	0.1 U	0.09 U	0.1 U	0.1 U	0.09 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U
Benzoic Acid	2,240	10 U	6 UJ	6 UJ	6 U	6 U	6 U	6 UJ	10 U	6 UJ	6 U	6 U	10 U	6 UJ	6 U	6 U
2-Chlorophenol		1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol	660 1.2	1.0 U 1.0 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	1.0 U 1.0 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	1.0 U 1.0 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U
bis(2-Ethylhexyl)phthalate Fluorene	45	1.0 U	0.1 U	0.09 U	0.1 U	0.1 U	0.09 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U
Isophorone		1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
1-Methylnaphthalene	2.3	1.0 U	0.1 U	0.09 U	0.1 U	0.1 U	0.09 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.09 U	0.1 U	0.1 U	0.09 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U
2-Methylphenol	3100	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
4-Methylphenol Naphthalene	330 26	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.09 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.09 U	0.5 U 0.1 U	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.1 J1	0.5 U 0.1 J1	1.0 U 1.0 U	0.5 U 0.09 U	0.5 U 0.1 J1	0.5 U 0.1 J1
Phenol	41,000	1.0 U	0.1 U	0.5 U	0.1 U	0.1 U	0.09 U	0.1 U	1.0 U	0.5 U	0.5 U	0.5 U	1.5	0.09 U	0.5 U	0.5 U
-																
cPAHs (μg/L)																
Method SW8270D-SIM																
Benzo(a)anthracene Benzo(b)fluoranthene	0.0018 0.0018	0.010 U NA	0.0054 U 0.0054 U	0.0050 U 0.0050 U	0.0048 U 0.0048 U	0.0048 U 0.0048 U	0.0048 U 0.0048 U	0.0050 J1 0.0048 U	0.010 U NA	0.0049 U 0.0049 U	0.0049 U 0.0049 U	0.0048 U 0.0048 U	0.010 U NA	0.0050 U 0.0050 U	0.0047 U 0.0047 U	0.0048 U 0.0048 U
Benzo(k)fluoranthene	0.0018	NA NA	0.0054 U	0.0050 U	0.0048 U	0.0048 U	0.0048 U	0.0048 U	NA	0.0049 U	0.0049 U	0.0048 U	NA NA	0.0050 U	0.0047 U	0.0048 U
Chrysene	0.018	0.010 U	0.0054 U	0.0050 U	0.0048 U	0.0048 U	0.0048 U	0.0048 U	0.010 U	0.0049 U	0.0049 U	0.0048 U	0.010 U	0.0050 U	0.0047 U	0.0048 U
Dibenz(a,h)anthracene	0.0018	0.010 U	0.0043 U	0.0040 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.010 U	0.0040 U	0.0039 U	0.0039 U	0.010 U	0.0040 U	0.0038 U	0.0039 U
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0043 U	0.0040 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.010 U	0.0040 U	0.0039 U	0.0039 U	0.010 U	0.0040 U	0.0038 U	0.0039 U
Pyrene	9.8	NA ND	0.011 U	0.010 U	0.0096 U	0.0095 U	0.0095 U	0.0096 U	NA	0.0099 U	0.0097 U	0.0096 U	NA ND	0.0099 U	0.0095 U	0.0097 U
cPAHs TEQ	0.00018	ND	ND	ND	ND	ND	ND	0.0005 J	ND	ND	ND	ND	ND	ND	ND	ND
PCBs (μg/L)																
Method SW8082																
Aroclor 1248	0.000023	0.010 U	0.0051 U	0.0051 U	0.0047 U	0.0048 U	0.0049 U	0.0048 U	0.010 U	0.0048 U	0.0048 U	0.0047 U	0.010 U	0.0048 U	0.0053 U	0.0047 U
Aroclor 1260	0.000023	0.010 U	0.0051 U	0.0051 U	0.0047 U	0.0075 J1	0.0049 U	0.0048 U	0.010 U	0.0048 U	0.0048 U	0.0047 U	0.010 U	0.0048 U	0.0053 U	0.0047 U
Total PCBs	0.000023	ND	ND	ND	ND	0.0075 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

ı			<u></u>	<u></u>		10/	estern Property Boun	dary	<u></u>					Northern Pro	perty Boundary	
Location:		IT-I-104	IT-I-104	IT-DUP-2 (IT-I-104)	IT-I-104	IT-DUP-1 (IT-I-104)	IT-I-104	IT-DUP-1 (IT-I-104)	IT-MW-20	IT-MW-20	IT-MW-20	IT-MW-20	IT-MW-21	IT-MW-21	IT-MW-21	IT-MW-21
		UA54G/UA54P/		. ,					UA54E/UA54N/				UA54F/UA54O/			
Laboratori Consula ID.	Dan linein on .	UA55G/UA55O/	6578917/6578918/ UM31B	6578923/6578924/	6689134/6689135/	6689137/6689138/	6788036/6788037/	6788054/678805	UA55E/UA55M/	6578915/6578916/	6689131/6689132/	6788030/6788031/	UA55F/UA55N/	6580634/6580635/ UM54C	6692728/6692729/	6788048/6788049/
Laboratory Sample ID: Laboratory Data Package ID:	Preliminary Cleanup	UB47G/UB47O UA54/UA55/UB47	1295418/UM31	UM31E 1295418/UM31	6689136/UY55B 1316071/UY55	6689139/UY55C 1316071/UY55	6788038/VJ32C 1335483/VJ32	/6788056/VJ32J 1335483/VJ32	UB47E/UB47M UA54/UA55/UB47	UM31A 1295418/UM31	6689133/UY55A 1316071/UY55	6788032/VJ32A 1335483/VJ32	UB47F/UB47N UA54/UA55/UB47	1295735/UM54	6692730/UZ18D 1316786/UZ18	6788050/VJ32G 1335483/VJ32
Sample Date:	Levels	12/08/2011	3/13/2012	3/13/2012	6/14/2012	6/14/2012	9/12/2012	9/12/2012	12/08/2011	3/13/2012	6/14/2012	9/12/2012	12/08/2011	3/14/2012	6/18/2012	9/12/2012
Tide Level (ft MLLW):		-0.7	-0.1	-0.1	0.8	0.9	0.9	0.9	-0.6	0.0	1.1	1.3	-0.9	0.1	-1.3	1.0
TOTAL PETROLEUM HYDROCARBONS (mg/L)																
NWTPH-Dx																
Diesel-Range Organics	0.5	0.10 U	0.073 U	0.067 U	0.029 U	0.028 U	0.029 U	0.029 U	0.10 U	0.066 U	0.029 U	0.028 U	0.10 U	0.075 U	0.030 U	0.029 U
Oil-Range Organics	0.5	0.20 U	1.0 U	0.95 U	0.068 U	0.066 U	0.068 U	0.067 U	0.20 U	0.95 U	0.068 U	0.066 U	0.20 U	1.1 U	0.070 U	0.067 U
TOTAL METALS (µg/L)																
Method 200.8																
Antimony		0.2 U	0.42 U	0.42 U	0.42 U	0.42 U	0.33 U	0.33 U	0.3	0.45 J1	0.42 U	0.33 U	0.4	0.42 U	0.33 U	0.33 U
Arsenic		2310	2900 J	2140 J	1140	988	1080	1210	143	518	212	219	21,300	19,000	20,500	19,200
Barium		6.7	7.7	8.3	5.4	5.4	6.9	5.8	16.2	5.0	5.8	7.9	17.2	16.1	16.2 0.068 J1	17.9
Beryllium Cadmium		0.2 U 0.1 U	0.13 U 0.20 U	0.13 U 0.20 U	0.13 U 0.20 U	0.13 U 0.20 U	0.067 J1 0.082 U	0.073 J1 0.082 U	0.2 U 0.1 U	0.13 U 0.20 U	0.13 U 0.20 U	0.025 U 0.082 U	0.2 U 0.1 U	0.13 U 0.20 U	0.068 J1 0.048 U	0.042 J1 0.082 U
Chromium		2.6	4.4 J	5.5 J	3.4	3.8	2.0	2.7	0.5	1.0 J1	2.2	0.50 U	2.4	2.7	3.0	2.1
Copper		18.5	5.4 J	6.7 J	10.7	11.9	4.0 J	6.1 J	3.0	8.0	2.6	3.1	69.7	7.5	13.1	20.8
Lead		0.5	1.5 J	1.9 J	1.0	0.98 J1	0.39 J1	0.64 J1	0.1 U	0.14 J1	0.080 U	0.034 U	0.3	0.19 J1	0.20 J1	0.21 J1
Nickel		0.9	0.80 J1	0.91 J1	0.50 U	0.50 U	0.36 J1	0.38 J1	2.1	0.69 J1	0.50 U	0.42 J1	4.0	3.1	2.4	1.9 J1
Selenium		0.5 U	0.27 U	0.27 U	0.27 U	0.27 U	0.50 U	0.50 U	2	0.97 J1	0.46 J1	0.62 J1	0.5 U	0.27 U	0.30 J1	0.50 U
Silver Thallium		0.2 U 0.2 U	0.098 U 0.15 U	0.098 U 0.15 U	0.098 U 0.15 U	0.098 U 0.15 U	0.10 U 0.15 U	0.10 U 0.15 U	0.2 U 0.2 U	0.098 U 0.15 U	0.098 U 0.15 U	0.10 U 0.15 U	0.2 U 0.2 U	0.098 U 0.15 U	0.10 U 0.029 U	0.10 U 0.15 U
Zinc		0.2 U 8	12.3 J, J1	16.5 J	12.3 J1	14.8 J1	4.7 UJ2	7.4 J1	0.2 U 4 U	4.0 U	4.0 U	1.1 U	10	6.1 J1	6.0 J1	6.4 J1
			,-													
Method SW7196A (mg/L)																
Chromium VI	0.00058	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010	0.010 U	0.010 U
Method SW7470A/EPA 1631E (ng/L)																
Mercury	12	20.0 U	1.60 UJ	8.08 J, J1	12.8	10.6	5.14	8.58	20.0 U	8.18	2.67 J1	1.43	20.0 U	3.20 U	9.63 J1	4.36 J1
DISSOLVED METALS (µg/L)																
Methods 200.8/SW7196A Antimony	150	0.2 U	0.42 U	0.42 U	0.42 U	0.42 U	0.33 U	0.33 U	0.2	0.55 J1	0.42 U	0.33 U	0.4	0.42 U	0.33 U	0.33 U
Arsenic	8	2460	2180	2280	844 J	1070 J	1110	1180	135	449	211	221	22,600	17,000	18,200	19,500
Barium	770	3.9	3.6	3.3	2.9	3.3	3.7	3.6	14.2	1.4 J1	5.4	6.3	13.7	12.6	12.9	14.9
Beryllium	12	0.2 U	0.13 U	0.13 U	0.13 U	0.13 U	0.036 J1	0.043 J1	0.2 U	0.13 U	0.13 U	0.025 U	0.2 U	0.13 U	0.054 J1	0.036 J1
Cadmium	0.25	0.1 U	0.20 U	0.20 U	0.20 U	0.20 U	0.082 U	0.082 U	0.1 U	0.20 U	0.20 U	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium	74 8	3	3.4	3.2	3.1	3.0	2.0	2.0 J1	0.5 U	0.94 J1	2.3	0.50 U	2	2.8	3.3	2.1
Copper Lead	2.5	0.5 U 0.1 U	0.38 U 0.080 U	0.38 U 0.080 U	0.38 U 0.66 J1	2.2 0.15 J1	0.40 U 0.034 U	0.59 J1 0.034 U	3.1 0.1 U	7.2 0.080 U	2.5 0.080 U	2.7 0.041 J1	0.6 0.1 U	1.2 J1 0.080 U	1.8 J1 0.084 J1	0.74 UJ2 0.034 U
Nickel	8.2	0.8	0.50 U	0.50 U	0.50 U	0.50 U	0.35 J1	0.50 J1	2.0	0.60 J1	0.50 U	0.37 J1	3.4	2.9	2.4	1.5 J1
Selenium	5	0.5 U	0.27 U	0.27 U	0.27 U	0.27 U	0.50 U	0.50 U	2.6	1.0 J1	0.41 J1	0.53 J1	0.5 U	0.27 J1	0.28 J1	0.50 U
Silver	22	0.2 U	0.098 U	0.098 U	0.098 U	0.098 U	0.10 U	0.10 U	0.2 U	0.098 U	0.098 U	0.10 U	0.2 U	0.098 U	0.10 U	0.10 U
Thallium	0.47	0.2 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.2 U	0.15 U	0.15 U	0.15 U	0.2 U	0.15 U	0.029 U	0.15 U
Zinc	56	4 U	4.0 U	4.0 U	4.0 U	4.0 U	1.1 U	2.4 J1	4 U	4.0 U	4.0 U	2.9 UJ2	4 U	4.0 U	1.8 J1	2.3 J1
Method SW7470A/EPA 1631E (ng/L)																
Mercury	12	20.0 U	3.01 J1	1.60 U	2.38 J1	3.26 J1	0.631	1.60 U	20.0 U	4.34	1.82 J1	1.60 U	20.0 U	3.20 U	3.20 U	3.20 U
CONVENTIONALS (mg/L)																
Chloride (Method 300.0)		NA	NA	NA	6.5	6.5	39.2 J	48.1 J	NA	NA	384	498	NA	NA	3.0	3.3
Nitrate (Method 300.0)		0.1 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.9	1.6	1.0	0.84	0.1 U	0.050 U	0.050 U	0.050 U
Sulfate (Method 300.0)		3.8	0.67 J1	0.66 J1	0.84 J1	0.96 J1	4.1 J	5.2 J	69.1	11.7	61.1	63.5	16.3	10.2 J	11.7	4.7
Total Dissolved Solids (Method 160.1)		412	409	411	370	358	368	359	1160	320	800	894	371	444	415 J	427
FIELD PARAMETERS																
Temperature (°C)		14.89	13.35	13.35	14.07	14.07	13.54	13.54	15.19	13.09	12.43	13.82	15.99	13.67	15.04	16.67
Conductivity (uS/cm)		1494	527	527	373	373	535	535	4852	393	1112	1620	693	688	434	546
Dissolved Oxygen (mg/L)		1.21	0.42	0.42	0.60	0.60	1.28	1.28	3.68	5.47	8.88	5.67	0.68	0.59	0.55	0.47
pH (SU)		6.31	5.42	5.42	9.01	9.01	6.67	6.67	6.55	6.11	9.42	6.60	7.13	5.18	7.73	7.12
ORP (mV)		-47.5	-154.0 2.75	-154.0 2.75	-98.1 4.29	-98.1 4.29	-128 47.2	-128 47.2	-12.7 2.05	98.4 8.58	143.4 72.81	93 45.9	-215.8 3.67	-172.6 3.78	-169.4 11.36	-140.3 3.29
Turbidity (NTU) Ferrous Iron (mg/L)		4.45 NA	2.75 1.6	2.75 1.6	4.29 1.0	4.29 1.0	47.2 3.6	3.6	2.05 NA	8.58 0.0	72.81 0.0	45.9 0.0	3.67 NA	3.78 1.4	11.36 2.0	3.29 3.0
. S. Todo II of Tring/L/		I INC	1.0	1.0	1.0	1.0	5.0	5.0	I IVA	0.0	0.0	0.0	I IVA	1.7	2.0	3.0

ſ					Northern Pro	perty Boundary							Stabilized S	Soil Area			
Location:		IT-MW-22	IT-MW-22	IT-MW-22	IT-MW-22	IT-PZ-1	IT-PZ-1	IT-PZ-1	IT-PZ-1	IT-MW-23	IT-MW-23	IT-MW-23	IT-MW-23	IT-MW-24	IT-MW-24	IT-MW-24	IT-MW-24
		UA54B/UA54K/												UA54D/UA54M/			
Laboratory Sample ID:	Preliminary	UA55B/UA55J/ UB47B/UB47J	6571475/6571476/ UL18F	6692734/6692735/ 6692736/UZ18F	6789071/6789072/ 6789073/VJ53I	UB28B/UB28H/ UB29B/UB29G	6571465/6571466/ UL18A	6686957/6686958/ 6686959/UY34A	6788013/6788014/ 6788015/VJ03I	UA90B/UA90E/ UA91B/UA91D	6580632/6580633/ UM54B	6692722/6692723/ 6692724/UZ18B	6789065/6789066/ 6789067/VJ53G	UA55D/UA55L/ UB47D/UB47L	6571473/6571474/ UL18E	6692737/6692738/ 6692739/UZ18G	6788001/6788002/ 6788003/VJ03E
Laboratory Data Package ID:	Cleanup	UA54/UA55/UB47	1293989/UL18	1316786/UZ18	1335688/VJ53	UB28/UB29	1293989/UL18	1315688/UY34	1335480/VJ03	UA90/UA91	1295735/UM54	1316786/UZ18	1335688/VJ53	UA54/UA55/UB47	1293989/UL18	1316786/UZ18	1335480/VJ03
Sample Date:	Levels	12/08/2011	03/07/2012	6/18/2012	9/13/2012	12/14/2011	03/07/2012	6/13/2012	9/11/2012	12/12/2011	3/14/2012	6/18/2012	9/13/2012	12/08/2011	03/07/2012	6/18/2012	9/11/2012
Tide Level (ft MLLW):		3.1	5.8	-0.4	6.9	9.8	3.8	7.8	2.0	-1.6	-0.3	-0.9	1.2	0.3	4.8	-0.2	8.9
VOLATILES (μg/L)																	
Method SW8260C																	
Acetone Benzene	110,000 2	5.0 U 0.2 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	2.5 J1 0.2 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	1100 2.0 U	600 0.7 J1	740 1.0 U	140 0.6 J1	1200 2.0 U	1000 5.0 U	700 J 2.0 UJ	150 J 1.0 J, J1
2-Butanone	73,000	5.0 UJ	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	1.0 U	1.0 U	2.0 U	43	77	9.7 J1	2.0 U 110 J	5.0 U 77 J1	76 J, J1	28 J, J1
1,1-Dichloroethane	33	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	2.0 U	0.5 U	1.0 U	0.5 U	2.0 U	5.0 U	2.0 UJ	1.0 UJ
1,1-Dichloroethene	3.2	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	2.0 U	0.5 U	1.0 U	0.5 U	2.0 U	5.0 U	2.0 UJ	1.0 UJ
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	2.0 U	0.5 U	1.0 U	0.5 U	2.0 U	5.0 U	2.0 UJ	1.0 UJ
trans-1,2-Dichloroethene Methylene Chloride	940 230	0.2 U 0.5 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.2 U 0.5 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	2.0 U 5.0 U	0.5 U 3.4	1.0 U 2.0 U	0.5 U 1.0 U	2.0 U 5.0 U	5.0 U 10 U	2.0 UJ 4.0 UJ	1.0 UJ 2.0 UJ
Tetrachloroethene	3.3	0.5 U	0.2 U 0.1 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U 0.1 U	2.0 U	0.5 U	2.0 U	0.5 U	2.0 U	5.0 U	2.0 UJ	2.0 UJ
Toluene	1300	0.2 U	0.3	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	2.0 U	0.8 J1	1.0 U	0.7 J1	2.0 U	5.0 U	2.0 UJ	1.0 03 1.2 J, J1
Trichloroethene	1.4	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	2.0 U	0.5 U	1.0 U	0.5 U	2.0 U	5.0 U	2.0 UJ	1.0 UJ
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	2.0 U	0.9 J1	1.0 U	0.6 J1	2.0 U	5.0 U	2.0 UJ	1.0 UJ
1,3,5-Trimethylbenzene	303	0.2 U 0.2 U	0.1 U	0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	2.0 U	0.6 J	1.0 U 1.0 U	0.5 U	2.0 U	5.0 U	2.0 UJ	1.0 UJ
Vinyl Chloride o-Xylene	0.53 1600	0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U	0.1 U 0.1 U	2.0 U 2.0 U	0.5 U 0.5 U	1.0 U	0.5 U 0.5 U	2.0 U 2.0 U	5.0 U 5.0 U	2.0 UJ 2.0 UJ	1.0 UJ 1.0 UJ
о-жувене	1000	0.2 0	0.1 0	0.1 0	0.1 0	0.2 0	0.1 0	0.1 0	0.1 0	2.0 0	0.5 0	1.0 0	0.5 0	2.0 0	3.0 0	2.0 00	1.0 00
VOLATILES (μg/L)																	
Method SW8260C-SIM																	
Tetrachloroethene	3.3	0.020 U	0.010 U	0.019 UJ2	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.20 U	0.050 U	0.033 U	0.010 U 0.20	0.40 U	0.50 UJ	0.10 U	0.10 U
Vinyl Chloride Acrylonitrile	0.53 0.057	0.020 U 0.050 U	0.010 U NA	0.010 U NA	0.010 U NA	0.020 U 0.050 U	0.010 U NA	0.010 U NA	0.010 U NA	0.27 0.50 U	0.21 NA	0.54 NA	0.20 NA	0.40 U 1.0 U	0.50 UJ NA	0.10 U NA	0.11 J1 NA
7 to Tyto Thaile	0.001	0.000				0.000				0.00 0							
SEMIVOLATILES (µg/L)																	
Method SW8270D																	
Acenaphthene Benzoic Acid	120 2,240	1.0 U 10 U	0.1 U 6 UJ	0.1 U 6 U	0.1 U 6 UJ	1.0 U 10 UJ	0.1 U 6 UJ	0.1 U 6 U	0.1 U 6 U	1.0 U 560	0.5 U 350	1 U 240	0.1 U 81 J	1.1 U 3400	0.1 U 420 J	1 U 420	0.1 U 440
2-Chlorophenol	2,240	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	3 50 3 U	240 5 U	0.9 J1	1.1 U	0.5 U	420 5 U	0.5 U
2,4-Dimethylphenol	660	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	3 J	5 U	0.5 J1	1.1 U	1	5 U	1
bis(2-Ethylhexyl)phthalate	1.2	1.0 U	2 U	2 U	2 U	1.0 U	2 U	2 U	2 U	1.0 U	10 U	20 U	2 U	1.1 U	2 U	20 U	2 U
Fluorene	45	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.5 U	1 U	0.2 J1	1.1 U	0.1 U	1 U	0.1 U
Isophorone 1-Methylnaphthalene	2.3	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	1.0 U 1.0 U	3 U 0.5 U	5 U 1 U	0.5 U 0.1 U	1.1 U 1.1 U	0.5 U 0.1 U	5 U 1 U	2 0.2 J1
2-Methylnaphthalene	2.3 64	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.5 U	1 U	0.1 U	1.1 U	0.1 U	1 U	0.2 J1 0.1 J1
2-Methylphenol	3100	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.4	3 U	5 U	1	1.1 U	1	5 U	1
4-Methylphenol	330	0.8 J1	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	28	42	87	28	25	13	5 U	11
Naphthalene	26	1.0 U	0.3 J1	0.1 U	0.1 J1	1.0 U	0.1 U	0.1 U	0.1 J1	1.0 U	0.5 U	1 U	0.1 J1	1.1 U	0.5 J1	1 U	0.4 J1
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	78	82	350	82	1400	290	87	190
cPAHs (μg/L)																	
Method SW8270D-SIM																	
Benzo(a)anthracene	0.0018	0.010 U	0.0051 U	0.0050 U	0.0048 U	0.010 U	0.0048 U	0.0048 U	0.0053 U	0.010 U	0.025 U	0.050 U	0.019	0.010 U	0.066 J1	0.20	0.0048 UJ
Benzo(b)fluoranthene	0.0018	NA	0.0051 U	0.0050 U	0.0048 U	NA	0.0048 U	0.0048 U	0.0053 U	NA	0.048 J1	0.050 U	0.0049 U	NA NA	0.050 U	0.050 U	0.015 J
Benzo(k)fluoranthene Chrysene	0.0018 0.018	NA 0.010 U	0.0051 U 0.0051 U	0.0050 U 0.0050 U	0.0048 U 0.0048 U	NA 0.010 U	0.0048 U 0.0048 U	0.0048 U 0.0048 U	0.0053 U 0.0053 U	NA 0.010 U	0.025 U 0.025 U	0.050 U 0.050 U	0.0060 J1 0.0049 U	NA 0.010 U	0.050 U 0.076 J1	0.050 U 0.050 U	0.0048 UJ 0.069 J
Dibenz(a,h)anthracene	0.018	0.010 U	0.0031 U	0.0030 U	0.0048 U	0.010 U	0.0048 U	0.0048 U	0.0033 U 0.0043 U	0.010 U	0.025 U	0.040 U	0.0049 U	0.010 U	0.076 J1	0.040 U	0.0039 UJ
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0041 U	0.0040 U	0.0039 U	0.010 U	0.0039 U	0.0038 U	0.0043 U	0.010 U	0.029 J1	0.040 U	0.0039 U	0.010 U	0.040 U	0.040 U	0.0039 UJ
Pyrene	9.8	NA	0.010 U	0.0099 U	0.0097 U	NA	0.0097 U	0.0095 U	0.011 U	NA	0.050 U	0.10 U	0.0098 U	NA	0.10 U	0.10 U	0.015 J, J1
cPAHs TEQ	0.00018	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.008 J1	ND	0.0025 J	ND	0.00736 J	ND	0.002 J
PCBs (μg/L)																	
Method SW8082																	
Aroclor 1248	0.000023	0.010 U	0.0049 U	0.0050 U	0.0050 U	0.010 U	0.0086 J1	0.0048 U	0.0049 U	0.010 UJ	0.0050 U	0.0050 U	0.0047 U	0.010 U	0.0048 UJ	0.0048 UJ	0.0050 UJ
Aroclor 1260	0.000023	0.010 U	0.0049 U	0.0050 U	0.0050 U	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 UJ	0.0050 U	0.0050 U	0.0047 U	0.010 U	0.0048 UJ	0.0049 UJ	0.0050 UJ
Total PCBs	0.000023	ND	ND	ND	ND	ND	0.0086 J1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

ŗ					North and David								0.125-11	0-11 4			
Location:		IT-MW-22	IT-MW-22	IT-MW-22	Northern Prop IT-MW-22	IT-PZ-1	IT-PZ-1	IT-PZ-1	IT-PZ-1	IT-MW-23	IT-MW-23	IT-MW-23	Stabilized S	IT-MW-24	IT-MW-24	IT-MW-24	IT-MW-24
Location.		UA54B/UA54K/	11-10100-22	11-10100-22	11-10100-22	11-1 2-1	11-1 2-1	11-1 2-1	11-1 2-1	11-10100-23	11-10100-25	11-10100-25	11-10100-25	UA54D/UA54M/	11-10100-24	11-10100-24	11-10100-24
		UA55B/UA55J/	6571475/6571476/		6789071/6789072/	UB28B/UB28H/	6571465/6571466/	6686957/6686958/	6788013/6788014/	UA90B/UA90E/	6580632/6580633/	6692722/6692723/	6789065/6789066/	UA55D/UA55L/	6571473/6571474/		6788001/6788002/
Laboratory Sample ID:	Preliminary	UB47B/UB47J	UL18F	6692736/UZ18F	6789073/VJ53I	UB29B/UB29G	UL18A	6686959/UY34A	6788015/VJ03I	UA91B/UA91D	UM54B	6692724/UZ18B	6789067/VJ53G	UB47D/UB47L	UL18E	6692739/UZ18G	6788003/VJ03E
Laboratory Data Package ID:	Cleanup	UA54/UA55/UB47		1316786/UZ18	1335688/VJ53	UB28/UB29	1293989/UL18	1315688/UY34	1335480/VJ03	UA90/UA91	1295735/UM54	1316786/UZ18	1335688/VJ53	UA54/UA55/UB47	1293989/UL18	1316786/UZ18	1335480/VJ03
Sample Date: Tide Level (ft MLLW):	Levels	12/08/2011 3.1	03/07/2012 5.8	6/18/2012 -0.4	9/13/2012 6.9	12/14/2011 9.8	03/07/2012 3.8	6/13/2012 7.8	9/11/2012 2.0	12/12/2011 -1.6	3/14/2012 -0.3	6/18/2012 -0.9	9/13/2012 1.2	12/08/2011 0.3	03/07/2012 4.8	6/18/2012 -0.2	9/11/2012 8.9
				***	***		***						· ·-			**-	
TOTAL PETROLEUM HYDROCARBONS (mg/L) NWTPH-Dx																	
Diesel-Range Organics	0.5	0.10 U	0.069 U	0.029 U	0.030 U	0.10 U	0.068 U	0.029 U	0.029 U	0.10 U	0.076 U	0.200	0.100	0.10 UJ	0.070 U	0.210	0.180
Oil-Range Organics	0.5	0.20 U	0.99 U	0.068 U	0.069 U	0.20 U	0.97 U	0.068 U	0.068 U	0.20 U	1.1 U	0.082 J1	0.076 J1	0.20 UJ	1.0 U	0.300	0.260
TOTAL METALS (µg/L) Method 200.8		0.2	0.40.11	0.22.11	0.22.11	00.11	0.40.11	0.40.11	0.22.11	0.5		0.00 14	4.0	40.4	55.0	40.4	
Antimony		0.3 21,900	0.42 U 21,000	0.33 U 3810	0.33 U	0.2 U 6.7	0.42 U 7.5	0.42 U 6.6	0.33 U 5.2	9.5 77,100	6.0	0.99 J1	1.9	19.4 212,000	55.9 227,000	18.1 125,000	9.0 274,000
Arsenic Barium		16.9	21,000 18.6	3810 12.5	11,500 16.7	9.4	7.5 11.2	14.3	5.2 10.2	133	76,800 116	34,200 56.3	36,100 43.3	212,000	227,000	125,000 87.5	109
Beryllium		0.2 U	0.13 U	0.025 U	0.051 J1	0.2 U	0.13 U	0.13 U	0.025 U	1 U	3.3 U	0.50	0.61	2.2	1.8	0.93 J1	1.1
Cadmium		0.1 U	0.20 U	0.048 U	0.082 U	0.4	0.61	0.48 J1	0.27 J1	1.1	0.52	0.20 J1	0.082 U	2.0	0.28 J1	0.24 U	0.14 J1
Chromium		3	4.6	1.1 J1	2.1	0.5 U	0.60 U	0.60 U	0.50 U	38	39.1	25.3	20.2	36	30.6	9.4 J1	25.8
Copper		27	98.5	2.3	10.7	21.9	23.5	44.3	26.2	1790	837	1600	34.0	1230	288	45.6	481
Lead		0.3	0.55 J1	0.041 J1	0.063 J1	0.1 U	0.080 U	0.080 J1	0.034 U	2.8	1.8	2.0	0.22 J1	33.8	11.3	2.3 J1	9.9
Nickel		1.8	1.3 J1	0.39 J1	0.75 J1	6.0	8.9	9.6	7.6	303	253	88.1	53.8	309	180	219	225
Selenium		0.5 U	0.27 U	0.18 U	0.50 U	0.5 U	0.27 U	0.27 U	0.50 UJ	8.7	4.5	0.80 J1	1.1 J1	18	11.2	12.6	8.7
Silver Thallium		0.2 U 0.2 U	0.098 U 0.15 U	0.10 U 0.029 U	0.10 U 0.15 U	0.2 U 0.2 U	0.098 U 0.15 U	0.098 U 0.15 U	0.10 U 0.15 U	0.5 0.7	0.098 U 0.77	0.10 U 0.40 J1	0.10 U 0.15 U	1.7 0.3	0.098 U 0.15 U	0.50 U 0.15 U	0.10 U 0.15 U
Zinc		7	6.6 J1	0.029 U 1.6 J1	2.7 J1	262	490	264	185	390	225	195	123	610	266	213	187
Ziilo		•	0.0 01	1.0 01	2.7 01	202	400	204	100	000	220	100	120	0.0	200	2.0	101
Method SW7196A (mg/L)																	
Chromium VI	0.00058	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.037	0.018	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.050 U
Mark at 00074704/FDA 4004F (mark)																	
Method SW7470A/EPA 1631E (ng/L) Mercury	12	20.0 U	9.32	1.03	2.64 J1	20.0 U	1.07	2.89	1.90	51.8	8.00 U	3.20 U	245	1750	8.00 U	3.20 U	3.20 U
Welculy	12	20.0 0	9.32	1.03	2.04 51	20.0 0	1.07	2.09	1.50	31.0	8.00 0	3.20 0	243	1730	8.00 0	3.20 0	3.20 0
DISSOLVED METALS (μg/L) Methods 200.8/SW7196A																	
Antimony	150	0.3	0.42 U	0.33 U	0.33 U	0.2 U	0.42 U	0.42 U	0.33 U	10.2	6.6	0.44 J1	2.1	19.8	55.2	17.6	8.6
Arsenic	8	24,000	18,900	4000	10,700	5.3	6.4	4.8	4.7	78,200	80,000	29,000	34,400	209,000	218,000	130,000	285,000
Barium	770 12	14.6 0.2 U	13.5 0.13 U	11.5 0.025 U	15.2	9.0 0.2 U	11.2 0.13 U	14.6 0.13 U	9.8 0.025 U	119 1 U	103	23.9	28.4	157 1.6	158 1.5	59.4 0.62	94.4 0.97
Beryllium Cadmium	0.25	0.2 U 0.1 U	0.13 U 0.20 U	0.025 U 0.048 U	0.028 J1 0.082 U	0.2	0.13	0.13	0.025 U 0.38 J1	0.8	3.3 U 0.20 U	0.25 J1 0.056 J1	0.48 J1 0.082 U	0.8	0.20 U	0.065 J1	0.91 J1
Chromium	74	3	3.1	1.1 J1	2.1	0.5 U	0.60 U	0.60 U	0.50 U	39	39.9	20.0	18.7	34	27.7	7.7	18.5
Copper	8	1.0	1.2 J1	0.42 UJ2	0.62 J1	17.3	21.2	41.3	25.0	2050	417	28.4	19.0	84.7	79.4	27.8	58.0
Lead	2.5	0.1 U	0.080 U	0.034 U	0.034 U	0.1 U	0.080 U	0.14 J1	0.034 U	2.2	1.9	0.21 J1	0.17 J1	2.9	5.5	1.6	3.9
Nickel	8.2	1.9	1.1 J1	0.43 J1	0.72 J1	6.5	8.8	9.3	7.2	297	241	61.3	50.2	212	138	176	190
Selenium	5	0.8	0.27 U	0.18 U	0.50 U	0.5 U	0.27 U	0.27 U	0.50 UJ	9.9	4.9	0.67 J1	1.2 J1	13.4	10.2	10.4	9.7
Silver	22	0.2 U	0.098 U	0.10 U	0.10 U	0.2 U	0.098 U	0.098 U	0.10 U	0.5	0.098 U	0.10 U	0.10 U	0.8	0.098 U	0.10 U	0.10 U
Thallium Zinc	0.47 56	0.2 U 6	0.15 U 4.0 U	0.029 U 1.3 J1	0.15 U 2.4 J1	0.2 U 244	0.15 U 477	0.15 U 258	0.15 U 181	0.5 290	0.25 J1 159	0.029 U 36.8	0.15 U 57.7	0.2 U 50	0.15 U 48.6	0.029 U 33.4	0.15 U 58.4
<u> </u>	JU		4.0 0	1.3 01	2.4 J1	244	4//	230	101	290	133	30.0	31.1	30	40.0	33.4	30.4
Method SW7470A/EPA 1631E (ng/L) Mercury	12	20.0 U	0.00478 J1	0.654	2.90 J1	20.0 U	1.15	2.41	2.27	53.1	8.00 U	3.20 U	137	38.5	8.00 U	3.20 U	3.20 U
CONVENTIONALS (mg/L)																	
Chloride (Method 300.0)		NA	NA	2.4	3.3	NA	NA	3.5 J	3.1	NA	NA	38.7	31.3	NA	NA	44.4	45.2
Nitrate (Method 300.0)		0.1 U	0.050 U	0.050 U	0.050 U	1.2	6.4 J	0.050 UJ	0.050 U	0.1 U	5.0 U	0.050 U	2.5 U	5.0 U	0.050 U	0.050 U	2.5 U
Sulfate (Method 300.0)		6.4	22.4	24.8	9.5	19.5	28.1	42.6 J	40.0	148	124	1.8	25.8	649	515	466	544
Total Dissolved Solids (Method 160.1)		322	361	277	304	151	214	251	204	2360	2470	1350 J	1130	3400	3430	3900	4220
FIELD PARAMETERS																	
Temperature (°C)		16.50	14.61	15.39	18.02	14.65	13.83	14.68	15.31	15.85	15.14	15.17	16.39	15.38	15.34	15.05	17.07
Conductivity (uS/cm)		576	334	279	514	555	179	278	260	6625	2532	1063	1353	4640	2321	5200	4745
Dissolved Oxygen (mg/L)		0.81	0.45	0.45	1.26	0.94	1.13	0.47	0.48	0.71	0.51	0.53	0.22	0.68	0.23	0.25	0.95
pH (SU)		6.25	9.02	7.57	6.81	6.11	6.83	6.09	6.39	11.55	11.91	9.39	9.60	9.84	13.65	12.60	11.64
ORP (mV)		-73.9	-153.9	-158.9	-127	-170.2	127.9	64.1	23.0	14.6	-316.5	-256.1	-194.0	-218.8	-458.4	-468.2	-485
Turbidity (NTU)		5.86	4.80	2.57	11.9	4.47	20.40	8.50	11.7	31.81	25	31.95	7.80	15.10	16.27	12.37	47.3
Ferrous Iron (mg/L)		NA	1.8	2.2	3.6	NA	0.0	1.4	1.8	NA	0.0	2.0	1.2	NA	0.0	0.0	0.0

1			Stabilize	ed Soil Area							South of Stabi	lized Soil Area					
Location:		IT-MW-25	IT-MW-25	IT-MW-25	IT-MW-25	IT-I-200	IT-I-200	IT-I-200	IT-I-200	IT-MW-15	IT-MW-15	IT-MW-15	IT-MW-15	IT-MW-16	IT-MW-16	IT-MW-16	IT-MW-16
Laboratory Sample ID: Laboratory Data Package ID: Sample Date: Tide Level (ft MLLW):	Preliminary Cleanup Levels	UB08B/UB08G/ UB09B/UB09G UB08/UB09 12/13/2011 7.1	6571469/6571470/ UL18C 1293989/UL18 03/07/2012 3.9	6686963/6686964/ 6686965/UY34C 1315688/UY34 6/13/2012 7.9	6788007/6788008/ 6788009/VJ03G 1335480/VJ03 9/11/2012 4.7	UA86B/UA86F/ UA87B/UA87E UA86/UA87 12/12/2011 7.3	6568988/6568989/ UK92A 1293530/UK92 03/06/2012 8.5	6686960/6686961/ 6686962/UY34B 1315688/UY34 6/13/2012 6.6	6787989/6787990/ 6787991/VJ03A 1335480/VJ03 9/11/2012 1.9	UB28A/UB28G/ UB29A/UB29F UB28/UB29 12/14/2011 11.7	6568990/6568991/ UK92B 1293530/UK92 03/06/2012 9.6	6686966/6686967/ 6686968/UY34D 1315688/UY34 6/13/2012 7.1	6787998/6787999/ 6788000/VJ03D 1335480/VJ03 9/11/2012 1.8	UB08A/UB08F/ UB09A/UB09F UB08/UB09 12/13/2011 8.7	6571471/6571472/ UL18D 1293989/UL18 03/07/2012 4.3	6692740/6692741/ 6692742/UZ18H 1316786/UZ18 6/18/2012 1.5	6787995/6787996/ 6787997/VJ03C 1335480/VJ03 9/11/2012 8.7
VOLATILES (µg/L)																	
Method SW8260C																	
Acetone Benzene	110,000 2	5.0 U 0.2 U	3.0 U 0.1 U	30 U 1.0 U	6.0 U 0.2 U	5.0 U 0.2 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	5.0 U 0.2 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	5.0 U 0.2 U	3.0 U 0.1 U	3.0 U 0.1 J1	3.0 U 0.1 U
Benzene 2-Butanone	73,000	0.2 U 5.0 U	0.1 U 1.0 U	1.0 U 10 U	0.2 U 2.0 U	0.2 U 5.0 U	0.1 U 1.0 U	0.1 U 1.0 U	0.1 U 1.0 U	0.2 U 5.0 U	0.1 U 1.0 U	0.1 U 1.0 U	0.1 U 1.0 U	0.2 U 5.0 U	0.1 U 1.0 U	0.1 J1 1.0 U	0.1 U 1.0 U
1,1-Dichloroethane	33	0.6	0.2 J1	1.0 U	0.4 J1	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.3 J1	0.3 J1
1,1-Dichloroethene	3.2	0.2 U	0.1 U	1.0 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 J1	0.1 U
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	130 940	1.4 0.2 U	0.7 0.1 U	8.5 1.0 U	7.0 0.5	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	1.0 0.2 U	0.3 0.1 U	2.8 0.4	3.3 0.5
Methylene Chloride	230	0.5 U	0.2 U	2.0 U	0.4 U	0.5 U	0.2 U	0.2 U	0.1 U	0.5 U	0.2 U	0.2 U	0.1 U	0.5 U	0.2 U	0.4 0.2 U	0.2 U
Tetrachloroethene	3.3	0.2 U	0.3	1.0 U	0.2 U	0.2 U	0.1 U	0.3	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 J1	0.1 J1	0.1 J1
Toluene	1300	0.2 U	0.1 U	1.0 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 J	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Trichloroethene 1,2,4-Trimethylbenzene	1.4 303	0.2 U 0.2 U	0.3 0.1 U	1.0 U 1.0 U	0.3 J1 0.3 J1	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 0.2 U	0.2 J1 0.1 U	0.2 0.1 U	0.2 0.1 U
1,3,5-Trimethylbenzene	303	0.2 U	0.1 U	1.0 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Vinyl Chloride	0.53	0.4	0.1 U	1.6 J1	0.9 J	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.3	0.1 U	0.8	0.1 U
o-Xylene	1600	0.2	0.1 U	1.0 U	0.4 J1	0.2 U	0.1 U	0.1 U	0.1 U	0.1 J	0.1 U	0.1 J1	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
VOLATILES (μg/L) Method SW8260C-SIM																	
Tetrachloroethene	3.3	0.028	0.30	0.17	0.12	0.020 U	0.010 U	0.011 J1	0.010 U	0.020 U	0.010 U	0.013 J1	0.010 U	0.20	0.18	0.18 U	0.15
Vinyl Chloride Acrylonitrile	0.53 0.057	0.33 0.050 U	0.023 NA	2.0 NA	1.1 NA	0.020 U 0.050 U	0.010 U NA	0.010 U NA	0.020 NA	0.020 U 0.050 U	0.010 U NA	0.010 U NA	0.010 U NA	0.25 0.050 U	0.051 NA	0.80 NA	0.035 NA
Actyloritalie	0.037	0.030 0	INA	INA	INA	0.030 0	INA	NA.	INA	0.030 0	INA.	INA.	INA	0.030 0	NA.	NA.	INA
SEMIVOLATILES (µg/L)																	
Method SW8270D Acenaphthene	120	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.2 J1	0.1 U
Benzoic Acid	2,240	1.0 UJ	6 UJ	6 U	6 U	1.0 U	6 UJ	6 U	0.09 U	1.0 UJ	6 UJ	6 U	0.1 U 6 U	1.0 UJ	6 UJ	6 U	6 U
2-Chlorophenol		1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol	660	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
bis(2-Ethylhexyl)phthalate Fluorene	1.2 45	1.0 U 1.0 U	2 U 0.1 U	2 U 0.1 U	2 U 0.1 U	1.0 U 1.0 U	2 U 0.1 U	2 U 0.1 U	2 U 0.09 U	1.0 U 1.0 U	2 U 0.1 U	2 U 0.1 U	2 U 0.1 U	1.0 U 1.0 U	2 U 0.1 U	2 U 0.09 U	2 U 0.1 U
Isophorone		1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.1 U	1.0 U	0.5 U	0.5 U	0.5 U
1-Methylnaphthalene	2.3	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U
2-Methylnaphthalene	64 3100	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U 0.5 U
2-Methylphenol 4-Methylphenol	3100	1.0 U 1.0 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1.0 U 1.0 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1.0 U 1.0 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1.0 U 1.0 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Naphthalene	26	1.0 U	0.1 U	0.1 J1	0.1 U	1.0 U	0.1 U	0.1 U	0.1 J1	1.0 U	0.1 U	0.1 J1	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
cPAHs (μg/L) Method SW8270D-SIM																	
Benzo(a)anthracene	0.0018	0.010 U	0.0070 J1	0.0080 J1	0.012	0.010 U	0.0049 U	0.010 U	0.0047 U	0.010 U	0.0053 U	0.0048 U	0.0047 U	0.010 U	0.0050 U	0.0047 U	0.0048 U
Benzo(b)fluoranthene	0.0018	NA	0.0049 U	0.0051 U	0.0049 U	NA	0.0049 U	0.010 U	0.0047 U	NA	0.0053 U	0.0048 U	0.0047 U	NA	0.0050 U	0.0047 U	0.0048 U
Benzo(k)fluoranthene	0.0018	NA 0.010 H	0.0049 U	0.0051 U	0.0049 U	NA 0.010 H	0.0049 U	0.010 U	0.0047 U	NA 0.010 H	0.0053 U	0.0048 U	0.0047 U	NA 0.010 II	0.0050 U	0.0047 U	0.0048 U
Chrysene Dibenz(a,h)anthracene	0.018 0.0018	0.010 U 0.010 U	0.0049 U 0.0039 U	0.0051 U 0.0041 U	0.0049 U 0.0040 J1	0.010 U 0.010 U	0.0049 U 0.0039 U	0.010 U 0.0080 U	0.0047 U 0.0038 U	0.010 U 0.010 U	0.0053 U 0.0042 U	0.0048 U 0.0039 U	0.0047 U 0.0038 U	0.010 U 0.010 U	0.0050 U 0.0040 U	0.0047 U 0.0038 U	0.0048 U 0.0039 U
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0039 U	0.0041 U	0.0039 U	0.010 U	0.0039 U	0.0080 U	0.0038 U	0.010 U	0.0042 U	0.0039 U	0.0038 U	0.010 U	0.0040 U	0.0038 U	0.0039 U
Pyrene	9.8	NA	0.0098 U	0.010 U	0.0097 U	NA	0.0098 U	0.020 U	0.0094 U	NA	0.011 U	0.0096 U	0.0094 U	NA	0.010 U	0.0094 U	0.0097 U
cPAHs TEQ	0.00018	ND	0.0007 J1	0.0008 J	0.0016 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs (μg/L) Method SW8082																	
Aroclor 1248 Aroclor 1260	0.000023 0.000023	0.010 U 0.010 U	0.0048 U 0.017	0.0050 U 0.024	0.0050 U 0.011	0.010 U 0.010 U	0.0048 U 0.0048 U	0.0051 U 0.0051 U	0.0048 U 0.0048 U	0.010 U 0.010 U	0.0049 U 0.0049 U	0.0047 U 0.0047 U	0.0048 U 0.0048 U	0.010 U 0.010 U	0.0049 U 0.0049 U	0.0048 U 0.0048 U	0.0048 U 0.0048 U
Total PCBs	0.000023	ND	0.017	0.024	0.011	ND	ND	ND	ND	ND	0.0049 0 ND	ND	ND	ND	0.0049 U ND	ND	ND

ĺ			Stabilize	ed Soil Area							South of Stabi	lized Soil Area					
Location:		IT-MW-25	IT-MW-25	IT-MW-25	IT-MW-25	IT-I-200	IT-I-200	IT-I-200	IT-I-200	IT-MW-15	IT-MW-15	IT-MW-15	IT-MW-15	IT-MW-16	IT-MW-16	IT-MW-16	IT-MW-16
Laboratory Sample ID: Laboratory Data Package ID: Sample Date: Tide Level (ft MLLW):	Preliminary Cleanup Levels	UB08B/UB08G/ UB09B/UB09G UB08/UB09 12/13/2011 7.1	6571469/6571470/ UL18C 1293989/UL18 03/07/2012 3.9	6686963/6686964/ 6686965/UY34C 1315688/UY34 6/13/2012 7.9	6788007/6788008/ 6788009/VJ03G 1335480/VJ03 9/11/2012 4.7	UA86B/UA86F/ UA87B/UA87E UA86/UA87 12/12/2011 7.3	6568988/6568989/ UK92A 1293530/UK92 03/06/2012 8.5	6686960/6686961/ 6686962/UY34B 1315688/UY34 6/13/2012 6.6	6787989/6787990/ 6787991/VJ03A 1335480/VJ03 9/11/2012 1.9	UB28A/UB28G/ UB29A/UB29F UB28/UB29 12/14/2011 11.7	6568990/6568991/ UK92B 1293530/UK92 03/06/2012 9.6	6686966/6686967/ 6686968/UY34D 1315688/UY34 6/13/2012 7.1	6787998/6787999/ 6788000/VJ03D 1335480/VJ03 9/11/2012 1.8	UB08A/UB08F/ UB09A/UB09F UB08/UB09 12/13/2011 8.7	6571471/6571472/ UL18D 1293989/UL18 03/07/2012 4.3	6692740/6692741/ 6692742/UZ18H 1316786/UZ18 6/18/2012 1.5	6787995/6787996/ 6787997/VJ03C 1335480/VJ03 9/11/2012 8.7
TOTAL PETROLEUM HYDROCARBONS (mg/L) NWTPH-Dx						242.11											
Diesel-Range Organics Oil-Range Organics	0.5 0.5	0.10 U 0.20 U	0.067 U 0.95 U	0.028 U 0.066 U	0.031 U 0.073 U	0.10 U 0.20 U	0.067 U 0.95 U	0.041 J1 0.074 U	0.029 U 0.068 U	0.10 U 0.20 U	0.066 U 0.94 U	0.029 U 0.067 U	0.028 U 0.066 U	0.10 U 0.20 U	0.072 U 1.0 U	0.031 U 0.072 U	0.029 U 0.068 U
TOTAL METALS (μg/L) Method 200.8																	
Antimony		0.5	12.0	0.80 J1	0.61 J1	0.2 U	0.42 U	0.42 U	0.33 U	0.2 U	0.42 U	0.42 U	0.33 U	0.2 U	0.42 U	0.33 U	0.33 U
Arsenic		3300	3680	11,400	38,700	1.1	0.95 U	1.8 J1	6.2	43.3	17.9	52.2	47.4	17.7	5.1	2.3	1070
Barium		25.2	23.9	22.1	37.9	2.4	1.4 J1	11.3	14.2 J	19.0	14.4	15.4	24.8	59.3	57.7	43.1	18.6
Beryllium		0.2 U 0.1	0.25 J1	0.27 J1	0.31 J1	0.2 U	0.13 U	0.13 U	0.025 U	0.2 U	0.13 U	0.13 U	0.025 U	0.2 U	0.13 U	0.025 U	0.042 J1
Cadmium Chromium		1.5	0.51 3.7	0.40 J1 18.1	0.79 13.4	0.1 U 0.5 U	0.20 U 0.60 U	0.20 U 0.60 U	0.082 U 0.50 U	0.1 U 1 U	0.20 U 0.60 U	0.20 U 1.2 J1	0.082 U 0.50 U	0.1 U 0.5 U	0.20 U 0.60 U	0.11 J1 0.70 J1	0.12 J1 1.2 J1
Copper		19.3	1160	327	449	0.5 U	0.38 U	0.38 U	0.52 J1	1.0	0.64 J1	0.50 J1	1.1 J1	7.6	8.4	7.5	21.8
Lead		0.1	3.8	2.9	9.2	0.1 U	0.080 U	0.080 U	0.034 U	0.1 U	0.080 U	0.080 U	0.13 UJ2	0.1 U	0.080 U	0.034 U	0.049 UJ2
Nickel		7.4	8.2	7.7	11.3	2.5	0.93 J1	3.2	2.7	3.7	2.3	1.8 J1	5.1	6.1	4.1	7.7	7.3
Selenium		0.9	1.9 J1	0.56 J1	0.69 J, J1	0.5 U	0.27 U	0.27 U	0.50 U	0.5 U	0.27 U	0.27 U	0.50 U	0.6	0.27 U	0.20 J1	0.50 U
Silver Thallium		0.2 U 0.2 U	0.098 U 0.15 U	0.098 U 0.15 U	0.10 U 0.26 J1	0.2 U 0.2 U	0.098 U 0.15 U	0.098 U 0.15 U	0.10 U 0.15 U	0.2 U 0.2 U	0.098 U 0.15 U	0.098 U 0.15 U	0.10 U 0.15 U	0.2 U 0.2 U	0.098 U 0.15 U	0.10 U 0.029 U	0.10 U 0.15 U
Zinc		17	217	90.6	199	4 U	4.0 U	4.0 U	2.4 UJ2	15	15.5	24.8	16.8	62	107	48.8	56.4
Method SW7196A (mg/L) Chromium VI	0.00058	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 UJ	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Method SW7470A/EPA 1631E (ng/L) Mercury	12	20.0 U	748	90.4	3.20 U	20.0 U	1.67 J1	0.531	1.60 U	20.0 U	2.23	0.880	2.80	20.0 U	5.72 J1	2.47 J1	22.9
DISSOLVED METALS (μg/L) Methods 200.8/SW7196A																	
Antimony	150	0.6	12.3	0.77 J1	0.33 U	0.2 U	0.42 U	0.42 U	0.33 U	0.2 U	0.42 U	0.42 U	0.33 U	0.2 U	0.42 U	0.33 U	0.33 U
Arsenic Barium	8 770	3290 25.3	3910 14.6	13,100 19.6	34,900 17.6	0.7 2.0	0.95 U 1.5 J1	0.95 U 9.3	5.6 13.0	53.3 17.5	20.0 16.1	53.2 15.7	76.8 19.1	17.1 59.1	4.2 60.8	5.0 38.9	1040 18.2
Beryllium	12	0.2 U	0.19 J1	0.29 J1	0.21 J1	0.2 U	0.13 U	9.3 0.13 U	0.025 U	0.2 U	0.13 U	0.13 U	0.025 U	0.2 U	0.13 U	0.038 J1	0.025 U
Cadmium	0.25	0.1 U	0.20 U	0.20 U	0.082 U	0.1 U	0.2 U	0.20 U	0.082 U	0.1 U	0.20 U	0.20 U	0.082 U	0.1 U	0.20 U	0.11 J1	0.082 U
Chromium	74	1.3	3.1	21.0	14.2	0.9	0.60 U	0.60 U	0.50 U	0.6	0.60 U	1.1 J1	0.50 U	0.5 U	0.60 U	1.4 J1	1.2 J1
Copper	8	3.0	506	91.1	12.3	1.7	0.38 U	0.38 U	0.40 U	1.3	0.44 J1	0.38 U	0.40 U	8.0	8.4	11.5	18.7
Lead Nickel	2.5 8.2	0.1 U 6.6	1.4 7.5	0.76 J1 8.2	0.26 J1 9.9	0.1 U 2.4	0.080 U 0.92 J1	0.088 J1 3.0	0.034 U 3.3	0.1 U 2.5	0.11 J1 2.5	0.080 U 2.1	0.034 U 2.8	0.1 U 6.1	0.080 U 4.0	0.034 U 9.1	0.038 UJ2 7.3
Selenium	5	0.8	2.1	0.89 J1	0.66 J, J1	0.5 U	0.92 J1 0.27 U	0.27 U	0.50 U	0.5 U	0.27 U	0.27 U	0.50 U	0.6	0.27 U	0.23 J1	0.50 U
Silver	22	0.2 U	0.098 U	0.098 U	0.10 U	0.2 U	0.098 U	0.098 U	0.10 U	0.2 U	0.098 U	0.098 U	0.10 U	0.2 U	0.098 U	0.10 U	0.10 U
Thallium	0.47	0.2 U	<u>0.15</u> U	0.15 U	0.15 U	0.2 U	0.15 U	0.15 U	0.15 U	0.2 U	0.15 U	0.15 U	0.15 U	0.2 U	<u>0.15</u> U	0.029 U	0.15 U
Zinc	56	15	64.0	62.8	40.4	4 U	4.0 U	4.1 J1	3.9 UJ2	13	18.9	25.4	20.0	62	109	55.2	55.8
Method SW7470A/EPA 1631E (ng/L) Mercury	12	20.0 U	274	19.3	3.20 U	20.0 U	0.946	0.722	2.42 J1	20.0 U	1.67	0.673	2.27	20.0 U	3.20 U	0.223	9.96
CONVENTIONALS (mg/L)																	
Chloride (Method 300.0)		NA	NA	10.5	15.1	NA	NA	1.8	13.8	NA	NA	1.7	2.3	NA	NA	12.7	5.7
Nitrate (Method 300.0)		0.1 U	0.43	0.050 UJ	0.25 U	0.1 U	0.050 U	0.085 J, J1	0.050 U	0.1 U	0.30	0.050 UJ	0.12	7.6	8.2	2.3	3.2
Sulfate (Method 300.0)		77.1	156	120	97.9	3.9	4.2	31.4	31.6	6.0	7.6	1.5	66.2	141	153	140	65.6
Total Dissolved Solids (Method 160.1)		579	579	667	673	72.0	45.5	248	328	298	317	361	318	614	336	544	485
FIELD PARAMETERS																	
Temperature (°C)		15.98	13.16	15.17	17.08	15.21	12.32	14.8	14.87	14.83	14.05	14.99	13.82	15.93	14.18	15.02	20.10
Conductivity (uS/cm)		1718	490	479	613	183	61	314	625	1279	394	349	473	1853	597	557	634
Dissolved Oxygen (mg/L)		0.91	0.63	0.50	0.34	0.93	0.86	0.66	8.34	0.92	0.39	0.42	1.14	1.15	0.71	0.44	0.64
pH (SU) ORP (mV)		6.23 -19.0	10.53 -72.6	7.98 -142.7	7.10 -131.1	5.65 29.7	6.61 321.3	6.25 -25.1	6.38 -98	6.46 -201.2	6.84 354.4	5.97 -3.9	6.08 -82	6.50 30.4	8.21 17.4	6.83 -36.6	6.31 25
Turbidity (NTU)		2.73	-72.6 27.65	-142.7 12.11	-131.1 5.37	66.69	10.64	97.36	29.0	4.38	354.4 29.11	-3.9 8.50	-82 91.2	2.45	2.67	3.98	53.7
Ferrous Iron (mg/L)		NA	0.8	3.4	2.4	NA	0.0	1.8	4.8	NA	1.2	2.2	4.0	NA	1.0	0.8	0.0
· · ·																	•

TABLE 12 Page 7 of 8

MONITORING WELLS - GROUNDWATER ANALYTICAL RESULTS NORTH OF FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

			Courtle of Oct.	lized Coil Assa	
1		IT MM/ 40	South of Stabi		IT MIN 40
Location:		IT-MW-18	IT-MW-18	IT-MW-18	IT-MW-18
		UA45H/UA54Q/			
		UA55H/UA55P/	6580636/6580637/	6692731/6692732/	6788045/6788046/
Laboratory Sample ID:	Preliminary	UB47H/UB47P	UM54D	6692733/UZ18E	6788047/VJ32F
Laboratory Data Package ID:	Cleanup	UA45/UA55/UB47	1295735/UM54	1316786/UZ18	1335483/VJ32
Sample Date:	Levels	12/08/2011	3/14/2012	6/18/2012	9/12/2012
Tide Level (ft MLLW):		-0.3	-0.3	-1.3	0.9
VOLATILES (μg/L)					
Method SW8260C					
Acetone	110,000	5.0 U	3.0 U	15 U	3.0 U
Benzene	2	0.2 U	0.1 U	0.5 U	0.1 U
2-Butanone	73,000	5.0 UJ	1.0 U	5.0 U	1.0 U
1,1-Dichloroethane	33	0.2 U	0.1 U	0.5 U	0.1 U
1,1-Dichloroethene	3.2	0.2 U	0.1 U	0.5 U	0.1 U
cis-1,2-Dichloroethene	130	1.0	0.3	0.7 J1	0.6
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.5 U	0.1 U
Methylene Chloride	230	0.5 U	0.2 U	1.0 U	0.2 U
Tetrachloroethene	3.3	0.2 U	0.1 U	0.5 U	0.1 U
Toluene	1300	0.2 U	0.1 U	0.5 U	0.1 U
Trichloroethene	1.4	0.2 U	0.1 U	0.5 U	0.1 U
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.5 U	0.1 U
1,3,5-Trimethylbenzene	303	0.2 U	0.1 U	0.5 U	0.1 U
Vinyl Chloride	0.53	0.8	0.3	0.5 J1	0.2
o-Xylene	1600	0.2 U	0.1 U	0.5 U	0.1 U
VOLATILES (μg/L)					
Method SW8260C-SIM					
Tetrachloroethene	3.3	0.020 U	0.010 U	0.013 UJ2	0.010 U
Vinyl Chloride	0.53	0.87	0.20	0.53	0.27
Acrylonitrile	0.057	0.059 M	NA	NA	NA
SEMIVOLATILES (µg/L)					
Method SW8270D					
Acenaphthene	120	1.0 U	0.09 U	0.09 U	0.1 U
Benzoic Acid	2,240	10 U	6 UJ	6 U	6 U
2-Chlorophenol		1.0 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol	660	1.0 U	0.5 U	0.5 U	0.5 U
bis(2-Ethylhexyl)phthalate	1.2	1.8	2 U	2 U	2 U
Fluorene	45	1.0 U	0.09 U	0.09 U	0.1 U
Isophorone		1.0 U	0.5 U	0.5 U	0.5 U
1-Methylnaphthalene	2.3	1.0 U	0.09 U	0.09 U	0.1 U
2-Methylnaphthalene	64	1.0 U	0.09 U	0.09 U	0.1 U
2-Methylphenol	3100	1.0 U	0.5 U	0.5 U	0.5 U
4-Methylphenol	330	1.0 U	0.5 U	0.5 U	0.5 U
Naphthalene	26	1.0 U	0.1 J	0.09 U	0.2 J1
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U
aDALIa (confl.)					
cPAHs (µg/L) Method SW8270D-SIM					
Benzo(a)anthracene	0.0018	0.010 U	0.0049 U	0.0048 UJ	0.0049 U
Benzo(a)anthracerie Benzo(b)fluoranthene	0.0018	0.010 U NA	0.0049 U	0.0048 UJ	0.0049 U
Benzo(k)fluoranthene	0.0018	NA NA	0.0049 U	0.0048 UJ	0.0049 U
Chrysene	0.0018	0.010 U	0.0049 U	0.0048 UJ	0.0049 U
Dibenz(a,h)anthracene	0.0018	0.010 U	0.0049 U	0.0048 UJ	0.0049 U
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0040 U	0.0038 UJ	0.0039 U
Pyrene	9.8	0.010 G NA	0.0099 U	0.0095 UJ	0.0039 U
cPAHs TEQ	0.00018	ND ND	0.0099 U ND	0.0093 03 ND	0.0098 C ND
PCBs (µg/L)					
Method SW8082	0.000000	0.040.11	0.0040.11	0.0047.11	0.0040.11
Aroclor 1248	0.000023	0.010 U	0.0048 U	0.0047 U	0.0048 U
Aroclor 1260	0.000023 0.000023	0.010 U	0.0048 U	0.0047 U	0.0048 U
Total PCBs	0.000023	ND	ND	ND	ND

4/11/2014 P:\025\190\002\FileRm\R\RI Rpt\Final RI\Tables\Final RI Rpt_Tb 12, 13, 14 GW Analytical Results_Sorted by Area.xlsx Tbl 12 North of Slip 5 DETECTS

TABLE 12 Page 8 of 8 MONITORING WELLS - GROUNDWATER ANALYTICAL RESULTS

NORTH OF FORMER SLIP 5 AREA **BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON**

			0 1 0 1	''' 1 O-''I A	
Location:		IT-MW-18	IT-MW-18	IT-MW-18	IT-MW-18
Location:		UA45H/UA54Q/	11-10100-18	11-1/1//-18	11-10100-18
		UA55H/UA55P/	6580636/6580637/	6692731/6692732/	6788045/6788046/
Laboratory Sample ID:	Preliminary	UB47H/UB47P	UM54D	6692733/UZ18E	6788047/VJ32F
Laboratory Data Package ID:	Cleanup	UA45/UA55/UB47	1295735/UM54	1316786/UZ18	1335483/VJ32
Sample Date:	Levels	12/08/2011	3/14/2012	6/18/2012	9/12/2012
Tide Level (ft MLLW):		-0.3	-0.3	-1.3	0.9
TOTAL PETROLEUM					
HYDROCARBONS (mg/L)					
NWTPH-Dx					
Diesel-Range Organics	0.5	0.10 U	0.069 U	0.028 U	0.029 U
Oil-Range Organics	0.5	0.20 U	0.99 U	0.066 U	0.067 U
TOTAL METALS (µg/L)					
Method 200.8					
Antimony		0.2 U	0.42 U	0.33 U	0.33 U
Arsenic		3600	2490	4890	6610
Barium		12.9	14.4	14.0	11.0
Beryllium		0.2 U	0.13 U	0.11 J1	0.15 J1
Cadmium		0.1 U	0.20 U	0.048 U	0.082 U
Chromium		2.1	4.4	6.8	7.1
		8.2	6.4	6.2	13.0
Copper		0.2	0.4 0.64 J1	0.56 J1	0.78 J1
Lead					
Nickel		3.4	1.7 J1	3.0	2.8
Selenium		0.5 U	0.27 U	0.23 J1	0.50 U
Silver		0.2 U	0.098 U	0.10 U	0.10 U
Thallium		0.2 U	0.15 U	0.029 U	0.15 U
Zinc		122	75.0	56.4	31.3
Method SW7196A (mg/L)					
Chromium VI	0.00058	0.010 U	0.010 U	0.010 U	0.010 U
Method SW7470A/EPA 1631E (ng/L)					
Mercury	12	20.0 U	5.60	9.25 J1	10.7
Wercury	12	20.0 0	3.00	3.23 01	10.7
DISSOLVED METALS (µg/L)					
Methods 200.8/SW7196A					
Antimony	150	0.2 U	0.42 U	0.33 U	0.33 U
Arsenic	8	3870	2980	5770	6650
Barium	770	12.2	9.9	12.7	12.4
Beryllium	12	0.2 U	0.13 U	0.079 J1	0.10 J1
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U
Chromium	74	2	3.6	7.0	6.7
Copper	8	0.8	0.38 U	0.30 J1	0.91 UJ2
Lead	2.5	0.1 U	0.080 U	0.038 J1	0.080 J1
Nickel	8.2	3.3	1.3 J1	3.1	2.6
Selenium	5	0.5 U	0.27 U	0.19 J1	0.50 U
Silver	22	0.2 U	0.098 U	0.10 U	0.10 U
Thallium	0.47	0.2 U	0.15 U	0.029 U	0.15 U
Zinc	56	126	58.7	58.4	17.6
			<u></u>	<u> </u>	
Method SW7470A/EPA 1631E (ng/L)	12	20.0.11	4.60 14	2 20 11	3.20 U
Mercury	12	20.0 U	1.68 J1	3.20 U	3.20 0
CONVENTIONALS (mg/L)					
Chloride (Method 300.0)		NA	NA	6.7	7.3
Nitrate (Method 300.0)		0.3	0.050 U	0.050 U	0.050 U
Sulfate (Method 300.0)		1.4	49.9	32.2	43.5
Total Dissolved Solids (Method 160.1)		360	580	480 J	510
FIELD PARAMETERS					
Temperature (°C)		15.26	13.04	14.49	16.08
Conductivity (uS/cm)		634	847	580	607
		0.69	0.50	0.53	0.39
Dissolved Oxygen (mg/L)		0.00			
pH (SU)		6.23	5.30	7.04	7.22
pH (SU) ORP (mV)		-65.2	-158.3	-108.8	-127.2
pH (SU)	 				

TEQ = Toxic Equivalent Concentration ng/L = nanograms per liter μg/L = micrograms per liter mg/L = milligrams per liter mV = millivolts SU = standard unit uS/cm = milliSiemens per centimeter C = Centigrade ND = Not Detected. NA = Not Applicable. SIM = Selected Ion Monitoring J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate
- and less than the reporting limit, but equal to or greater than the detection limit.
- M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.
- U = Indicates the compound was undetected at the reported concentration.
- UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.
- UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.
- Box = Exceeds preliminary cleanup level

PCBs = polychlorinated biphenyls

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Bold = Detected compound

ſ							Western Prope	rty Boundary					
Location:		IT-I-205	IT-I-205	IT-I-205	IT-I-205	IT-MW-9	IT-MW-9	IT-MW-9	IT-MW-9	IT-MW-10	IT-MW-10	IT-MW-10	IT-MW-10
		UA27F/UA27N/				UA27E/UA27M/				UA27G/UA27O/			
		UA28F/UA28M/	6582521/6582522/	6690480/6690481/	6789062/6789063/	UA28E/UA28L/	6577007/6577008/	6690471/6690472/	6789056/6789057/	UA28G/UA28N/	65825256582526/	6689140/6689141/	6789059/6789060/
Laboratory Sample ID:	Preliminary	UB45F/UB45M	UM84B	6690482/UZ00D	6789064/VJ53F	UB45E/UB45L	UM00D	6690473/UZ00A	6789058/VJ53D	UB45G/UB45N	UM84D	6689142/UY55D	6789061/VJ53E
Laboratory Data Package ID:	Cleanup	UA27/UA28/UB45	1296009/UM84	1316296/UZ00	1335688/VJ53	UA27/UA28/UB45	1295065/UM00	1316296/UZ00	1335688/VJ53	UA27/UA28/UB45	1296009/UM84	1316071/UY55	1335688/VJ53
Sample Date:	Levels	12/06/2011	3/15/2012	6/15/2012	9/13/2012	12/06/2011	03/12/2012	6/15/2012	9/13/2012	12/06/2011	3/15/2012	6/14/2012	9/13/2012
Tide Level (ft MLLW):		0.6	0.6	0.2	0.8	0.4	-0.5	0.4	0.7	0.7	0.1	0.9	0.7
VOLATILES (μg/L)													
Method SW8260C													
Acetone	110,000	2.6 UJ2	3.0 U	3.0 U	3.0 U	1.7 UJ2	3.0 U	3.0 U	3.0 U	2.8 UJ2	3.0 U	3.0 U	7.1
Benzene	2	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Bromodichloromethane	17	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 J1	0.1 U	0.1 U
Carbon Disulfide	3900	0.2 U	0.4 U	0.4 U	0.4 U	0.2 U	0.4 U	0.4 U	0.4 U	0.2 U	0.4 U	0.4 U	0.4 U
Chloroform	9.4	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	1.9	4.5	0.1 U	0.1 U
1,2-Dichlorobenzene	440	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	33	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.1 J1	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.2 J1
4-Isopropyltoluene	220	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.2 J1
Methylene Chloride Naphthalene	230 26	0.5 U 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.5 U 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.5 U 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 J1
Toluene	1300	0.5 U 0.2 U	0.1 U	0.1 U	0.1 U 0.1 U	0.5 U 0.2 U	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.5 U 0.2 U	0.1 U	0.1 U 0.2	2.0
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.2 0.1 U	2.0 0.1 U
m,p-Xylene	1300	0.2 U	0.1 U	0.1 U	0.1 J1	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
,	.000	0	00	3 3	• • • • • • • • • • • • • • • • • • • •	5	0	J J	0 0	0	o o	0 0	3 3
VOLATILES (μg/L)													
Method SW8260C-SIM													
Tetrachloroethene	3.3	0.020 U	0.010 U	0.012 UJ2	0.010 U	0.020 U	0.012 J1	0.021 U	0.018 J1	0.020 U	0.010 U	0.014 J1	0.010 U
Vinyl Chloride	0.53	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.011 J1
SEMIVOLATILES (μg/L)													
Method SW8270D													
Acenaphthene	120	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 J1	0.2 J1
Chrysene	0.018	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
2,4-Dichlorophenol	1.2	5.0 U 1.0 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	5.0 U 1.0 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	5.0 U 1.0 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U
bis(2-Ethylhexyl)phthalate Fluoranthene	1.2	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
Fluorene	45	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
1-Methylnaphthalene	2.3	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
4-Methylphenol	330	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.8	0.5 U	71	44
Naphthalene	26	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.2 J1	0.1 J1	0.1 U	1.0 U	0.1 U	0.1 J1	0.1 J1
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
cPAHs (µg/L)													
Method SW8270D-SIM	0.0040	0.040.11	0.0040 11	0.0040.11	0.0040.11	0.040.11	0.0040.11	0.0040.11	0.0040.11	0.040.11	0.0000 14	0.0040.11	0.0050
Benzo(a)anthracene	0.0018 0.00018	0.010 U 0.010 U	0.0049 U 0.0049 U	0.0049 U 0.0049 U	0.0048 U 0.0048 U	0.010 U 0.010 U	0.0048 U 0.0048 U	0.0048 U 0.0048 U	0.0049 U 0.0049 U	0.012 U 0.012 U	0.0080 J1 0.010	0.0049 U 0.0049 U	0.0050 J1 0.0048 U
Benzo(a)pyrene Benzo(b)fluoranthene	0.00018	0.010 U NA	0.0049 U 0.0049 U	0.0049 U 0.0049 U	0.0048 U 0.0048 U	0.010 U NA	0.0048 U 0.0048 U	0.0048 U 0.0048 U	0.0049 U 0.0049 U	0.012 U NA	0.010	0.0049 U 0.0049 U	0.0048 U 0.0048 U
Benzo(k)fluoranthene	0.0018	NA NA	0.0049 U	0.0049 U	0.0048 U	NA NA	0.0048 U	0.0048 U	0.0049 U	NA NA	0.0050 J1	0.0049 U	0.0048 U
Total Benzofluoranthenes	0.0018	0.020 UJ	0.0049 0 NA	0.0049 G NA	0.0048	0.020 UJ	0.0048 0 NA	0.0048 G NA	0.0049 G NA	0.024 UJ	0.016 J	0.0049 G NA	0.0046 G NA
Chrysene	0.018	0.010 U	0.0049 U	0.0049 U	0.0048 U	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.012 U	0.0090 J1	0.0049 U	0.0048 U
Dibenz(a,h)anthracene	0.0018	0.010 U	0.0039 U	0.0039 U	0.0038 U	0.010 U	0.0038 U	0.0038 U	0.0039 U	0.012 U	0.0039 U	0.0039 U	0.0038 U
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0039 U	0.0039 U	0.0038 U	0.010 U	0.0038 U	0.0038 U	0.0039 U	0.012 U	0.0060 J1	0.0039 U	0.0038 U
Pyrene	9.8	NA	0.0098 U	0.0098 U	0.0095 U	NA	0.0095 U	0.0096 U	0.0098 U	NA	0.016 J1	0.0099 U	0.0096 U
cPAH TEQ	0.00018	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0131 J	ND	0.0005 J
PCBs (µg/L)													
Method SW8082													
Aroclor 1248	0.000023	0.010 U	0.0048 U	0.0048 U	0.0048 U	0.010 U	0.0049 U	0.0047 U	0.0047 U	0.010 U	0.0048 U	0.0048 U	0.0047 U
Aroclor 1254	0.0000055	0.010 U	0.0048 U	0.0048 U	0.0048 U	0.010 U	0.0049 U	0.0047 U	0.0047 U	0.010 U	0.0048 U	0.0048_U	0.0047 U
Aroclor 1260	0.000023	0.010 U	0.0048 U	0.0048 U	0.0048 U	0.010 U	0.0049 U	0.0047 U	0.0047 U	0.010 U	0.0048 U	0.0065 J1	0.0060 J1
Total PCBs	0.000023	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060 J
l													

		<u> </u>					Western Prope	erty Poundary					
Location:		IT-I-205	IT-I-205	IT-I-205	IT-I-205	IT-MW-9	IT-MW-9	IT-MW-9	IT-MW-9	IT-MW-10	IT-MW-10	IT-MW-10	IT-MW-10
Location.		UA27F/UA27N/	11-1-205	11-1-205	11-1-205	UA27E/UA27M/	11-10100-9	11-10100-9	11-10100-9	UA27G/UA27O/	11-10100-10	11-10100-10	11-10100-10
		UA27F/UA27N/ UA28F/UA28M/	6582521/6582522/	6690480/6690481/	6789062/6789063/		6577007/6577008/	6690471/6690472/	6789056/6789057/		65825256582526/	6689140/6689141/	6789059/6789060/
Laboratory Sample ID:	Preliminary	UB45F/UB45M	UM84B	6690482/UZ00D	6789064/VJ53F	UA28E/UA28L/ UB45E/UB45L	UM00D		6789058/VJ53D	UA28G/UA28N/ UB45G/UB45N	UM84D	6689142/UY55D	6789061/VJ53E
Laboratory Data Package ID:	Cleanup	UA27/UA28/UB45	1296009/UM84	1316296/UZ00	1335688/VJ53	UA27/UA28/UB45		6690473/UZ00A 1316296/UZ00	1335688/VJ53		1296009/UM84		1335688/VJ53
,							1295065/UM00			UA27/UA28/UB45		1316071/UY55	
Sample Date: Tide Level (ft MLLW):	Levels	12/06/2011 0.6	3/15/2012 0.6	6/15/2012 0.2	9/13/2012 0.8	12/06/2011 0.4	03/12/2012 -0.5	6/15/2012 0.4	9/13/2012 0.7	12/06/2011 0.7	3/15/2012 0.1	6/14/2012 0.9	9/13/2012 0.7
		0.0	0.0	0.2	0.0	0.4	-0.5	0.4	0.7	0.1	0.1	0.3	0.7
TOTAL METALS (µg/L)													
Method 200.8													
Antimony		0.2 U	0.42 U	0.33 U	0.33 U	0.2	0.42 U	0.33 U	0.33 U	0.4	0.45 J1	0.42 U	0.33 U
Arsenic		49.3	31.6	33.7	132	7.6	6.8	3.7	5.7	8.6	0.95 U	169	272
Barium		5.1	2.4	3.3	4.2	37.0	18.4	7.7	59.7	4.0	2.7	12.4	23.5
Beryllium		0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.031 J1	0.2 U	0.13 U	0.13 U	0.025 U
Cadmium		0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.45 J1	0.1 U	0.20 U	0.28 J1	0.082 U
Chromium		0.6	0.83 J1	0.49 J1	0.50 U	0.5 U	0.60 U	0.20 J1	0.50 U	0.5 U	1.7 J1	1.8 J1	2.5
Copper		1.1	0.38 U	0.15 U	0.40 U	1.2	1.1 J1	1.2 J1	1.7 J1	1.7	1.0 J1	1.3 J1	0.78 J1
Lead		0.1 U	0.080 U	0.034 U	0.048 J1	0.1 U	0.080 U	0.099 J1	0.035 J1	0.2	0.26 J1	0.66 J1	0.18 J1
Nickel		0.5	0.50 U	0.15 J1	0.35 U	1.8	1.1 J1	1.7 J1	9.9	1.4	0.63 J1	4.1	1.5 J1
Selenium		0.5 U	0.27 U	0.18 U	0.50 U	4	0.27 U	0.18 U	0.50 U	0.5 U	0.27 U	0.27 U	0.50 U
Zinc		4 U	4.0 U	1.1 U	1.1 U	6	4.0 U	2.0 J1	18.5	4 U	4.0 U	4.0 U	1.7 J1
Method SW7470A/EPA 1631E (ng/L)													
Mercury	12	20.0 U	1.60 U	0.160 U	0.375 J1	20.0 U	0.932	2.07	1.60 U	20.0 U	7.08	3.75	3.12 J1
DISSOLVED METALS (µg/L)													
Methods 200.8/SW7196A													
Antimony	150	0.2 U	0.42 U	0.33 U	0.33 U	0.2	0.42 U	0.33 U	0.33 U	0.4	0.42 U	0.42 U	0.33 U
Arsenic	8	46.9	31.2	32.4	121	6.6	5.5	2.9	1.4 J1	8.0	1.0 J1	140	226
Barium	770	4.7	2.2	2.8	4.6	35.0	18.2	7.1	64.7	3.6	1.6 J1	12.7	19.5
Beryllium	12	0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.040 J1	0.2 U	0.13 U	0.13 U	0.025 U
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.47 J1	0.1 U	0.20 U	0.20 U	0.082 U
Chromium	74	0.5 U	0.84 J1	0.38 J1	0.50 U	0.6	0.60 U	0.20 J1	0.50 U	0.7	1.4 J1	1.7 J1	2.0 J1
Copper	8	0.5 U	0.38 U	0.15 U	0.40 U	1.5	0.92 J1	0.88 J1	1.1 J1	2.4	0.76 J1	0.55 J1	0.40 U
Lead	2.5	0.1 U	0.080 U	0.034 U	0.034 U	0.1 U	0.080 U	0.034 U	0.034 U	0.1	0.080 U	0.080 U	0.034 U
Nickel	8.2	0.6	0.50 U	0.13 U	0.35 U	1.8	1.2 J1	1.9 J1	9.1	1.6	0.50 U	3.6	1.2 J1
Selenium	5	0.5 U	0.27 U	0.18 U	0.50 U	3	0.27 U	0.18 U	0.50 U	0.5 U	0.27 U	0.27 U	0.50 U
Silver	22	0.2 U	0.098 U	0.10 U	0.10 U	0.2 U	0.098 U	0.10 U	0.10 U	0.2 U	0.098 U	0.098 U	0.10 U
Zinc	56	4 U	4.0 U	1.5 J1	1.1 U	7	5.1 J1	2.6 J1	17.9	4 U	4.0 U	4.0 U	2.4 J1
Method SW7470A/EPA 1631E (ng/L)													
Mercury	12	20.0 U	2.02 J1	1.60 U	3.38 J1	20.0 U	0.853	1.30	1.60 U	20.0 U	2.51	3.20 U	3.24 J1
CONVENTIONALS (mg/L)													
Chloride (Method 300.0)		NA	NA	5.2	7.2	NA	NA	275	2810	NA	NA	2.6	5.5
Nitrate (Method 300.0)		0.1 U	0.050 U	0.050 U	0.050 U	0.1	0.05 U	0.088 J1	0.050 J1	0.1	0.32	0.050 U	0.050 U
Sulfate (Method 300.0)		0.1	0.79 J1	0.30 U	0.30 U	155	75.6	51.3	305	4.9	3.2	0.30 U	0.30 U
Total Dissolved Solids (Method 160.1)		244	152	154	183	1820	1140	552	3890	116	53.5	137	165
FIELD PARAMETERS													
Temperature (°C)		17.71	17.04	17.70	16.84	14.29	10.27	10.35	14.49	13.36	9.34	13.19	15.77
Conductivity (uS/cm)		476	235	236	509	3764	1590	748	5572	188	52	157	4555
Dissolved Oxygen (mg/L)		0.46	1.70	0.32	1.36	1.82	3.23	2.98	0.63	1.51	8.33	0.60	1.85
pH (SU)		5.44	6.86	5.90	5.76	8.40	6.01	7.40	6.00	8.53	8.35	5.80	6.45
ORP (mV)		-88.8	-101.6	-129.4	-65	35.0	82.5	66.3	64.5	35.3	33.9	-17.7	-113
Turbidity (NTU)		3.02	4.63	1.14	87.3	16.58	37.39	19.58	6.15	4.78	8.83	7.08	20.4
Ferrous Iron (mg/L)		NA	0.8	5.2	2.6	NA	1.0	0.8	1.2	NA	0.0	1.8	3.0
, , ,		•				•				•			

i						We	stern Property Bound	larv				
Location:		IT-MW-19	IT-MW-19	IT-MW-19	IT-MW-19	IT-PZ-7	IT-PZ-7	IT-PZ-7	IT-PZ-7	IT-Seep-1	IT-Seep-1	IT-Seep-1
		UA44F/UA44N/				UA44E/UA44M/						
		UA45F/UA45M/	6578919/6578920/	6689143/6689144/	6788039/6788040/	UA45E/UA45L/	6578921/6578922/	6689152/6689153/	6788042/6788043/	6582528/6582529/	6695717/6695718/	6801231/6801232/
Laboratory Sample ID:	Preliminary	UB46F/UB46M	UM31C	6689145/UY55I	6788041/VJ32D	UB46E/UB46L	UM31D	6689154/UY55G	6788044/VJ32E	UM85A	6695719/UZ55A	6801233/VK67A
Laboratory Data Package ID:	Cleanup	UA44/UA45/UB46	1295418/UM31	1316071/UY55	1335483/VJ32	UA44/UA45/UB46	1295418/UM31	1316071/UY55	1335483/VJ32	1296010/UM85	1317333/UZ55	1338005/VK67
Sample Date: Tide Level (ft MLLW):	Levels	12/07/2011 0.0	3/13/2012	6/14/2012	9/12/2012	12/07/2011 -0.3	3/13/2012	6/14/2012	9/12/2012	3/15/2012	6/20/2012	9/25/2012
`		0.0	-0.5	1.1	1.3	-0.5	-0.2	0.8	1.1	0.5	-1.7	0.5
VOLATILES (μg/L)												
Method SW8260C	440.000	5011	0.0.11	0.0.11	0.0.11	5011	0.0.11	0.0.11	0.0.11	0.0.11	0.0.11	0.0.11
Acetone	110,000 2	5.0 U 0.2 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	5.0 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U	3.0 U 0.1 U
Benzene Bromodichloromethane	∠ 17	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Carbon Disulfide	3900	0.2 U	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U 0.4 U	0.2 U 0.2 U	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U	0.1 U 0.4 U
Chloroform	9.4	0.2 U	0.4 U	0.4 U	0.1 U	0.2 U	0.4 U	0.1 U	0.4 U	0.4 U	0.4 U	0.4 U
1,2-Dichlorobenzene	440	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	33	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4-Isopropyltoluene		0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methylene Chloride	230	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Naphthalene	26	0.5 U	0.1 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 J1	0.1 U	0.1 U	0.1 U
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
m,p-Xylene	1300	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
VOLATILEO (confl.)												
VOLATILES (μg/L) Method SW8260C-SIM												
Tetrachloroethene	3.3	0.020 U	0.010 U	0.049	0.010 J1	0.020 U	0.010 U	0.014 J1	0.010 U	0.010 U	0.012 UJ2	0.010 J1
Vinyl Chloride	0.53	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
varyr emenae	0.00	0.020 0	0.0.0	0.0.0	0.0.0	0.020 0	0.0.0	0.0.0	0.0.0	0.0.0	0.0.0	0.010
SEMIVOLATILES (µg/L)												
Method SW8270D												
Acenaphthene	120	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.1 J1	0.1 J1	0.1 U	0.1 U	0.09 U
Chrysene	0.018	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U	0.1 U	0.1 U	0.09 U
2,4-Dichlorophenol		5.0 U	0.5 U	0.5 U	0.5 U	5.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
bis(2-Ethylhexyl)phthalate	1.2	1.0 U	2 U	2 U	2 U	1.0 U	2 U	2 U	2 U	2 U	2 U	2 U
Fluoranthene	11	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U	0.1 U	0.1 U	0.2 J1
Fluorene	45	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 U	0.1 U	0.1 U	0.09 U
1-Methylnaphthalene 2-Methylnaphthalene	2.3 64	1.0 U 1.0 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	1.0 U 1.0 U	0.09 U 0.09 U	0.09 U 0.09 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.09 U 0.09 U
4-Methylphenol	330	1.0 U	0.1 U	0.1 U	0.1 U 0.5 U	1.0 U	0.09 U	0.09 U	0.1 U 0.5 U	0.1 U 0.5 U	0.1 U	0.09 U
Naphthalene	26	1.0 U	0.5 U	0.5 U 0.1 J1	0.5 U 0.1 J1	1.0 U	0.5 U	0.3 J	0.5 U 0.2 J1	0.5 0 0.1 J1	0.5 U 0.1 J1	0.09 U
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.2 J1	0.1 U	0.1 U	0.1 J1
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.09 U	0.09 U	0.1 J1	0.1 U	0.1 U	0.2 J1
cPAHs (μg/L)												
Method SW8270D-SIM												
Benzo(a)anthracene	0.0018	0.010 U	0.0049 U	0.0048 U	0.0049 U	0.010 U	0.0050 J1	0.0070 J1	0.011	0.0060 J1	0.0050 J1	0.11
Benzo(a)pyrene	0.00018	0.010 U	0.0049 U	0.0048 U	0.0049 U	0.010 U	0.0048 U	0.0049 U	0.0070 J1	0.0050 J1	0.0048 U	0.11
Benzo(b)fluoranthene	0.0018	NA NA	0.0049 U	0.0048 U	0.0049 U	NA NA	0.0048 U	0.0049 U	0.0080 J1	0.011	0.0060 J1	0.16 0.058
Benzo(k)fluoranthene Total Benzofluoranthenes	0.0018 0.0018	NA 0.020 UJ	0.0049 U NA	0.0048 U NA	0.0049 U NA	NA 0.020 UJ	0.0048 U NA	0.0049 U NA	0.0090 J1 NA	0.0048 U NA	0.0048 U NA	0.058 NA
Chrysene	0.0018	0.020 UJ 0.010 U	0.0049 U	0.0048 U	0.0049 U	0.020 03 0.0054 J1	0.0048 U	0.0049 U	0.017	0.0080 J1	0.0050 J1	0.13
Dibenz(a,h)anthracene	0.0018	0.010 U	0.0049 U	0.0048 U	0.0049 U	0.010 U	0.0048 U	0.0049 U	0.0090 J1	0.0039 U	0.0038 U	0.020
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0040 U	0.0038 U	0.0039 U	0.010 U	0.0038 U	0.0039 U	0.0070 J1	0.0040 J1	0.0038 U	0.061
Pyrene	9.8	NA	0.0099 U	0.0095 U	0.0098 U	NA	0.034 J1	0.053	0.092	0.012 J1	0.015 J1	0.22
cPAH TEQ	0.00018	ND	ND	ND	ND	0.0001 J	0.0005 J	0.0007 J	0.0116 J	0.0072 J	0.0012 J	0.152
PCBs (µg/L)												
Method SW8082		0.515.11	0.65.5.1	0.65.5.1	0.00	0	0.65	0.05:5:11	0.00	0.55.5	0.00	
Aroclor 1248	0.000023	0.010 U	0.0048 U	0.0049 U	0.0049 U	0.010 U	0.0047 U	0.0049 U	0.0047 U	0.0048 U	0.0047 U	0.0047 U
Arcelor 1360	0.0000055	0.010 U	0.0048 U	0.0049 U	0.0049 U	0.010 U	0.0047 U	0.0049 U	0.0047 U	0.0097	0.011	0.0047 U
Aroclor 1260	0.000023	0.010 U	0.0048 U	0.0049 U	0.0049 U	0.010 U	0.0047 U	0.0049 U	0.0047 U	0.0048 U	0.0047 U	0.0047 U
Total PCBs	0.000023	ND	ND	ND	ND	ND	ND	ND	ND	0.0097	0.011	ND
		Í								Í		

		•										
							stern Property Bound					
Location:		IT-MW-19	IT-MW-19	IT-MW-19	IT-MW-19	IT-PZ-7	IT-PZ-7	IT-PZ-7	IT-PZ-7	IT-Seep-1	IT-Seep-1	IT-Seep-1
		UA44F/UA44N/	CE70040/CE70000/	0000440/0000444/	0700000/0700040/	UA44E/UA44M/	0570004/0570000/	0000450/0000450/	0700040/0700040/	CE00E00/CE00E00/	0005747/0005740/	0004004/0004000/
Laboratory Sample ID:	Preliminary	UA45F/UA45M/ UB46F/UB46M	6578919/6578920/ UM31C	6689143/6689144/ 6689145/UY55I	6788039/6788040/ 6788041/VJ32D	UA45E/UA45L/ UB46E/UB46L	6578921/6578922/ UM31D	6689152/6689153/ 6689154/UY55G	6788042/6788043/ 6788044/VJ32E	6582528/6582529/ UM85A	6695717/6695718/ 6695719/UZ55A	6801231/6801232/ 6801233/VK67A
Laboratory Data Package ID:	Cleanup	UA44/UA45/UB46	1295418/UM31	1316071/UY55	1335483/VJ32	UA44/UA45/UB46	1295418/UM31	1316071/UY55	1335483/VJ32	1296010/UM85	1317333/UZ55	1338005/VK67
Sample Date:	Levels	12/07/2011	3/13/2012	6/14/2012	9/12/2012	12/07/2011	3/13/2012	6/14/2012	9/12/2012	3/15/2012	6/20/2012	9/25/2012
Tide Level (ft MLLW):	LCVCIS	0.0	-0.5	1.1	1.3	-0.3	-0.2	0.8	1.1	0.5	-1.7	0.5
							-					
TOTAL METALS (µg/L)												
Method 200.8			0.40.11	0.40.11	0.00.11	0.0	4.0	4.0.14	0.00 14	0.40 14	0.40 14	2211
Antimony Arsenic		0.8 154	0.42 U 49.1	0.42 U 23.3	0.33 U 82.9	0.9 3	1.3 3.5	1.0 J1 6.7	0.68 J1 4.0	0.49 J1 4.5	0.43 J1 2.2	3.3 U 5.9
Barium		18.4	15.1	10.7	17.6	93.4	28.7	20.8	235	6.8	8.5	28.8
Beryllium		0.2 U	0.13 U	0.13 U	0.031 J1	0.2 U	0.13 U	0.025 U	0.025 U	0.13 U	0.13 U	0.025 U
Cadmium		0.2 U	0.13 U	0.20 U	0.082 U	0.2 U	0.20 U	0.023 U	0.023 U	0.13 U	0.20 U	0.14 J1
Chromium		0.5 U	0.60 U	0.60 U	0.90 J1	0.5	14.5	1.5 J1	0.50 U	2.1	2.3	5.0
Copper		3.0	3.5	2.3	4.6	0.8	6.7	0.95 J1	0.40 U	1.4 J1	2.0 J1	4.0 U
Lead		0.1 U	0.080 U	0.080 U	0.034 U	0.1 U	4.2	0.30 J1	0.10 J1	0.74 J1	2.7	0.95 J1
Nickel		3.8	2.2 J	1.1 J1	3.0	4.2	2.5	0.41 J1	0.35 U	3.0	3.1	7.9 J1
Selenium		0.6	0.27 U	0.27 U	0.50 U	5 U	0.27 U	0.27 J1	0.50 U	0.27 U	0.27 U	0.75 J1
Zinc		8	4.0 U	4.0 U	4.3 J1	4 U	8.2 J1	1.1 U	1.1 U	4.0 U	4.9 J, J1	7.1 J1
Method SW7470A/EPA 1631E (ng/L)												
Mercury	12	20.0 U	1.60 U	1.32	2.73	20.0 U	1.60 U	0.716	1.60 U	2.86 J1	1.43	5.60 U
DISSOLVED METALS (µg/L)												
Methods 200.8/SW7196A												
Antimony	150	0.8	0.43 J1	0.39 J1	0.33 U	0.8	0.79 J1	0.84 J1	0.67 J1	0.56 J1	0.42 U	1.7 U
Arsenic	8	179	45.4	25.9	82.3	4	3.1	4.2	3.6	3.9	1.5 J1	4.0 J1
Barium	770	17.8	15.7	12.4	18.4	99.4	31.1	20.1	249	6.6	8.2	30.3
Beryllium	12	0.2 U	0.13 U	0.027 J1	0.034 J1	0.2 U	0.13 U	0.025 U	0.025 U	0.13 U	0.13 U	0.025 U
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U	0.20 U	0.20 U	0.41 U
Chromium Copper	74 8	0.8 2.6	0.60 U 3.3	0.21 J1 2.8	0.72 J1 4.0	0.7 0.9	0.60 U 0.38 U	0.14 J1 0.36 J1	0.50 U 0.40 U	1.9 J1 1.2 J1	2.1 0.63 J1	4.3 J1 2.0 U
Lead	2.5	0.1 U	0.080 U	0.034 U	0.034 U	0.9 0.1 U	0.080 U	0.037 J1	0.086 J1	0.080 U	0.080 U	0.17 U
Nickel	8.2	4.3	1.9 J, J1	1.8 J1	3.1	4.4	0.50 U	0.037 J1 0.25 J1	0.35 U	2.9	2.9	5.3 J1
Selenium	5	0.5 U	0.27 U	0.19 J1	0.50 U	5 U	0.30 U	0.23 J1	0.50 U	0.27 U	0.27 U	2.5 U
Silver	22	0.2 U	0.098 U	0.046 U	0.10 U	0.2 U	0.098 U	0.046 U	0.10 U	0.098 U	0.098 U	0.50 U
Zinc	56	9	4.0 U	2.2 J1	3.6 J1	4 U	4.0 U	2.3 J1	1.3 J1	4.1 J1	4.0 UJ	5.5 U
Method SW7470A/EPA 1631E (ng/L)												
Mercury	12	20.0 U	3.20 U	1.20	3.24 J1	20.0 U	1.60 U	0.458 J1	3.20 U	2.21 J1	2.44 J1	5.60 U
•												
CONVENTIONALS (mg/L)												
Chloride (Method 300.0)		NA	NA	2.1	11.2	NA	NA	674	4210	NA	2310	8740
Nitrate (Method 300.0)		0.1	0.084 J1	0.050 U	0.050 U	0.5 U	0.050 U	0.050 U	0.050 U	0.44	0.39	0.27
Sulfate (Method 300.0)		133	81.2	52.7	39.4	304	173	176	457	263	278	1010
Total Dissolved Solids (Method 160.1)		718	674	680	312	4200	1760	1350	5550	3450	4080	14,200
FIELD PARAMETERS			40.40	40.50		40.40	40.44	44.00	44.00			
Temperature (°C)		14.97	13.10	13.50	14.45	13.49	10.11	11.00	14.30	NA	NA	NA
Conductivity (uS/cm)		727	903	733	1180	16504	2218	1785	9517	NA NA	NA NA	NA NA
Dissolved Oxygen (mg/L)		1.74	4.00	2.38	1.18	1.33	0.68	0.43	0.46 9.63	NA NA	NA NA	NA NA
pH (SU) ORP (mV)		7.49 8.9	6.57 145.7	6.57 206.9	6.69 107	8.53 -27.2	9.58 -78.4	10.02 -150.5	9.63 -161.3	NA NA	NA NA	NA NA
Turbidity (NTU)		0.42	2.81	0.08	4.80	-27.2 1.94	-78.4 4.22	-150.5 8.37	-161.3 8.35	NA NA	NA NA	NA NA
Ferrous Iron (mg/L)		NA	0.0	0.08	0.0	NA	0.0	0.0	0.0	NA NA	0.4	NA NA
i Gilous iloli (ilig/L)	· · · · · ·	I	0.0	0.0	0.0	INA	0.0	0.0	0.0	I INA	0.4	INA

1			Former Hydraul	c Test Pad Area					F	Former Slip 5 Outfall A	rea			
Location:		IT-MW-11	IT-MW-11	IT-MW-11	IT-MW-11	IT-MW-14	IT-MW-14	IT-MW-14	IT-MW-14	IT-PZ-3	IT-PZ-3	IT-PZ-3	IT-PZ-3	IT-SB-8
		UA44C/UA44K/								UB28E/UB28K/				
		UA45C/UA45J/	6582519/6582520/	6693947/6693948/	6789047/6789048/	UB08C/UB08H/	6571467/6571468/	6697964/6697965/	6788010/6788011/	UB29E/UB29J/	6568992/6568993/	6689146/6689147/	6787992/6787993/	TW99A/TX06A/
Laboratory Sample ID:	,	UB46C/UB46J	UM84A	6693949/UZ37B	6789049/VJ53A	UB09C/UB09H	UL18B	6697966/UZ66C	6788012/VJ03H	UD90B	UK92C	6689148/UY55E	6787994/VJ03B	TX06B
Laboratory Data Package ID:	Cleanup	UA44/UA45/UB46	1296009/UM84	1317022/UZ37	1335688/VJ53	UB08/UB09	1293989/UL18	1317686/UZ66	1335480/VJ03	UB28/UB29/UD90	1293530/UK92	1316071/UY55	1335480/VJ03	TW99/TX06
Sample Date:	Levels	12/07/2011	3/15/2012	6/19/2012	9/13/2012	12/13/2011	03/07/2012	6/21/2012	9/11/2012	12/14/2011	03/06/2012	6/14/2012	9/11/2012	11/14/2011
Tide Level (ft MLLW):		0.4	0.6	-1.5	1.2	7.0	3.8	-0.5	5.0	9.8	9.9	2.6	5.5	NA
VOLATILES (μg/L)														
Method SW8260C														
Acetone	110,000	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U
Benzene	2 17	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
Bromodichloromethane Carbon Disulfide	3900	0.2 U 0.2 U	0.1 U 0.4 U	0.1 U 0.6	0.1 U 0.4 U	0.2 U 0.2 U	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U 0.4 U	0.2 U 0.2 U	0.1 U 0.4 U	0.1 U 0.4 U	0.1 U 0.4 U	0.2 U 0.2 U
Chloroform	9.4	0.2 U	0.4 U	0.0 0.1 U	0.4 U	0.2 U	0.4 U	0.4 U	0.4 U	0.2 U	0.4 U	0.4 U	0.4 U	0.2 U
1,2-Dichlorobenzene	440	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
1,1-Dichloroethane	33	0.2 J1	0.2 J1	0.2 J1	0.2 J1	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 J1	0.1 J1	0.1 U	0.1 U	0.2 U
4-Isopropyltoluene		0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
Methylene Chloride	230	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U
Naphthalene	26	0.5 U	0.1 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U	0.5 U
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U
m,p-Xylene	1300	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U
VOLATILES (µg/L)														
Method SW8260C-SIM														
Tetrachloroethene	3.3	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.023	0.010 U	0.020 U
Vinyl Chloride	0.53	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.023	0.046	0.053	0.020 U
•														
SEMIVOLATILES (µg/L)														
Method SW8270D														
Acenaphthene	120	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U
Chrysene	0.018	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 J1	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U
2,4-Dichlorophenol		5.0 U	0.5 U	0.5 U	0.5 U	5.0 U	0.5 U	0.5 U	0.9 J1	5.0 U	0.5 U	0.5 U	0.5 U	5.0 U
bis(2-Ethylhexyl)phthalate Fluoranthene	1.2 11	1.0 U 1.0 U	2 U 0.1 U	2 U 0.1 U	2 U 0.1 U	1.0 U 1.0 U	2 U 0.1 U	2 U 0.1 U	2 U 0.1 U	1.0 U 1.0 U	2 U	2 U 0.09 U	2 U 0.1 U	1.0 U
Fluorene	45	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U 0.1 U	0.09 U	0.1 U	1.0 U 1.0 U
1-Methylnaphthalene	2.3	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U
4-Methylphenol	330	0.5 J1	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U
Naphthalene	26	1.0 U	0.1 U	0.1 J1	0.1 U	1.0 U	0.1 U	0.1 U	0.1 J1	1.0 U	0.1 U	0.2 J1	0.1 U	1.0 U
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U
a DALLa (confl.)														
cPAHs (µg/L) Method SW8270D-SIM														
Benzo(a)anthracene	0.0018	0.011 U	0.0049 U	0.0048 UJ	0.0049 U	0.010 U	0.0047 U	0.0050 U	0.0047 U	0.010 U	0.0048 U	0.0050 U	0.0047 U	0.011 U
Benzo(a)pyrene	0.0018	0.011 U	0.0049 U	0.0048 UJ	0.0049 U	0.010 U	0.0047 U	0.0050 U	0.0047 U	0.010 U	0.0048 U	0.0050 U	0.0047 U	0.011 U
Benzo(b)fluoranthene	0.0018	NA	0.0049 U	0.0048 UJ	0.0049 U	NA	0.0047 U	0.0050 U	0.0047 U	NA	0.0048 U	0.0050 U	0.0047 U	NA
Benzo(k)fluoranthene	0.0018	NA	0.0049 U	0.0048 UJ	0.0049 U	NA	0.0047 U	0.0050 U	0.0047 U	NA	0.0048 U	0.0050 U	0.0047 U	NA
Total Benzofluoranthenes	0.0018	0.022 UJ	NA	NA	NA	0.020 U	NA	NA	NA	0.020 U	NA	NA	NA	0.022 U
Chrysene	0.018	0.011 U	0.0049 U	0.0048 UJ	0.0049 U	0.010 U	0.0047 U	0.0050 U	0.0047 U	0.010 U	0.0048 U	0.0050 U	0.0047 U	0.011 U
Dibenz(a,h)anthracene	0.0018	0.011 U	0.0039 U	0.0038 UJ	0.0039 U	0.010 U	0.0038 U	0.0040 U	0.0038 U	0.010 U	0.0038 U	0.0040 U	0.0038 U	0.011 U
Indeno(1,2,3-cd)pyrene	0.0018	0.011 U	0.0039 U	0.0038 UJ	0.0039 U	0.010 U	0.0038 U	0.0040 U	0.0038 U	0.010 U	0.0038 U	0.0040 U	0.0038 U	0.011 U
Pyrene	9.8	NA	0.0098 U	0.0095 UJ	0.0098 U	NA	0.0095 U	0.0099 U	0.0094 U	NA ND	0.0095 U	0.010 U	0.0095 U	NA ND
cPAH TEQ	0.00018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs (µg/L)														
Method SW8082														
Aroclor 1248	0.000023	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0051 U	0.0049 U	0.0048 U	0.010 U
Aroclor 1254	0.0000055	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0051 U	0.0049 U	0.0048 U	0.010 U
Aroclor 1260	0.000023	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0051 U	0.0049 U	0.0048 U	0.010 U
Total PCBs	0.000023	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

г			Former Hydraul	ic Test Pad Area						Former Slip 5 Outfall A	\rea			
Location:		IT-MW-11	IT-MW-11	IT-MW-11	IT-MW-11	IT-MW-14	IT-MW-14	IT-MW-14	IT-MW-14	IT-PZ-3	IT-PZ-3	IT-PZ-3	IT-PZ-3	IT-SB-8
Location.		UA44C/UA44K/	11 14144-11	1 1 1VIV - 1 1	1 1 1V1V V - 1 1	11 IVIVV-14	1 1 1V1 V V - 1	11 IVIV-14	11 IVIVV-1 -1	UB28E/UB28K/	11 1 2-3	11 1 2-3	11 1 2-3	11 00-0
		UA45C/UA45J/	6582519/6582520/	6693947/6693948/	6789047/6789048/	UB08C/UB08H/	6571467/6571468/	6697964/6697965/	6788010/6788011/	UB29E/UB29J/	6568992/6568993/	6689146/6689147/	6787992/6787993/	TW99A/TX06A/
Laboratory Sample ID:	Preliminary	UB46C/UB46J	UM84A	6693949/UZ37B	6789049/VJ53A	UB09C/UB09H	UL18B	6697966/UZ66C	6788012/VJ03H	UD90B	UK92C	6689148/UY55E	6787994/VJ03B	TX06B
Laboratory Data Package ID:	Cleanup	UA44/UA45/UB46	1296009/UM84	1317022/UZ37	1335688/VJ53	UB08/UB09	1293989/UL18	1317686/UZ66	1335480/VJ03	UB28/UB29/UD90	1293530/UK92	1316071/UY55	1335480/VJ03	TW99/TX06
Sample Date:	Levels	12/07/2011	3/15/2012	6/19/2012	9/13/2012	12/13/2011	03/07/2012	6/21/2012	9/11/2012	12/14/2011	03/06/2012	6/14/2012	9/11/2012	11/14/2011
Tide Level (ft MLLW):	201010	0.4	0.6	-1.5	1.2	7.0	3.8	-0.5	5.0	9.8	9.9	2.6	5.5	NA
TOTAL METALS (μg/L)														
Method 200.8		0.011	0.40.11	0.00.11	0.00.11	4.4	4.4	0.40 14	0.05.14	0.0.11	0.40.11	0.40.11	0.00.11	
Antimony		0.2 U	0.42 U	0.33 U	0.33 U	1.1	1.1	0.49 J1	0.85 J1	0.2 U	0.42 U	0.10 U	0.33 U	0.2
Arsenic		7.6	7.2	2.0	2.4	5.3	4.2	4.8	15.3	2.4U/ 2.5 *	0.95 U	4.6	16.2	1.0
Barium		8.0	5.0	4.3	3.6	9.5	10.6	21.3	22.1	6.4	5.3	7.5	10.7	11.3
Beryllium		0.2 U	0.13 U	0.025 U	0.025 U	0.2 U 0.4	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U 0.048 U	0.031 J1	0.2 U
Cadmium		0.1 U	0.20 U	0.048 U	0.082 U		0.44 J1	0.20 J1	0.31 J1	0.1 U	0.20 U		0.082 U	0.3
Chromium		0.5 U	0.60 U	0.50 U	0.50 U	1 U	1.2 J1	0.72 J1	0.65 J1	0.7	0.60 U	0.69 J1	1.4 J1	0.5 U
Copper		0.6 0.2	0.38 U 0.12 J1	0.39 UJ2 0.034 U	0.40 U 0.14 J1	1.7 0.1	2.1 0.080 U	1.2 J1 0.034 U	0.81 J1 0.052 J1	1.2 0.3	0.70 J1 0.16 J1	0.35 J1 0.052 J1	0.58 J1 0.12 UJ2	7.8 0.2
Lead Nickel		0.2 0.7		0.034 U 0.20 J1		0.1 3.6		0.034 0 1.6 J1	0.052 J1 2.4	0.3		0.032 J1 0.80 J1	0.12 0J2 1.1 J1	
Nickei Selenium		0.7 0.5 U	0.50 U 0.27 U	0.20 J1 0.18 U	0.35 U 0.50 U	3.6 0.5 U	2.2 0.27 U	1.6 J1 0.19 J1	2.4 0.50 UJ	0.6 0.5 U	0.50 U 0.27 U	0.80 J1 0.18 U	1.1 J1 0.50 U	3.4 0.6
Zinc		0.5 U 4 U	5.5 J1	0.18 U 1.5 J1	0.50 U 2.1 J1	0.5 U 22	18.2	24.5	34.5	0.5 U 12	6.0 J1	0.18 U 4.6 J1	0.50 U 8.3 J1	0.6 24
∠II I∪		4 0	3.3 J1	1. 3 J1	2.1 J1	22	10.2	24.3	34.3	12	0.0 01	4.0 J1	0.3 J1	24
Method SW7470A/EPA 1631E (ng/L)														
Mercury	12	20.0 U	0.833	1.60 U	0.704	20.0 U	2.33	2.83 J1	1.60 U	20.0 U	4.89 J1	0.744	1.95 J1	20.0 U
Weredry	12	20.0 0	0.000	1.00 0	0.704	20.0 0	2.00	2.03 01	1.00 0	20.0 0	4.03 01	0.744	1.55 01	20.0 0
DISSOLVED METALS (μg/L)														
Methods 200.8/SW7196A														
Antimony	150	0.2 U	0.42 U	0.33 U	0.33 U	1.1	0.92 J1	0.44 J1	0.77 J1	0.2 U	0.42 U	0.10 U	0.33 U	0.2
Arsenic	8	9.4	7.7	2.1	2.2	5.2	4.4	5.6	6.7	2.0	0.95 U	4.2	14.4	1.0
Barium	770	7.9	5.3	5.3	3.9	9.4	10.8	19.5	22.1	5.3	4.7	7.1	10.8	9.9
Beryllium	12	0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.041 J1	0.2 U
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U	0.4	0.34 J1	0.24 J1	0.36 J1	0.1 U	0.20 U	0.048 U	0.082 U	0.3
Chromium	74	1 U	0.60 U	0.50 U	0.50 U	0.6	1.0 J1	0.64 J1	0.76 J1	0.8	0.60 U	0.60 J1	1.6 J1	0.5 U
Copper	8	0.5 U	0.38 U	0.46 UJ2	0.40 U	1.8	1.9 J1	1.9 J1	0.76 J1	0.7	0.38 U	0.15 U	0.72 J1	7.2
Lead	2.5	0.1 U	0.080 U	0.25 J1	0.034 U	0.1 U	0.080 U	0.034 U	0.089 J1	0.1 U	0.080 U	0.034 U	0.044 UJ2	0.1 U
Nickel	8.2	0.5 U	0.50 U	0.41 J1	0.35 U	3.6	2.1	1.9 J1	2.0 J1	0.5	0.50 U	0.71 J1	1.7 J1	3.3
Selenium	5	0.5 U	0.27 U	0.18 U	0.50 U	0.5 U	0.27 U	0.18 U	0.50 UJ	0.5 U	0.27 U	0.18 U	0.50 U	0.7
Silver	22	0.2 U	0.098 U	0.10 U	0.10 U	0.2 U	0.098 U	0.10 U	0.10 U	0.2 U	0.098 U	0.046 U	0.10 U	0.2 U
Zinc	56	4 U	4.0 U	2.4 J1	1.1 U	22	17.9	29.3	31.4	4 U	4.0 U	1.1 J1	3.4 UJ2	23
Method SW7470A/EPA 1631E (ng/L)														
Mercury	12	20.0 U	1.60 U	1.53	2.11 J1	20.0 U	3.25 J1	3.80 J1	4.42 J1	20.0 U	3.53 J1	1.15	2.27 J1	20.0 U
CONVENTIONALS (mg/L)														
Chloride (Method 300.0)		NA	NA	3.9	3.3	NA	NA	3.8	3.9	NA	NA	1.2	2.6	NA
Nitrate (Method 300.0)		0.1	0.050 U	0.25 U	0.050 U	0.2	1.4	0.050 U	0.050 U	0.1 U	0.050 U	0.050 U	0.050 U	2.1
Sulfate (Method 300.0)		5.1	3.2	2.8	2.0	12.2	17.8	42.9	68.9	1.1	0.63 J1	0.30 U	0.36 J1	13.2
Total Dissolved Solids (Method 160.1)		196	189	175 J	160	281	345	425	435	135	124	188	338	269
FIELD PARAMETERS														
Temperature (°C)		14.47	11.61	13.16	16.17	15.72	13.73	14.41	14.89	13.98	13.27	14.06	17.55	NA
Conductivity (uS/cm)		840	229	196	3250	876	314	569	720	444	122	177	315	NA
Dissolved Oxygen (mg/L)		1.44	0.63	0.33	1.17	1.23	1.07	0.35	1.15	1.00	0.38	0.40	5.86	NA
pH (SU)		5.95	6.49	6.68	6.57	6.68	7.53	7.52	6.39	5.58	7.38	5.98	6.67	NA
ORP (mV)		-27.4	-143.0	-5.5	-61	32.5	-8.1	46.7	-3	-0.6	-77.4	8.5	-170	NA
Turbidity (NTU)		5.07	3.09	4.92	5.25	2.53	3.2	10.95	6.61	49.24	11.42	17.32	58.2	NA
Ferrous Iron (mg/L)		NA	1.4	1.6	3.2	NA	0.1	0.1	1.8	NA	1.3	1.6	5.6	NA

Γ								Other						
Location:		IT-I-203	IT-I-203	IT-I-203	IT-I-203	IT-MW-12	IT-DUP-2 (IT-MW-12)	IT-MW-12	IT-MW-12	IT-MW-12	IT-MW-13	IT-MW-13	IT-MW-13	IT-MW-13
		UA44D/UA44L/												
Laboratory Sample ID:	Preliminary	UA45D/UA45K/ UB46D/UB46K	6582523/6582524/ UM84C	6690483/6690484/ 6690485/UZ00E	6789053/6789054/ 6789055/VJ53C	UA86C/UA86G/ UA87C/UA87F	UA86A/UA86E/ UA87A/UA87D	6571479/6571480/ UL18H	6690486/6690487/ 6690488/UZ00F	6788051/6788052/ 6788053/VJ32K	UB08D/UB08I/ UB09D/UB09I	6571481/6571482/ UL18I	6689156/6689157/ 6689158/UY55H	6788027/6788028/ 6788029/VJ32L
Laboratory Data Package ID:	Cleanup	UA44/UA45/UB46	1296009/UM84	1316296/UZ00	1335688/VJ53	UA86/UA87	UA86/UA87	1293989/UL18	1316296/UZ00	1335483/VJ32	UB08/UB09	1293989/UL18	1316071/UY55	1335483/VJ32
Sample Date:	Levels	12/07/2011	3/15/2012	6/15/2012	9/13/2012	12/12/2011	12/12/2011	03/07/2012	6/15/2012	9/12/2012	12/13/2011	03/07/2012	6/14/2012	9/12/2012
Tide Level (ft MLLW):		-0.3	0.1	0.4	0.7	8.3	8.3	8.2	4.3	6.3	6.9	9.0	7.9	6.6
VOLATILES (μg/L)														
Method SW8260C														
Acetone	110,000	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U	3.0 U	3.0 U	3.1 J1
Benzene Bromodichloromethane	2 17	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Carbon Disulfide	3900	0.2 0 0.2	0.1 U 0.4 J1	0.1 U	0.1 U 0.4 U	0.2 U	0.2 U	0.1 U	0.1 U 0.4 U	0.1 U 0.4 U	0.2 U	0.1 U	0.1 U 0.4 U	0.1 U 0.4 U
Chloroform	9.4	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2-Dichlorobenzene	440	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	33	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
4-Isopropyltoluene	230	0.2 U 0.5 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U 0.5 U	0.1 U 0.2 U	0.1 U	0.1 U	0.2 U 0.5 U	0.1 U 0.2 U	0.1 U	0.1 U
Methylene Chloride Naphthalene	230	0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.5 U 0.5 U	0.5 U 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.5 U 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
m,p-Xylene	1300	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U
VO. 4711 50 (#)														
VOLATILES (µg/L) Method SW8260C-SIM														
Tetrachloroethene	3.3	0.020 U	0.010 U	0.019 UJ2	0.011 J1	0.020 U	0.020 U	0.010 U	0.028 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U
Vinyl Chloride	0.53	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U
·														
SEMIVOLATILES (µg/L)														
Method SW8270D	400	4.0.11	0.4.11	0.4.11	0.00.11	1.0 U	4011	0.4.11	0.4.11	0.4.11	4011	0.4.11	0.4.11	0.4.11
Acenaphthene Chrysene	120 0.018	1.0 U 1.0 U	0.1 U 0.1 U	0.1 U 0.1 U	0.09 U 0.09 U	1.0 U 1.0 U	1.0 U 1.0 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	1.0 U 1.0 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
2,4-Dichlorophenol	0.010	5.0 U	0.1 U	0.5 U	0.5 U	5.3 U	5.0 U	0.5 U	0.5 UJ	0.1 U 0.5 UJ	5.0 U	0.1 U	0.1 U	0.5 U
bis(2-Ethylhexyl)phthalate	1.2	1.0 U	2 U	2 U	2 U	1.5	1.0 U	2 U	2 U	2 U	3.3	2 U	2 U	2 U
Fluoranthene	11	1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
Fluorene	45	1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
1-Methylnaphthalene	2.3 64	1.0 U 1.0 U	0.1 U	0.1 U	0.09 U	1.0 U 1.0 U	1.0 U 1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
2-Methylnaphthalene 4-Methylphenol	330	1.0 U	0.1 U 0.5 U	0.1 U 0.5 U	0.09 U 0.5 U	1.0 U	1.0 U	0.1 U 0.5 U	0.1 U 0.5 UJ	0.1 U 0.5 UJ	1.0 U 1.0 U	0.1 U 0.5 U	0.1 U 0.5 U	0.1 U 0.5 U
Naphthalene	26	1.0 U	0.5 U	0.5 U	0.09 U	1.0 U	1.0 U	0.3 U 0.2 J1	0.5 U	0.5 05 0.1 J1	1.0 U	0.3 U 0.1 J1	0.5 U	0.5 U
Phenanthrene		1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
Phenol	41,000	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	1.0 U	0.5 U	0.5 UJ	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.09 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U
cPAHs (μg/L)														
Method SW8270D-SIM														
Benzo(a)anthracene	0.0018	0.010 U	0.0050 J1	0.0048 U	0.0050 J1	0.010 U	0.010 U	0.0047 U	0.0048 U	0.0048 U	0.010 U	0.0048 U	0.0053 U	0.0048 U
Benzo(a)pyrene	0.00018	0.010 U	0.0049 U	0.0048 U	0.0047 U	0.010 U	0.010 U	0.0047 U	0.0048 U	0.0048 U	0.010 U	0.0048 U	0.0053 U	0.0048 U
Benzo(b)fluoranthene	0.0018	NA	0.0049 U	0.0048 U	0.0047 U	NA	NA	0.0047 U	0.0050 J1	0.0048 U	NA	0.0048 U	0.0053 U	0.0048 U
Benzo(k)fluoranthene	0.0018	NA	0.0049 U	0.0048 U	0.0047 U	NA 0.030 LI	NA 0.030 LI	0.0047 U	0.0048 U	0.0048 U	NA 0.030 LI	0.0048 U	0.0053 U	0.0048 U
Total Benzofluoranthenes Chrysene	0.0018 0.018	0.020 UJ 0.010 U	NA 0.0049 U	NA 0.0048 U	NA 0.0047 U	0.020 U 0.010 U	0.020 U 0.010 U	NA 0.0047 U	NA 0.0048 U	NA 0.0048 U	0.020 U 0.010 U	NA 0.0048 U	NA 0.0053 U	NA 0.0048 U
Dibenz(a,h)anthracene	0.0018	0.010 U	0.0049 U	0.0038 U	0.0038 U	0.010 U	0.010 U	0.0047 U	0.0050 J1	0.0048 U	0.010 U	0.0048 U	0.0033 U 0.0042 U	0.0048 U
Indeno(1,2,3-cd)pyrene	0.0018	0.010 U	0.0040 U	0.0038 U	0.0038 U	0.010 U	0.010 U	0.0038 U	0.0060 J1	0.0039 U	0.010 U	0.0039 U	0.0042 U	0.0039 U
Pyrene	9.8	NA	0.018 J1	0.021 J1	0.026 J1	NA	NA	0.0095 U	0.0097 U	0.0097 U	NA	0.0097 U	0.011 U	0.0097 U
cPAH TEQ	0.00018	ND	0.001 J	ND	0.0005 J	ND	ND	ND	0.0016 J	ND	ND	ND	ND	ND
PCBs (μg/L)														
Method SW8082														
Aroclor 1248	0.000023	0.010 U	0.019	0.024	0.019	0.010 U	<u>0.010</u> U	0.0048 U	0.0050 U	0.0048 U	0.010 U	0.0050 U	0.0047_U	0.0048_U
Aroclor 1254	0.0000055	0.010	0.0047 U	0.0048 U	0.0047 U	0.0080 J1	0.0080 J1	0.0048 U	0.0050 U	0.0048 U	0.015	0.014	0.014	0.011
Aroclor 1260	0.000023	0.010 U	0.0047 U	0.0048 U	0.0047 U	0.010 U	0.010 U	0.0048 U	0.0050 U	0.0048 U	0.010 U	0.0050 U	0.0047 U	0.0048 U
Total PCBs	0.000023	0.010	0.019	0.024	0.019	0.0080 J	0.0080 J	ND	ND	ND	0.015	0.014	0.014	0.011
I														l

	Г								Other						
	Location:		IT-I-203	IT-I-203	IT-I-203	IT-I-203	IT-MW-12	IT-DUP-2 (IT-MW-12)	IT-MW-12	IT-MW-12	IT-MW-12	IT-MW-13	IT-MW-13	IT-MW-13	IT-MW-13
	Sample ID: Package ID: ample Date:	Preliminary Cleanup Levels	UA44D/UA44L/ UA45D/UA45K/ UB46D/UB46K UA44/UA45/UB46 12/07/2011	6582523/6582524/ UM84C 1296009/UM84 3/15/2012	6690483/6690484/ 6690485/UZ00E 1316296/UZ00 6/15/2012	6789053/6789054/ 6789055/VJ53C 1335688/VJ53 9/13/2012	UA86C/UA86G/ UA87C/UA87F UA86/UA87 12/12/2011	UA86A/UA86E/ UA87A/UA87D UA86/UA87 12/12/2011	6571479/6571480/ UL18H 1293989/UL18 03/07/2012	6690486/6690487/ 6690488/UZ00F 1316296/UZ00 6/15/2012	6788051/6788052/ 6788053/VJ32K 1335483/VJ32 9/12/2012	UB08D/UB08I/ UB09D/UB09I UB08/UB09 12/13/2011	6571481/6571482/ UL18I 1293989/UL18 03/07/2012	6689156/6689157/ 6689158/UY55H 1316071/UY55 6/14/2012	6788027/6788028/ 6788029/VJ32L 1335483/VJ32 9/12/2012
Tide Level	I (ft MLLW):		-0.3	0.1	0.4	0.7	8.3	8.3	8.2	4.3	6.3	6.9	9.0	7.9	6.6
TOTAL METALS (μg/L)															
Method 200.8			0.011	0.77 14	0.00.11	0.00.11	0.0.11	0.0.11	0.40.11	0.00.11	0.00.11	0.0.11	0.40.11	0.04 14	0.00.11
Antimony Arsenic			0.2 U 3	0.77 J1 2.4	0.33 U 1.5 J1	0.33 U 2.3	0.2 U 66.1	0.2 U 66.3	0.42 U 27.9	0.33 U 13.7	0.33 U 16.8	0.2 U 14.5	0.42 U 11.2	0.21 J1 10.2	0.33 U 12.4
Barium			76.5	41.2	31.6	2.3 152	169	162	42.4	15.6	20.6	18.3	15.0	13.8	14.2
Beryllium			0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.2 U	0.13 U	0.025 U	0.039 J1	0.2 U	0.13 U	0.025 U	0.025 U
Cadmium			0.1 U	0.28 J1	0.048 U	0.082 U	0.1 U	0.1 U	0.20 U	0.051 J1	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium			1 U	0.60 U	0.10 U	0.50 U	0.8	0.9	0.60 U	0.16 J1	0.50 U	0.8	1.5 J1	1.6 J1	1.3 J1
Copper			1 U	1.4 J1	0.15 U	0.60 J1	1.2	1.3	0.38 U	0.15 U	0.40 U	4.8	3.2	5.1	2.6
Lead			0.1 U	0.87 J1	0.034 U	0.076 J1	0.3	0.2	0.080 U	0.093 J1	0.034 U	0.3	0.093 J1	0.35 J1	0.034 U
Nickel			4.2	0.81 J1	0.16 J1	0.35 U	2.9 J	3.6 J	0.70 J1	0.64 J1	0.35 U	8	7.5	8.5	7.2
Selenium			5	0.27 U	0.18 U	0.50 U	2	2 U	0.27 U	0.18 U	0.50 U	2.2	0.87 J1	0.76 J1	0.62 J1
Zinc			4 U	23.9	1.1 U	2.1 J1	4 U	4 U	4.0 U	1.1 U	1.1 U	6	4.0 U	5.8 J1	2.5 UJ2
Method SW7470A/EPA 1631E (ng/l Mercury	'L)	12	20.0 U	2.49 J1	0.225 J1	1.60 U	20.0 U	20.0 U	1.60 U	0.259 J1	0.299 J1	20.0 U	4.73 J1	4.48 J1	4.00 J1
DISSOLVED METALS (µg/L) Methods 200.8/SW7196A															
Antimony		150	0.2 U	0.86 J1	0.33 U	0.33 U	0.2 U	<u>0.2</u> U	0.42 U	0.33 U	0.33 U	0.2 U	0.42 U	0.33 J1	0.33 U
Arsenic		8	3.7	2.2	2.0 J1	2.3	65.8	66.9	25.4	12.6	18.1	13.6	12.3	10	11.7
Barium		770	81.6	38.4	31.2	147	171	175	43.8	17.9	21.5	17.8	14.9	15.1	16.0
Beryllium		12	0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.2 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.029 J1
Cadmium		0.25	0.1 U	0.20 U	0.048 U	0.084 J1	0.1 U	0.1 U	0.20 U	0.13 J1	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium		74	0.7	0.60 U	0.10 U	0.50 U	0.5 U	0.5 U	0.60 U	0.13 J1	0.50 U	1.0	1.5 J1	1.3 J1	1.4 J1
Copper		8	1.2	0.42 J1	0.15 U	0.40 U	0.6	0.9	0.38 U	0.15 U	0.40 U	4.1	2.9	4.9	3.0
Lead		2.5	0.1 U	0.080 U	0.034 U	0.034 U	0.1 U	0.1 U	0.080 U	0.19 J1	0.034 U	0.1 U	0.080 U	0.045 J1	0.034 U
Nickel		8.2	4.8	0.50 U	0.16 J1	0.35 U	2.4	2.4	0.61 J1	0.40 J1	0.46 J1	7.9	7.6	7.4	7.7
Selenium		5	5 U	0.27 U	0.18 U	0.50 U	2	2	0.27 U	0.18 U	0.50 U	2.1	0.75 J1	0.80 J1	0.83 J1
Silver Zinc		22 56	0.2 U 4 U	0.098 U 4.0 U	0.10 U 1.1 U	0.10 U 1.1 U	0.2 U 4 U	0.2 U 4 U	0.098 U 4.0 U	0.10 U 1.5 J1	0.10 U 1.1 U	0.2 U 6	0.098 U 6.4 J1	0.046 U 5.0 J1	0.1 U 2.3 UJ2
2010		00	10	1.0 0	0	1.1 0	10		1.5 0	1.0 01	0	· ·	0.4 01	0.0 01	2.0 002
Method SW7470A/EPA 1631E (ng/l Mercury	'L)	12	20.0 U	1.71 J1	1.36	2.58 J1	20.0 U	20.0 U	1.11	1.75	1.10	20.0 U	4.02 J1	7.18 J1	4.02 J1
CONVENTIONALS (mg/L)															
Chloride (Method 300.0)			NA	NA	1030	4550	NA	NA	NA	36.0	70.0	NA	NA	19.2	26.6
Nitrate (Method 300.0)			1.0 U	0.050 U	0.050 U	0.050 U	0.1 U	0.1 U	0.050 U	0.050 U	0.050 U	0.1 U	0.050 U	0.050 U	0.050 U
Sulfate (Method 300.0)			420	299	405	542	106	104	18.3	6.0	8.4	76.7	105	72.6	63.9
Total Dissolved Solids (Method 160.	.1)		4130	3540	1770	7240	1700	1720	611	330	330	616	604	704	638
FIELD PARAMETERS															
Temperature (°C)			14.56	12.86	13.43	14.79	15.61	15.61	13.65	15.1	16.98	15.93	14.73	15.07	16.77
Conductivity (uS/cm)			6477	5012	2229	9596	6232	6232	675	428	605	22255	592	716	1020
Dissolved Oxygen (mg/L)			1.28	0.81	0.32	0.44	0.98	0.98	0.40	0.46	2.40	0.86	0.39	0.52	1.13
pH (SU)			10.13	8.28	10.85	9.13	7.05	7.05	8.84	NA	6.39	6.69	8.54	6.29	6.85
ORP (mV)			-144.5	-271.3	-283.1	-199.3	-99.9	-99.9	-123.5	-113.0	-105	-151.8	-62.0	14.5	-44
Turbidity (NTU)			0.95	2.50	0.53	8.39	13.89	13.89	5.81	9.18	48.7	5.72	2.9	106.44	6.65
Ferrous Iron (mg/L)			NA	0.6	0.0	0.0	NA	NA	1.8	4.8	2.2	NA	1.8	2.2	2.8

1					04	her			
Location:		IT-MW-17	IT-MW-17	IT-MW-17	IT-MW-17	IT-PZ-6	IT-PZ-6	IT-PZ-6	IT-PZ-6
						UA54A/UA54J/			
	5 " '	UA90A/UA90D/	6580630/6580631/	6692719/6692720/	6788033/6788034/	UA55A/UA55I/	6571477/6571478/	6689149/6689150/	6788004/6788005/
Laboratory Sample ID: Laboratory Data Package ID:	Preliminary Cleanup	UA91A/UA91C UA90/UA91	UM54A 1295735/UM54	6692721/UZ18A 1316786/UZ18	6788035/VJ32B 1335483/VJ32	UB47A/UB47I UA54/UA55/UB47	UL18G 1293989/UL18	6689151/UY55F 1316071/UY55	6788006/VJ03F 1335480/VJ03
Sample Date:	Levels	12/12/2011	3/14/2012	6/18/2012	9/12/2012	12/08/2011	03/07/2012	6/14/2012	9/11/2012
Tide Level (ft MLLW):	2010.0	-0.8	0.2	-0.8	1.2	6.3	6.6	4.0	8.6
VOLATILES (μg/L)									
Method SW8260C									
Acetone	110,000	5.0 UJ	3.0 U	3.0 U	3.0 U	5.0 U	3.0 U	3.0 U	3.0 U
Benzene	2	0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 J1	0.1 J1
Bromodichloromethane	17	0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Carbon Disulfide Chloroform	3900 9.4	0.2 UJ 0.2 UJ	0.4 U 0.1 U	0.4 U 0.1 U	0.4 U 0.1 U	0.2 U 0.2 U	0.4 U 0.1 U	0.4 U 0.1 U	0.4 U 0.1 U
1,2-Dichlorobenzene	440	0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.7 J	0.1 J
1,1-Dichloroethane	33	0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 J1	0.1 U
4-Isopropyltoluene		0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Methylene Chloride	230	0.5 UJ	0.2 U	0.2 U	0.3 J1	0.5 U	0.2 U	0.2 U	0.2 U
Naphthalene	26	0.5 UJ	0.1 U	0.2 J1	0.2 J1	0.5 U	0.1 U	0.1 J1	0.1 J1
Toluene	1300	0.2 UJ	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene m,p-Xylene	303 1300	0.2 UJ 0.4 UJ	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.4 U	0.1 U 0.1 U	0.2 J1 0.1 U	0.1 J 0.1 U
m,p-xylene	1300	0.4 03	0.1 0	0.1 0	0.1 0	0.4 0	0.1 0	0.1 0	0.1 0
VOLATILES (µg/L)									
Method SW8260C-SIM									
Tetrachloroethene	3.3	0.020 UJ	0.010 U	0.026 U	0.011 J1	0.020 U	0.010 U	0.017 J1	0.010 U
Vinyl Chloride	0.53	0.020 UJ	0.010 U	0.010 U	0.140	0.020 U	0.019 J1	0.014 J1	0.013 J1
SEMIVOLATILES (µg/L)									
Method SW8270D									
Acenaphthene	120	1.0 U	0.1 U	0.1 J1	0.1 U	1.2 U	0.09 U	0.1 U	0.1 U
Chrysene	0.018	1.0 U	0.1 U	0.09 U	0.1 U	1.2 U	0.09 U	0.1 U	0.1 U
2,4-Dichlorophenol		5.0 U	0.5 U	0.5 U	0.5 U	5.9 U	0.5 U	0.5 U	0.5 U
bis(2-Ethylhexyl)phthalate	1.2	3.7	2 U	2 U	2 U	1.2 U	2 U	2 U	2 U
Fluoranthene	11	1.0 U	0.1 U	0.2 J1	0.1 J1	1.2 U	0.09 U	0.1 U	0.1 U
Fluorene 1-Methylnaphthalene	45 2.3	1.0 U 1.0 U	0.1 U 0.1 J1	0.1 J1 0.3 J1	0.1 U 0.3 J1	1.2 U 1.2 U	0.09 U 0.09 U	0.1 U 0.1 U	0.1 U 0.1 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.3 J1	0.3 J1	1.2 U	0.09 U	0.1 U	0.1 U
4-Methylphenol	330	1.0 U	0.5 U	0.5 U	0.5 U	1.2 U	0.5 U	0.5 U	0.5 U
Naphthalene	26	1.0 U	0.1 U	0.2 J1	0.2 J1	1.2 U	0.1 J1	0.1 J1	0.2 J1
Phenanthrene		1.0 U	0.2 J1	0.5	0.6	1.2 U	0.09 U	0.1 U	0.1 U
Phenol	41,000	1.0 U	0.5 U	0.5 U	1	1.2 U	0.5 U	0.5 U	0.5 U
Pyrene	9.8	1.0 U	0.1 U	0.2 UJ2	0.2 J1	1.2 U	0.09 U	0.1 U	0.1 U
cPAHs (µg/L)									
Method SW8270D-SIM									
Benzo(a)anthracene	0.0018	0.010 U	0.0049 U	0.0070 J1	0.0060 J1	0.010 U	0.0048 U	0.0053 U	0.0053 U
Benzo(a)pyrene	0.00018	0.010 U	0.0049 U	0.0047 U	0.0049 U	0.010 U	0.0048 U	0.0053 U	0.0053 U
Benzo(b)fluoranthene	0.0018	NA	0.0049 U	0.0047 U	0.0049 U	NA	0.0048 U	0.0053 U	0.0053 U
Benzo(k)fluoranthene	0.0018	NA	0.0049 U	0.0047 U	0.0049 U	NA	0.0048 U	0.0053 U	0.0053 U
Total Benzofluoranthenes	0.0018	0.020 U	NA	NA	NA	0.020 U	NA	NA	NA
Chrysene	0.018	0.010 U	0.0049 U	0.010	0.0049 U	0.010 U	0.0048 U	0.0053 U	0.0053 U
Dibenz(a,h)anthracene	0.0018 0.0018	0.010 U 0.010 U	0.0039 U 0.0039 U	0.0038 U 0.0038 U	0.0039 U 0.0039 U	0.010 U 0.010 U	0.0038 U 0.0038 U	0.0042 U 0.0042 U	0.0042 U 0.0042 U
Indeno(1,2,3-cd)pyrene Pyrene	9.8	0.010 U NA	0.0039 U 0.048 J1	0.0038 U	0.140	0.010 U NA	0.0038 U	0.0042 U	0.0042 U 0.011 U
cPAH TEQ	0.00018	ND	ND	0.0008 J	0.0006 J	ND	ND	ND	ND
PCBs (µg/L)									
Method SW8082	0.000000	0.040.11	0.0040.11	0.040	0.0040.11	0.040.11	0.0050.11	0.0050.11	0.0055.11
Aroclor 1248 Aroclor 1254	0.000023 0.0000055	0.010 U 0.010 U	0.0048 U 0.012	0.016 0.0048 U	0.0049 U 0.0049 U	0.010 U 0.010 U	0.0053 U 0.0053 U	0.0050 U 0.0050 U	0.0055 U 0.0055 U
Aroclor 1254 Aroclor 1260	0.0000055	0.010 U	0.012 0.0048 U	0.0048 U	0.0049 U	0.010 U	0.0053 U	0.0050 U	0.0055 U
Total PCBs	0.000023	ND	0.012	0.016	ND	ND	ND	ND	ND

1					Oti	her			
Location:		IT-MW-17	IT-MW-17	IT-MW-17	IT-MW-17	IT-PZ-6	IT-PZ-6	IT-PZ-6	IT-PZ-6
						UA54A/UA54J/			
		UA90A/UA90D/	6580630/6580631/	6692719/6692720/	6788033/6788034/	UA55A/UA55I/	6571477/6571478/	6689149/6689150/	6788004/6788005/
Laboratory Sample ID:	Preliminary	UA91A/UA91C	UM54A	6692721/UZ18A	6788035/VJ32B	UB47A/UB47I	UL18G	6689151/UY55F	6788006/VJ03F
Laboratory Data Package ID:	Cleanup	UA90/UA91	1295735/UM54	1316786/UZ18	1335483/VJ32	UA54/UA55/UB47	1293989/UL18	1316071/UY55	1335480/VJ03
Sample Date:	Levels	12/12/2011	3/14/2012	6/18/2012	9/12/2012	12/08/2011	03/07/2012	6/14/2012	9/11/2012
Tide Level (ft MLLW):		-0.8	0.2	-0.8	1.2	6.3	6.6	4.0	8.6
TOTAL METALS (µg/L)									
Method 200.8									
Antimony		1 U	0.73 J1	1.4	0.33 U	0.5 U	0.42 U	0.43 J1	0.46 J1
Arsenic		16	9.2	63.1	5.5 J1	1560	462	7870	7280
Barium		77	34.3	75.7	104	163	177	152	191
Beryllium		1 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.025 U
Cadmium		0.5 U	0.20 U	0.048 U	0.08 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium		2 U	1.5 J1	0.50 J1	0.50 U	1 U	1.1 J1	0.83 J1	1.2 J1
Copper		2 U	1.6 UJ2	6.2	0.68 J1	1 U	0.57 J1	0.29 J1	0.78 J1
Lead		0.5 U	0.59 J1	2.9	0.120 J1	0.1 U	0.17 J1	0.034 U	0.034 U
Nickel		5	1.0 J1	2.0	0.63 J1	4.5	1.4 J1	0.68 J1	0.69 J1
Selenium		10 U	0.27 UJ	0.69 J1	0.66 J1	5 U	0.29 J1	1.1 J1	0.59 J, J1
Zinc		20 U	4.0 U	12.8 J1	1.1 U	4 U	4.0 U	1.1 U	8.4 J1
Method SW7470A/EPA 1631E (ng/L)									
Mercury	12	20.0 U	1.60 U	3.25 J1	3.20 U	20.0 U	3.20 U	3.20 U	3.20 U
Morodry	12	20.0 0	1.00 0	0.20 01	0.20 0	20.0 0	0.20 0	0.20 0	0.20 0
DISSOLVED METALS (µg/L)									
Methods 200.8/SW7196A									
Antimony	150	1 U	0.61 J1	0.97 J1	0.33 U	0.5 U	0.42 U	0.31 J1	0.33 U
Arsenic	8	23	9.6	12.5	4.3 J1	1530	437	6610	8010
Barium	770	76	34.8	56.3	112	163	176	157	184
Beryllium	12	1 U	0.13 U	0.025 U	0.025 U	0.2 U	0.13 U	0.025 U	0.025 U
Cadmium	0.25	0.5 U	0.20 U	0.048 U	0.08 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium	74	2 U	0.80 J1	0.15 J1	0.50 U	1.4	1.1 J1	0.89 J1	0.98 J1
Copper	8	2 U	0.62 J1	0.39 J1	0.4 U	1.1	0.38 U	0.25 J1	0.40 U
Lead	2.5	0.5 U	0.080 U	0.034 U	0.034 U	0.1 U	0.080 U	0.34 U	0.034 U
Nickel	8.2	5	0.68 J1	0.40 J1	0.73 J1	4.8	0.86 J1	0.73 J1	0.59 J1
Selenium	5	10 U	0.27 UJ	0.69 J1	0.82 J1	5	0.38 J1	1.4 J1	0.50 UJ
Silver	22	1 U	0.098 U	0.10 U	0.1 U	0.2 U	0.098 U	0.046 U	0.10 U
Zinc	56	20 U	4.0 U	1.5 J1	1.1 U	4 U	4.0 U	1.1 U	1.7 UJ2
Method SW7470A/EPA 1631E (ng/L)									
Mercury	12	20.0 U	1.60 U	1.60 U	3.97 J1	20.0 U	5.00 J1	3.20 U	3.20 U
Wercury	12	20.0 0	1.00 0	1.00 0	3.37 31	20.0 0	3.00 01	3.20 0	3.20 0
CONVENTIONALS (mg/L)									
Chloride (Method 300.0)		NA	NA	2290	6800	NA	NA	3450	2930
Nitrate (Method 300.0)		0.1 U	0.25	0.12	0.050 U	0.5 U	0.050 U	0.050 U	0.050 U
Sulfate (Method 300.0)		648	286	326	1360	3.0	1.8	40.6	11.4
Total Dissolved Solids (Method 160.1)		8210	3950	3820 J	11200	5890	658	7180	7410
FIELD PARAMETERS									
Temperature (°C)		12.11	9.69	12.78	16.63	14.85	14.17	15.14	16.22
Conductivity (uS/cm)		26823	4351	5620	2230	11885	5860	7348	6537
Dissolved Oxygen (mg/L)		0.80	2.29	0.41	0.99	0.79	0.44	0.32	0.49
pH (SU)		9.07	10.40	10.09	9.63	6.50	8.90	6.76	6.86
ORP (mV)		-29.9	-181.8	-191.9	-262	-86.8	-160.2	-142.9	-141.2
Turbidity (NTU)		0.00	3.71	7.95	21.25	2.8	3.39	6.68	7.51
Ferrous Iron (mg/L)		NA	0.0	0.0	0.0	NA	1.8	2.0	2.6

ng/L = nanograms per liter $\mu g/L$ = micrograms per liter mg/L = milligrams per liter mV = millivolts

SU = standard unit

uS/cm = milliSiemens per centimeter C = Centigrade

ND = Not Detected. NA = Not Applicable.

SIM = Selected Ion Monitoring

- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

cPAHs = carcinogenic polycylic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

- U = Indicates the compound was undetected at the reported concentration.
- UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.
- UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.
- Box = Exceeds preliminary cleanup level
- Bold = Detected compound

						TORWILA,	WASHINGTON						
								erty Boundary					
Location:		IT-I-206	IT-I-206	IT-I-206	IT-I-206	IT-MW-7	IT-MW-7	IT-MW-7	IT-MW-7	IT-PZ-8	IT-PZ-8	IT-PZ-8	IT-PZ-8
Laboratory Sample ID:	Preliminary	UA27D/UA27L/ UA28D/UA28K/ UB45D/UB45K	6577003/6577004/ UM00B	6693953/6693954/ 6693955/UZ37D	6790518/6790519/ 6790520/VJ63G	TZ99A/TZ99D/ UA00A/UA00C/ UB44A/UB44C	6577001/6577002/ UM00A	6693950/6693951/ 6693952/UZ37C	6790515/6790516/ 6790517/VJ63F	TZ99B/TZ99E/ UA00B/UA00D/ UB44B/UB44D	6577005/6577006/ UM00C	6690474/6690475/ 6690476/UZ00B	6789050/6789051/ 6789052/VJ53B
Laboratory Data Package ID: Sample Date:	Cleanup Levels	UA27/UA28/UB45 12/06/2011	1295065/UM00 03/12/2012	1317022/UZ37 6/19/2012	1335985/VJ63 9/14/2012	TZ99/UA00/UB44 12/05/2011	1295065/UM00 03/12/2012	1317022/UZ37 6/19/2012	1335985/VJ63 9/14/2012	TZ99/UA00/UB44 12/05/2011	1295065/UM00 03/12/2012	1316296/UZ00 6/15/2012	1335688/VJ53 9/13/2012
Tide Level (ft MLLW):		0.3	-0.3	-1.1	0.8	1.3	0.1	-1.6	1.3	1.2	-0.3	0.1	1.2
VOLATILES (μg/L)													
Method SW8260C	2	0.0.11	0.4.11	0.4.11	0.4.11	0.011	0.4.11	0.4.11	04.11	0.0.11	0.4.11	0.4.11	0.4.11
Benzene sec-Butylbenzene	2	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Chloroethane	21,000	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Chloroform	9.4	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	33	0.2 U	0.1 J1	0.1 J1	0.1 J1	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	3.2	0.1 J1	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.2	0.2 J1	0.3	0.2	1.7	2.8	2.3	1.2	0.2 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 J1	0.1 J1	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane Methylene Chloride	3.7 230	0.2 U 0.5 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.2 U 0.3 J1	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.2 U 0.5 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U
Naphthalene	230 26	0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.3 JT 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.5 U 0.5 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U
Tetrachloroethene	3.3	0.2 U	0.1 U	0.1 U	0.1 U	0.5	0.3	0.4	0.4	0.2 U	0.1 U	0.1 U	0.1 U
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,1-Trichloroethane	46,000	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Trichloroethene	1.4	0.2 U	0.1 U	0.1 U	0.1 U	1.8	1.4	1.4	1.3	0.2 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Vinyl Chloride	0.53	0.4	0.5	0.4	0.3	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
m,p-Xylene o-Xylene	1300 1600	0.4 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.4 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.4 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
0-Aylerie	1000	0.2 0	0.1 0	0.1 0	0.1 0	0.2 0	0.1 0	0.1 0	0.1 0	0.2 0	0.1 0	0.1 0	0.1 0
VOLATILES (µg/L)													
Method SW8260C-SIM	0.0	0.000.11	0.040.11	0.040 14	0.040.11		0.00	0.00	0.44	0.000.11	0.040.11	0.05	0.040.11
Tetrachloroethene Vinyl Chloride	3.3 0.53	0.020 U 0.31	0.010 U 0.46	0.010 J1 0.37	0.010 U 0.24	0.44 0.020 U	0.36 0.012 J1	0.38 0.010 U	0.41 0.010 U	0.020 U 0.020 U	0.010 U 0.010 U	0.25 0.010 U	0.010 U 0.010 U
Acrylonitrile	0.53	0.050 U	0.46 NA	NA	NA	0.020 U	0.012 31 NA	0.010 U NA	0.010 U NA	0.020 U	0.010 U NA	0.010 U	0.010 U NA
Activicinano	0.007	0.000 0	107	10.0	101	0.000 0	1471	177	101	0.000 0	10.0	101	10.1
SEMIVOLATILES (µg/L) Method SW8270D													
Acenaphthene	120	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.09 U
Anthracene	200	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.09 U
Carbazole	660	1.0 U 1.0 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 1	1.0 U 1.0 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1.0 U 1.0 U	0.6 U 0.6 U	0.5 U 0.5 U	0.5 U 0.5 U
2,4-Dimethylphenol 1-Methylnaphthalene	2.3	1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.1 U	1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	1.0 U	0.6 U 0.1 U	0.5 U	0.5 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.09 U
Naphthalene	26	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.09 U
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.09 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.09 U
cPAHs (μg/L)													
Method SW8270D-SIM	0.0040	NIA.	0.0040.11	0.0054.11	0.0054.11	NIA	0.0040.13	0.0050 11	0.0040.11	NIA	0.0040.11	0.0040 12	0.0047.11
Benzo(b)fluoranthene Pyrene	0.0018 9.8	NA NA	0.0048 U 0.0095 U	0.0054 U 0.011 U	0.0051 U 0.010 U	NA NA	0.0048 U 0.0096 U	0.0050 U 0.010 U	0.0048 U 0.0096 U	NA NA	0.0048 U 0.0095 U	0.0048 U 0.0096 U	0.0047 U 0.0094 U
Total cPAHs TEQ	0.00018	ND	0.0093 U ND	ND	0.010 G ND	ND ND	0.0090 U ND	0.010 G ND	0.0090 U	ND	0.0093 U ND	0.0090 U	0.0094 0 ND
TOTAL PETROLEUM HYDROCARBONS (mg/L) NWTPH-Dx Diesel-Range Organics	0.5	0.10 U	0.075 U	0.031 U	0.033 U	0.10 U	0.068 U	0.030 U	0.030 U	0.10 U	0.069 U	0.030 U	0.029 U
NWTPH-G	0.0	0.10 0	0.070 0	0.001 0	3.000 0	0.10 0	0.000 0	0.000 0	0.000 0	0.10 0	0.000 0	0.000 0	3.023 0
Gasoline-Range Organics	1.0/0.8	0.25 U	0.05 U	0.05 U	0.05 U	0.25 U	0.05 U	0.05 U	0.05 U	0.25 U	0.05 U	0.05 U	0.05 U

•		1				<u> </u>							
		IT LOSS	IT 1 000	IT LOOP	IT 000	IT 101/ 7		erty Boundary	IT 1041 7	IT D7.0	IT D7.0	IT D7.0	IT D7 0
Location:		IT-I-206	IT-I-206	IT-I-206	IT-I-206	IT-MW-7	IT-MW-7	IT-MW-7	IT-MW-7	IT-PZ-8	IT-PZ-8	IT-PZ-8	IT-PZ-8
Laboratoro Comunic ID		UA27D/UA27L/	0577000/0577004/	0000050/000054/	0700540/0700540/	TZ99A/TZ99D/	0577004/0577000/	0000050/0000054/	0700545/0700540/	TZ99B/TZ99E/	0577005/0577000/	0000474/0000475/	0700050/0700054/
Laboratory Sample ID:	Day Fasting and	UA28D/UA28K/	6577003/6577004/	6693953/6693954/	6790518/6790519/	UA00A/UA00C/	6577001/6577002/	6693950/6693951/	6790515/6790516/	UA00B/UA00D/	6577005/6577006/	6690474/6690475/	6789050/6789051/
Laboratori Data Bashana ID	Preliminary	UB45D/UB45K	UM00B	6693955/UZ37D	6790520/VJ63G	UB44A/UB44C	UM00A	6693952/UZ37C	6790517/VJ63F	UB44B/UB44D	UM00C	6690476/UZ00B	6789052/VJ53B
Laboratory Data Package ID:	Cleanup	UA27/UA28/UB45	1295065/UM00	1317022/UZ37	1335985/VJ63	TZ99/UA00/UB44	1295065/UM00	1317022/UZ37	1335985/VJ63	TZ99/UA00/UB44	1295065/UM00	1316296/UZ00	1335688/VJ53
Sample Date:	Levels	12/06/2011	03/12/2012	6/19/2012	9/14/2012	12/05/2011	03/12/2012	6/19/2012	9/14/2012	12/05/2011	03/12/2012	6/15/2012	9/13/2012
Tide Level (ft MLLW):		0.3	-0.3	-1.1	0.8	1.3	0.1	-1.6	1.3	1.2	-0.3	0.1	1.2
TOTAL METALS (µg/L)													
Method 200.8													
Arsenic		398	207	461	453	3.5	9.0	3.1	4.7	1.2	0.95 U	0.94 J1	0.90 J1
Barium		22.8	22.1	24.7	23.1	30.0	9.1	13.6	10.6	11.6	34.9	21.9	10.1
Beryllium		0.2 U	0.13 U	0.025 U	0.035 J1	0.2 U	0.13 U	0.026 J1	0.027 J1	0.2 U	0.13 U	0.025 U	0.025 U
Chromium		1.1	0.97 J1	1.5 J1	1.4 J1	0.5 U	0.60 U	0.50 U	0.50 U	1.1	0.60 U	0.49 J1	1.0 J1
Copper		0.6	1.1 J1	0.15 U	0.40 U	2.0	2.4	1.5 J1	2.2	0.5 U	0.38 U	0.28 J1	0.40 U
Lead		0.1 U	0.31 J1	0.034 U	0.37 J1	0.1 U	0.094 J1	0.042 J1	0.034 U	0.1 U	0.080 U	0.034 U	0.047 J1
Nickel		1.4	0.55 J1	0.30 J1	0.42 J1	2.9	1.9 J1	2.6	1.7 J1	0.6	0.50 U	0.13 U	0.35 U
Selenium		0.8	0.27 U	0.24 J1	0.50 U	0.5	0.42 J1	0.75 J1	0.63 J1	2	0.27 U	0.23 J1	0.50 U
Thallium		0.2 U	0.15 U	0.029 U	0.15 U	0.2 U	0.15 U	0.050 J1	0.15 U	0.2 U	0.15 U	0.029 U	0.15 U
Zinc		4 U	20.1	1.1 U	1.1 U	4	4.0 U	2.1 J1	1.5 J1	4 U	4.0 U	1.1 U	1.1 U
Method SW7196A (mg/L)													
Chromium VI	0.00058	0.010 U	0.010 U	0.010 U	0.010 U	0.010 UJ	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Method SW7470A/EPA 1631E (ng/L)													
Mercury	12	20.0 U	3.38 J1	1.60 U	2.61 J1	20.0 U	4.29	1.77	2.06	20.0 U	1.60 U	0.160 U	0.308 J1
DISSOLVED METALS (μg/L)													
Methods 200.8/SW7196A													
Antimony	150	0.2 U	0.42 U	0.33 U	0.33 U	0.2 U	0.42 U	0.33 U	0.33 U	0.2 U	0.42 U	0.33 U	0.33 U
Arsenic	8	401	190	464	445	3.6	8.7	3.6	3.2	2.0	0.95 U	1.1 J1	1.0 J1
Barium	770	21.4	16.0	23.3	26.6	29.0	8.6	12.2	10.8	12.3	33.2	21.1	9.5
Beryllium	12	0.2 U	0.13 U	0.025 U	0.027 J1	0.2 U	0.13 U	0.027 J1	0.025 U	0.2 U	0.13 U	0.025 U	0.025 U
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium	74	0.9	0.79 J1	1.4 J1	1.1 J1	0.5 U	0.60 U	0.50 U	0.50 U	1.0	0.60 U	0.39 J1	1.0 J1
Copper	8	0.5 U	0.38 U	0.15 U	0.40 U	2.1 J	2.6	2.0	2.3	0.5 U	0.38 U	2.8	0.40 U
Lead	2.5	0.1 U	0.080 U	0.034 U	0.034 U	0.1 U	0.080 U	0.034 U	0.034 U	0.1 U	0.080 U	0.097 J1	0.034 U
Nickel	8.2	0.9	0.75 J1	0.27 J1	0.42 J1	2.6	1.7 J1	2.6	1.7 J1	0.7	0.50 U	0.13 U	0.35 U
Selenium	5	0.8	0.27 U	0.18 U	0.50 U	0.5 U	0.43 J1	0.69 J1	1.0 J1	3.8	0.27 U	0.22 J1	0.50 U
Thallium	0.47	0.2 U	0.15 U	0.029 U	0.15 U	0.2 U	0.15 U	0.029 U	0.15 U	0.2 U	0.15 U	0.029 U	0.15 U
Zinc	56	4 U	24.4	1.1 U	1.5 J1	10	4.3 J1	4.5 J1	2.5 J1	4 U	4.0 U	4.2 J1	1.4 J1
Method SW7470A/EPA 1631E (ng/L)													
Mercury	12	20.0 U	3.25 J1	1.60 U	4.52 J1	20.0 U	4.09	2.20	2.81	20.0 U	1.60 U	0.428 J1	0.419 J1
Mercury	12	20.0 0	3.23 01	1.00 0	4.52 01	20.0 0	4.03	2.20	2.01	20.0 0	1.00 0	0.420 01	0.413 01
CONVENTIONALS (mg/L)													
Chloride (Method 300.0)		NA	NA	38.6	29.5	NA	NA	18.4	13.4	NA	NA	1020	407
Nitrate (Method 300.0)		0.1 U	0.050 UJ	0.25 U	0.050 U	1.2	1.2	0.97	1.5	0.1 U	0.050 U	0.050 U	0.050 U
Sulfate (Method 300.0)		22.1	11.2	6.0	27.8	22.7	20.9 J	34.2	35.7	24.0	12.5	119	35.9
Total Dissolved Solids (Method 160.1)		508	488	499 J	560	194	167	230 J	207	1250	2280	1890	998
,						-	-		-				
FIELD PARAMETERS													
Temperature (°C)		15.63	14.85	15.55	16.64	14.47	12.95	13.13	15.56	16.1	14.75	14.3	17.18
Conductivity (uS/cm)		1006	711	787	684	517	176	243	192	1878	3546	2783	1830
Dissolved Oxygen (mg/L)		0.52	1.18	0.45	0.53	1.36	1.81	3.19	1.13	1.4	0.61	0.43	0.93
pH (SU)		6.11	7.36	6.92	7.42	5.15	6.99	5.48	6.61	6.8	7.23	7.06	6.60
ORP (mV)		-125.7	-115.6	-146.9	-127.8	112.68	-67.7	9.1	76.2	-49.9	-111.8	-111.1	-137
Turbidity (NTU)		2.45	41.18	5.56	3.64	1.71	9.9	3.18	7.64	2.5	2.59	25.65	47.6
Ferrous Iron (mg/L)		NA	1.6	0.6	2.2	NA	0.6	0.0	2.2	NA	1.8	3.8	2.0
· - ·		ĺ								•			•

						TORWILA, V	VASHINGTON						
							Southern Prop	erty Boundary					
Location:		IT-MW-5	IT-MW-5	IT-MW-5	IT-MW-5	IT-MW-6	IT-DUP-1 (IT-MW-6)	IT-MW-6	IT-DUP-1 (IT-MW-6)	IT-MW-6	IT-DUP-2 (IT-MW-6)	IT-MW-6	IT-DUP-2 (IT-MW-6)
Laboratory Sample ID:	Preliminary	UB08E/UB08J/ UB09E/UB09J/ UD89A	6572513/6572514/ UL36B	6695720/6695721/ 6695722/UZ55B	6789068/6789069/ 6789070/VJ53H	UA44A/UA44I/ UA45A/UA45H/ UB46A/UB46H	UA44G/UA44O/ UA45G/UA45N/ UB46G/UB46N	6572517/6572518/ UL36D	6572521/UL36F	6697970/6697971/ 6697972/UZ66E	6697973/6697974/ 6697975/UZ66F	6789074/6789075/ 6789076/VJ53J	6789077/6789078/ 6789079/VJ53K
Laboratory Data Package ID: Sample Date: Tide Level (ft MLLW):	Cleanup Levels	UB08/UB09/UD89 12/13/2011 7.8	1294218/UL36 03/08/2012 3.8	1317333/UZ55 6/20/2012 0.8	1335688/VJ53 9/13/2012 5.8	UA44/UA45/UB46 12/07/2011 5.2	UA44/UA45/UB46 12/07/2011 5.2	1294218/UL36 03/08/2012	1294218/UL36 03/08/2012	1317686/UZ66 6/21/2012 7.2	1317686/UZ66 6/21/2012	1335688/VJ53 9/13/2012	1335688/VJ53 9/13/2012
Tide Level (It IVILLVV):		7.8	3.8	0.8	5.8	5.2	5.2	3.1	3.8	1.2	7.1	6.4	6.6
VOLATILES (μg/L) Method SW8260C													
Benzene	2	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.1 J1	0.1 J1	0.1 U	0.1 U
sec-Butylbenzene Chloroethane	21,000	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 J1	0.2 U	0.2 J1 1	0.2 J1	0.1 U 0.1 U	0.1 U
Chloroform	9.4	0.2 U 0.2	0.1 U	0.1 U	0.1 U 0.1 U	0.2 U 0.3	0.2 U 0.3	0.2 U	0.2 J1 0.2 U	0.2 J1	1.1 0.1 J1	0.1 U 0.2 J1	0.1 J1 0.2 J1
1,1-Dichloroethane	33	0.5	0.1 J1	0.1 J1	0.1 J1	1.2	1.3	1.7	1.7	3.3	3.2	2.9	2.8
1,1-Dichloroethene	3.2	0.2 U	0.1 U	0.1 U	0.1 U	0.6	0.6	0.7	0.7	4.3	4.0	1.6	1.6
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U	130	140	150	160	240	260	200	200
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.1 U	0.1 U	2.1	2.2	2.6	2.6	4.0	3.9	4.3	4.2
1,2-Dichloropropane	3.7	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Methylene Chloride	230	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.4 U	0.4 U	0.2 U	0.2 U	0.2 U	0.2 U
Naphthalene Tetrachloroethene	26 3.3	0.5 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.5 U 0.7	0.5 U 0.6	0.2 U 0.8	0.2 U 0.8	0.1 U 0.9	0.1 U 0.9	0.1 U 1.3	0.1 U 1.3
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1,1-Trichloroethane	46,000	2.4	2.2	1.9	2.0	0.3	0.3	0.4 J1	0.4 J1	0.4 J1	0.4 J1	0.6	0.6
Trichloroethene	1.4	0.2 U	0.1 U	0.1 U	0.1 U	71	76	110	120	150	150	150	150
1,2,4-Trimethylbenzene	303	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
Vinyl Chloride	0.53	0.2 U	0.1 U	0.1 U	0.1 U	94	100	110	110	120	130	97	100
m,p-Xylene	1300	0.4 U	0.1 U	0.1 U	0.1 U	0.2 J1	0.2 J1	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U	0.1 U
o-Xylene	1600	0.2 U	0.1 U	0.1 U	0.1 U	0.2 J1	0.1 J1	0.2 U	0.2 U	0.9	0.7	0.1 U	0.1 U
VOLATILES (µg/L) Method SW8260C-SIM													
Tetrachloroethene	3.3	0.020 U	0.010 U	0.010 U	0.010 U	0.56	0.58	1.1	0.95	0.77 J	1.0 J	1.3	1.4
Vinyl Chloride	0.53	0.020 U	0.010 U	0.010 U	0.010 U	42 ES	43 ES	96	94	140	140	110	110
Acrylonitrile	0.057	0.050 U	NA	NA	NA	0.16 J	0.16 J	NA	NA	NA	NA	NA	NA
SEMIVOLATILES (µg/L) Method SW8270D													
Acenaphthene	120	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.6 J1	0.1 J1	0.2 J1	0.1 U	0.1 U	0.1 U	0.1 U
Anthracene	200	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Carbazole		1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol 1-Methylnaphthalene	660 2.3	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	1.0 U 1.0 U	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Naphthalene	26	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 J1	0.1 U	0.1 U	0.1 J1
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	1.0 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
cPAHs (μg/L) Method SW8270D-SIM													
Benzo(b)fluoranthene	0.0018	NA	0.0070 J1	0.0048 U	0.0050 U	NA	NA	0.0047 U	0.0047 U	0.0051 U	0.0052 U	0.0049 U	0.0048 U
Pyrene	9.8	NA	0.011 U	0.0095 U	0.010 U	NA	NA	0.0094 U	0.0095 U	0.010 U	0.010 U	0.0097 U	0.0095 U
Total cPAHs TEQ	0.00018	ND	0.0007 J1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/L) NWTPH-Dx													
Diesel-Range Organics	0.5	0.10 U	0.067 U	0.029 U	0.029 U	0.10 U	0.10 U	0.068 U	0.067 U	0.031 U	0.030 U	0.028 U	0.029 U
NWTPH-G Gasoline-Range Organics	1.0/0.8	0.25 U	0.05 U	0.05 U	0.05 U	0.25 U	0.25 U	0.05 U	0.05 U	0.057 J1	0.05 U	0.05 U	0.05 U

						i Oittiilli, i	VASIIINGTON						
							Southern Prop	erty Boundary					
Location:		IT-MW-5	IT-MW-5	IT-MW-5	IT-MW-5	IT-MW-6	IT-DUP-1 (IT-MW-6)	IT-MW-6	IT-DUP-1 (IT-MW-6)	IT-MW-6	IT-DUP-2 (IT-MW-6)	IT-MW-6	IT-DUP-2 (IT-MW-6)
		UB08E/UB08J/				UA44A/UA44I/	UA44G/UA44O/						
Laboratory Sample ID:		UB09E/UB09J/	6572513/6572514/	6695720/6695721/	6789068/6789069/	UA45A/UA45H/	UA45G/UA45N/	6572517/6572518/		6697970/6697971/	6697973/6697974/	6789074/6789075/	6789077/6789078/
	Preliminary	UD89A	UL36B	6695722/UZ55B	6789070/VJ53H	UB46A/UB46H	UB46G/UB46N	UL36D	6572521/UL36F	6697972/UZ66E	6697975/UZ66F	6789076/VJ53J	6789079/VJ53K
Laboratory Data Package ID:	Cleanup	UB08/UB09/UD89	1294218/UL36	1317333/UZ55	1335688/VJ53	UA44/UA45/UB46	UA44/UA45/UB46	1294218/UL36	1294218/UL36	1317686/UZ66	1317686/UZ66	1335688/VJ53	1335688/VJ53
Sample Date:	Levels	12/13/2011	03/08/2012	6/20/2012	9/13/2012	12/07/2011	12/07/2011	03/08/2012	03/08/2012	6/21/2012	6/21/2012	9/13/2012	9/13/2012
Tide Level (ft MLLW):		7.8	3.8	0.8	5.8	5.2	5.2	3.1	3.8	7.2	7.1	6.4	6.6
TOTAL METALS (µg/L)													
Method 200.8													
Arsenic		0.6U/ 0.4 *	0.95 U	0.95 U	0.52 J1	2.2	2.1	0.95 U	0.95 U	0.68 J1	0.99 J1	1.0 J1	0.68 J1
Barium		130	80.3	40.7	53.7	91.3	92.0	80.6	80.5	45.0	44.4	52.6	56.0
Beryllium		0.2 U	0.13 U	0.13 U	0.043 J1	0.2 U	0.2 U	0.13 U	0.13 U	0.029 J1	0.035 J1	0.027 J1	0.031 J1
Chromium		0.5 U	0.60 U	0.60 U	0.50 U	0.5	0.5	0.60 U	0.61 J1	0.54 J1	0.52 J1	0.62 J1	0.73 J1
Copper		1.8	1.1 J1	1.3 J1	1.2 J1	0.9	0.5 U	1.5 J1	1.6 J1	0.98 J1	1.1 J1	0.45 J1	0.46 J1
Lead		0.1 U	0.080 U	0.080 U	0.034 U	0.1 U	0.1 U	0.080 U	0.080 U	0.034 U	0.034 U	0.034 U	0.035 J1
Nickel		10.2	6.9	2.6	5.6	2.5 J	3.1 J	1.8 J1	1.7 J1	2.6	2.4	2.6	3.9
Selenium		0.6	0.53 J1	0.27 U	0.50 U	0.6	0.8	0.27 U	0.27 U	0.18 U	0.21 J1	0.50 U	0.50 U
Thallium		0.2 U	0.15 U	0.15 U	0.15 U	0.2 U	0.2 U	0.15 U	0.15 U	0.029 U	0.029 U	0.15 U	0.15 U
Zinc		31	14.8 J1	7.4 J1	14.3 J1	10	10	5.4 J1	6.1 J1	6.9 J1	7.2 J1	8.6 J1	9.4 J1
Mathad CM740CA (m = 1)													
Method SW7196A (mg/L)	0.00050	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11	0.040.11
Chromium VI	0.00058	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Mothed SM7470A/EDA 1631E (ng/l)													
Method SW7470A/EPA 1631E (ng/L) Mercury	12	20.0 U	0.397 J1	0.772	0.669	20.0 U	20.0 U	9.97 J, J1	37.4 J	1.23	1.12	0.950	1.60 U
Mercury	12	20.0 0	0.337 31	0.772	0.009	20.0 0	20.0 0	3.37 3, 31	37.4	1.23	1.12	0.950	1.00 0
DISSOLVED METALS (µg/L)													
Methods 200.8/SW7196A													
Antimony	150	0.2 U	0.42 U	0.42 U	0.33 U	0.2 U	0.2 U	0.42 U	0.42 U	0.33 U	0.33 U	0.33 U	0.33 U
Arsenic	8	0.5	0.95 U	0.95 U	0.48 J1	2.1	2.2	0.95 U	0.95 U	0.66 J1	0.64 J1	2.7	0.74 J1
Barium	770	137	83.7	40.3	55.3	89.9	89.2	84.9	92.4	46.6	46.4	50.8	56.1
Beryllium	12	0.2 U	0.13 U	0.13 U	0.030 J1	0.2 U	0.2 U	0.13 U	0.13 U	0.025 U	0.025 U	0.027 J1	0.044 J1
Cadmium	0.25	0.1 U	0.20 U	0.20 U	0.11 J1	0.1 U	0.1 U	0.20 U	0.20 U	0.048 U	0.048 U	0.082 U	0.082 U
Chromium	74	0.5 U	0.60 U	0.60 U	0.50 U	1	1 U	0.61 J1	0.60 U	0.60 J1	0.57 J1	0.65 J1	0.59 J1
Copper	8	1.7	1.4 J1	1.5 J1	1.4 J1	1.3	0.7	1.5 J, J1	0.38 UJ	0.54 J1	0.68 J1	0.40 U	0.40 U
Lead	2.5	0.1_U	0.080 U	0.080 U	0.034 U	0.1 U	0.1 U	0.080 U	0.080 U	0.034 U	0.034 U	0.034 U	0.17 J1
Nickel	8.2	10.3	7.9	2.5	5.8	3.1	2.9	2.0 J	0.50 UJ	2.1	2.3	3.1	3.5
Selenium	5	0.7	0.57 J1	0.27 U	0.55 J1	0.6	0.7	0.27 U	0.27 U	0.18 U	0.18 U	0.50 U	0.50 U
Thallium	0.47	0.2 U	0.15 U	0.15 U	0.15 U	0.2 U	0.2 U	0.15 U	0.15 U	0.029 U	0.029 U	0.15 U	0.15 U
Zinc	56	33	18.0	7.5 J1	12.8 J1	10	10	6.8 J1	4.0 U	8.3 J1	9.3 J1	8.5 J1	8.1 J1
Method SW7470A/EPA 1631E (ng/L)													
Mercury	12	20.0 U	0.716	0.676	1.07	20.0 U	20.0 U	1.60 U	1.60 U	1.01	0.791	3.62 J1	1.98 J1
CONVENTIONALO (* . *)													
CONVENTIONALS (mg/L)			***	• •			***	***					
Chloride (Method 300.0)		NA 50.0	NA 70.4	3.9	4.8	NA 0.4	NA 0.4	NA 2 22 J	NA 10	4.4	4.4	4.8	4.8
Nitrate (Method 300.0)		56.8 97.3	70.1 76.1	25.4 48.0	57.9 Ј 85.6	0.1	0.1	0.83 J	1.2 J 18.6 J	0.050 U 15.5 J	0.050 U 22.9 J	0.060 J1 30.4	0.052 J1 30.7
Sulfate (Method 300.0)		97.3 573			553	10.1	10.1	14.4 J			325		
Total Dissolved Solids (Method 160.1)		5/3	657	430	555	334	334	319	359	332	323	302	304
FIELD PARAMETERS													
Temperature (°C)		16.46	15.34	16.40	16.83	16.43	16.43	15.94	15.94	16.01	16.01	20.96	20.96
Conductivity (uS/cm)		20248	1207	494	625	1186	1186	577	577	408	408	3985	3985
Dissolved Oxygen (mg/L)		1.07	0.49	2.41	0.47	1.54	1.54	0.53	0.53	0.47	0.47	0.74	0.74
pH (SU)		5.97	6.30	8.38	6.10	5.59	5.59	7.35	7.35	7.43	7.43	6.17	6.17
ORP (mV)		-165.6	87.4	2	32.6	4.8	4.8	38.1	38.1	59.2	59.2	33	33
Turbidity (NTU)		3.97	4.07	12.46	4.71	3.16	3.16	5.86	5.86	3.75	3.75	64.7	64.7
Ferrous Iron (mg/L)		NA	0.2	0.0	0.0	NA	NA	0.8	0.8	0.6	0.6	1.6	1.6
, ,					1								•

					Fastern Prone	erty Boundary					Former Washdown/Ag	ueous Degreaser Area	
Location:		IT-MW-4	IT-MW-4	IT-MW-4	IT-MW-4	IT-PZ-2	IT-PZ-2	IT-PZ-2	IT-PZ-2	IT-MW-1	IT-MW-1	IT-MW-1	IT-MW-1
		UB28C/UB28I/								UA27B/UA27J/			
Laboratory Sample ID:		UB29C/UB29H/	6572511/6572512/	6692725/6692726/	6790509/6790510/	UB28D/UB28J/	6572515/6572516/	6693944/6693945/	6790512/6790513/	UA28B/UA28I/	6574126/6574127/	6697958/6697959/	6790506/6790507/
	Preliminary	UD90A	UL36A	6692727/UZ18C	6790511/VJ63D	UB29D/UB29I	UL36C	6693946/UZ37A	6790514/VJ63E	UB45B/UB45I	UL60B	6697960/UZ66A	6790508/VJ63C
Laboratory Data Package ID:	Cleanup	UB28/UB29/UD90	1294218/UL36	1316786/UZ18	1335985/VJ63	UB28/UB29	1294218/UL36	1317022/UZ37	1335985/VJ63	UA27/UA28/UB45	1294477/UL60	1317686/UZ66	1335985/VJ63
Sample Date:	Levels	12/14/2011	03/08/2012	6/18/2012	9/14/2012	12/14/2011	03/08/2012	6/19/2012	9/14/2012	12/06/2011	03/09/2012	6/21/2012	9/14/2012
Tide Level (ft MLLW):		11.2	4.8	3.4	1.5	12.0	3.4	-0.4	3.7	4.2	4.9	5.7	1.2
VOLATILES (μg/L)													
Method SW8260C													
Benzene	2	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
sec-Butylbenzene		0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Chloroethane	21,000	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Chloroform 1,1-Dichloroethane	9.4 33	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
1,1-Dichloroethane	3.2	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U	0.4	0.4	0.3	0.1 J1	0.2	0.3	0.1 U	0.2
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	3.7	0.2 U	0.1 U	0.1 U	0.1 U	0.2	0.2 J1	0.2 J1	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Methylene Chloride	230	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U
Naphthalene	26	0.5 U	0.1 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U	0.9	0.5 U	0.1 U	0.1 U	0.1 U
Tetrachloroethene	3.3	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,1-Trichloroethane	46,000	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Trichloroethene	1.4	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2,4-Trimethylbenzene Vinyl Chloride	303 0.53	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2	0.1 U 0.3	0.1 U 0.3	0.1 U 0.2
m,p-Xylene	1300	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U 0.4 U	0.1 U	0.1 U	0.1 U	0.2 0.4 U	0.3 0.1 U	0.3 0.1 U	0.2 0.1 U
o-Xylene	1600	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 J1	0.1 U	0.1 J1
5 Aylone	1000	0.2 0	0.1 0	0.1 0	0.1 0	0.2 0	0.1 0	0.1 0	0.1 0	0.2 0	0.1 01	0.1 0	0
VOLATILES (μg/L)													
Method SW8260C-SIM													
Tetrachloroethene	3.3	0.020 U	0.010 U	0.043 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U
Vinyl Chloride	0.53	0.020 U	0.088	0.010 U	0.010 U	0.020 U	0.026	0.017 J1	0.010 U	0.17	0.25	0.33	0.21
Acrylonitrile	0.057	0.050 U	NA	NA	NA	0.050 U	NA	NA	NA	0.050 U	NA	NA	NA
SEMIVOLATILES (μg/L)													
Method SW8270D													
Acenaphthene	120	1.0 U	0.09 U	0.1 U	0.1 U	1.0 U	0.6	1	0.6	8.0	8	8	7
Anthracene	200	1.0 U	0.09 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.2 J1	0.09 U
Carbazole		1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol	660	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
1-Methylnaphthalene	2.3	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U
Naphthalene	26	1.0 U	0.1 J1	0.1 U	0.1 U	1.0 U	0.2 J1	0.1 J1	0.7	1.0 U	0.1 U	0.1 J1	0.1 J1
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	4.2	4	4	2
Pyrene	9.8	1.0 U	0.1 U	0.1 UJ	0.1 U	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 J1	0.09 U
cPAHs (μg/L)													
Method SW8270D-SIM													
Benzo(b)fluoranthene	0.0018	NA	0.0047 U	0.0054 U	0.0048 U	NA	0.0048 U	0.0049 U	0.0049 U	NA	0.0050 U	0.0048 U	0.0048 U
Pyrene	9.8	NA	0.0095 U	0.011 U	0.0095 U	NA	0.0095 U	0.0098 U	0.0098 U	NA	0.010 U	0.011 J1	0.011 J1
Total cPAHs TEQ	0.00018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/L)													
NWTPH-Dx Diesel-Range Organics	0.5	0.10 U	0.067 U	0.028 U	0.030 U	0.10 U	0.068 U	0.029 U	0.031 U	0.10 U	0.073 U	0.037 J1	0.029 U
NWTPH-G Gasoline-Range Organics	1.0/0.8	0.25 U	0.05 U	0.05 U	0.05 U	0.25 U	0.05 U	0.05 U	0.05 U	0.25 U	0.05 U	0.05 U	0.05 U

Preliminary UD90A UL36A 6692727/UZ18C 6790511/VJ63D UB29D/UB29I UL36C 6693946/UZ37A 6790514/VJ63E UB45B/UB45I UL60B	IT-MW-1 IT-I 697958/6697959/ 6790506 6697960/UZ66A 679050 1317686/UZ66 13359 6/21/2012 9/14	IT-MW-1 9506/6790507/ 90508/VJ63C 35985/VJ63 9/14/2012 1.2
Laboratory Sample ID: Laboratory Data Package ID: Sample Date: Levels 12/14/2011 03/08/2012 6/18/2012 9/14/2012 9/14/2012 9/14/2012 12/06/2012 03/09/2012 03/09/2012 05/19/2012 04/14/2011 03/08/2012 05/19/2012	697958/6697959/ 6790506 6697960/UZ66A 679050 1317686/UZ66 13359 6/21/2012 9/14	9506/6790507/ 90508/VJ63C 95985/VJ63 9/14/2012
Laboratory Sample ID: UB29C/UB29H/ 6572511/6572512/ 6692725/6692726/ 6790509/6790510/ UB28D/UB28J/ 6572515/6572516/ 6693944/6693945/ 6790512/6790513/ UA28B/UA28I/ 6574126/6574127/ 6693945/083945/ 6790512/6790513/ UB28D/UB29D/UB29I UB36C 6693946/UZ37A 6790514/VJ63E UB45B/UB45I UB45B	6697960/UZ66A 679050 1317686/UZ66 13359 6/21/2012 9/14	90508/VJ63C 35985/VJ63 9/14/2012
Preliminary UD90A UL36A 6692727/UZ18C 6790511/VJ63D UB29D/UB29I UL36C 6693946/UZ37A 6790514/VJ63E UB45B/UB45I UL60B 6692727/UZ18C 1316786/UZ18 1335985/VJ63 UB28/UB29 1294218/UL36 1317022/UZ37 1335985/VJ63 UA27/UA28/UB45 1294477/UL60 Sample Date: Levels 12/14/2011 03/08/2012 6/18/2012 9/14/2012 12/14/2011 03/08/2012 6/19/2012 9/14/2012 12/06/2011 03/09/2012	6697960/UZ66A 679050 1317686/UZ66 13359 6/21/2012 9/14	90508/VJ63C 35985/VJ63 9/14/2012
Laboratory Data Package ID: Cleanup UB28/UB29/UD90 1294218/UL36 1316786/UZ18 1335985/VJ63 UB28/UB29 1294218/UL36 1317022/UZ37 1335985/VJ63 UA27/UA28/UB45 1294477/UL60 Sample Date: Levels 12/14/2011 03/08/2012 6/18/2012 9/14/2012 12/14/2011 03/08/2012 6/19/2012 9/14/2012 12/06/2011 03/09/2012	1317686/UZ66 13359 6/21/2012 9/14	35985/VJ63 9/14/2012
Sample Date: Levels 12/14/2011 03/08/2012 6/18/2012 9/14/2012 12/14/2011 03/08/2012 6/19/2012 9/14/2012 12/06/2011 03/09/2012	6/21/2012 9/14	9/14/2012
·		
TOTAL METALO (mill)		
TOTAL METALS (µg/L) Method 200.8		
Arsenic 2.1U/1.8* 1.1 J1 4.6 2.0 J1 8.8 8.9 3.8 20.2 10.8 10.6	10.8	12.1
Barium 7.7 4.6 2.8 2.9 14.1 11.2 11.9 18.9 35.6 39.7	52.1	60.0
Beryllium 0.2 U 0.13 U 0.025 U 0.025 U 0.2 U 0.13 U 0.074 J1 0.080 J1 0.2 U 0.13 U		0.054 J1
Chromium 1.2 0.84 J1 2.1 1.8 J1 2 U 2.3 2.8 3.5 1.7 2.6	2.3	2.8
Copper 0.5 U 0.38 U 0.34 J1 0.40 U 1.4 0.38 U 0.42 UJ2 1.4 J1 1.0 0.38 U	0.15 U	0.40 U
Lead 0.1 U 0.080 U 0.034 U 0.034 U 0.2 0.080 U 0.14 J1 0.034 U 0.1 U 0.080 U	0.034 U	0.085 J1
Nickel 1.9 0.75 J1 1.4 J1 0.8 0.50 U 0.55 J1 1.1 J1 2.4 2.0	1.8 J1	1.9 J1
Selenium 0.5 U 0.27 U 0.18 U 0.50 U 0.7 0.27 U 0.20 J1 0.50 U 0.7 0.27 U	0.18 J1	0.50 U
Thallium 0.2 U 0.15 U 0.029 U 0.15 U 0.2 U 0.15 U 0.029 U 0.15 U 0.2 U 0.15 U	0.029 U	0.15 U
Zinc 4 U 4.0 U 1.2 J1 1.4 J1 4 U 4.0 U 1.4 J1 1.1 U 4 4 U	4.4 UJ2	5.1 J1
Method SW7196A (mg/L)		
Chromium VI 0.00058 0.010 U	0.010 U	0.010 U
5.516 C	0.010 0	0.010 0
Method SW7470A/EPA 1631E (ng/L)		
Mercury 12 20.0 U 0.575 1.56 1.16 20.0 U 3.20 U 1.60 U 2.95 J1 20.0 U 1.60 U	1.60 U	1.60 U
DISSOLVED METALS (µg/L)		
Methods 200.8/SW7196A		
Antimony 150 0.2 U 0.42 U 0.33 U 0.33 U 0.2 U 0.42 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.42 U	0.33 U	0.33 U
Arsenic 8 1.9 1.4 J1 3.0 1.4 J1 7.7 9.7 3.0 20.0 10.9 11.1	10.7	11.9
Barium 770 7.6 5.0 3.2 2.9 11.6 12.2 10.8 20.5 33.6 40.2	54.0	60.2
Beryllium 12 0.2 U 0.13 U 0.025 U 0.025 U 0.2 U 0.13 U 0.072 J1 0.046 J1 0.2 U 0.13 U Cadmium 0.25 0.1 U 0.20 U 0.048 U 0.1 U 0.20 U 0.048 U 0.082 U 0.1 U 0.20 U		0.052 J1 0.082 U
Cadmium 0.25 0.1 U 0.20 U 0.048 U 0.082 U 0.1 U 0.20 U 0.048 U 0.020 U 0.082 U 0.1 U 0.20 U Chromium 74 0.8 0.93 J1 2.0 2.0 2 U 2.4 2.6 3.1 1.5 2.5	0.048 U 2.4	2.9
Copper 8 0.5 U 0.38 U 0.30 J1 0.40 U 0.6 0.38 U 0.35 UJ2 0.40 U 0.5 U 0.38 U	0.33 J1	0.57 J1
Lead 2.5 0.1 U 0.080 U 0.034 U 0.1 U 0.080 U 0.034 U 0.1 U 0.080 U 0.034 U 0.1 U 0.080 U		0.034 U
Nickel 8.2 2.1 0.64 J1 1.1 J1 0.42 J1 0.7 0.50 U 0.57 J1 0.97 J1 2.4 2.1	2.0	2.1
Selenium 5 0.5 U 0.27 U 0.20 J1 0.50 U 0.7 0.27 U 0.37 J1 0.50 U 0.6 0.27 U	0.20 J1	0.50 U
Thallium 0.47 0.2 U 0.15 U 0.029 U 0.15 U 0.2 U 0.15 U 0.2 U 0.15 U 0.029 U 0.15 U 0.2 U 0.15 U	0.029 U	0.15 U
Zinc 56 4 U 4.0 J1 1.6 J1 1.1 U 4 U 4.0 U 1.1 U 2.0 J1 4 U 4.0 U	5.0 UJ2	4.3 J1
Method SW7470A/EPA 1631E (ng/L)	4.00.17	
Mercury 12 20.0 U 1.12 1.53 2.09 20.0 U 1.60 U 1.69 J1 3.86 J1 20.0 U 3.36 J1	1.60 U	4.14 J1
CONVENTIONALS (mg/L)		
Chloride (Method 300.0) NA NA 2.2 2.3 NA NA 8.4 14.8 NA NA	10.2	10.7
Nitrate (Method 300.0) 0.1 U 0.050 U 0.050 U 0.050 U 0.1 U 0.050 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U		0.050 U
Sulfate (Method 300.0) 25.7 21.9 26.9 23.5 3.5 2.8 0.30 U 42.3 0.1 U 0.30 U	0.47 J1	0.30 U
Total Dissolved Solids (Method 160.1) 247 225 299 J 267 373 403 444 J 576 450 368	408	404
FIELD PARAMETERS		
Temperature (°C) 15.23 14.05 14.33 14.71 13.90 14.27 15.19 15.42 16.93 16.90		16.97
Conductivity (uS/cm) 840 421 327 3803 13.11 724 464 606 722 904	691	847
Dissolved Oxygen (mg/L) 1.33 0.63 0.61 1.24 2.27 0.41 0.97 0.65 1.39 0.35	0.43	1.77
pH (SU) 5.43 7.05 6.10 5.97 6.00 7.62 7.45 6.93 6.80 8.48	7.03	6.63
ORP (mV) 17.9 -56.1 -17.6 -57 -12.6 -126.7 -67.9 -83.6 -71.8 -121.4	-104.1	-118
Turbidity (NTU) 7.13 3.74 9.97 60.1 85.31 12.23 NA 9.6 2.91 2.04	NA 0.4	5.04
Ferrous Iron (mg/L) NA 1.8 3.1 2.8 NA 2.0 2.4 2.2 NA 2.6	2.4	2.6

TURWILA, WASHINGTON													
					Former Washdown/Aq		а				North of 14	-01 Building	
Location:		IT-MW-2	IT-MW-2	IT-MW-2	IT-MW-2	IT-MW-3	IT-MW-3	IT-MW-3	IT-MW-3	IT-PZ-4	IT-PZ-4	IT-PZ-4	IT-PZ-4
		UA27A/UA27I/				UA27C/UA27K/				UA44B/UA44J/			
Laboratory Sample ID:	Preliminary	UA28A/UA28H/ UB45A/UB45H	6574128/6574129/ UL60C	6697967/6697968/ 6697969/UZ66D	6790503/6790504/ 6790505/VJ63B	UA28C/UA28J/ UB45C/UB45J	6574130/6574131/ UL60D	6697961/6697962/ 6697963/UZ66B	6790500/6790501/ 6790502/VJ63A	UA45B/UA45I/ UB46B/UB46I	6574124/6574125/ UL60A	6693956/6693957/ 6693958/UZ37E	6788057/6788058/ 6788059/VJ32I
Laboratory Data Package ID:	Cleanup	UA27/UA28/UB45	1294477/UL60	1317686/UZ66	1335985/VJ63	UA27/UA28/UB45	1294477/UL60	1317686/UZ66	1335985/VJ63	UA44/UA45/UB46	1294477/UL60	1317022/UZ37	1335483/VJ32
Sample Date:	Levels	12/06/2011	03/09/2012	6/21/2012	9/14/2012	12/06/2011	03/09/2012	6/21/2012	9/14/2012	12/07/2011	03/09/2012	6/19/2012	9/12/2012
Tide Level (ft MLLW):		4.4	3.9	4.3	4.0	1.7	2.0	2.4	1.1	3.4	6.4	-0.5	7.3
VOLATILES (μg/L)													
Method SW8260C													
Benzene	2	0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
sec-Butylbenzene		0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Chloroethane	21,000	0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Chloroform	9.4	0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	33	0.2 U	0.1 U	0.5 J1	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene cis-1,2-Dichloroethene	3.2 130	0.2 U 0.2 U	0.1 U 0.1 U	0.5 U 0.5 U	0.5 U 0.5 U	0.2 U 0.2 J1	0.1 U 0.2 J1	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.2 JT 0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	3.7	0.2 U	0.1 U	0.5 U	0.5 U	0.1 J1	0.1 U	0.2 J1	0.1 J1	0.2 U	0.1 U	0.1 U	0.1 U
Methylene Chloride	230	0.5 U	0.2 U	1.0 U	1.0 U	0.5 U	0.2 U	0.2 U	0.2 U	0.5 U	0.2 U	0.2 U	0.2 U
Naphthalene	26	0.5 U	0.1 U	13	6.2	0.5 U	0.1 U	0.1 U	0.1 U	0.5 U	0.1 U	0.1 U	0.1 U
Tetrachloroethene	3.3	0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Toluene	1300	0.1 J1	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
1,1,1-Trichloroethane	46,000	0.2 U	0.1 U	0.5 U	0.5 U	0.2 U	0.1 U	0.1 U	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
Trichloroethene 1,2,4-Trimethylbenzene	1.4 303	0.2 U 0.2 U	0.1 U 0.1 U	0.5 U 0.5 J1	0.5 U 0.5 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.2 U 0.2 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U
Vinyl Chloride	0.53	0.2 0	0.1 O	0.3 J1	0.5 U	0.2 0 0.1 J1	0.1 U 0.1 J1	0.1	0.1 U	0.2 U	0.1 U	0.1 U	0.1 U
m,p-Xylene	1300	0.4 U	0.1 U	0.5 U	0.5 U	0.4 U	0.1 U	0.1 U	0.1 U	0.4 U	0.1 U	0.1 U	0.1 U
o-Xylene	1600	0.2 U	0.1 U	0.5 U	0.5 U	0.2 J1	0.1 J1	0.1 J1	0.1 J1	0.2 U	0.1 U	0.1 U	0.1 U
VOLATILES (µg/L)													
Method SW8260C-SIM		0.000.11	0.040.11	0.040.11	0.040.11	0.000.11	0.040.11	0.040.11	0.040.11	0.000.11	0.040.11	0.040.11	0.040.11
Tetrachloroethene	3.3 0.53	0.020 U	0.010 U	0.010 U 0.81	0.010 U	0.020 U	0.010 U	0.010 U	0.010 U	0.020 U 0.060	0.010 U 0.046	0.010 U	0.010 U
Vinyl Chloride Acrylonitrile	0.057	0.30 0.050 U	0.39 NA	0.81 NA	0.40 NA	0.12 0.050 U	0.10 NA	0.34 NA	0.17 NA	0.050 U	0.046 NA	0.051 NA	0.051 NA
Adiyonuno	0.007	0.000 0	14/1	14/1	IVA	0.000 0	14/1	14/4	14/1	0.000 0	14/3	14/4	14/4
SEMIVOLATILES (µg/L)													
Method SW8270D													
Acenaphthene	120	0.8 J1	1	3	3	9.2	6	7	4	1.0 U	0.5	0.6	0.6
Anthracene	200	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U
Carbazole		1.0 U	0.5 U	0.5 U	0.5 U	3.5	3	1	0.5 U	1.0 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol 1-Methylnaphthalene	660 2.3	1.0 U 1.0 U	0.5 U 0.1 U	1 2	1 2	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.09 U	0.7 J1 0.1 U	1.0 U 1.0 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 UJ 0.09 U
2-Methylnaphthalene	64	1.0 U	0.1 U	1	1	1.0 U	0.1 U	0.09 U	0.1 U	1.0 U	0.1 U	0.1 U	0.09 U
Naphthalene	26	1.0 U	0.1 U	9	5	1.0 U	0.2 J1	0.1 J1	0.1 J1	1.0 U	0.1 U	0.1 J1	0.09 U
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.3 J1	0.4 J1	0.2 J1	1.0 U	0.1 U	0.1 U	0.09 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U	1.0 U	0.1 U	0.1 J1	0.1 U	1.0 U	0.1 U	0.1 J1	0.09 U
cPAHs (µg/L)													
Method SW8270D-SIM	0.0049	NIA	0.0048 U	0.0040.11	0.0048 U	NIA	0.0040 11	0.0047.11	0.0049.11	NIA	0.0049.11	0.0040 11	0.0047.11
Benzo(b)fluoranthene Pyrene	0.0018 9.8	NA NA	0.0048 U 0.0095 U	0.0049 U 0.0098 U	0.0048 U 0.0096 U	NA NA	0.0048 U 0.0097 U	0.0047 U 0.0095 U	0.0048 U 0.0097 U	NA NA	0.0048 U 0.0097 U	0.0049 U 0.0098 U	0.0047 U 0.0094 U
Total cPAHs TEQ	0.00018	ND ND	0.0095 U ND	0.0098 U ND	0.0096 U ND	ND ND	0.0097 U ND	0.0095 U ND	0.0097 U ND	ND ND	0.0097 U ND	0.0098 U ND	0.0094 0 ND
. Stat of All of Each	0.00010		ND	ND	ND	140	ND	ND	ND		ND	ND	ND
TOTAL PETROLEUM													
HYDROCARBONS (mg/L)													
NWTPH-Dx													
Diesel-Range Organics	0.5	0.10 U	0.070 U	0.041 J1	0.028 U	0.10 U	0.072 U	0.029 U	0.029 U	0.10 U	0.069 U	0.029 U	0.032 U
NWTPH C													
NWTPH-G Gasoline-Range Organics	1.0/0.8	0.25 U	0.05 U	0.083 J1	0.05 U	0.25 U	0.05 U	0.05 U	0.05 U	0.25 U	0.05 U	0.05 U	0.05 U
Casoline-Italiye Organics	1.0/0.6	0.23 0	0.05 0	0.003 01	0.05 0	0.25 0	0.05 0	0.05 0	0.05 0	0.23 0	0.05 0	0.05 0	0.00 0
						1							

Former Washdown/Aqueous Degreaser Area North of 14-01 Building													
Location:		IT-MW-2	IT-MW-2	IT-MW-2	IT-MW-2	IT-MW-3	IT-MW-3	IT-MW-3	IT-MW-3	IT-PZ-4	IT-PZ-4	-01 Building IT-PZ-4	IT-PZ-4
Location.		UA27A/UA27I/	11-10100-2	11-IVIVV-Z	11-10100-2	UA27C/UA27K/	11-10100-3	11-10100-3	11-10100-0	UA44B/UA44J/	11-PZ-4	11-PZ-4	11-72-4
Laboratory Sample ID:		UA28A/UA28H/	6574128/6574129/	6697967/6697968/	6790503/6790504/	UA28C/UA28J/	6574130/6574131/	6697961/6697962/	6790500/6790501/	UA45B/UA45I/	6574124/6574125/	6693956/6693957/	6788057/6788058/
Laboratory Gample ID.	Preliminary	UB45A/UB45H	UL60C	6697969/UZ66D	6790505/VJ63B	UB45C/UB45J	UL60D	6697963/UZ66B	6790502/VJ63A	UB46B/UB46I	UL60A	6693958/UZ37E	6788059/VJ32I
Laboratory Data Package ID:	Cleanup	UA27/UA28/UB45	1294477/UL60	1317686/UZ66	1335985/VJ63	UA27/UA28/UB45	1294477/UL60	1317686/UZ66	1335985/VJ63	UA44/UA45/UB46	1294477/UL60	1317022/UZ37	1335483/VJ32
Sample Date:	Levels	12/06/2011	03/09/2012	6/21/2012	9/14/2012	12/06/2011	03/09/2012	6/21/2012	9/14/2012	12/07/2011	03/09/2012	6/19/2012	9/12/2012
Tide Level (ft MLLW):	201010	4.4	3.9	4.3	4.0	1.7	2.0	2.4	1.1	3.4	6.4	-0.5	7.3
TOTAL METALS (µg/L)													
Method 200.8				40.14				4.0.14			•••	212	
Arsenic		5.4	4.8	1.8 J1	5.1	2.0	3.3	1.2 J1	2.0 J1	24.4	23.6	24.2	27.7
Barium		35.7	38.9	29.3 J	73.1	64.7	110	49.7	73.3	40.9	32.2	35.8	37.0
Beryllium		0.2 U 10	0.13 U	0.059 J1	0.16 J1 9.9	0.2 U	0.13 U	0.045 J1	0.052 J1	0.2 U	0.13 U	0.025 U 0.74 J1	0.025 U
Chromium			9.1 0.38 U	3.7 0.15 U	9.9 0.40 U	1.6 0.5 U	3.2 0.38 U	1.9 J1 0.29 J1	2.5 0.40 U	2 U 0.5 U	0.82 J1 0.38 U	0.74 JT 0.15 U	0.86 J1 0.40 U
Copper		0.8 0.2	0.080 U			0.5 U 0.1 U				0.5 U 0.1 U			
Lead Nickel		3.0	2.4	0.034 U 1.6 J1	0.067 J1	1.4	0.080 U 1.5 J1	0.034 U 0.33 J1	0.034 U	1.0	0.080 U 0.61 J1	0.034 U 1.2 J1	0.034 U 1.1 J1
Selenium		0.8	0.27 U	0.21 J1	2.9 0.50 U	0.7	0.36 J1	0.33 JT 0.18 U	0.87 J1 0.50 U	0.5 U	0.27 U	0.18 U	0.50 U
Thallium		0.8 0.2 U	0.27 U	0.029 U	0.15 U	0.7 0.2 U	0.15 U	0.029 U	0.30 U	0.5 U	0.27 U	0.029 U	0.30 U
Zinc		4 U	4.0 U	2.1 UJ2	2.1 J1	4 U	4.0 U	2.4 UJ2	1.1 U	4 U	4.0 U	1.1 U	1.1 U
<u> </u>		4 0	4.0 0	2.1 032	2.1 01	4 0	4.0 0	2.4 032	1.1 0		4.0 0	1.1 0	1.1 0
Method SW7196A (mg/L)													
Chromium VI	0.00058	0.019 J	0.015 J	0.010 U	0.010 UJ	0.010 U	0.015	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
55 3 11	0.0000	<u> </u>	0.0.0	0.0.0	0.0.0	0.010	0.0.0	0.0.0	0.0.0	0.010	0.010	0.0.0	0.010
Method SW7470A/EPA 1631E (ng/L)													
Mercury	12	20.0 U	3.20 U	3.20 U	3.20 U	20.0 U	1.60 U	1.60 U	1.60 U	20.0 U	1.60 U	0.449 J1	0.560
,													
DISSOLVED METALS (μg/L)													
Methods 200.8/SW7196A													
Antimony	150	0.2 U	0.42 U	0.33 U	0.33 U	0.2 U	0.42 U	0.33 U	0.33 U	0.2 U	0.42 U	0.33 U	0.33 U
Arsenic	8	5.1	5.6	3.6	4.9	2.2	3.6	0.98 J1	2.3	22.2	24.4	22.0	26.2
Barium	770	33.2	40.5	59.3	76.4	64.8	112	50.3	75.5	39.6	34.0	35.8	35.6
Beryllium	12	0.2 U	0.13 U	0.11 J1	0.17 J1	0.2 U	0.13 U	0.037 J1	0.055 J1	0.2 U	0.13 U	0.025 U	0.025 U
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U	0.1 U	0.20 U	0.048 U	0.082 U
Chromium	74	6.4	9.1	7.2	10.8	1.8	3.4	2.0 J1	2.2	1 U	0.89 J1	0.79 J1	1.0 J1
Copper	8	0.5 U	0.38 U	0.15 U	0.40 U	0.5 U	0.38 U	0.28 J1	0.47 J1	0.5 U	0.38 U	0.15 U	0.40 U
Lead	2.5	0.1 U	0.086 J1	0.059 J1	0.034 J1	0.1 U	0.080 U	0.034 U	0.034 U	0.1 U	0.080 U	0.034 U	0.034 U
Nickel	8.2	2.8	2.2	2.9	2.3	1.4	1.7 J1	0.37 J1	0.70 J1	0.8	0.77 J1	1.1 J1	0.72 J1
Selenium	5	0.8	0.31 J1	0.35 J1	0.50 U	0.7	0.30 J1	0.18 U	0.50 U	0.5 U	0.27 U	0.18 U	0.50 U
Thallium 	0.47	0.2 U	0.15 U	0.032 J1	0.15 U	0.2 U	0.15 U	0.029 U	0.15 U	0.2 U	0.15 U	0.029 U	0.15 U
Zinc	56	4 U	4.0 U	3.0 J1	3.2 J1	4 U	4.0 U	5.3 UJ2	1.9 J1	4 U	4.0 U	1.1 U	1.7 J1
Mothed CM7470A/EDA 4024E (~~/!)													
Method SW7470A/EPA 1631E (ng/L)	10	20.0.11	2.20.11	2.00.11	4.00 14	20.0.11	E 20 14	4.04.14	E 0.4	20.0.11	4.00 14	0.07 14	4 60 14
Mercury	12	20.0 U	3.20 U	3.20 U	4.02 J1	20.0 U	5.32 J1	1.94 J1	5.24	20.0 U	1.66 J1	2.07 J1	1.62 J1
CONVENTIONALS (mg/L)													
Chloride (Method 300.0)		NA	NA	20.8 J	12.6 J	NA	NA	9.7	9.7	NA	NA	85.4	110
Nitrate (Method 300.0)		0.1 U	0.050 U	0.050 U	0.050 U	0.1 U	0.050 U	0.050 U	0.050 U	0.1 U	0.050 U	0.25 U	0.050 U
Sulfate (Method 300.0)		1.8	0.30 U	22.3 J	1.6	0.1 U	0.30 U	0.30 U	0.42 J1	0.1 U	0.30 U	0.65 J1	0.30 U
Total Dissolved Solids (Method 160.1)		565	506	560	608	469	565	379	407	435	443	519 J	444
. 1.2. 2.5551104 25.145 (Motiford 100.1)					000	400		0.0	701			0.00	777
FIELD PARAMETERS													
Temperature (°C)		17.59	17.21	17.00	16.97	17.47	17.80	17.82	18.90	14.07	12.88	13.45	14.90
Conductivity (uS/cm)		949	1109	981	1140	808	1341	609	7020	492	937	728	640
Dissolved Oxygen (mg/L)		0.58	0.44	0.36	1.10	1.12	0.44	0.32	0.89	0.86	0.50	0.34	0.30
pH (SU)		6.16	8.54	7.69	6.59	7.36	8.70	6.77	6.49	6.72	8.07	NA	7.35
ORP (mV)		-15.55	-126.9	-94.6	-119	-57.8	-110.1	-82.2	-120	-34.1	-100.0	-134.9	-78.5
Turbidity (NTU)		1.83	4.79	1.54	13.4	2.06	3.79	2.82	47.2	1.31	5.79	1.34	9.73
Ferrous Iron (mg/L)		NA	3.0	3.0	3.8	NA	3.2	2.0	2.2	NA	1.6	4.4	0.0
, ,		I				•				•			

TABLE 14

MONITORING WELLS - GROUNDWATER ANALYTICAL RESULTS

SOUTH OF FORMER SLIP 5 AREA

BOEING ISAACSON-THOMPSON SITE

TUKWILA, WASHINGTON

			Ctono	Tonk Area	
Location		IT-MW-8	IT-MW-8	Tank Area IT-MW-8	IT-MW-8
Location:		UA54C/UA54L/	I I -IVIVV -8	1 1 - IVIVV - 8	1 I -IVIVV -8
Laboratory Sample ID:			CE70E10/CE70E00/	6690477/6690478/	6788024/6788025/
Laboratory Sample ID.	Preliminary	UA55C/UA55K/	6572519/6572520/ UL36E	6690477/6690476/ 6690479/UZ00C	6788026/VJ32H
Laboratory Data Dockago ID:		UB47C/UB47K			1335483/VJ32
Laboratory Data Package ID:	Cleanup	UA54/UA55/UB47	1294218/UL36	1316296/UZ00	
Sample Date:	Levels	12/08/2011	03/08/2012	6/15/2012	9/12/2012
Tide Level (ft MLLW):		1.5	4.7	2.2	5.6
VOLATILES (µg/L)					
Method SW8260C					
Benzene	2	0.2 U	0.1 U	0.1 U	0.1 U
sec-Butylbenzene		0.2 U	0.1 U	0.1 U	0.1 U
Chloroethane	21,000	0.2 U	0.1 U	0.1 U	0.1 U
Chloroform	9.4	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethane	33	0.2 U	0.1 U	0.1 U	0.1 U
1,1-Dichloroethene	3.2	0.2 U	0.1 U	0.1 U	0.1 U
cis-1,2-Dichloroethene	130	0.2 U	0.1 U	0.1 U	0.1 U
trans-1,2-Dichloroethene	940	0.2 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	3.7	0.2 U	0.1 U	0.1 U	0.1 U
Methylene Chloride	230	0.5 U	0.1 U	0.1 U	0.1 U
Naphthalene	26	0.5 U	0.2 U	0.2 U	0.2 U
Tetrachloroethene	3.3	0.5 U	0.1 U	0.1 U	0.1 U
Toluene	1300	0.2 U	0.1 U	0.1 U	0.1 U
1,1,1-Trichloroethane	46,000	0.2 U	0.1 U	0.1 U	0.1 U 0.1 U
Trichloroethene	46,000	0.2 U	0.1 U	0.1 U	0.1 U 0.1 U
			0.1 U		
1,2,4-Trimethylbenzene	303	0.2 U		0.1 U	0.1 U
Vinyl Chloride	0.53	0.2 U	0.1 U	0.1 U	0.1 U
m,p-Xylene	1300	0.4 U	0.1 U	0.1 U	0.1 U
o-Xylene	1600	0.2 U	0.1 U	0.1 U	0.1 U
VOLATILES (vall.)					
VOLATILES (µg/L)					
Method SW8260C-SIM	0.0	0.000.11	0.040.11	0.040.1110	0.040.11
Tetrachloroethene	3.3	0.020 U	0.010 U	0.019 UJ2	0.010 U
Vinyl Chloride	0.53	0.020 U	0.010 U	0.010 U	0.010 U
Acrylonitrile	0.057	0.050 U	NA	NA	NA
SEMIVOLATILES (µg/L)					
Method SW8270D					
	400	4.0	0.4.14	0.0 14	0.4.11
Acenaphthene	120	1.2	0.4 J1	0.2 J1	0.1 U
Anthracene	200	1.0 U	0.1 U	0.1 U	0.1 U
Carbazole		1.0 U	0.5 U	0.5 U	0.5 U
2,4-Dimethylphenol	660	1.0 U	0.5 U	0.5 U	0.5 U
1-Methylnaphthalene	2.3	1.0 U	0.1 U	0.1 U	0.1 U
2-Methylnaphthalene	64	1.0 U	0.1 U	0.1 U	0.1 U
Naphthalene	26	1.0 U	0.1 J1	0.1 U	0.1 U
Phenanthrene		1.0 U	0.1 U	0.1 U	0.1 U
Pyrene	9.8	1.0 U	0.1 U	0.1 U	0.1 U
BALLS (confl.)					
cPAHs (µg/L)					
Method SW8270D-SIM	0.05.15				
Benzo(b)fluoranthene	0.0018	NA	0.0050 U	0.0050 U	0.0049 U
Pyrene	9.8	NA 	0.010 U	0.0099 U	0.0097 U
Total cPAHs TEQ	0.00018	ND	ND	ND	ND
TOTAL RETROLEUM					
TOTAL PETROLEUM					
HYDROCARBONS (mg/L)					
NWTPH-Dx					
Diesel-Range Organics	0.5	0.10 U	0.070 U	0.029 U	0.029 U
NUME TO A CONTROL OF THE CONTROL OF					
NWTPH-G	4.0/5.5				
Gasoline-Range Organics	1.0/0.8	0.25 U	0.05 U	0.05 U	0.05 U
	J	I			

·					
				Tank Area	
Location:		IT-MW-8	IT-MW-8	IT-MW-8	IT-MW-8
		UA54C/UA54L/			
Laboratory Sample ID:	D 1: :	UA55C/UA55K/	6572519/6572520/	6690477/6690478/	6788024/6788025/
	Preliminary	UB47C/UB47K	UL36E	6690479/UZ00C	6788026/VJ32H
Laboratory Data Package ID:	Cleanup	UA54/UA55/UB47	1294218/UL36	1316296/UZ00	1335483/VJ32
Sample Date:	Levels	12/08/2011	03/08/2012	6/15/2012	9/12/2012
Tide Level (ft MLLW):		1.5	4.7	2.2	5.6
TOTAL METALS (µg/L)					
Method 200.8					
Arsenic		88.5	1.6 J1	1.9 J1	3.0
Barium		37.4	44.1	30.0	32.7
Beryllium		0.2 U	0.13 U	0.13 U	0.025 U
Chromium		0.5 U	0.60 U	0.60 U	0.50 U
Copper		0.7	0.57 J1	0.56 J1	0.50 J1
Lead		0.1 U	0.080 U	0.080 U	0.034 U
Nickel		4.4	1.2 J1	1.2 J1	0.82 J1
Selenium		0.7	0.27 U	0.27 U	0.50 U
Thallium		0.2 U	0.15 U	0.15 U	0.15 U
Zinc		4 U	4.0 U	4.0 U	1.4 UJ2
Method SW7196A (mg/L)					
Chromium VI	0.00058	0.010 U	0.010 U	0.010 UJ	0.010 UJ
Method SW7470A/EPA 1631E (ng/L)					
Mercury	12	20.0 U	1.60 J1	1.60 U	1.60 U
DISSOLVED METALS (µg/L)					
Methods 200.8/SW7196A					
Antimony	150	0.2 U	0.42 U	0.10 J1	0.33 U
Arsenic	8	2.8	1.5 J1	1.5 J1	2.1
Barium	770	36.9	44.8	31.7	32.8
Beryllium	12	0.2 U	0.13 U	0.025 U	0.025 U
Cadmium	0.25	0.1 U	0.20 U	0.048 U	0.082 U
Chromium	74	1 U	0.60 U	0.70 J1	0.50 U
Copper	8	1.3	0.54 J1	0.56 J1	0.44 UJ2
Lead	2.5	0.1 U	0.080 U	0.034 U	0.034 U
Nickel	8.2	4.2	1.5 J1	1.5 J1	1.0 J1
Selenium	5	0.5 U	0.27 U	0.19 J1	0.50 U
Thallium	0.47	0.2 U	0.15 U	0.029 U	0.15 U
Zinc	56	4 U	4.0 U	1.2 J1	2.6 J1
Method SW7470A/EPA 1631E (ng/L)					
Mercury	12	20.0 U	1.60 U	1.61 J1	1.60 U
Moroury	12	20.0 0	1.00 0		1.00 0
CONVENTIONALS (mg/L)					
Chloride (Method 300.0)		NA	NA	17.6	16.3
Nitrate (Method 300.0)		0.1 U	0.12	0.11	0.050 U
Sulfate (Method 300.0)		153	176	95.1 J	88.1
Total Dissolved Solids (Method 160.1)		891	948	784	687
FIELD PARAMETERS					
Temperature (°C)		14.76	14.46	14.89	16.04
Conductivity (uS/cm)		3082	1862	948	864
Dissolved Oxygen (mg/L)		1.13	0.54	0.26	0.53
pH (SU)		6.71	8.11	7.11	7.72
ORP (mV)		-23.9	21.5	1.6	9.1
Turbidity (NTU)		2.52	2.94	0.61	16.7
Ferrous Iron (mg/L)		NA	0.8	0.6	2.2
		Ī			

TEQ = Toxic Equivalent Concentration

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

ng/L = nanograms per liter

μg/L = micrograms per liter

mg/L = milligrams per liter

mV = millivolts

SU = standard unit

uS/cm = milliSiemens per centimeter

C = Centigrade ND = Not Detected.

NA = Not Applicable. SIM = Selected Ion Monitoring

*Sample results include original digest and analysis and re-digest and analysis.

- E = Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the samples and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- S = Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte.
- U = Indicates the compound was undetected at the reported concentration.
- UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.
- UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.

Box = Exceeds preliminary cleanup level

Bold = Detected compound

TABLE 15

SUMMARY OF GROUNDWATER PRELIMINARY CLEANUP LEVEL EXCEEDANCES NORTH OF FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE

	TUKWILA, WASHINGTON																	
							Number	of Exceedanc	es During Fou	ır Quarterly (Groundwate	r Monitorin	g Events					
							PCBs											
Sample Location	Acrylonitrile	Vinyl Chloride	Benzoic Acid	bis(2-Ethylhexyl) phthalate	Total cPAHs TEQ	Aroclor 1248	Aroclor 1260	Total PCBs	Dissolved Arsenic	Dissolved Cadmium	Chromium VI	Dissolved Copper	Dissolved Lead	Dissolved Nickel	Dissolved Selenium	Dissolved Thallium	Dissolved Zinc	Total Mercury
Western Property Boundary																		
I-104(s)	_	_	_	-	1	_	1	1	4	_	_	_	_	_	_	_	_	_
MW-20	_		_	_	_	_	<u>'</u>	_	4	_	_	_	_	_	_	_	_	_
WW 25									7									
Northern Property Boundary																	,	
MW-21	-	-	-	-	-	-	-	-	4	-	1	-	-	-	-	-	-	-
MW-22	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	-	-
PZ-1	-	-	-	-	-	1	-	1	-	4	-	4	-	2	-	-	4	-
Stabilized Soil Area																		
MW-23	-	1	-	-	2	-	-	-	4	-	2	4	-	4	1	1	3	2
MW-24	-	-	1	-	2	-	-	-	4	1	-	4	3	4	4	-	1	1
MW-25	-	2	-	-	3	-	3	3	4	-	-	3	-	1	-	-	2	2
South of Stabilized Soil Area																		
I-200(s)	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	_
MW-15	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	-	-
MW-16	-	1	-	-	-	-	-	-	2	-	-	3	-	1	-	-	2	-
MW-18	1	1	-	1	-	-	-	-	4	-	-	-	-	-	-	-	3	-
																	· '	

cPAH = carcinogenic polycylclic aromatic hydrocarbon

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

TOTAL EXCEEDANCES

TOTAL NUMBER OF LOCATIONS WITH EXCEEDANCES

[&]quot;-": No exceedances

TABLE 16 SUMMARY OF GROUNDWATER PRELIMINARY CLEANUP LEVEL EXCEEDANCES FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Number of Exceedances During 4 Quarterly Groundwater Monitoring Events										
					PC	Bs					
			Total			-		Dissolved	Dissolved	Dissolved	
Sample Location	Chrysene	bis(2-Ethylhexyl) phthalate	cPAHs TEQ	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	Arsenic	Cadmium	Nickel	
Cumpio Eccusion	Omysene	primate	ILQ	7.100.01 12.10	7.1100101 1201	7.100.01 1200					
Western Property Boundary											
I-205(s)	-	-	-	-	-	-	-	4	-	-	
MW-9	-	-	-	-	-	-	-	-	1	1	
MW-10	-	-	2	-	-	1	1	2	-	-	
MW-19	-	-	-	-	-	-	-	4	-	-	
PZ-7	-	-	3	-	-	-	-	-	-	-	
Seep-1 (a)	-	-	3	-	2	-	2	-	-	-	
Former Hydraulic Test Pad Area											
MW-11	-	-	-	-	-	-	-	1	-	-	
Former Slip 5 Outfall Area											
MW-14	1	-	-	-	-	-	-	-	3	-	
PZ-3	-	-	-	-	-	-	-	1	-	-	
SB-8 (b)	-	-	-	-	-	-	-	-	1	-	
<u>Other</u>											
I-203(s)	_	-	2	3	1	_	4	_	_	_	
MW-12	_	1	1	-	1	_	1	4	_	_	
MW-13	.	1	-	_	4	_	4	4	_	-	
MW-17		1	2	1	1	_	2	3	_	-	
PZ-6	-	-	-	-	-	-	-	4	-	-	
TOTAL EXCEEDANCES	1	3	13	4	9	1	14	27	5	1	
TOTAL NUMBER OF LOCATIONS WITH EXCEEDANCES	1	3	6	2	5	1	6	9	3	1	

cPAH = carcinogenic polycylclic aromatic hydrocarbon

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

[&]quot;-": No exceedance

⁽a) Samples collected during three quarterly sampling events at this location

⁽b) One grab sample was collected from the soil boring at this location

TABLE 17 SUMMARY OF GROUNDWATER PRELIMINARY CLEANUP LEVEL EXCEEDANCES SOUTH OF FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE

TUKWILA, WASHINGTON

		1,1- Dichloroethene	cis-1,2-Dichloroethene (cis-1,2-DCE)	Trichloroethene (TCE)	Vinyl Chloride (VC)		Dissolved	Chromium VI	Dissolved
Sample Location	Acrylonitrile	Dichioroethene	(CIS-1,2-DCE)	(TCE)	(VC)	cPAHs TEQ	Arsenic	VI	Nickel
Western Property Boundary							4		
I-206(s) MW-7	-	-	=	1	-	-	4 1	-	-
IT-PZ-8	-	-	<u>-</u>	'	-	-	'	-	-
11-1 2-0	_	_	-	_			_	_	_
Southern Property Boundary									
MW-5	_	_	-	_	_	1	-	_	1
MW-6	1	1	4	4	4	-	-	-	-
Eastern Property Boundary									
MW-4	-	-	-	-	-	-	-	-	-
PZ-2	-	-	=	-	-	-	2	-	-
Former Washdown/Aqueous Degreaser									
Area MW-1							4	4	
MW-2	-	-	=	-	1	-	4	1 2	-
MW-3	_	_	_	_	<u>'</u>	_	_	1	_
IVIVV-3	-	-	-	-	-	-	-	ı ı	-
North of Building 14-01									
PZ-4	-	-	=	-	-	_	4	_	-
Storage Tank Area									
MW-8	-	-	-	-	-	-	-	-	-
TOTAL EXCEEDANCES	1	1	4	5	5	1	15	4	1
TOTAL NUMBER OF LOCATIONS WITH	1	1	1	2	2	1	5	3	1
EXCEEDANCES									

[&]quot;-": No exceedance

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

TABLE 18 DETECTED ARSENIC CONCENTRATIONS IN RI AND CONSTRUCTION-RELATED SOIL SAMPLES NORTH OF FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Sample ID	Sample Date	Sample Depth	Arsenic (mg/kg)
			PCL 7
West of Stabilized Soil Area			
MW-20	11/9/2011	2 to 3.5	7.5
MW-20	11/9/2011	5 to 6.5	139
MW-20	11/9/2011	8 to 9.5	5.5
MW-20	11/9/2011	14.5 to 16	10.5
Northern Property Boundary			
NAM O4	44/44/0044	04-05	20.0
MW-21	11/11/2011	2 to 3.5	36.6
MW-21	11/11/2011	5 to 6.5	36.5
MW-21	11/11/2011	8 to 9.5	139
MW-21	11/11/2011	13.5 to 15	221
MW-21	11/11/2011	17 to 18.5	12.6
MW-22	11/11/11	2 to 3.5	3.0
MW-22	11/11/11	5 to 6.5	56.4
MW-22	11/11/11	8 to 9.5	535
MW-22	11/11/11	13.5 to 15	58.8
Stabilized Soil Area			
MW-23	11/9/11	11 to 12.5	102
MW-23	11/9/11	12.5 to 14	331
WW-23	11/9/11	12.5 to 14	331
MW-24	11/14/11	12.5 to 14	1640
MW-24	11/14/11	14 to 15.5	1130
MW-25	11/14/11	8 to 9.5	87.9
MW-25	11/14/11	13.5 to 15	55.8
MW-25	11/14/11	15.5 to 17	37.7
South of Stabilized Soil Area			
		0.05	
MW-15	11/15/11	2 to 3.5	7.3
MW-15	11/15/11	5 to 6.5	3.0
MW-15	11/15/11	8 to 9.5	3.8
MW-15	11/15/11	12.5 to 14	2.4
MW-16	11/10/11	2 to 3.5	13.2
MW-16	11/10/11	5 to 6.5	80.6
MW-16	11/10/11	8 to 9.5	3.3
MW-18	11/8/11	2 to 3.5	8.8
MW-18	11/8/11	5 to 6.5	35.5
MW-18	11/8/11	8 to 9.5	18.9
MW-18	11/8/11	11.5 to 13	13.5

mg/kg = milligrams per kilogram PCL = Prelilminary Cleanup Level Box = Exceedance of PCL

		Western P	Property Boundary (W	est of Stabilized So	oil Area)					Northern Prop	perty Boundary				
	Preliminary Cleanup Levels	IT-MW-20(2-3.5) TW35G 11/09/2011	IT-MW-20(5-6.5) TW35H 11/09/2011	IT-MW-20(8-9.5) TW35I 11/09/2011	IT-MW-20(14.5-16) TW35J 11/09/2011	IT-MW-21(2-3.5) TW89D 11/11/2011	IT-MW-21(5-6.5) TW89E 11/11/2011	IT-MW-21(8-9.5) TW89F 11/11/2011	IT-MW-21(13.5-15) TW89G 11/11/2011	IT-MW-21(17-18.5) TW89H 11/11/2011	IT-MW-21(24.5-26) TW89M 11/11/2011	IT-MW-22(2-3.5) TW89I 11/11/2011	IT-MW-22(5-6.5) TW89J 11/11/2011	IT-MW-22(8-9.5) TW89K 11/11/2011	IT-MW-22(13.5-15) TW89L 11/11/2011
VOLATILES (μg/kg)															
Method SW8260C															
Chloromethane	1,600	1.1 U	1.1 U	1.4 U	1.1 U	1.2 UJ	1.3 UJ	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
Methylene Chloride	2,400	2.2	1.7 J1	3.5	3.7	2.9	13	3.2	9.4	7.7	2.5 J1	5.4	1.6 J1	2.1 J1	1.9 J1
Acetone	510,000	58	76	130	10	22 J	48 J	46 J	21 J	24 J	20 J	25 J	18 J	44 J	19 J
Carbon Disulfide	75,000	2.0	1.1 U	1.4 U	1.1 U	3.3	1.3 U	2.2	2.4	2.1	4.5	2.6	2.8	1.3 J1	3.9
2-Butanone	430,000	11	3.6 J1	5.9 J1	5.4 U	5.8 U	6.5 U	4.3 J1	7.0 U	5.9 U	6.3 U	3.7 J1	6.5 U	6.1 J1	5.0 U
Trichloroethene	51	1.1 U	1.1 U	1.4 U	1.1 U	1.4	1.3 U	0.8 J1	1.0 J1	1.0 J1	1.4	1.5	0.9 J1	1.7	1.0 U
Benzene	93	1.9	0.6 J1	0.8 J1	1.0 J1	1.2 U	1.3 U	1.6 U	1.4 U	0.7 J1	1.3 U	1.6	1.3 U	0.8 J1	1.0 U
Tetrachloroethene	260	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
Toluene	100,000	1.1	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.9	1.3 U	1.5 U	1.0 U
Ethylbenzene Styrene	230 16,000,000	1.1 U 1.1 U	1.1 U 1.1 U	1.4 U 1.4 U	1.1 U 1.1 U	1.2 U 1.2 U	1.3 U 1.3 U	1.6 U 1.6 U	1.4 U 1.4 U	1.2 U 1.2 U	1.3 U 1.3 U	1.3 U 0.8 J1	1.3 U 1.3 U	1.5 U 1.5 U	1.0 U 1.0 U
Trichlorofluoromethane	200,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
m,p-Xylene	160,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.2 J1	1.3 U	1.5 U	1.0 U
o-Xylene	200,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	0.7 J1	1.3 U	1.5 U	1.0 U
Methyl Iodide		1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	6.3	1.0 U
1,3,5-Trimethylbenzene	800,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
1,2,4-Trimethylbenzene	800,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
Isopropylbenzene	78,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
n-Propylbenzene	11,000	1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
4-Isopropyltoluene		1.1 U	1.1 U	1.4 U	1.1 U	1.2 U	1.3 U	1.6 U	1.4 U	1.2 U	1.3 U	1.3 U	1.3 U	1.5 U	1.0 U
Naphthalene	2,100	5.3 U	5.6 U	7.1 U	5.4 U	5.8 U	6.5 U	7.8 U	7.0 U	5.9 U	6.3 U	6.5 U	6.5 U	7.3 U	5.0 U
SEMIVOLATILES (µg/kg) Method SW8270D															
Phenol	1,900,000	20 U	19 U	20 U	19 U	18 U	18 U	19 U	19 U	19 U	NA	19 U	19 U	18 U	19 U
Benzyl Alcohol	8,000,000	20 U	19 U	20 U	19 U	18 UJ	18 UJ	19 UJ	19 UJ	19 UJ	NA	19 UJ	19 UJ	18 UJ	19 UJ
4-Methylphenol	41,000	40 U	38 U	39 U	38 U	37 U	36 U	14 J1	37 U	38 U	NA	38 U	23 J1	34 J1	38 U
2,4-Dimethylphenol	95,000	40 U 400 U	38 U 380 U	39 U 390 U	38 U 380 U	37 UJ 370 U	36 U	38 U 380 U	37 U 370 U	38 U	NA NA	38 U	38 U 380 U	37 U 370 U	38 U 380 U
Benzoic Acid Naphthalene	9,000 2,100	400 U 89	380 U 19 U	390 U 20 U	380 U 19 U	370 U 13 J1	360 U 27	380 U 17 J1	370 U 19 U	380 U 19 U	NA NA	380 U 19 U	55	370 U 17 J1	380 U 19 U
2-Methylnaphthalene	320,000	140	19 U	20 U	19 U	13 J1 10 J1	48	17 J1 19 U	19 U	19 U	NA NA	19 U	35	17 J1 18 U	19 U
Acenaphthylene	320,000	20 U	19 U	20 U	19 U	18 U	18 U	19 U	19 U	19 U	NA NA	19 U	11 J1	18 U	19 U
Acenaphthene	230,000	20 U	19 U	20 U	19 U	18 U	18 U	19 U	19 U	19 U	NA NA	19 U	19	18 U	19 U
Dibenzofuran	80,000	20 U	19 U	20 U	19 U	18 U	15 J1	19 U	19 U	19 U	NA	19 U	19	18 U	19 U
Fluorene	150,000	20 U	19 U	20 U	19 U	18 U	18 U	19 U	19 U	19 U	NA	19 U	21	18 U	19 U
Phenanthrene		110	10 J1	20 U	19 U	16 J1	47	14 J1	19 U	19 U	NA	15 J1	66	21	19 U
Anthracene	1,600,000	20 U	19 U	20 U	19 U	18 U	18 U	19 U	19 U	19 U	NA	19 U	16 J1	18 U	19 U
Fluoranthene	230,000	49	19 U	20 U	19 U	18 U	20	14 J1	19 U	22	NA	19 U	60	19	19 U
Pyrene	240,000	120	19 U	20 U	19 U	18 U	19	17 J1	19 U	17 J1	NA	16 J1	68	20	19 U
Benzo(a)anthracene		12 J1	19 U	20 U	19 U	18 U	14 J1	12 J1	19 U	19 U	NA	19 U	21	18 U	19 U
bis(2-Ethylhexyl)phthalate	56,600	25 U	24 U	24 U	24 U	24 U	23 U	21 UJ2	42 U	26 U	NA	34 U	26 U	30 U	30 U
Chrysene		72	19 U	20 U	19 U	20	21	15 J1	19 U	19 U	NA	44	23	10 J1	19 U
Benzo(a)pyrene		20 U	19 U	20 U	19 U	18 U	13 J1	15 J1	19 U	19 U	NA	14 J1	19 U	18 U	19 U
Indeno(1,2,3-cd)pyrene		19 J1 20 U	19 U	20 U	19 U	18 U 18 U	18 U	19 U	19 U	19 U	NA NA	19 U 19 U	19 U 19 U	18 U	19 U 19 U
Dibenz(a,h)anthracene		20 U 27	19 U	20 U 20 U	19 U 19 U	18 U 18 U	18 U 18 U	19 U	19 U	19 U	NA NA	19 U 19 U	19 U 19 U	18 U 18 U	19 U 19 U
Benzo(g,h,i)perylene 1-Methylnaphthalene	16,000	27 34	19 U 19 U	20 U 20 U	19 U 19 U	18 U 18 U	18 U 38	12 J1 19 U	19 U 19 U	19 U 19 U	NA NA	19 U 19 U	19 U 26	18 U 18 U	19 U 19 U
Total Benzofluoranthenes	16,000	78	19 U	20 U	19 U	16 U 12 J1	36 17 J1	21	19 U	19 U	NA NA	26	32	18 U 12 J1	19 U
Total cPAH TEQ	15	12 J	ND	ND	ND	1.4 J	17 J	18 J	ND	ND	NA NA	17 J	5.5	1.3 J	ND

		Western P	roperty Boundary (W	est of Stabilized So	oil Area)					Northern Prop	perty Boundary				
	Preliminary Cleanup Levels	IT-MW-20(2-3.5) TW35G 11/09/2011	IT-MW-20(5-6.5) TW35H 11/09/2011	IT-MW-20(8-9.5) TW35I 11/09/2011	IT-MW-20(14.5-16) TW35J 11/09/2011	IT-MW-21(2-3.5) TW89D 11/11/2011	IT-MW-21(5-6.5) TW89E 11/11/2011	IT-MW-21(8-9.5) TW89F 11/11/2011	IT-MW-21(13.5-15) TW89G 11/11/2011	IT-MW-21(17-18.5) TW89H 11/11/2011	IT-MW-21(24.5-26) TW89M 11/11/2011	IT-MW-22(2-3.5) TW89I 11/11/2011	IT-MW-22(5-6.5) TW89J 11/11/2011	IT-MW-22(8-9.5) TW89K 11/11/2011	IT-MW-22(13.5-15) TW89L 11/11/2011
PAHs (µg/kg) Method SW8270D-SIM															
Naphthalene	2,100	100	3.5 J1	4.0 U	4.9 U	8.0	35	13	4.6 U	4.5 U	NA	4.7 U	69	27	4.8 U
2-Methylnaphthalene	320,000	220	3.2 J1	4.0 U	4.9 U	8.9	57	4.9	4.6 U	4.5 U	NA	2.9 J1	35	9.9	4.8 U
1-Methylnaphthalene	16,000	230	3.5 J1	4.0 U	4.9 U	6.3	61	4.3 J1	4.6 U	4.5 U	NA	3.0 J1	10	9.5	4.8 U
Total Naphthalenes		550	10.2 J1	4.0 U	4.9 U	23.2	153	22.2 J1	4.6 U	4.5 U	NA	5.9 J1	114	46.4	4.8 U
Acenaphthylene		4.9 U	4.8 U	4.0 U	4.9 U	4.5 U	4.4 U	4.6 U	4.6 U	4.5 U	NA	4.7 U	22	5.0	4.8 U
Acenaphthene	230,000	4.9 U 4.9 U	4.8 U 4.8 U	4.0 U 4.0 U	4.9 U 4.9 U	4.5 U 4.5 U	4.4 U 3.8 J1	4.6 U 4.6 U	4.6 U 4.6 U	4.5 U 4.5 U	NA NA	4.7 U 4.7 U	29 26	6.9 6.4	4.8 U 4.8 U
Fluorene Phenanthrene	150,000	4.9 U 140	4.6 U 6.6	4.0 U 3.3 J1	4.9 U	4.5 U 10	3.6 J I 85	4.6 U 14	4.6 U	4.5 U	NA NA	4.7 U 11	93	37	5.2
Anthracene	1,600,000	4.9 U	4.8 U	4.0 U	4.9 U	4.5 U	12	4.6 U	4.6 U	4.5 U	NA NA	4.7 U	21	6.1	4.8 U
Fluoranthene	230,000	58	4.8	4.0 U	4.9 U	8.5	32	7.8	4.6 U	4.5 U	NA NA	8.4	120	36	10
Pyrene	240,000	88	3.1 J1	4.0 U	4.9 U	9.8	27	7.0	4.6 U	4.5 U	NA	11	100	32	13
Benzo(a)anthracene		14	4.8 U	4.0 U	4.9 U	6.3	14	4.0 J1	4.6 U	4.5 U	NA	5.5	28	10	9.4
Chrysene		55	3.8 J1	4.0 U	4.9 U	16	26	7.3	4.6 U	4.5 U	NA	33	34	15	9.5
Benzo(a)pyrene		14	4.8 U	4.0 U	4.9 U	8.2	20	6.2	4.6 U	4.5 U	NA	11	26	12	13
Indeno(1,2,3-cd)pyrene		16	4.8 U	4.0 U	4.9 U	6.5	6.9	3.6 J1	4.6 U	4.5 U	NA	5.0	16	6.6	5.0
Dibenz(a,h)anthracene		5.7	4.8 U	4.0 U	4.9 U	2.8 J1	3.4 J1	4.6 U	4.6 U	4.5 U	NA	4.7 U	5.0	4.6 U	4.8 U
Benzo(g,h,i)perylene		21	4.6 J1	4.0 U	4.9 U	10	10	6.0	4.6 U	4.5 U	NA	13	19	10	6.9
Dibenzofuran	80,000	4.9 U	4.8 U	4.0 U	4.9 U	2.5 J1	24	3.2 J1	4.6 U	4.5 U	NA	4.7 U	26	9.4	4.8 U
Total Benzofluoranthenes Total cPAH TEQ	 15	65	3.4 J1 0.4 J	4.0 U ND	4.9 U ND	15 11.42 J	17 24.39 J	10 8.0 J	4.6 U ND	4.5 U ND	NA NA	14 13.8	41 34.8	20 15.8	15 16.0
Total CPAH TEQ	15	24.62	0.4 J	ND	ND	11.42 J	24.39	6.0 J	ND	ND	INA	13.0	34.6	15.6	16.0
PCBs (µg/kg)															
Method SW8082															
Aroclor 1260	5.4	32 U	33 U	32 UJ	32 U	32 U	32 U	33 U	31 U	32 U	NA	32 U	32 U	31 U	31 U
Total PCBs	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx															
Diesel-Range Organics Oil-Range Organics	2,000 2,000	1400 190	6.2 U 12 U	6.8 U 14 U	6.4 U 13 U	21 J 100	18 J 41	6.4 U 13 U	5.8 U 12 U	5.6 U 11 U	NA NA	64 J 220	13 J 25	10 J 22	5.9 U 12 U
NWTPH-G															
Gasoline-Range Organics	100/30	22	10	11 U	7.5 U	7.7 U	8.2 U	8.2 U	7.6 U	6.4 U	8.2 U	7.6 U	9.4 U	8.0 U	6.9 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A															
Antimony	5	0.6	0.2 U	0.3 U	0.2 U	0.6	0.2 U	0.3 U	0.2 U	0.2 U	NA	0.2 U	0.3 U	0.3 U	0.2 U
Barium	640	324	60.5	67.1	31.7	67.3	52.0	66.3	28.7	23.3	NA	26.6	67.3	67.6	39.0
Beryllium	160	0.3	0.3	0.3	0.2 U	0.2 U	0.3	0.3 U	0.2 U	0.2 U	NA	0.2 U	0.4	0.3	0.2 U
Cadmium	1.3	13.5 594	0.1 U	0.1 U	0.1 U	2.1 100	0.3	0.2	0.1 U	0.1 U	NA NA	0.1 U	0.7	0.3	0.1 U
Chromium Chromium VI	1,480 3.8	594 0.462 U	17.2 0.491 U	17.1 0.528 U	11.8 0.486 U	100 0.461	15.1 0.458 U	15.4 0.517 U	10.2 0.490 U	10.6 0.500 U	NA NA	15.6 0.438 U	24 0.547 U	15.1 0.526 U	11.9 0.512 U
Copper	3.8 36	0.462 U 150	83.1	0.528 U 22.3	0.486 U 12.8	65.7	0.458 U 21.8	0.517 U 668	183	0.500 U 11.4	NA NA	0.438 U 14.3	0.547 U 28.8	804	388
Lead	250	684	5.2	5.2	3.9	112	14.4	9.1	2.3	1.0	NA NA	4.1	12.2	6.8	1.8
Mercury	1.5	0.08	0.05	0.06	0.02 U	0.18	0.11	0.07	0.03	0.03 U	NA	0.02 U	0.14	0.10	0.03 U
Nickel	210	65.6	12.9	13.8	6.0	22.8	11.3	14.3	8.0	7.1	NA	9.0	17.2	13.2	8.4
Silver	170	1.6	0.2 U	0.3 U	0.2 U	0.2	0.2 U	0.3 U	0.2 U	0.2 U	NA	0.2 U	0.3 U	0.3 U	0.2 U
Zinc	1,400	2350	78	37	26	295	58	63	99	26	NA	26	62	66	235

					Stabilized Soil Area					South of Stabi	ized Soil Area	
	Preliminary Cleanup Levels	IT-MW-23(11-12.5) TW35A 11/09/2011	IT-MW-23(12.5-14) TW35B 11/09/2011	IT-MW-24(12.5-14) TX01D 11/14/2011	IT-MW-24(14-15.5) TX01E 11/14/2011	IT-MW-25(8-9.5) TX01A 11/14/2011	IT-MW-25(13.5-15) TX01B 11/14/2011	IT-MW-25(15.5-17) TX01C 11/14/2011	IT-MW-15(2-3.5) TX21A 11/15/2011	IT-MW-15(5-6.5) TX21B 11/15/2011	IT-MW-15(8-9.5) TX21C 11/15/2011	IT-MW-15(12.5-14) TX21D 11/15/2011
VOLATILES (#)												
VOLATILES (μg/kg) Method SW8260C												
Chloromethane	1,600	1.2 U	1.2 J1	1.2 UJ	1.5 UJ	1.2 U	1.2 UJ	1.3 UJ	1.3 UJ	1.4 UJ	1.4 UJ	1.4 UJ
Methylene Chloride	2,400	2.2 J, J1	2.4 J1	1.2 03 1.4 J, J1	1.5 J, J1	2.3 J1	1.2 03 1.4 J, J1	3.3 J	2.7 J	2.2 J, J1	3.1 J	2.0 J, J1
Acetone	510,000	1600	370	420 J	500 J	35 J	18 J	38 J	26 J	51 J	22 J	19 J
Carbon Disulfide	75,000	1.6	1.6	1.2 U	2.8	1.2 U	2.4 J	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
2-Butanone	430,000	130	82	32	46	5.9 U	6.0 U	6.7 U	6.4 U	7.0 U	7.1 U	7.1 U
Trichloroethene	51	1.2 U	1.2 U	2.1	1.7	1.2 U	1.8	1.3 U	0.9 J1	1.8	1.6	1.2 J1
Benzene	93	0.8 J1	0.8 J1	1.3	1.5 U	1.2 U	1.2 U	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
Tetrachloroethene	260	1.2 U	1.2 U	1.2 U	1.5 U	1.6	1.2 U	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
Toluene	100,000	1.0 J1	1.1 J1	0.8 J1	1.5 U	1.2 U	1.2 U	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
Ethylbenzene	230	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	1.2 J1	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
Styrene	16,000,000	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	1.2 U	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
Trichlorofluoromethane	200,000	1.2 U	1.2 U	2.1 J	0.8 J, J1	1.7	0.8 J, J1	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
m,p-Xylene	160,000	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	4.3	2.3	1.3 U	1.4 U	1.4 U	1.4 U
o-Xylene	200,000	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	4.1	1.6	1.3 U	1.4 U	1.4 U	1.4 U
Methyl Iodide		1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	1.2 UJ	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
1,3,5-Trimethylbenzene	800,000	0.7 J1	0.7 J1	1.2 U	1.5 U	1.2 U	1.4	0.8 J1	1.3 U	1.4 U	1.4 U	1.4 U
1,2,4-Trimethylbenzene	800,000	1.1 J1	1.0 J1	1.2 U	1.5 U	1.2 U	2.9	1.7	1.3 U	1.4 U	1.4 U	1.4 U
Isopropylbenzene	78,000	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	1.2 J1	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
n-Propylbenzene	11,000	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	1.3	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
4-Isopropyltoluene		1.9 J	2.9 J	1.2 U	1.5 U	1.2 U	1.2 U	1.3 U	1.3 U	1.4 U	1.4 U	1.4 U
Naphthalene	2,100	6.1 U	6.1 U	6.1 U	7.3 U	5.9 U	0.7 J, J1	1.1 J, J1	6.4 U	7.0 U	7.1 U	7.1 U
SEMIVOLATILES (µg/kg) Method SW8270D												
Phenol	1,900,000	28	210	20 U	160	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Benzyl Alcohol	8,000,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
4-Methylphenol	41,000	20 J1	81	40 U	36 U	37 U	36 U	38 U	39 U	39 U	40 U	37 U
2,4-Dimethylphenol	95,000	38 U	39 U	40 U	36 U	37 U	36 U	38 U	39 U	39 U	40 U	37 U
Benzoic Acid	9,000	380 U	390 U	400 U	360 U	370 U	360 U	380 U	390 U	390 U	400 U	370 U
Naphthalene	2,100	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
2-Methylnaphthalene	320,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Acenaphthylene		19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Acenaphthene	230,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Dibenzofuran	80,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Fluorene	150,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Phenanthrene		19 U	19 U	20 U	18 U	27	18 U	19 U	20 U	19 U	20 U	19 U
Anthracene	1,600,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Fluoranthene	230,000	19 U	19 U	20 U	18 U	20	18 U	19 U	20 U	19 U	20 U	19 U
Pyrene	240,000	19 U	19 U	20 U	18 U	26	18 U	19 U	20 U	19 U	20 U	19 U
Benzo(a)anthracene		19 U	19 U	20 U	18 U	14 J1	18 U	19 U	20 U	19 U	20 U	19 U
bis(2-Ethylhexyl)phthalate	56,600	23 U	37 U	17 J1	24	72	94	86	130 U	240	180 U	23 U
Chrysene		19 U	19 U	20 U	18 U	27	18 U	19 U	20 U	19 U	20 U	19 U
Benzo(a)pyrene		19 U	19 U	20 U	18 U	14 J1	18 U	19 U	20 U	19 U	20 U	19 U
Indeno(1,2,3-cd)pyrene		19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Dibenz(a,h)anthracene		19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Benzo(g,h,i)perylene		19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
1-Methylnaphthalene	16,000	19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Total Benzofluoranthenes		19 U	19 U	20 U	18 U	18 U	18 U	19 U	20 U	19 U	20 U	19 U
Total cPAH TEQ	15	ND	ND	ND	ND	16 J	ND	ND	ND	ND	ND	ND

					Stabilized Soil Area					South of Stabi	lized Soil Area	
	Preliminary Cleanup Levels	IT-MW-23(11-12.5) TW35A 11/09/2011	IT-MW-23(12.5-14) TW35B 11/09/2011	IT-MW-24(12.5-14) TX01D 11/14/2011	IT-MW-24(14-15.5) TX01E 11/14/2011	IT-MW-25(8-9.5) TX01A 11/14/2011	IT-MW-25(13.5-15) TX01B 11/14/2011	IT-MW-25(15.5-17) TX01C 11/14/2011	IT-MW-15(2-3.5) TX21A 11/15/2011	IT-MW-15(5-6.5) TX21B 11/15/2011	IT-MW-15(8-9.5) TX21C 11/15/2011	IT-MW-15(12.5-14) TX21D 11/15/2011
PAHs (µg/kg) Method SW8270D-SIM												
Naphthalene	2,100	2.9 J1	3.2 J1	9.0	4.2 J1	3.2 J1	4.0 J1	4.4 J1	2.8 J1	4.9 U	4.7 U	5.0
2-Methylnaphthalene	320,000	3.6 J1	3.0 J1	9.6	5.9	4.4 J1	3.8 J1	4.6 J1	4.9 U	4.9 U	4.7 U	2.5 J1
1-Methylnaphthalene	16,000	7.9	4.9	7.9	4.5	3.3 J1	4.2 J1	3.9 J1	4.9 U	4.9 U	4.7 U	2.5 J1
Total Naphthalenes		14.4 J1 4.6 U	11.1 J1 4.9 U	26.5 5.0 U	14.6 J1 4.4 U	10.9 J1 4.7 U	12.0 4.6 U	12.9 J1 4.8 U	2.8 J1 4.9 U	4.9 U 4.9 U	4.7 U 4.7 U	10.0 J1 4.7 U
Acenaphthylene Acenaphthene	230,000	4.6 U	4.9 U	5.0 U	4.4 U	4.7 U 4.1 J1	4.6 U	4.8 U	4.9 U 2.6 J1	4.9 U	4.7 U	4.7 U
Fluorene	150,000	4.6 U	4.9 U	5.0 U	4.4 U	4.7 U	6.4	4.6 J1	4.9 U	4.9 U	4.7 U	4.7 U
Phenanthrene		4.4 J1	5.2	22	8.7	14	6.4	4.6 J1	22	5.5	2.7 J1	3.9 J1
Anthracene	1,600,000	4.6 U	4.9 U	3.0 J1	4.4 U	4.7 U	4.6 U	4.8 U	4.4 J1	4.9 U	4.7 U	4.7 U
Fluoranthene	230,000	4.6 U	2.9 J1	14	5.2	12	4.8	4.8 U	20	4.7 J1	4.7 U	4.7 U
Pyrene	240,000	4.6 U	3.1 J1	16	6.3	15	5.1	2.6 J1	23	4.4 J1	4.7 U	4.7 U
Benzo(a)anthracene		4.6 U	4.9 U	6.6	2.7 J1	8.3	2.5 J1	4.8 U	10	2.5 J1	4.7 U	4.7 U
Chrysene		4.6 U	4.9 U	14	5.6	24	5.6	3.8 J1	12	3.3 J1	4.7 U	4.7 U
Benzo(a)pyrene		4.6 U	4.9 U	12	4.0 J1	12	5.3	4.8 U	12	2.6 J1	4.7 U	4.7 U
Indeno(1,2,3-cd)pyrene		4.6 U	4.9 U	5.2	4.4 U	4.2 J1	4.6 U	4.8 U	7.4	4.9 U	4.7 U	4.7 U
Dibenz(a,h)anthracene		4.6 U	4.9 U	2.9 J1	4.4 U	3.4 J1	4.6 U	4.8 U	3.3 J1	4.9 U	4.7 U	4.7 U
Benzo(g,h,i)perylene		4.6 U	4.9 U	8.9	3.6 J1	9.8	2.9 J1	3.6 J1	8.6	4.9 U	4.7 U	4.7 U
Dibenzofuran	80,000	4.6 U	4.9 U	4.3 J1	4.4 U	4.7 U	2.4 J1	4.8 U	4.9 U	4.9 U	4.7 U	4.7 U
Total Benzofluoranthenes		4.6 U	4.9 U	13	7.5	14	4.6 U	4.8 U	17	4.9 U	4.7 U	4.7 U
Total cPAH TEQ	15	ND	ND	15 J	5.1 J	15 J	5.6 J	0.04 J	16	2.9 J	ND	ND
PCBs (µg/kg) Method SW8082												
Aroclor 1260	5.4	33 U	31 U	32 U	32 U	32 U	32 U	33 U	32 U	32 U	31 U	33 U
Total PCBs	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx												
Diesel-Range Organics	2,000	6.6 U	6.2 U	30	6.0 U	24	51	6.8	6.0 U	6.4 U	5.3 U	6.6 U
Oil-Range Organics	2,000	13 U	15	45	12 U	100	53	18	12 U	13 U	11 U	13 U
NWTPH-G												
Gasoline-Range Organics	100/30	8.3 U	7.6 U	7.5 U	8.1 U	10	7.0 U	8.4 U	8.1 U	7.0 U	7.4 U	8.7 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A												
Antimony	5	0.2 UJ	0.3 U	0.3	0.2 U	0.2 U	0.2 UJ	0.2 U	0.2 UJ	0.2 U	0.2 U	0.3 U
Barium	640	50.7 J	27.9	56.5	39.1	62.2	30.0 J	28.6	51.0	44.2	33.6	50.9
Beryllium	160	0.2 U	0.3 U	0.3	0.2 U	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U
Cadmium	1.3	0.1 U	0.1 U	0.3	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chromium	1,480	13.2	11.6	16.6	9.9	18.2	10.7	8.7	15.0	12.2	8.6	12.4
Chromium VI	3.8	0.521	0.517 U	0.511 U	0.484 U	0.449 UJ	0.496 U	0.477 U	0.475 U	0.500 U	0.423 U	0.533 U
Copper	36	180	514	226	322	85.7	303	224	15.7	17.2	11.0	20.2
Lead	250	2.2 J	2.2	18.0	3.6	8.4	2.8	1.4	17.1 J	3.4	17.4	2.5
Mercury	1.5	0.21 J	0.15	1.14	0.54	0.05	0.02	0.02 U	0.11	0.07	0.02 U	0.03
Nickel Silver	210 170	10.1 0.2 U	8.3 0.3 U	13.6 0.3 U	8.8 0.2 U	20.3 0.2 U	10.6 0.2 U	9.0 0.2 U	15.5 0.2 U	10.8 0.2 U	7.9 0.2 U	9.5 0.3 U
Zinc	1,400	0.2 U 44	98	127	0.2 U 95	0.2 U 71	135	0.2 U 187	0.2 U 51	0.2 U 27	0.2 U 29	0.3 U 27
ZIII C	1,400	44	90	12/	90	/1	130	10/	31	21	29	21

	_								
					South of Stab	ilized Soil Area			
	Preliminary Cleanup Levels	IT-MW-16(2-3.5) TW45L 11/10/2011	IT-MW-16(5-6.5) TW45M 11/10/2011	IT-MW-16(8-9.5) TW45N 11/10/2011	IT-MW-16(12-13.5) TW45O 11/10/2011	IT-MW-18(2-3.5) TW27A 11/08/2011	IT-MW-18(5-6.5) TW27B 11/08/2011	IT-MW-18(8-9.5) TW27D 11/08/2011	IT-MW-18(11.5-13) TW27C 11/08/2011
VOLATILES (µg/kg)									
Method SW8260C Chloromethane	1.600	1.3 UJ	1.1 UJ	1.3 UJ	1.3 UJ	1.2 U	1.4 U	1.4 U	1.2 U
Methylene Chloride	2,400	3.6	3.3	5.7	1.3 UJ 4.1	1.2 U 3.0	1.4 U 2.8 U	1.4 U 2.7 U	1.2 U 2.5 U
Acetone	510,000	37	30	38	23 J	3.0 12 J	2.6 U 22 J	2.7 U 22 J	2.5 U 23 J
Carbon Disulfide	75,000	1.7	1.1 U	3.8	1.8 J	4.0	2.0	2.6	3.7
2-Butanone	430,000	3.2 J1	5.3 U	5.0 J1	6.5 U	6.2 U	6.9 U	6.8 U	6.1 U
Trichloroethene	51	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
Benzene	93	1.7	0.5 J1	1.1 J1	1.1 J1	1.2 U	1.4 U	1.4 U	1.2 U
Tetrachloroethene	260	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
Toluene	100,000	0.9 J1	1.1 U	0.9 J1	0.6 J1	1.2 U	1.4 U	1.4 U	1.2 U
Ethylbenzene	230	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
Styrene	16,000,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
Trichlorofluoromethane	200,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
m,p-Xylene	160,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
o-Xylene	200,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
Methyl lodide		1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
1,3,5-Trimethylbenzene	800,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
1,2,4-Trimethylbenzene	800,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
Isopropylbenzene	78,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
n-Propylbenzene	11,000	1.3 U	1.1 U	1.3 U	1.3 U	1.2 U	1.4 U	1.4 U	1.2 U
4-Isopropyltoluene Naphthalene	2.100	1.3 U 6.3 U	1.1 U 5.3 U	1.3 U 6.5 U	1.3 U 6.5 U	1.2 U 6.2 U	1.4 U 6.9 U	1.4 U 6.8 U	1.2 U 6.1 U
Naprililaierie	2,100	0.5 0	5.5 0	0.5 0	0.5 0	0.2 0	0.9 0	6.6 0	6.1 0
SEMIVOLATILES (μg/kg) Method SW8270D									
Phenol	1,900,000	19 U	18 U	19 U	19 U	20 U	19 U	10 J1	11 J1
Benzyl Alcohol	8,000,000	19 U	18 U	19 U	19 U	20 U	18 J1	25	20 U
4-Methylphenol	41,000	39 U	37 U	38 U	38 U	39 U	45	43	40 U
2,4-Dimethylphenol	95,000	39 U	37 U	38 U	38 U	39 U	16 J1	38 U	40 U
Benzoic Acid	9,000	390 U	370 U	380 U	380 U	390 U	140 J1	380 U	400 U
Naphthalene	2,100	19 U	18 U	19 U	19 U	20 U	66	55	13 J1
2-Methylnaphthalene	320,000	19 U	18 U	19 U	19 U	9.8 J1	57	36	20 U
Acenaphthylene		19 U	18 U	19 U	19 U	20 U	15 J1	13 J1	20 U
Acenaphthene	230,000	19 U	18 U	19 U	19 U	20 U	18 J1	14 J1	20 U
Dibenzofuran Fluorene	80,000	19 U 19 U	18 U 18 U	19 U 19 U	19 U 19 U	20 U 20 U	38 23	25 30	20 U 20 U
Phenanthrene	150,000	88	18 U	26	19 U	20 U 18 J1	23 86	30 85	20 U 11 J1
Anthracene	1,600,000	19	18 U	19 U	19 U	20 U	16 J1	14 J1	20 U
Fluoranthene	230,000	110	18 U	26	19 U	20 U	79	80	20 U
Pyrene	240,000	160 J	18 U	37 J	19 U	14 J1	68	58	20 U
Benzo(a)anthracene		80	18 U	19	19 U	20 U	21	13 J1	20 U
bis(2-Ethylhexyl)phthalate	56,600	34 U	32 U	67 U	43 U	22 J1	29	32	17 J1
Chrysene		98	18 U	32	19 U	27	29	21	20 U
Benzo(a)pyrene		110	18 U	25	19 U	20 U	19 U	19 U	20 U
Indeno(1,2,3-cd)pyrene		50	18 U	13 J1	19 U	20 U	19 U	19 U	20 U
Dibenz(a,h)anthracene		13 J1	18 U	19 U	19 U	20 U	19 U	19 U	20 U
Benzo(g,h,i)perylene		54	18 U	21	19 U	13 J1	19 U	19 U	20 U
1-Methylnaphthalene	16,000	19 U	18 U	19 U	19 U	20 U	52	32	20 U
Total Benzofluoranthenes		130	18 U	33	19 U	17 J1	34	33	20 U
Total cPAH TEQ	15	138.28 J	ND	31.82 J	ND	2.0 J	5.8	4.8 J	ND

,									
					South of Stab	ilized Soil Area			
	Preliminary Cleanup Levels	IT-MW-16(2-3.5) TW45L 11/10/2011	IT-MW-16(5-6.5) TW45M 11/10/2011	IT-MW-16(8-9.5) TW45N 11/10/2011	IT-MW-16(12-13.5) TW45O 11/10/2011	IT-MW-18(2-3.5) TW27A 11/08/2011	IT-MW-18(5-6.5) TW27B 11/08/2011	IT-MW-18(8-9.5) TW27D 11/08/2011	IT-MW-18(11.5-13) TW27C 11/08/2011
PAHs (μg/kg) Method SW8270D-SIM									
Naphthalene	2,100	5.7	4.7 U	5.8	2.7 J1	6.5 10	71	30	3.6 J1
2-Methylnaphthalene 1-Methylnaphthalene	320,000 16,000	4.0 J1 4.4 J1	4.7 U 2.6 J1	4.7 4.0 J1	4.8 U 4.8 U	8.9	51 59	17 18	5.0 U 5.0 U
Total Naphthalenes		4.4 J1 14.1 J1	2.6 J1 2.6 J1	14.5 J1	4.8 U 2.7 J1	25.4	181	65	3.6 J1
Acenaphthylene		4.0 J1	4.7 U	2.8 J1	4.8 U	4.9 U	20	4.8 U	5.0 U
Acenaphthene	230,000	4.6 U	4.7 U	4.0 J1	4.8 U	4.9 U	34	16	5.0 U
Fluorene	150,000	2.7 J1	4.7 U	3.2 J1	4.8 U	4.9 U	24	12	5.0 U
Phenanthrene		32	6.1	36	3.5 J1	19	100	51	8.1
Anthracene	1,600,000	7.1	4.7 U	5.5	4.8 U	4.9 U	13	9.0	5.0 U
Fluoranthene	230,000	53	51	39	3.0 J1	9.2	59	41	5.1
Pyrene	240,000	60	170	44	3.4 J1	11	48	34	5.0
Benzo(a)anthracene		33	120	22	4.8 U	6.0	13	9.8	5.0 U
Chrysene		45	140	40	4.8 U	25	19	14	2.9 J1
Benzo(a)pyrene		51	250	33	3.4 J1	7.4	24	12	5.0 U
Indeno(1,2,3-cd)pyrene		31	100	16	4.8 U	7.6	6.4	4.5 J1	5.0 U
Dibenz(a,h)anthracene		11 36	37 110	6.7 26	4.8 U 4.8 U	6.5 12	4.7 U 10	2.7 J1 7.9	5.0 U 5.0 U
Benzo(g,h,i)perylene Dibenzofuran	80,000	2.5 J1	4.7 U	3.0 J1	4.8 U	2.5 J1	29	7.9 15	2.8 J1
Total Benzofluoranthenes		64	260	43	4.8 U	13	17	19	5.0 U
Total cPAH TEQ	15	65	303	42 J	3.4 J	11 J	27.8	16	0.03 J
PCBs (μg/kg)									
Method SW8082									
Aroclor 1260	5.4	30 U	32 U	30 U	30 U	32 U	33 U	29 J1	33 U
Total PCBs	1.8	ND	ND	ND	ND	ND	ND	29 J	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx									
Diesel-Range Organics	2,000	12	5.3 U	14	6.1 U	26	27	32	6.8 U
Oil-Range Organics	2,000	47	12	57	12 U	110	34	41	20
	,								
NWTPH-G Gasoline-Range Organics	100/30	7.5 U	7.6 U	6.9 U	7.9 U	6.4 U	9.2 U	8.7 U	8.5 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A									
Antimony	5	0.2 U	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U	0.3 U	0.3 U
Barium	640	55.0	34.9	43.7	27.6	44.3 J	52.8	59.7	70.7
Beryllium	160	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.4	0.3	0.3
Cadmium	1.3	0.2	0.1 U	0.2	0.1 U	0.1 U	0.4	0.5	0.2
Chromium	1,480	18.7	12.1	20.5	9.6	53.3 J	15.3	16.8	16.1
Chromium VI	3.8	0.458 U 70.1	0.457 U	0.463 U 44.4	0.482 U	0.419 UJ	0.528 U	0.520 U	0.543 U
Copper Lead	36 250	70.1 33.3	21.2 7.7	33.5	11.9 1.4	15.7 J 7.6	20.9 6.4	30.8 7.6	25.9 4.9
Mercury	250 1.5	0.15	0.03 U	0.10	0.03 U	0.02 U	0.06	0.06	0.06
Nickel	210	14.0	9.4	15.4	8.2	10.7	14.6	15.4	14.2
Silver	170	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U	0.3 U
Zinc	1,400	129	31	75	45	41	46	57	37

µg/kg = micrograms per kilogram mg/kg = milligrams per kilogram ND = Not Detected. NA = Not Analyzed PCBs - polychlorinated biphenyls PAHs = polcyclic aromatic hydrocarbons cPAH= carcinogenic PAH

TEQ = Toxic Equivalent Concentration SIM = Selected Ion Monitoring

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.

Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

TABLE 20 Page 1 of 2

DETECTED ARSENIC CONCENTRATIONS IN RI AND CONSTRUCTION-RELATED SOIL SAMPLES FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Sample ID	Sample Date	Sample Depth	Arsenic (mg/kg)
Fill A Material			PCL 7
1900-1946 Random Fill, Consisting o	f Gravel, Sand, Slag, Demolition	on Waste, and Crushed Roc	ks
MW-14	11/8/2011	2 to 3.5	2.4
MW-14	11/8/2011	5 to 6.5	4.7
MW-14	11/8/2011	8 to 9.5	7.2
MW-14	11/8/2011	13 to 14.5	1.6
Fill B Material			
1946-1960 Random Fill Material			
Vicinity of I-205(s)			
MW-9	10/31/11	2 to 3.5	2.5
MW-9	10/31/11	5 to 6.5	6.2
MW-9	11/4/11	8 to 9.5	11.1
MW-9	11/4/11	13 to 14.5	2.5
10100-9	11/4/11	13 10 14.3	2.5
MW-10	10/31/11	2 to 3.5	4.6
MW-10	10/31/11	5 to 6.5	1.6
MW-10	11/7/11	8 to 9.5	2.2
MW-10	11/7/11	13 to 14.5	209
MW-11	10/31/11	2 to 3.5	6.6
MW-11	10/31/11	5 to 6.5	2.9
MW-11	11/7/11	8 to 9.5	7.8
MW-11	11/7/11	13 to 14.5	3.7
IVIVV-1 I	1 1/1/11	13 10 14.3	5.1
TP-104-B	10/27/11	12 to 13	2.0
TP-105-B	10/27/11	11 to 12	2.3
TP-106-B	10/28/11	11 to 12	4.2
IT-TOWPATHEXC1	7/15/11	0.8	3.6
Fill C Material			
1946-1960 Some Random Fill Along \	With Fill From Off-Site Sources	i	
MW-17	11/10/11	2 to 3.5	10.5
MW-17	11/10/11	5 to 6.5	29.3
MW-17	11/10/11	8 to 9.5	31.5
MW-17	11/10/11	11 to 12.5	13.9
MW-17	11/10/11	14 to 15.5	60.3
MW-17	11/10/11	15.5 to 17	299
MW-17	11/10/11	18.5 to 19.75	76.4
MW-17	11/10/11	21.25 to 21.5	33.9
MW-17	11/10/11	21.5 to 23	78.5
NAV. 10		0: 05	
MW-19	11/9/11	2 to 3.5	3.4
MW-19	11/9/11	5 to 6.5	13.1
MW-19	11/9/11	8 to 9.5	7.5
MW-19	11/9/11	13 to 14.5	10.5
SB-3	11/14/11	2 to 3.5	2.7
SB-3	11/14/11	5 to 5.5	4
SB-3	11/14/11	6.5 to 7	40.1
SB-4	4 4 /4 /4 4	2+025	0.7
SB-4 SB-4	11/1/11 11/1/11	2 to 3.5	9.7
		5 to 6.5	7.6
SB-4 SB-4	11/1/11 11/1/11	8 to 9 11.5 to 13	4.8 1.9
SB-12	11/14/11	2 to 3.5	12.3
SB-12	11/14/11	5 to 6.5	10.4
SB-12	11/14/11	8 to 9.5	9.2
SB-12	11/14/11	14 to 15.5	24.6
TOWPATH-EXC12	7/26/11	2.7	2.2
	.,25,		

TABLE 20 Page 2 of 2

DETECTED ARSENIC CONCENTRATIONS IN RI AND CONSTRUCTION-RELATED SOIL SAMPLES FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Sample ID	Sample Date	Sample Depth	Arsenic (mg/kg)
			PCL 7
Fill D Material			
1960-1965 Slag, Construction, and D	emolition Debris, and Imported	Soil	
PIVEXC1	8/8/11	4.2	2.5
SB-5 SB-5 SB-5 SB-5	10/31/11 10/31/11 10/31/11 10/31/11	2 to 3.5 5 to 6.5 8 to 9.5 16 to 17.5	16.9 5.9 4.3 1.2
1960-1965 Imported Construction-Qu	uality Sand Fill Material		
	auni, Guna i in materia.		
MW-12 MW-12 MW-12 MW-12 MW-12 MW-12	11/3/11 11/3/11 11/3/11 11/3/11 11/3/11	2 to 3.5 5 to 6.5 8 to 9.5 13 to 14.5 18 to 19.5 23 to 24.5	1.9 1.4 2.3 1.7 92 22.7
MW-13 MW-13 MW-13 MW-13 MW-13	11/3/11 11/3/11 11/3/11 11/3/11 11/3/11	2 to 3.5 5 to 6.5 8 to 9.5 12.5 to 14 15 to 16.5	2.7 3.1 2.7 24.4 19.5
MW-13B MW-13B MW-13B MW-13B MW-13B	11/10/11 11/10/11 11/11/11 11/11/11 11/11/11	2 to 3.5 5 to 6.5 6.5 to 8 8 to 9.5 12.5 to 13.5	3.8 2.5 7.2 12.1 8.9
SB-2 SB-2 SB-2 SB-2	10/31/11 10/31/11 10/31/11 10/31/11	2 to 3.5 5 to 6.5 8 to 9.5 14 to 15.5	1.7 2.3 1.8 1.7

mg/kg = milligrams per kilogram PCL = Prelilminary Cleanup Level Box = Exceedance of PCL

Personal Color Pers	
Class Trivial Trivia	-205(s) and I-206(s)
Methyproc Chords	IT-TP-105B-B(11-12) TU13B 10/27/2011
Members 2,00 2,8 27 28 45 24 31 31 19 27 27 35 23 23 23 23 24 36 36 37 37 37 37 37 38 27 38 37 38 37 38 37 38 37 38 38	
Accidence 510,000 15 65 25 12 15 15 15 15 15 1	2.7 U
1.1-Chromoremen	36 J
Colorable Colo	4.2
2-Pelantone	1.3 U 1.3 U
Tricknownesses	6.6 U
Tolurie 100,000 10 U 12 U 13 U 15 U 12 U 11 U 12 U 11 U 12 U 11 U 12 U 13 U 15 U 12 U 13	1.3 U
Emphasemen 20	1.3 U
Trichrodivocordentaries 1,00,000 1,0 U 1,2 U 1,3 U 1,5 U 1,2 U 1,1 U 1,2 U 1,1 U 1,2 U 1,3 U 1,5 U 1,2 U 1,1 U 1,2 U 1,1 U 1,2 U 1,3 U 1,2 U 1,3 U 1,5	1.3 U 1.3 U
1.1.2 fracinos-1,2 2 frint-occupation of the Color of the	1.3 U
A-Sylvine 200,000 1.0 U 1.2 U 1.3 U 1.5 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.2 U 1.1 U 1.2 U 1.3 U	2.7 U
1.4-Dichbordemoreme	1.3 U
Methyl fordise	1.3 U 1.3 U
1.3.5-Timethybercares 800,000 1.0 U 12 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.2 U 1.1 U 1.2 U 1.3 U 1.2 U 1.3 U 1.2 U 1.3 U 1.2 U 1.3 U 1.3 U 1.3 U 1.2 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.4 U 1.2 U 1.3 U 1	1.3 U
Isopony/benzene 78,000 1.0 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.3 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.3 U 1.5 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1.5 U 1.2 U 1.3 U 1.5 U 1.2 U 1.1 U 1.2 U 1.1 U 1.3 U 1.1 U 1.3 U 1.1 U 1.2 U 1.3 U 1	1.3 U
n-Propylemezere	1.3 U
See Elaythenzene	1.3 U
A-Isopropylobuene	1.3 U 1.3 U
SEMOLATLES (µg/kg) Method SW8270D	1.3 U
SEMIVOLATILES (µg/kg) Method SW2700 Phonol 1,900,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 18 U 19 U 18 U 19 U 18 U 20 U 11 J1 11 13 Dichlorobeazene 3,840 57 U 55 U 56 U 20 U 18 U 19 U 18 U 18 U 19 U 18 U 20	1.3 U
Method SW82700	6.6 U
1.3-Dichlorobenzene	
1.4-Dichlorobenzene 3,500 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 20 U 19 U 19 U 19 U 18 U	20 U 20 U
Benzyl Alcohol 8,000,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 20 U	20 U
2-Methylphenol 250,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 18 U 19 U 18 U 20 U 19 U 18 U 19 U 18 U 39 U 36 U 39 U 19 U 18 U 19 U 19	20 U
4-Methylphenol 41,000 110 U 110 U 110 U 39 U 36 U 38 U 37 U 37 U 39 U 36 U 39 U 62 33 35 U 35 U 35 U 55 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 19 U 39 U 36 U 39 U	20 U
Isophorone	20 U 39 U
2,4-Dimethylphenol 95,000 110 U 110 U 110 U 110 U 39 U 38 U 37 U 37 U 39 U 30 U 30 U	20 U
Naphthalene 2,100 57 U 55 U 56 U 20 U 47 26 18 J1 18 U 19 U 18 U 20 U 170 19 C 2-Methylnaphthalene 320,000 57 U 55 U 56 U 20 U 55 13 J1 16 J1 18 U 19 U 18 U 20 U 120 19 U 18 U 20 U 19 U 18 U 20 U 19 U 19 U 18 U 20 U 19 U 19 U 18 U 20 U 19 U 1	39 U
2-Methylnaphthalene 320,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 18 U 19 U 18 U 20 U 19 U 18 U 19 U 18 U 20 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 19 U 19	
Acenaphthylene 57 U 55 U 56 U 20 U 18 U 19 U 18 U 20 U 19 U 19 U 18 U 20 U 19 U 18 U 19 U 18 U 19 U 18 U 20 U 85 U 19 U Dibenzofuran 80,000 57 U 55 U 56 U 20 U 52 260 16 J1 18 U 19 U 18 U 20 U 71 U 19 U Fluorene 150,000 57 U 55 U 56 U 20 U 73 U 300 U 18 U 18 U 19 U 18 U 20 U 99 J 11 U N-Nitrosodiphenylamine 204,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 11 U Phenanthrene 31 J1 53 J1 39 J1 20 U 200 U 830 52 18 U 36 18 U 30 210 11 U	20 U 20 U
Acenaphthène 230,000 57 U 55 U 56 U 20 U 90 200 13 J1 18 U 19 U 18 U 20 U 85 19 Dibenzofuran 80,000 57 U 55 U 56 U 20 U 52 260 16 J1 18 U 19 U 18 U 20 U 71 19 U 18 U 20 U 99 J 19 U 18 U 19 U 18 U 20 U 19 U 1	20 U
Fluorene 150,000 57 U 55 U 56 U 20 U 73 300 18 U 18 U 19 U 18 U 20 U 99 J 19 N-Nitrosodiphenylamine 204,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 1	20 U
N-Nitrosodiphenylamine 204,000 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 19 U 19 U 19	20 U
Phenanthrene 31 J1 53 J1 39 J1 20 U 200 830 52 18 U 36 18 U 30 210 1:	
	20 U 20 U
Anthracene 1,600,000 57 U 55 U 56 U 20 U 22 190 11 J1 18 U 19 U 18 U 20 U 22 19	
Di-n-Butylphthalate 26,000 57 U 55 U 56 U 20 U 18 U 11 J1 18 U 18 U 19 U 18 U 20 U 19 U 19 U 19 U 18 U 42 81 19 U	
Fluoranthene 230,000 57 U 50 J1 28 J1 20 U 93 340 24 18 U 40 18 U 42 81 19 Pyrene 240,000 34 J1 78 31 J1 20 U 70 300 33 J 18 U 40 18 U 59 J 93 J 19	
Butylbenzylphthalate 1,700 57 U 55 U 56 U 20 U 18 U 16 J1 18 U 19 U 19 U 20 U 19 U 1	
Benzo(a)anthracene 57 U 39 J1 34 J1 20 U 16 J1 69 9.2 J1 18 U 16 J1 18 U 20 26 19	
bis(2-Ethylhexyl)phthalate 56,600 71 U 58 J1 56 J1 23 J1 18 UJ2 29 U 40 U 22 UJ2 23 UJ2 15 UJ2 25 U 58 U 24 Chrysene 71 86 65 20 U 20 69 26 18 U 28 18 U 24 38 19	
Chrysene 71 86 65 20 U 20 69 26 18 U 28 18 U 24 38 19 Di-n-Octyl phthalate 57 U 55 U 56 U 20 U 18 U 19 U 18 U 19 U 18 U 19 U 18 U 20 U 19 U 19 U 19 U	
Benzo(a)pyrene 57 U 42 J1 56 U 20 U 18 U 65 9.2 J1 18 U 21 18 U 30 21 19	
Indeno(1,2,3-cd)pyrene 57 U 55 U 56 U 20 U 18 U 32 18 U 18 U 14 J1 18 U 20 U 19 U 19	
Dibenz(a,h)anthracene 57 U 55 U 56 U 20 U 18 U 18 U 19 U 18 U 20 U 19 U 1	
Benzo(g,h,i)perylene 57 U 55 U 56 U 20 U 18 U 49 18 U 18 U 22 18 U 15 J1 16 J1 19 U 18 U 19 U 19 U 18 U 19 U 19 U 19	
Total Benzofluoranthenes 57 U 69 37 J1 20 U 14 J1 100 17 J1 18 U 44 18 U 36 38 19	
Total cPAH TEQ 15 0.71 54 J 8 J ND 3 J 87 J 12 J ND 29 J ND 36 28 NI	ND

		FILL A: 1900-1946 F	Random Fill Consisting	g of Gravel, Sand, Sla hed Rocks	g, Demolition Waste,					FILL B: 1946-196	60 Random Fill Materia	ıl			
														Vicinity of I-20	5(s) and I-206(s)
	Preliminary Cleanup Levels	IT-MW-14(2-3.5) TW27J 11/08/2011	IT-MW-14(5-6.5) TW27K 11/08/2011	IT-MW-14(8-9.5) TW27L 11/08/2011	IT-MW-14(13-14.5) TW27M 11/08/2011	IT-MW-9(2-3.5) TU65P 10/31/2011	IT-MW-9(5-6.5) TU65C 10/31/2011	IT-MW-9(8-9.5) TV85C 11/04/2011	IT-MW-9(13-14.5) TV85D 11/04/2011	IT-MW-10(2-3.5) TU65D 10/31/2011	IT-MW-10(5-6.5) TU65E 10/31/2011	IT-MW-10(8-9.5) TV99G 11/07/2011	IT-MW-10(13.5-15) TV99H 11/07/2011	IT-TP-104-B(12-13) TU13A 10/27/2011	IT-TP-105B-B(11-12) TU13B 10/27/2011
PAHs (µg/kg) Method SW8270D-SIM															
Naphthalene	2,100	14 U	9.0 J1	10 J1	2.7 J1	43	18	40	3.2 J1	3.8 J1	4.6 U	4.5 J1	200	3.6 J1	5.3
2-Methylnaphthalene	320,000	14 U	14 J1	12 J1	2.6 J1	54	14	35	3.9 J1	4.6 J1	4.6 U	3.2 J1	130	3.8 J1	4.6 U
1-Methylnaphthalene	16,000	14 U	13 J1	10 J1	4.9 U	32	15	35	2.4 J1	3.9 J1	4.6 U	4.9 U	82	3.7 J1	4.6 U
Total Naphthalenes Acenaphthylene		14 U 14 U	36.0 J1 14 U	32 J1 12 U	5.3 J1 4.9 U	129 2.6 J1	47 5.1	110 4.6 U	9.5 J1 4.6 U	12.3 J1 4.8 U	4.6 U 4.6 U	7.7 J1 4.9 U	412 4.9 U	11.1 J1 4.8 U	5.3 4.6 U
Acenaphthene	230,000	14 U	14 U	12 U	4.9 U	110	210	29	4.6 U	3.8 J1	4.6 U	3 J1	90	4.0 U 4.1 J1	2.5 J1
Fluorene	150,000	14 U	11 J1	12 U	4.9 U	86	350	17	4.6 U	3.5 J1	4.6 U	2.5 J1	72	4.8 U	4.6 U
Phenanthrene		12 J1	40	28	2.8 J1	200	1200	76	7.2	26	4.6 U	29	190	7.7	3.8 J1
Anthracene	1,600,000	14 U	12 J1	12 U	4.9 U	22	300	15	4.6 U	6.3	4.6 U	6.2	30	4.8 U	4.6 U
Fluoranthene	230,000	8.2 J1	30	16	4.9 U	96	630	35	3.5 J1	30	4.6 U	42	83	5	4.8
Pyrene	240,000	10 J1	40	19	4.9 U	65	390	28	3.5 U	23	4.6 U	48	64	6.2	4.4 J1
Benzo(a)anthracene		14 U 22	34 120	13 39	4.9 U 2.4 J1	18 21.0	100 99.0	12 30.0	4.6 U 2.3 J1	14 21.0	4.6 U 4.6 U	21 25.0	21 31.0	4.8 U 3.0 J1	4.6 U 4.6 U
Chrysene Benzo(a)pyrene		9.6 J1	26	15	4.9 U	9.4	80	8.9	3.3 J1	14	4.6 U	30	23	4.8 U	4.6 U
Indeno(1,2,3-cd)pyrene		14 U	14 J1	12 U	4.9 U	3.8 J1	49	3.3 J1	4.6 U	11	4.6 U	17	11	4.8 U	4.6 U
Dibenz(a,h)anthracene		14 U	19	12 U	4.9 U	4.6 U	19	4.6	4.6 U	5.2 M	4.6 U	6.5	4.1 J1	4.8 U	4.6 U
Benzo(g,h,i)perylene		14 U	26	17	4.9 U	6.6	64	8.8	4.6 U	15	4.6 U	22	16	4.8 U	4.6 U
Dibenzofuran	80,000	14 U	14 U	12 U	4.9 U	59	270	22	4.6 U	4.2 J1	4.6 U	4.9 U	61	2.6 J1	4.6 U
Total Benzofluoranthenes		14 U	41	24	4.9 U	18	130	17	4.6 U	33	4.6 U	42	37	4.8 U	4.6 U
Total cPAH TEQ	15	9.8	38	19	0.024	14 J	111	13 J	3.3 J	20.5 J	ND	38.9	30.6 J	0.5 J	ND
PCBs (μg/kg) Method SW8082															
Aroclor 1248	220	32 U	32 U	33 U	31 U	32 U	32 U	32 U	32 U	33 U	31 U	29 U	69	36 U	34 U
Arcelor 1254	0.29	32 U	32 U	33 U	31 U	32 U	32 U	32 U	32 U	33 U	31 U	29 U	160 64	36 U	34 U
Aroclor 1260 Total PCBs	5.4 1.8	32 U ND	32 U ND	33 U ND	31 U ND	32 U ND	32 U ND	32 U ND	32 U ND	33 U ND	31 U ND	29 U ND	293	36 U ND	34 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	38 290	76 460	52 250	6.2 U 12 U	9.4 15	18 77	12 43	5.5 U 11 U	6.1 19	5 U 10 U	5.5 U 11 U	35 56	5.8 U 12 U	5.8 U 12 U
NWTPH-G Gasoline-Range Organics	100/30	5.7 U	7.0 U	8.0 U	9.0 U	5.7 U	6.4 U	6.7 U	6.8 U	6.8 U	6.2 U	7.8	8.7	7.6 U	8 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Antimony Barium Beryllium Cadmium Chromium Chromium VI Copper Lead Mercury Nickel Silver Thallium Zinc	5 640 160 1.3 1,480 3.8 36 250 1.5 210 170 0.67 1,400	0.2 U 42.3 0.2 U 0.1 20.0 0.445 U 37.1 7.3 0.02 U 30.0 0.2 U 0.2 U 48	0.2 U 50.6 0.2 U 0.2 14.7 0.489 U 23.7 11.6 0.05 16.0 0.2 U 0.2 U	0.2 U 60.5 0.2 U 0.1 16.1 0.488 U 29.0 23.6 0.05 13.6 0.2 U 0.2 U 94	0.3 U 26.4 0.3 U 0.7 18.9 0.520 U 42.8 8.5 0.02 U 5.7 0.3 U 0.3 U 80	0.2 U 38.7 0.2 U 0.1 U 21.1 0.453 U 14 3.7 0.03 U 31.7 0.2 U 0.2 U 0.2 U 33	0.2 U 46.1 0.2 0.5 13.2 0.448 U 54.2 14.7 0.03 18.1 0.2 U 0.2 U 63	0.2 U 50.8 0.2 U 0.2 13.7 0.467 U 17.9 5.3 0.04 14.6 0.2 U 0.2 U 0.2 U	0.2 U 26.3 0.2 U 0.1 U 10.6 0.482 U 14.3 4.8 0.03 U 9.6 0.2 U 0.2 U 35	0.2 U 53.6 0.2 0.1 21.6 0.45 U 25.8 23.4 0.04 33.0 0.2 U 0.2 U	0.2 U 38.4 0.2 U 0.1 U 24.1 0.415 U 10.5 1.9 0.02 U 39.0 0.2 U 28	0.2 U 38.7 0.2 U 0.1 U 22.2 0.426 U 14.1 5.1 0.02 U 32.0 0.2 U 0.2 U 32	0.3 U 71.4 0.4 0.6 21 0.564 U 32.7 30.5 0.12 19.5 0.3 U 0.3 U 88	0.2 UJ 35.6 J 0.2 U 0.1 11 0.498 U 11.9 2.9 0.02 U 13.7 0.2 U 0.2 U 37	0.2 U 27.6 0.2 U 0.1 U 12 0.47 U 9.9 2.1 0.03 U 10.3 0.2 U 0.2 U 31

				FILL B: 1946-1960 Ra	ndom Fill Material					FILL	C: 1946-1960 Some F	Random Fill Along wit	th Fill From Off-Site S	Sources		
			Hazardous Material Storage Sheds Paint		Former Hydrauli	c Test Pad Area										
	Preliminary Cleanup Levels	IT-TP-106B(11-12) TU48J 10/28/2011	Storage Area IT-TOWPATHEXC1-B(.8)	IT-MW-11(2-3.5) TU65F 10/31/2011	IT-MW-11(5-6.5) TU65G 10/31/2011	IT-MW-11(8-9.5) TV99D 11/07/2011	IT-MW-11(13.5-15) TV99E 11/07/2011	IT-MW-17(2-3.5) TW45A 11/10/2011	IT-MW-17(5-6.5) TW45B 11/10/2011	IT-MW-17(8-9.5) TW45C 11/10/2011	IT-MW-17(11-12.5) TW45D 11/10/2011	IT-MW-17(14-15.5) TW45E 11/10/2011	IT-MW-17(15.5-17) TW45F 11/10/2011	IT-MW-17(18.5-19.75) TW45G 11/10/2011	IT-MW-17(21.25-21.5) TW45H 11/10/2011	IT-MW-17(21.5-23) TW45I 11/10/2011
VOLATILES (μg/kg)		10,20,2011			101011											
Method SW8260C Methylene Chloride	2,400	12	10 J	2.0 J	3.4 J	1.3 J1	1.4 J1	2.5	3.7	4.4	4.9	2.0 J1	5.5 J1	3.8 U	2.5	5.0
Acetone	510,000	43 J	16	31 U	14 U	40 J	28	35	49	16	39	81	250	17	17	11
Carbon Disulfide 1,1-Dichloroethane	75,000 710	3.4 J 1.5 U	8.2 0.9 U	0.5 J1 0.6 J1	1.2 U 1.2 U	2.0 J 1.0 UJ	18 1.1 U	1.6 1.1 U	1.3 U 1.3 U	1.2 U 1.2 U	1.7 U 1.7 U	13 1.3 U	86 3.7 U	2.7 1.9 U	1.6 1.2 U	3.4 1.2 U
cis-1,2-Dichloroethene	2,600	1.5 U	0.9 U	1.0 U	1.2 U	1.0 U	1.1 U	1.1 U	1.3 U	1.2 U	1.7 U	1.3 U	3.7 U	1.9 U	1.2 U	1.2 U
2-Butanone Trichloroethene	430,000 51	5.0 J1 1.5 U	4.7 U 0.9 U	3.4 J1 1.0 U	5.8 U 1.2 U	5.6 1.0 UJ	4.5 J1 1.1 U	3.7 J1 1.1 U	7.7 1.3 U	6.1 U 1.2 U	8.7 U 1.7 U	10 1.3 U	50 3.7 U	9.5 U 1.9 U	6.0 U 1.2 U	5.9 U 1.2 U
Benzene	93	1.5 U	0.9 U	1.0 U	1.2 U	0.6 J1	0.9 J1	2.1	1.1 J1	1.2 U	1.9	1.4	4.7	1.9 U	1.2 U	1.2 U
Toluene Ethylbenzene	100,000 230	1.5 U 1.5 U	0.9 U 0.9 U	1.0 U 1.0 U	1.2 U 1.2 U	0.9 J, J1 1.0 UJ	0.8 J1 1.1 U	1.6 1.1 U	1.1 J1 1.3 U	1.2 U 1.2 U	1.4 J1 1.7 U	1.2 J1 1.3 U	4.0 3.7 ∪	1.9 U 1.9 U	1.2 U 1.2 U	1.2 U 1.2 U
Trichlorofluoromethane	200,000	1.5 U	0.9 U	1.0 U	1.2 U	1.0 U	1.1 U	1.1 U	1.3 U	1.2 U	1.7 U	1.3 U	3.7 U	1.9 U	1.2 U	1.2 U
1,1,2-Trichloro-1,2,2-trifuoroethane m,p-Xylene	1,000,000,000 160,000	2.9 UJ 1.5 U	1.9 U 0.9 U	0.8 J1 1.0 U	2.3 U 1.2 U	1.5 J, J1 1.0 UJ	5.5 1.1 U	2.3 U 0.7 J1	2.6 U 1.3 U	2.4 U 1.2 U	3.5 U 1.7 U	2.7 U 1.3 U	7.4 U 3.7 U	3.8 U 1.9 U	2.4 U 1.2 U	2.3 U 1.2 U
o-Xylene	200,000	1.5 U	0.9 U	1.0 U	1.2 U	1.0 UJ	1.1 U	1.1 U	1.3 U	1.2 U	1.7 U	1.3 U	3.7 U	1.9 U	1.2 U	1.2 U
1,4-Dichlorobenzene Methyl lodide	3,500	1.5 UJ 1.5 U	0.9 U 0.9 U	1.0 U 1.0 U	1.2 U 1.2 U	1.0 UJ 1.0 UJ	1.1 U 1.1 U	1.1 U 1.1 U	1.3 U 1.3 U	1.2 U 1.2 U	1.7 U 1.7 U	1.3 U 1.3 U	3.7 U 3.7 U	1.9 U 1.9 U	1.2 U 1.2 U	1.2 U 1.2 U
1,3,5-Trimethylbenzene	800,000	1.5 U	0.9 U	1.0 U	1.2 U	1.0 UJ	1.1 U	1.1 U	1.3 U	1.2 U	1.7 U	1.3 U	3.7 U	1.9 U	1.2 U	1.2 U
1,2,4-Trimethylbenzene Isopropylbenzene	800,000 78,000	1.5 U 1.5 U	0.9 U 0.9 U	1.0 U 1.0 U	1.2 U 1.2 U	1.0 UJ 1.0 U	1.1 U 1.1 U	1.1 U 1.1 U	1.3 U 1.3 U	1.2 U 1.2 U	1.7 U 1.7 U	1.0 J1 1.3 U	3.7 U 3.7 U	1.9 U 1.9 U	1.2 U 1.2 U	1.2 U 1.2 U
n-Propylbenzene	11,000	1.5 UJ	0.9 U	1.0 U	1.2 U	1.0 UJ	1.1 U	1.1 U	1.3 U	1.2 U	1.7 U	1.3 U	3.7 U	1.9 U	1.2 U	1.2 U
sec-Butylbenzene		1.5 UJ 1.5 U	0.9 U 0.9 U	1.0 U 1.0 U	1.2 U 1.2 U	1.0 UJ	1.1 U 1.1 U	1.1 U 1.1 U	1.3 U 1.3 U	1.2 U 1.2 U	1.7 U 1.7 U	0.9 J1 0.7 J1	2.7 J1	1.9 U	1.2 U 1.2 U	1.2 U
4-Isopropyltoluene n-Butylbenzene	27,000	1.5 UJ	0.9 U	1.0 U	1.2 U 1.2 U	1.0 UJ 1.0 UJ	1.1 U	1.1 U	1.3 U	1.2 U 1.2 U	1.7 U	1.3 U	2.0 J1 3.7 U	1.9 U 1.9 U	1.2 U	1.2 U 1.2 U
Naphthalene	2,100	7.3 U	4.7 U	4.8 U	5.8 U	2.3 J, J1	1.4 J, J1	5.6 U	6.5 U	6.1 U	2.2 J1	2.6 J1	6.0 J1	9.5 U	6.0 U	5.9 U
SEMIVOLATILES (µg/kg) Method SW8270D																
Phenol 1,3-Dichlorobenzene	1,900,000 3,840	19 U 19 U	18 U 18 U	19 U 19 U	19 U 19 U	19 U 19 U	19 U 19 U	18 U 18 U	9.0 J1 18 U	18 U 18 U	19 UJ 19 U	33 18 U	330 19 U	80 19 U	18 U 18 U	9.8 J1 18 U
1,4-Dichlorobenzene	3,500	19 U	18 U	19 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	18 U	19 U	19 U	18 U	18 U
Benzyl Alcohol 1,2-Dichlorobenzene	8,000,000 68,000	19 U 19 U	18 U 18 U	19 U 19 U	19 U 19 U	19 U 19 U	19 U 19 U	18 U 18 U	18 U 18 U	18 U 18 U	19 U 19 U	18 U 18 U	32 19 U	19 U 19 U	18 U 18 U	30 18 U
2-Methylphenol	250,000	19 U	18 U	19 U	19 U	19 U	19 U	18 U	18 U	18 U	19 UJ	18 U	15 J1	50	18 U	18 U
4-Methylphenol	41,000	37 U	36 U	39 U	38 U	38 U	39 U	36 U	36 U	36 U	37 UJ	27 J1	840	180	37 U	36 U
Isophorone 2,4-Dimethylphenol	95,000	19 U 37 U	18 U 36 U	19 U 39 U	19 U 38 U	19 U 38 U	19 U 39 U	18 U 36 U	18 U 36 U	18 U 36 U	19 U 37 UJ	18 U 36 U	19 U 38 U	19 U 62	18 U 37 U	18 U 36 U
Benzoic Acid	9,000	370 U	360 U	390 U	380 U	380 U	390 U	360 U	360 U	360 U	370 UJ	360 U	120 J1	380 U 84	370 U	360 U
Naphthalene 2-Methylnaphthalene	2,100 320,000	100 31	16 J 18 U	19 U 19 U	19 U 19 U	96 59	32 39	24 30	9.9 J1 15 J1	18 U 18 U	39 63	140 110	280 140	45	18 U 18 U	18 U 18 U
Acenaphthylene		19 U	30	19 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	18 U	19 U	12 J1	18 U	18 U
Acenaphthene Dibenzofuran	230,000 80,000	82 45	18 U 18 U	19 U 9.7 J1	19 U 19 U	57 58	27 32	10 J1 13 J1	18 U 18 U	18 U 18 U	19 U 10 J1	18 18 U	44 59	25 59	18 U 18 U	18 U 18 U
Fluorene	150,000	84	18 U	19 U	19 U	74 J	32 J	9.0 J1	18 U	18 U	19 U	18	55	49	18 U	18 U
N-Nitrosodiphenylamine Phenanthrene	204,000	19 U 150	18 U 40	19 U 32	19 U 19 U	19 U 220	19 U 65	18 U 190	18 U 54	18 U 18 U	19 U 120	48 360	130 290	19 U 170	18 U 18 U	18 U 18 U
Carbazole	50,000	19 U	10 J	19 U	19 U	23	19 U	24	18 U	18 U	10 J1	18 U	19 U	19 U	18 U	18 U
Anthracene Di-n-Butylphthalate	1,600,000 26,000	10 J1 19 U	33 18 U	19 U 19 U	19 U 19 U	31 19 U	16 J1 19 U	35 20	18 U 18 U	18 U 18 U	19 U 19 U	29 18 U	82 2200	41 19 U	18 U 20	18 U 18 U
Fluoranthene	230,000	17 J1	160	25	19 U	160	56	260	59	18 U	66	600	270	70	18 U	18 U
Pyrene Butylbenzylphthalate	240,000 1,700	16 J1 19 U	350 18 U	24 19 U	19 U 19 U	170 J 19 U	68 J 19 U	320 18 U	100 18 ∪	15 J1 18 U	68 19 U	910 18 U	510 19 U	73 19 U	18 U 18 U	11 J1 18 U
Benzo(a)anthracene		19 U	270	19 U	19 U	54	16 J1	140	57	18 U	35	260	140	19	18 U	18 U
bis(2-Ethylhexyl)phthalate Chrysene	56,600	23 U 19 U	23 U 420	21 UJ2 12 J1	28 U 19 U	25 U 63	100 U 23	62 U 220	55 U 130	33 U 10 J1	23 U 48	48 ∪ 490	84 U 310	35 U 19	53 U 18 U	48 U 18 U
Di-n-Octyl phthalate		19 U	18 U	19 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	18 U	19 U	19 U	18 U	18 U
Benzo(a)pyrene		19 U 19 U	1200 1100	19 U 19 U	19 U	48 22	18 J1	160 70	51 31	18 U	31 20	380 120	120	13 J1	18 U	18 U 18 U
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene		19 U	1100 J 380	19 U 19 U	19 U 19 U	19 U	19 U 19 U	70 32	31 11 J1	18 U 18 U	20 19 U	120 31	28 19 U	19 U 19 U	18 U 18 U	18 U 18 U
Benzo(g,h,i)perylene	40,000	19 U	1200 J	19 U	19 U	31	19 U	88	34	18 U	22	140	35	19 U	18 U	18 U
1-Methylnaphthalene Total Benzofluoranthenes	16,000	29 9.3 J1	18 U 1900	19 U 12 J1	19 U 19 U	29 79	36 23	17 J1 270	9.9 J1 94	18 U 18 U	22 58	67 560	110 220	34 24	18 U 18 U	18 U 18 U
Total cPAH TEQ	15	1 J	1569	1.3 J	ND	64	22 J	213.4	71.6 J	0.1	42.78	482	161.9	17.49 J	ND	ND

				FILL B: 1946-1960 Ra	ndom Fill Material					FILL	C: 1946-1960 Some F	Random Fill Along wit	h Fill From Off-Site S	Sources		
	Preliminary Cleanup	IT-TP-106B(11-12) TU48J	Hazardous Material Storage Sheds Paint Storage Area IT-TOWPATHEXC1-B(.8) TE27A	IT-MW-11(2-3.5) TU65F	IT-MW-11(5-6.5) TU65G	IT-MW-11(8-9.5) TV99D	IT-MW-11(13.5-15) TV99E	IT-MW-17(2-3.5) TW45A	IT-MW-17(5-6.5) TW45B	IT-MW-17(8-9.5) TW45C	IT-MW-17(11-12.5) TW45D	IT-MW-17(14-15.5) TW45E	TW45F	TW45G	TW45H	IT-MW-17(21.5-23) TW45I
	Levels	10/28/2011	07/15/2011	10/31/2011	10/31/2011	11/07/2011	11/07/2011	11/10/2011	11/10/2011	11/10/2011	11/10/2011	11/10/2011	11/10/2011	11/10/2011	11/10/2011	11/10/2011
PAHs (μg/kg) Method SW8270D-SIM																
Naphthalene 2-Methylnaphthalene	2,100 320,000	59 J 6.6 J	4.7 U 4.7 U	20 10	4.8 U 4.8 U	66 45	25 21	31 39	18 19	3.4 J1 2.6 J1	100 160	120 110	220 120	110 52	5.2 3.2 J1	5.4 4.4 J1
1-Methylnaphthalene	16,000	7.6	4.7 U	5.6	4.8 U	24	18	26	13	4.7 U	73	82	100	37	3.6 J1	4.4 J1
Total Naphthalenes		73.2 J	ND	35.6	4.8 U	135	64	96	50	6 J1	333	312	440	199	12 J1	13.8 J1
Acenaphthylene		4.6 U	4.7 U	4.8 U	4.8 U	4.7 U	4.8 U	8.6 J1	2.6 J1	4.7 U	8.5	11 U	32	17	4.5 U	4.6 U
Acenaphthene	230,000	28 J	4.7 U	5.5	4.8 U	57	24	8.8 U	4.5 U	4.7 U	4.8 U	58	93	28	2.5 J1	5.5
Fluorene Phenanthrene	150,000	22 J 51 J	4.7 U 5.2	3.9 J1 18	4.8 U 2.5 J1	61 170	30 66	12 190	4.5 U 49	4.7 U 8.1	3.3 J1 200	37 440	85 410	49 170	2.5 J1 11	4.1 J1 56
Anthracene	1,600,000	3.8 J1	4.7 U	2.7 J1	4.8 U	31	18	39	5.7	4.7 U	14	56	120	54	4.5 U	7.5
Fluoranthene	230,000	9.1	8.8	16	2.7 J1	130	64	310	78	17	130	450	410	140	11	32
Pyrene	240,000	7.4	8.9	14	3.4 J1	100	50	350	100	18	98	600	590	110	11	44
Benzo(a)anthracene Chrysene		2.8 J, J1 3.5 J, J1	5.8 7.5	5.8 7.3	4.8 U 4.8 U	40 48.0	17 22.0	160 240	52 110	9.0 12	57 68	170 280	120 260	19 21	3.9 J1 6.3	16 17
Benzo(a)pyrene		2.6 J, J1	9.9	5.6	4.8 U	37	20	210	64	12	63	240	140	25	5.0	16
Indeno(1,2,3-cd)pyrene		4.6 U	4.7 U	3.9 J1	4.8 U	18	8.3	120	27	6.4	30	88	57	7.7	4.5 U	6.1
Dibenz(a,h)anthracene		4.6 U	4.7 U	4.8 U	4.8 U	7.2	3.4 J1	46	16	4.7 U	14	38	18	4.7 U	4.5 U	4.6 U
Benzo(g,h,i)perylene Dibenzofuran	80,000	4.6 U 8.4 J	3.1 J 4.7 U	4.8 J1 6.3	4.8 U 4.8 U	22 55	11 27	140 17	39 5.0	7.5 4.7 U	39 21	130 22	94 67	7.9 80	3.7 J1 3.3 J1	7.3 2.9 J1
Total Benzofluoranthenes	60,000	4.6 U	4.7 U 20 J	11	4.8 U	61	26	320	86	4.7 U	100	290	180	21	9.2	2.9 51
Total cPAH TEQ	15	2.9 J	12.6	7.7 J	ND	50.1	25.7 J	277	83	16	84	301	180	30	6.4 J	20 J
PCBs (µg/kg) Method SW8082 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs	220 0.29 5.4 1.8	33 U 33 U 33 U ND	32 U 32 U 32 U ND	31 U 31 U 31 U ND	32 U 32 U 32 U ND	31 U 31 U 31 U ND	32 U 32 U 32 U ND	32 U 85 77 162	91 U 260 250 510	91 U 320 240 560	31 U 66 33	110 U 230 190 420	110 U 270 200 470	30 U 30 U 30 U ND	32 U 32 U 32 U ND	32 U 32 U 32 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	9.4 12 U	6.2 18	6.2 17	5.2 U 10 U	14 42	13 26	160 380	23 72	5.2 U 10 U	51 J 77 J	240 580	900 1800	9.5 15	6.2 U 12 U	5.8 U 12 U
NWTPH-G Gasoline-Range Organics	100/30	8.2 U	5.8 U	5.5 U	5.1 U	11	7.3 U	7.0 U	9.2 U	6.1 U	10 U	9.9	33	9.5 U	8.2 U	6.7 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Antimony Barium Beryllium Cadmium Chromium Chromium VI Copper Lead Mercury Nickel Silver Thallium Zinc	5 640 160 1.3 1,480 3.8 36 250 1.5 210 170 0.67 1,400	0.2 UJ 43.5 0.2 U 0.2 13.5 0.494 U 14.5 4.1 J 0.02 UJ 12.5 0.2 U 0.2 U 38	0.2 U 43.5 0.2 U 0.1 U 16.1 0.45 UJ 38.7 6.1 0.04 18.0 0.2 U 0.2 U 43	0.2 U 52.5 0.2 0.1 21.3 0.412 U 22.5 7.5 0.07 28.7 0.2 U 0.2 U 45	0.2 U 51.4 0.2 0.1 U 18.9 0.431 U 15.2 2.5 0.02 U 26.4 0.2 U 0.2 U 34	0.2 U 51.4 0.2 0.2 17.3 0.432 UJ 39.3 11.4 0.14 24.0 0.2 U 0.2 U 63	0.2 U 47.6 0.2 U 0.2 13.3 0.493 U 17.6 4.2 0.04 13.2 0.2 U 0.2 U 39	0.3 165 0.3 3.0 138 0.429 U 82.6 210 0.37 46.0 0.3 0.2 U 470	0.3 71.1 0.2 6.2 108 0.459 U 318 467 0.06 330 0.7 0.2 U	0.2 U 37.6 0.2 U 0.1 31.2 0.424 U 41.8 9.3 0.03 37.5 0.2 U 0.2 U 78	3.9 83.6 0.3 U 28.1 247 1.79 279 2160 0.10 164 1.7 0.3 U 5780	0.6 645 0.3 15.3 238 0.585 U 353 1120 0.10 171 0.8 0.3 U	0.4 295 0.3 U 2.5 58.4 8.32 1070 338 0.45 33.7 0.5 1.1	0.4 71.0 0.3 U 0.1 U 11.3 0.564 U 27.3 16.3 0.03 U 10.9 0.3 U 0.3 U 60	0.2 U 57.3 0.2 U 0.1 U 15.1 0.587 18.7 10.9 0.08 9.8 0.2 U 0.2 U 38	0.2 U 35.5 0.2 U 1.1 25.6 0.489 U 47.3 81.0 0.02 U 39.4 0.2 U 0.2 U 224

							FILL	C: 1946-1960 Some	Random Fill Along w	rith Fill From Off-Sit	te Sources					
	Preliminary Cleanup Levels	IT-MW-19(2-3.5) TW35C 11/09/2011	IT-MW-19(5-6.5) TW35D 11/09/2011	IT-MW-19(8-9.5) TW35E 11/09/2011	IT-MW-19(13-14.5) TW35F 11/09/2011	IT-SB-3(2-3.5) TW27E 11/08/2011	IT-SB-3(5-5.5) TX02I 11/14/2011	IT-SB-3(6.5-7) TX02J 11/14/2011	IT-SB-4(2-3.5) TU90E 11/01/2011	IT-SB-4(5-6.5) TU90R 11/01/2011	IT-SB-4(8-9) TU90F 11/01/2011	IT-SB-4(11.5-13) TU90G 11/01/2011	IT-SB-12(2-3.5) TX02K 11/14/2011	IT-SB-12(5-6.5) TX01J 11/14/2011	IT-SB-12(8-9.5) TX01K 11/14/2011	IT-SB-12(14-15.5) TX01L 11/14/2011
VOLATILES (μg/kg)																
Method SW8260C Methylene Chloride	2,400	4.3	3.0	2.8	2.3 J1	1.2 U	1.2 U	0.6 U	2.0 J1	1.6 J, J1	2.4 J1	1.6 J1	1.3 J1	2.0 J, J1	2.2 J, J1	2.1 J, J1
Acetone	510,000	27	23	34	20	1.2 UJ	1.2 UJ	0.6 UJ	66 J	36 J	20 UJ	18 UJ	41 J	27 J	120 J	12 J
Carbon Disulfide 1,1-Dichloroethane	75,000 710	1.3 U 1.3 U	1.2 U 1.2 U	2.3 1.3 U	1.7 1.2 U	1.2 U 3.6	1.2 U 2.5	0.6 U 1.0 J1	2.3 1.2 U	1.4 U 1.4 U	1.4 U 1.4 U	1.3 1.2 U	1.9 1.2 U	18 1.4 UJ	2.5 1.5 UJ	2.3 1.2 UJ
cis-1,2-Dichloroethene	2,600	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	17	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
2-Butanone	430,000	6.4 U	6.2 U	3.6 J1	6.2 U	1.2 U	1.2 UJ	0.6 UJ	7.7	7.2 U	6.8 U	5.8 U	3.4 J1	6.8 U	19	6.0 U
Trichloroethene Benzene	51 93	1.3 U 1.3 U	1.2 U 1.2 U	1.3 U 2.4	1.2 U 1.2 U	5.9 U 1.2 U	6.0 U 1.2 U	3.2 U 0.6 U	1.2 U 0.8 J1	1.4 U 1.2 J1	1.4 U 0.8 J1	1.2 U 1.2 U	0.8 J1 1.2 J1	1.0 J1 1.4 U	2.2 1.1 J1	1.1 J1 0.7 J1
Toluene	100,000	1.3 U	0.8 J1	0.9 J1	1.2 U	5.9 U	6.0 U	3.2 U	0.8 J1	1.4 U	1.4 U	1.2 U	0.8 J1	1.4 U	1.5 U	1.2 U
Ethylbenzene	230	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	0.6 U	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifuoroethane	200,000 1,000,000,000	1.3 U 2.6 U	1.2 U 2.5 U	1.3 U 2.6 U	1.2 U 2.5 U	1.2 U 1.2 U	1.2 U 1.2 U	0.3 J1 0.6 U	1.2 U 2.3 U	1.4 U 2.9 U	1.4 U 2.7 U	1.2 U 2.3 U	1.2 U 2.5 U	1.4 U 2.7 U	1.5 U 3.0 U	1.2 U 2.4 U
m,p-Xylene	160,000	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	0.6 U	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
o-Xylene	200,000	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	0.6 U	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
1,4-Dichlorobenzene Methyl lodide	3,500	1.3 U 1.3 U	1.2 U 1.2 U	1.3 U 1.3 U	1.2 U 1.2 U	1.2 U 1.2 U	1.2 U 1.2 U	0.6 U 0.6 U	1.2 U 1.2 U	1.4 U 1.4 U	1.4 U 1.4 U	1.2 U 1.2 U	1.2 U 1.2 U	1.4 U 1.4 U	1.5 U 1.5 U	1.2 U 1.2 U
1,3,5-Trimethylbenzene	800,000	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	0.6 U	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
1,2,4-Trimethylbenzene	800,000	1.3 U	1.2 U	1.3 U	1.2 U	5.9 U	6.0 U	3.2 U	0.6 J1	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
Isopropylbenzene n-Propylbenzene	78,000 11,000	1.3 U 1.3 U	1.2 U 1.2 U	1.3 U 1.3 U	1.2 U 1.2 U	1.2 U 1.2 U	1.2 U 1.2 UJ	0.6 U 0.6 UJ	1.2 U 1.2 U	1.4 U 1.4 U	1.4 U 1.4 U	1.2 U 1.2 U	1.2 U 1.2 U	1.4 U 1.4 U	1.5 U 1.5 U	1.2 U 1.2 U
sec-Butylbenzene		1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	0.6 U	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
4-Isopropyltoluene		1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	0.6 U	1.2 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.5 U	1.2 U
n-Butylbenzene Naphthalene	27,000 2,100	1.3 U 6.4 U	1.2 U 6.2 U	1.3 U 6.4 U	1.2 U 6.2 U	1.2 U 1.2 U	1.2 U 1.2 U	0.6 U 0.6 U	1.2 U 5.8 U	1.4 U 7.2 U	1.4 U 6.8 U	1.2 U 5.8 U	1.2 U 6.1 U	1.4 U 6.8 U	1.5 U 7.4 U	1.2 U 6.0 U
SEMIVOLATILES (µg/kg) Method SW8270D Phenol	1,900,000	20 U	19 U	18 U	19 U	19 U	18 U	20 UJ	19 U	19 U	19 U	18 U	19 U	19 U	17 U	28
1,3-Dichlorobenzene	3,840	20 U	19 U	18 U	19 U	19 U	18 U	14 J1	19 U	19 U	19 U	18 U	19 U	19 U	17 U	18 U
1,4-Dichlorobenzene	3,500	20 U	19 U	18 U	19 U	19 U	18 U	20 U	19 U	19 U	19 U	18 U	19 U	19 U	17 U	18 U
Benzyl Alcohol 1,2-Dichlorobenzene	8,000,000 68,000	20 U 20 U	19 U 19 U	18 U 18 U	19 U 19 U	19 U 19 U	18 U 18 U	20 U 20 U	19 U 19 U	19 U 19 U	19 U 19 U	18 U 18 U	19 U 19 U	19 UJ 19 U	17 UJ 17 U	18 UJ 18 U
2-Methylphenol	250,000	20 U	19 U	18 U	19 U	19 U	18 U	20 UJ	19 U	19 U	19 U	18 U	19 U	19 U	17 U	18 U
4-Methylphenol	41,000	39 U	37 U	37 U	38 U	39 U	35 U	40 UJ	37 U	38 U	38 U	37 U	37 U	38 U	35 U	25 J1
Isophorone 2,4-Dimethylphenol	95,000	20 U 39 U	19 U 37 U	18 U 37 UJ	19 U 38 U	19 U 39 U	18 U 35 U	300 40 UJ	19 U 37 UJ	19 U 38 UJ	19 U 38 UJ	18 U 37 UJ	19 U 37 U	19 U 38 U	17 U 35 U	18 U 36 U
Benzoic Acid	9,000	390 U	370 U	370 U	380 U	390 U	350 U	400 UJ	370 UJ	380 UJ	380 UJ	370 UJ	370 U	380 U	350 U	360 U
Naphthalene	2,100	9.8 J1	19 U	13 J1	15 J1	19 U	18 U	25	110	20	19 U	18 U	15 J1	19 U	17 U	22
2-Methylnaphthalene Acenaphthylene	320,000	14 J1 20 U	19 U 19 U	25 18 U	32 19 U	19 U 19 U	18 U 18 U	14 J1 20 U	190 19 U	23 19 U	19 U 19 U	18 U 18 U	13 J1 19 U	19 U 19 U	17 U 17 U	18 U 18 U
Acenaphthene	230,000	20 U	19 U	18 U	19 U	19 U	18 U	20 U	19 U	19 U	19 U	18 U	19 U	19 U	17 U	18 U
Dibenzofuran	80,000	20 U	19 U	18 U	10 J1	19 U	18 U	20 U	36	19 U	19 U	18 U	19 U	19 U	17 U	18 U
Fluorene N-Nitrosodiphenylamine	150,000 204,000	20 U 20 U	19 U 19 U	18 U 18 U	19 U 19 U	19 U 19 U	18 U 18 U	20 U 20 U	19 U 19 U	19 U 19 U	19 U 19 U	18 U 18 U	19 U 19 U	19 U 19 U	17 U 17 U	18 U 18 U
Phenanthrene		98	70	26	24	19 U	16 J1	33	89	27	19 U	18 U	58	44	20	18 U 14 J1
Carbazole	50,000	16 J, J1	11 J, J1	18 UJ	19 UJ	19 U	18 U	20 U	11 J, J1	19 U	19 UJ	18 UJ	19 U	19 U	17 U	18 U
Anthracene Di-n-Butylphthalate	1,600,000 26,000	19 J1 20 U	16 J1 19 U	18 U 18 U	19 U 19 U	19 U 19 U	18 U 18 U	20 U 20 U	15 J1 150	19 U 19 U	19 U 19 U	18 U 18 U	17 J1 34	19 U 19 U	17 U 17 U	18 U 18 U
Fluoranthene	230,000	150	110	33	20	19 U	19	19 J1	62	23	19 U	18 U	120	70	17	11 J1
Pyrene	240,000	140	120	39	27	19 U	36 J	36 J	69	26	19 U	18 U	200 J	82	16 J1	14 J1
Butylbenzylphthalate Benzo(a)anthracene	1,700	20 U 69	19 U 90	18 U 20	19 U 19 U	19 U 19 U	18 U 12 J1	20 U 11 J1	19 U 41	19 U 19 U	19 U 19 U	18 U 18 U	19 U 87	19 U 37	17 U 17 U	18 U 18 U
bis(2-Ethylhexyl)phthalate	56,600	25 U	56 U	33 U	32 U	21 J1	530	25 U	58 U	45 U	24 U	23 U	46 U	24	17 0 15 J1	15 J1
Chrysene		78	99	28	10 J1	19 U	22	18 J1	68	24	19 U	18 U	120	50	10 J1	18 U
Di-n-Octyl phthalate Benzo(a)pyrene		20 U 90	19 U 94	18 U 28	19 U 19 U	19 U 19 U	18 U 8.8 J1	20 U 11 J1	19 U 41	19 U 14 J1	19 U 19 U	18 U 18 U	19 U 94	19 U 34	17 U 17 U	18 U 18 U
Indeno(1,2,3-cd)pyrene		53	48	17 J1	19 U	19 U	18 U	20 U	32	19 U	19 U	18 U	58	19 U	17 U	18 U
Dibenz(a,h)anthracene		14 J1	15 J1	18 U	19 U	19 U	18 U	20 U	14 J1	19 U	19 U	18 U	19	19 U	17 U	18 U
Benzo(g,h,i)perylene	16,000	64 14 J1	56 19 U	24 17 J1	19 U 26	19 U 19 U	12 J1 18 U	20 U 20 U	44 130	16 J1 14 J1	19 U 19 U	18 U	84 9.4 J1	17 J1 19 U	17 U 17 U	18 U 18 U
1-Methylnaphthalene Total Benzofluoranthenes	16,000	14 J1 130	19 U 1 50	17 J1 44	26 12 J1	19 U	18 U 22	20 U 21	130 99	14 J1 24	19 U 19 U	18 U 18 U	9.4 J1 180	19 U 69	17 U 11 J1	18 U
Total cPAH TEQ	15	117 J	125	36 J	1 J	ND	12.42 J	14.38 J	60 J	17 J	ND	ND	130	45	1 J	ND

							FILL	C: 1946-1960 Some	Random Fill Along v	vith Fill From Off-Sit	te Sources					
	Preliminary Cleanup Levels	IT-MW-19(2-3.5) TW35C 11/09/2011	IT-MW-19(5-6.5) TW35D 11/09/2011	IT-MW-19(8-9.5) TW35E 11/09/2011	IT-MW-19(13-14.5) TW35F 11/09/2011	IT-SB-3(2-3.5) TW27E 11/08/2011	IT-SB-3(5-5.5) TX02I 11/14/2011	IT-SB-3(6.5-7) TX02J 11/14/2011	IT-SB-4(2-3.5) TU90E 11/01/2011	IT-SB-4(5-6.5) TU90R 11/01/2011	IT-SB-4(8-9) TU90F 11/01/2011	IT-SB-4(11.5-13) TU90G 11/01/2011	IT-SB-12(2-3.5) TX02K 11/14/2011	IT-SB-12(5-6.5) TX01J 11/14/2011	IT-SB-12(8-9.5) TX01K 11/14/2011	IT-SB-12(14-15.5) TX01L 11/14/2011
PAHs (µg/kg) Method SW8270D-SIM																
Naphthalene	2,100	18	6.9	6.0	10	4.8 U	5.9	13	100	14	4.4 U	4.7 U	18	9.8	7.7	31
2-Methylnaphthalene	320,000	21	7.2	8.2	17	4.8 U	11	8.4	170 140	11	2.3 J1	4.7 U	18	12	9.4	4.6 U
1-Methylnaphthalene Total Naphthalenes	16,000	17 56	7.0 21.1	7.1 21.3	17 44	4.8 U 4.8 U	9.2 26.1	5.8 27.2	140 410	12 37	2.4 J1 4.7 J1	4.7 U 4.7 U	14 50	9.0 30.8	6.9 24	4.6 U 31
Acenaphthylene		4.2 J1	4.6 U	4.6 U	4.8 U	4.8 U	4.3 U	4.8 U	9.0	4.6 U	4.4 U	4.7 U	4.5 J1	3.7 J1	4.6 U	5.1
Acenaphthene	230,000	15	3.8 J1	4.6 U	6.8	4.8 U	4.3 U	5.8	8.0 U	4.6 U	4.4 U	4.7 U	4.7 U	7.1	4.6 U	2.6 J1
Fluorene	150,000	9.4	2.7 J1	4.6 U	4.5 J1	4.8 U	2.5 J1	2.9 J1	8.0 U	2.7 J1	4.4 U	4.7 U	3.1 J1	4.8 U	4.6 U	4.6 U
Phenanthrene Anthracene	1,600,000	140 29	39 9.7	20 3.1 J1	22 3.9 J1	4.8 U 4.8 U	27 3.0 J1	20 3.4 J1	78 19	33 6.1	3.8 J1 4.4 U	5.9 4.7 ∪	74 17	230 58	30 2.8 J1	22 4.6 U
Fluoranthene	230,000	29	9.7 62	3.1 J1 29	3.9 J1 25	4.8 U 4.8 U	3.0 11	3.4 J1 20	19 58	6.1 29	4.4 U 4.4 U	4.7 U 3.5 J1	200	58 180	2.8 J1 25	4.6 U 17
Pyrene	240,000	170	69	28	21	4.8 U	34	21	62	26	4.4 U	3.0 J1	230	120	20	16
Benzo(a)anthracene		100	43	17	7.4	4.8 U	19	9.1	35	11	4.4 U	2.6 J1	110	43	7.3	2.5 J1
Chrysene		110	53	22	9.6	4.8 U	42	14	56	22	4.4 U	4.7 U	140	67	14	5.0
Benzo(a)pyrene		110 57	49	24 14	14	4.8 U	19	8.2 4.8 U	55	19 11	4.4 U	4.7 U	110	37	6.1	4.6 U
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene		21	25 11	6.1	4.3 J1 4.8 U	4.8 U 4.8 U	11 7.4	4.8 U 2.8 J1	32 16	4.6 U	4.4 U 4.4 U	4.7 U 4.7 U	75 26	21 7.5	3.8 J1 4.6 U	4.6 4.6 U
Benzo(g,h,i)perylene		77	30	16	5.5	4.8 U	22	4.8	43	13	4.4 U	4.7 U	89	24	5.5	8.4
Dibenzofuran	80,000	9.8	3.3 J1	3.9 J1	9.3	4.8 U	4.4	4.8 U	40	5.9	4.4 U	4.7 U	9.8	14	3.8 J1	4.3 J1
Total Benzofluoranthenes		170	63	37	17	4.8 U	31_	12	110	34	4.4 U	4.7 U	200	69	15	9.3
Total cPAH TEQ	15	146	64	32	17 J	ND	26	10.7 J	75	25	ND	0.3 J	153	52	8.9 J	1.7 J
PCBs (µg/kg) Method SW8082 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs	220 0.29 5.4 1.8	30 U 30 U 30 U ND	32 U 32 U 32 U ND	31 U 31 U 31 U ND	31 U 31 U 31 U ND	31 U 31 U 31 U ND	31 U 120 25 J1 145 J	30 U 54 28 J1 82	310 U 990 790 1780	32 U 49 32 U 49	30 U 30 U 30 U ND	31 U 31 U 31 U ND	81 U 270 160 430	32 U 32 U 32 U ND	31 U 31 U 31 U ND	32 U 32 U 32 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	18 170	5.6 U 12	6.6 15	11 13 U	5.3 U 11 U	23 100	24 65	69 220	28 71	5.6 U 11 U	6.5 U 13 U	31 J 62	26 38	12 14	10 17
NWTPH-G Gasoline-Range Organics	100/30	6.4 U	6.7 U	6.3 U	7.7 U	5.5 U	5.6 U	4.1 U	12	9.2 U	7.4 U	7.9 U	5.7 U	8.2 U	9.6 U	7.2 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A																
Antimony Barium	5 640	0.2 U 47.9	0.2 U 46.2	0.2 U 28.1	0.2 U 45.5	0.2 U 38.8	0.2 U 60.3	0.7 30.1	0.2 U 154	0.2 U 58.8	0.2 U 37.9	0.3 U 41.7	0.3 257	0.2 U 206	0.2 U 130	0.2 U 47.3
Barium Beryllium	160	47.9 0.2 U	46.2 0.2 U	28.1 0.2 U	45.5 0.2 U	38.8 0.2 U	0.2	30.1 0.2 U	154 0.4	58.8 0.2 U	37.9 0.2 U	41.7 0.3 U	0.2	0.8	0.4	47.3 0.2 U
Cadmium	1.3	0.2	0.5	0.2	0.2 U	0.2 U	0.2	0.2	0.9	0.2	0.2 U	0.5 U	2.2	2.4	2.7	0.2 U
Chromium	1,480	12.3	31.9	15.5	14.0	19.1	39.5	930	58	16.4	11.8	13.3	257	368	158	12.6
Chromium VI	3.8	0.434 U	0.439 U	0.442 U	0.505 U	0.411 U	0.429 U	0.426 U	0.454 U	0.499 U	0.478 U	0.599 U	0.441 U	0.457 U	0.456 U	0.518 U
Copper	36 350	34.5	299 46.1	25.3 17.4	17.5	17.5	43.5 39.6	780 31.3	118	43.3	18.6	17.9	66.7 261	61.3 222	47.1	21.8
Lead Mercury	250 1.5	47.1 0.04	46.1 0.06	17.4 0.03	4.2 0.03	2.7 0.02 U	39.6 0.03	31.3 0.02 U	287 0.08	40.6 0.07	2.2 0.03 U	2.0 0.03 U	0.28	0.06	219 0.03	35.5 0.03 U
Nickel	210	13.4	13.9	12.7	10.1	25.5	67.4	4940	52.7	12.3	9.7	8.9	23.7	30.6	21.8	12.0
Silver	170	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3	0.3	0.2 U	0.2 U	0.3 U	0.3	0.4	0.3	0.2 U
Thallium	0.67	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U
Zinc	1,400	72	144	66	30	38	66	39	780	77	30	27	740	500	333	48
	I	I	I	I 1	l		1		I	ı l		I	l			I

		FILL	D: 1960-1965 Slag, Co	onstruction, Demolition	Debris, and Imported	Soil				FILL E: 196	5-1966 Imported Cons	truction-Quality Sand	Fill Material			
	Preliminary Cleanup Levels	IT-PIVEXC1-B(4.2) TH64A 8/8/2011	IT-SB-5(2-3.5) TU65L 10/31/2011	IT-SB-5(5-6.5) TU65M 10/31/2011	IT-SB-5(8-9.5) TU65N 10/31/2011	IT-SB-5(16-17.5) TU65O 10/31/2011	IT-SB-2(2-3.5) TU65H 10/31/2011	IT-SB-2(5-6.5) TU65I 10/31/2011	IT-SB-2(8-9.5) TU65J 10/31/2011	IT-SB-2(14-15.5) TU65K 10/31/2011	IT-MW-12(2-3.5) TV61A 11/03/2011	IT-MW-12(5-6.5) TV61K 11/03/2011	IT-MW-12(8-9.5) TV61B 11/03/2011	IT-MW-12(13-14.5) TV61C 11/03/2011	IT-MW-12(18-19.5) TV61D 11/03/2011	IT-MW-12(23-24.5) TV61E 11/03/2011
VOLATILES (µg/kg) Method SW8260C Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Trichloroethene Benzene Toluene Ethylbenzene Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifuoroethane m,p-Xylene o-Xylene 1,4-Dichlorobenzene Methyl lodide 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene lsopropylbenzene n-Propylbenzene sec-Butylbenzene 4-Isopropyltoluene n-Butylbenzene Naphthalene	2,400 510,000 75,000 710 2,600 430,000 51 93 100,000 230 200,000 1,000,000,000 160,000 200,000 3,500 800,000 800,000 78,000 11,000 27,000 2,100	1.7 U 47 U 16 0.9 U 0.9 U 4.3 U 0.9 U	2.0 J, J1 95 1.1 1.1 U 0.6 J1 15 1.1 U 1.8 1.0 J1 1.1 U 2.1 U 0.6 J1 1.1 U 1.8 J1	2.1 UJ 5.4 UJ 7.5 J 1.1 UJ 1.1 UJ 1.1 UJ 1.1 UJ 1.1 UJ 2.1 UJ 2.1 UJ 2.1 UJ 2.1 UJ 2.1 UJ 3.0 J 3.6 J 3.3 J 1.1 UJ 2.3 J 1.6 J 2.4 J, J1	3.4 J 54 2.4 1.6 U 1.6 U 3.3 14 16 1.6 U 3.1 U 77 14 2.5 1.6 U 1.6 U 8.6 0.9 J1 1.2 J1 1.6 3.9 2.0 6.5 J1	3.0 J 17 U 5.4 1.2 U 1.2 U	2.6 J 29 U 1.1 U	2.9 J 60 23 1.0 U 1.0 U 9.7 1.0 U 0.7 J1 11 0.5 J1 1.0 U 2.0 U 2.1 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	3.0 J 29 U 1.2 U	2.4 J 21 U 1.0 J1 1.1 U	2.7 26 1.2 U 1.3 U 1.4 U 1.5 U	1.9 J1 6.1 1.2 U	3.0 18 1.1 U 1.1 U 1.1 U 5.3 U 1.1 U 1.2 U	5.5 13 1.4 1.3 U 6.6 U 1.3 U 1	3.1 28 7 1.3 U 1.3 U 6.3 U 1.3 U	2.4 J1 27 6.1 1.2 U
SEMIVOLATILES (µg/kg) Method SW8270D Phenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol 4-Methylphenol Isophorone 2,4-Dimethylphenol Benzoic Acid Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene N-Nitrosodiphenylamine Phenanthrene Carbazole Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene bis(2-Ethylhexyl)phthalate Chrysene Di-n-Octyl phthalate Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b,h,j)perylene 1-Methylnaphthalene Total Benzofluoranthenes Total cPAH TEQ	1,900,000 3,840 3,500 8,000,000 68,000 250,000 41,000 95,000 9,000 2,100 320,000 80,000 150,000 240,000 230,000 240,000 1,700 56,600 16,000 15	19 U 19 U 19 U 19 U 19 U 19 U 38 U 19 U 38 U 380 U 19	19 U	19 U 15 J1 19 U 380 U 35 34 19 U 12 J1 15 J1 20 19 U 12 U 18 U 19 U 18 U 19 U 19 U 18 U 19	18 U 18 U 44 18 U 18 U 18 U 18 U 18 U 37 U 370 U 100 110 62 390 53 430 18 U 3200 72 650 18 U 2600 3200 18 U 1300 23 U 1500 18 U 1200 590 61 18 U 1200 590 630 61 1800	18 U 37 U 370 U 18	18 U 36 U 360 U 11 J1 18 U 21 11 J1 14 J1 18 U 18	18 U 36 U 360 U 21 19 18 U 36 22 29 18 U 67 18 U 8.9 J1 18 U 40 38 21 M 15 J1 38 U 50 12 J1 18 U 18	18 U 35 U 350 U 18	19 U 19 U 19 U 19 U 19 U 19 U 38 U 19 U 38 U 19	19 U 19 U 19 U 19 U 19 U 19 U 38 U 19 U 38 U 19	19 U 37 UJ 370 U 19	19 U 37 U 37 U 370 U 19	19 U 37 U 19 U 37 UJ 370 U 19	35 20 U 20 U 21 41 20 U 22 U 28 J1 20 U 20 J, J1 390 U 54 54 54 20 U 16 J1 22 33 J 20 U 140 20 UJ 24 18 J1 120 140 20 U 52 39 U 82 20 U 46 26 20 U 36 30 80 63	19 U 23 J1 19 U 38 UJ 380 U 58 26 13 J1 12 J1 9.4 J1 15 J, J1 19 U 55 19 UJ 11 J1 19 U 59 80 19 U

		FILL	D: 1960-1965 Slag, C	onstruction, Demolitio	n Debris, and Importe	d Soil				FILL E: 196	65-1966 Imported Cons	struction-Quality Sand	Fill Material			
	Preliminary Cleanup Levels	IT-PIVEXC1-B(4.2) TH64A 8/8/2011	IT-SB-5(2-3.5) TU65L 10/31/2011	IT-SB-5(5-6.5) TU65M 10/31/2011	IT-SB-5(8-9.5) TU65N 10/31/2011	IT-SB-5(16-17.5) TU65O 10/31/2011	IT-SB-2(2-3.5) TU65H 10/31/2011	IT-SB-2(5-6.5) TU65I 10/31/2011	IT-SB-2(8-9.5) TU65J 10/31/2011	IT-SB-2(14-15.5) TU65K 10/31/2011	IT-MW-12(2-3.5) TV61A 11/03/2011	IT-MW-12(5-6.5) TV61K 11/03/2011	IT-MW-12(8-9.5) TV61B 11/03/2011	IT-MW-12(13-14.5) TV61C 11/03/2011	IT-MW-12(18-19.5) TV61D 11/03/2011	IT-MW-12(23-24.5) TV61E 11/03/2011
PAHs (µg/kg) Method SW8270D-SIM																
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Total Naphthalenes Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene	2,100 320,000 16,000 230,000 150,000 1,600,000 230,000 240,000 	3.7 J 39 30 72.7 J 4.7 U 4.7 U 4.2 J 12 4.7 U 4.9 5.4 2.4 J 3.3 J 2.8 J	42 27 22 91 6.3 J1 45 41 300 62 340 320 150 170	20 25 18 63 8.3 J1 24 20 160 24 160 66 100 72	150 220 170 540 1100 580 890 7800 1900 7900 11000 5400 6400	3.2 J1 3.2 J1 2.5 J1 8.9 J1 4.2 J1 3.7 J1 5.2 23 4.8 24 31 18 22.0 12	11 12 6.8 29.8 4.6 U 25 18 20 3 J1 18 13 2.3 J1 3.2 J1 4.6 U	9.8 11 9.9 30.7 8.9 U 24 17 39 5.5 J1 31 24 13 47.0 8.9	4.9 U 4.9 U	4.7 U 2.5 J1 4.7 U 2.5 J1 4.7 U 2.5 J1 4.7 U 2.5 J1 4.7 U 3.6 J1 4.1 J1 4.7 U 7.6 4.3 J1	4.8 U 2.6 J1 4.8 U 2.6 J1 4.8 U	4.6 U 4.6 U	2.7 J1 3.4 J1 2.3 J1 8.4 J1 4.6 U 4.6 U 4.8 4.6 U 4.6 U 2.7 J1 4.6 U 7.0	4.7 U	55 51 35 141 4.9 U 42 26 130 23 120 110 42 67 34	54 4.6 U 4.6 U 54 4.6 U 14 14 48 12 65 56 13 18.0 16
Indeno(1,2,3-cd)pyrene Dibenz(a,h)parthracene Benzo(g,h,i)perylene Dibenzofuran Total Benzofluoranthenes Total cPAH TEQ	80,000 15	4.7 U 4.7 U 2.6 J 2.4 J 7 3.773	94 32 110 24 250 164	44 20 74 10 120 98	2600 1100 3200 170 7200 8394	10 3.4 J1 12 4.7 U 26 18 J	4.6 U 4.6 U 4.6 U 14 4.6 U 0.3 J	8.9 U 8.9 U 14 13 21 12.8	4.9 U 4.9 U 4.9 U 4.9 U 4.9 U ND	4.7 U 4.7 U 4.7 U 4.7 U 4.7 U 4.4 J	4.8 U 4.8 U 3.4 J1 4.8 U 4.8 U 0.04 J	4.6 U 4.6 U 4.6 U 4.6 U 4.6 U 0.03 J	4.6 U 4.6 U 4.6 U 4.6 U 4.6 U 0.1	4.7 U 4.7 U 4.7 U 4.7 U 4.7 U ND	19 8 27 22 64 48	6.9 4.6 U 9.3 12 31 21.3
PCBs (µg/kg) Method SW8082 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs	220 0.29 5.4 1.8	33 U 33 U 33 U ND	31 U 31 51 82	32 U 32 U 32 U ND	32 U 32 U 32 U ND	32 U 32 U 32 U ND	31 U 31 U 31 U ND	31 U 31 U 31 U ND	31 U 31 U 31 U ND	33 U 33 U 33 U ND	31 U 31 U 31 U ND	32 U 32 U 32 U ND	32 U 32 U 32 U ND	32 U 32 U 32 U ND	96 U 210 82 292	33 U 40 33 U 40
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	5.5 U 12	86 210	140 340	130 220	16 14	5.4 U 11 U	32 290	5.1 U 10 U	5.5 U 11 U	5.4 U 1 9	5.2 U 10 U	5.6 U 39	5.9 U 12 U	180 400	37 66
NWTPH-G Gasoline-Range Organics	100/30	5.5 U	26	25	22	6.6 U	6.5 U	5.4 U	6.9 U	6.2 U	6.1 U	6.8 U	5.4 U	6.9 U	88	10 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Antimony Barium Beryllium Cadmium Chromium Chromium VI Copper Lead Mercury Nickel Silver Thallium Zinc	5 640 160 1.3 1,480 3.8 36 250 1.5 210 170 0.67 1,400	0.2 U 44.4 0.2 U 0.1 U 24 0.448 U 30 4.7 0.03 U 37.7 0.2 U 0.2 U 47	0.2 U 89.7 0.3 0.3 16.9 0.464 U 45.2 52.1 2.66 18.6 0.2 U 0.2 U 76	0.2 U 69.0 0.2 U 1.0 27.9 0.432 U 44.8 76.7 0.13 22.1 0.2 U 0.2 U 116	0.2 U 70.4 0.2 U 0.9 72.7 0.456 U 61.1 82.0 0.02 19.8 0.2 U 0.2 U 303	0.2 U 17.7 0.2 U 0.1 U 12.0 0.489 U 9.5 3.2 0.03 U 8.5 0.2 U 0.2 U	0.2 U 47.4 0.2 U 0.1 U 25.4 0.426 U 12.4 2.4 0.03 U 40.6 0.2 U 0.2 U 31	0.2 U 46.4 0.2 U 0.1 U 33 0.427 U 17.8 4.3 0.02 U 34.1 0.2 U 0.2 U 33	0.2 U 44.3 0.2 U 0.1 U 24.4 0.438 U 11.4 2.0 0.03 U 38.6 0.2 U 0.2 U 29	0.2 U 47.9 0.2 0.1 U 33.1 0.432 U 13.7 2.2 0.03 U 39.2 0.2 U 0.2 U 30	0.2 U 47.1 0.2 0.1 U 28.1 0.524 13.1 4.2 0.02 U 42.5 0.2 U 0.2 U 35	0.2 U 38.6 0.2 U 0.1 U 23.1 0.413 U 10.2 1.7 0.02 U 40.9 0.2 U 0.2 U 28	0.2 U 63.7 0.2 0.1 U 26.4 0.528 14.5 2.3 0.02 U 43.5 0.2 U 0.2 U 36	0.2 U 45 0.2 U 0.1 U 25 0.475 U 10.9 1.9 0.02 U 39.4 0.2 U 0.2 U 29	0.2 U 87.8 0.3 1.9 91 0.513 U 53.8 169 0.22 92.3 0.6 0.2 U 630	0.2 U 45.7 0.3 0.3 16.4 0.509 U 20 9.7 0.05 15.9 0.2 U 0.2 U

						FILL E: 1965-1966	Imported Construction	n-Quality Sand Fill Ma	erial			
	Preliminary Cleanup Levels	IT-MW-13(2-3.5) TV61F 11/03/2011	IT-MW-13(5-6.5) TV61G 11/03/2011	IT-MW-13(8-9.5) TV61H 11/03/2011	IT-MW-13(12.5-14) TV61I 11/03/2011	IT-MW-13(15-16.5) TV61J 11/03/2011	IT-MW-13B(2-3.5) TW45J 11/10/2011	IT-MW-13B(5-6.5) TW45K 11/10/2011	IT-MW-13B(6.5-8) TW89A 11/11/2011	IT-MW-13B(8-9.5) TW89B 11/11/2011	IT-MW-13B(12.5-13.5) TW89C 11/11/2011	IT-TOWPATH-EXC12-B(2.7) TF71A 07/26/2011
VOLATILES (μg/kg)												
Method SW8260C Methylene Chloride	2,400	4.6	1.9 J1	2 J1	2.3 J1	1.6 J1	2.3 J1	4.2	4.3	2.0 J1	3.6	1.7 U
Acetone	510,000	4.6 37	43	33	78	45	81	38	4.3 30 J	43 J	3.6 40 J	23
Carbon Disulfide	75,000	4.1	3.9	3.8	2	4.1	1.1 J1	3.0	7.7	12	3.7	1.1
1,1-Dichloroethane cis-1,2-Dichloroethene	710 2,600	1.4 U 1.4 U	1.1 U 1.1 U	1.1 U 1.1 U	1.3 U 1.3 U	1.0 U 1.0 U	1.3 U 1.3 U	1.2 U 1.2 U	1.2 U 1.2 U	1.6 U 1.6 U	1.1 U 1.1 U	0.9 U 0.9 U
2-Butanone	430,000	3.7 J1	6.3	3.7 J1	1.3 0	8.1	1.3 U	4.3 J1	3.6 J1	8.6	4.2 J1	4.3 U
Trichloroethene	51	1.4 U	1.1 U	1.1 U	1.3 U	1.0 U	1.3 U	1.2 U	1.2 U	1.6 U	1.1 U	0.9 U
Benzene Toluene	93 100,000	1.4 U 1.4 U	0.7 J1 0.7 J1	1.6 1.6	6.2 3.4	2.4 1.9	1.3 U 1.3 U	1.2 U 0.6 J1	1.2 J1 1.7	1.9 0.9 J1	1.0 J1 0.9 J1	0.9 U 0.9 U
Ethylbenzene	230	1.4 U	0.7 J1 0.8 J1	6.2	1.8	0.9 J1	1.3 U	1.2 U	0.6 J1	1.6 U	1.1 U	0.9 U
Trichlorofluoromethane	200,000	1.4 U	1.1 U	1.1 U	1.3 U	1.0 U	1.3 U	1.2 U	1.2 U	1.6 U	1.1 U	0.9 U
1,1,2-Trichloro-1,2,2-trifuoroethane	1,000,000,000	2.7 U	2.1 U	2.1 U	2.7 U	2.0 U	2.5 U	2.3 U	2.5 U	3.2 U	2.2 U	1.7 U
m,p-Xylene o-Xylene	160,000 200,000	7.4 7.3	0.6 J1 1.1 U	17 3.4	5.9 3.4	3.1 1.9	1.3 U 1.3 U	1.2 U 1.2 U	1.2 J1 1.2 U	1.6 U 1.6 U	0.7 J1 1.1 U	0.9 U 0.9 U
1,4-Dichlorobenzene	3,500	1.4 U	1.1 U	1.1 U	1.3 U	1.0 U	1.3 U	1.2 U	1.2 U	1.6 U	1.1 U	0.9 U
Methyl Iodide		1.4 U	1.1 U	1.1 U	1.3 U 5.4	1.0 U	1.3 U	1.2 U	2.3	1.6 U	1.1 U	0.9 U
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	800,000 800,000	14 16	1.1 U 1.1 U	4.9 9.1	5.4 13	3.0 5.9	1.3 U 1.3 U	1.2 U 1.2 U	1.0 J1 2.1	1.6 U 1.6 U	1.1 U 0.9 J1	0.9 U 0.9 U
Isopropylbenzene	78,000	1.4 U	0.9 J1	1.7	0.8 J1	1.0 U	1.3 U	1.2 U	0.7 J1	1.6 U	1.1 U	0.9 U
n-Propylbenzene	11,000	1.4 U	0.6 J1	3.1	1.0 J1	0.6 J1	1.3 U	1.2 U	0.9 J1	1.6 U	1.1 U	0.9 U
sec-Butylbenzene 4-Isopropyltoluene		1.4 U 1.6 J	1.1 U 1.1 U	1.1 U 0.7 J, J1	0.7 J1 1.8 J	1.0 U 1.0 J, J1	1.3 U 1.3 U	1.2 U 1.2 U	1.6 2.0	1.6 U 1.6 U	1.1 U 1.6	0.9 U 0.9 U
n-Butylbenzene	27,000	1.4 U	1.1 U	1.1 U	1.3 U	1.0 U	1.3 U	1.2 U	1.0 J1	1.6 U	1.1 U	0.9 U
Naphthalene	2,100	6.8 U	5.4 U	1.1 J, J1	7.3 J	5.9 J	6.3 U	0.6 J1	12	13	1.7 J1	1300
SEMIVOLATILES (µg/kg) Method SW8270D												
Phenol	1,900,000	19 U	19 U	18 U	19 UJ	19 U	19 U	18 U	38 U	19 U	18 U	19 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3,840 3,500	19 U 19 U	19 U 19 U	18 U 18 U	22 12 J1	19 U 19 U	19 U 19 U	18 U 18 U	38 U 38 U	19 U 19 U	18 U 18 U	19 U 19 U
Benzyl Alcohol	8,000,000	19 U	19 U	18 U	19 U	19 U	19 U	18 U	38 U	19 UJ	18 UJ	19 U
1,2-Dichlorobenzene	68,000	19 U	19 U	18 U	22	19 U	19 U	18 U	38 U	19 U	18 U	19 U
2-Methylphenol 4-Methylphenol	250,000 41,000	19 U 38 U	19 U 38 U	18 U 37 U	19 UJ 18 J, J1	19 U 39 U	19 U 37 U	18 U 35 U	38 U 76 U	19 U 38 U	18 U 37 U	19 U 39 U
Isophorone		19 U	19 U	18 U	19 U	19 U	19 U	18 U	38 U	19 U	18 U	19 U
2,4-Dimethylphenol	95,000	38 UJ	38 UJ	37 UJ	38 UJ	39 UJ	37 U	35 U	76 U	38 U	37 U	39 U
Benzoic Acid Naphthalene	9,000 2,100	380 U 41	380 U 12 J1	370 U 33	380 UJ 130	390 U 82	370 U 12 J1	350 U 8.8 J1	760 U 240	380 U 120	370 U 14 J1	390 U 2200
2-Methylnaphthalene	320,000	41	19 U	23	120	86	15 J1	18 U	420	110	9.2 J1	330
Acenaphthylene		19 U	19 U	18 U	14 J1	19 U	19 U	18 U	38 U	19 U	18 U	19 U
Acenaphthene Dibenzofuran	230,000 80,000	35 40	19 U 19 U	9.2 J1 12 J1	33 28	23 22	19 U 19 U	18 U 18 U	130 340	120 120	18 U 18 U	120 19 U
Fluorene	150,000	78 J	19 U	12 J1 14 J, J1	21 J	28 J	19 U	18 U	1000	170	18 U	9.7 J
N-Nitrosodiphenylamine	204,000	19 U	19 U	18 U	25	19 U	19 U	18 U	36 J1	19 U	18 U	19 U
Phenanthrene Carbazole	50,000	240 34 J	13 J1 19 UJ	59 18 UJ	370 42 J	240 20 J	48 19 U	17 J1 18 U	2200 4200	420 52	34 18 U	29 19 U
Anthracene	1,600,000	45	19 U	18 U	58	20 J 28	19 U	18 U	16000	140	10 J1	19 U
Di-n-Butylphthalate	26,000	19 U	19 U	18 U	19 U	19 U	19 U	18 U	38 U	19 U	18 U	19 U
Fluoranthene	230,000	140	16 J1	39 41	450 430	150 160	34	14 J1	1600	470	37 25	58
Pyrene Butylbenzylphthalate	240,000 1,700	120 19 U	14 J1 19 U	41 18 U	420 19 U	160 19 U	29 19 U	15 J1 18 U	1500 38 U	410 19 U	35 18 U	46 19 U
Benzo(a)anthracene		52	19 U	17 J1	230	59	19 U	18 U	780	120	16 J1	34
bis(2-Ethylhexyl)phthalate	56,600	47 U	30 U	85 U	36 U	24 U	37 U	37 U	630	86 U	44 U	24 U
Chrysene Di-n-Octyl phthalate		83 19 U	9.4 J1 19 U	26 18 U	300 19 U	99 19 U	19 19 U	18 U 18 U	2200 29 J1	160 30	32 18 U	35 19 U
Benzo(a)pyrene		53	19 U	15 J1	19 U 160	48	19 U	18 U	430	120	18 U 19	34
Indeno(1,2,3-cd)pyrene		24	19 U	18 U	69	20	19 U	18 U	180	59	18 U	19
Dibenz(a,h)anthracene		19 U	19 U	18 U	27	19 U	19 U	18 U	94	17 J1	18 U	19 U
Benzo(g,h,i)perylene 1-Methylnaphthalene	16,000	19 U 35	19 U 19 U	18 U 12 J1	85 77	27 47	19 U 12 J1	18 U 18 U	220 36 J1	100 48	18 J1 18 U	22 210
Total Benzofluoranthenes		80	19 U	26	290	75	20	18 U	840	220	34	61
Total cPAH TEQ	15	69	0.094 J	20 J	225	64	2	ND	641	163 J	24 J	46

						FILL E: 1965-1966	Imported Construction	n-Quality Sand Fill Ma	terial			
	Preliminary Cleanup Levels	IT-MW-13(2-3.5) TV61F 11/03/2011	IT-MW-13(5-6.5) TV61G 11/03/2011	IT-MW-13(8-9.5) TV61H 11/03/2011	IT-MW-13(12.5-14) TV61I 11/03/2011	IT-MW-13(15-16.5) TV61J 11/03/2011	IT-MW-13B(2-3.5) TW45J 11/10/2011	IT-MW-13B(5-6.5) TW45K 11/10/2011	IT-MW-13B(6.5-8) TW89A 11/11/2011	IT-MW-13B(8-9.5) TW89B 11/11/2011	IT-MW-13B(12.5-13.5) TW89C 11/11/2011	IT-TOWPATH-EXC12-B(2.7) TF71A 07/26/2011
PAHs (μg/kg)												
Method SW8270D-SIM												
Naphthalene	2,100	42	11	33	96	100	22	8.6	70	65	14	670
2-Methylnaphthalene	320,000	44	5.7	27	110	98	17	6.2	59	59	11	130
1-Methylnaphthalene	16,000	39 125	4 J1	16	92 298	61 259	14 53	5	37	34 158	8 33	82 882
Total Naphthalenes Acenaphthylene		9.1 U	20.7 J1 4.6 U	76 4.7 U	9.7 U	259 10	3.3 J1	19.8 4.5 U	166 12	7.8 J1	4.7 U	4.6 U
Acenaphthene	230,000	58	4.6 U	20	91	29	11	2.9 J1	150	100	12	50
Fluorene	150,000	89	3.1 J1	17	30	35	8	4.2 J1	210	150	9.6	5.2
Phenanthrene		380	13	80	300	260	33	19	800	350	48	2.8 J
Anthracene	1,600,000	100	4.6 U	15	43	42	4.4 J1	3.2 J1	1500	170	12	4.6 U
Fluoranthene	230,000	240	15	68	190	180	35	26	1200	710	55	2.5 J
Pyrene Benzo(a)anthracene	240,000	170 24	12 4.4 J1	62 23	240 110	180 73	27 9.6	24 8.1	980 300	530 150	50 22	2.7 J 4.6 U
Chrysene		44	9	36	170	100	17	26	570	190	44	4.6 U
Benzo(a)pyrene		13	6.5	25	110	60	13	17	210	120	25	4.6 U
Indeno(1,2,3-cd)pyrene		9.1 U	4.6 U	11	26	24	8.5	4.3 J1	93	75	14	4.6 U
Dibenz(a,h)anthracene		9.1 U	4.6 U	4.3 J1	15	14	3.3 J1	5.9	40	23	5.8	4.6 U
Benzo(g,h,i)perylene		14	5.4	13	42	36	11	11	170	140	32	4.6 U
Dibenzofuran Total Benzofluoranthenes	80,000	52 39	3.5 J1 14	14 37	30 95	33 96	8.5 29	4.6 19	130 430	110 230	7.3 37	5.2 4.6 U
Total cPAH TEQ	15	19.74	8.43 J	32.89 J	136.3	81.7	18.21 J	20.99 J	302	169.7	33.32	ND
PCBs (µg/kg) Method SW8082 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs	220 0.29 5.4 1.8	32 U 32 U 32 U ND	32 U 32 U 32 U ND	33 U 33 U 33 U ND	32 U 32 U 32 U ND	31 U 31 U 31 U ND	32 U 32 U 32 U ND	32 U 32 U 32 U ND	4600 U 12,000 1200 U 12,000	1200 U 3000 420 3420	320 U 320 U 5200 5200	32 U 32 U 32 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	55 200	8.4 50	32 87	130 380	48 140	9.8 32	38 50	380 J 650	220 J 830	28 J 140	5.4 U 11 U
NWTPH-G Gasoline-Range Organics	100/30	33	5.9 U	7.3	22	19	6.5 U	6.6 U	120	6.5 U	6.5 U	6.9 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Antimony Barium Beryllium Cadmium Chromium Chromium VI Copper Lead Mercury Nickel Silver Thallium Zinc	5 640 160 1.3 1,480 3.8 36 250 1.5 210 170 0.67 1,400	0.2 U 46.4 0.2 0.1 22 0.449 U 19.9 6 0.02 29.5 0.2 U 0.2 U 46	0.2 U 45.3 0.2 0.1 28 0.431 17.8 4.5 0.04 34.6 0.2 U 0.2 U 35	0.2 U 119 0.3 0.1 171 0.465 U 34.9 8.7 0.02 37.4 0.2 U 0.2 U	0.3 143 0.3 2.2 3430 0.459 U 320 570 0.03 U 2220 2.9 0.2 U 600	0.2 U 145 0.2 U 1 1640 0.456 209 421 0.02 U 869 2.2 0.2 U 252	0.2 U 50.8 0.2 0.1 U 15.7 0.453 U 23.6 7.5 0.05 17.8 0.2 U 0.2 U 42	0.2 U 43.6 0.2 U 0.1 U 20.8 0.452 U 15.3 5.5 0.03 U 28.9 0.2 U 0.2 U 44	0.2 UJ 69.8 J 0.3 0.6 25.2 0.463 U 53.6 J 51.8 0.17 30.9 J 1.1 0.2 U 390 J	0.2 U 197 0.3 3.7 218 0.439 U 197 348 0.11 170 1.2 0.2 U 630	0.2 U 59 0.2 U 0.2 30.5 0.465 U 28.1 17.3 0.02 17.3 0.2 U 0.2 U 72	0.2 U 49.1 0.2 U 0.1 U 28 0.421 U 12.1 2.5 0.02 U 34.4 0.2 U 0.2 U 31

ND = Not Detected.
μg/kg = micrograms per kilogram
mg/kg = milligrams per kilogram
SIM = Selected Ion Monitoring
Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

PAHs = polycylic aromatic hydrocarbons cPAHs = carcinogenic PAHs PCBs = polychlorinated biphenyls TEQ = Toxic Equivalent Concentration

PAHs = polycylic aromatic hydrocarbons J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the or greater than reporting limit, but equal to the detection limit.

UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.

M = Estimated value for an analyte detected and confirmed by an analyst, but with low spectral match parameters. This flag is used only for GC-MS analyses.

 $[\]ensuremath{\mathsf{U}}$ = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

TABLE 22 DETECTED ARSENIC CONCENTRATIONS IN RI AND CONSTRUCTION-RELATED SOIL SAMPLES SOUTH OF FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Sample ID	Sample Date	Sample Depth	Arsenic (mg/kg)
			PCL 7
Western Property Boundary-Sout	th of Slip 5		
MW-7	10/31/11	2 to 3.5	5.6
MW-7	10/31/11	5 to 6.5	24.5
MW-7	11/4/11	8 to 9.5	3.0
MW-7	11/4/11	13.5 to 15	0.9
Southern Property Boundary/For	mer Washdown Systen	Collection Sumps	
MW-5	11/1/11	2 to 3.5	4.3
MW-5	11/1/11	5 to 6.5	8.1
MW-5	11/2/11	8 to 9	4.6
MW-5	11/2/11	14 to 15.5	2.1
MW-6	11/1/11	2 to 3.5	2.2
MW-6	11/1/11	5 to 6.5	2.3
MW-6	11/2/11	8 to 9.5	7.0
MW-6	11/2/11	14 to 15.5	1.1
MW-6	11/2/11	20 to 21.5	1.3
MW-6	11/2/11	23 to 24.5	1.0
Eastern Property Boundary			
IT-Bldg-14-11Exc1-B(2.1)	7/28/11	2.1	6.8
IT-Bldg-14-11Exc2-B(2.5)	7/28/11	2.5	4
IT-Bldg-14-11Exc3-B(3.0)	7/28/11	3.0	3.6
IT-Bldg-14-11Exc4-B(2.4)	7/28/11	2.4	3.6
IT-BLDG14-11-SURF	8/18/11		2.9
IT-BUILDING14-11EXC5-B(.5)	8/18/11	0.5	3.3
IT-PIVExc2-B(5.0)	8/9/11	5.0	3.3
IT-PIVExc2-SW(2.5)	8/9/11	2.5	2.4
IT-TowpathExc13-(1.3)	8/2/11	1.3	3.4
IT-MW-4	11/8/11	2 to 3.5	4.1
IT-MW-4	11/8/11	5 to 6.5	4.1
IT-MW-4	11/8/11	8 to 9.5	3.0
IT-MW-4	11/8/11	13.5 to 15	1.9

TABLE 22 DETECTED ARSENIC CONCENTRATIONS IN RI AND CONSTRUCTION-RELATED SOIL SAMPLES SOUTH OF FORMER SLIP 5 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Sample ID	Sample Date	Sample Depth	Arsenic (mg/kg)
			PCL 7
Northern Portion of 14-01 Buildin	g		
IT-BLDG1401-TRENCH-2N	05/02/11		2.9
IT-BLDG1401-TRENCH-2S	05/02/11		2.7
IT-BLDG1401-TRENCH-3N	05/03/11		2.3
IT-BLDG1401-TRENCH-3S	05/03/11		4.0
IT-BLDG1401-TRENCH-4N	05/12/11		3.1
IT-BLDG1401-TRENCH-4S	05/12/11		4.5
IT-BLDG1401-TRENCH-5N	5/13/11		5.3
IT-BLDG1401-TRENCH-5S	5/13/11		2.3
IT-Bldg1401-OuttakesExc-1	5/20/11	3.5	3.2
IT-Bldg1401-OuttakesExc-2	5/20/11	3.7	3.6
IT-Bldg1401-OuttakesExc-3	5/23/11	2.9	2.9
IT-Bldg1401-OuttakesExc-4	5/23/11	3.05	3.4

mg/kg = milligrams per kilogram PCL = Preliminary Cleanup Level Box = Exceedance of PCL

		147			er e			0.4		/=	1				
		we	<mark>stern Property Bou</mark> I	undary- South of S	lip 5			South	ern Property Bound	lary/Former wash	down System Col	lection Sumps	1	I	
	Preliminary Cleanup Levels	IT-MW-7(2-3.5) TU65A 10/31/2011	IT-MW-7(5-6.5) TU65B 10/31/2011	IT-MW-7(8-9.5) TV85A 11/04/2011	IT-MW-7(13.5-15) TV85B 11/04/2011	IT-MW-5(2-3.5) TU90A 11/01/2011	IT-MW-5(5-6.5) TU90B 11/01/2011	IT-MW-5(8-9) TV16A 11/02/2011	IT-MW-5(14-15.5) TV16B 11/02/2011	IT-MW-6(2-3.5) TU90C 11/01/2011	IT-MW-6(5-6.5) TU90D 11/01/2011	IT-MW-6(8-9.5) TV16C 11/02/2011	IT-MW-6(14-15.5) TV16D 11/02/2011	IT-MW-6(20-21.5) TV16E 11/02/2011	IT-MW-6(23-24.5 TV16F 11/02/2011
VOLATILES (µg/kg) Method SW8260C															
Vinyl Chloride	7.4	1.3 U	1.4 U	1.2 U	1.2 U	1.2 U	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	1.4 U	2.2	7.2	1.0 J1
Methylene Chloride	2.400	2.8 J	3.1 J	1.9 J	4.2 J	1.7 J, J1	1.7 J1	2.1 J, J1	3.7 J	3.0	2.9	2.0 J, J1	2.8 J	3.1 J	3.2 J
Acetone	510.000	34 U	58	25 U	14	26 UJ	55 J	33	26	7.6 UJ	7.4 UJ	25 U	9.3 U	20 U	21 U
Carbon Disulfide	75,000	1.3 U	1.4 U	1.2 U	1.2 U	1.2 UJ	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	1.4 U	1.2 U	14	3.4
1,1-Dichloroethane	710	1.3 U	1.4 U	1.2 UJ	1.2 U	1.2 UJ	1.4 U	1.3 UJ	1.6 UJ	1.2 U	1.2 U	1.1 J, J1	1.2 UJ	1.1 UJ	1.2 UJ
trans-1,2-Dichloroethene	19,000	1.3 U	1.4 U	1.2 U	1.2 U	1.2 UJ	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	3.1	1.2 U	1.1 U	1.2 U
cis-1,2-Dichloroethene	2,600	1.3 U	1.4 U	1.2 U	1.2 U	1.2 UJ	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	86	51	16	1.6
2-Butanone	430.000	6.4 U	6.8 U	6.1 UJ	6.0 U	6.1 UJ	4.3 J1	6.4 UJ	7.9 UJ	6.2 U	6.2 U	7.0 UJ	6.2 UJ	5.7 UJ	6.0 UJ
1,1,1-Trichloroethane	1,900,000	1.3 U	1.4 U	1.2 U	1.2 U	1.2 UJ	1.9	1.3 U	1.6 U	1.2 U	1.2 U	0.7 J1	1.2 U	1.1 U	1.2 U
Trichloroethene	51	46	22	1.2 U	1.4	1.2 US 1.3 J	1.0 J1	1.3 U	1.6 U	7.7	8.4	270	220	4.3	2.2
Benzene	93	0.8 J1	1.9	1.2 U	1.2 U	1.3 J 1.2 UJ	1.0 J1 1.1 J1	1.3 U	0.9 J1	1.2 U	1.2 U	1.4 U	1.2 U	1.1 U	1.2 U
Tetrachloroethene	260	2.7	4.6	0.9 J1	1.2 U	1.2 UJ	1.1 J1 1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	2.5	2.6	1.1 U	1.2 U
Toluene	100.000	1.5	4.0 1.0 J1	1.2 U	1.7 U	1.2 UJ	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	0.9 J1	1.2 U	0.7 J1	1.2 U
m,p-Xylene	160,000	1.3 U	1. 0 31 1.4 U	1.2 U	1.2 U	1.2 UJ	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	1.4 U	1.2 U	0.7 J1 0.9 J1	1.2 U
sec-Butylbenzene	100,000	1.3 U	1.4 U	1.2 U	1.2 U	1.2 UJ	1.4 U	1.3 U	1.6 U	1.2 U	1.2 U	1.4 U	1.2 U	0.9 J1	1.2 U
300 Butylbenzene		1.5 0	1.4 0	1.2 0	1.2 0	1.2 00	1.4 0	1.5 0	1.0 0	1.2 0	1.2 0	1.4 0	1.2 0	0.0 01	1.2 0
SEMIVOLATILES (µg/kg)															
Method SW8270D															
Naphthalene	2,100	12 J1	9.7 J1	19 U	11 J1	19 U	29	18 U	19 U	18 U	19 U	85	20 U	19 U	19 U
2-Methylnaphthalene	320,000	19 U	19 U	19 U	16 J1	19 U	14 J1	18 U	19 U	18 U	19 U	18 J1	20 U	19 U	19 U
Acenaphthene	230,000	19 U	19 U	19 U	19 U	19 U	18 U	18 U	19 U	18 U	19 U	18 U	20 U	19 U	16 J1
Dibenzofuran	80,000	19 U	19 U	19 U	19 U	19 U	11 J1	18 U	19 U	18 U	19 U	13 J1	20 U	19 U	19 U
Phenanthrene		18 J1	24	19 U	19 U	66	55	75	19 U	18 U	19 U	66	20 U	19 U	22
Anthracene	1,600,000	19 U	19 U	19 U	19 U	19 U	18 U	11 J1	19 U	18 U	19 U	18 U	20 U	19 U	19 U
Fluoranthene	230,000	18 J1	16 J1	19 U	19 U	19 U	49	110	19 U	18 U	19 U	59	20 U	19 U	19 U
Pyrene	240,000	16 J1	13 J1	19 U	19 U	19 U	61	120	19 U	18 U	19 U	49	20 U	19 U	19 U
Butylbenzylphthalate	1,700	200	16 J1	19 U	19 U	19 U	56	47	19 U	18 U	19 U	19	20 U	19 U	19 U
Benzo(a)anthracene		19 U	19 U	19 U	19 U	19 U	21	48	19 U	18 U	19 U	18 U	20 U	19 U	19 U
bis(2-Ethylhexyl)phthalate	56,600	22 UJ2	16 UJ2	36 U	84 U	24 U	34 U	91	24	23 U	23 U	24	25 U	17 J1	14 J1
Chrysene		19	14 J1	19 U	19 U	19 U	41	59	19 U	18 U	19 U	23	20 U	19 U	19 U
Benzo(a)pyrene		19 U	19 U	19 U	19 U	19 U	24	47	19 U	18 U	19 U	12 J1	20 U	19 U	19 U
Indeno(1,2,3-cd)pyrene		19 U	19 U	19 U	19 U	19 U	20	25	19 U	18 U	19 U	13 J1	20 U	19 U	19 U
Benzo(g,h,i)perylene		9.7 J1	19 U	19 U	19 U	19 U	25	31	19 U	18 U	19 U	23	20 U	19 U	19 U
1-Methylnaphthalene	16,000	19 U	19 U	19 U	19 U	19 U	11 J1	18 U	19 U	18 U	19 U	9.2 J1	20 U	19 U	19 U
Total Benzofluoranthenes		24	17 J1	19 U	19 U	19 U	49	72	19 U	18 U	19 U	30	20 U	19 U	19 U
Total cPAH TEQ	15	3 J	2 J	ND	ND	ND	33	62	ND	ND	ND	17 J	ND	ND	ND

		We	estern Property Bo	undary- South of S	Slip 5			South	ern Property Bound	dary/Former Wash	down System Col	lection Sumps			
	Preliminary	IT-MW-7(2-3.5)	IT-MW-7(5-6.5)	IT-MW-7(8-9.5)	IT-MW-7(13.5-15)	IT-MW-5(2-3.5)	IT-MW-5(5-6.5)	IT-MW-5(8-9)	IT-MW-5(14-15.5)	IT-MW-6(2-3.5)	IT-MW-6(5-6.5)	IT-MW-6(8-9.5)	IT-MW-6(14-15.5)	IT-MW-6(20-21.5)	IT-MW-6(23-24.5)
	Cleanup	TU65A	TU65B	TV85A	TV85B	TU90A	TU90B	TV16A	TV16B	TU90C	TU90D	TV16C	TV16D	TV16E	TV16F
	Levels	10/31/2011	10/31/2011	11/04/2011	11/04/2011	11/01/2011	11/01/2011	11/02/2011	11/02/2011	11/01/2011	11/01/2011	11/02/2011	11/02/2011	11/02/2011	11/02/2011
PAHs (μg/kg) Method SW8270D-SIM															
Naphthalene	2,100	17	7.4	4.6 U	4.6 U	4.4 J1	30	4.0 J1	4.7 U	4.6 U	20	49	4.9 U	2.6 J1	4.8 U
2-Methylnaphthalene	320,000	13	9.6	2.3 J1	4.6 U	5.0	13	4.5 J1	4.7 U	4.6 U	9.4	12	4.9 U	3.0 J1	4.8 U
1-Methylnaphthalene	16,000	22	9.0	4.6 U	4.6 U	5.1	13	2.9 J1	4.7 U	4.6 U	11	9.9	4.9 U	4.8 U	4.8 U
Total Naphthalenes		52	26	2.3 J1	4.6 U	14.5 J1	56	11.4 J1	4.7 U	4.6 U	40.4	70.9	4.9 U	5.6 J1	4.8 U
Acenaphthene	230,000	42	4.8 U	4.6 U	4.6 U	4.9 U	14	3.2 J1	4.7 U	4.6 U	11	2.4 J1	4.9 U	3.9 J1	20
Fluorene	150,000	76	4.8 U	4.6 U	4.6 U	4.9 U	18	2.3 J1	4.7 U	4.6 U	13	4.8 U	4.9 U	3.5 J1	4.8 U
Phenanthrene	4 000 000	1100	29	4.6	4.6 U	8.7	260	17	3.8 J1	2.5 J1	180	53	4.9 U	11	26
Anthracene	1,600,000	130 1400	4.8 U	4.6 U	4.6 U	4.9 U	35 360	3.2 J1 19	4.7 U 4.7 U	4.6 U 2.4 J1	27 240	4.8 U	4.9 U	3.7 J1	4.8 U
Fluoranthene	230,000 240,000	1300	22 19	4.6 U 4.6 U	4.6 U 4.6 U	5.9 6.2	330	19	4.7 U	4.6 U	220	49 38	4.9 U 4.9 U	4.8 U 4.8 U	4.8 U 4.8 U
Pyrene Benzo(a)anthracene	240,000	420	7.6	4.6 U	4.6 U	3.4 J1	130	9.1	4.7 U	4.6 U	92	7.2	4.9 U	4.8 U	4.8 U
Chrysene		430	16	4.6 U	4.6 U	5.9	140	18	4.7 U	4.6 U	96	18	4.9 U	4.8 U	4.8 U
Benzo(a)pyrene		390	8.5	4.6 U	4.6 U	4.9 U	150	13	4.7 U	4.6 U	99	10	4.9 U	4.8 U	4.8 U
Indeno(1,2,3-cd)pyrene		240	7.4	4.6 U	4.6 U	5.6	78	7.0	4.7 U	4.6 U	52	8.3	4.9 U	4.8 U	4.8 U
Dibenz(a,h)anthracene		70	4.8 U	4.6 U	4.6 U	4.1 J1	26	4.2 J1	4.7 U	4.6 U	17	3.2 J1	4.9 U	4.8 U	4.8 U
Benzo(g,h,i)perylene		270	8.2	4.6 U	4.6 U	8.5	90	9.4	4.7 U	4.6 U	56	14	4.9 U	4.8 U	4.8 U
Dibenzofuran	80,000	31	5.7	4.6 U	4.6 U	2.7 J1	13	4.6 U	4.7 U	4.6 U	9.1	9.4	4.9 U	4.8 U	4.8 U
Total Benzofluoranthenes		700	18	4.6 U	4.6 U	4.9 U	210	23	4.7 U	4.6 U	140	26	4.9 U	4.8 U	4.8 U
Total cPAH TEQ	15	537	12.0	ND	ND	1.4 J	196	18 J	ND	ND	130	15 J	ND	ND	ND
		-						-							
PCBs (μg/kg)															
Method SW8082															
Aroclor 1254	0.29	660	50	33 U	32 U	30 U	32 U	49	33 U	32 U	30 U	16 J1	32 U	31 U	31 U
Aroclor 1260	5.4	170 U	33 U	33 U	32 U	30 U	32 U	32 U	33 U	32 U	30 U	32 U	32 U	31 U	31 U
Total PCBs	1.8	660	50	ND	ND	ND	ND	49	ND	ND	ND	16 J	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx															
Diesel-Range Organics	2,000	18	6.8	5.5 U	6.0 U	99 J	17	18	6.6 U	5.0 U	5.2 U	14	6.4 U	12	6.2 U
Oil-Range Organics	2,000	27	28	11 U	12 U	22	42	77	13 U	10 U	10 U	56	13 U	46	12 U
NWTPH-G															
Gasoline-Range Organics	100/30	7.2 U	7.9 U	7.2 U	8.3 U	6.9 U	8.4 U	8.6 U	8.5 U	6.6 U	6.4 U	8.3 U	7.8 U	12	7.8 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A															
Barium	640	51.3	62.1	44.9	20.8	82.1 J	75.5	60.8	57.2	37.8	36.0	76.3	41.6	22.4	23.4
Beryllium	160	0.2 U	0.3	0.2 U	0.2 U	0.3	0.3	0.3	0.3 U	0.2 U	0.2	0.4	0.3 U	0.3 U	0.2 U
Cadmium	1.3	0.3	0.4	0.1 U	0.1 U	0.1	0.3	0.1	0.1 U	0.1 U	0.1 U	0.2	0.1 U	0.1 U	0.1 U
Chromium	1,480	19.1	16.8	11.2	9.8	13.7	16.1	17.2	14.1	18.6	22.9	22.5	14.6	9.2	10.9
Copper	36	25.2	26.1	19.2	10.3	24.7	29.4	26.4	21.5	11.0	11.6	34.0	18.8	11.4	9.7
Lead	250	36.6	22.0	2.5	1.8	5.8	30.7	28.6 J	2.8	1.6	1.6	30.4	2.3	1.1	1.1
Mercury	1.5	0.05	0.08	0.03 U	0.02 U	0.04	0.12	0.03	0.03	0.02 U	0.02 U	0.04	0.03 U	0.02 U	0.03 U
Nickel	210	12.1	15.3	10.4	6.8	14.4	16.9	40.8 J	10.8	28.9	29.2	23.1	9.8	7.9	7.7
Zinc	1,400	47	70	25	21	44	65	60	31	27	27	72	25	20	22
	l		l		[I	I	ĺ	ĺ	

						Easte	rn Property Boundary						
	IT-HBE-1A-1 RL72A 09/03/2010	IT-HBE-1A(4.5-5.5) RL72C 09/03/2010	IT-HBE-2-1 RL63B 09/02/2010	IT-HBE-2(4.0-4.5) RL87A 09/07/2010	IT-HBE-3-1 RL72B 09/03/2010	IT-HBE-3(4.5-5.5) RL87B 09/07/2010	IT-HBE-SS1 RL72D 09/03/2010	IT-EXT1(0-1) RM87A 09/15/2010	IT-EXT1(4-5) RM87B 09/15/2010	IT-EXT2(0-1) RM87C 09/15/2010	IT-EXT2(3-4) RM87D 09/15/2010	IT-EXT3(0-1) RM87E 09/15/2010	IT-EXT3(3-4) RM87F 09/15/2010
VOLATILES (µg/kg) Method SW8260C Vinyl Chloride Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene 2-Butanone 1,1,1-Trichloroethane Trichloroethene Benzene Tetrachloroethene Toluene m,p-Xylene sec-Butylbenzene SEMIVOLATILES (µg/kg) Method SW8270D Naphthalene 2-Methylnaphthalene Acenaphthene Dibenzofuran Phenanthrene Anthracene Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene bis(2-Ethylhexyl)phthalate Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene 1-Methylnaphthalene Total Benzofluoranthenes Total cPAH TEQ	0.9 U 1.9 U 14 J 2.3 0.9 U	1.0 U 2.0 U 22 J 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.2 U 2.4 U 16 1.2 U 1.2 U	1.2 U 2.4 U 75 2.5 1.2 U 1.2 U 24 1.2 U 2.2 1.2 U 1.2 U 1.2 U 1.2 U	1.0 U 2.1 U 14 J 1.0 U	1.3 U 2.6 U 14 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U	1.1 U 2.1 U 110 J 1.1 U	0.7 U 1.4 U 11 0.7 U	0.6 U 1.8 U 8.4 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U	0.4 U 0.9 U 32 0.4 U	0.5 U 1.0 U 24 0.5 U	0.5 U 1.0 U 18 0.5 U	0.5 U 1.1 U 17 0.5 U

1						Et-	en Branarti Barratan						
		T T				Easte	ern Property Boundary						
	IT-HBE-1A-1 RL72A 09/03/2010	IT-HBE-1A(4.5-5.5) RL72C 09/03/2010	IT-HBE-2-1 RL63B 09/02/2010	IT-HBE-2(4.0-4.5) RL87A 09/07/2010	IT-HBE-3-1 RL72B 09/03/2010	IT-HBE-3(4.5-5.5) RL87B 09/07/2010	IT-HBE-SS1 RL72D 09/03/2010	IT-EXT1(0-1) RM87A 09/15/2010	IT-EXT1(4-5) RM87B 09/15/2010	IT-EXT2(0-1) RM87C 09/15/2010	IT-EXT2(3-4) RM87D 09/15/2010	IT-EXT3(0-1) RM87E 09/15/2010	IT-EXT3(3-4) RM87F 09/15/2010
PAHs (µg/kg) Method SW8270D-SIM Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Total Naphthalene Total Naphthalenes Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran Total Benzofluoranthenes Total cPAH TEQ													
PCBs (µg/kg) Method SW8082 Aroclor 1254 Aroclor 1260 Total PCBs	32 U 32 U ND	32 U 32 U ND	33 U 33 U ND	32 U 32 U ND	31 U 31 U ND	32 U 32 U ND	31 U 31 U ND	30 U 30 U ND	32 U 32 U ND	32 U 32 U ND	32 U 32 U ND	31 U 31 U ND	32 U 32 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics NWTPH-G Gasoline-Range Organics													
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Barium Beryllium Cadmium Chromium Copper Lead Mercury Nickel Zinc	0.5 U 30 35.7 5 U 0.02 U 49	0.3 19.1 19.1 14 0.03	0.4 15.5 12.6 4 0.06	0.4 14.6 15.3 4 0.04	0.3 18.5 13.8 12 0.03 U	0.3 14.1 21.8 4 0.04	0.5 25.7 44.0 14 0.14	0.3 14.2 15.2 5 0.03	0.3 11.0 11.2 3 0.02 U	1.2 25.4 61.4 9 0.03 U 633	0.8 37.8 52.7 23 0.02	0.4 14.8 20.1 10 0.08	0.3 14.3 41.1 19 0.08

•		Eastern Property Boundary													
	IT-Bldg-14-11Exc2-	IT-Bldg-14-11Exc3-	IT-Bldg-14-11Exc4-	IT-Bldg-14-11Exc1-		IT-BUILDING14-	Troporty Boundary								
	B(2.5)	B(3.0)	B(2.4)	B(2.1)	IT-BLDG14-11-SURF	11EXC5-B(.5)	IT-PIVExc2-B(5.0)	IT-PIVExc2-SW(2.5)	IT-TowpathExc13-(1.3)	IT-MW-4(2-3.5)	IT-MW-4(5-6.5)	IT-MW-4(8-9.5)	IT-MW-4(13.5-15)		
	TG02C	TG02D	TG02E	TG02B	TJ06B	TJ06A	TH74A	TH74B	TG72A	TW27F	TW27G	TW27H	TW27I		
	7/28/2011	7/28/2011	7/28/2011	7/28/2011	8/18/2011	8/18/2011	8/9/2011	8/9/2011	8/2/2011	11/08/2011	11/08/2011	11/08/2011	11/08/2011		
VOLATILES (μg/kg) Method SW8260C															
Vinyl Chloride	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
Methylene Chloride	2.3 U	6	1.9 U	2.5 U	1.8 U	1.9 U	2.3 U	2.4 U	2 U	4.7	4.7	2.6	3.0		
Acetone	270	67	25	47	19	18	47	31	65	11 J	25 J	11 J	27 J		
Carbon Disulfide	1.8	1.2 U	0.9 U	1.4	1.7	2.9	3.3	1.2 U	4.4	1.3 U	1.3 U	0.7 J1	1.2 U		
1,1-Dichloroethane	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 UJ	1.3 UJ	1.1 UJ	1.2 UJ		
trans-1,2-Dichloroethene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
cis-1,2-Dichloroethene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
2-Butanone	65	55	4.7 U	20	4.4 U	4.8 U	8.9	5.9 U	10	6.3 U	6.6 U	5.6 U	5.8 U		
1,1,1-Trichloroethane	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
Trichloroethene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
Benzene	1.8	1.2 U	1.3	2.6	0.5 J	0.5 J	1.2 U	1.2 U	1.7	1.3 U	1.3 U	1.1 U	1.2 U		
Tetrachloroethene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
Toluene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
m,p-Xylene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
sec-Butylbenzene	1.2 U	1.2 U	0.9 U	1.2 U	0.9 U	1 U	1.2 U	1.2 U	1 U	1.3 U	1.3 U	1.1 U	1.2 U		
SEMIVOLATILES (µg/kg)															
Method SW8270D			40.11		40.11	40.11				40.11			40.11		
Naphthalene	68	57 U	18 U	37	19 U	19 U	40	16 J	32	19 U	20 U	20 U	19 U		
2-Methylnaphthalene	34	57 U	18 U	21	19 U	18 J	16 J	19 U	13 J	19 U	20 U	20 U	19 U		
Acenaphthene	19	57 U	18 U	16 J	19 U	19 U	18 U	19 U	14 J	19 U	20 U	20 U	19 U		
Dibenzofuran	26	57 U	18 U	30	19 U	19 U	13 J	19 U	14 J	19 U	20 U	20 U	19 U		
Phenanthrene	150	46 J	15 J	130	42	16 J	56	23	30	19 U	51	14 J1	19 U		
Anthracene	32	57 U	18 U	44	13 J	19 U	11 J	19 U	13 J	19 U	11 J1	20 U	19 U		
Fluoranthene	120	28 J	16 J	92	240	10 J	53	22	56	19 U	77	20 U	19 U		
Pyrene	94	28 J	13 J	81	240	10 J	36	16 J	39	19 U	58	15 J1	19 U		
Butylbenzylphthalate	19 U	57 U	18 U	20 U	40	19 U	18 U	19 U	19 U	9.5 J1	20 U	20 U	19 U		
Benzo(a)anthracene	26	57 U	18 U	26	180	19 U	13 J	19 U	16 J	19 U	39	20 U	19 U		
bis(2-Ethylhexyl)phthalate	18 J	54 J	40	28	67	23 U	23 U	23 U	23 U	15 J1	24 U	590	33		
Chrysene	38	57 U	12 J	42	180	19 U	24	11 J	24	19 U	39	25	19 U		
Benzo(a)pyrene	13 J	57 U	18 U	17 J	200	19 U	10 J	19 U	9.4 J	19 U	35	13 J1	19 U		
Indeno(1,2,3-cd)pyrene	19 U	57 U	18 U	13 J	120	19 U	12 J	19 U	19 U	19 U	18 J1	20 U	19 U		
Benzo(g,h,i)perylene	14 J	57 U	18 U	23	130	19 U	17 J	19 U	12 J	19 U	20	20 U	19 U		
1-Methylnaphthalene	18 J	28 J	18 U	34	19 U	12 J	10 J	19 U	11 J	19 U	20 U	20 U	19 U		
Total Benzofluoranthenes	42	57 U	22	50	370	12 J	32	16 J	25	19 U	64	14 J1	19 U		
Total cPAH TEQ	20.18 J	ND	2.32 J	26.32 J	274	1.2 J	15.94 J	1.71 J	13.74 J	ND	47 J	15 J	ND		

1						Easter	n Property Boundary						
					<u> </u>	Easter	i Property Boundary	I	Π	I	I		
	IT-Bldg-14-11Exc2- B(2.5)	IT-Bldg-14-11Exc3- B(3.0)	IT-Bldg-14-11Exc4- B(2.4)	IT-Bldg-14-11Exc1- B(2.1)	IT-BLDG14-11-SURF	IT-BUILDING14- 11EXC5-B(.5)	IT-PIVExc2-B(5.0)	IT-PIVExc2-SW(2.5)	IT-TowpathExc13-(1.3)	IT-MW-4(2-3.5)	IT-MW-4(5-6.5)	IT-MW-4(8-9.5)	IT-MW-4(13.5-15)
	TG02C 7/28/2011	TG02D 7/28/2011	TG02E 7/28/2011	TG02B 7/28/2011	TJ06B 8/18/2011	TJ06A 8/18/2011	TH74A 8/9/2011	TH74B 8/9/2011	TG72A 8/2/2011	TW27F 11/08/2011	TW27G 11/08/2011	TW27H 11/08/2011	TW27I 11/08/2011
PAHs (μg/kg)													
Method SW8270D-SIM													
Naphthalene	34	7.6 U	11 U	18 U	6	12	16	6.4	6.1	4.7 U	4.7 J1	4.5 J1	4.8 U
2-Methylnaphthalene	27	13	3.6 J	11	5.6	15	7.7	5.1	6.7	4.7 U	7.5	9.7	4.8 U
1-Methylnaphthalene	17 78	15 28	2.5 J 6.1 J	9.4 20.4	4.9 U 11.6	13 40	5 28.7	3.7 J 15.2 J	6.3 19.1	4.7 U 4.7 U	7.1 19.3 J1	7.8 22 J1	4.8 U
Total Naphthalenes Acenaphthene	76 11	4.6 U	4.6 U	20.4 2.8 J	4.9 U	4.7 U	26. <i>1</i> 7.1	4.7 U	8.1	4.7 U 4.7 U	4.9 U	4.9 U	4.8 U 4.8 U
Fluorene	17	4.1 J	4.6 U	4.9 U	4.9 U	4.7 U	8.5	3.2 J	13	4.7 U	4.9 U	4.9 U	4.8 U
Phenanthrene	77	24	15	22	18	14	52	13	15	3.0 J1	13	10	4.8 U
Anthracene	17	2.8 J	4.6 U	2.5 J	4.9 U	4.7 U	9.5	4.7 U	5.3	4.7 U	4.9 U	4.9 U	4.8 U
Fluoranthene	73	14	11	24	40	18	46	16	28	2.7 J1	7.2	5.1	4.8 U
Pyrene	56	14	10	20	36	17	51	14	20	2.7 J1	7.2	6.8	4.8 U
Benzo(a)anthracene	16	6	3.7 J	9	28	11	23	5.3	6.7	4.7 U	3.0 J1	5.8	4.8 U
Chrysene Benzo(a)pyrene	24 11	16 8.1	8.4 4.8	19 12	34 31	13 8	43 24	10 5.5	14 7.9	4.7 U 4.7 U	6.6 3.6 J1	19 7.5	4.8 U 4.8 U
Indeno(1,2,3-cd)pyrene	7.8	4.4 J	4.6 3.4 J	9.6	18	5.6	9.1	3.6 J	7.9 3.9 J	4.7 U	4.9 U	7.5 4.9 U	4.8 U
Dibenz(a,h)anthracene	2.8 J	4.6 U	4.6 U	3.5 J	6.7	4.7 U	4.5 U	4.7 U	4.7 U	4.7 U	4.9 U	4.9 U	4.8 U
Benzo(g,h,i)perylene	9.8	7.3	7.3	14	27	7.6	14	5.8	8.2	4.7 U	3.1 J1	8.7	4.8 U
Dibenzofuran	17	8.6	2.7 J	6.3	4.9 U	5.1	6.4	3.5 J	7.2	4.7 U	3.2 J1	4.9 U	4.8 U
Total Benzofluoranthenes	29	15	13	31	58	19	44	16	16	4.7 U	7.0	8.9	4.8 U
Total cPAH TEQ	16.8 J	10.8 J	6.894 J	17.5 J	42.41	11.69	32.04	8.09 J	10.7 J	ND	4.7 J	9.2	ND
PCBs (µg/kg)													
Method SW8082	24.11	20.11	04.11	50	24.11	20.11	20.11	20.11	20.11	20.11	04.11	20.11	20.11
Aroclor 1254 Aroclor 1260	31 U 31 U	33 U 33 U	31 U 31 U	53 73	31 U 14 J	32 U 32 U	32 U 32 U	32 U 32 U	32 U 32 U	32 U 32 U	31 U 31 U	30 U 30 U	32 U 32 U
Total PCBs	ND ND	ND	ND ND	126	14 J	ND	ND	ND	ND	ND	ND ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx				_	_								
Diesel-Range Organics	9.4	11	12	21	10	10	11	15	27	5.2 U	6.0 U	23	5.9 U
Oil-Range Organics	18	48	25	50	74	24	33	45	150	10 U	12 U	120	12 U
NWTPH-G													
Gasoline-Range Organics	6.3 U	6.8 U	5.9 U	6.6 U	5.3 U	5 U	6.4 U	5.9 U	5.7 U	6.8 U	8.5 U	8.3	6.6 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A													
Barium	57.6	51.4	45.2	63.7	57.1	60.8	60.1	55.9	53.6	57.5	49.0	48.0	18.0
Beryllium	0.2 U	0.2	0.2	0.2	0.2 U	0.2 U	0.2	0.2	0.3	0.2	0.2 U	0.2 U	0.2 U
Cadmium	0.2	0.3	0.1	0.5	0.3	0.1 U	0.4	0.2	0.1	0.1 U	0.2	0.1 U	0.1 U
Chromium	16.5	15.9	18.8	16.3	18.7	13.2	21.4	23.4	14.6	9.9	13.1	13.5	9.9
Copper Lead	24.2 22.1	16.9 6.1	24.6 15.8	44.6 80.8	61.2 18.7	22.5 10.5	27.4 42.4	23.9 17	23.1 8.5	26.0 4.0	14.1 4.1	21.5 3.4	6.3 1.1
Lead Mercury	0.03	6.1 0.03	15.8 0.02	80.8 0.05	1 8.7 0.02 U	1 0.5 0.02 U	42.4 0.03	0.03	0.03	4.0 0.02 U	4.1 0.04	3.4 0.02 U	0.03 U
Nickel	22.4	15.3	26.6	22.1	25.5	17.5	25.6	32.5	16.5	15.9	12.2	10.9	4.8
Zinc	51	340	46	147	299	44	68	50	39	38	42	33	20

						Northern Portion	of 14-01 Building					
	IT-BLDG1401- TRENCH-2N SU96A/SW32A 5/2/2011	IT-BLDG1401- TRENCH-2S SU96B/SW32B 5/2/2011	IT-BLDG1401- TRENCH-3N SV05A/SW32C 5/3/2011	IT-BLDG1401- TRENCH-3S SV05B/SW32D 5/3/2011	IT-BLDG1401- TRENCH-4N SW63A 5/12/2011	IT-BLDG1401- TRENCH-4S (a) SW63B 5/12/2011	IT-BLDG1401- TRENCH-5N (b) SW79A 5/13/2011	IT-BLDG1401- TRENCH-5S SW79B 5/13/2011	IT-Bldg1401- OuttakesExc-1 (3.5) SX84A 5/20/2011	IT-Bldg1401- OuttakesExc-2 (3.7) SX84B 5/20/2011	IT-Bldg1401- OuttakesExc-3 (2.9) SY11A 5/23/2011	IT-Bldg1401- OuttakesExc-4 (3.05) SY11B 5/23/2011
VOLATILES (µg/kg) Method SW8260C Vinyl Chloride Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene 2-Butanone 1,1,1-Trichloroethane	0.9 U 9.0 J 27 0.9 U 0.9 U 0.9 U 0.9 U 4.5 U 0.9 U	1.2 U 12 J 25 1.2 U 1.2 U 1.2 U 1.2 U 6.2 U 1.2 U	1.1 U 11 93 0.8 J 1.1 U 1.1 U 1.1 U 16 1.1 U	1.1 U 9.5 61 1.5 1.1 U 1.1 U 1.1 U 10	1.3 U 12 140 1.3 U 1.3 U 1.3 U 1.3 U 33	1.2 U 13 25 1.2 U 1.2 U 1.2 U 1.2 U 6.0 U 1.2 U	1.3 U 13 86 1.3 U 1.3 U 1.3 U 1.3 U 18	1.2 U 12 20 3.0 1.2 U 1.2 U 1.2 U 6.0 U 1.2 U	1.1 U 9.4 22 1.1 U 1.1 U 1.1 U 1.1 U 5.5 U 1.1 U	1.1 U 9.1 31 1.1 U 1.1 U 1.1 U 1.1 U 5.4 U 1.1 U	1.3 U 7.7 20 1.3 U 1.3 U 1.3 U 1.3 U 6.4 U 1.3 U	1.2 U 18 37 1.2 U 1.2 U 1.2 U 1.2 U 5.9 U 1.2 U
Trichloroethene Benzene Tetrachloroethene Toluene m,p-Xylene sec-Butylbenzene	0.9 U 0.5 J 0.9 U 0.9 U 0.9 U 0.9 U	1.2 U 1.2 U 1.2 U 1.2 U 1.2 U 1.2 U	1.1 U 0.5 J 1.1 U 1.1 U 1.1 U 1.1 U	1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U	1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U	1.2 U 1.2 U 1.2 U 1.2 U 1.2 U 1.2 U	1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U	1.2 U 1.2 U 1.2 U 1.2 U 1.2 U 1.2 U	1.1 U 0.9 J 1.1 U 1.1 U 1.1 U 1.1 U	1.1 U 1.1 U 1.1 U 1.1 U 0.5 J 1.1 U	1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U	1.2 U 0.9 J 1.2 U 0.8 J 1.2 U 1.2 U
SEMIVOLATILES (µg/kg) Method SW8270D Naphthalene 2-Methylnaphthalene Acenaphthene Dibenzofuran Phenanthrene Anthracene Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene bis(2-Ethylhexyl)phthalate Chrysene	18 U 18 U 18 U 18 U 18 J 18 U 11 J 11 J 18 U 18 U 9.2 J 18 U	18 U 18 U 18 U 18 U 18 U 18 U 18 U 18 U	23 32 19 U 20 41 19 U 31 31 19 U 17 J 10 J 21	130 60 18 U 40 67 10 J 40 51 18 U 14 J 18 U 29	19 U 19 U 19 U 26 19 U 26 J 24 19 U 10 J 19 U	18 U 18 U 18 U 15 J 18 U 16 J 14 J 18 U 18 U 18 U	41 J 11 J 19 U 10 J 52 J 19 U 48 J 49 J 19 U 19 U 19 U	18 U 18 U 18 U 10 J 18 U 18 U 18 U 18 U 18 U 18 U	20 U 20 U 20 U 20 U 18 J 20 U 12 J 12 J 20 U 20 U 11 J	58 U 58 U 58 U 58 U 58 U 58 U 58 U 58 U	18 U 18 U 18 U 9.1 J 18 U 10 J 18 U 18 U 18 U 16 J 18 U	19 U 19 U 19 U 17 J 19 U 14 J 10 J 18 J 19 U 20
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene 1-Methylnaphthalene Total Benzofluoranthenes Total cPAH TEQ	18 UJ 18 U 18 U 18 U 18 U 18 U ND	18 UJ 18 U 18 U 18 U 18 U 18 U ND	9.4 J 12 J 16 J 20 30 15.5 J	9.6 J 18 U 12 J 39 19	19 U 19 U 19 U 19 U 19 U 16 J 3 J	18 U 18 U 18 U 18 U 16 J 2 J	12 J 12 J 12 J 24 J 19 U 25 J 16 J	18 U 18 U 18 U 18 U 18 U 18 U ND	20 U 20 U 20 U 20 U 20 U 15 J 2 J	58 U 58 U 29 J 58 U 58 U ND	18 U 18 U 18 U 18 U 18 U 13 J 1 J	19 U 19 U 19 U 19 U 19 U 13 J 1 J

						Northern Portion	of 14-01 Building		1			
	IT-BLDG1401-	IT-BLDG1401-	IT-BLDG1401-	IT-BLDG1401-	IT-BLDG1401-	IT-BLDG1401-	IT-BLDG1401-	IT-BLDG1401-	IT-Bldg1401-	IT-Bldg1401-	IT-Bldg1401-	IT-Bldg1401-
	TRENCH-2N	TRENCH-2S	TRENCH-3N	TRENCH-3S	TRENCH-4N	TRENCH-4S (a)	TRENCH-5N (b)	TRENCH-5S	OuttakesExc-1 (3.5)	OuttakesExc-2 (3.7)	OuttakesExc-3 (2.9)	OuttakesExc-4 (3.05)
	SU96A/SW32A	SU96B/SW32B	SV05A/SW32C	SV05B/SW32D	SW63A	SW63B	SW79A	SW79B	SX84A	SX84B	SY11A	SY11B
	5/2/2011	5/2/2011	5/3/2011	5/3/2011	5/12/2011	5/12/2011	5/13/2011	5/13/2011	5/20/2011	5/20/2011	5/23/2011	5/23/2011
PAHs (μg/kg) Method SW8270D-SIM												
Naphthalene	5.4	4.6 U	16	37	15	7.0	14	4.7 U	5.0 U	48 U	8.4	4.8 U
2-Methylnaphthalene	5.8	4.6 U	16	54	14	8.2	9.2 U	4.7 U	5.0 U	48 U	9.6	4.8 U
1-Methylnaphthalene	4.7	4.6 U	9.0	33	12	7.3	9.2 U	4.7 U	5.0 U	48 U	8.0	4.8 U
Total Naphthalenes	15.9	4.6 U	41	124	41	22.5	14	4.7 U	5.0 U	48 U	26	4.8 U
Acenaphthene	2.8 J	4.6 U	9.8	26	8.3	4.6 U	9.2 U	4.7 U	5.0 U	48 U	4.6 U	4.8 U
Fluorene	4.5 U	4.6 U	11	28	7.9	4.6 U	9.2 U	4.7 U	5.0 U	48 U	4.6 U	4.8 U
Phenanthrene	18	5.9	40	74	40	19	30	4.7 U	8.6	48 U	10	9.0
Anthracene	4.5 U	4.6 U	4.4 J	11	7.0	4.6 U	9.2 U	4.7 U	5.0 U	48 U	4.6 U	4.8 U
Fluoranthene	8.9	4.6 U	24	42	50	22	38	4.7 U	7.4	32 J	7.8	11
Pyrene	9.2	2.3 J	23	55	42	22	49	4.7 U	8.9	35 J	8.2	9.4
Benzo(a)anthracene	3.2 J	4.6 U	8.7	15	16	9.9	9.2 U	4.7 U	5.0 U	48 U	4.6 U	4.8 U
Chrysene	5.6	4.6 U	14	35	23	16	59	4.7 U	7.9	48 U	6.9	8.2
Benzo(a)pyrene	4.5 U	4.6 U	9.4	12	4.8 U	12	9.2 U	4.7 U	5.0	48 U	4.6 U	6.0
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	4.5 U	4.6 U	6.0	4.8	11	8.9	13	4.7 U	5.0 U	48 U	4.6 U	6.4
	4.5 U	4.6 U	4.7 U	4.6 U	5.3	4.6 U	9.2 U	4.7 U	5.0 U	48 U	4.6 U	4.8 U
Benzo(g,h,i)perylene Dibenzofuran Total Benzofluoranthenes	4.5 U	4.6 U	11	8.9	15	12	31	4.7 U	5.0 U	30 J	5.1	7.8
	5.5	4.6 U	22	41	12	5.9	9.2 U	4.7 U	5.0 U	48 U	4.6 ∪	4.8 ∪
	4.5 U	4.6 U	16	24	32	24	58	4.7 U	8.4	48 U	5.9	14
Total cPAH TEQ	0.376	ND	12.61	16.73	6.66	16.44	7.69	ND	5.919	ND ND	0.66	8.12
PCBs (µg/kg) Method SW8082	20.11	24.11	44	20.11	20.11	24.11	20.11	20.11	24.11	20.11	20.11	20.11
Aroclor 1254	32 U	31 U	11 J	32 U	33 U	31 U	32 U	32 U	31 U	33 U	32 U	32 U
Aroclor 1260	32 U	31 U	7.4 J	32 U	33 U	31 U	25 J	32 U	31 U	33 U	32 U	32 U
Total PCBs	ND	ND	18.4 J	ND	ND	ND	25 J	ND	ND	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx												
Diesel-Range Organics	5.0 U	5.0 U	10	100	9.0	6.5	17	5.1 U	5.4 U	23	5.6	5.6
Oil-Range Organics	5.1 J	10 U	59	200	21	32	170	10 U	11	300	15	16
NWTPH-G Gasoline-Range Organics	5.9 U	6.3 U	6.7 U	6.8 U	12	7.7 U	8.0 U	6.2 U	5.7 U	6.1 U	7.9 U	5.8 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A												
Barium	32.4	39.8	36.5	62.5	40.4	47.9	43.4	19.5	47.4	52.5	40.0	47.6
Beryllium	0.2 U	0.2 U	0.2 U	0.2	0.2 U	0.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.2 U
Cadmium	0.1	0.10	0.1 U	0.1 U	0.1 U	0.1 U	0.3	0.1 U	0.1	0.1 U	0.1 U	0.1 U
Chromium	13.5	10.3	12.3	16.5	12.1	15.0	12.1	6.8	16.8	11.5	13.7	16.5
Copper	13.9	10.6	20.6	24.4	22.8	19.6	23.6	8.4	16.5	30.8	15.8	17.9
Lead	2.5	2.59	5.4	5.6	3.5	6.4	11.6	1.3	4.7	8.4	5.2	8.4
Mercury	0.02 U	0.02 U	0.09	0.04	0.02	0.03	0.03	0.02 U	0.04	0.02 U	0.02 U	0.07
Nickel	12.5	11.2	14.1	13.8	10.0	16.9	11.9	6.6	22.7	14.1	19.3	24.8
Zinc	32	31	35	34	29	35	36	21	37	46	31	34
	I	I	1			I		I	I		I	1

PCBs = polychlorinated biphenyls cPAH = carcinogenic polycyclic aromatic hydrocarbon TEQ = Toxic Equivalent Concentration SIM = Selected Ion Monitoring ND = Not Detected. Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.
- UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.
- (a) The area limits for internal standards perylene-dl2 and di-n-octylphthalate were above the control limits for the original SVOC analysis of sample IT-Bldg1401-Trench-4S-110512. The sample was reanalyzed at a dilution with all internal standards in control. The original analysis results are reported.
- (b) The area limit for laboratory internal standard perylene-dl2 was above the control limit for the original SVOC analysis of sample ITBldg1401-Trench5N-110513. The sample was reanalyzed at a dilution with all internal standards in control. The original analysis results are reported.

TABLE 24 ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS IN RI STORMWATER SAMPLES BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

				Outfall A	(North)					Outfall E	3 (South)		
	Preliminary		IT-MH32			IT-MH32			IT-MH80			IT-MH80	
	Cleanup	UM	55B/UM58B		UF	R13A/UR28A		UN	155A/UM58A		UF	R13B/UR28B	
	Levels	0;	3/14/2012			4/20/2012		(3/14/2012			4/20/2012	
			Reporting	Detection		Reporting	Detection		Reporting	Detection		Reporting	Detection
		Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit	Result	Limit	Limit
VOLATILES (μg/L) Method SW8260C													
Acetone	110,000	5.0 U	5.0	2.1	5.5	5.0	2.1	5.0 U	5.0	2.1	5.6	5.0	2.1
2-Butanone	73,000	5.0 U	5.0	0.81	5.0 U	5.0	0.81	5.0 U	5.0	0.81	2.8 J1	5.0	0.81
Toluene	1300	0.2 U	0.2	0.04	7.5	0.2	0.04	24	0.2	0.04	16	0.2	0.04
SVOCs (µg/L)													
2-Methylphenol	3100	1.0 U	1.0	0.53	1.0 U	1.0	0.53	0.7 J1	1.0	0.53	0.6 J1	1.0	0.53
bis(2-Ethylhexyl)phthalate	1.2	7.8	1.0	1.9	1.2	1.0	1.9	1.5	1.0	1.9	1.0 U	1.0	1.9
cPAHs (µg/L)													
Method SW8270D-SIM													
Chrysene	0.018	0.0083 J1	0.010	0.0046	0.0052 J1	0.010	0.0046	0.0059 J1	0.010	0.0046	0.010 U	0.010	0.0046
TOTAL METALS													
Methods 200.8/SW7196A (μg/L)													
Antimony	(a)	1.1	0.2	0.010	0.3	0.2	0.010	0.8	0.2	0.010	0.2	0.2	0.010
Arsenic	(a)	0.3	0.2	0.048	0.4	0.2	0.048	0.4	0.2	0.048	0.2 U	0.2	0.048
Barium	(a)	2.4	0.5	0.020	4.2	0.5	0.020	3.1	0.5	0.020	2.9	0.5	0.020
Cadmium	(a)	0.3	0.1	0.010	0.1 U	0.1	0.010	0.1	0.1	0.010	0.1 U	0.1	0.010
Chromium	(a)	1.0	0.5	0.045	0.7	0.5	0.045	0.5 U	0.5	0.045	0.5 U	0.5	0.045
Copper	(a)	2.3	0.5	0.158	7.5	0.5	0.158	3.0	0.5	0.158	1.8	0.5	0.158
Lead	(a)	2.1	0.1	0.046	0.7	0.1	0.046		0.1	0.046		0.1	0.046
Nickel	(a)	0.5	0.5	0.079	0.5 U	0.5	0.079	1.4	0.5	0.079		0.5	0.079
Zinc	(a)	81	4	0.50	75	4	0.50	26	4	0.50	26	4	0.50
CONVENTIONALS (mg/L)													
Total Dissolved Solids (Method 160.1/SM2540C)	(a)	6.0	5.0	5.00	13	5.0	5.00	14.5	5.0	5.00	5.0 U	5.0	5.00
Total Suspended Solids (Method 160.2/SM2540D)	(a)	5.4	1.0	1.00	2.4	1.0	1.00	2.3	1.0	1.00	1.1 U	1.1	1.06

mg/L = milligrams per liter

μg/L = micrograms per liter

SVOCs = semivolatile organic compounds

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

SIM = Selected Ion Monitoring

U = Indicates the compound was undetected at the reported concentration.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

Bold = Detected compound.

Box = Exceedance of preliminary screening level.

(a) Preliminary cleanup levels apply to the dissolved fraction, not total fraction, and are presented here for information only.

	Dry Weight E	Eguivalent	IT-CB8	IT-CB10	IT-CB11	IT-CB12	IT-CB13B/14	IT-CB17	IT-CB20	IT-CB24	IT-CB25	IT-CB26	IT-CB27	IT-CB28	IT-CB29	IT-CB30	IT-CB34
	to SMS Cr		TL74D	TL84F	TL84E	TL84D	TL53K	TL74F	TL74C	TL74G	TL74H	TL74I	TL74E	TO80A	TL29B	TL29C	TL84A
	SCO/LAET (b)	CSL/2LAET (c)	09/09/2011	09/12/2011	09/12/2011	09/12/2011	09/08/2011	09/09/2011	09/09/2011	09/09/2011	09/09/2011	09/09/2011	09/09/2011	9/28/2011	09/07/2011	09/07/2011	09/12/2011
TOTAL METALS (mg/kg) EPA200.8/SW7471A																	
Arsenic	7 (h)		14.1	33.9	17.2	32.4	9.6	7.9	9.0	13.1	11.7	14.1	10.8	19.3	58.0	18.3	5.7
Cadmium	5.1	6.7	1.9	0.8	1.3	2.5	1.6	2.7	4.3	25.2	13.8	17.3	15.5	23.7	38.1	9.0	2.1
Chromium	260	270	142	92.3	152	373	66.3	49.5	79.6	116	97.1	106	61.9	200	492	388	59
Copper	390	390	78.0	73.8	108	251	67.7	53.4	80.2	168	114	124	78.00	202	606	258	30.5
Lead	450	530	148	59.8	201	437	178	75.6	158	108	98.9	96.8	55.1	147	568	246	13.2
Mercury	0.41	0.59	0.63	0.07	0.11	0.15	0.31	0.04	0.07	0.11	0.18	0.12	0.12	1.57	0.72	0.23	0.03 U
Silver	6.1	6.1	0.3	0.2	0.2	0.5	0.3 U	0.3 U	0.2	1.0	1.1	0.5	0.3	0.7	1.9	1.1	0.2 U
Zinc	410	960	880	278	640	1100	620	610	760	1120	1000	1530	1860	2390	6640	2240	132
PAHs (μg/kg-dry wt) SW8270DSIM																	
Naphthalene	2100	2100	87 U	220	90	190	160 J	NA	59 U	78	75	58 U	14	61	760 J	110	46 U
Acenaphthylene	1300	1300	87 U	140 U	25 J	58	230 U	NA	59 U	35	60 U	58 U		24	440 J	84	46 U
Acenaphthene	500	500	87 U	130 J	110	140	120 J	NA	59 U	66	45 J	39 J	9.0 J	34	750 J	110	46 U
Fluorene	540	540	87 U	140	120	190	140 J	NA	59 U	80	50 J	45 J	13 J	59	1100 J	150	46 U
Phenanthrene	1500	1500	260	940	2000	1500	1300	NA	370	800	570	440	190	780	9600	1900	46 U
Anthracene	960	960	87 U	120 J	130	120	140 J	NA	37 J	69	73	41 J	19	74	1300	270	46 U
2-Methylnaphthalene	670	670	87 U	100 J	33 J	170	230 U	NA	32 J	54	76	42 J	12 J	39	460 J	59	46 U
LPAH (d,e)	5200	5200	260	1550	2475	2198	1860	NA NA	407	1128	813	565	245	1032	13950 J	2624	46 U
Fluoranthene	1700	2500	350	1200	2800	1900	1300	NA	700	1200	880	660	370	1200	15000	3000	29 J
Pyrene	2600	3300	300	1200	2000	1300	1100	NA	580	880	740	480	290	900	12000	2600	26 J
Benzo(a)anthracene	1300	1600	130	380	730	430	470	NA	220	310	290	170	120	350	3900	1000	46 U
Chrysene	1400	2800	300	740	1200	1100	860	NA	480	560	600	350	210	630	8400	3400	100
Total Benzofluoranthenes (d, f)	3200	3600	320	780	1700	1400	810	NA	550	780	650	500	300	780	12000	4200	46 U
Benzo(a)pyrene	1600	1600	120	340	800	550	420	NA	230	340	280	200	140	370	4800	1000	46 U
Indeno(1,2,3-cd)pyrene	600	690	69 J	300	550	460	320	NA	120	200	200	110	72	260	3700	970	46 U
Dibenz(a,h)anthracene	230	230	87 U	77 J	140	120	230 U	NA	69	51	39 J	58 U	20	84	1100 J	250	46 U
Benzo(g,h,i)perylene	670	720	140	480	640	560	430	NA	220	260	280	160	99	300	3900	950	67
HPAH (d, g)	12000	17000	1729	5497	10560	7820	5710	NA	3169	4581	3959	2630	1621	4874	64800	17370	222
Total cPAH TEQ	150 (h)		174.9	501.1	1124	802	588.6	NA	330.7	479.7	403.9	281.5	193.3	523.7	6954	1676	1
SVOCs (µg/kg-dry wt) SW8270D																	
1,2-Dichlorobenzene	35	50	110 U	280 U	280 U	220 U	470 U	NA	94 U	280 U	300 U	290 U	90 U	230 L	J 59 L	J 59 U	94 U
1,4-Dichlorobenzene	110	110	110 U	280 U	280 U		470 U	NA	94 U			290 U					94 U
1,2,4-Trichlorobenzene	31	51	110 U	280 U	280 U		470 U	NA	94 U			290 U					
Hexachlorobenzene	22	70	110 U	280 U	280 U		470 U	NA	94 U			290 U		230 L			
Dimethylphthalate	71	160	110 U	280 U	280 U		470 U	NA	94	230 J	160 J	260 J	160	290	1500	450	94 U
Diethylphthalate	200	1200	280 U	700 U	710 U		1200 U	NA	240 U	710 U	750 U	730 U	230 U	580 L			
Di-n-Butylphthalate	1400	5100	110 U	280 U	280 U		470 U	NA	410	360	510	600	380	800	610	110	94 U
Butylbenzylphthalate	63	900	160 2200	350 J 720	280 U	470 3000	470 U 4700	NA NA	450 9800	3100 6000	1500 5000	1400 11000	750 3700	1100 3500	2200 13000	1100	94 U
bis(2-Ethylhexyl)phthalate	1300	3100	3300 500		880 380 H		4700 470 U	NA NA	3000	500	430	230 J	3700] 54 J	240		2300 J 59 U	210 94 U
Di-n-Octyl phthalate Dibenzofuran	6200 540	6200 540	110 U	280 U 350	280 U 1100	220 U 130 J	470 U 470 U	NA NA	3000 94 U	280 U		230 J 290 U	54 J 90 U		59 L J 320	130	94 U 94 U
Hexachlorobutadiene	11	120	560 U	1400 U	1400 U		2400 U	NA NA	470 U			1500 U					
N-Nitrosodiphenylamine	28	40	110 U	280 U	280 U		470 U	NA NA	94 U			290 U					
				====													
SVOCs (µg/kg-dry wt) SW8270D																	
Phenol	420	1200	62	280 U	280 U		470 U	NA	120	280 U		190 J	90 U			180	94 U
2-Methylphenol	63	63	110 U	280 U	280 U		470 U	NA	94 U			290 U					
4-Methylphenol	670	670	230	560 U	570 U	760	570 J	NA	85 J	260 J		320 J	180 U		500	140	190 U
2,4-Dimethylphenol	29	29	220 U	560 U	570 U		950 U	NA	190 U	570 U		580 U					
Pentachlorophenol	360	690	1100 U	2800 U	2800 U		4700 U	NA	940 U	2800 U		2900 U					
Benzyl Alcohol	57	73	56	280 U	280 U		240 J	NA	16000	840 5700 H	520	550	110	310	150	130	94 U
Benzoic Acid	650	650	2200 U	5600 U	5700 U	1400 J	9500 UJ	NA	560 J	5700 U	6000 U	5800 U	1800 U	4600 L	770 J	590 J	1900 U

	Dry Weight to SMS C SCO/LAET (b)	riteria (a)	IT-CB8 TL74D 09/09/2011	IT-CB10 TL84F 09/12/2011	IT-CB11 TL84E 09/12/2011	IT-CB12 TL84D 09/12/2011	IT-CB13B/14 TL53K 09/08/2011	IT-CB17 TL74F 09/09/2011	IT-CB20 TL74C 09/09/2011	IT-CB24 TL74G 09/09/2011	IT-CB25 TL74H 09/09/2011	IT-CB26 TL74I 09/09/2011	IT-CB27 TL74E 09/09/2011	IT-CB28 TO80A 9/28/2011	IT-CB29 TL29B 09/07/2011	IT-CB30 TL29C 09/07/2011	IT-CB34 TL84A 09/12/2011
PCBs (μg/kg) SW8082																	
Aroclor 1016			18 U	19 U	18 U	20 U	39 U	20 U	19 U	19 UJ	19 U	19 U	20 U	19 U	19 U	19 U	19 U
Aroclor 1242			18 U	19 U	18 U		39 U			19 UJ	19 U	19 U		19 U		19 U	19 U
Aroclor 1248			49	56 U	230 U	250 U	82	38 J	50	28 J	19 U	19 U	50	42	170 U	75 U	19 U
Aroclor 1254			120	150	600	720	170	89 J	120	100 J	44	43	170	90	480	180	12 J
Aroclor 1260			140 J	140 P	190	210	120	65 J	120 J	49 J	64 J	55 J	68 J	74	410	91	14 J
Aroclor 1221			18 U	19 U	18 U	20 U	39 U	20 U	19 U	19 UJ	19 U	19 U	20 U	19 U	19 U	19 U	19 U
Aroclor 1232			<u>18</u> U	19_U	18_U	U	39 U	20 U	19_U	19_UJ	19_U	19_U	20 U	19_U	19_U	19_U	19_U
Total PCBs (d)	2 (h)		309 J	290 P	790	930	372	192 J	290 J	177 J	108 J	98 J	288 J	206	890	271	26 J
CONVENTIONALS Total Organic Carbon (%)			11.6	6.40	9.03	13.0	13.6	11.1	11.2	11.5	12.2	9.64	4.25	13.4	10.9	12.3	3.53

	•							I ORWILA,	WASHINGIN	OIN								
	Dr. Waight	. Caviralant	IT ODGE	IT CD26	IT CD20/06/05	IT CD60/64	IT CDea	IT CDcc/c7	IT CD04/02	IT CD02	IT CD00/04	IT CROOP	IT CDA	IT CDD/ea/ea	IT CDC	IT CDD	IT ODE/77/77	D IT 0070
	Dry Weight	Equivalent Criteria (a)	IT-CB35 TL84B	IT-CB36 TL74B	IT-CB39/86/85 TL74A	IT-CB60/61 TL29G	IT-CB63 TL29F	IT-CB66/67 TL29I	IT-CB81/82 TL53B	IT-CB83 TL53D	IT-CB90/91 TL53C	IT-CB90B TL53J	IT-CBA TL29A	IT-CBB/62/68 TL29H	IT-CBC TL53G	IT-CBD TL53H	IT-CBE/77/77E TL53I	B IT-CG72 TL53A
			09/12/2011	09/09/2011	09/09/2011	09/07/2011	09/07/2011	09/07/2011	09/08/2011	09/08/2011	09/08/2011	09/08/2011	09/07/2011	09/07/2011	09/08/2011	09/08/2011	09/08/2011	09/08/2011
TOTAL METAL C (*** **/****)	Ì	Ì																
TOTAL METALS (mg/kg) EPA200.8/SW7471A																		
	- 4.		45.0		40.4		12.5	110		10.0						40.0	2.0	
Arsenic	7 (h)	0.7	15.2 J	8.2	13.1	7.0	12.9	14.3	6.5	18.8	4.6	8.3	14.3	6.5	12.5	12.3	8.2 39.5	6.8
Cadmium	5.1	6.7	7.3 J	2.1	13.0	3.0	5.7	11.7	6.6	14.7	4.8	1.3	17.1	7.2	117 170	154 J		14.8
Chromium	260	270	207 J	45.8	128 J	107	165	128	61.2	152	37.7	77.9	90.5	100		158 J	72.9	134
Copper	390 450	390 530	80.6 J 50.1 J	50.2 41.4	110 168 J	156 261	207 393	242 299	74.4 51.3	233 175	99.0 31.1	80.1 125	117 119	76.9 370	224 308	190 245	84.4 96.4	208 292
Lead Mercury	0.41	0.59	0.02	0.04	0.09	0.08	0.24	1.16	0.05	0.17	0.03	0.07	0.08	0.04	0.13	0.27 J	96.4 0.17	0.15
Silver	6.1	6.1	0.02 0.3 U	0.04 0.3 U	0.09	0.08	1.3	2.9	0.03 0.3 U	0.17	0.03 0.2 U	0.07 0.3 U	0.08	0.04	1.5	1.9	0.17	0.15
Zinc	410	960	384 J	380	1050	1680	1240	2400	359	1460	265	2060	1370	960	2240	2090	860	1400
ZIIIC	410	300	304 0	300	1030	1000	1240	2400	333	1400	203	2000	1370	300	2240	2030	000	1400
PAHs (µg/kg-dry wt)																		
SW8270DSIM																		
Naphthalene	2100	2100	47 U	98 U	230	67	92	170	34	62	19 J	89 J	51	49	100	190 J	57	110
Acenaphthylene	1300	1300	47 U	98 U	140 U	20 J	26 J	37	11 J	22 J	29 U	140 U	21 J	28 U	31 J	180 J	110	64 U
Acenaphthene	500	500	47 U	98 U	85 J	50	75	94	16	58	25 J	78 J	52	52	74	180	280	130
Fluorene	540	540	47 U	98 U	130 J	65	120	110	31	40	43	92 J	80	46	120	230 J	290	190
Phenanthrene	1500	1500	140	180	1600	680	1300	1500	320	570	280	570	590	540	960	830	3200	1400
Anthracene	960	960	47 U	98 U	140 U	86	110	150	28	72	36	140 U	76	67	94	220 J	360	170
2-Methylnaphthalene	670	670	34 J	98 U	81 J	38	64	120	33	43	17 J	90 J	43	33	88	180	40	78
LPAH (d,e)	5200	5200	140	180	2045	968	1723	2061	440	824	403	829	870	754	1379	1830	4297	2000
Fluoranthene	1700	2500	170	210	1900	1200	2100	2700	440	870	410	920	790	1000	1600	1200	5800	2000
Pyrene	2600	3300	170	240	1400	880	1600	2300	320	610	320	700	570	810	1200	890	4400	1400
Benzo(a)anthracene	1300	1600	40 J	120	280	340	550	760	120	210	140	270	260	390	400	420	2200	560
Chrysene	1400	2800	250	330	910	650	1100	1600	240	520	220	650	460	720	820	700	2500	980
Total Benzofluoranthenes (d, f)	3200	3600	150	280	940	920	1500	2600	310	590	270	730	580	760	1100	960	4200	1200
Benzo(a)pyrene	1600	1600	75	140	410	400	620	1100	130	240	120	280	260	390	390	420	2200	530
Indeno(1,2,3-cd)pyrene	600	690	56	98 U	250	290	430	730	96	150	68	180	180	250	320	260 J	970	320
Dibenz(a,h)anthracene	230	230	52	98 U	140 J	80	140	190	36	39	23 J	110 J	56	71	110	160	260	78
Benzo(g,h,i)perylene	670	720	120	130	420	370	530	840	140	160	89	340	310	300	500	290	900	340
HPAH (d, g)	12000	17000	1083	1450	6650	5130	8570	12820	1832	3389	1660	4180	3466	4691	6440	5300	23430	7408
Total cPAH TEQ	150 (h)		107.3	183.3	580.1	569.5	893	1544	188.6	344.1	172.3	415.5	372.2	544.3	591.2	607	2988	755.6
SVOCs (µg/kg-dry wt)																		
SW8270D																		
1,2-Dichlorobenzene	35	50	180 U	120 U	180 U							500 U	56 U				170 U	
1,4-Dichlorobenzene	110	110	180 U	120 U	180 U							500 U	56 U				170 U	
1,2,4-Trichlorobenzene	31	51	180 U	120 U	180 U							500 U	56 U		290 U		170 U	
Hexachlorobenzene	22	70	180 U	120 U	180 U	290 L						500 U	56 U		290 U		170 U	
Dimethylphthalate	71	160	180 U	120 U	150 J	610	300 U		290 U	320	39 J	500 U	260	170 U	460	240	170 U	170
Diethylphthalate	200	1200	460 U	300 U	460 U	720 L						1300 U	140 U				420 U	
Di-n-Butylphthalate	1400 63	5100	180 U 310 J	120 U	290 670	1300 7900	280 J 270 J	740 340	15000	200 J 950	320 390	500 U 330 J	1100 980	180 160 J	1000 4000	500 J 1400 J	190 530	500 400
Butylbenzylphthalate bis(2-Ethylhexyl)phthalate	1300	900 3100	310 J 3000	120 U 1200	4500	16000	6600	9000	1500 1800	4500	4000	330 3800	12000	2800	23000	22000 J	4600	10000
Di-n-Octyl phthalate	6200	6200	130 J	1200 120 U	100 J	2900	330	2300	570	290 U		500 U	12000	900	23000] 3800 J	22000 ₃ 2100	180	320
Dibenzofuran	540	540	180 U	120 U	830	290 L			290 U			500 U	28 J		290 U		170 U	
Hexachlorobutadiene	11	120	910 U	610 U	920 U				1500 U			2500 U					840 U	
N-Nitrosodiphenylamine	28	40	180 U	120 U	180 U				290 U			500 U					170 U	
SVOCs (µg/kg-dry wt) SW8270D																		
Phenol	420	1200	120 J	120 U	200	290 L	280 J	470	290 U	160 J	82	250 J	150	110 J	440	220 J	100 J	270
2-Methylphenol	63	63	180 U	120 U	180 U	290 L						500 U	56 U				170 U	
4-Methylphenol	670	670	410	67 J	540	200 J			580 U			3100	110	330 U		220 J	110 J	
2,4-Dimethylphenol	29	29	360 U	240 U	370 U							1000 U	110 U				330 U	
Pentachlorophenol	360	690	1800 U	1200 U	1800 U						780 U	5000 U	560 U		2900 U		1700 U	
Benzyl Alcohol	57	73	140 J	120 U	180 U	6500	1000	790	290 U			500 U	210	280	2500	3500	1900	390
Benzoic Acid	650	650	1600 J	2400 U	1400 J	5800 L												
	•	•																

	Dry Weight to SMS 0 SCO/LAET (b)	Criteria (a)	IT-CB35 TL84B 09/12/2011	IT-CB36 TL74B 09/09/2011	IT-CB39/86/85 TL74A 09/09/2011	IT-CB60/61 TL29G 09/07/2011	IT-CB63 TL29F 09/07/2011	IT-CB66/67 TL29I 09/07/2011	IT-CB81/82 TL53B 09/08/2011	IT-CB83 TL53D 09/08/2011	IT-CB90/91 TL53C 09/08/2011	IT-CB90B TL53J 09/08/2011	IT-CBA TL29A 09/07/2011	IT-CBB/62/68 TL29H 09/07/2011	IT-CBC TL53G 09/08/2011	IT-CBD TL53H 09/08/2011	IT-CBE/77/77B TL53I 09/08/2011	IT-CG72 TL53A 09/08/2011
PCBs (µg/kg)																		
SW8082																		
Aroclor 1016			19 U	20 U	92 U	20 U	20 U	19 U	19 U	14 U	20 U	19 U	20 U	19 U	20 U	20 U	19 U	19 U
Aroclor 1242			19 U	20 U	92 U	20 U	20 U	19 U	19 U	14 U	20 U	19 U	20 U	19 U	20 U	20 U	19 U	19 U
Aroclor 1248			23	22	92 U	20 U	36 U	36	19 U	56 U	20 U	40	58 U	26	53 U	40 U	19 U	91 U
Aroclor 1254			42	49	190	39	77	77	52 J	180 J	45 J	100	160	68	100 J	170 J	44	300 J
Aroclor 1260			42	69 J	180 J	43	86	120	53	110	38	87	92	54	140	140 P	44	330
Aroclor 1221			19 U	20 U	92 U	20 U	20 U	19 U	19 U	14 U	20 U	19 U	20 U	19 U	20 U	20 U	19 U	19 U
Aroclor 1232			19 U	20 U	92 U	20 U	20 U	19 U	19 U	14 U	20 U	19 U	20 U	19 U	20 U	20 U	19 U	19 U
Total PCBs (d)	2 (h)		107	140 J	370 J	82	163	233	105 J	290 J	83 J	227	252	148	240 J	310 JP	88	630 J
CONVENTIONALS																		
Total Organic Carbon (%)			5.03	12.2	16.3	9.26	13.0	21.6	8.95	11.3	5.48	12.5	7.91	5.95	20.9	11.4	6.45	16.3

Dry \	Veight Equivalent	IT-CG74	IT-OWS23	IT-OWS79	IT \ (T) (F	
			11 000020	11-04/3/9	IT-VTVE	IT-VTVW
	SMS Criteria (a)	TL29D	TL53L	TL53E	TL84C	TL29E
SCO/LAE	T (b) CSL/2LAET (c)	09/07/2011	09/08/2011	09/08/2011	09/12/2011	09/07/2011
TOTAL METALS (mg/kg)						
EPA200.8/SW7471A			40.4	22.2	22.2	22.2
Arsenic 7 (h) Cadmium 5.1	6.7	9.6 18.4	18.4 7.2	20.0 38.8	38.8 2.4	38.3 23.7
Chromium 260	270	198	284	200	290	821
Copper 390	390	218	312	315	245	205
Lead 450	530	377	268	296	378	182
Mercury 0.41	0.59	0.20	0.22	0.35	0.19	0.16
Silver 6.1	6.1	0.8	0.6	1.4	0.6	0.6
Zinc 410	960	1650	3390	3490	990	830
PAHs (μg/kg-dry wt)						
SW8270DSIM						
Naphthalene 2100	2100	270	220	300	180	140
Acenaphthylene 1300	1300	50 J	200 U	44 J	94	40 J
Acenaphthene 500	500	280	140 J	480	220	110
Fluorene 540	540	370	190 J	560	150	140
Phenanthrene 1500	1500	2500	1400	3600	1400	780
Anthracene 960	960	410	160 J	670	120	83
2-Methylnaphthalene 670	670	120	130 J	200	230	160
LPAH (d,e) 5200	5200	3880	2110	5654	2164	1293
Fluoranthene 1700		2800	2100	4500	2100	890
Pyrene 2600		2100	1600	3500	1600	660
Benzo(a)anthracene 1300	1600	890	590	1500	540	250
Chrysene 1400	2800	1200	1500	1900	1400	670
Total Benzofluoranthenes (d, f) 3200	3600	1600	1600	2600	1600	590
Benzo(a)pyrene 1600 Indeno(1,2,3-cd)pyrene 600	1600 690	780 440	600 450	1200 530	660 560	260 190
Indeno(1,2,3-cd)pyrene 600 Dibenz(a,h)anthracene 230	230	160	430 130 J	170	140	58 J
Benzo(g,h,i)perylene 670	720	600	760	610	760	280
HPAH (d, g) 1200		10570	9330	16510	9360	3848
Total cPAH TEQ 150 (h		1101	892	1699	958	375.5
SVOCa (scaller day such)						
SVOCs (µg/kg-dry wt) SW8270D						
1,2-Dichlorobenzene 35	50	300 U	500 U	360 U	240 U	410 U
1,4-Dichlorobenzene 110	110	300 U	500 U	360 U	240 U	410 U
1,2,4-Trichlorobenzene 31	51	300 U	500 U	360 U	240 U	410 U
Hexachlorobenzene 22	70	300 U	500 U	360 U	240 U	410 U
Dimethylphthalate 71	160	300 U	500 U	320 J	240 U	410 U
Diethylphthalate 200	1200	760 U	1200 U	890 U	590 U	1000 U
Di-n-Butylphthalate 1400		460	350 J	600	240 U	430
Butylbenzylphthalate 63	900	350	900	1400	370 J	370 J
bis(2-Ethylhexyl)phthalate 1300	3100	4100	15000	22000	3300	4400
Di-n-Octyl phthalate 6200		1000	2000	1800	130 J	410 U
Dibenzofuran 540	540	300 U	500 U	230 J	240 U	410 U
Hexachlorobutadiene 11 N-Nitrosodiphenylamine 28	120 40	1500 U 300 U	2500 U 500 U	1800 U 360 U	1200 U 240 U	2000 U 410 U
20	"		222 0	222 0	2.00	2
SVOCs (µg/kg-dry wt)						
SW8270D	4000		500	400	000	200 1
Phenol 420	1200 63	210 J 300 U	500 500 U	460 360 U	260 240 U	390 J 410 U
2-Methylphenol 63 4-Methylphenol 670	670	180 J	11000	360 U 510 J	590	370 J
2,4-Dimethylphenol 29	29	610 U	1000 U	710 U	480 U	820 U
Pentachlorophenol 360	690	3000 U	5000 U	3600 U	2400 U	4100 U
Benzyl Alcohol 57	73	860	7200	6500	210 J	410 U
Benzoic Acid 650	650	6100 UJ				8200 UJ

	Dry Weight to SMS C SCO/LAET (b)	IT-CG74 TL29D 09/07/2011	IT-OWS23 TL53L 09/08/2011	IT-OWS79 TL53E 09/08/2011	IT-VTVE TL84C 09/12/2011	IT-VTVW TL29E 09/07/2011
PCBs (µg/kg) SW8082						
Aroclor 1016		 19 U	39 U	19 U	39 U	19 U
Aroclor 1242		 19 U	39 U	19 U	39 U	19 U
Aroclor 1248		 140 U	94	75 U	190 U	81 U
Aroclor 1254		 280	210	180 J	570	130
Aroclor 1260		 99	160	180	200	100
Aroclor 1221		 19 U	39 U	19 U	39 U	19 U
Aroclor 1232		 19 U	39_U	19_U	39_U	19 U
Total PCBs (d)	2 (h)	379	464	360 J	770	230
CONVENTIONALS Total Organic Carbon (%)		 16.4	21.5	14.1	12.0	10.5

mg/kg = milligrams per kilogram μg/kg = micrograms per kilogram

NA = Not Analyzed

HPAH = high molecular weight polycyclic aromatic hydrocarbons

LPAH = low molecular weight polycylic aromatic hydrocarbons

PCBs - polychlorinated biphenyls

PAHs =polcyclic aromatic hydrocarbons

SVOCs = semivolatile organic compounds EPA = U.S. Environmental Protection Agency

SIM= Selected Ion Monitoring

PRG = Preliminary Remediation Goal

SCO = Sediment Cleanup Objectives

CSL = Cleanup Screening Level

RPD = Relative Percent Difference

SMS = Sediment Management Standards

U = Indicates the compound was not detected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- P = The analyte was detected on both chromatographic columns but the quantified values differ by 40% RPD with no obvious chromatographic interference. The higher of the two values is reported by the laboratory.

Indicates concentration exceeds SCO but less than the CSL or the dry weight equivalent values [Lowest Apparent Effects Threshold (LAET) and 2LAET, respectively]
Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

Bold = Detected compound.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS Sediment Cleanup Objective /Lowest Apparent Effects Threshold
- (c) SMS Cleanup Screening Level / Second Lowest Apparent Effects Threshold
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The LPAH criterion represents the sum of the following "low molecular weight polycyclic aromatic hydrocarbon" compounds: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, and anthracene. The LPAH criterion is not the sum of the criteria values for the individual LPAH compounds listed.
- (f) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (g) The HPAH criterion represents the sum of the following "high molecular weight polynuclear aromatic hydrocarbon" compounds: fluoranthene, pyrene, benzo(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene. The HPAH criterion is not the sum the criteria values for the individual HPAH compounds listed.
- (h) Lower Duwamish Waterway PRG.

			2011 Storm	Drain Solids	2012 Source Material			
			IT-CG72	IT-CG74	IT-CG-72	IT-CG-74		
	Dry Weight	Equivalent	TL53A	TL29D	6607158	6607157		
	, ,	Criteria (a)	TL53	TL29	1300346	1300346		
	SCO/LAET (b)	CSL/2LAET (c)	09/08/2011	09/07/2011	04/04/2012	04/04/2012		
SEMIVOLATILES (µg/kg)								
Method SW8270D								
Benzoic Acid	650	650	2700 UJ	6100 UJ	58,000 U	84,000 U		
Benzyl Alcohol	57	73	390	860	27,000	17,000 U		
4-Bromophenyl-phenylether			130 U	300 U	5800 U	8400 U		
Butylbenzylphthalate	63	900	400	350	23,000 U	34,000 U		
Di-n-Butylphthalate	1400	5100	500	460	23,000 U	34,000 U		
Carbazole			300	260 J1	5800 U	8400 U		
4-Chloro-3-methylphenol			670 U	1500 U	5800 U	8400 U		
4-Chloroaniline			1800 U	4100 U	5800 U	8400 U		
bis(2-Chloroethoxy) Methane			130 U	300 U	5800 U	8400 U		
Bis-(2-Chloroethyl) Ether			130 U	300 U	5800 U	8400 U		
2-Chloronaphthalene			130 U	300 U	2400 U	3500 U		
2-Chlorophenol			130 U	300 U	5800 U	8400 U		
4-Chlorophenyl-phenylether			130 UJ	300 UJ	5800 U	8400 U		
2,2'-Oxybis(1-Chloropropane)			130 U	300 U	5800 U	8400 U		
1,2-Dichlorobenzene	35	50	130 U	300 U	5800 U	8400 U		
1,3-Dichlorobenzene			130 U	300 U	5800 U	8400 U		
1,4-Dichlorobenzene	110	110	130 U	300 U	5800 U	8400 U		
3,3'-Dichlorobenzidine			1000 U	2300 U	35,000 U	51,000 U		
2,4-Dichlorophenol			1300 U	3000 U	5800 U	8400 U		
Diethylphthalate	200	1200	340 U	760 U	23,000 U	34,000 U		
2,4-Dimethylphenol	29	29	270 U	610 U	3500 U	5100 U		
Dimethylphthalate	71	160	170	300 U	23,000 U	34,000 U		
4,6-Dinitro-2-Methylphenol			1300 U	3000 U	58,000 U	84,000 U		
2,4-Dinitrophenol			5700 U	13000 U	100,000 U	150,000 U		
2,4-Dinitrotoluene			670 U	1500 U	23,000 U	34,000 U		
2,6-Dinitrotoluene			670 U	1500 U	5800 U	8400 U		
bis(2-Ethylhexyl)phthalate	1300	3100	10000	4100	75,000	41,000 J1		
Hexachlorobenzene	22	70	130 U	300 U	1200 U	1700 U		
Hexachlorobutadiene	11	120	670 U	1500 U	3500 U	5100 U		
Hexachlorocyclopentadiene			2700 U	6100 U	58,000 U	84,000 U		
Hexachloroethane			130 U	300 U	12,000 U	17,000 U		
Isophorone			130 U	300 U	5800 U	8400 U		
1-Methylnaphthalene			130 U	300 U	1200 U	1700 U		
2-Methylphenol	63	63	130 U	300 U	3500 U	5100 U		
4-Methylphenol	670	670	200 J1	180 J1	6400 J1	9200 J1		
2-Nitroaniline			670 U	1500 U	5800 U	8400 U		
3-Nitroaniline			670 U	1500 U	23,000 U	34,000 U		
4-Nitroaniline			670 U	1500 U	23,000 U	34,000 U		
Nitrobenzene			130 U	300 U	5800 U	8400 U		
2-Nitrophenol			670 U	1500 U	5800 U	8400 U		
4-Nitrophenol			670 U	1500 U	58,000 U	84,000 U		
N-Nitroso-Di-N-Propylamine			130 U	300 U	5800 U	8400 U		
N-Nitrosodiphenylamine	28	40	130 U	300 U	3500 U	5100 U		
Di-n-Octyl phthalate	6200	6200	320	1000	23,000 U	34,000 U		
Pentachlorophenol	360	690	1300 U	3000 U	12,000 U	17,000 U		
Phenol	420	1200	270	210 J1	5800 U	8400 U		
1,2,4-Trichlorobenzene	31	51	130 U	300 U	5800 U	8400 U		
2,4,5-Trichlorophenol			670 U	1500 U	5800 U	8400 U		
2,4,6-Trichlorophenol			670 U	1500 U	5800 U	8400 U		
PAHs (μg/kg)								
Method SW8270D-SIM								
Acenaphthene	500	500	130	280	880 J	770		
Acenaphthylene	1300	1300	64 U	50 J1	96 J, J1	150 J1		
Anthracene	960	960	170	410	1300 J	1500		
Benzo(a)anthracene	1300	1600	560	890	3200 J	5500		
Benzo(a)pyrene	1600	1600	530	780	3000 J	5200		
Benzo(b)fluoranthene			NA NA	NA NA	5000 J	9200		
Benzo(g,h,i)perylene	670	720	340	600	1700	2300		
Benzo(k)fluoranthene	5.0	0	NA NA	NA NA	1800	4200		
Total Benzofluoranthenes (d, e)	3200	3600	1200	1600	NA	NA		
Chrysene	1400	2800	980	1200	4000 J	7000		
Dibenz(a,h)anthracene	230	230	78	160	330	690		
						555		

			2011 Storm	Drain Solids	2012 Source Material			
			IT-CG72	IT-CG74	IT-CG-72	IT-CG-74		
	Dry Weight	t Equivalent	TL53A	TL29D	6607158	6607157		
		Criteria (a)	TL53	TL29	1300346	1300346		
	SCO/LAET (b)	CSL/2LAET (c)	09/08/2011	09/07/2011	04/04/2012	04/04/2012		
Dibenzofuran			110	200	530	530 J1		
Fluoranthene	1700	2500	2000	2800	9100	16,000		
Fluorene	540	540	190	370	860 J	830		
Indeno(1,2,3-cd)pyrene	600	690	320	440	1400	2300		
2-Methylnaphthalene	670	670	78	120	280 J	260 J1		
Naphthalene	2100	2100	110	270	450 J	550 J1		
Total Naphthalenes			188	390	730 J	810 J		
Phenanthrene	1500	1500	1400	2500	7300 J	8600		
Pyrene	2600	3300	1400	2100	7100 J	10,000		
cPAH TEQ	150 (f)		756	1101	4213 J	7459		
PCBs (µg/kg)								
Method SW8082								
Aroclor 1016			19 U	19 U	18 U	24 U		
Aroclor 1221			19 U	19 U	22 U	31 U		
Aroclor 1232			19 U	19 U	39 U	54 U		
Aroclor 1242			19 U	19 U	16 U	22 U		
Aroclor 1248			91 U	140 U	16 U	22 U		
Aroclor 1254			300 J	280	250 J	260 J		
Aroclor 1260			330	99	150 J	190 J		
Total PCBs (d)	2 (f)		630 J	379	400 J	450 J		
Total 1 020 (u)	2 (1)		000	010	400	400		
TOTAL METALS (mg/kg)								
Methods 6010B/6020								
Antimony			0.4 U	0.7	2.91	8.87		
Arsenic	7 (f)		6.8	9.6	8.88	11.5		
Barium			140	175	120	147		
Beryllium			0.5	0.6 U	0.152 J1	0.229 J1		
Cadmium	5.1	6.7	14.8	18.4	4.59	8.61		
Chromium	260	270	134	198	78.6	148		
Copper	390	390	208	218	98.6	174		
Lead	450	530	292	377	98.3	169		
Nickel			64.9	101	41.8	75.8		
Selenium			0.9 U	1 U	1.66 U	2.22 U		
Silver	6.1	6.1	0.7	0.8	1.11 J1	1.84		
Zinc	410	960	1400	1650	691	1150		
Mathad CM7400								
Method SW7199			1.09	4.00.11	3.5	4.4.14		
Chromium VI			1.09	1.08 U	3.5	1.1 J1		
Method SW7471A								
Mercury	0.41	0.59	0.15	0.20	0.0866 J1	0.142 J1		
DIOXIN/FURAN (pg/g)								
EPA 1613B								
1,2,3,4,6,7,8-HpCDD			NA	874	NA	NA		
1,2,3,4,6,7,8-HpCDF			NA	265	NA	NA		
1,2,3,4,7,8,9-HpCDF			NA	20.7	NA	NA		
1,2,3,4,7,8-HxCDD			NA	25.5	NA	NA		
1,2,3,4,7,8-HxCDF			NA	24.6	NA	NA		
1,2,3,6,7,8-HxCDD			NA	44.6	NA	NA		
1,2,3,6,7,8-HxCDF			NA	19.2	NA	NA		
1,2,3,7,8,9-HxCDD			NA	39.8	NA	NA		
1,2,3,7,8,9-HxCDF			NA	7.39	NA	NA		
1,2,3,7,8-PeCDD			NA	19.2	NA	NA		
1,2,3,7,8-PeCDF			NA	7.90	NA	NA		
2,3,4,6,7,8-HxCDF			NA	22.1	NA	NA		
2,3,4,7,8-PeCDF			NA	11.5	NA	NA		
2,3,7,8-TCDD			NA	3.81 U	NA	NA		
2,3,7,8-TCDF			NA	25.1	NA	NA		
OCDD			NA	7210	NA	NA		
OCDF			NA NA	750	NA	NA		
Total HpCDD			NA NA	1680	NA NA	NA		
Total HpCDF			NA NA	711	NA	NA		
Total HxCDD			NA NA	402	NA	NA		
Total HxCDF			NA NA	430	NA NA	NA		
Total PeCDD			NA NA	112	NA NA	NA		
Total PeCDF			NA NA	228	NA	NA		
	•							

TABLE 26

STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - BUILDING 14-01 SOUTH AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

			2011 Storm	Drain Solids	2012 Sour	ce Material
			IT-CG72	IT-CG74	IT-CG-72	IT-CG-74
	Dry Weight	t Equivalent	TL53A	TL29D	6607158	6607157
	to SMS Criteria (a)		to SMS Criteria (a) TL53 TL29		1300346	1300346
	SCO/LAET (b)	SCO/LAET (b) CSL/2LAET (c)		09/07/2011	04/04/2012	04/04/2012
Total TCDD			NA	35.0	NA	NA
Total TCDF			NA	180	NA	NA
D/F TEQ	2000 (f)		NA	57.7	NA	NA

 $\mu g/kg = micrograms \ per \ kilogram \\ SMS = Sediment \ Management \ Standards$

 $\label{eq:csl} \text{mg/kg} = \text{milligrams per kilogram} \qquad \qquad \text{CSL} = \text{Cleanup Screening Level}$

pg/g = picogram per gram

PAHs polyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

NA = Not Analyzed

PRG = Preliminary Remediation Goal

SCO = Sediment Cleanup Objective

LAET = Lowest Apparent Effects Threshold

TEQ = Toxic Equivalent Concentration

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate

and less than the reporting limit, but equal to or greater than the detection limit.

Indicates concentration exceeds SCO, but is less than the CSL or the dry weight equivalent values (LAET and 2LAET, respectively)
Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS SCO/LAET
- (c) SMS CSL/2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

	r			6044.0	Desir Ostist		0040 0
			IT-CB60/61	2011 Storm IT-CB63	Drain Solids IT-CB66/67	IT-CBB/62/68	2012 Source Material IT-CB-66/67
	Dry Weigh	t Equivalent	TL29G	TL29F	TL29I	TL29H	11-CB-66/67 6607151
		Criteria (a)	TL29G	TL29	TL291	TL29H	1300346
	SCO/LAET (b)		09/07/2011	09/07/2011	09/07/2011	09/07/2011	04/03/2012
SEMIVOLATILES (µg/kg)		` '					
Method SW8270D							
Benzoic Acid	650	650	5800 UJ	5900 UJ	1200 UJ	3300 UJ	20.000 U
Benzyl Alcohol	57	73	6500 GS	1000	790	280	4000 U
4-Bromophenyl-phenylether	ŭ.	.0	290 U	300 U	58 U	170 U	2000 U
Butylbenzylphthalate	63	900	7900	270 J1	340	160 J1	8000 U
Di-n-Butylphthalate	1400	5100	1300	280 J1	740	180	8000 U
Carbazole			170 J1	240 J1	200	170 U	6000
4-Chloro-3-methylphenol			1400 U	1500 U	290 U	840 U	2000 U
4-Chloroaniline			3900 U	4000 U	780 U	2300 U	2000 U
bis(2-Chloroethoxy) Methane			290 U	300 U	58 U	170 U	2000 U
Bis-(2-Chloroethyl) Ether			290 U	300 U	58 U	170 U	2000 U
2-Chloronaphthalene			290 U	300 U	58 U	170 U	840 U
2-Chlorophenol			290 U	300 U	58 U	170 U	2000 U
4-Chlorophenyl-phenylether			290 UJ	300 UJ	58 UJ	170 UJ	2000 U
2,2'-Oxybis(1-Chloropropane)			290 U	300 U	58 U	170 U	2000 U
1,2-Dichlorobenzene	35	50	290 U	300 U	58 U	170 U	2000 U
1,3-Dichlorobenzene	440	440	290 U	300 U	58 U	170 U	2000 U
1,4-Dichlorobenzene	110	110	290 U	300 U	58 U	170 U	2000 U
3,3'-Dichlorobenzidine			2200 U 2900 U	2200 U	430 U	1200 U	12,000 U
2,4-Dichlorophenol	200	1200	2900 U 720 U	3000 U 740 U	580 U 140 U	1700 U 420 U	2000 U 8000 U
Diethylphthalate 2,4-Dimethylphenol	29	29	580 U	590 U	140 U	330 U	1200 U
Dimethylphthalate	71	160	610	300 U	520	170 U	8000 U
4,6-Dinitro-2-Methylphenol	, ,	100	2900 U	3000 U	580 U	1700 U	20,000 U
2,4-Dinitrophenol			12000 U	13000 U	2400 U	7100 U	36,000 U
2,4-Dinitrotoluene			1400 U	1500 U	290 U	840 U	8000 U
2,6-Dinitrotoluene			1400 U	1500 U	290 U	840 U	2000 U
bis(2-Ethylhexyl)phthalate	1300	3100	16000	6600	9000	2800	71,000
Hexachlorobenzene	22	70	290 U	300 U	58 U	170 U	400 U
Hexachlorobutadiene	11	120	1400 U	1500 U	290 U	840 U	1200 U
Hexachlorocyclopentadiene			5800 U	5900 U	1200 U	3300 U	20,000 U
Hexachloroethane			290 U	300 U	58 U	170 U	4000 U
Isophorone			290 U	300 U	34 J1	170 U	2000 U
1-Methylnaphthalene			290 U	300 U	37 J1	170 U	1000 J1
2-Methylphenol	63	63	290 U	300 U	58 U	170 U	1200 U
4-Methylphenol	670	670	200 J1	330 J1	220	330 U	18,000
2-Nitroaniline			1400 U	1500 U	290 U	840 U	2000 U
3-Nitroaniline			1400 U	1500 U	290 U	840 U	8000 U
4-Nitroaniline			1400 U	1500 U	290 U	840 U	8000 U
Nitrobenzene			290 U	300 U	58 U	170 U	2000 U
2-Nitrophenol			1400 U	1500 U	290 U	840 U	2000 U 20.000 U
4-Nitrophenol			1400 U 290 U	1500 U 300 U	290 U 58 U	840 U 170 U	20,000 U 2000 U
N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine	28	40	290 U 290 U	300 U 300 U	37 J1	170 U 170 U	2000 U 1200 U
N-Nitrosodipnenylamine Di-n-Octyl phthalate	28 6200	40 6200	290 U 2900	300 U 330	2300	900	1200 U 8000 U
Pentachlorophenol	360	690	2900 U	3000 U	580 U	1700 U	4000 U
Phenol	420	1200	290 U	280 J1	470	110 J1	2000 U
1,2,4-Trichlorobenzene	31	51	290 U	300 U	58 U	170 U	2000 U
2,4,5-Trichlorophenol]	÷.	1400 U	1500 U	290 U	840 U	2000 U
2,4,6-Trichlorophenol			1400 U	1500 U	290 U	840 U	2000 U
PAHs (µg/kg)							
Method SW8270D-SIM	500	F00		7.5		50	4000
Acceptable	500	500	50 30 11	75 36 14	94	52	4000
Acenaphthylene	1300	1300	20 J1	26 J1	37 450	28 U	650 J1
Anthracene Benzo(a)anthracene	960 1300	960 1600	86 340	110 550	150	67 390	7200 12,000
Benzo(a)anthracene Benzo(a)pyrene	1300 1600	1600	340 400	620	760 1100	390 390	12,000
Benzo(b)fluoranthene	1000	1000	NA	620 NA	NA	NA	21,000
Benzo(g,h,i)perylene	670	720	370	530	840	300	3500
Benzo(k)fluoranthene		. 20	NA NA	NA	NA	NA	9500
Total Benzofluoranthenes (d, e)	3200	3600	920	1500	2600	760	NA
							-

TABLE 27

STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - BUILDING 14-01 EAST AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

				2011 Storm	Drain Solids		2012 Source Material
			IT-CB60/61	IT-CB63	IT-CB66/67	IT-CBB/62/68	IT-CB-66/67
	Dry Weigh	t Equivalent	TL29G	TL29F	TL29I	TL29H	6607151
		Criteria (a)	TL29	TL29	TL29	TL29	1300346
		CSL/2LAET (c)	09/07/2011	09/07/2011	09/07/2011	09/07/2011	04/03/2012
Chrysene	1400	2800	650	1100	1600	720	15,000
Dibenz(a,h)anthracene	230	230	80	140	190	71	1100
Dibenzofuran	200	200	50	98	110	41	2900
Fluoranthene	1700	2500	1200	2100	2700	1000	38,000
Fluorene	540	540	65	120	110	46	4600
Indeno(1,2,3-cd)pyrene	600	690	290	430	730	250	3800
2-Methylnaphthalene	670	670	38	64	120	33	1600
Naphthalene	2100	2100	67	92	170	49	3500
Total Naphthalenes			105	156	290	82	5100
Phenanthrene	1500	1500	680	1300	1500	540	33,000
Pyrene	2600	3300	880	1600	2300	810	30,000
cPAH TEQ	150 (f)		570	893	1544	544	16,890
PCBs (µg/kg) Method SW8082							
Aroclor 1016			20 U	20 U	19 U	19 U	31 U
Aroclor 1221			20 U	20 U	19 U	19 U	39 U
Aroclor 1232			20 U	20 U	19 U	19 U	68 U
Aroclor 1242			20 U	20 U	19 U	19 U	28 U
Aroclor 1248			20 U	36 U	36	26	28 U
Aroclor 1254			39	77	77	68	190 J
Aroclor 1254 Aroclor 1260			43	86	120	54	130 J, J1
Total PCBs (d)	2 (f)		82	163	233	148	320 J
	2 (1)		<u> </u>	.00			020
TOTAL METALS (mg/kg)							
Methods 6010B/6020							
Antimony			0.3 U	0.5 U	0.4 U	0.3 U	12.5
Arsenic	7 (f)		7.0	12.9	14.3	6.5	30.8
Barium			125	169	229	90.8	229
Beryllium			0.3 U	0.5 U	0.4	0.3 U	0.259 J1
Cadmium	5.1	6.7	3.0	5.7	11.7	7.2	13.4
Chromium	260	270	107	165	128	100	168
Copper	390	390	156	207	242	76.9	268
Lead	450	530	261	393	299	370	294
Nickel			53.9	87	87	40.3	78.8
Selenium	ĺ		0.8 U	1 U	1 U	0.7 U	2.84 U
Silver	6.1	6.1	0.8	1.3	2.9	0.3	1.94 J1
Zinc	410	960	1680	1240	2400	960	2260
Method SW7199							
			0.000.11	4.04.11	0.070 !!	0.505.11	44.4
Chromium VI			0.698 U	1.01 U	0.879 U	0.595 U	11.1
Method SW7471A							
Mercury	0.41	0.59	0.08	0.24	1.16	0.04	0.168 J1

 μ g/kg = micrograms per kilogram TEQ = Toxic Equivalent Concentration mg/kg = milligrams per kilogram NA = Not Analyzed

mg/kg = milligrams per kilogram
PAHs polyclic aromatic hydrocarbons
SMS = Sediment Management Standards
PCBs = polychlorinated biphenyls
CSL = Cleanup Screening Level
cPAHs = carcinogenic PAHs
SCO = Sediment Cleanup Objective
SIM = Selected Ion Monitoring
LAET = Lowest Apparent Effects Threshold

PRG = Preliminary Remediation Goal

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

Indicates concentration exceeds SCO, but is less than the CSL or the dry weight equivalent values (LAET and 2LAET, respectively)
Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS SCO/LAET
- (c) SMS CSL/2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

				Storm Drain S		2012 Source M	
			IT-CBC	IT-CBD	IT-CBE/77/77B	IT-CB-77/77B/77E	IT-CB-C/
	Dry Weigh	t Equivalent	TL53G	TL53H	TL53I	6607152	6607153
		Criteria (a)	TL53	TL53	TL53	1300346	1300346
	SCO/LAET (b)	CSL/2LAET (c)	09/08/2011	09/08/2011	09/08/2011	04/03/2012	04/03/201
SEMIVOLATILES (µg/kg)							
Method SW8270D							
Benzoic Acid	650	650	5900 UJ	4700	3300 UJ	81,000 U	100,000
Benzyl Alcohol	57	73	2500	3500	1900	16,000 U	20,000
4-Bromophenyl-phenylether			290 U	240	170 U	8100 U	10,000
Butylbenzylphthalate	63	900	4000	1400	530	32,000 U	41,000
Di-n-Butylphthalate	1400	5100	1000	500	190	32,000 U	41,000
Carbazole			150 J	240	110 J	8100 U	10,000
4-Chloro-3-methylphenol			1500 U	1200	840 U	8100 U	10,000
4-Chloroaniline			4000 U	3200	2300 U	8100 U	10,000
			290 U	240	170 U	8100 U	10,000
bis(2-Chloroethoxy) Methane			290 U	240	170 U	8100 U	
Bis-(2-Chloroethyl) Ether							10,000
2-Chloronaphthalene			290 U	240	170 U	3400 U	4300
2-Chlorophenol			290 U	240	170 U	8100 U	10,000
4-Chlorophenyl-phenylether			290 U	240	170 U	8100 U	10,000
2,2'-Oxybis(1-Chloropropane)			290 U	240	170 U	8100 U	10,000
1,2-Dichlorobenzene	35	50	290 U	240	170 U	8100 U	10,000
1,3-Dichlorobenzene			290 U	240	170 U	8100 U	10,000
1,4-Dichlorobenzene	110	110	290 U	240	170 U	8100 U	10,000
3,3'-Dichlorobenzidine		-	2200 U	1800	1200 U	48,000 U	61,000
2,4-Dichlorophenol	İ		2900 U	2400	1700 U	8100 U	10.000
	200	1200	740 U	590	420 U	32,000 U	41.000
Diethylphthalate	200	1200		470	420 U 330 U	· ·	,
2,4-Dimethylphenol			590 U			4800 U	6100
Dimethylphthalate	71	160	460	240	170 U	32,000 U	41,000
4,6-Dinitro-2-Methylphenol			2900 U	2400	1700 U	81,000 U	100,000
2,4-Dinitrophenol			12000 U	10000	7100 U	150,000 U	180,000
2,4-Dinitrotoluene			1500 U	1200	840 U	32,000 U	41,000
2,6-Dinitrotoluene			1500 U	1200	840 U	8100 U	10,000
bis(2-Ethylhexyl)phthalate	1300	3100	23000	22000	4600	32.000 U	41,000
Hexachlorobenzene	22	70	290 U	240	170 U	1600 U	2000
Hexachlorobutadiene	11	120	1500 U	1200	840 U	4800 U	6100
		120	5900 U	4700	3300 U		100,000
Hexachlorocyclopentadiene						81,000 U	
Hexachloroethane			290 U	240	170 U	16,000 U	20,000
Isophorone			290 U	240	170 U	8100 U	10,000
1-Methylnaphthalene			290 U	240	170 U	1600 U	2000
2-Methylphenol	63	63	290 U	240	170 U	4800_U	6100
4-Methylphenol	670	670	190 J	220	110 J	8200 J1	10,000
2-Nitroaniline			1500 U	1200	840 U	8100 U	10,000
3-Nitroaniline			1500 U	1200	840 U	32,000 U	41,000
4-Nitroaniline			1500 U	1200	840 U	32,000 U	41,000
Nitrobenzene			290 U	240	170 U	8100 U	10,000
2-Nitrophenol			1500 U	1200	840 U	8100 U	10,000
4-Nitrophenol			1500 U	1200	840 U	81,000 U	100,000
N-Nitroso-Di-N-Propylamine			290 U	240	170 U	8100 U	10,000
N-Nitrosodiphenylamine	28	40	290 U	240	170 U	4800 U	6100
Di-n-Octyl phthalate	6200	6200	3800	2100	180	32,000 U	41,000
Pentachlorophenol	360	690	2900 U	2400	1700 U	16,000 U	20,000
Phenol	420	1200	440	220	100 J	8100 U	10,000
1,2,4-Trichlorobenzene	31	51	290 U	240	170 U	8100 U	10,000
2,4,5-Trichlorophenol	1		1500 U	1200	840 U	8100 U	10,000
2,4,6-Trichlorophenol	1		1500 U	1200	840 U	8100 U	10,000
_, .,			1000 0	1200	0-0 0	0100 0	10,000
PAHs (µg/kg)							
Method SW8270D-SIM							
Acenaphthene	500	500	74	180	280	530 J. J1	420
Acenaphthylene	1300	1300	31 J	180	110	210 J. J1	140
Anthracene	960	960	94	220	360	1800 J	670
Benzo(a)anthracene	1300	1600	400	420	2200	3900 J	2000
Benzo(a)pyrene	1600	1600	390	420	2200	3200 J	2300
Benzo(b)fluoranthene	1300	1000	330	723	2200	5500 J	5000
	070	700	500		000		
Benzo(g,h,i)perylene	670	720	500	290	900	1400 J	940
Benzo(k)fluoranthene	2005	2000	***	⊨	***	2700 J	1900
Total Benzofluoranthenes (d, e)	3200	3600	1100	960	4200		
Chrysene	1400	2800	820	700	2500	5400 J	3500
Dibenz(a,h)anthracene	230	230	110	160	260	400 J. J1	270
Dibenzofuran	İ		78	180	140	430 J. J1	290
Fluoranthene	1700	2500	1600	1200	5800	11,000 J	6800
Fluorene	540	540	120	230	290	660 J	480
Indeno(1,2,3-cd)pyrene	600	690	320	260	970	1200 J	810
2-Methylnaphthalene	670	670	88	180	40	300 J. J1	270
						700 J. J1	500
Naphthalene	2100	2100	100	190	57		
Total Naphthalenes	1			i ⊢		1000 J	500
Phenanthrene	1500	1500	960	830	3200	8200 J	4500
Pyrene	2600	3300	1200	890	4400	13,000 J	5100
cPAH TEQ	150 (f)		47150	42640	169160	4624 J	3306

				Storm Drain		2012 Source	
			IT-CBC	IT-CBD	IT-CBE/77/77B	IT-CB-77/77B/77E	IT-CB-C/D
	Dry Weigh	nt Equivalent	TL53G	TL53H	TL53I	6607152	6607153
		Criteria (a)	TL53	TL53	TL53	1300346	1300346
	SCO/LAET (b)	CSL/2LAET (c)	09/08/2011	09/08/2011	09/08/2011	04/03/2012	04/03/2012
PCBs (µg/kg)							
Method SW8082							
Aroclor 1016			20 U	20	19 U	23 U	29 U
Aroclor 1221			20 U	20	19 U	30 U	38 U
Aroclor 1232			20 U	20	19 U	52 U	65 U
Aroclor 1242			20 U	20	19 U	21 U	27 U
Aroclor 1248			53 U	40	19 U	21 U	27 U
Aroclor 1254			100 J	170	44	92 J, J1	270 J
Aroclor 1260			140	140	44	110 J	40 U
Total PCBs (d)	2 (f)		240 J	310	88	202 J	270 J
TOTAL METALS (mg/kg)							
Methods 6010B/6020							
Antimony			0.7	1.0	0.3 U	3.06	5.30
Arsenic	7 (f)		12.5	12.3	8.2	14.8	22.7
Barium			185	140	152	221	313
Beryllium			0.3 U	0.5	0.3 U	0.262 J1	0.327 J1
Cadmium	5.1	6.7	117	154	39.5	10.1	69.2
Chromium	260	270	170	158	72.9	156	178
Copper	390	390	224	190	84.4	180	265
Lead	450	530	308	245	96.4	92.9	137
Nickel			92.9	145	65.8	64.8	94.9
Selenium			0.8 U	1	0.7 U	2.15 U	2.75 U
Silver	6.1	6.1	1.5	1.9	0.3	2.00	2.68
Zinc	410	960	2240	2090	860	1050	1660
Method SW7199							
Chromium VI			0.712 U	0.834	0.557 U	0.65 U	10.1
Method SW7471A							
Mercury	0.41	0.59	0.13	0.27	0.17	0.769	0.183 J1

μg/kg = micrograms per kilogram mg/kg = milligrams per kilogram

TEQ = Toxic Equivalent Concentration NA = Not Analyzed

PAHs polyclic aromatic hydrocarbons PCBs = polychlorinated biphenyls cPAHs = carcinogenic PAHs

SMS = Sediment Management Standards CSL = Cleanup Screening Level SCO = Sediment Cleanup Objective LAET = Lowest Apparent Effects Threshold

SIM = Selected Ion Monitoring

PRG = Preliminary Remediation Goal
U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate
- and less than the reporting limit, but equal to or greater than the detection limit. P = The analyte was detected on both chromatographic columns but the quantified values differ by 40% RPD with no obvious chromatographic interference. The higher of the two values is reported by the laboratory.

Indicates concentration exceeds SCO, but less than the CSL or the dry weight equivalent values (LAET and 2LAET, respectively) Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS SCO/LAET
- (c) SMS CSL/2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
- (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

		1			2011 Storm Drain Solids		1	2012 Source Material			
			IT-CB8	IT-CB13B/14	IT-CB17	IT-CB20	IT-CB90B	IT-SURFACE-14	IT-SURFACE-15	IT-SURFACE-16	
	Dry Weigh	t Equivalent	TL74D	TL53K	TL74F	TL74C	TL53J	6607155	6607156	6612545	
	, ,	Criteria (a)	TL74D	TL53	TL741	TL740	TL53	1300346	1300346	1301439	
	SCO/LAET (b)	CSL/2LAET (c)	09/09/2011	09/08/2011	09/09/2011	09/09/2011	09/08/2011	04/04/2012	04/04/2012	04/10/2012	
SEMIVOLATILES (µg/kg)		, ,									
Method SW8270D											
Benzoic Acid	650	650	2200 U	9500 UJ	NA	560 J1	10000 UJ	5500 U	11,000 U	18,000 J1	
Benzyl Alcohol	57	73	56 J1	240 J1	NA	16000	500 U	1100 U	2300 U	1600 U	
4-Bromophenyl-phenylether		70	110 U	470 U	NA	94 U	500 U	550 U	1100 U	820 U	
Butylbenzylphthalate	63	900	160	470 U	NA NA	450	330 J1	2200 U	4500 U	3300 U	
Di-n-Butylphthalate	1400	5100	110 U	470 U	NA	410	500 U	2200 U	4800 J1	3300 U	
Carbazole	1400	3100	110 U	330 J1	NA NA	66 J1	500 U	550 U	1100 U	820 U	
4-Chloro-3-methylphenol			560 U	2400 U	NA NA	470 U	2500 U	550 U	1100 U	820 U	
4-Chloroaniline			1500 U	6400 U	NA NA	1300 U	6800 U	550 U	1100 U	820 U	
bis(2-Chloroethoxy) Methane			110 U	470 U	NA NA	94 U	500 U	550 U	1100 U	820 U	
Bis-(2-Chloroethyl) Ether			110 U	470 U	NA NA	94 U	500 U	550 U	1100 U	820 U	
2-Chloronaphthalene			110 U	470 U	NA NA	94 U	500 U	230 U	470 U	350 U	
2-Chlorophenol			110 U	470 U	NA NA	94 U	500 U	550 U	1100 U	820 U	
1			110 U	470 U	NA NA	94 U	500 U	550 U	1100 U	820 U	
4-Chlorophenyl-phenylether			110 U	470 U	NA NA	94 U 94 U	500 U		1100 U		
2,2'-Oxybis(1-Chloropropane)	25	50						550 U		820 U	
1,2-Dichlorobenzene	35	50	110 U	470 U	NA NA	94 U 94 U	500 U	550 U 550 U	1100 U	820 U	
1,3-Dichlorobenzene	440	440	110 U	470 U	NA NA		500 U		1100 U	820 U	
1,4-Dichlorobenzene	110	110	110 U	470 U	NA	94 U	500 U	550 U	1100 U	820 U	
3,3'-Dichlorobenzidine			850 U	3600 U	NA	710 U	3800 U	3300 U	6800 U	4900 U	
2,4-Dichlorophenol		4000	1100 U	4700 U	NA	940 U	5000 U	550 U	1100 U	820 U	
Diethylphthalate	200	1200	280 U	1200 U	NA	240 U	1300 U	2200 U	4500 U	3300 U	
2,4-Dimethylphenol	29	29	220 U	950 U	NA	190 U	1000 U	330 U	680 U	490 U	
Dimethylphthalate	71	160	110 U	470 U	NA	94	500 U	2200 U	4500 U	3300 U	
4,6-Dinitro-2-Methylphenol			1100 U	4700 U	NA	940 U	5000 U	5500 U	11,000 U	8200 U	
2,4-Dinitrophenol			4800 U	20000 U	NA	4000 U	21000 U	9900 U	20,000 U	15,000 U	
2,4-Dinitrotoluene			560 U	2400 U	NA	470 U	2500 U	2200 U	4500 U	3300 U	
2,6-Dinitrotoluene			560 U	2400 U	NA	470 U	2500 U	550 U	1100 U	820 U	
bis(2-Ethylhexyl)phthalate	1300	3100	3300	4700	NA	9800	3800	3900 J1	5400 J1	3300 U	
Hexachlorobenzene	22	70	110 U	470 U	NA	94 U	500 U	110 U	230 U	160 U	
Hexachlorobutadiene	11	120	560 U	2400 U	NA	470 U	2500 U	330 U	680 U	490 U	
Hexachlorocyclopentadiene			2200 U	9500 U	NA	1900 U	10000 U	5500 U	11,000 U	8200 U	
Hexachloroethane			110 U	470 U	NA	94 U	500 U	1100 U	2300 U	1600 U	
Isophorone			110 U	470 U	NA	94 U	500 U	550 U	1100 U	820 U	
1-Methylnaphthalene			110 U	470 U	NA	94 U	500 U	110 U	230 U	160 U	
2-Methylphenol	63	63	110 U	470 U	NA	94 U	500 U	330 U	680 U	490 U	
4-Methylphenol	670	670	230	570 J1	NA	85 J1	3100	550 U	1100 U	820 U	
2-Nitroaniline			560 U	2400 U	NA	470 U	2500 U	550 U	1100 U	820 U	
3-Nitroaniline			560 U	2400 U	NA	470 U	2500 U	2200 U	4500 U	3300 U	
4-Nitroaniline			560 U	2400 U	NA	470 U	2500 U	2200 U	4500 U	3300 U	
Nitrobenzene			110 U	470 U	NA	94 U	500 U	550 U	1100 U	820 U	
2-Nitrophenol			560 U	2400 U	NA	470 U	2500 U	550 U	1100 U	820 U	
4-Nitrophenol			560 U	2400 U	NA	470 U	2500 U	5500 U	11,000 U	8200 U	
N-Nitroso-Di-N-Propylamine			110 U	470 U	NA	94 U	500 U	550 U	1100 U	820 U	
N-Nitrosodiphenylamine	28	40	110 U	470 U	NA	94 U	500 U	330 U	680 U	490 U	
Di-n-Octyl phthalate	6200	6200	500	470 U	NA	3000	500 U	2200 U	4500 U	16,000	
Pentachlorophenol	360	690	1100 U	4700 U	NA	940 U	5000 U	1100 U	2300 U	1600 U	
Phenol	420	1200	62 J1	470 U	NA	120	250 J1	550 U	1100 U	820 U	
1,2,4-Trichlorobenzene	31	51	110 U	470 U	NA	94 U	500 U	550 U	1100 U	820 U	
2,4,5-Trichlorophenol			560 U	2400 U	NA	470 U	2500 U	550 U	1100 U	820 U	
2,4,6-Trichlorophenol			560 U	2400 U	NA	470 U	2500 U	550 U	1100 U	820 U	
·	1										

					2011 Storm Drain Solids				2012 Source Material	
			IT-CB8	IT-CB13B/14	IT-CB17	IT-CB20	IT-CB90B	IT-SURFACE-14	IT-SURFACE-15	IT-SURFACE-16
		t Equivalent	TL74D	TL53K	TL74F	TL74C	TL53J	6607155	6607156	6612545
	to SMS (Criteria (a)	TL74 09/09/2011	TL53 09/08/2011	TL74 09/09/2011	TL74	TL53	1300346 04/04/2012	1300346	1301439
 (#)	SCO/LAET (b)	CSL/2LAET (c)	09/09/2011	09/08/2011	09/09/2011	09/09/2011	09/08/2011	04/04/2012	04/04/2012	04/10/2012
PAHs (µg/kg) Method SW8270D-SIM										
Acenaphthene	500	500	87 U	120 J1	NA	59 U	78 J1	78 J1	110 J1	34 U
Acenaphthylene	1300	1300	87 U	230 U	NA NA	59 U	140 U	23 J1	45 U	17 U
Anthracene	960	960	87 U	140 J1	NA NA	39 U 37 J1	140 U	130	190 J1	24 J1
Benzo(a)anthracene	1300	1600	130	470	NA NA	220	270	530	580	78 J1
Benzo(a)pyrene	1600	1600	120	420	NA NA	230	280	550	620	190
Benzo(b)fluoranthene	.000		NA	NA	NA	NA NA	NA	1100	1300	430
Benzo(g,h,i)perylene	670	720	140	430	NA	220	340	340	330	69 J1
Benzo(k)fluoranthene			NA	NA	NA	NA	NA	350	440	34 U
Total Benzofluoranthenes (d, e)	3200	3600	320	810	NA	550	730	NA	NA	NA
Chrysene	1400	2800	300	860	NA	480	650	900	1000	340
Dibenz(a,h)anthracene	230	230	87 U	230 U	NA	69	110 J1	86 J1	90 J1	34 U
Dibenzofuran			87 U	230 U	NA	59 U	140 U	62 J1	90 J1	34 U
Fluoranthene	1700	2500	350	1300	NA	700	920	1700	1800	210
Fluorene	540	540	87 U	140 J1	NA	59 U	92 J1	77 J1	120 J1	34 U
Indeno(1,2,3-cd)pyrene	600	690	69 J1	320	NA	120	180	270	250	41 J1
2-Methylnaphthalene	670	670	87 U	230 U	NA	32 J1	90 J1	44 U	90 U	34 U
Naphthalene	2100	2100	87 U	160 J1	NA	59 U	89 J1	100 J1	190 J1	48 J1
Total Naphthalenes			NA	160 J	NA	32 J1	179 J	100 J	190 J	48 J
Phenanthrene	1500	1500	260	1300	NA	370	570	1000	1200	170
Pyrene	2600	3300	300	1100	NA	580	700	1100	1200	180
cPAH TEQ	150 (f)		175 J	589	NA	331	416 J	793 J	896 J	248 J
PCBs (μg/kg)										
Method SW8082										
Aroclor 1016			18 U	39 U	20 U	19 U	19 U	9.5 U	9.6 U	72 U
Aroclor 1221			18 U	39 U	20 U	19 U	19 U	12 U	12 U	92 U
Aroclor 1232			18 U	39 U	20 U	19 U	19 U	21 U	21 U	160 U
Aroclor 1242			18 U	39 U	20 U	19 U	19 U	8.7 U	8.8 U	66 U
Aroclor 1248			49	82	38 J	50	40	8.7 U	8.8 U	66 U
Aroclor 1254			120	170	89 J	120	100	61 J	100 J	1600
Aroclor 1260			140 J	120	65 J	120 J	87	13 U	13 U	99 U
Total PCBs (d)	2 (f)		309 J	372	192 J	290 J	227	61 J	100 J	1600
TOTAL METALS (mg/kg)										
Methods 6010B/6020										
Antimony	7.00		0.3 U	0.5	0.3 U	0.2 U	0.3 U	0.678	2.55	0.416
Arsenic	7 (f)		14.1 122	9.6 139	7.9 83.1	9.0 104	8.3 122	0.723 U	10.6 172	6.93
Barium								132		96.1
Beryllium Cadmium	5.1	6.7	0.3 1.9	0.3 1.6	0.3 U 2.7	0.3 4.3	0.3 1.3	0.238 J1 1.96	0.309 J1 1.47	0.197 J1 3.35
Chromium	260	270	1.9	66.3	49.5	79.6	77.9	94.8	97.7	22.3
Copper	390	390	78.0	67.7	53.4	80.2	80.1	77.1	84.2	36.3
Lead	450	530	148	178	75.6	158	125	53.7	201	45.4
Nickel	100	555	76.4	55.4	48.8	59.8	71.8	63.0	59.9	36.1
Selenium			0.8	0.7	0.7 U	0.6	0.8 U	4.47 U	0.917 U	1.70 J1
Silver	6.1	6.1	0.3 U	0.3 U	0.3 U	0.2	0.3 U	0.946	0.467 J1	0.535
Zinc	410	960	880	620	610	760	2060	320	343	348
Method SW7199										
Chromium VI			0.551 U	0.567 U	0.544 U	0.423 U	1.24	2.5	8.3	1.3
Method SW7471A		0.50	2.22							
Mercury	0.41	0.59	0.63	0.31	0.04	0.07	0.07	0.0453 J1	0.0736 J1	0.375

µg/kg = micrograms per kilogram
mg/kg = milligrams per kilogram
PAHs polyclic aromatic hydrocarbons
PCBs = polychlorinated biphenyls
cPAHs = carcinogenic PAHs
TEQ = Toxic Equivalent Concentration
SIM = Selected Ion Monitoring
NA = Not Applicable
SMS = Sediment Management Standards
CSL = Cleanup Screening Level
SCO = Sediment Cleanup Objective
LAET = Lowest Apparent Effects Threshold

PRG = Preliminary Remediation Goal

- U = Indicates the compound was not detected at or above the reporting limit.
- UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.
- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

Indicates concentration exceeds SCO, but less than the CSL or the dry weight equivalent values [Lower Apparent Effects Threshold (LAET) and 2LAET, respectively]
Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS Sediment Cleanup Objective /Lower Apparent Effects Threshold
- (c) SMS Cleanup Screening Level / Second Lower Apparent Effects Threshold
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

				2011 Storm	Drain Solids		2012 Soui	ce Material
		ļ	IT-CB81/82	IT-CB83	IT-CB90/91	IT-OWS79	IT-PAINT-06	IT-SURFACE-04
	Dry Weigh	t Equivalent	TL53B	TL53D	TL53C	TL53E	6612544	6607142
		Criteria (a)	TL53	TL53	TL53	TL53	1301439	1300346
	SCO/LAET (b)		09/08/2011	09/08/2011	09/08/2011	09/08/2011	04/10/2012	04/03/2012
SEMIVOLATILES (µg/kg)								
Method SW8270D								
Benzoic Acid	650	650	5800 UJ	5800 UJ	1600 UJ	7100 UJ	35000	11,000 U
Benzyl Alcohol	57	73	290 U	290 U	78 U	6500	2000 U	2200 U
4-Bromophenyl-phenylether	37	75	290 U	290 U	78 U	360 U	1000 U	1100 U
Butylbenzylphthalate	63	900	1500	950	390	1400	4000 U	4400 U
Di-n-Butylphthalate	1400	5100	15000	200 J1	320	600	4000 U	4400 U
Carbazole	1400	3100	290 U	290 U	39 J1	410	1000 U	1100 U
4-Chloro-3-methylphenol			1500 U	1400 U	390 U	1800 U	1000 U	1100 U
4-Chloroaniline			4000 U	3900 U	1000 U	4800 U	1000 U	1100 U
bis(2-Chloroethoxy) Methane			290 U	290 U	78 U	360 U	1000 U	1100 U
Bis-(2-Chloroethyl) Ether			290 U	290 U	78 U	360 U	1000 U	1100 U
2-Chloronaphthalene			290 U	290 U	78 U	360 U	420 U	460 U
2-Chlorophenol			290 U	290 U	78 U	360 U	1000 U	1100 U
4-Chlorophenyl-phenylether			290 UJ	290 U	78 U	360 U	1000 U	1100 U
2,2'-Oxybis(1-Chloropropane)			290 U	290 U	78 U	360 U	1000 U	1100 U
1,2-Dichlorobenzene	35	50	290 U	290 U	78 U	360 U	1000 U	1100 U
1.3-Dichlorobenzene	00	00	290 U	290 U	78 U	360 U	1000 U	1100 U
1,4-Dichlorobenzene	110	110	290 U	290 U	78 U	360 U	1000 U	1100 U
3,3'-Dichlorobenzidine	110	110	2200 U	2200 U	580 U	2700 U	6000 U	6600 U
2,4-Dichlorophenol			2900 U	2900 U	780 U	3600 U	1000 U	1100 U
Diethylphthalate	200	1200	730 U	720 U	200 U	890 U	4000 U	4400 U
2,4-Dimethylphenol	29	29	580 U	580 U	160 U	710 U	600 U	660 U
Dimethylphthalate	71	160	290 U	320	39 J1	320 J1	4000 U	4400 U
4,6-Dinitro-2-Methylphenol	''	100	2900 U	2900 U	780 U	3600 U	10.000 U	11.000 U
2,4-Dinitrophenol			12000 U	12000 U	3300 U	15000 U	18,000 U	20,000 U
2,4-Dinitrotoluene			1500 U	1400 U	390 U	1800 U	4000 U	4400 U
2.6-Dinitrotoluene			1500 U	1400 U	390 U	1800 U	1000 U	1100 U
bis(2-Ethylhexyl)phthalate	1300	3100	1800	4500	4000	22000	4000 U	9000 J1
Hexachlorobenzene	22	70	290 U	290 U	78 U	360 U	200 U	220 U
Hexachlorobutadiene	11	120	1500 U	1400 U	390 U	1800 U	600 U	660 U
Hexachlorocyclopentadiene			5800 U	5800 U	1600 U	7100 U	10,000 U	11,000 U
Hexachloroethane			290 U	290 U	78 U	360 U	2000 U	2200 U
Isophorone			290 U	290 U	78 U	360 U	1000 U	1100 U
1-Methylnaphthalene			290 U	290 U	78 U	360 U	200 U	220 U
2-Methylphenol	63	63	290 U	290 U	78 U	360 U	600 U	660 U
4-Methylphenol	670	670	580 U	580 U	82 J1	510 J1	1000 U	1100 U
2-Nitroaniline			1500 U	1400 U	390 U	1800 U	1000 U	1100 U
3-Nitroaniline			1500 U	1400 U	390 U	1800 U	4000 U	4400 U
4-Nitroaniline			1500 U	1400 U	390 U	1800 U	4000 U	4400 U
Nitrobenzene			290 U	290 U	78 U	360 U	1000 U	1100 U
2-Nitrophenol			1500 U	1400 U	390 U	1800 U	1000 U	1100 U
4-Nitrophenol			1500 U	1400 U	390 U	1800 U	10,000 U	11,000 U
N-Nitroso-Di-N-Propylamine			290 U	290 U	78 U	360 U	1000 U	1100 U
N-Nitrosodiphenylamine	28	40	290 U	290 U	78 U	360 U	600 U	660 U
Di-n-Octyl phthalate	6200	6200	570	290 U	280	1800	4000 U	4400 U
Pentachlorophenol	360	690	2900 U	1600 J1	780 U	3600 U	2000 U	15000
Phenol	420	1200	290 U	160 J1	82	460	1000 U	1100 U
1,2,4-Trichlorobenzene	31	51	290 U	290 U	78 U	360 U	1000 U	1100 U
2,4,5-Trichlorophenol			1500 U	1400 U	390 U	1800 U	1000 U	1100 U
2,4,6-Trichlorophenol			1500 U	1400 U	390 U	1800 U	1000 U	1100 U

			T	2044 Ct	Dania Calida		2012 Source Material		
			IT-CB81/82		Drain Solids	IT-OWS79			
	D=.W=:=b	4 Carrierate at	TL53B	IT-CB83 TL53D	IT-CB90/91 TL53C	TL53E	IT-PAINT-06 6612544	IT-SURFACE-04 6607142	
		t Equivalent							
	SCO/LAET (b)	Criteria (a) CSL/2LAET (c)	TL53 09/08/2011	TL53 09/08/2011	TL53 09/08/2011	TL53 09/08/2011	1301439 04/10/2012	1300346 04/03/2012	
	000/2/12 (5)	002,223 (2)	00,00,2011	00/00/2011	00/00/2011	00/00/2011	01/10/2012	0 1/00/2012	
PAHs (μg/kg)									
Method SW8270D-SIM									
Acenaphthene	500	500	16	58	25 J1	480	400 U	88 U	
Acenaphthylene	1300	1300	11 J1	22 J1	29 U	44 J1	200 U	44 U	
Anthracene	960	960	28	72	36	670	200 U	130 J1	
Benzo(a)anthracene	1300	1600	120	210	140	1500	400 U	290	
Benzo(a)pyrene	1600	1600	130	240	120	1200	400 U	400	
Benzo(b)fluoranthene			NA	NA	NA	NA	400 U	1000	
Benzo(g,h,i)perylene	670	720	140	160	89	610	400 U	210 J1	
Benzo(k)fluoranthene			NA	NA	NA	NA	400 U	330	
Total Benzofluoranthenes (d, e)	3200	3600	310	590	270	2600	NA	NA	
Chrysene	1400	2800	240	520	220	1900	200 U	980	
Dibenz(a,h)anthracene	230	230	36	39	23 J1	170	400 U	88 U	
Dibenzofuran			28	50	20 J1	300	400 U	88 U	
Fluoranthene	1700	2500	440	870	410	4500	400 U	1300	
Fluorene	540	540	31	40	43	560	400 U	89 J1	
Indeno(1,2,3-cd)pyrene	600	690	96	150	68	530	400 U	180 J1	
2-Methylnaphthalene	670	670	33	43	17 J1	200	400 U	89 J1	
Naphthalene	2100	2100	34	62	19 J1	300	470 J1	180 J1	
Total Naphthalenes			67	105	36 J	500	470 J	269 J	
Phenanthrene	1500	1500	320	570	280	3600	400 U	1000	
Pyrene	2600	3300	320	610	320	3500	400 U	1000	
cPAH TEQ	150 (f)		189	344	172 J	1699	ND	590 J	
PCBs (µg/kg)									
Method SW8082									
Aroclor 1016			19 U	14 U	20 U	19 U	360 U	95 U	
Aroclor 1221			19 U	14 U	20 U	19 U	460 U	120 U	
Aroclor 1232			19 U	14 U	20 U	19 U	800 U	210 U	
Aroclor 1242			19 U	14 U	20 U	19 U	330 U	87 U	
Aroclor 1248			19 U	56 U	20 U	75 U	330 U	87 U	
Aroclor 1254			52 J	180 J	45 J	180 J	5000	920	
Aroclor 1260			53	110	38	180	490 U	130 U	
Total PCBs (d)	2 (f)		105 J	290 J	83 J	360 J	5000	920	
TOTAL METALS (mg/kg)									
Methods 6010B/6020									
Antimony			0.3 U	0.5 U	0.2 U	0.6	0.181 J1	2.12	
Arsenic	7 (f)		6.5	18.8	4.6	20.0	2.86	31.4	
Barium			118	157	125	298	3170	222	
Beryllium			0.3 U	0.5	0.2 U	0.5 U	0.0853 J1	0.265 J1	
Cadmium	5.1	6.7	6.6	14.7	4.8	38.8	1.25	4.37	
Chromium	260	270	61.2	152	37.7	200	36.0	172	
Copper	390	390	74.4	233	99.0	315	46.2	189	
Lead	450	530	51.3	175	31.1	296	112	236	
Nickel			47.6	86	45.1	100	13.2	82.4	
Selenium			0.7 U	1	0.6 U	2	1.34 J1	1.75 U	
Silver	6.1	6.1	0.3 U	0.7	0.2 U	1.4	0.190 J1	0.888 J1	
Zinc	410	960	359	1460	265	3490	1580	1330	
Method SW7199									
Chromium VI			0.599 U	0.929 U	0.525 U	1.25	3.3	0.52 U	
Method SW7471A	0.44	0.50	2.05		2 22	2.05	45.0	2542	
Mercury	0.41	0.59	0.05	0.17	0.03	0.35	45.2	0.546	

TABLE 30

STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - BUILDING 14-13 AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

PAHs polyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

NA = Not Analyzed

SMS = Sediment Management Standards

CSL = Cleanup Screening Level

SCO = Sediment Cleanup Objective

LAET = Lowest Apparent Effects Threshold

NA = Not Analyzed

PRG = Preliminary Remediation Goal

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

Indicates concentration exceeds SCO, but less than the CSL or the dry weight equivalent values (LAET and 2LAET, respectively)

Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS SCO/LAET
- (c) SMS CSL/2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

		2011 Storm Drain Solids											
			IT-CB24	IT-CB25	IT-CB26	IT-CB27	IT-CB28	IT-CB29	IT-CB30	IT-CB36	IT-CB39/86/85	IT-CBA	IT-OWS23
	Dry Weigh	t Equivalent	TL74G	TL74H	TL74I	TL74E	TO80A	TL29B	TL29C	TL74B	TL74A	TL29A	TL53L
	, ,	Criteria (a)	TL74	TL74	TL74	TL74L	TO80	TL29	TL29	TL745	TL74A	TL29	TL53L
		CSL/2LAET (c)	09/09/2011	09/09/2011	09/09/2011	09/09/2011	9/28/2011	09/07/2011	09/07/2011	09/09/2011	09/09/2011	09/07/2011	09/08/2011
SEMIVOLATILES (µg/kg)													
Method SW8270D													
Benzoic Acid	650	650	5700 U	6000 U	5800 U	1800 U	4600 U	770 J	590 J	2400 U	1400 J1	330 J	10000 U
Benzyl Alcohol	57	73	840	520	550	110	310	150	130	120 U	180 U	210	7200
,	37	/3	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
4-Bromophenyl-phenylether	63	900	3100	1500	1400	750	1100	2200	1100	120 U	670		900
Butylbenzylphthalate		I —			600	380					290	980 1100	
Di-n-Butylphthalate	1400	5100	360	510			800	610	110	120 U			350 J1
Carbazole			280 U	300 U	290 U	90 U	140 J1	1200	500	120 U	2800	56	500 U
4-Chloro-3-methylphenol			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
4-Chloroaniline			3800 U	4000 U	3900 U	1200 U	3100 U	800 U	800 U	1600 U	2500 U	760 U	6800 U
bis(2-Chloroethoxy) Methane			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
Bis-(2-Chloroethyl) Ether			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
2-Chloronaphthalene			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
2-Chlorophenol			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
4-Chlorophenyl-phenylether			280 U	300 U	290 U	90 U	230 U	59 UJ	59 UJ	120 U	180 U	56 UJ	500 U
2,2'-Oxybis(1-Chloropropane)		[280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
1,2-Dichlorobenzene	35	50	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
1,3-Dichlorobenzene			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
1,4-Dichlorobenzene	110	110	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
3,3'-Dichlorobenzidine			2100 U	2200 U	2200 U	680 U	1700 U	450 U	440 U	910 U	1400 U	420 U	3800 U
2,4-Dichlorophenol			2800 U	3000 U	2900 U	900 U	2300 U	590 U	590 U	1200 U	1800 U	560 U	5000 U
Diethylphthalate	200	1200	710 U	750 U	730 U	230 U	580 U	150 U	150 U	300 U	460 U	140 U	1200 U
2,4-Dimethylphenol	29	29	570 U	600 U	580 U	180 U	460 U	120 U	120 U	240 U	370 U	<u>110</u> U	1000 U
Dimethylphthalate	71	160	230 J1	160 J1	260 J1	160	290	1500	450	120 U	150 J1	260	500 U
4,6-Dinitro-2-Methylphenol			2800 U	3000 U	2900 U	900 U	2300 U	590 U	590 U	1200 U	1800 U	560 U	5000 U
2,4-Dinitrophenol			12000 U	13000 U	12000 U	3800 U	9800 U	2500 U	2500 U	5200 U	7800 U	2400 U	21000 U
2,4-Dinitrotoluene			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
2,6-Dinitrotoluene			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
bis(2-Ethylhexyl)phthalate	1300	3100	6000	5000	11000	3700	3500	13000	2300	1200	4500	12000	15000
Hexachlorobenzene	22	70	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
Hexachlorobutadiene	11	120	1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
Hexachlorocyclopentadiene			5700 U	6000 U	5800 U	1800 U	4600 U	1200 U	1200 U	2400 U	3700 U	1100 U	10000 U
Hexachloroethane			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
Isophorone			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
1-Methylnaphthalene			280 U	300 U	290 U	90 U	230 U	110	41 J1	120 U	160 J1	56 U	500 U
2-Methylphenol	63	63	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
4-Methylphenol	670	670	260 J1	190 J1	320 J1	180 U	990	500	140	67 J1	540	110	11000
2-Nitroaniline			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
3-Nitroaniline			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
4-Nitroaniline			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
Nitrobenzene			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
2-Nitrophenol			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
4-Nitrophenol			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
N-Nitroso-Di-N-Propylamine			280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
N-Nitrosodiphenylamine	28	40	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
Di-n-Octyl phthalate	6200	6200	500	430	230 J1	54 J1	240	59 U	59 U	120 U	100 J1	190	2000
Pentachlorophenol	360	690	2800 U	3000 U	2900 U	900 U	2300 U	590 U	590 U	1200 U	1800 U	560 U	5000 U
Phenol	420	1200	280 U	300 U	190 J1	90 U	170 J1	320	180	120 U	200	150	500
1,2,4-Trichlorobenzene	31	51	280 U	300 U	290 U	90 U	230 U	59 U	59 U	120 U	180 U	56 U	500 U
2,4,5-Trichlorophenol			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U
2,4,6-Trichlorophenol			1400 U	1500 U	1500 U	450 U	1200 U	300 U	300 U	610 U	920 U	280 U	2500 U

		1						2011 Storm Drain Solids					
			IT-CB24	IT-CB25	IT-CB26	IT-CB27	IT-CB28	IT-CB29	IT-CB30	IT-CB36	IT-CB39/86/85	IT-CBA	IT-OWS23
	Dry Weigh	t Equivalent	TL74G	TL74H	TL74I	TL74E	TO80A	TL29B	TL29C	TL74B	TL74A	TL29A	TL53L
		Criteria (a)	TL74	TL74	TL74	TL74L	TO80	TL29B	TL29	TL74	TL74	TL29	TL53
		CSL/2LAET (c)	09/09/2011	09/09/2011	09/09/2011	09/09/2011	9/28/2011	09/07/2011	09/07/2011	09/09/2011	09/09/2011	09/07/2011	09/08/2011
PAHs (μg/kg)													
Method SW8270D-SIM													
Acenaphthene	500	500	66	45 J1	39 J1	9.0 J1	34	750 J	110	98 U	85 J1	52	140 J1
Acenaphthylene	1300	1300	35	60 U	58 U	14 U	24	440 J	84	98 U	140 U	21 J1	200 U
Anthracene	960	960	69	73	41 J1	19	74	1300 J	270	98 U	140 U	76	160 J1
Benzo(a)anthracene	1300	1600	310	290	170	120	350	3900	1000	120	280	260	590
Benzo(a)pyrene	1600	1600	340	280	200	140	370	4800	1000	140	410	260	600
Benzo(b)fluoranthene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	670	720	260	280	160	99	300	3900	950	130	420	310	760
Benzo(k)fluoranthene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Benzofluoranthenes (d, e)	3200	3600	780	650	500	300	780	12000	4200	280	940	580	1600
Chrysene	1400	2800	560	600	350	210	630	8400	3400	330	910	460	1500
Dibenz(a,h)anthracene	230	230	51	39 J1	58 U	20	84	1100 J	250	98 U	140 J1	56	130 J1
Dibenzofuran			67	50 J1	47 J1	12 J1	65	760 J	120	98 U	150	46	130 J1
Fluoranthene	1700	2500	1200	880	660	370	1200	15000	3000	210	1900	790	2100
Fluorene	540	540	80	50 J1	45 J1	13 J1	59	1100 J	150	98 U	130 J1	80	190 J1
Indeno(1,2,3-cd)pyrene	600	690	200	200	110	72	260	3700	970	98 U	250	180	450
2-Methylnaphthalene	670	670	54	76	42 J1	12 J1	39	460 J	59	98 U	81 J1	43	130 J1
Naphthalene	2100	2100	78	75	58 U	14	61	760 J	110	98 U	230	51	220
Total Naphthalenes			132	151	42 J	26 J	100	1220 J	169	NA	311 J	94	350 J
Phenanthrene	1500	1500	800	570	440	190	780	9600	1900	180	1600	590	1400
Pyrene	2600	3300	880	740	480	290	900	12000	2600	240	1400	570	1600
cPAH TEQ	150 (f)		480	404 J	282	193	524	6954 J	1676	183	580 J	372	892 J
PCBs (µg/kg) Method SW8082 Aroclor 1016			19 UJ	19 U	19 U	20 U	19 U	19 U	19 U	20 U	92 U	20 U	39 U
Aroclor 1221			19 UJ	19 U	19 U	20 U	19 U	19 U	19 U	20 U	92 U	20 U	39 U
Aroclor 1232			19 UJ	19 U	19 U	20 U	19 U	19 U	19 U	20 U	92 U	20 U	39 U
Aroclor 1242			19 UJ	19 U	19 U	20 U	19 U	19 U	19 U	20 U	92 U	20 U	39 U
Aroclor 1248			28 J	19 U	19 U	50	42	170 U	75 U	22	92 U	58 U	94
Aroclor 1254			100 J	44	43	170	90	480	180	49	190	160	210
Aroclor 1260			49 J	64 J	55 J	68 J	74	410	91	69 J	180 J	92	160
Total PCBs (d)	2 (f)		177 J	108 J	98 J	288 J	206	890	271	140 J	370 J	252	464
TOTAL METALS (mg/kg) Methods 6010B/6020													
Antimony			1.1	0.4 U	0.9	0.2	2.0	3.0	1.2	0.3 U	0.4 UJ	0.7	0.7
Arsenic	7 (f)		13.1	11.7	14.1	10.8	19.3	58.0	18.3	8.2	13.1	14.3	18.4
Barium		[169	138	179	164	122	197	224	150	119	181	545
Beryllium			0.6	0.4 U	0.4 U	0.3	0.5 U	0.5	0.5 U	0.3	0.4 U	0.3	0.5 U
Cadmium	5.1	6.7	25.2	13.8	17.3	15.5	23.7	38.1	9.0	2.1	13.0	17.1	7.2
Chromium	260	270	116	97.1	106	61.9	200	492	388	45.8	128 J	90.5	284
Copper	390	390	168	114	124	78.00	202	606	258	50.2	110	117	312
Lead	450	530	108	98.9	96.8	55.1 54.3	147	568	246	41.4	168 J	119	268
Nickel		[65 1	61.7	69	51.3	122	226	147	54.4	87	67.5	127
Selenium	6.1	6.1	•	0.9 U	1 U	0.5 U	1 U	3	2	0.7	1	0.7 0.4	2 0.6
Silver	6.1	6.1	1.0 1120	1.1 1000	0.5 1530	0.3 1860	0.7 2390	1.9 6640	1.1 2240	0.3 U 380	0.5 1050	1370	3390
Zinc	410	960	1120	1000	1530	1860	2390	6640	2240	380	1050	13/0	3390
Method SW7199													
Chromium VI			0.837 U	0.713 U	0.817 U	0.399 U	1.08 U	0.915 U	0.824 U	0.539 U	0.951	0.574 U	1.04 U
			0.00.	S 10 C	0.0	3.555 2		0.0.0 0	5.52.	0.000		J.J J	3
Method SW7471A													
Mercury	0.41	0.59	0.11	0.18	0.12	0.12	1.57	0.72	0.23	0.04	0.09	0.08	0.22

							2012 Source Material				
			IT-PAINT-01-120410	IT-PAINT-02	IT-PAINT-03	IT-PAINT-04	IT-PAINT-05	IT-SURFACE-01	IT-SURFACE-02	IT-SURFACE-03	IT-SURFACE-13
	Dry Weigh	t Equivalent	6612539	6612540	6612541	6612542	6612543	6607139	6607140	6607141	6607154
	, ,	Criteria (a)	1301439	1301439	1301439	1301439	1301439	1300346	1300346	1300346	1300346
	SCO/LAET (b)	CSL/2LAET (c)	04/10/2012	04/10/2012	04/10/2012	04/10/2012	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/04/2012
SEMIVOLATILES (µg/kg)											
Method SW8270D											
Benzoic Acid	650	650	1900 J1	37,000	70,000	35,000	59,000	5500 U	6300 U	4900 UJ	6800 U
Benzyl Alcohol	57	73	200 U	2000 U	2000 U	2000 U	2000 U	1100 U	1300 U	980 U	1400 U
4-Bromophenyl-phenylether	0.		100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
Butylbenzylphthalate	63	900	400 U	4000 U	4000 U	4000 U	4000 U	2200 U	2500 U	2000 U	2700 U
Di-n-Butylphthalate	1400	5100	1700	4000 U	4000 U	4000 U	4000 U	20,000	2500 U	2000 UJ	2700 U
Carbazole	1 100	0100	100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
4-Chloro-3-methylphenol			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
4-Chloroaniline			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
bis(2-Chloroethoxy) Methane			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
Bis-(2-Chloroethyl) Ether			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
2-Chloronaphthalene			42 U	420 U	420 U	420 U	420 U	230 U	270 U	210 U	290 U
•					1000 U	420 U 1000 U	1000 U			490 U	
2-Chlorophenol			100 U 100 U	1000 U		1000 U	1000 U	550 U 550 U	630 U	490 U 490 U	680 U
4-Chlorophenyl-phenylether				1000 U	1000 U 1000 U		1000 U	550 U 550 U	630 U	490 U 490 U	680 U
2,2'-Oxybis(1-Chloropropane)	25	50	100 U	1000 U		1000 U		550 U	630 U		680 U
1,2-Dichlorobenzene	35	50	100 U	1000 U	1000 U	1000 U	1000 U		630 U	490 U	680 U
1,3-Dichlorobenzene	440	440	100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
1,4-Dichlorobenzene	110	110	100 U	1000 U	6400	1000 U	1000 U	550 U	630 U	490 U	680 U
3,3'-Dichlorobenzidine			600 U	6000 U	6000 U	6000 U	6000 U	3300 U	3800 U	2900 UJ	4100 U
2,4-Dichlorophenol		4000	100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
Diethylphthalate	200	1200	400 U	4000 U	4000 U	4000 U	4000 U	2200 U	2500 U	2000 UJ	2700 U
2,4-Dimethylphenol	29	29	60 U	600 U	600 U	600 U	600 U	330 U	380 U	290 U	410 U
Dimethylphthalate	71	160	400 U	4000 U	4000 U	33,000	4000 U	2200 U	2500 U	2000 UJ	2700 U
4,6-Dinitro-2-Methylphenol			1000 U	10,000 U	10,000 U	10,000 U	10,000 U	5500 U	6300 U	4900 UJ	6800 U
2,4-Dinitrophenol			1800 U	18,000 U	18,000 U	18,000 U	18,000 U	9800 U	11,000 U	8800 UJ	12,000 U
2,4-Dinitrotoluene			400 U	4000 U	4000 U	4000 U	4000 U	2200 U	2500 U	2000 UJ	2700 U
2,6-Dinitrotoluene			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
bis(2-Ethylhexyl)phthalate	1300	3100	670,000	1,100,000	3,800,000	79,000	4000 U	36,000	2900 J1	5800	9100
Hexachlorobenzene	22	70	20 U	200 U	200 U	200 U	200 U	110 U	130 U	98 U	140 U
Hexachlorobutadiene	11	120	60 U	600 U	600 U	600 U	600 U	330 U	380 U	290 U	410 U
Hexachlorocyclopentadiene			1000 U	10,000 U	10,000 U	10,000 U	10,000 U	5500 U	6300 U	4900 UJ	6800 U
Hexachloroethane			200 U	2000 U	2000 U	2000 U	2000 U	1100 U	1300 U	980 U	1400 U
Isophorone			100 U	1000 U	1000 U	20,000	1000 U	550 U	630 U	490 U	680 U
1-Methylnaphthalene			20 U	200 U	200 U	200 U	200 U	110 U	130 U	98 U	140 U
2-Methylphenol	63	63	60 U	600 U	600 U	600 U	600 U	330 U	380 U	290 U	410 U
4-Methylphenol	670	670	100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
2-Nitroaniline			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
3-Nitroaniline			400 U	4000 U	4000 U	4000 U	4000 U	2200 U	2500 U	2000 UJ	2700 U
4-Nitroaniline			400 U	4000 U	4000 U	4000 U	4000 U	2200 U	2500 U	2000 UJ	2700 U
Nitrobenzene			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
2-Nitrophenol			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
4-Nitrophenol			1000 U	10,000 U	10,000 U	10,000 U	10,000 U	5500 U	6300 U	4900 UJ	6800 U
N-Nitroso-Di-N-Propylamine			100 U	1000 U	1000 U	3000	1000 U	550 U	630 U	490 U	680 U
N-Nitrosodiphenylamine	28	40	60 U	600 U	600 U	600 U	600 U	330 U	380 U	290 U	410 U
Di-n-Octyl phthalate	6200	6200	400 U	4000 U	4000 U	4000 U	4000 U	2200 U	2500 U	2000 UJ	2700 U
Pentachlorophenol	360	690	200 U	2000 U	2000 U	2000 U	2000 U	1100 U	1300 U	980 U	1400 U
Phenol	420	1200	100 U	1000 U	1000 U	2100	1000 U	550 U	630 U	490 U	680 U
1,2,4-Trichlorobenzene	31	51	100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
2,4,5-Trichlorophenol]	100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
2,4,6-Trichlorophenol			100 U	1000 U	1000 U	1000 U	1000 U	550 U	630 U	490 U	680 U
			100 0	1000 0	1000 0	1000 0	1000 0		000 0	700 0	000 0

			ı				2012 Source Material				
			IT-PAINT-01-120410	IT-PAINT-02	IT-PAINT-03	IT-PAINT-04	IT-PAINT-05	IT-SURFACE-01	IT-SURFACE-02	IT-SURFACE-03	IT-SURFACE-13
	Dry Weigh	t Equivalent	6612539	6612540	6612541	6612542	6612543	6607139	6607140	6607141	6607154
		Criteria (a)	1301439	1301439	1301439	1301439	1301439	1300346	1300346	1300346	1300346
		CSL/2LAET (c)	04/10/2012	04/10/2012	04/10/2012	04/10/2012	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/04/2012
PAHs (μg/kg)	000,2.12. (5)	001,11,11,10	0 1/ 10/2012	0 1, 10,2012	0 1/ 10/2012	0 17 1 07 2 0 1 2	0 1/ 10/2012	0 1,00,2012	0 1/00/2012	0 1/ 00/20 12	0 1/0 1/2012
Method SW8270D-SIM											l
Acenaphthene	500	500	400 U	400 U	200 U	400 U	200 U	44 U	100 UJ	71 J1	240
Acenaphthylene	1300	1300	200 U	200 U	100 U	200 U	100 U	59 J1	57 J, J1	71 J1	65 J1
Anthracene	960	960	200 U	200 U	100 U	200 U	100 U	120	130 J, J1	160	350
Benzo(a)anthracene	1300	1600	400 U	400 U	200 U	400 U	200 U	380	200 J, J1	520	750
Benzo(a)pyrene	1600	1600	400 U	400 U	200 U	400 U	200 U	520	260 J	740	780 780
· // 3	1600	1600	400 U	400 U	200 U	400 U	200 U	1300	260 J 990 J	1800	1600
Benzo(b)fluoranthene	070	700									
Benzo(g,h,i)perylene	670	720	400 U	400 U	200 U	400 U	200 U	290	170 J, J1	370	260
Benzo(k)fluoranthene			400 U	400 U	200 U	400 U	200 U	460	860 J	650	650
Total Benzofluoranthenes (d, e)	3200	3600	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	1400	2800	200 U	200 U	100 U	200 U	100 U	1000	1200 J	1500	1100
Dibenz(a,h)anthracene	230	230	400 U	400 U	200 U	400 U	200 U	76 J1	100 UJ	99 J1	77 J1
Dibenzofuran			400 U	400 U	200 U	400 U	200 U	59 J1	200 J, J1	100	170
Fluoranthene	1700	2500	400 U	400 U	300 J1	400 U	200 U	1500	2500 J	2400	2700
Fluorene	540	540	400 U	400 U	200 U	400 U	200 U	54 J1	130 J, J1	96 J1	270
Indeno(1,2,3-cd)pyrene	600	690	400 U	400 U	200 U	400 U	200 U	280	170 J, J1	380	250
2-Methylnaphthalene	670	670	400 U	400 U	200 U	400 U	200 U	53 J1	110 J, J1	58 J1	110 J1
Naphthalene	2100	2100	520 J1	470 J1	200 U	610 J1	200 U	120	220 J, J1	140	190
Total Naphthalenes			520 J	470 J	NA	610 J	NA	173 J	330 J	198 J	300 J
Phenanthrene	1500	1500	890 J1	890 J1	290 J1	950 J1	200 U	820	2000 J	1300	2100
Pyrene	2600	3300	400 U	400 U	220 J1	400 U	200 U	1000	1300 J	1500	2000
cPAH TEQ	150 (f)		ND	ND	ND	ND	ND	780 J	494 J	1100	1124 J
PCBs (µg/kg) Method SW8082 Aroclor 1016			72 U	72 U	72 U	72 U	360 U	9.5 U	11 U	8.5 U	12 U
Aroclor 1221			92 U	92 U	92 U	92 U	460 U	12 U	14 U	11 U	15 U
Aroclor 1232			160 U	160 U	160 U	160 U	800 U	21 U	25 U	19 U	26 U
Aroclor 1242			66 U	66 U	66 U	66 U	330 U	8.7 U	10 U	7.8 U	11 U
Aroclor 1248			66 U	470	430	66 U	330 U	8.7 U	10 U	7.8 U	11 U
Aroclor 1254			120 J1	440	190 J1	1400	11,000	130 J	10 U	7.8 U	50 J, J1
Aroclor 1260			98 U	200 J1	98 U	98 U	490 U	110 J	51 J1	130 J	16 U
Total PCBs (d)	2 (f)		120 J	1110	620 J	1400	11,000	240 J	51 J	130 J	50 J
10ta 1 020 (a)	2 (1)		120 0		320 0	1400	11,000	240 0	0.0	100 0	1
TOTAL METALS (mg/kg) Methods 6010B/6020 Antimony			0.263	5.54	58.8	0.900	0.373	6.55 J	8.88	2.77	2.49
	7 (f)	1	0.263 4.49 J1	20.5 J1	20.5	0.900 0.875 J1	4.54	9.30	41.7	14.9	2.49 14.8
Arsenic	/ (T)										
Barium	1		2160	6030	310	250	2950	143 J	204	144	209
Beryllium		6.7	0.137 J1	0.0210 J1	0.0264 U	0.0186 J1	0.0570 J1	0.180 J1	0.257 J1	0.308 J1	0.326 J1
Cadmium	5.1	6.7	2.00	3.31	7.94	147	4.51	10.9	46.7	13.0	6.66
Chromium	260	270	4200	17,800	1580	76.6	16.6	161	154	199	112
Copper	390	390	31.5	42.3	231	12.4	30.9	156	128	197	109
Lead	450	530	16,300	71,300	14,600	1740	395	371 J	235	288	65.6
Nickel	1		18.2	38.6	60.1	8.71	7.47	87.6	95.8	97.7	59.1
Selenium	1		3.27 U	12.6	9.33 J1	10.4	1.20 J1	4.44 U	1.01 U	3.98 U	1.11 U
Silver	6.1	6.1	0.769 J1	2.56	5.61	0.160 U	0.344 J1	8.01 J	1.03	1.27	0.869
Zinc	410	960	1480	242	81,100	2110	8140	4270	1830	2030	1030
											İ
Method SW7199	1										ı
Chromium VI			386	9380	118	0.47 J1	0.49 J1	0.26 U	0.31 U	0.25 U	2.9 J
Method SW7471A		0.77				- · · · -					
Mercury	0.41	0.59	0.159	0.100	0.0300 J1	0.115	37.0	0.107 J1	0.0720 J1	0.137	0.144 J1

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

PAHs polyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

NA = Not Analyzed

ND = Not Detected

SMS = Sediment Management Standards

CSL = Cleanup Screening Level

SCO = Sediment Cleanup Objective

LAET = Lowest Apparent Effects Threshold

PRG = Preliminary Remediation Goal

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effects Threshold Values (Barrick et al. 1988)
- (b) SMS SCO/LAET
- (c) SMS CSL/2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

TABLE 32 STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - ISAACSON EAST AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

				2011 Storm	Drain Solids				2012 Source Material		
		ŀ	IT-CB10	IT-CB11	IT-CB12	IT-VTVE	IT-CJM-08	IT-SURFACE-05	IT-SURFACE-06	IT-SURFACE-07	IT-SURFACE-08
	Drv Weigh	t Equivalent	TL84F	TL84E	TL84D	TL84C	6612538	6607143	6607144	6607145	6607146
	, ,	Criteria (a)	TL84	TL84	TL84	TL84	1301439	1300346	1300346	1300346	1300346
	SCO/LAET (b)	CSL/2LAET (c)	09/12/2011	09/12/2011	09/12/2011	09/12/2011	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/03/2012
SEMIVOLATILES (µg/kg)											
Method SW8270D											
Benzoic Acid	650	650	5600 U	5700 U	1400 J1	1200 J1	25,000 U	6600 U	5100 U	5000 U	6600 U
Benzyl Alcohol	57	73	280 U	280 U	240	210 J1	5000 U	1300 U	1000 U	1000 U	1300 U
4-Bromophenyl-phenylether		, ,	280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
Butylbenzylphthalate	63	900	350 J	280 U	470 J	370 J	10,000 U	2600 U	2100 U	2000 U	2700 U
Di-n-Butylphthalate	1400	5100	280 U	280 U	430	240 U	10,000 U	2600 U	2100 U	2000 U	2700 U
Carbazole			450	1000	210 J1	200 J1	2500 U	660 U	510 U	500 U	660 U
4-Chloro-3-methylphenol			1400 U	1400 U	1100 U	1200 U	2500 U	660 U	510 U	500 U	660 U
4-Chloroaniline			3800 U	3800 U	3000 U	3200 U	2500 U	660 U	510 U	500 U	660 U
bis(2-Chloroethoxy) Methane			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
Bis-(2-Chloroethyl) Ether			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
2-Chloronaphthalene			280 U	280 U	220 U	240 U	1100 U	280 U	220 U	210 U	280 U
2-Chlorophenol			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
4-Chlorophenyl-phenylether			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
2,2'-Oxybis(1-Chloropropane)			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
1,2-Dichlorobenzene	35	50	280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
1,3-Dichlorobenzene			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
1,4-Dichlorobenzene	110	110	280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
3,3'-Dichlorobenzidine			2100 U	2100 U	1600 U	1800 U	15,000 U	4000 U	3100 U	3000 U	4000 U
2,4-Dichlorophenol			2800 U	2800 U	2200 U	2400 U	2500 U	660 U	510 U	500 U	660 U
Diethylphthalate	200	1200	700 U	710 U	550 U	590 U	10,000 U	2600 U	2100 U	2000 U	2700 U
2,4-Dimethylphenol	29	29	560 U	570 U	440 U	480 U	1500 U	400 U	310 U	300 U	400 U
Dimethylphthalate	71	160	280 U	280 U	220 U	240 U	10,000 U	2600 U	2100 U	2000 U	2700 U
4,6-Dinitro-2-Methylphenol			2800 U	2800 U	2200 U	2400 U	25,000 U	6600 U	5100 U	5000 U	6600 U
2,4-Dinitrophenol			12000 U	12000 U	9300 U	10000 U	45,000 U	12,000 U	9200 U	9000 U	12,000 U
2,4-Dinitrotoluene			1400 U	1400 U	1100 U	1200 U	10,000 U	2600 U	2100 U	2000 U	2700 U
2,6-Dinitrotoluene			1400 U	1400 U	1100 U	1200 U	2500 U	660 U	510 U	500 U	660 U
bis(2-Ethylhexyl)phthalate	1300	3100	720	880	3000	3300	24,000 J1	2600 U	2100 U	2000 U	6600 J1
Hexachlorobenzene	22	70	280 U	280 U	220 U	240 U	500 U	130 U	100 U	100 U	130 U
Hexachlorobutadiene	11	120	1400 U	1400 U	1100 U	1200 U	1500 U	400 U	310 U	300 U	400 U
Hexachlorocyclopentadiene			5600 U	5700 U	4400 U	4800 U	25,000 U	6600 U	5100 U	5000 U	6600 U
Hexachloroethane			280 U	280 U	220 U	240 U	5000 U	1300 U	1000 U	1000 U	1300 U
Isophorone			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
1-Methylnaphthalene			280 U	440	220 U	240 U	500 U	130 U	100 U	100 U	130 U
2-Methylphenol	63	63	280 U	280 U	220 U	240 U	1500 U	400 U	310 U	300 U	400 U
4-Methylphenol	670	670	560 U	570 U	760	590	2500 U	660 U	510 U	500 U	660 U
2-Nitroaniline			1400 U	1400 U	1100 U	1200 U	2500 U	660 U	510 U	500 U	660 U
3-Nitroaniline			1400 U	1400 U	1100 U	1200 U	10,000 U	2600 U	2100 U	2000 U	2700 U
4-Nitroaniline			1400 U	1400 U	1100 U	1200 U	10,000 U	2600 U	2100 U	2000 U	2700 U
Nitrobenzene			280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
2-Nitrophenol			1400 U	1400 U	1100 U	1200 U	2500 U	660 U	510 U	500 U	660 U
4-Nitrophenol			1400 U	1400 U	1100 U	1200 U	25,000 U	6600 U	5100 U	5000 U	6600 U
N-Nitroso-Di-N-Propylamine		1 42	280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
N-Nitrosodiphenylamine	28	40	280 U	280 U	220 U	240 U	1500 U	400 U	310 U	300 U	400 U
Di-n-Octyl phthalate	6200	6200	280 U	280 U	220 U	130 J1	10,000 U	2600 U	2100 U	2000 U	2700 U
Pentachlorophenol	360	690	2800 U	2800 U	2200 U	2400 U	5000 U	1300 U	1000 U	1000 U	1300 U
Phenol	420	1200	280 U	280 U	300	260	2500 U	660 U	510 U	500 U	660 U
1,2,4-Trichlorobenzene	31	51	280 U	280 U	220 U	240 U	2500 U	660 U	510 U	500 U	660 U
2,4,5-Trichlorophenol			1400 U	1400 U	1100 U	1200 U	2500 U	660 U	510 U	500 U	660 U
2,4,6-Trichlorophenol	I	1	1400 U	1400 U	1100 U	1200 U	2500 U	660 U	510 U	500 U	660 U

4/11/2014 Final RI Rpt_Tb 32 Source Eval Isaacson East.xlsx (32) Isaacson East

TABLE 32 STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - ISAACSON EAST AREA **BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON**

				2011 Storm	Drain Solids				2012 Source Material		
			IT-CB10	IT-CB11	IT-CB12	IT-VTVE	IT-CJM-08	IT-SURFACE-05	IT-SURFACE-06	IT-SURFACE-07	IT-SURFACE-08
	Dry Weigh	t Equivalent	TL84F	TL84E	TL84D	TL84C	6612538	6607143	6607144	6607145	6607146
	, ,	Criteria (a)	TL84	TL84	TL84	TL84	1301439	1300346	1300346	1300346	1300346
		CSL/2LAET (c)	09/12/2011	09/12/2011	09/12/2011	09/12/2011	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/03/2012
PAHs (µg/kg)											
Method SW8270D-SIM											
Acenaphthene	500	500	130 J1	110	140	220	200 U	58 J1	41 U	16 U	21 U
Acenaphthylene	1300	1300	140 U	25 J1	58	94	100 U	27 U	20 U	8.0 U	11 U
Anthracene	960	960	120 J1	130	120	120	300 J, J1	120 J1	24 J1	9.7 J1	19 J1
Benzo(a)anthracene	1300	1600	380	730	430	540	8200	430	100 J1	36 J1	73
Benzo(a)pyrene	1600	1600	340	800	550	660	8000	570	140	53	110
Benzo(b)fluoranthene			NA	NA	NA	NA	22,000	1300	250	140	270
Benzo(g,h,i)perylene	670	720	480	640	560	760	1500	270	110	35 J1	46 J1
Benzo(k)fluoranthene			NA	NA	NA	NA	6700	440	81 J1	43	120
Total Benzofluoranthenes (d, e)	3200	3600	780	1700	1400	1600	NA	NA	NA	NA	NA
Chrysene	1400	2800	740	1200	1100	1400	13,000	910	240	110	220
Dibenz(a,h)anthracene	230	230	77 J1	140	120	140	780	70 J1	41 U	16 U	21 U
Dibenzofuran			120 J1	69	160	110	200 U	93 J1	41 U	16 U	30 J1
Fluoranthene	1700	2500	1200	2800	1900	2100	10,000	1600	260	130	290
Fluorene	540	540	140	120	190	150	200 U	84 J1	41 U	16 U	21 U
Indeno(1,2,3-cd)pyrene	600	690	300	550	460	560	1800	260	85 J1	25 J1	37 J1
2-Methylnaphthalene	670	670	100 J1	33 J1	170	230	200 U	79 J1	41 U	21 J1	37 J1
Naphthalene	2100	2100	220	90	190	180	200 U	170	72 J1	34 J1	79
Total Naphthalenes			320 J	123 J1	360	410	NA	249 J	72 J	55 J	116 J
Phenanthrene	1500	1500	940	2000	1500	1400	870	950	150	80	200
Pyrene	2600	3300	1200	2000	1300	1600	18,000 J	1100	230	95	210
cPAH TEQ	150 (f)	0000	501 J	1124	802	958	12,078	829 J	194 J	79 J	162 J
		1		,			1-,414				
PCBs (µg/kg)											
Method SW8082											
Aroclor 1016			19 U	18 U	20 U	39 U	7200 U	57 U	8.8 U	8.6 U	11 U
Aroclor 1221			19 U	18 U	20 U	39 U	9200 U	73 U	11 U	11 U	15 U
Aroclor 1232			19 U	18 U	20 U	39 U	16,000 U	130 U	20 U	19 U	25 U
Aroclor 1242			19 U	18 U	20 U	39 U	6600 U	52 U	8.1 U	7.9 U	10 U
Aroclor 1248			56 U	230 U	250 U	190 U	6600 U	52 U	8.1 U	7.9 U	10 U
Aroclor 1254			150	600	720	570	79,000 J	570	38 J, J1	130	160
Aroclor 1260			140 P	190	210	200	9800 U	78 U	73 J	82	100
Total PCBs (d)	2 (f)		290 P	790	930	770	79,000 J	570	111 J	212	260
	- (*)	1				112	10,000				
TOTAL METALS (mg/kg)											
Methods 6010B/6020											
Antimony			0.2 U	0.2 U	0.4	0.5	NA	2.73	0.798	0.376 U	1.15
Arsenic	7 (f)		33.9	17.2	32.4	38.8	NA	17.4	16.8	7.12	6.92
Barium	()	1	65.4	66.4	95	74	NA	164	84.9	86.5	84.8
Beryllium			0.2 U	0.3	0.4 U	0.4 U	NA	0.242 J1	0.241 J1	0.337 J1	0.217 J1
Cadmium	5.1	6.7	0.8	1.3	2.5	2.4	NA	1.11	1.08	0.639	2.33
Chromium	260	270	92.3	152	373	290	NA	338	204	52.3	1570
Copper	390	390	73.8	108	251	245	NA	132	100	48.7	306
Lead	450	530	59.8	201	437	378	NA	263	72.5	12.8	140
Nickel			66.4	109	271	236	NA	180	129	38.8	856
Selenium			0.6 U	0.5 U	1	1	NA	1.05 U	4.18 U	0.797 U	5.35 U
Silver	6.1	6.1	0.2	0.2	0.5	0.6	NA	0.681 J1	0.691	0.437 J1	1.52
Zinc	410	960	278	640	1100	990	NA	544	568	170	971
Method SW7199											
Chromium VI			0.482 U	0.408 U	0.894 U	0.859 U	NA	4.2	0.47 J1	1.5	0.31 U
Method SW7471A		<u> </u>									
Mercury	0.41	0.59	0.07	0.11	0.15	0.19	NA	0.0586 J1	0.0174 J1	0.0677 J1	0.0273 J1

TABLE 32 STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - ISAACSON EAST AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

µg/kg = micrograms per kilogram
mg/kg = milligrams per kilogram
PAHs polyclic aromatic hydrocarbons
PCBs = polychlorinated biphenyls
cPAHs = carcinogenic PAHs
TEQ = Toxic Equivalent Concentration
SIM = Selected Ion Monitoring
NA = Not Analyzed
SMS = Sediment Management Standards
CSL = Cleanup Screening Level
SCO = Sediment Cleanup Objective

LAET = Lowest Apparent Effects Threshold PRG = Preliminary Remediation Goal

U = Indicates the compound was not detected at or above the reporting limit.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 ${\sf J1 = Laboratory\,flag\,indicating\,the\,analyte\,was\,positively\,identified;\,the\,associated\,concentration\,is\,approximate}$

and less than the reporting limit, but equal to or greater than the detection limit.

P = The analyte was detected on both chromatographic columns but the quantified values differ by 40% RPD with no obvious chromatographic interference. The higher of the two values is reported by the laboratory.

Indicates concentration exceeds SCO but less than the CSL or the dry weight equivalent values (LAET and 2LAET, respectively)
Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effect Threshold Values (Barrick et al. 1988)
- (b) SMS SCO /LAET
- (c) SMS CSL / 2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

TABLE 33 STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - ISAACSON WEST AREA BOEING ISAACSON-THOMPSON TUKWILA, WASHINGTON

				2011 Storm Drain Solids				2012 Source Material		
			IT-CB34	IT-CB35	IT-VTVW	IT-CJM-07	IT-SURFACE-09	IT-SURFACE-10	IT-SURFACE-11	IT-SURFACE-12
	Dry Weigh	t Equivalent	TL84A	TL84B	TL29E/TO31A	6612537	6607147	6607148	6607149	6607150
	, ,	Criteria (a)	TL84	TL84	TL29/TO31	1301439	1300346	1300346	1300346	1300346
	SCO/LAET (b)	CSL/2LAET (c)	09/12/2011	09/12/2011	09/07/2011	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/03/2012
SEMIVOLATILES (µg/kg)										
Method SW8270D										
Benzoic Acid	650	650	1900 U	1600 J	8200 UJ	25,000 UJ	1400 U	2400 U	11,000 U	7500 U
Benzyl Alcohol	57	73	94 U	140 J	410 U	5000 U	280 U	490 U	2300 U	1500 U
4-Bromophenyl-phenylether			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
Butylbenzylphthalate	63	900	94 U	310 J	370 J	10,000 U	560 U	980 U	4600 U	3000 U
Di-n-Butylphthalate	1400	5100	94 U	180 U	430	10,000 UJ	560 U	980 U	4600 U	3000 U
Carbazole			94 U	130 J	410 U	2500 U	140 U	240 U	1100 U	750 U
4-Chloro-3-methylphenol			470 U	910 U	2000 U	2500 U	140 U	240 U	1100 U	750 U
4-Chloroaniline			1300 U	2500 U	5500 U	2500 U	140 U	240 U	1100 U	750 U
bis(2-Chloroethoxy) Methane			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
Bis-(2-Chloroethyl) Ether			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
2-Chloronaphthalene			94 U	180 U	410 U	1100 U	59 U	100 U	480 U	310 U
2-Chlorophenol			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
4-Chlorophenyl-phenylether			94 U	180 U	410 UJ	2500 U	140 U	240 U	1100 U	750 U
2,2'-Oxybis(1-Chloropropane)			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
1,2-Dichlorobenzene	35	50	94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
1,3-Dichlorobenzene			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
1,4-Dichlorobenzene	110	110	94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
3,3'-Dichlorobenzidine			700 U	1400 U	3100 U	15,000 UJ	840 U	1500 U	6800 U	4500 U
2,4-Dichlorophenol			940 U	1800 U	4100 U	2500 U	140 U	240 U	1100 U	750 U
Diethylphthalate	200	1200	230 U	460 U	1000 U	10,000 UJ	560 U	980 U	4600 U	3000 U
2,4-Dimethylphenol	29	29	190 U	360 U	820 U	1500 U	84 U	150 U	680 U	450 U
Dimethylphthalate	71	160	94 U	180 U	410 U	10,000 UJ	560 U	980 U	4600 U	3000 U
4,6-Dinitro-2-Methylphenol			940 U	1800 UJ	4100 U	25,000 UJ	1400 U	2400 U	11,000 U	7500 U
2,4-Dinitrophenol			4000 U	7800 U	17000 U	45,000 UJ	2500 U	4400 U	20,000 U	13,000 U
2,4-Dinitrotoluene			470 U	910 U	2000 U	10,000 UJ	560 U	980 U	4600 U	3000 U
2,6-Dinitrotoluene			470 U	910 U	2000 U	2500 U	140 U	240 U	1100 U	750 U
bis(2-Ethylhexyl)phthalate	1300	3100	210	3000	4400	10,000 U	580 J1	2900	4600 U	3000 U
Hexachlorobenzene	22	70	94 U	180 U	410 U	500 U	28 U	49 U	230 U	150 U
Hexachlorobutadiene	11	120	470 U	910 U	2000 U	1500 U	84 U	150 U	680 U	450 U
Hexachlorocyclopentadiene			1900 U	3600 U	8200 U	25,000 UJ	1400 U	2400 U	11,000 U	7500 U
Hexachloroethane			94 U	180 U	410 U	5000 U	280 U	490 U	2300 U	1500 U
Isophorone			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
1-Methylnaphthalene			94 U	180 U	410 U	500 U	28 U	49 U	230 U	150 U
2-Methylphenol	63	63	94 U	180 U	410 U	1500 U	84 U	150 U	680 U	450 U
4-Methylphenol	670	670	190 U	410	370 J	2500 U	140 U	240 U	1100 U	750 U
2-Nitroaniline			470 U	910 U	2000 U	2500 U	140 U	240 U	1100 U	750 U
3-Nitroaniline			470 U	910 U	2000 U	10,000 UJ	560 U	980 U	4600 U	3000 U
4-Nitroaniline			470 U	910 U	2000 U	10,000 UJ	560 U	980 U	4600 U	3000 U
Nitrobenzene			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
2-Nitrophenol			470 U	910 U	2000 U	2500 U	140 U	240 U	1100 U	750 U
4-Nitrophenol			470 U	910 U	2000 U	25,000 UJ	1400 U	2400 U	11,000 U	7500 U
N-Nitroso-Di-N-Propylamine			94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
N-Nitrosodiphenylamine	28	40	94 U	180 U	410 U	1500 U	84 U	150 U	680 U	450 U
Di-n-Octyl phthalate	6200	6200	94 U	130 J	410 U	10,000 U	560 U	980 U	4600 U	3000 U
Pentachlorophenol	360	690	940 U	1800 U	4100 U	5000 U	280 U	490 U	2300 U	1500 U
Phenol	420	1200	94 U	120 J	390 J	2500 U	140 U	1300	1100 U	750 U
1,2,4-Trichlorobenzene	31	51	94 U	180 U	410 U	2500 U	140 U	240 U	1100 U	750 U
2,4,5-Trichlorophenol			470 U	910 U	2000 U	2500 U	140 U	240 U	1100 U	750 U
2,4,6-Trichlorophenol			470 U	910 U	2000 U	2500 U	140 U	240 U	1100 U	750 U
1	1									

TABLE 33 STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - ISAACSON WEST AREA BOEING ISAACSON-THOMPSON TUKWILA, WASHINGTON

		T		2011 Storm Drain Solids	1			2012 Source Material		
		-			IT \/T\/\\/	IT C IM 07	IT CLIDEACE OO		IT CLIDEACE 44	IT CLIDEACE 42
	D=: \W: 1	t Fautivalent	IT-CB34	IT-CB35	IT-VTVW	IT-CJM-07	IT-SURFACE-09	IT-SURFACE-10	IT-SURFACE-11	IT-SURFACE-12
		t Equivalent	TL84A	TL84B	TL29E/TO31A	6612537	6607147	6607148	6607149	6607150
	SCO/LAET (b)	Criteria (a) CSL/2LAET (c)	TL84 09/12/2011	TL84 09/12/2011	TL29/TO31 09/07/2011	1301439 04/10/2012	1300346 04/03/2012	1300346 04/03/2012	1300346 04/03/2012	1300346 04/03/2012
	SCO/LAET (b)	COLIZEAET (C)	09/12/2011	09/12/2011	09/07/2011	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/03/2012
PAHs (µg/kg)										
Method SW8270D-SIM										
Acenaphthene	500	500	46 U	47 U	110	200 U	23 J1	49 J1	37 U	24 U
Acenaphthylene	1300	1300	46 U	47 U	40 J	100 U	15 J1	25 J1	18 U	12 U
Anthracene	960	960	46 U	47 U	83	100 U	26 J1	77 J1	72 J1	20 J1
Benzo(a)anthracene	1300	1600	46 U	40 J	250	610	86	150	270	68
Benzo(a)pyrene	1600	1600	46 U	75	260	1800	130	190	300	110
Benzo(b)fluoranthene			NA	NA	NA	1000	360	440	610	270
Benzo(g,h,i)perylene	670	720	67	120	280	690	66	78 J1	160	65
Benzo(k)fluoranthene			NA	NA	NA	210 J1	120	170	260	110
Total Benzofluoranthenes (d, e)	3200	3600	46 U	150	590	NA	NA	NA	NA	NA
Chrysene	1400	2800	100	250	670	1500	250	310	470	240
Dibenz(a,h)anthracene	230	230	46 U	52	58 J	480 J1	22 U	38 U	39 J1	24 U
Dibenzofuran			46 U	47 U	98	200 UJ	53 J1	84 J1	46 J1	26 J1
Fluoranthene	1700	2500	29 J	170	890	520 J	420	600	920	340
Fluorene	540	540	46 U	47 U	140	200 U	22 U	85 J1	42 J1	24 U
Indeno(1,2,3-cd)pyrene	600	690	46 U	56	190	430 J1	63	72 J1	130	54 J1
2-Methylnaphthalene	670	670	46 U	34 J	160	200 U	61	90 J1	41 J1	31 J1
Naphthalene	2100	2100	46 U	47 U	140	200 U	130	170	100	63
Total Naphthalenes	2100	2100	NA NA	34 J	300	NA NA	191	260 J	141 J	94 J
Phenanthrene	1500	1500	46 U	140	780	200 U	300	530	550	200
Pyrene	2600	3300	26 J	170	660	7000 J	320	410	620	230
cPAH TEQ		3300	1.0	107 J	376 J	2088 J	195	276 J	436 J	163 J
CPARTIEQ	150 (f)		1.0	107 J	3/6	2000 J	190	276 J	430 J	103 J
PCBs (µg/kg) Method SW8082 Aroclor 1016			19 U	19 U	19 U	72 U	12 U	21 U	19 U	13 U
			19 U	19 U	19 U	92 U	12 U	27 U	25 U	13 U
Aroclor 1221										
Aroclor 1232			19 U	19 U	19 U	160 U	27 U	46 U	43 U	29 U
Aroclor 1242			19 U	19 U	19 U	66 U	11 U	19 U	18 U	12 U
Aroclor 1248			19 U	23	81 U	66 U	11 U	19 U	18 U	12 U
Aroclor 1254			12 J	42	130	620	42 J, J1	540 J	88 J, J1	34 J, J1
Aroclor 1260		l _	14 J	42	100	98 U	60 J	28 U	53 J, J1	32 J, J1
Total PCBs (d)	2 (f)		26 J	107	230	620	102 J	540 J	141 J	66 J
TOTAL METALS (mg/kg) Methods 6010B/6020										
Antimony	1		0.2 U	0.3 UJ	0.4 U	NA	3.18	5.96	1.33	1.76
Arsenic	7 (f)		5.7	15.2 J	38.3	NA	5.83 J1	33.2	8.79	40.4
Barium			44.5	347 J	113	NA	102	184	112	183
Beryllium			0.2 U	0.3 U	0.4_U	NA	0.179 J1	0.322 J1	0.145 J1	0.290 J1
Cadmium	5.1	6.7	2.1	7.3 J	23.7	NA	6.81	21.1	2.28	7.61
Chromium	260	270	59	207 J	821	NA	11,100	647	243	395
Copper	390	390	30.5	80.6 J	205	NA	598	368	83.5	130
Lead	450	530	13.2	50.1 J	182	NA	317	900	90.7	101
Nickel			19.9	79.6 J	225	NA	1720	242	93.4	124
Selenium	1		0.6 U	0.9	4	NA NA	5.58 U	9.78 U	1.86 U	1.20 U
Silver	6.1	6.1	0.6 U 0.2 U	0.3 U	0.6	NA NA	4.67	3.34	0.655 J1	1.06
					830					
Zinc	410	960	132	384 J	630	NA	2670	3260	1690	564
Method SW7199 Chromium VI			0.488 U	0.531 UJ	0.875 U	NA	0.88 J1	0.61 U	0.57 U	2.5
	1									
Method SW7471A										
Mercury	0.41	0.59	0.03 U	0.02	0.16	NA	0.0463 J1	0.169 J1	0.0898 J1	0.104 J1
DIOXIN/FURAN (pg/g) EPA 1613B										

TABLE 33 STORM DRAIN SOURCE EVALUATION ANALYTICAL DATA - ISAACSON WEST AREA **BOEING ISAACSON-THOMPSON TUKWILA, WASHINGTON**

			2011 Storm Drain Solids				2012 Source Material		
		IT-CB34	IT-CB35	IT-VTVW	IT-CJM-07	IT-SURFACE-09	IT-SURFACE-10	IT-SURFACE-11	IT-SURFACE-12
	Dry Weight Equivalent	TL84A	TL84B	TL29E/TO31A	6612537	6607147	6607148	6607149	6607150
	to SMS Criteria (a)	TL84	TL84	TL29/TO31	1301439	1300346	1300346	1300346	1300346
	SCO/LAET (b) CSL/2LAET (c)	09/12/2011	09/12/2011	09/07/2011	04/10/2012	04/03/2012	04/03/2012	04/03/2012	04/03/2012
1,2,3,4,6,7,8-HpCDD		NA	NA	448	NA	NA	NA	NA	NA
1,2,3,4,6,7,8-HpCDF		NA	NA	83.2	NA	NA	NA	NA	NA
1,2,3,4,7,8,9-HpCDF		NA	NA	6.35	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDD		NA	NA	11.8	NA	NA	NA	NA	NA
1,2,3,4,7,8-HxCDF		NA	NA	11.3	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDD		NA	NA	25.6	NA	NA	NA	NA	NA
1,2,3,6,7,8-HxCDF		NA	NA	10.3	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDD		NA	NA	24.3	NA	NA	NA	NA	NA
1,2,3,7,8,9-HxCDF		NA	NA	3.25	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDD		NA	NA	12.2	NA	NA	NA	NA	NA
1,2,3,7,8-PeCDF		NA	NA	6.43	NA	NA	NA	NA	NA
2,3,4,6,7,8-HxCDF		NA	NA	13.9	NA	NA	NA	NA	NA
2,3,4,7,8-PeCDF		NA	NA	10.9	NA	NA	NA	NA	NA
2,3,7,8-TCDD		NA	NA	2.27	NA	NA	NA	NA	NA
2,3,7,8-TCDF		NA	NA	23.8	NA	NA	NA	NA	NA
OCDD		NA	NA	2900	NA	NA	NA	NA	NA
OCDF		NA	NA	150	NA	NA	NA	NA	NA
Total HpCDD		NA	NA	1120	NA	NA	NA	NA	NA
Total HpCDF		NA	NA	205	NA	NA	NA	NA	NA
Total HxCDD		NA	NA	297	NA	NA	NA	NA	NA
Total HxCDF		NA	NA	197	NA	NA	NA	NA	NA
Total PeCDD	1	NA	NA	96.8	NA	NA	NA	NA	NA
Total PeCDF		NA	NA	273	NA	NA	NA	NA	NA
Total TCDD	1	NA	NA	41.7	NA	NA	NA	NA	NA
Total TCDF	1	NA	NA	226	NA	NA	NA	NA	NA
D/F TEQ	2000 (f)	NA	NA	36.6	NA	NA	NA	NA	NA

mg/kg = milligrams per kilogram PAHs polyclic aromatic hydrocarbons PCBs = polychlorinated biphenyls cPAHs = carcinogenic PAHs TEQ = Toxic Equivalent Concentration SIM = Selected Ion Monitoring NA = Not Analyzed

μg/kg = micrograms per kilogram

SMS = Sediment Management Standards

CSL = Cleanup Screening Level

SCO = Sediment Cleanup Objective

LAET = Lowest Apparent Effects Threshold

PRG = Preliminary Remediation Goal

Indicates concentration exceeds SCO but less than the CSL or the dry weight equivalent values (LAET and 2LAET, respectively) Indicates concentration exceeds the SCO and CSL or dry weight equivalent criteria or PRG.

- (a) Dry weight equivalent criteria are based on the Puget Sound Apparent Effect Threshold Values (Barrick et al. 1988)
- (b) SMS SCO /LAET
- (c) SMS CSL / 2LAET
- (d) Where chemical criteria in this table represent the sum of individual compounds or isomers, the following methods shall be applied:
 - (i) Where chemical analyses identify an undetected value for every individual compound/isomer, then the single highest detection limit shall represent the sum of the respective compound/isomers.
 - (ii) Where chemical analyses detect one or more individual compounds/isomers, only the detected concentrations will be added to represent the group sum.
- (e) The total benzofluoranthenes criterion represents the sum of the concentrations of the "B," "J," and "K" isomers.
- (f) Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

TABLE 34

SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS BOEING THOMPSON PROPERTY WOODEN BULKHEAD BOEING THOMPSON-ISAACSON SITE TUKWILA, WASHINGTON

	SMS	IT-WB-1	IT-WB-2	IT-WB-3-120312
	sco	UM06A	UM06B	UM06C
	dry weight for metals, LAET for			
	organics	03/12/2012	03/12/2012	03/12/2012
VOLATILES (μg/kg)				
Method SW8260C				
Chloromethane		0.6 J1	0.6 J1	0.8 U
Bromomethane		0.4 J1	0.7 J1	0.8 U
Methylene Chloride		1.7	2.3	1.1 J1
Acetone		50	46	58
Carbon Disulfide		1.9 J	0.8 J	0.9 J
2-Butanone		5.0	3.7	5.9
Trichloroethene		0.4 J1	0.7 U	0.8 U
Benzene		0.4 J1	0.3 J1	0.7 J1
Toluene		0.7 J1	0.6 J1	0.8 J1
Acrolein		2.9 J1	4.2 J1	7.6 J1
Methyl Iodide		0.7 U	0.9	0.8 U
SEMIVOLATILES (µg/kg)				
Method SW8270D				
2,4,6-Trichlorophenol	1	98 U	96 U	33 J1
Phenanthrene	1,500	25	12 J1	41
Di-n-Butylphthalate	1,400	20 U	19 U	11 J1
Fluoranthene	1,700	53	53	23
Pyrene	2,600	47	34	20
Butylbenzylphthalate	63	13 J1	19 U	13 J1
Benzo(a)anthracene	1,300	17 J1	19 U	16 J1
bis(2-Ethylhexyl)phthalate	1,300	21 J1	24 U	16 J1
Chrysene	1,400	27	28	35
Benzo(a)pyrene	1,600	20	19 U	12 J1
Indeno(1,2,3-cd)pyrene	600	18 J1	19 U	13 J1
Benzo(g,h,i)perylene	670	29	12 J1	14 J1
Total Benzofluoranthenes	3,200	48	49	37
cPAH TEQ	150 (c)	29 J	5 J	19 J1
PAHs (µg/kg)				
Method SW8270D-SIM				
Naphthalene	2,100	12 J	4.2 J1	13
2-Methylnaphthalene	670	9.8 J	3.7 J1	11
1-Methylnaphthalene	0.0	9.3	3.8 J1	11
Total Naphthalenes		31.1 J	11.7 J	35
Acenaphthylene	1,300	3.3 J1	4.8 U	3.6 J1
Acenaphthene	500	4.8 U	4.8 U	5.7
Fluorene	540	4.8 U	4.8 U	3.4 J1
Phenanthrene	1,500	18	16	34
Anthracene	960	3.7 J1	4.7 J1	6.3
Fluoranthene	1,700	36	56	42
Pyrene	2,600	30	35	36
Benzo(a)anthracene	1,300	18	9.2	18
Chrysene	1,400	27	32	32
Benzo(a)pyrene	1,600	43	14	22
Indeno(1,2,3-cd)pyrene	600	33	8.9	16
Dibenz(a,h)anthracene	230	20	4.3 J1	4.8
Benzo(g,h,i)perylene	670	57	10	18
Dibenzofuran	540	4.4 J1	3.3 U	6.7
Total Benzofluoranthenes	3,200	70	58	59
Total cPAH TEQ	150 (c)	57	22.4 J	32
TOTAL PETROLEUM				
HYDROCARBONS (mg/kg)	1			
NWTPH-Dx				
Diesel-Range Organics		160	6.2 U	7.3 U

TABLE 34

SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS BOEING THOMPSON PROPERTY WOODEN BULKHEAD BOEING THOMPSON-ISAACSON SITE TUKWILA, WASHINGTON

	SMS SCO	IT-WB-1 UM06A	IT-WB-2 UM06B	IT-WB-3-120312 UM06C
	dry weight for metals, LAET for organics	03/12/2012	03/12/2012	03/12/2012
Motor Oil-Range Organics	organioo	1400	15	15
Wolfor Oil-Range Organics		1400	15	19
TOTAL METALS (mg/kg)				
Methods 200.8/7471A/SW7196A				
Arsenic	7 (c)	5.6	5.5	7.6
Barium		31.1	33.1	40.7
Beryllium		0.3 U	0.3 U	0.3
Chromium	260	19	24.2	17.4
Copper	390	26.7	25.2	19.8
Lead	450	32.3	82.7	11.6
Mercury	0.41	0.04	0.03	0.06
Nickel		21.7	19.1	14.7
Zinc	410	55	55	53

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

SIM = Selected Ion Monitoring

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SCO = Sediment Cleanup Objective

PRG = Preliminary Remediation Goal

- U = Indicates the compound was not detected at or above the the reporting limit.
- J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

Bold = Detected compound.

Box = Exceedance of cleanup level.

- (a) = Value for unrestricted sites, no safe concentration established for industrial.
- (b) = No safe concentration yet established.
- (c) = Lower Duwamish Waterway Preliminary Remediation Goal (PRG)

TABLE 35 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER PAINT STORAGE AREA AND FORMER DIESEL AND GASOLINE TANK AREA BOEING THOMPSON-ISAACSON SITE TUKWILA, WASHINGTON

														Former Diesel and
	Preliminary Cleanup Levels	IT-SB-9(2-3.5) TX02E 11/14/2011	IT-SB-9(5-6.5) TX02F 11/14/2011	IT-SB-9(8-8.5) TX02G 11/14/2011	IT-SB-9(14-15.5) TX02H 11/14/2011	IT-SB-10(2-3.5) TU90P 11/01/2011	IT-SB-10(5-6.5) TU90Q 11/01/2011	IT-SB-10(8-9.5) TU90T 11/01/2011	IT-SB-10(13.5-15) TU90S 11/01/2011	IT-SB-11(2-3.5) TX02A 11/14/2011	IT-SB-11(5-6.5) TX02B 11/14/2011	IT-SB-11(8-9) TX02C 11/14/2011	IT-SB-11(14-15.5) TX02D 11/14/2011	Gasoline Tanks IT-TP-109-SWS(9-10
VOLATILES (μg/kg)														
Method SW8260C														
Methylene Chloride	2,400	2.5 U	1.1 J1	1.6 J1	1.4 J1	1.6 J, J1	2.2 J, J1	2.2 J, J1	2.1 J, J1	0.9 J1	1.0 J1	1.3 J1	0.9 J1	3.1
Acetone	510,000	43 J	58 J	30 J	28 J	43 J	23 J	21 J	27 J	40 J	52 J	22 J	9.0 J	11
Carbon Disulfide	75,000	1.3 U	1.3 U	1.3 U	2.8	1.4 U	1.1 U	1.5 U	1.6 U	0.8 J1	2.8	1.2 U	1.2 U	1.3 U
2-Butanone	430,000	6.4 U	3.7 J1	6.4 U	7.3 U	7.2 U	3.3 J1	7.3 U	8.0 U	3.1 J1	8.7	6.2 U	5.9 U	6.4 U
Trichloroethene	51	0.6 J1	1.3	2.1	1.5	1.4 U	1.1 U	1.5 U	1.6 U	1.0 J1	1.5	1.9	1.2	1.3 U
Benzene	93	1.3 U	0.7 J1	1.3 U	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	0.7 J1	1.5	1.2 U	0.7 J1	1.3 U
Toluene	100,000	1.3 U	1.3 U	1.3 U	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	1.1 U	2.1	1.2 U	1.2 U	1.3 U
Ethylbenzene	230	1.3 U	1.3 U	1.3 U	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	1.1 U	1.1 J1	1.2 U	1.2 U	1.3 U
Trichlorofluoromethane	200,000	1.0 J1	0.8 J1	1.7	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	1.0 J1	0.7 J1	0.8 J1	0.8 J1	1.3 U
m,p-Xylene	160,000	1.3 U	1.3 U	1.3 U	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	1.1 U	5.0	1.2 U	1.2 U	1.3 U
o-Xylene	200,000	1.3 U	1.3 U	1.3 U	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	1.1 U	2.3	1.2 U	1.2 U	1.3 U
1,2,4-Trimethylbenzene	800,000	1.3 U	1.3 U	1.3 U	1.5 U	1.4 U	1.1 U	1.5 U	1.6 U	1.1 U	0.7 J1	1.2 U	1.2 U	1.3 U
SEMIVOLATILES (µg/kg) Method SW8270D														
Benzyl Alcohol	8,000,000	19 U	19 U	19 U	79	110 U	18 U	19 U	19 U	18 U	20 U	19 U	20 U	19 U
Naphthalene	2,100	9.5 J1	19 U	19 U	19 U	110 U	18 U	19 U	19 U	18 U	20 U	19 U	20 U	19 U
2-Methylnaphthalene	320,000	19 U	19 U	19 U	19 U	120	18 U	19 U	19 U	18 U	20 U	19 U	20 U	19 U
Phenanthrene		30	13 J1	19 U	19 U	120	14 J1	19 U	19 U	10 J1	20 U	19 U	20 U	19 U
Di-n-Butylphthalate	26,000	11 J1	18 J1	19 U	19 U	110 U	18 U	19 U	19 U	13 J1	13 J1	10 J1	17 J1	19 U
Fluoranthene	230,000	39	12 J1	19 U	19 U	110 U	18 U	19 U	19 U	11 J1	20 U	19 U	20 U	19 U
Pyrene	240,000	56 J	18 J, J1	19 U	19 U	83 J1	18 U	19 U	19 U	12 J, J1	20 U	19 U	20 U	19 U
Benzo(a)anthracene		25	19 U	19 U	19 U	110 U	18 U	19 U	19 U	18 U	20 U	19 U	20 U	19 U
Chrysene		29	15 J1	19 U	19 U	150	22	19 U	19 U	10 J1	20 U	19 U	20 U	19 U
Benzo(a)pyrene		24	11 J1	19 U	19 U	72 J1	18 U	19 U	19 U	18 U	20 U	19 U	20 U	19 U
Indeno(1,2,3-cd)pyrene		18 J1	19 U	19 U	19 U	110 U	18 U	19 U	19 U	11 J1	20 U	19 U	20 U	19 U
Benzo(g,h,i)perylene		18 J1	19 U	19 U	19 U	110 U	18 U	19 U	19 U	18 U	20 U	19 U	20 U	19 U
Total Benzofluoranthenes		40	21	19 U	19 U	110 U	18 U	19 U	19 U	18	20 U	19 U	20 U	19 U
Total cPAH TEQ	15	33 J	13 J	ND	ND	74 J	0.22	ND	ND	3 J	ND	ND	ND	ND
PAHs (μg/kg) Method SW8270D-SIM														
Naphthalene	2,100	11	6.4	4.8 U	3.0 J1	26	4.4 U	4.6 U	2.5 J1	4.8	4.8 U	4.9 U	3.0 J1	4.6 U
2-Methylnaphthalene	320,000	6.6	7.1	4.8 U	3.7 J1	52	2.9 J1	4.6 U	4.7 U	4.3 J1	4.8 U	4.9 U	3.6 J1	4.6 U
1-Methylnaphthalene	16,000	6.0	6.6	4.8 U	3.1 J1	39	2.2 J1	4.6 U	4.7 U	3.7 J1	4.8 U	2.7 J1	3.3 J1	4.6 U
Total Naphthalenes		23.6	20.1	4.8 U	9.8 J1	117	5.1 J1	4.6 U	2.5 J1	12.8 J1	4.8 U	2.7 J1	9.9 J1	4.6 U
Acenaphthylene		6.9	4.7 U	4.8 U	4.7 U	9.7 J1	4.4 U	4.6 U	4.7 U	4.6 U	4.8 U	4.9 U	4.7 U	4.6 U
Acenaphthene	230,000	2.9 J1	8.9	4.8 U	4.7 U	13 U	4.4 U	4.6 U	4.7 U	4.6 U	4.8 U	4.9 U	4.7 U	4.6 U
Fluorene	150,000	3.9 J1	5.4	4.8 U	4.7 U	9.9 J1	4.4 U	4.6 U	4.7 U	4.6 U	4.8 U	4.9 U	4.7 U	4.6 U
Phenanthrene		83	73	4.8 U	5.6	91	8.4	3.4 J1	3.8 J1	12	6.1	2.6 J1	7.8	4.6 U
Anthracene	1,600,000	4.7	15	4.8 U	4.7 U	24	4.4 U	4.6 U	4.7 U	4.6 U	4.8 U	4.9 U	4.7 U	4.6 U
Fluoranthene	230,000	99	79	4.8 U	4.7 U	74	3.6 J1	4.6 U	4.7 U	20	2.8 J1	4.9 U	4.1 J1	4.6 U
Pyrene	240,000	95	66	4.8 U	4.7 U	71	4.1 J1	4.6 U	2.4 J1	18	3.9 J1	4.9 U	4.6 J1	4.6 U
Benzo(a)anthracene		26	32	4.8 U	4.7 U	26	2.8 J1	4.6 U	4.7 U	10	2.7 J1	4.9 U	4.7 U	4.6 U
Chrysene		51	38	4.8 U	4.7 U	120	14	4.6 U	4.7 U	16	14	4.9 U	7.6	4.6 U
Benzo(a)pyrene		41	34	4.8 U	4.7 U	45	10	4.6 U	4.7 U	15	3.7 J1	4.9 U	3.7 J1	4.6 U
Indeno(1,2,3-cd)pyrene		30	22	4.8 U	4.7 U	34	4.4 U	4.6 U	4.7 U	11	4.8 U	4.9 U	4.7 U	4.6 U
Dibenz(a,h)anthracene		8.0	6.7	4.8 U	4.7 U	14	4.4 U	4.6 U	4.7 U	4.4 J1	4.8 U	4.9 U	4.7 U	4.6 U
Benzo(g,h,i)perylene		33	27	4.8 U	4.7 U	100	4.6	4.6 U	4.7 U	14	5.4	4.9 U	4.9	4.6 U
Dibenzofuran	120,000	5.6	5.1	4.8 U	4.7 U	12 J1	4.4 U	4.6 U	4.7 U	2.4 J1	4.8 U	4.9 U	4.7 U	4.6 U
Total Benzofluoranthenes		76	58	4.8 U	4.7 U	70	4.4 U	4.6 U	4.7 U	28	4.8 U	4.9 U	4.7 U	4.6 U
Total cPAH TEQ	15	56	46	ND	ND	61	10.4 J	ND	ND	21 J	4.1 J	ND	3.8 J	ND

TABLE 35 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER PAINT STORAGE AREA AND FORMER DIESEL AND GASOLINE TANK AREA **BOEING THOMPSON-ISAACSON SITE TUKWILA, WASHINGTON**

•		ı												
							Former Paint	Storage Area						Former Diesel and Gasoline Tanks
	Preliminary	IT-SB-9(2-3.5)	IT-SB-9(5-6.5)	IT-SB-9(8-8.5)	IT-SB-9(14-15.5)	IT-SB-10(2-3.5)	IT-SB-10(5-6.5)	IT-SB-10(8-9.5)	IT-SB-10(13.5-15)	IT-SB-11(2-3.5)	IT-SB-11(5-6.5)	IT-SB-11(8-9)	IT-SB-11(14-15.5)	IT-TP-109-SWS(9-10)
	Cleanup	TX02E	TX02F	TX02G	TX02H	TU90P	TU90Q	TU90T	TU90S	TX02A	TX02B	TX02C	TX02D	TT67A
	Levels	11/14/2011	11/14/2011	11/14/2011	11/14/2011	11/01/2011	11/01/2011	11/01/2011	11/01/2011	11/14/2011	11/14/2011	11/14/2011	11/14/2011	10/25/2011
PCBs (μg/kg) Method SW8082 Aroclor 1254 Total PCBs	0.29	33 U	43	33 U	32 U	150 U	30 U	33 U	31 U	32 U	30 U	31 U	32 U	26 U
	1.8	ND	43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000	5.7 U	5.6 U	5.2 U	6.2 U	400	7.5	5.7 U	6.7 U	5.8 U	5.4 U	5.4 U	6.0 U	5.2 U
	2,000	11 U	11 U	10 U	13	770	47	11 U	13 U	12 U	30	11 U	26	10 U
NWTPH-G Gasoline-Range Organics	100/30	6.9 U	6.7 U	7.1 U	8.3 U	6.1 U	5.6 U	8.4 U	9.3 U	8.2 U	7.0 U	6.6 U	7.4 U	17
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A														
Arsenic	7	3.7	3.4	2.0	2.2	25.9	2.7	2.1	187	501	209 28.4 0.2 U 0.1 U	15.4	43.5	2.3
Barium	640	47.8	48.6	25.8	45.1	150	35.0	36.1	47.0	58.2 J		30.7	55.3	21.3 J
Beryllium	160	0.2 U	0.2 U	0.2 U	0.3 U	0.3	0.2 U	0.2 U	0.3 U	0.2		0.2 U	0.3 U	0.2 U
Cadmium	1.3	0.1 U	0.1 U	0.1 U	0.1 U	0.1	0.1 U	0.1 U	0.1 U	0.3		0.1 U	0.1 U	0.1 U
Chromium	1,480	11.2	14.7	9.0	14.0	20.7	9.3	10.5	12.6	16.0	8.6	8.6	15.0	9.3
Chromium VI	3.8	0.443 U	0.447 U	0.421 U	0.536 ∪	0.445 U	0.429	0.436 U	0.536 U	0.464 UJ	0.427 U	0.429 ∪	0.499 ∪	0.414 U
Copper	36	16.8	18.0	10.6	17.9	45.9	12.9	14.8	490	1170	51.8	11.1	63.2	10.5
Lead	250	11.8	19.7	1.3	2.1	29.3	1.9	1.6	2.3	14.4	1.6	1.4	3.7	1.4
Mercury	1.5	0.04	0.03 ∪	0.02 U	0.03 U	0.06	0.03 U	0.02 U	0.03 U	0.08 J	0.02 U	0.02 U	0.03	0.02 U
Nickel	210	9.2	17.2	8.0	11.0	31.6	8.5	9.0	9.4	20.6	8.3	7.6	12.0	8.8
Silver	170	0.2 ∪	0.6	0.2 U	0.3 U	0.2 ∪	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	0.3 ∪	0.2 U
Zinc	1,400	40	55	20	32	93	24	23	272	195	268	81	62	25

ND = Not Detected.

PAHs polyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

TABLE 36 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS OBSERVED TAR-LIKE SUBSTANCE AREA BOEING THOMPSON-ISAACSON SITE TUKWILA, WASHINGTON

							Observed Tar-L	ike Substance Area					
	Preliminary Cleanup Levels	IT-TP-107-B(11-12) TU01F 10/26/2011	IT-TP-107-SWN(1-2) TU01A 10/26/2011	IT-TP-107-SWN(2-3) TU01E 10/26/2011	IT-TP-107-SWS(1-2) TU01C 10/26/2011	IT-TP-107-SWE(1-2) TU01B 10/26/2011	IT-TP-107-SWW(1-2) TU01D 10/26/2011	IT-TP-108-B(11-12) TU01L 10/26/2011	IT-TP-108-SWN(1-2) TU01G 10/26/2011	IT-TP-108-SWN(2-3) TU01K 10/26/2011	IT-TP-108-SWS(1-2) TU01H 10/26/2011	IT-TP-108-SWE(1-2) TU01I 10/26/2011	IT-TP-108-SWW(1-2 TU01J 10/26/2011
VOLATILES (μg/kg)													
Method SW8260C													
Chloromethane	1,600	1.3 U	1.2 U	1.3 U	1.1 U	1.7 U	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.5 U	1.0 J1
Methylene Chloride	2.400	3.2 J	2.4 U	2.6 J, J1	2.9 J	3.5 U	1.5 J, J1	3.0 J	2.9 U	3.5 J	1.2 U 1.9 J, J1	3.0 U	3.6 U
Acetone	510,000	44 J	130 J	25 J	45 J	230 J	51 J	28 J	65 J	17 J	1.9 5, 51 140 J	140 J	82 J
Carbon Disulfide	75,000	1.3 U	1.2 U	1.3 U	1.1 U	1.7	1.0 U	1.4 U	1.4 U	1.3 U	1.0 J1	1.5 U	1.0 J1
			1.2 0		3.9 J1	1.7				6.6 U		1.5 0	
2-Butanone	430,000	6.6 U		6.6 U			2.9 J1	6.8 U	6.4 J1		21		15
Benzene	93	1.1 J1	0.7 J1	1.3 U	1.3	0.9 J1	1.0 U	1.4 U	1.4 U	1.3 U	1.3	4.4	2.0
Toluene	100,000	1.3 U	1.9	1.3 U	0.7 J1	5.3	1.0 J1	1.4 U	1.4 U	1.3 U	0.8 J1	2.0	2.0
m,p-Xylene	160,000	1.3 U	0.6 J1	1.3 U	1.1 U	1.7 U	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.0 J1	1.8 J1
o-Xylene	200,000	1.3 U	1.2 U	1.3 U	1.1 U	1.7 U	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	0.8 J1	1.6 J1
1,3-Dichlorobenzene	3,840	1.3 U	0.6 J1	1.3 U	1.1 U	1.7 U	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.5 U	1.8 U
1,4-Dichlorobenzene	3,500	1.3 U	0.7 J1	1.3 U	1.1 U	1.7 U	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.5 U	1.8 U
1,3,5-Trimethylbenzene	800,000	1.3 U	1.2 U	1.3 U	1.1 U	2.0	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.5 U	1.8
1,2,4-Trimethylbenzene	800,000	1.3 U	1.3	1.3 U	1.1 U	3.7	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.2 J1	4.0
4-Isopropyltoluene		1.3 U	3.2	1.3 U	1.1 U	6.3	1.0 U	1.4 U	1.4 U	1.3 U	0.9 J1	0.8 J1	1.6 J1
n-Butylbenzene	27.000	1.3 U	0.6 J1	1.3 U	1.1 U	1.7 U	1.0 U	1.4 U	1.4 U	1.3 U	1.2 U	1.5 U	1.8 U
Naphthalene	2,100	6.6 U	2.6 J1	6.6 U	5.5 U	8.6 U	5.1 U	6.8 U	7.2 U	6.6 U	6.0 U	2.0 J1	6.3 J, J1
SEMIVOLATILES (μg/kg) Method SW8270D													
4-Methylphenol	41,000	39 U	580 U	39 U	39 UJ	200 UJ	36 UJ	38 U	250 U	38 U	78 J1	190 U	560 U
Naphthalene	2,100	20 U	280 J1	20 U	20 U	190	18	19 U	220	19 U	1700	190	280 U
2-Methylnaphthalene	320,000	20 U	230 J1	12 J1	20 U	170	14 J1	19 U	290	19 U	880	250	200 J1
Acenaphthylene		20 U	290 U	20 U	11 J1	97 U	24	19 U	69 J1	19 U	59 J1	94 U	280 U
Acenaphthene	230,000	20 U	290 U	20 U	20 U	130	18 U	19 U	120 U	19 U	1600	94 U	280 U
Dibenzofuran	80,000	20 U	290 U	20 U	20 U	73 J1	18 U	19 U	120 U	19 U	690	94 U	280 U
Fluorene	150,000	20 U	290 U	20 U	20 U	160	18 U	19 U	75 J1	19 U	1500	52 J1	280 U
Phenanthrene		20 U	890	12 J1	68	1600	56	19 U	480	19 U	7500	330	1200
Carbazole	50,000	20 U	290 U	20 U	20 U	68 J1	18 U	19 U	120 U	19 U	2600	94 U	280 U
Anthracene	1,600,000	20 U	320	20 U	12 J1	410	12 J1	19 U	130	19 U	1800	70 J1	220 J1
Di-n-Butylphthalate	26,000	20 U	290 U	20 U	12 J1	97 U	18 U	19 U	120 U	19 U	98 U	66 J1	280 U
Fluoranthene	230,000	20 U	940	20 U	130	1600	61	19 U	370	19 U	6600	210	400
Pyrene	240,000	20 U	1900	13 J1	190	2200	110	19 U	1100	19 U	6000	560	2100
Benzo(a)anthracene	240,000	20 U	640	20 U	85	840	60	19 U	220	19 U	2800	220	850
bis(2-Ethylhexyl)phthalate	56,600	20 U	360 U	20 0 21 J1	25 U	120 U	23 U	24 U	160 U	24 U	120 U	120 U	350 U
	30,000	24 U	1200	20 U	110	1100	81	19 U	390	19 U	3400	540	2000
Chrysene Renze/alayrana		20 U			100	1100	100	19 U	260		1800	170	560
Benzo(a)pyrene			1000	20 U						19 U			
Indeno(1,2,3-cd)pyrene		20 U	570	20 U	63	640	66	19 U	120	19 U	630	94	140 J1
Dibenz(a,h)anthracene		20 U	290 U	20 U	19 J1	200	24	19 U	120 U	19 U	300	94 U	280 U
Benzo(g,h,i)perylene		20 U	850	20	89	850	97	19 U	240	19 U	810	190	320
1-Methylnaphthalene	16,000	20 U	290 U	20 U	20 U	88 J1	18 U	19 U	110 J1	19 U	440	120	280 U
Total Benzofluoranthenes		20 U	1100	16 J1	160 134 J	1400	140	19 U	320 330	19 U	3400 2547	220 229	530
Total cPAHs TEQ	15	ND	1243	2 J		1419	130	ND		ND			732 J

TABLE 36 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS OBSERVED TAR-LIKE SUBSTANCE AREA BOEING THOMPSON-ISAACSON SITE TUKWILA, WASHINGTON

Cleanup TU01F TU01A TU01B TU01B TU01D TU01L TU01G TU01K TU01H 10/26/2011	140 95 220 230 120 170
Method SW8270D-SIM Naphthalene 2,100 4.8 U 450 6.3 5.7 170 10 4.7 U 190 4.7 U 1400 2-Methylnaphthalene 320,000 4.8 U 380 9.9 4.8 J1 170 9.7 4.7 U 330 4.7 U 760	220 230
Naphthalene 2,100 4.8 U 450 6.3 5.7 170 10 4.7 U 190 4.7 U 1400 2-Methylnaphthalene 320,000 4.8 U 380 9.9 4.8 J1 170 9.7 4.7 U 330 4.7 U 760	220 230
2-Methylnaphthalene 320,000 4.8 U 380 9.9 4.8 J1 170 9.7 4.7 U 330 4.7 U 760	220 230
1-Methylnaphthalene 16,000 4.8 U 310 8.0 3.8 J1 110 7.1 4.7 U 150 4.7 U 410	120
	480 495
Acenaphthylene 4.8 U 57 5.0 U 3.9 J1 46 7.1 4.7 U 26 U 4.7 U 45	31 82
Acenaphthene 230,000 4.8 U 740 5.0 U 5.0 U 160 6.7 4.7 U 210 4.7 U 1600	66 44 U
Fluorene 150,000 4.8 U 530 5.0 U 2.6 J1 120 5.0 4.7 U 180 4.7 U 1800	50 150
Phenanthrene 6.6 4400 11 25 1200 57 4.7 U 450 4.7 U 11000	400 1600
Anthracene 1,600,000 4.8 U 1300 5.0 U 5.0 280 11 4.7 U 140 2.6 J1 2500	93 360
Fluoranthene 230,000 4.8 U 5400 7.9 39 1300 71 4.7 U 450 4.7 U 9600	360 750
Pyrene 240,000 4.8 U 5900 9.5 43 1600 84 4.7 U 1200 4.7 U 7400	590 2800
Benzo(a)anthracene 4.8 U 3400 5.7 22 730 39 4.7 U 200 4.7 U 3100	240 920
Chrysene 4.8 U 4200 8.0 28 1200 48 4.7 U 470 4.7 U 2800	520 2700
Benzo(a)pyrene 4.8 U 5200 8.7 28 970 48 4.7 U 250 4.7 U 1400	240 700
Indeno(1,2,3-cd)pyrene 4.8 U 2900 5.7 24 440 38 4.7 U 160 4.7 U 500	99 190
Dibenz(a,h)anthracene 4.8 U 810 5.0 U 7.0 200 13 4.7 U 69 4.7 U 250	39 110
Benzo(g,h,i)perylene 4.8 U 3400 6.9 33 650 51 4.7 U 240 4.7 U 680	180 480
Dibenzofuran 80,000 4.8 U 320 3.1 J1 5.0 U 76 3.8 J1 4.7 U 26 U 4.7 U 810	33 37 J1
Total Benzofluoranthenes 4.8 U 6400 15 44 1200 72 4.7 U 330 4.7 U 2700	290 650
Total cPAH TEQ 15 ND 6593 11 14 1239 65 ND 331 ND 2083	312 914
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx	
Diesel-Range Organics 2,000 6.8 U 280 5.4 U 6.4 200 11 6.1 U 2500 5.2 U 1100	500 1400
Oil-Range Organics 2,000 14 U 800 11 U 32 500 51 12 U 2000 10 U 1500	1400 3100
NWTPH-G	
Gasoline-Range Organics 100/30 8.3 U 14 7.9 U 7.1 U 13 U 7.1 U 8.0 U 8.0 U 7.7 U 7.0 U	36 24
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A	
Arsenic 7 4.5 85.3 J 7.0 65.0 73.8 215 1.9 35.4 1.5 75.0	34.4 86.3
Barium 640 71.9 169 38.9 70.3 153 57.1 30.7 165 22.7 79.6	77.7 71.4
Beryllium 160 0.3 U 0.2 U 0.	0.2 U 0.3
Cadmium 1.3 0.1 U 0.3 0.1 U 0.2 0.3 0.2 0.1 U 0.3 0.1 U 0.3	0.3 0.2
Chromium 1480 14.8 13.3 12 14.5 14.1 16.9 8.0 20 6.7 14.1	11.2 17.1
Chromium VI 3.8 0.534 U 0.469 UJ 0.434 U 0.434 U 0.423 U 0.481 U 0.481 U 0.439 U 0.484 U 0.444 U 0.417 U 0.471 U	0.558 0.478 U
Copper 36 20.9 205 17.5 82.0 196 129 10.9 87.7 8.8 131	42.5 107
Lead 250 2.8 81.4 J 7.7 20.0 82.3 26.6 1.5 91.3 1.2 52.8	43.6 52.1
Mercury 1.5 0.03 1.14 0.02 0.08 1.35 0.24 0.02 U 0.32 0.02 U 0.51	0.51 0.21
Nickel 210 11.8 14.6 10.6 14.3 15.4 19.2 7.3 22.3 6.3 18.9	12.1 22.1
Zinc 1,400 82 157 59 88 193 148 21 139 18 118	92 145

ND = Not Detected $\mu g/kg$ = micrograms per kilogram mg/kg = milligrams per kilogram

PAHs = polycylic aromatic hydrocarbons

cPAHs = carcinogenic PAHs

Bold = Exceedance
Box = Exceeds Preliminary Cleanup Level.

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

 $\ensuremath{\mathsf{U}}$ = Indicates the compound was not detected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

TABLE 37 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER SLIP 5 OUTFALL AREA BOEING THOMPSON-ISAACSON SITE

TUKWILA, WASHINGTON

									Former SI	ip 5 Outfall Area							
	Preliminary Cleanup Levels	IT-MW-14(2-3.5) TW27J 11/08/2011	IT-MW-14(5-6.5) TW27K 11/08/2011	IT-MW-14(8-9.5) TW27L 11/08/2011	IT-MW-14(13-14.5) TW27M 11/08/2011	IT-SB-6(2-3.5) TU90H 11/01/2011	IT-SB-6(5-6.5) TU90I 11/01/2011	IT-SB-6(8-9.5) TU90J 11/01/2011	IT-SB-6(13.5-15) TU90K 11/01/2011	IT-SB-7(2-3.5) TU90L 11/01/2011	IT-SB-7(5-6.5) TU90M 11/01/2011	IT-SB-7(8-9.5) TU90N 11/01/2011	IT-SB-7(13-14.5) TU90O 11/01/2011	IT-SB-8(2-3.5) TX01F 11/14/2011	IT-SB-8(5-6.5) TX01G 11/14/2011	IT-SB-8(8-9.5) TX01H 11/14/2011	IT-SB-8(14-15.5) TX01I 11/14/2011
VOLATILES (μg/kg) Method SW8260C																	
Methylene Chloride Acetone	2,400 510,000	2.6 15 J	2.7 65 J	2.9 25 J	4.5 23 J	2.7 64 J	3.0 60 J	3.5 19 UJ	2.6 J 11 J	3.0 J 12 J	1.7 J, J1 45 J	4.1 J 20 J	2.8 J 13 J	2.9 UJ 37 J	4.9 J 63 J	1.3 J, J1 34 J	1.6 J, J1 8.9 J
Carbon Disulfide	75,000	1.7	1.2 U	1.3 U	12	1.2 U	1.3	1.5 U	1.1 U	1.3 U	1.0 J1	1.6 U	1.2 U	1.7	1.3 U	1.2 U	1.3 U
2-Butanone	430,000	5.0 U	3.3 J1	6.3 U	7.4 U	5.2 J1	8.7	7.3 U	5.5 U	6.5 U	6.5	7.8 U	5.9 U	7.2 U	6.4 U	5.9 U	6.6 U
Trichloroethene Benzene	51 93	1.0 U 1.0 U	1.2 U 1.2 U	1.3 U 1.3 U	1.5 U 1.5 U	1.2 U 1.3	1.2 U 0.9 J1	1.5 U 1.5 U	1.1 U 0.6 J1	1.3 U 1.3 U	1.0 U 0.7 J1	1.6 U 1.6 U	1.2 U 1.2 U	1.0 J1 1.4 U	1.3 U 1.3 U	1.2 J1 1.2 U	2.0 1.3 U
Toluene	100,000	1.0 U	1.2 U	1.3 U	1.5 U	1.3	4.8	1.5 U	1.1 U	1.3 U	0.7 J1 0.8 J1	1.6 U	1.2 U	1.4 U	1.3 U	1.2 U	1.3 U
Trichlorofluoromethane	200,000	1.0 U	1.2 U	1.3 U	1.5 U	1.2 U	1.2 U	1.5 U	1.1 U	1.3 U	1.0 U	1.6 U	1.2 U	1.4 U	2.4 J	1.9 J	5.9 J
m,p-Xylene Methyl Iodide	160,000	1.0 U 1.0 U	1.2 U 1.2 U	1.3 U 1.3 U	1.5 U 1.5 U	1.2 U 1.2 U	0.8 J1 1.2 U	1.5 U 1.5 U	1.1 U 1.1 U	1.3 U 1.3 U	1.0 U 1.0 U	1.6 U 1.6 U	1.2 U 1.2 U	1.4 U 1.4 U	1.3 U 0.7 J1	1.2 U 1.2 U	1.3 U 1.3 U
SEMIVOLATILES (μg/kg) Method SW8270D																	
Phenol	1,900,000	57 U	55 U	56 U	20 U	19 U	18 U	18 U	19 U	18 U	18 U	19 U	19 U	19 U	18 U	280	19 U
4-Methylphenol	41,000	110 U	110 U	110 U	39 U	38 U	36 U	37 U	38 U	36 U	36 U	38 U	38 U	38 U	35 U	20 J1	37 U
Naphthalene 2-Methylnaphthalene	2,100 320,000	57 U 57 U	55 U 55 U	56 U 56 U	20 U 20 U	20 16 J1	12 J1 18 U	18 U 18 U	19 U 19 U	15 J1 14 J1	18 U 18 U	19 U 19 U	19 U 19 U	19 U 19 U	18 U 18 U	18 U 18 U	19 U 19 U
Acenaphthylene	320,000	57 U	55 U	56 U	20 U	26	18 U	18 U	19 U	9.0 J1	18 U	19 U	19 U	16 J1	18 U	18 U	19 U
Acenaphthene	230,000	57 U	55 U	56 U	20 U	9.4 J1	18 U	18 U	19 U	18 U	18 U	19 U	19 U	19 U	18 U	18 U	19 U
Phenanthrene		31 J1	53 J1	39 J1	20 U	90	35	18 U	19 U	44	23	19 U	19 U	98	28	13 J1	19 U
Anthracene	1,600,000	57 U	55 U	56 U	20 U	20	18 U	18 U	19 U	12 J1	18 U	19 U	19 U	19 U	18 U	18 U	19 U
Di-n-Butylphthalate	26,000	57 U	55 U	56 U	20 U	200	18	18 U	19 U	18 U	24	19 U	19 U	52	18 U	18 U	19 U
Fluoranthene	230,000 240,000	57 U 34 J1	50 J1 78	28 J1 31 J1	20 U 20 U	120 130	31 42	18 U 18 U	19 U 19 U	50 63	19 24	19 U 19 U	19 U 19 U	110 120	14 J1 22	18 U 18 U	19 U 19 U
Pyrene Benzo(a)anthracene	240,000	57 U	76 39 J1	31 J1 34 J1	20 U	64	19	18 U	19 U	63 26	24 12 J1	19 U	19 U	40	12 J1	18 U	19 U
pis(2-Ethylhexyl)phthalate	56,600	71 U	58 J1	56 J1	23 J1	33 U	33 U	23 U	26 U	23 U	24 U	24 U	24 U	24 U	15 J1	58	17 J1
Chrysene		71	86	65	20 U	81	30	18 U	19 U	40	16 J1	19 U	19 U	74	35	18 U	19 U
Benzo(a)pyrene		57 U	42 J1	56 U	20 U	86	31	18 U	19 U	34	21	19 U	19 U	96	16 J1	18 U	19 U
ndeno(1,2,3-cd)pyrene		57 U	55 U	56 U	20 U	64	19	18 U	19 U	25	18	19 U	19 U	130	18 U	18 U	19 U
Dibenz(a,h)anthracene		57 U	55 U	56 U	20 U	17 J1	18 U	18 U	19 U	18 U	18 U	19 U	19 U	19	18 U	18 U	19 U
Benzo(g,h,i)perylene	40.000	57 U	55 U	56 U	20 U	100	30	18 U	19 U	42	26	19 U	19 U	280	26	18 U	19 U
1-Methylnaphthalene Total Benzofluoranthenes	16,000	57 U 57 U	55 U 69	56 U 37 J1	20 U 20 U	13 J1 130	18 U	18 U 18 U	19 U 19 U	18 U 56	18 U 29	19 U 19 U	19 U 19 U	19 U 150	18 U 26	18 U 9.2 J1	19 U 19 U
Total cPAH TEQ	15	0.71	91 J	65 J	ND	114 J	40	ND	ND	45	27 J	ND ND	ND	131	20 J	0.92 J	ND ND
PAHs (µg/kg) Method SW8270D-SIM																	
Naphthalene	2,100	14 U	9.0 J1	10 J1	2.7 J1	20	5.9	4.8 U	4.6 U	14	4.9	4.6 U	2.7 J1	210	9.2	4.5 U	4.6 U
2-Methylnaphthalene 1-Methylnaphthalene	320,000 16,000	14 U 14 U	14 J1 13 J1	12 J1 10 J1	2.6 J1 4.9 U	19 15	6.2 4.9	4.8 U 4.8 U	4.6 U 4.6 U	12 8.2	5.2 3.2 J1	4.6 U 4.6 U	2.4 J1 4.5 U	180 220	13 9.2	4.5 U 4.5 U	2.6 J1 4.6 U
T-Methylnaphthalene Total Naphthalenes	16,000	14 U	36.0 J1	32 J1	4.9 U 5.3 J1	15 54	4.9 17	4.8 U 4.8 U	4.6 U 4.6 U	8.2 34.2	3.2 J1 13.3 J1	4.6 U	4.5 U 5.1 J1	610	9.2 31.4	4.5 U 4.5 U	4.6 U 2.6 J1
Acenaphthylene		14 U	14 U	12 U	4.9 U	28	6.3	4.8 U	4.6 U	8.8	4.5 U	4.6 U	4.5 U	620	6.2	4.5 U	4.6 U
Acenaphthene	230,000	14 U	14 U	12 U	4.9 U	7.8	4.6	4.8 U	4.6 U	9.4	2.3 J1	4.6 U	4.5 U	110	8.4	4.5 U	4.6 U
Fluorene	150,000	14 U	11 J1	12 U	4.9 U	8.8	4.4 J1	4.8 U	4.6 U	7.7	4.5 U	4.6 U	4.5 U	560	3.7 J1	4.5 U	4.6 U
Phenanthrene		12 J1	40	28	2.8 J1	120	51	4.8 U	4.6 U	83	15	2.4 J1	4.8	5700	86	4.5 U	4.2 J1
Anthracene	1,600,000	14 U	12 J1	12 U	4.9 U	20	8.4	4.8 U	4.6 U	14 87	2.9 J1	4.6 U	4.5 U	370	8.8	4.5 U	4.6 U
Fluoranthene Pyrene	230,000 240,000	8.2 J1 10 J1	30 40	16 19	4.9 U 4.9 U	140 150	54 59	4.8 U 4.8 U	4.6 U 4.6 U	87 100	24 23	4.6 U 4.6 U	4.5 U 4.5 U	4900 4700	60 63	4.5 U 4.5 U	3.4 J1 3.5 J1
Pyrene Benzo(a)anthracene	240,000	10 J1	34	13	4.9 U	65	27	4.8 U	4.6 U	48	23 16	4.6 U	4.5 U	1400	28	4.5 U	2.4 J1
Chrysene		22	120	39	2.4 J1	86	32	4.8 U	4.6 U	60	18	4.6 U	4.5 U	2000	51	4.5 U	3.3 J1
Benzo(a)pyrene		9.6 J1	26	15	4.9 U	100	40	4.8 U	4.6 U	85	17	4.6 U	4.5 U	1900	37	4.5 U	4.6 U
ndeno(1,2,3-cd)pyrene		14 U	14 J1	12 U	4.9 U	67	23	4.8 U	4.6 U	52	8.8	4.6 U	4.5 U	1100	40	4.5 U	4.6 U
Dibenz(a,h)anthracene		14 U	19	12 U	4.9 U	24	9.6	4.8 U	4.6 U	17	4.5 U	4.6 U	4.5 U	300	11	4.5 U	4.6 U
Benzo(g,h,i)perylene		14 U	26	17	4.9 U	100	32	4.8 U	4.6 U	73	10	4.6 U	4.5 U	1400	82	4.5 U	4.6 U
Dibenzofuran	80,000	14 U	14 U	12 U	4.9 U	8.4	4.5 U 56	4.8 U	4.6 U	4.5 J1	4.5 U	4.6 U	4.5 U	270	3.8 J1	4.5 U	4.6 U
Total Benzofluoranthenes Total cPAH TEQ	15	14 U 9.8	41 38	24 19	4.9 U 0.024	140 130	56 52	4.8 U ND	4.6 U ND	110 108	29 23	4.6 U ND	4.5 U ND	2800 2480	51 51	4.5 U ND	4.6 U 0.3 J
PCBs (μg/kg) Method SW8082																	
Aroclor 1260	5.4	32 U	32 U	33 U	31 U	56 P	32 U	32 U	32 U	31 U	31 U	30 U	33 U	31 U	31 U	32 U	31 U
Total PCBs	1.8	ND	ND	ND ND	ND	56 P	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND

TABLE 37 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER SLIP 5 OUTFALL AREA BOEING THOMPSON-ISAACSON SITE

TUKWILA, WASHINGTON

	r						- 10	JAWILA, WAS	111101011								
			Former Slip 5 Outfall Area														
	Preliminary Cleanup Levels	IT-MW-14(2-3.5) TW27J 11/08/2011	IT-MW-14(5-6.5) TW27K 11/08/2011	IT-MW-14(8-9.5) TW27L 11/08/2011	IT-MW-14(13-14.5) TW27M 11/08/2011	IT-SB-6(2-3.5) TU90H 11/01/2011	IT-SB-6(5-6.5) TU90I 11/01/2011	IT-SB-6(8-9.5) TU90J 11/01/2011	IT-SB-6(13.5-15) TU90K 11/01/2011	IT-SB-7(2-3.5) TU90L 11/01/2011	IT-SB-7(5-6.5) TU90M 11/01/2011	IT-SB-7(8-9.5) TU90N 11/01/2011	IT-SB-7(13-14.5) TU90O 11/01/2011	IT-SB-8(2-3.5) TX01F 11/14/2011	IT-SB-8(5-6.5) TX01G 11/14/2011	IT-SB-8(8-9.5) TX01H 11/14/2011	IT-SB-8(14-15.5) TX01I 11/14/2011
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	38 290	76 460	52 250	6.2 U 12 U	35 90	10 29	5.8 U 12 U	6.2 U 12 U	21 41	6.7 14	5.8 U 12 U	6.6 U 13 U	13 34	23 170	5.7 U 12 U	6.4 U 13 U
NWTPH-G Gasoline-Range Organics	100/30	5.7 U	7.0 U	8.0 U	9.0 U	7.3 U	7.4 U	8.6 U	7.4 U	7.0 U	6.0 U	7.6 U	8.5 U	7.2 U	20	6.7 U	8.0 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Arsenic	7	2.4	4.7	7.2	1.6	54.5	11.9	2.6	2.6	10.6	4.1	1.8	4.0	7.9	3.9	3.1	2.4
Barium	640	42.3	50.6	60.5	26.4	54.3	40.1	48.7	32.1	54.2	46.6	34.0	60.7	104	46.1	41.6	46.5
Beryllium	160	0.2 U	0.2 U	0.2 U	0.3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U	0.2	0.2 U	0.2 U	0.2 U
Cadmium	1.3	0.1	0.2	0.1	0.7	0.4	1.9	0.1 U	0.1 U	0.1 U	0.2	0.1 U	0.1 U	0.3	0.1 U	0.1 U	0.1 U
Chromium	1480	20.0	14.7	16.1	18.9	14.6	13.1	11.9	15.1	12.5	14.5	10.0	16.2	18.6	12.8	12.7	15.5
Copper	36	37.1	23.7	29.0	42.8	53.9	23.2	17.7	9.6	29.7	19.4	12.0	17.5	30.0	17.4	12.1	16.7
Lead	250	7.3	11.6	23.6	8.5	53.9	15.3	2.1	12.0	16.7	14.7	1.5	2.7	153	5.1	6.2	2.1
Mercury	1.5	0.02 U	0.05	0.05	0.02 U	0.17	0.04	0.02	0.03 U	0.08	0.13	0.02 U	0.03	0.09	0.03	0.02 U	0.03
Nickel	210	30.0	16.0	13.6	5.7	73.3	20.2	9.6	7.8	11.3	10.8	8.2	11.8	12.2	11.6	9.3	8.1
Zinc	1,400	48	59	94	80	231	57	52	73	59	61	22	52	90	45	101	48

RPD = Relative Percent Difference

ND = Not Detected.

 μ g/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

PAHs polyclic aromatic hydrocarbons PCBs = polychlorinated biphenyls

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the or greater than reporting limit, but equal to the detection limit.

UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

P = The analyte was detected on both chromatographic columns but the quantified values differ by 40 percent RPD with no obvious chromatographic interference. The higher of the two values is reported by the laboratory.

TABLE 38

SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER HYDRAULIC TEST PAD AREA BOEING ISAACSON-THOMPSON REMEDIAL INVESTIGATION

		Former Hydraulic Test Pad Area							
			Í						
	Preliminary Cleanup Levels	IT-MW-11(2-3.5) TU65F 10/31/2011	IT-MW-11(5-6.5) TU65G 10/31/2011	IT-MW-11(8-9.5) TV99D 11/07/2011	IT-MW-11(13.5-15) TV99E 11/07/2011				
VOLATILES (µg/kg)									
Method SW8260C	0.400	0.0 1	0.4.1	40.14	4.4.14				
Methylene Chloride Acetone	2,400 510,000	2.0 J 31 U	3.4 J 14 U	1.3 J1 40 J	1.4 J1 28				
Carbon Disulfide	510,000 75,000	0.5 J1	14 U 1.2 U	40 J 2.0 J	28 18				
1,1-Dichloroethane	75,000	0.6 J1	1.2 U	1.0 UJ	1.1 U				
2-Butanone	430.000	3.4 J1	5.8 U	5.6	4.5 J1				
Benzene	93	1.0 U	1.2 U	0.6 J1	0.9 J1				
Toluene	100,000	1.0 U	1.2 U	0.9 J, J1	0.8 J1				
1,1,2-Trichloro-1,2,2-trifuoroethane	1,000,000,000	0.8 J1	2.3 U	1.5 J, J1	5.5				
Naphthalene	2,100	4.8 U	5.8 U	2.3 J, J1	1.4 J, J1				
SEMIVOLATILES (µg/kg)									
Method SW8270D									
Naphthalene	2,100	19 U	19 U	96	32				
2-Methylnaphthalene	320,000	19 U	19 U	59	39				
Acenaphthene	230,000	19 U	19 U	57	27				
Dibenzofuran	80,000	9.7 J1	19 U	58	32				
Fluorene	150,000	19 U	19 U	74 J	32 J				
Phenanthrene		32	19 U	220	65				
Carbazole Anthracene	50,000	19 U 19 U	19 U	23 31	19 U 16 J1				
Fluoranthene	1,600,000 230,000	25	19 U 19 U	160	56				
Pyrene	240,000	25 24	19 U	170 J	68 J				
Benzo(a)anthracene	240,000	19 U	19 U	54	16 J1				
Chrysene		19 U	19 U	63	23				
Benzo(a)pyrene		19 U	19 U	48	18 J1				
Indeno(1,2,3-cd)pyrene		19 U	19 U	22	19 U				
Benzo(g,h,i)perylene		19 U	19 U	31	19 U				
1-Methylnaphthalene	16,000	19 U	19 U	29	36				
Total Benzofluoranthenes		12 J1	19 U	79	23				
Total cPAH TEQ	15	1.3 J	ND	64	22 J				
PAHs (µg/kg)									
Method SW8270D-SIM									
Naphthalene	2,100	20	4.8 U	66	25				
2-Methylnaphthalene	320,000	10 5.6	4.8 U 4.8 U	45	21				
1-Methylnaphthalene Total Naphthalenes	16,000	35.6	4.8 U 4.8 U	24 135	18 64				
Acenaphthene	230,000	5.5	4.8 U	57	24				
Fluorene	150,000	3.9 J1	4.8 U	61	30				
Phenanthrene	130,000	18	2.5 J1	170	66				
Anthracene	1,600,000	2.7 J1	4.8 U	31	18				
Fluoranthene	230,000	16	2.7 J1	130	64				
Pyrene	240,000	14	3.4 J1	100	50				
Benzo(a)anthracene		5.8	4.8 U	40	17				
Chrysene		7.3	4.8 U	48.0	22.0				
Benzo(a)pyrene		5.6	4.8 U	37	20				
Indeno(1,2,3-cd)pyrene		3.9 J1	4.8 U	18	8.3				
Dibenz(a,h)anthracene		4.8 U	4.8 U	7.2	3.4 J1				
Benzo(g,h,i)perylene		4.8 J1	4.8 U	22	11				
Dibenzofuran	80,000	6.3	4.8 U	55	27				
Total Benzofluoranthenes		11	4.8 U	61	26				
Total cPAH TEQ	15	7.7 J	ND	50.1	25.7 J				

TABLE 38

SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER HYDRAULIC TEST PAD AREA BOEING ISAACSON-THOMPSON REMEDIAL INVESTIGATION

			Former Hydrauli	ic Test Pad Area		
	Preliminary Cleanup Levels	IT-MW-11(2-3.5) TU65F 10/31/2011	IT-MW-11(5-6.5) TU65G 10/31/2011	IT-MW-11(8-9.5) TV99D 11/07/2011	IT-MW-11(13.5-15) TV99E 11/07/2011	
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx						
Diesel-Range Organics	2,000	6.2	5.2 U	14	13	
Oil-Range Organics	2,000	17	10 U	42	26	
NWTPH-G						
Gasoline-Range Organics	100/30	5.5 U	5.1 U	11	7.3 U	
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A						
Arsenic	7	6.6	2.9	7.8	3.7	
Barium	640	52.5	51.4	51.4	47.6	
Beryllium	160	0.2	0.2	0.2	0.2 U	
Cadmium	1.3	0.1	0.1 U	0.2	0.2	
Chromium	1,480	21.3	18.9	17.3	13.3	
Copper	36	22.5	15.2	39.3	17.6	
Lead	250	7.5	2.5	11.4	4.2	
Mercury	1.5	0.07	0.02 U	0.14	0.04	
Nickel	210	28.7	26.4	24.0	13.2	
Zinc	1,400	45	34	63	39	

ND = Not Detected

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

PAHs = polycyclic aromatic hydrocarbons

SIM = Selectd Ion Monitoring cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

Bold = Detected compound.

Box = Exceeds Preliminary Cleanup Level

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

TABLE 39 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS VICINITY OF WELLS I-205(s) AND I-206(s) BOEING ISAACSON-THOMPSON REMEDIAL INVESTIGATION

				Vicinity of I-206(s)		Vicinity of I-205(s) and I-206(s)		
	Preliminary Cleanup	IT-TP-101-B(12-13) TT59A	IT-TP-102-B(13-14) TT67B	IT-TP-103-SWE(5-6) TT67C	IT-TP-103-SWE(6-7) TT67D	IT-TP-103-SWE(12-13) TT67E	IT-TP-104-B(12-13) TU13A	IT-TP-105B-B(11-12) TU13B
	Levels	10/24/2011	10/25/2011	10/25/2011	10/25/2011	10/25/2011	10/27/2011	10/27/2011
VOLATILES (μg/kg)								
Method SW8260C								
Methylene Chloride	2400	2.6	2.7 U	2.6 U	2.8 U	2.6 U	2.6 U	2.7 U
Acetone	510,000	25	22	45	72	18	30 J	36 J
Carbon Disulfide	75,000	1.3 UJ	1.3 U	1.3 U	1.4 U	1.3 U	4.7	4.2
Benzene	93	1.3 UJ	1.3 U	2.1	1.6	1.3 U	1.3 U	1.3 U
Toluene	100,000	1.3 UJ	1.3 U	1.3 U	1.5	1.3 U	1.3 U	1.3 U
SEMIVOLATILES (µg/kg) Method SW8270D								
Phenol	1,900,000	19 U	19 U	18 U	19 U	12 J1	19 U	20 U
Naphthalene	2,100	19 U	19 U	60	64	20 U	19 U	20 U
2-Methylnaphthalene	320,000	19 U	19 U	15 J1	44	20 U	19 U	20 U
Dibenzofuran	80,000	19 U	19 U	12 J1	16 J1	20 U	19 U	20 U
Phenanthrene		19 U	19 U	66	77	20 U	11 J1	20 U
Fluoranthene	230,000	19 U	19 U	73	69	20 U	19 U	20 U
Pyrene	240,000	19 U	19 U	72	68	20 U	19 U	20 U
Benzo(a)anthracene		19 U	19 U	25	21	20 U	19 U	20 U
Chrysene		19 U	19 U	54	46	20 U	19 U	20 U
Benzo(a)pyrene		19 U	19 U	54	23	20 U	19 U	20 U
Indeno(1,2,3-cd)pyrene		19 U	19 U	110	26	20 U	19 U	20 U
Dibenz(a,h)anthracene		19 U	19 U	14 J1	19 U	20 U	19 U	20 U
Benzo(g,h,i)perylene		19 U	19 U	240	47	20 U	19 U	20 U
1-Methylnaphthalene	16,000	19 U	19 U	11 J1	28	20 U	19 U	20 U
Total Benzofluoranthenes		19 U	19 U	140	61	20 U	19 U	20 U
Total cPAH TEQ	15	ND	ND	82 J	34	ND	ND	ND

TABLE 39 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS VICINITY OF WELLS I-205(s) AND I-206(s) BOEING ISAACSON-THOMPSON REMEDIAL INVESTIGATION

				Vicinity of I-206(s)			Vicinity of I-205(s) and I-206(s)		
) ,					
	Preliminary Cleanup Levels	IT-TP-101-B(12-13) TT59A 10/24/2011	IT-TP-102-B(13-14) TT67B 10/25/2011	IT-TP-103-SWE(5-6) TT67C 10/25/2011	IT-TP-103-SWE(6-7) TT67D 10/25/2011	IT-TP-103-SWE(12-13) TT67E 10/25/2011	IT-TP-104-B(12-13) TU13A 10/27/2011	IT-TP-105B-B(11-12) TU13B 10/27/2011	
PAHs (µg/kg)									
Method SW8270D-SIM									
Naphthalene	2,100	2.6 J1	3.2 J1	55	110	2.7 J1	3.6 J1	5.3	
2-Methylnaphthalene	320,000	4.7 U	4.6 U	14	94	4.8 U	3.8 J1	4.6 U	
1-Methylnaphthalene	16,000	4.7 U	4.6 U	9.9	72	4.8 U	3.7 J1	4.6 U	
Total Naphthalenes		2.6	3.2 J1	78.9	276	2.7 J1	11.1 J1	5.3	
Acenaphthene	230,000	4.7 U	4.6 U	3.5 J1	19	4.8 U	4.1 J1	2.5 J1	
Fluorene	150,000	4.7 U	4.6 U	2.6 J1	4.8	4.8 U	4.8 U	4.6 U	
Phenanthrene		5.0	4.4 J1	69	120	4.6 J1	7.7	3.8 J1	
Anthracene	1,600,000	4.7 U	4.6 U	71	120	4.8 U	4.8 U	4.6 U	
Fluoranthene	230,000	3.0 J1	4.6 U	83	110	4.8 U	5	4.8	
Pyrene	240,000	3.3 J1	4.6 U	70	95	4.8 U	6.2	4.4 J1	
Benzo(a)anthracene		4.7 U	4.6 U	26	35	4.8 U	4.8 U	4.6 U	
Chrysene		4.7 U	4.6 U	53	69	4.8 U	3.0 J1	4.6 U	
Benzo(a)pyrene		4.7 U	4.6 U	40	34	4.8 U	4.8 U	4.6 U	
Indeno(1,2,3-cd)pyrene		4.7 U	4.6 U	70	40	4.8 U	4.8 U	4.6 U	
Dibenz(a,h)anthracene		4.7 U	4.6 U	17	12	4.8 U	4.8 U	4.6 U	
Benzo(g,h,i)perylene		4.7 U	4.6 U	130	67	4.8 U	4.8 U	4.6 U	
Dibenzofuran	80,000	4.7 U	4.6 U	12	30	4.8 U	2.6 J1	4.6 U	
Total Benzofluoranthenes		4.7 U	4.6 U	100	90	4.8 U	4.8 U	4.6 U	
Total cPAH TEQ	15	ND	ND	62	52	ND	0.5 J	ND	
TOTAL PETROLEUM									
HYDROCARBONS (mg/kg)									
NWTPH-Dx									
Diesel-Range Organics	2,000	6.5 U	6.8 U	11	15	6.8 U	5.8 U	5.8 U	
Oil-Range Organics	2,000	13 U	14 U	58	57	14 U	12 U	12 U	

TABLE 39 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS VICINITY OF WELLS I-205(s) AND I-206(s)

BOEING ISAACSON-THOMPSON REMEDIAL INVESTIGATION

				Vicinity of I-206(s)			Vicinity of I-20	5(s) and I-206(s)
	Preliminary Cleanup Levels	IT-TP-101-B(12-13) TT59A 10/24/2011	IT-TP-102-B(13-14) TT67B 10/25/2011	IT-TP-103-SWE(5-6) TT67C 10/25/2011	IT-TP-103-SWE(6-7) TT67D 10/25/2011	IT-TP-103-SWE(12-13) TT67E 10/25/2011	IT-TP-104-B(12-13) TU13A 10/27/2011	IT-TP-105B-B(11-12) TU13B 10/27/2011
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A Arsenic Barium	7 640	2.4 37.4	1.2 31	7.1 202	5.1 158	1.5 27.0	2.0 35.6 J	2.3 27.6
Beryllium	160	0.3 U	0.3 U	0.2 U	0.3	0.3 U	0.2 U	0.2 U
Cadmium	1.3	0.1 U	0.1 U	0.4	0.2	0.1 U	0.1	0.1 U
Chromium	1,480	12.0	11.7	14.3	13.3	9.4	11	12
Copper	36	18.9	14.1	48.4	62.8	16.8	11.9	9.9
Lead	250	2.3	1.7	90.5	49.9	1.7	2.9	2.1
Mercury	1.5	0.02 U	0.03 U	0.05	0.10	0.03 U	0.02 U	0.03 U
Nickel	210	9.0	7.9	15.2	15.1	6.0	13.7	10.3
Zinc	1,400	25	25	150	99	22	37	31

ND = Not Detected

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

PAHs = polycyclic aromatic hydrocarbons

SIM = Selectd Ion Monitoring

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

U = Indicates the compound was not detected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

							Former Washdown/A	queous Degreaser Are	a								
							Politici Washdown/A	deous Degreaser Are	<u> </u>								
	Preliminary	IT-MW-1 (3-4)	IT-MW-1 (5-6)	IT-MW-1 (8-9)	IT-MW-2 (2-3)	IT-MW-2 (5-6)	IT-MW-2 (8-9)	IT-MW-3 (2-3)	IT-MW-3 (5-6)	IT-MW-3 (9-10)	IT-SB-1 (2-3)	IT-SB-1 (5-6)	IT-SB-1 (8-9)	IT-Bldg1401- FootingExc1-SW(4.0)	IT-Bldg1401- FootingExc1-B(6.0)	IT-Bldg1401- FootingExc1-B(7.5)	IT-Bldg1401- FootingExc3-B(4.0)
	Cleanup	ST77A	ST77B	ST77C	SU07A	SU07B	SU07C	SU07D	SU07E	SU07F	ST77D	ST77E	ST77F	TB91C	TB91D	TC25A	TB68B
	Levels	04/25/2011	04/25/2011	04/25/2011	04/26/2011	04/26/2011	04/26/2011	04/26/2011	04/26/2011	04/26/2011	04/25/2011	04/25/2011	04/25/2011	06/23/2011	06/23/2011	6/27/2011	06/22/2011
), (a), (a), (b)																	
VOLATILES (μg/kg) Method SW8260C																	
Methylene Chloride	2,400	11 J	16 J	14 J	11	13	15	14	13	19	10 J	12 J	11 J	21	29	14	21
Acetone	510,000	76 J	34 J	36 J	26	88	93	34	26 J	85 J	20 J	39 J	100 J	24	19	53	97
Carbon Disulfide	75,000	1.4 UJ	1.4 UJ	1.3 UJ	1.1 U	1.2 U	8.7	1.2 U	1.1 U	2.0	1.0 UJ	1.2 UJ	7.1 J	1.2 U	1.5 U	1.8	4.8
2-Butanone	430,000	7.0 UJ	6.8 UJ	6.4 UJ	5.3 U	7.1	14	6.2 U	5.4 U	9.0	4.9 UJ	5.8 UJ	14 J	5.8 U	7.3 U	5.4 U	15
Trichloroethene	51	1.4 UJ	1.4 UJ	1.3 UJ	1.1 U 1.1 U	1.2 U	1.9 U 1.9 U	1.2 U	1.1 U	1.5 U	1.0 UJ	1.2 UJ	1.9 UJ	1.2 U	1.5 U	1.1 U	1.2 U
Benzene Tetrachloroethene	93 260	1.4 UJ 1.4 UJ	1.4 UJ 1.4 UJ	1.3 UJ 1.3 UJ	1.1 U 1.1 U	1.2 U 1.2 U	1.9 U	1.2 U 1.2 U	1.1 U 1.1 U	1.5 U 1.5 U	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.9 UJ 1.9 UJ	0.6 J 1.2 U	1.5 U 1.5 U	0.6 J 1.1 U	1.2 U 1.2 U
Toluene	100,000	1.4 UJ	1.4 UJ	1.3 UJ	1.1 U	1.2 U	1.9 U	1.2 U	1.1 U	1.5 U	1.0 UJ	1.2 UJ	1.9 UJ	0.6 J	0.9 J	0.6 J	0.7 J
1,2,4-Trimethylbenzene	800,000	1.4 UJ	1.4 UJ	1.3 UJ	1.1 U	1.2 U	1.9 U	1.4	1.1 U	1.5 U	1.0 UJ	1.2 UJ	1.9 UJ	1.2 U	1.5 U	1.1 U	1.2 U
SEMIVOLATILES (µg/kg) Method SW8270D																	
Phenol	1,900,000	20 U	19 U	19 U	18 U	19 U	56	19 U	18 U	15 J	18 U	18 U	62	58 U	19 U	19 U	20 U
Benzyl Alcohol	8,000,000	20 UJ	19 UJ	19 UJ	18 U	19 U	160	19 U	18 U	68	18 UJ	18 UJ	19 UJ	58 U	19 U	19 U	20 U
4-Methylphenol	41,000	20 U	19 U	19 U	18 U	19 U	65	19 U	18 U	10 J	18 U	18 U	160	120 U	37 U	78	39 U
Benzoic Acid	9,000	120 J	190 U	190 U	180 U	190 U	530	190 U	180 U	210	180 U	180 U	470	1200 U	370 U	390 U	390 U
Naphthalene	2,100	17 J	10 J	19 U	18 U	19 U	62	19 U	18 U	12 J	18 U	18 U	60	58 U	19 U	150	22
2-Methylnaphthalene	320,000	16 J	19 U	19 U	18 U	19 U	29	19 U	18 U	18 U	18 U	18 U	45	58 U	19 U	30	31
Acenaphthene Dibenzofuran	230,000 80,000	20 U 17 J	19 U 19 U	19 U 19 U	18 U 18 U	19 U 19 U	11 J 19 U	19 U 19 U	18 U 18 U	18 U 18 U	18 U 18 U	18 U 18 U	14 J 32	58 U 58 U	19 U 19 U	13 J 23	18 J 25
Fluorene	150,000	17 J	19 U	19 U	18 U	19 U	20	19 U	18 U	18 U	18 U	18 U	22	58 U	19 U	19 U	34
Phenanthrene		48 J	12 J	19 UJ	18 U	11 J	64	10 J	18 U	10 J	11 J	18 UJ	110 J	58 U	19 U	110	54
Anthracene	1,600,000	14 J	19 U	19 U	18 U	19 U	16 J	19 U	18 U	18 U	18 U	18 U	22	58 U	19 U	13 J	11 J
Fluoranthene	230,000	64	15 J	19 U	18 U	19 U	60 J	19 U	18 U	18 U	21	18 U	91	58 U	19 U	120	43
Pyrene	240,000	69	14 J	19 U	18 U	19 U	53	19 U	18 U	18 U	13 J	18 U	98	58 U	19 U	120	35
Benzo(a)anthracene		29	19 U	19 U	18 U	19 U	16 J	19 U	18 U	18 U	18 U	18 U	32	58 U	19 U	27	20 U
bis(2-Ethylhexyl)phthalate	56,600	14 J 45 J	38 10 J	26 19 U	14 J 18 U	14 J 20 J	29 26	10 J 19 U	10 J	33	19	15 J	39 48 J	73 U	23 U	24 U 61	18 J 27
Chrysene Benzo(a)pyrene		20 U	10 J 19 U	19 U	18 U	20 J 19 U	11 J	19 U	18 U 18 U	18 U 18 U	12 J 18 U	18 U 18 U	46 J 19 U	58 U 58 U	19 U 19 U	24	11 J
Indeno(1,2,3-cd)pyrene		20 0	19 U	19 U	18 U	19 U	19 U	19 U	18 U	18 U	18 U	18 U	15 J	58 U	19 U	16 J	20 U
Benzo(g,h,i)perylene		28	19 U	19 U	18 U	16 J	12 J	12 J	18 U	18 U	18 U	18 U	20	58 U	19 U	21	13 J
1-Methylnaphthalene	16,000	14 J	19 U	19 U	18 U	19 U	22	19 U	18 U	18 U	18 U	18 U	30	58 U	19 U	17 J	15 J
Total Benzofluoranthenes		55	11 J	19 U	18 U	19 U	36	19 U	18 U	18 U	13 J	18 U	58	58 U	19 U	81	20
Total cPAH TEQ	15	11	1 J	ND	ND	0.2 J	16 J	ND	ND	ND	1 J	ND	11 J	ND	ND	37 J	13 J
PAHs (µg/kg) Method SW8270D-SIM																	
Naphthalene	2,100	14	3.6 J	2.7 J	4.8 U	4.6 U	57	4.8 U	4.6 U	14	4.3 J	4.7 U	23	3.4 J	4.7 U	56	26
2-Methylnaphthalene	320,000	14	3.3 J	4.6 U	4.8 U	7.2	45	4.8 U	4.6 U	4.7 U	6.0	2.9 J	27	4.1 J	4.7 U	12	30
1-Methylnaphthalene	16,000	13	4.8 U	4.6 U	4.8 U	6.6	36	4.8 U	4.6 U	4.7 U	5.0	2.6 J	22	2.9 J	4.7 U	8.5	24
Total Naphthalenes		41	6.9 J	2.7 J	ND	13.8	138	ND	ND	14	15.3 J	5.5 J	72	10.4 J	ND	76.5	80
Acenaphthene	230,000	9.1	4.8 U	4.6 U	4.8 U	4.6 U	27	4.8 U	4.6 U	4.7 U	4.6 U	4.7 U	14	4.9 U	4.7 U	7.5	25
Fluorene	150,000	13	4.8 U	4.6 U	4.8 U	4.6 U	25	4.8 U	4.6 U	4.7 U	4.6 U	4.7 U	13	4.9 U	4.7 U	4.8 U 57	30
Phenanthrene Anthracene	1,600,000	50 10	11 4.8 U	2.6 J 4.6 U	4.8 U 4.8 U	8.9 4.6 U	96 19	11 4.8 U	6.3 4.6 U	13 4.7 U	24 4.6 U	7.5 4.7 U	55 11	12 4.9 U	6.0 4.7 U	6.5	59 12
Anthracene Fluoranthene	230,000	64	4.8 U 8.8	4.6 U	4.8 U	4.6 U 6.0	90	4.8 U 6.4	4.6 U	7.0	4.6 U 33	4.7 U 4.5 J	51	4.9 U 8.5	4.7 U 2.6 J	58	46
Pyrene	240,000	53	8.4	4.6 U	4.8 U	5.8	97	10	5.0	7.2	20	5.2	53	9.1	3.0 J	65	44
Benzo(a)anthracene		20	3.5 J	4.6 U	4.8 U	4.6 U	29	7.5	4.6 U	4.7 U	8.6	4.7 U	19	4.0 J	4.7 U	17	16
Chrysene		28	6.7	4.6 U	4.8 U	13	40	23	5.9	4.7	19	3.6 J	25	10	2.8 J	40	27
Benzo(a)pyrene		4.8 U	4.8 U	4.6 U	4.8 U	5.2	4.8 U	11	4.6 U	4.7 U	6.6 U	4.7 U	4.7 U	3.6 J	4.7 U	19	11
Indeno(1,2,3-cd)pyrene		14 U	4.8 U	4.6 U	4.8 U	4.6 U	9.2	4.8 U	4.6 U	4.7 U	5.4 U	4.7 U	7.5 U	5.0	4.7 U	14	6.4
Dibenz(a,h)anthracene		5.1	4.8 U	4.6 U	4.8 U	4.6 U	4.8 U	4.8 U	4.6 U	4.7 U	4.6 U	4.7 U	2.8 J	4.9 U	4.7 U	3.8 U	10
Benzo(g,h,i)perylene	80,000	20 U 14	10 U 4.8 U	4.6 U 4.6 U	4.8 U 4.8 U	17 4.6 U	14 26	13 4.8 U	4.9 4.6 U	4.7 U 4.7 U	8.0 U 6.9	4.7 U 4.7 U	11 U 15	14	3.3 J 4.7 U	18 8.9	12 26
Dibenzofuran Total Benzofluoranthenes	80,000	44	7.6	4.6 U	4.8 U	4.6 U	51	4.8 U 20	4.6 U	4.7 U 4.7 U	20	4.7 U	34	2.9 J 9.9	4.7 U	6.9 54	26
Total cPAH TEQ	15	7.19	1.177	ND	ND	5.33	9.32	13.98	0.059	0.047	3.05	0.036	5.83	5.59	0.028	28	16.8

			•	1	•	ı	Former Washdown/A	queous Degreaser Are	a	•		•	•				
	Preliminary Cleanup Levels	IT-MW-1 (3-4) ST77A 04/25/2011	IT-MW-1 (5-6) ST77B 04/25/2011	IT-MW-1 (8-9) ST77C 04/25/2011	IT-MW-2 (2-3) SU07A 04/26/2011	IT-MW-2 (5-6) SU07B 04/26/2011	IT-MW-2 (8-9) SU07C 04/26/2011	IT-MW-3 (2-3) SU07D 04/26/2011	IT-MW-3 (5-6) SU07E 04/26/2011	IT-MW-3 (9-10) SU07F 04/26/2011	IT-SB-1 (2-3) ST77D 04/25/2011	IT-SB-1 (5-6) ST77E 04/25/2011	IT-SB-1 (8-9) ST77F 04/25/2011	IT-Bldg1401- FootingExc1-SW(4.0) TB91C 06/23/2011	IT-Bldg1401- FootingExc1-B(6.0) TB91D 06/23/2011	IT-Bldg1401- FootingExc1-B(7.5) TC25A 6/27/2011	IT-Bldg1401- FootingExc3-B(4.0) TB68B 06/22/2011
PCBs (µg/kg) Method SW8082 Aroclor 1254 Aroclor 1260 Total PCBs	0.29 5.4 1.8	31 U 31 U ND	30 U 30 U ND	31 U 31 U ND	31 U 31 U ND	32 UJ 32 UJ ND	32 UJ 32 UJ ND	30 U 30 U ND	32 U 32 U ND	31 U 31 U ND	31 U 31 U ND	31 U 31 U ND	39 36 75	33 U 33 U ND	32 U 32 U ND	32 U 32 U ND	31 U 31 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx Diesel-Range Organics Oil-Range Organics	2,000 2,000	13 34	5.9 27	5.3 U 11 U	5.4 U 11 U	22 230	15 40	15 150	6.0 42	6.6 U 13 U	8.1 80	4.4 J 9.7 J	51 130	27 110	7.2 18	38 60	42 92
NWTPH-G Gasoline-Range Organics	100/30	8.8 U	6.1 U	6.9 U	9.7	6.0 U	13 U	7.4 U	6.1 U	10 U	6.1 U	7.2 U	11 U	7.0 U	7.4 U	7.8 U	6.6 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A																	
Arsenic	7	5.5	3.1	1.7	2.5	4.6	11.4	2.8	3.4	5.5	2.9	3.2	11.2	2.9	3.2	6.5	3.2
Barium	640	51.7	3.2	28.2	57.6	51.5	81.6	48.6	44.0	81.8	43.2	46.8	85.0	47.2	39.6	50.1	58.3
Beryllium	160	0.3	0.2 U	0.2 U	0.2 U	0.2 U	0.5	0.2 U	0.2 U	0.3	0.2 U	0.2 U	0.5	0.2 U	0.2 U	0.2	0.2 U
Cadmium	1.3	0.1	0.1 U	0.1 U	0.1 U	0.1 U	0.9	0.1 U	0.1	0.1	0.1 U	0.1 U	0.8	0.1 U	0.1	0.2	0.1 U
Chromium	1,480	15.1	9.3	8.8	22.3	12.0	24.6	12.2	11.3	18.7	18.8	13.0	30	13.6	10.8	14	13.5
Copper	36	34.2	15.7	12.5	15.7	16.4	42.5	21.1	14.9	28.3	18.1	19.6	43.0	17.7	12.6	38.2	20
Lead	250	7.9	4.7	1.5	5.8	3.8	15.3	6.7	3.5	5.0	4.0	5.6	16.7	5.9	4.2	12.6	5.8
Mercury	1.5	0.04	0.03	0.02 U	0.02 U	0.05	0.16	0.02	0.02	0.08	0.02	0.03	0.25	0.02	0.02	0.06	0.03
Nickel	210	14.8	9.6	8.1	39.5	13.7	23.1	13.7	14.6	19.3	29.2	14.2	22.5	17.5	11.0	14.2	17.1
Zinc	1,400	55	33	22	35	38	94	36	40	69	34	41	97	33	35	49	36

		Former Washdow	n/Degreaser Area	T		T	
	Preliminary Cleanup Levels	IT-Bldg1401- FootingExc5-SW(4.0) TB91B 06/23/2011	IT-Bldg1401- FootingExc5-B(6.0) TB91A 06/23/2011	IT-Bldg1401- Footing Exc8-B(2.5) TB68C 06/22/2011	IT-Bldg1401- FootingExc10-B(1.5) TC19A 06/24/2011	IT-Bldg1401- FootingExc14-B(4.0) TB68D 06/22/2011	IT-Bldg1401- FootingExc15-B(4.0) TB68A 06/22/2011
VOLATILES (μg/kg)							
Method SW8260C							
Methylene Chloride	2,400	20	26	22	17	25	25
Acetone	510,000	28 1.1 U	16 1.4 U	33 1.0 U	13 1.2 U	42 1.3 U	16 1.2 U
Carbon Disulfide 2-Butanone	75,000 430,000	5.7 U	7.2 U	5.1 U	6.0 U	6.3 U	1.2 U 5.9 U
Trichloroethene	430,000 51	1.1 U	1.4 U	1.0 U	1.2 U	93	24
Benzene	93	1.1 U	1.4 U	1.0 U	1.2 U	0.7 J	1.2 U
Tetrachloroethene	260	1.1 U	1.4 U	1.0 U	1.2 U	4.6	2.6
Toluene	100,000	1.1 U	0.8 J	0.7 J	1.2 U	0.8 J	0.8 J
1,2,4-Trimethylbenzene	800,000	1.1 U	1.4 U	1.0 U	1.2 U	1.3 U	1.2 U
SEMIVOLATILES (μg/kg) Method SW8270D							
Phenol	1,900,000	58 U	19 U	19 U	19 U	19 U	20 U
Benzyl Alcohol	8,000,000	58 U	19 U	19 U	19 U	19 U	20 U
4-Methylphenol	41,000	120 U	38 U	38 U	38 U	39 U	39 U
Benzoic Acid Naphthalene	9,000 2,100	1200 U 58 U	380 U 19 U	380 U 19 U	380 U 19	390 U 13 J	390 U 20 U
2-Methylnaphthalene	320,000	58 U	19 U	19 U	22	20	20 U
Acenaphthene	230,000	58 U	19 U	19 U	120	19 U	20 U
Dibenzofuran	80,000	58 U	19 U	19 U	210	19 U	20 U
Fluorene	150,000	58 U	19 U	19 U	110	19 U	20 U
Phenanthrene		38 J	19 U	19 U	140	27	9.8 J
Anthracene	1,600,000	58 U	19 U	19 U	15 J	19 U	20 U
Fluoranthene	230,000	58 U	19 U	19 U	28	13 J	20 U
Pyrene	240,000	58 U 58 U	19 U 19 U	19 U 19 U	22 19 U	9.7 J 19 U	20 U 20 U
Benzo(a)anthracene bis(2-Ethylhexyl)phthalate	56,600	72 U	24 U	24 U	24 U	24 U	20 U 24 U
Chrysene		58 U	19 U	19 U	19 U	19 U	20 U
Benzo(a)pyrene		58 U	19 U	19 U	19 U	19 U	20 U
Indeno(1,2,3-cd)pyrene		58 U	19 U	19 U	19 U	19 U	20 U
Benzo(g,h,i)perylene		58 U	19 U	19 U	19 U	19 U	20 U
1-Methylnaphthalene	16,000	58 U	19 U	19 U	10 J	18 J	20 U
Total Benzofluoranthenes		58 U	19 U	19 U	19 U	19 U	20 U
Total cPAH TEQ	15	ND	ND	ND	ND	ND	ND
PAHs (µg/kg) Method SW8270D-SIM							
Naphthalene	2,100	28 U	4.5 U	3.0 J	8.2	15	11
2-Methylnaphthalene 1-Methylnaphthalene	320,000 16,000	28 U 28 U	4.5 U 4.5 U	4.6 U 4.6 U	9.7 5.1	19 19	27 19
Total Naphthalenes	10,000	ND	4.5 U ND	3.0 J	23	53	57
Acenaphthene	230,000	28 U	4.5 U	2.5 U	82	4.8 U	4.9 U
Fluorene	150,000	28 U	4.5 U	4.6 U	74	4.8 U	4.9 U
Phenanthrene		26 J	5.0	6.4	110	26	480
Anthracene	1,600,000	28 U	4.5 U	4.6 U	12	4.8 U	15
Fluoranthene	230,000	23 J	3.5 J	5.9	27	14	190
Pyrene	240,000	48	4.3 J	5.6	21	14	130
Benzo(a)anthracene		22 J	4.5 U	4.6 U 2.6 J	4.4 J 5.9	6.0	12
Chrysene Benzo(a)pyrene		100 29	3.4 J 4.5 U	2.6 J 4.6 U	5.9 4.7 U	11 4.8 U	18 8.1
Indeno(1,2,3-cd)pyrene		28 U	4.5 U	4.6 U	4.7 U	3.9 J	5.2
Dibenz(a,h)anthracene		28 U	4.5 U	4.6 U	4.7 U	4.8 U	4.9 U
Benzo(g,h,i)perylene		84	4.5 U	4.6 U	4.7 U	4.1 J	9.0
Dibenzofuran	80,000	28 U	4.5 U	4.6 U	140	9.3	24
Total Benzofluoranthenes		28 U	2.8 J	4.6 U	7.2	10	16
Total cPAH TEQ	15	32.2	0.314	0.026	1.219	2.1	11.6

		Former Washdow	n/Degreaser Area				
	Preliminary Cleanup Levels	IT-Bldg1401- FootingExc5-SW(4.0) TB91B 06/23/2011	IT-Bldg1401- FootingExc5-B(6.0) TB91A 06/23/2011	IT-Bldg1401- Footing Exc8-B(2.5) TB68C 06/22/2011	IT-Bldg1401- FootingExc10-B(1.5) TC19A 06/24/2011	IT-Bldg1401- FootingExc14-B(4.0) TB68D 06/22/2011	IT-Bldg1401- FootingExc15-B(4.0) TB68A 06/22/2011
PCBs (µg/kg) Method SW8082 Aroclor 1254 Aroclor 1260 Total PCBs	0.29 5.4 1.8	32 U 32 U ND	32 U 32 U ND	32 U 32 U ND	32 U 32 U ND	31 U 31 U ND	31 U 31 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx							
Diesel-Range Organics	2,000	29	5.6	6.0	5.3 U	10	6.9
Oil-Range Organics	2,000	95	10 U	10 U	11 U	11 U	12
NWTPH-G							
Gasoline-Range Organics	100/30	150	7.3 U	5.7 U	5.5 U	7.0 U	6.1 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A							
Arsenic	7	2.7	2.5	1.7	1.6	3.2	2.8
Barium	640	48.6	34.7	42.0	38.0	35.7	33.0
Beryllium	160	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Cadmium	1.3	0.1 U	0.2	0.1 U	0.1 U	0.1 U	0.1 U
Chromium	1,480	10.5	9.8	23.5	22	10.0	10.9
Copper	36	22.6	10.3	12.9	14.4	13.3	13.7
Lead	250	5.6	2.8	2.2	2.0	3.2	3.8
Mercury	1.5	0.02 U	0.02 U	0.03 U	0.02 U	0.03 U	0.02 U
Nickel	210	11.4	10.4	40.4	39.7	10.0	9.0
Zinc	1.400	33	32	31	29	25	28

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

ND = Not Detected

PAHs polyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

U = Indicates the compound was not detected at or above the reporting limit.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

TABLE 41 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER WASHDOWN SYSTEM COLLECTION TANKS/LOADING DOCK AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

						TORVILA, WAS	111101011				
					Former V	Vashdown System Coll	ection Tanks/Loading [Dock Area			
	Preliminary Cleanup Levels	IT-TOWPATHEXC2- B(.7) TE72A 07/19/2011	IT-TOWPATHEXC3- B(.7) TE72B 07/19/2011	IT-TOWPATHEXC4- B(.7) TE72C 07/19/2011	IT-TOWPATHEXC5- B(.7) TE72D 07/19/2011	IT-TOWPATHEXC6- B(.7) TE72E 07/19/2011	IT-TOWPATHEXC7- B(.7) TE72F 07/19/2011	IT-MW-8(2-3.5) TV99A 11/07/2011	IT-MW-8(5-6.5) TV99B 11/07/2011	IT-MW-8(8-9.5) TV99C 11/07/2011	IT-MW-8(14-15.5) TV99F 11/07/2011
VOLATILES (µg/kg)											
Method SW8260C Chloromethane	1,600	1.0 U	1.0 U	1.1 U	0.9 U	1.1 U	1.0 U	1.2 U	0.7 J1	0.7 J1	1.4 U
Methylene Chloride	2,400	16	1.0 0	17	12	16	6.1	2.4 J1	2.9	2.8	2.5 J1
Acetone	510,000	37	44	46	29	72	47	9.9	6.9 U	47	41
Carbon Disulfide	75,000	1.0 U	4.0	1.9	4.7	2.9	1.0 U	1.2 U	1.4 U	1.4 U	1.4 U
2-Butanone	430,000	4.8 U	5.2 U	5.5 U	4.7 U	7.2	5.0 U	6.1 U	6.9 U	6.8 U	6.8 U
Benzene	93	0.6 J	0.6 J	0.6 J	0.9 J	1.1 U	1.3	1.2 U	1.4 U	1.4 U	1.4 U
Tetrachloroethene	260	1.0 U	5.6	9.1	1.1	1.1 U	1.0 U	1.2 U	1.4 U	1.4 U	1.4 U
Toluene	100,000	0.5 J	1.0 J	0.7 J	0.7 J	0.7 J	0.6 J	1.2 U	1.4 U	1.4 U	1.4 U
Methyl lodide		1.0 U	1.0 U	1.1 U	0.9 U	1.1 U	1.0 U	1.2 U	1.5	1.8	0.7 J1
SEMIVOLATILES (μg/kg) Method SW8270D											
Phenol	1,900,000	18 U	19 U	18 U	19 U	10 J	19 U	19 U	18 U	19 U	20 U
Benzyl Alcohol	8,000,000	18 U	67	18 U	19 U	18 U	19 U	19 U	18 U	19 U	20 U
Naphthalene	2,100	18 U	10 J	18 U	12 J	18 U	19 U	19 U	18 U	19 U	20 U
2-Methylnaphthalene	320,000	18 U	19 U	16 J	19 U	9.2 J	19 U	19 U	18 U	19 U	20 U
Dibenzofuran Anthracene	80,000 1,600,000	18 U 18 U	19 U 19 U	12 J 18 U	19 U 19 U	18 U 18	19 U 19 U	19 U 19 U	18 U 18 U	19 U 19 U	20 U 20 U
Fluoranthene	230,000	18 U	49	85	28	160	19 U 16 J	19 U	18 U	19 U	20 U
Pyrene	240,000	18 U	49	84	32	190	16 J	19 U	18 U	19 U	20 U
Butylbenzylphthalate	1,700	18 U	19 U	18 U	19 U	21	19 U	19 U	18 U	19 U	20 U
Benzo(a)anthracene		18 U	26	38	14 J	74	19 U	19 U	18 U	19 U	20 U
bis(2-Ethylhexyl)phthalate	56,600	16 J	170	34	21 J	45	15 J	31 U	140 U	74 U	22 UJ2
Chrysene		18 U	38	75	22	120	12 J	19 U	18 U	19 U	20 U
Benzo(a)pyrene		18 U	34	50	19	100	9.5 J	19 U	18 U	19 U	20 U
Indeno(1,2,3-cd)pyrene		18 U	18 J	19	11 J	34	19 U	19 U	18 U	19 U	20 U
Benzo(g,h,i)perylene		18 U	26	23	15 J	47	19 U	19 U	11 J1	19 U	20 U
1-Methylnaphthalene	16,000	18 U	19 U	11 J	19 U	18 U	19 U	19 U	18 U	19 U	20 U
Total Benzofluoranthenes Total cPAH TEQ	 15	18 U ND	62 45 J	84 65	34 25 J	160 128	16 J 11 J	19 U ND	14 J1 1.4 J	19 U ND	20 U ND
1010101711120	10	1,5		301	20,0	120		NB	114 0	115	115
PAHs (µg/kg) Method SW8270D-SIM											
Naphthalene	2,100	2.5 J	5.8	11	14	16	7.7	2.6 J1	3.2 J1	2.8 J1	3.0 J1
2-Methylnaphthalene	320,000	3.2 J	6.1	15	14	25	5.2	4.8 U	2.5 J1	4.8 U	3.0 J1
1-Methylnaphthalene	16,000	2.5 J	3.8 J	11	10	16	4.6 J	4.8 U	2.4 J1	4.8 U	3.6 J1
Total Naphthalenes		8.2 J	15.7 J	37	38	57	17.5 J	2.6 J1	8.1 J1	2.8 J1	9.6 J1
Acenaphthene	230,000	4.6 U	4.7 U	18	16	31	4.8 U	4.8 U	4.7 U	4.8 U	5.0 U
Fluorene	150,000	4.6 U	4.7 U	12	18	23	4.8 U	4.8 U	4.7 U	4.8 U	5.0 U
Phenanthrene		4.8 U	24	79	230	150	20 U	3.4 J1	5.4	3.3 J1	5.5
Anthracene	1,600,000	4.6 U	3.9 J	18	92	28	4.8 U	4.8 U	4.7 U	4.8 U	5.0 U
Fluoranthene	230,000	3.0 J	49	200	350	180	21	3.1 J1	4.5 J1	2.9 J1	5.0 U
Pyrene	240,000	2.6 J	38	140	230	150	15	2.7 J1	3.8 J1	4.8 U	5.0 U
Benzo(a)anthracene		4.6 U 4.6 U	25 38	88 120	150 150	71 110	5.8 11	4.8 U 2.9 J1	4.7 U 4.4 J1	4.8 U 4.8 U	5.0 U 5.0 U
Chrysene Benzo(a)pyrene		4.6 U	39	100	160	96	6.9	2.9 J1 4.0 J1	4.4 J1 4.0 J1	4.8 U	5.0 U
Indeno(1,2,3-cd)pyrene		4.6 U	19	31	40	28	3.6 J	4.0 J1 4.2 J1	4.5 J1	4.8 U	5.0 U
Dibenz(a,h)anthracene		4.6 U	6.8	13	15	9.9 J	4.8 U	3.2 J1	4.7 U	4.8 U	5.0 U
Benzo(g,h,i)perylene		4.6 U	27	36	42	41	4.8	6.0	7.5	4.8 U	5.0 U
Dibenzofuran	80,000	4.6 U	5.3	14	16	13 J	4.4 J	4.8 U	4.7 U	4.8 U	5.0 U
Total Benzofluoranthenes		4.6 U	70	220	290	180	19	3.4 J1	4.7 U	4.8 U	5.0 U
Total cPAH TEQ	15	ND	51	136	211	126	9.9	5.1 J	4.5 J	ND	ND

TABLE 41 SUMMARY OF SOIL ANALYTICAL RESULTS FOR DETECTED CONSTITUENTS FORMER WASHDOWN SYSTEM COLLECTION TANKS/LOADING DOCK AREA BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

					Former W	Jachdown System Colle	ection Tanks/Loading D	lock Area			
					Former v	rashdown System Com	ection ranks/Loading L	OUR AIEA			
	Preliminary Cleanup Levels	IT-TOWPATHEXC2- B(.7) TE72A 07/19/2011	IT-TOWPATHEXC3- B(.7) TE72B 07/19/2011	IT-TOWPATHEXC4- B(.7) TE72C 07/19/2011	IT-TOWPATHEXC5- B(.7) TE72D 07/19/2011	IT-TOWPATHEXC6- B(.7) TE72E 07/19/2011	IT-TOWPATHEXC7- B(.7) TE72F 07/19/2011	IT-MW-8(2-3.5) TV99A 11/07/2011	IT-MW-8(5-6.5) TV99B 11/07/2011	IT-MW-8(8-9.5) TV99C 11/07/2011	IT-MW-8(14-15.5) TV99F 11/07/2011
PCBs (µg/kg) Method SW8082 Aroclor 1254 Total PCBs	0.29 1.8	31 U ND	28 28 J	88 88	32 U ND	53 53	33 U ND	33 U ND	31 U ND	32 U ND	32 U ND
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-Dx											
Diesel-Range Organics	2,000	5.5 U	24	53	19	85	7.9	5.2 U	5.4 U	5.7 U	6.0 U
Oil-Range Organics	2,000	11 U	150	300	89	510	15	13	13	11 U	12 U
NWTPH-G											
Gasoline-Range Organics	100/30	5.5 U	6.1 U	5.6 U	6.2 U	8.8 U	5.7 U	24	6.9	6.3 U	8.3 U
TOTAL METALS (mg/kg) Methods 200.8/7471A/SW7196A											
Arsenic	7	2.2	5.8	5.7	3.9	6.1	3.8	3.2	3.8	2.9	2.0
Barium	640	33.3	52.0	55.0	62.0	63.7	45.2	26.8	45.8	41.4	36.6
Beryllium	160	0.2 U	0.2	0.2	0.2 U	0.2	0.3	0.2 U	0.2 U	0.2 U	0.3 U
Cadmium	1.3	0.1 U	0.1	0.2	0.2	0.2	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chromium	1,480	11.2	16.0	17.9	21.4	16.4	13.4	8.9	12.5	11.8	13.9
Copper	36	13.9	22.8	24.6	18.5	24.6	18.4	14.8	22.1	17.4	14.9
Lead	250	2.1	9.8	12.8	7.6	12.2	5.8	3.5	4.4	2.3	1.8
Mercury	1.5	0.02 U	0.03	0.04	0.03	0.03	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Nickel	210	13	24.2	27.5	23.0	22.4	16.5	9.0	11.6	10.3	8.6
Zinc	1,400	25	48	55	44	58	32	26	36	70	27

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

PAHs polyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

cPAHs = carcinogenic PAHs

TEQ = Toxic Equivalent Concentration

SIM = Selected Ion Monitoring

ND = Not Detected

Bold = Exceedance

Box = Exceeds Preliminary Cleanup Level.

U = Indicates the compound was not detected at or above the reporting limit.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

UJ2 = The analyted was not detected in the sample at or above the numerical value shown; the numerical value is below the reporting limit, but greater than the detection limit.

ND = Not Detected.

⁽a) The area limits for internal standards perylene-dl2 and di-n-octylphthalate were above the control limits for the original SVOC analysis of sample IT-Bldg1401-Trench-4S-110512.

The sample was reanalyzed at a dilution with all internal standards in control. The original analysis results are reported.

⁽b) The area limit for laboratory internal standard perylene-dl2 was above the control limit for the original SVOC analysis of sample ITBIdg1401-Trench5N-110513. The sample was reanalyzed at a dilution with all internal standards in control. The original analysis results are reported.

TABLE 42 SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS **BUILDING 14-01 BOEING ISAACSON-THOMPSON**

	Sub-Slab Soil	IT-SV-1	IT-SV-2	IT-SV-3	IT-SV-4	IT-SV-5
	Vapor Screening	1104474-01A	1104474-02A	1104474-03A	1104474-04A	1104474-05A
	Levels (a)	04/20/2011	04/20/2011	04/20/2011	04/20/2011	04/20/2011
VOLATILES (ug/m3) MODIFIED EPA METHOD TO-15						
1,1,1-Trichloroethane	77,000	0.86 U	0.81 U	0.84 U	0.81 U	0.86 U
1,1,2,2-Tetrachloroethane	1.4	1.1 U	1.0 U	1.1 U	1.0 U	1.1 U
1,1,2-Trichloroethane	5.3	0.86 U	0.81 U	0.84 U	0.81 U	0.86 U
1,1-Dichloroethane	50	0.64 U	0.6 U	0.63 U	0.6 U	0.64 U
1,1-Dichloroethene	3000	0.63 U	0.59 U	0.61 U	0.59 U	0.63 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	110	5.9 U 12	5.5 U 8.9	5.8 U 9.8	5.5 U 14	5.9 U 9.8
1,2-Dibromoethane (EDB)	110	1.2 U	1.1 U	1.2 U	1.1 U	9. 6 1.2 U
1,2-Dichlorobenzene	3,000	0.95 U	0.90 U	0.93 U	0.90 U	0.95 U
1,2-Dichloroethane	3.3	0.64 U	0.60 U	0.63 U	0.60 U	0.64 U
1,2-Dichloropropane	60	0.73 U	0.69 U	0.72 U	0.69 U	0.73 U
1,3,5-Trimethylbenzene		2.4	1.6	2.0	2.5	2.2
1,3-Butadiene		0.35 U	0.33 U	0.34 U	0.33 U	0.35 U
1,3-Dichlorobenzene		0.95 U	0.9 U	0.93 U	0.90 U	0.95 U
1,4-Dichlorobenzene 1,4-Dioxane	12,000	0.95 U 0.57 U	0.9 U 0.54 U	0.93 U 0.59	0.90 U 1.6	0.95 U 0.57 U
2,2,4-Trimethylpentane		3.7 U	3.5 U	3.6 U	3.5 U	3.7 U
2-Butanone (Methyl Ethyl Ketone)	77.000	26	6.0	14	12	12
2-Hexanone	1,000	3.2 U	3.0 U	3.2 U	3.0 U	3.2 U
2-Propanol		26	17	25	24	34
3-Chloropropene		2.5 U	2.3 U	2.4 U	2.3 U	2.5 U
4-Ethyltoluene		8.9	5.0	7.0	8.1	8.1
4-Methyl-2-pentanone	47000	0.65 U	3.2	9.8	3.5	0.65 U
Acetone alpha-Chlorotoluene	1,100,000	280 E 0.82 U	57 0.77 U	120 0.80 U	72 0.77 U	160 E 0.82 U
Benzene	11	0.82 0	0.77 O	0.80 U	0.77 0	0.65
Bromodichloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform		1.6 U	1.5 U	1.6 U	1.5 U	1.6 U
Bromomethane		0.61 U	0.58 U	0.60 U	0.58 U	0.61 U
Carbon Disulfide	11,000	2.5 U	2.3 U	2.4 U	2.3 U	2.5 U
Carbon Tetrachloride	14	0.99 U	0.94 U	0.98 U	0.94 U	0.99 U
Chlorobenzene Chloroethane	770 150,000	0.73 U 2.1 U	0.68 U 2.0 U	0.71 U 2.0 U	0.68 U 2.0 U	0.73 U 2.1 U
Chloroform	3.7	2.1 U 0.77 U	2.0 U 0.73 U	2.0 U 0.76 U	2.0 U 0.73 U	2.1 U 0.77 U
Chloromethane	1,400	0.82	1.0	0.39	0.56	0.33 U
cis-1,2-Dichloroethene		0.63 U	0.59 U	0.61 U	0.59 U	0.63 U
cis-1,3-Dichloropropene		0.72 U	0.68 U	0.70 U	0.68 U	0.72 U
Cumene		0.78 U	0.73 U	0.76 U	0.73 U	0.78 U
Cyclohexane	90000	0.72	0.51 U	0.53 U	0.51 U	0.54 U
Dibromochloromethane Ethanol		1.3 U 94	1.3 U 43	1.3 U 61	1.3 U 82	1.3 U 67
Ethyl Benzene	15000	11	2.8	9.9	2.5	15
Freon 11	11000	5.9	3.1	4.1	4.0	5.1
Freon 113		1.2 U	1.1 U	1.2 U	1.1 U	1.2 U
Freon 114		1.1 U	1.0 U	1.1 U	1.0 U	1.1 U
Freon 12	3000	2.3	22	50	2.8	93
Heptane		1.2	0.61 U	1.0	0.61 U	0.65 U
Hexachlorobutadiene Hexane	11000	8.4 U 4.8	7.9 U 9.2	8.3 U 6.5	7.9 U 3.2	8.4 U 2.4
m,p-Xylene	see total xylenes	4.6	13	44	3.2 14	69
o-Xylene	see total xylenes	12	3.2	11	3.7	18
Total Xylenes	1500	59	16.2	55	17.7	87
Methyl tert-butyl ether		0.57 U	0.54 U	0.56 U	0.54 U	0.57 U
Methylene Chloride	180	1.1 U	1.0 U	1.1 U	1.0 U	1.1 U
Propylbenzene	15000	1.7	0.83	1.2	1.3	1.4
Styrene Tetrachloroethene	15000	0.67 U 1.1 U	0.63 U 9.8	0.66 U 1.5	0.63 U 1.0 U	0.67 U 1.6
Tetrachioroethene Tetrahydrofuran	320	1.1 0	5.2	9.3	8.9	7.5
Toluene	77000	11	5.2 7.8	9.3 14	7.4	7.5 22
trans-1,2-Dichloroethene		0.63 U	0.59 U	0.61 U	0.59 U	0.63 U
trans-1,3-Dichloropropene		0.72 U	0.68 U	0.70 U	0.68 U	0.72 U
Trichloroethene	12	0.85 U	1.0	2.9	0.80	0.85 U
Vinyl Chloride	9.3	0.40 U	0.38 U	0.40 U	0.38 U	0.40 U

 $[\]label{eq:U} U = \text{Indicates the compound was undetected at the reported concentration.} \\ E = \text{Exceeds instrument calibration range.}$

Note: The samples were collected from beneath the Building 14-01 floor slab and are not indoor air samples.

Bold = Detected compound.
-- = No applicable cleanup level

⁽a) See Table 7.

	RAO 1: Human			RAO 3: Benti	nic Organisms				5D-501G		s	D-5020	G		SE	D-503G				SD-504	G		SD-505	G
	Seafood Consumption	RAO 2: Humar	Direct Contact		lanagement dards	SMS	Elev.	-12	4 ft MLLW		-2.8	ft ML	LW		-11.6	ft MLLW				-4.1 ft MI	LW	_	10.5 ft ML	LW
Analyte	Site-wide	Site-wide	Clamming areas	SCO 1	LAET ²	CSL ³		Value Q1	Q2		Value Q1	02		Value	Q1 (02		Value	_	Q1 Q2		Value	Q1 Q2	
Conventionals	Oile Mide	Oile Wide	urcus		LAL!	- 002		Value Q1	42		value Q1	~_		Value				- Vuiu		4. 42		Value	4. 42	
Total Organic Carbon (Percent)	_	_	_	_	_	_		1.71	_	_	1.47			1.56			- 1-	_	1.85			1.47		_ _
Total Solids (Percent)	_	_	_	_	_	_		48	_		61.4			48.3				-	57.1			45.1		
Metals	NO	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw		mg/kg dw			mg/kg dw			mg/kg dw	_				g dw			mg/kg dw		
Arsenic Cadmium	NC	7	7	57 5.1	57 5.1	93 6.7		0.5			0.4		_ -	15.5					684			29.7 0.6	J	
Chromium			_	260	260	270		25		=	51.2		_ -	28					50.5		 - 	30	+	
Copper	_	_	_	390	390	390		34.6	1 1 _	_	45		_ _	37.5				_	50.7		_ _	40.7		_ _
Lead	_	_	_	450	450	530		14	_	_	81			15			- 1-	_	51			20		_ _
Mercury	_	_	_	0.41	0.41	0.59		0.08			0.08		_ _	0.09				-	0.16		_ _	0.07		
Silver	_	_		6.1 410	6.1 410	6.1 960		0.6 U	U —		0.5 U 114	U		0.6	_				0.5 l	U U	_ _	0.6 L	JU	
Zinc Nonionizable Organic Compounds		_	_	mg/kg OC	μg/kg dw	mg/kg OC		µg/kg dw	mg/kg OC		µg/kg dw		mg/kg OC	μg/kg dw	2	mg/k		µg/kg			mg/kg OC	µg/kg dw		mg/kg OC
Aromatic Hydrocarbons				nig/kg 00	pg/kg uw	mg/kg 00		ружу им	ilig/kg 00		ружу им	H	ilig/kg 00	µg/kg uw	1 1	ilig/i	, 00	рулц	y uw		Ilig/kg 00	pg/kg uw		ilig/kg 00
Total LPAH	_	_	_	370	5,200	780		88	5.15		628		42.72	12	7		8.14		290		15.68	152		10.34
Naphthalene	_	_	_	99	2,100	170		20 U	U 1.17		19		1.29		, –	U	1.22 U		36		1.95	20 L		1.36 U
Acenaphthylene	_	_	_	66	1,300	66		20 U	U 1.17		19 U	U	1.29 U		U I	U	1.22 U		12	J J1	0.65 J	20 L		1.36 U
Acenaphthene Fluorene	_		_	16 23	500 540	57 79	-	20 U 20 U	U 1.17		40		2.72	_	U I	U J1	1.22 U 0.71 J		49 26		2.65 1.41	20 L	J U	1.36 U 1.36 U
Phenanthrene			_	100	1,500	480		74	4.33	U	440		29.93	9	-	JT	6.22	++-	130		7.03	120) ()	8.16
Anthracene		_		220	960	1,200		14 J	J1 0.82	J	88		5.99	19			1.22	1 1	37		2.00	32	,	2.18
2-Methylnaphthalene	_	_	_	38	670	64		20 U	U 1.17		12 J	J1	0.82 J	19	O U	U	1.22 U		21		1.14	20 L	JU	1.36 U
Total HPAH	_	_	_	960	12,000	5,300		988	57.78		3,973		270.27	1,113			71.35		1,537		83.08	1,741	J	118.44
Fluoranthene				160	1,700	1,200		180	10.53		810		55.10	230			14.74		310		16.76	340	J	23.13
Pyrene Benz[a]anthracene	_	_	_	1,000 110	2,600 1,300	1,400 270		160 74	9.36 4.33		700 320		47.62 21.77	190			12.18 5.38		300 120		16.22 6.49	280 130	J	19.05 8.84
Chrysene			_	110	1,400	460		110	6.43		460		31.29	130			8.33	+++	160		8.65	200	J J	13.61
Total benzofluoranthenes		_		230	3,200	450		200	11.70		710		48.30	210			13.46	1 1	270		14.59	340	,	23.13
Benzo[a]pyrene	_	_	_	99	1,600	210		97	5.67		390		26.53	100			6.41		140		7.57	170		11.56
Indeno[1,2,3-c,d]pyrene	_	_	_	34	600	88		64	3.74		240		16.33	66			4.23		92		4.97	110		7.48
Dibenzo[a,h]anthracene				12	230	33		30	1.75		93		6.33	32			2.05		45		2.43	51		3.47
Benzo[g,h,i]perylene cPAH (µg TEQ/kg dw)	NC	380	— 150	31	670 —	78 —		73 143.9	4.27		250 558.8		17.01	150.		-	4.55	- - 	100 207.8		5.41	120 250.4	-	8.16
Chlorinated Benzenes	INC	300	150	mg/kg OC	 μg/kg dw	mg/kg OC		µg/kg dw	mg/kg OC		µg/kg dw		mg/kg OC	µg/kg dw		ma/k	1 OC	μg/kg			mg/kg OC	µg/kg dw		mg/kg OC
1,2-Dichlorobenzene	_	_	_	2.3	35	2.3		4.9 U	U 0.29	U	4.7 U	U	0.32 U		3 U	U	0.31 U		4.9		0.26	4.9 L		0.33 U
1,4-Dichlorobenzene	_	_	_	3.1	110	9		4.9 U	U 0.29	U	4.7 U	U	0.32 U	4.8	3 U	U	0.31 U		3.6		0.19 J	4.9 L	J U	0.33 U
1,2,4-Trichlorobenzene	_	_	_	0.81	31	1.8		4.9 U	U 0.29		4.7 U	U	0.32 U		3 U		0.31 U		2.5		0.14 J	4.9 L		0.33 U
Hexachlorobenzene		_	_	0.38	22	2.3		4.9 U	U 0.29	U	4.7 U	U	0.32 U	_	3 U		0.31 U		4.8	U U	0.26 U	4.9 L	JU	0.33 U
Phthalate Esters Dimethyl phthalate	_	_	_	mg/kg OC 53	μ g/kg dw 71	mg/kg OC 53		μg/kg dw 4.7 J	mg/kg OC J1 0.27		µg/kg dw 3.8 J	J1	mg/kg OC 0.26 J	µg/kg dw 6.4		mg/k	0.41	μg/kg	4.8 l	u u	mg/kg OC 0.26 U	µg/kg dw	J J1	mg/kg OC 0.24 J
Diethyl phthalate		_		61	200	110			U 2.87			U	3.20 U		3 U I	U	3.08 U		48 (2.59 U		J U	3.33 U
Di-n-butyl phthalate	_	_	_	220	1,400	1,700		12 J	J1 0.70	J	93		6.33		U I		1.22 U		20		1.08	20 L	J U	1.36 U
Butyl benzyl phthalate	_	_	_	4.9	63	64		12	0.70		26		1.77	9.5			0.61		55		2.97	19	J	1.29
Bis[2-ethylhexyl]phthalate		_		47	1,300	78		140 B	U 8.19		150 B	U	10.20 B) B	U	8.97 B		67 I		3.62 B	660 E		44.90 B
Di-n-octyl phthalate Miscellaneous				58 mg/kg OC	6,200	4,500 mg/kg OC	1	20 U µg/kg dw	U 1.17 mg/kg OC	U	19 U µg/kg dw	U .	1.29 U mg/kg OC	μg/kg dw	U	U ma/l	1.22 U	μg/kg	19 l	U U	1.03 U mg/kg OC	20 L μg/kg dw	J U	1.36 U mg/kg OC
Dibenzofuran	_	_	_	mg/kg OC 15	µg/kg dw 540	mg/kg OC 58	1	μ g/kg αw 20 U	mg/кg ОС U 1.17	IJ	µg/kg aw 22	 	1.50		O U	mg/k U	1.22 U		23	_	1.24	μ g/kg dw 20 L	J U	1.36 U
Hexachlorobutadiene		_	_	3.9	11	6.2		4.9 U	U 0.29		4.7 U	U	0.32 U		B U	Ū	0.31 U		4.8	U U	0.26 U	4.9 L		0.33 U
N-nitrosodiphenylamine	_	_	_	11	28	11		4.9 U	U 0.29		4.7 U	U	0.32 U	4.8	3 U	Ü	0.31 U		4.8	U U	0.26 U	4.9 L		0.33 U
Carbazole	_	_	_	_	_	_		15 J	J1		66			18	3 J ,				25			35		
Pesticides and PCBs	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw		mg/kg OC	μg/kg dw		mg/k	OC	μg/kg	00.1		mg/kg OC	μg/kg dw		mg/kg OC
	_	_	_		_	_	1	20 0			19 U			20	DU I	U				U U		20 0	J U	
Aroclor 1016																0								
Aroclor 1242	_		_					20 U	II					3	/ I Y I I I	П		+++					/ [1]	
		_ _ _	_ _ _	_ _ _	_ _ _	_		20 U 33 Y 47	U		100				7 Y	U				Y U			/ U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	<u>-</u>	_	_	_	_	_		33 Y 47 34	U		100 220 94			55	7				88 \ 220 180	Y U		39 Y 62 37		
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221		_ _ _ _		 	 	_ _ _ _		33 Y 47 34 20 U	U		100 220 94 19 U	U		55 27 20	5 7 0 U I	U			88 \ 220 180 20 I	Y U		39 Y 62 37 20 L	J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232	——————————————————————————————————————							33 Y 47 34 20 U 20 U	U		100 220 94 19 U 19 U	Ü		55 27 20 20	5 7 0 U I	U U			88 \ 220 180 20 \ 20 \	Y U		39 Y 62 37 20 L 20 L	J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232 Aroclor 1232	——————————————————————————————————————	- - - - -			- - - - -	- - - - -		33 Y 47 34 20 U 20 U 20 U	U U U		100 220 94 19 U 19 U 19 U	Ü		59 27 20 20 20	0 U I	U U			88 Y 220 180 20 I 20 I	Y U U U U U U U U U U		39 Y 62 37 20 L 20 L	J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1261 Aroclor 1221 Aroclor 1232 Aroclor 1262 Aroclor 1262 Aroclor 1268	- - - - - - -							33 Y 47 34 20 U 20 U 20 U 20 U	U U U U U U U U U U U U U U U U U U U		100 220 94 19 U 19 U 19 U 19 U	Ü	28.16	20 20 20 20 20	7 7 0 U I 0 U I	U U	5 26		88 1 220 180 20 0 20 0 20 0 20 0	Y U	21.62	39 Y 62 37 20 L 20 L	J U	6.73
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232 Aroclor 1232	——————————————————————————————————————	- - - - -				——————————————————————————————————————		33 Y 47 34 20 U 20 U 20 U	U U U		100 220 94 19 U 19 U 19 U 19 U	Ü	28.16	20 20 20 20 20 20	5 U I	U U	5.26	ua/ke	88 \ 220 \ 180 \ 20 \ 0 \ 20 \ 0 \ 20 \ 0 \ 400 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0	Y U U U U U U U U U U	21.62	39 Y 62 37 20 U 20 U 20 U 20 U	J U	6.73
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1250 Aroclor 1260 Aroclor 1221 Aroclor 1232 Aroclor 1262 Aroclor 1268 Total PCBs Ionizable Organic Compounds Phenol	- - - - - - -							33 Y 47 34 20 U 20 U 20 U 20 U 20 U 20 U 20 U 10 D	U U U U 4.74		100 220 94 19 U 19 U 19 U 19 U 414 µg/kg dw	Ü	28.16	20 20 20 20 20 20 20 82 µg/kg dw	5	U U U U		hg/kg	88 1 220 180 20 0 20 0 20 0 20 0	Y U U U U U U U U U U	21.62	39 Y 62 37 20 L 20 L 20 L 99 µg/kg dw 19 J	J U J U J U J U J U J U J U J U J U J U	6.73
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1221 Aroclor 1232 Aroclor 1262 Aroclor 1268 Total PCBs Ionizable Organic Compounds Phenol 2-Methylphenol			— — — — — — — — 500			——————————————————————————————————————		33 Y 47 34 20 U 20 U 20 U 20 U 20 U 20 U 21 U 22 U 21 U 22 U 21 U 22 U 23 U 24 U 25 U 27 U 27 U 28 T	U U U U 4.74 J1 — J1 —		100 220 94 19 U 19 U 19 U 19 U 414 µg/kg dw 33 2.6 J	U U U J1		55 20 20 20 20 20 20 20 40 4.8	5	U U U U U U		_	88 \ 220 \ 180 \ 20 \ 0 \ 20 \ 0 \ 20 \ 0 \ 400 \ 20 \ dw \ 22 \ 3.8 \ 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		39 Y 62 37 20 L 20 L 20 L 99 µg/kg dw 19 J 2.7 J	J U J U J U J U J U J U J U J U J U J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1221 Aroclor 1232 Aroclor 1262 Aroclor 1268 Total PCBs Ionizable Organic Compounds Phenol 2-Methylphenol 4-Methylphenol			 500					33 Y 47 34 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U	U U U U 4.74 J1 — J1 — J1 —		100 220 94 19 U 19 U 19 U 19 U 414 µg/kg dw 33 2.6 J 38 U	U U U U J1		55 22 20 21 21 20 82 μg/kg dw 1- 4.5	5 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	U U U U U U U U U U U U U U U U U U U		_	88 220 180 20 1 20 1 20 1 400 g dw 22 3.8 , 25 ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		39 Y 62 37 20 L 20 L 20 L 99 µg/kg dw 19 J 2.77 40 L	J U J U J U J U J U J U J U J U J U J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1221 Aroclor 1222 Aroclor 1262 Aroclor 1268 Total PCBs Ionizable Organic Compounds Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol			 500	——————————————————————————————————————	——————————————————————————————————————			33 Y 47 34 20 U 20 U 20 U 20 U 81 µg/kg dw 16 J 2.7 J 11 J 4.9 U	U U U 4.74 J1 — J1 — J1 — U — U U — U		100 220 94 19 U 19 U 19 U 19 U 414 µg/kg dw 33 2.6 J 38 U 4.7 U	U U U U U U U U U U U U U U U U U U U		55 22 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	5 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	U U U U U U U U U U U U U U U U U U U	 	— — — — — — — — — — — — — — — — — — —	88 220 180 20 1 20 1 20 1 400 2 dw 22 3.8 25 6	Y U U U U U U U U U U U U U U U U U U U		39 Y 62 37 20 L 20 L 20 L 999 µg/kg dw 19 J 2.7 J 40 L 3.3 J	J U J U J U J U J U J U J U J U J U J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1221 Aroclor 1232 Aroclor 1262 Aroclor 1268 Total PCBs Ionizable Organic Compounds Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol Pentachlorophenol			 500					33 Y 47 34 20 U 20 U 20 U 20 U 81 µg/kg dw 16 J 2.7 J 11 J 4.9 U 24 U	U U U 4.74 J1 — J1 — U U U U U U U U U U U U U U U U U U		100 220 94 19 U 19 U 19 U 19 U 414 µg/kg dw 33 2.6 J 38 U 4.7 U	U U U U U U U U U U U U U U U U U U U		55 22 20 20 20 20 20 40 85 µg/kg dw 4.4 4.4 20	5		 		88 220 180 20 1 20 1 20 1 20 1 20 1 20 1	Y U U U U U U U U U U U U U U U U U U U		39 Y 62 37 20 L 20 L 20 L 20 L 20 L 20 L 30 S 99 µg/kg dw 19 J 2.7 J 40 L 3.3 J	J U J U J U J U J U J U J U J U J U J U	
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1221 Aroclor 1262 Aroclor 1262 Aroclor 1268 Total PCBs Ionizable Organic Compounds Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol			 500	——————————————————————————————————————	——————————————————————————————————————			33 Y 47 34 20 U 20 U 20 U 20 U 81 µg/kg dw 16 J 2.7 J 11 J 4.9 U	U U U U U U U U U U U U U U U U U U U	——————————————————————————————————————	100 220 94 19 U 19 U 19 U 19 U 414 µg/kg dw 33 2.6 J 38 U 4.7 U	U U U U U U U U U U U U U U U U U U U		55 22 20 20 20 83	5 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	U U U U U U U U		— — — — — — — — — — — — — — — — — — —	88 220 180 20 1 20 1 20 1 20 1 20 1 20 1	Y U U U U U U U U U U U U U U U U U U U		39 Y 62 37 20 L 20 L 20 L 20 L 20 L 20 L 20 L 20 L	J U J U J U J U J U J U J U J U J U J U	

	RAO 1: Human Seafood				nic Organisms Management			s	D-516G		SD)-506G	3		SD	507G			SD-50	3G		SD-509	ıG
	Consumption	RAO 2: Human	Direct Contact		dards	SMS	Elev.	-10.	5 ft MLLW		-0.71	ft MLL	.w		-10.0	t MLLW			-2.0 ft M	LW		-9.8 ft ML	LW
Analyte	Site-wide	Site-wide	Clamming areas	SCO 1	LAET 2	CSL ³		Value Q1	Q2		Value Q1 C	Q2		Value	Q1 C	2		Value	Q1 Q2		Value	Q1 Q2	
Conventionals								1			1 1 1							1.0.0.0			10000	41 44	
Total Organic Carbon (Percent)	_	_	_	_	_	_		1.78	_	_	1.75			1.27		_		1.66			1.57		
Total Solids (Percent)								44.8		_	59.6		_	45			1-	45.8		_ _	48.5		
Metals Arsenic	NC	mg/kg dw 7	mg/kg dw 7	mg/kg dw 57	mg/kg dw 57	mg/kg dw 93	-	mg/kg dw	J —	_	mg/kg dw 396		_ _	mg/kg dw 22.2		_	+-+	mg/kg dw 29.5		_ _	mg/kg dw 9.1		_ _
Cadmium	— NC	<u>'</u>		5.1	5.1	6.7		0.6	J —	=	0.8 U U	1		0.7			+=+	0.6		= =	0.5		
Chromium	_	_	_	260	260	270		29	_	_	55		_ _	44	_	_	1-1	30		_ _	27		
Copper	_	_	_	390	390	390		38.7	_	_	72.6		_ _	36.3		_		42.2			38.2		
Lead	_	_	_	450	450	530		17	_		91		_ _	19		_		29			15		_
Mercury	_		_	0.41	0.41	0.59		0.11		_	0.1		_	30.0	_		1-1	0.1		_ _	0.08		
Silver Zinc				6.1 410	6.1 410	6.1 960		0.6 U 89	U — —		2 225			0.9			+=+	0.8			0.6 83	U	
Nonionizable Organic Compounds				mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC	_	μg/kg dw	n	ng/kg OC	μg/kg dw	1	mg/kg OC	: -	μg/kg dw		mg/kg OC	μg/kg dw		mg/kg OC
Aromatic Hydrocarbons				3 3	13 3	3 3 -		13 3	3 3		13 3		-	13 3		3 3 -		13 3			13 3		3 3 -
Total LPAH	_	_	_	370	5,200	780		615	34.55		1,837		104.97	705	,	55.5	1	414		24.94	108	J	4.33 J
Naphthalene		_	_	99	2,100	170			J1 0.79			J1	1.60 J		J J		8 J	12		0.72 J		U J1	1.27 U
Acenaphthone	_	_	_	66	1,300	66	<u> </u>		J1 0.90	J	57 U L	J	3.26 U		U U		7 U	19		1.14 U		U U	1.27 U
Acenaphthene Fluorene				16 23	500 540	57 79	1	21	1.18 1.57	+	63 86	-+	3.60 4.91	59	_	4.6		15 29		0.90 J 1.75	20	U J1	1.27 U 1.27 U
Phenanthrene				100	1,500	480		480	J 26.97		1,400	-	80.00	510	_	40.1		300		18.07	55		3.50
Anthracene	_	_	_	220	960	1,200		56	3.15		260		14.86	59		4.6		58		3.49	13		0.83 J
2-Methylnaphthalene	_	_	_	38	670	64		12 J	J1 0.67	J	57 U L	J	3.26 U	50		3.9		19	U U	1.14 U	20		1.27 U
Total HPAH	_			960	12,000	5,300		4,129	J 231.97		12,330		704.57	2,952		232.4		3,159		190.30	650		41.40
Fluoranthene	_	_	_	160	1,700	1,200		1,500	J 84.27		2,800		160.00	700		55.1		650		39.16	120		7.64
Pyrene Benz[a]anthracene		_	_	1,000 110	2,600 1,300	1,400 270	-	1,100 190	J 61.80 J 10.67	_	2,200 1,000		125.71 57.14	530		41.7 17.3		520 230	-	31.33 13.86	110 48		7.01 3.06
Chrysene				110	1,400	460		460	J 25.84		1,400	-	80.00	350		27.5		480		28.92	80		5.10
Total benzofluoranthenes	_	_	_	230	3,200	450		440	24.72		2,100		120.00	500		39.3		570		34.34	130		8.28
Benzo[a]pyrene	_	_	_	99	1,600	210		180	10.11		1,200		68.57	250		19.6		260		15.66	61		3.89
Indeno[1,2,3-c,d]pyrene	_	_	_	34	600	88		100	5.62		670		38.29	160		12.6		180		10.84	40		2.55
Dibenzo[a,h]anthracene	_	_	_	12	230	33		49	2.75		280		16.00	72		5.6		79		4.76	16		1.02
Benzo[g,h,i]perylene cPAH (µg TEQ/kg dw)	NC	380	— 150	31	670 —	78 —		110 277.2	6.18		1,703		38.86	170 370.3		13.3	9	190 394.4		11.45	45 90		2.87
Chlorinated Benzenes	INC	300	130	mg/kg OC	μg/kg dw	mg/kg OC		µg/kg dw	mg/kg OC		µg/kg dw	n	ng/kg OC	μg/kg dw	+	mg/kg OC	:	μg/kg dw		mg/kg OC	µg/kg dw		mg/kg OC
1,2-Dichlorobenzene	_	_	_	2.3	35	2.3		4.9 U	U 0.28	U	14 U U	J	0.80 U		U U		9 U	4.8	U U	0.29 U		U U	0.32 U
1,4-Dichlorobenzene	_	_	_	3.1	110	9		4.9 U	U 0.28		14 U L	_	0.80 U		U U		9 U	4.8		0.29 U		U U	0.32 U
1,2,4-Trichlorobenzene	_	_	_	0.81	31	1.8			U 0.28		14 U L	J	0.80 U		U U		9 U		U U	0.29 U		U U	0.32 U
Hexachlorobenzene	_	_		0.38	22	2.3		4.9 U	U 0.28	U	14 U U	J	0.80 U		U U		9 U	4.8	U U	0.29 U	_	U U	0.32 U
Phthalate Esters Dimethyl phthalate	_	_	_	mg/kg OC 53	μ g/kg dw 71	mg/kg OC 53		μ g/kg dw 9.2	mg/kg OC 0.52		μ g/kg dw 9.4 J J	<u>п</u> Ј1	ng/kg OC 0.54 J	µg/kg dw		mg/kg OC 1.3		µg/kg dw		mg/kg OC 0.78	μg/kg dw 4.3	1	mg/kg OC 0.27 J
Diethyl phthalate		_		61	200	110			U 2.75	U	140 U U		8.00 U		U U		6 U		U U	2.89 U		U U	3.18 U
Di-n-butyl phthalate	_	_	_	220	1,400	1,700			J1 0.55			J1	2.46 J		U U		7 U	19	U U	1.14 U		U U	1.27 U
Butyl benzyl phthalate	_	_	_	4.9	63	64		35	J 1.97		19		1.09	12		0.9		45		2.71	12		0.76
Bis[2-ethylhexyl]phthalate	_			47	1,300	78			UJ 6.74		820 B		46.86 B	150		11.8		190		11.45 B	110		7.01 B
Di-n-octyl phthalate	_		_	58	6,200	4,500		20 U	U 1.12	U	100		5.71		U U		7 U	19	U U	1.14 U	20	UU	1.27 U
Miscellaneous Dibenzofuran	_	_		mg/kg OC 15	µg/kg dw 540	mg/kg OC 58	 	μ g/kg dw 16 J	mg/kg OC J1 0.90	. -	µg/kg dw 86		ng/kg OC 4.91	μg/kg dw	++	mg/kg OC 3.7		µg/kg dw 15	J J1	mg/kg OC 0.90 J	μg/kg dw 20	U J1	mg/kg OC 1.27 U
Hexachlorobutadiene				3.9	11	6.2		4.9 U	U 0.28	_	14 U L	J	0.80 U	4.9	_	0.3		4.8		0.29 U		U U	0.32 U
N-nitrosodiphenylamine	_	_	_	11	28	11		4.9 U	U 0.28	U	14 U L	J	0.80 U	4.9	U U	0.3	9 U	4.8	U U	0.29 U	5	U U	0.32 U
Carbazole	_							61			230			84				61			20	U	
Pesticides and PCBs	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	<u> </u>	ng/kg OC	μg/kg dw		mg/kg OC	;	μg/kg dw		mg/kg OC	μg/kg dw		mg/kg OC
Aroclor 1016 Aroclor 1242								20 U	U		19 U U	J			U U			20	U U		19	U U	-
Aroclor 1248									U		140 Y				Y U				Y U			Y U	
Aroclor 1254	_	_	_	_	_	_		48	-		350			70			1 1	82			52		
Aroclor 1260	_	_	_	_	_	_		30			150			42				41			30		
Aroclor 1221	_					_			U		19 U L				U U				U U			U U	
Aroclor 1232		_	_	_	_	_	1	20 U		_	19 U L				U U		+		U U			U U	
Aroclor 1262 Aroclor 1268				_		_	<u> </u>	20 U 20 U			19 U L				U U		++		U U	 		U U	
Total PCBs	2	1,300	500	12	130	65	 	78	4.38	+	500	,	28.57	112		8.8	2	123		7.41	82		5.22
Ionizable Organic Compounds		.,000		μg/kg dw	μg/kg dw	μg/kg dw		μg/kg dw	4.50		μg/kg dw			μg/kg dw		5.0	++	μg/kg dw			μg/kg dw		J.22
Phenol	_	_	_	420	420	1,200		19 J		_	57 U L		_ _	16	J J			13	J J, J1		12	J J, J1	
2-Methylphenol	_	_	_	63	63	63		4.9 U		$-\Box$	14 U U		- -		U U				U U	_ _	2.5		
4-Methylphenol	_	_	_	670	670	670		13 J			110 U L		_ _		U U		$\perp \perp$		U U	_ _		U U	
	_	_	l —	29	29	29	1	2.7 J	J1 —	— 1		1		. 10	U U	J —	1 — 1	ı 4.8	U UJ	_ _	1 5	U UJ	
2,4-Dimethylphenol						600					14 U U											11 111	
2,4-Dimethylphenol Pentachlorophenol Benzyl alcohol				360 57	360 57	690 73			UJ —	_	71 U U	JJ		25	U U	J —	1=1	24	U UJ B U		25	U UJ B U	

				1			1				<u> </u>						- 1					
	RAO 1: Human			RAO 3: Benth					SD-510)G		s	D-511G		s	D-512G		SD-5	17G		SD-51:	3G
	Seafood Consumption	RAO 2: Human	Direct Contact	Sediment M Stand	•	SMS	Elev.	0	2 ft MI	LW		-10.	7 ft MLLW		0.1	ft MLLW		0.2 ft N	ILLW		-9.1 ft M	LLW
Analyte	Site-wide	Site-wide	Clamming areas	SCO 1	LAET ²	CSL ³		Value Q	1 Q2			Value Q1	Q2		Value Q1	Q2		Value Q1 Q2		Value	Q1 Q2	
Conventionals																						
Total Organic Carbon (Percent)	_	_		_	_	_		1.05		_		1.56		- -	1.85	_		1.54		1.62		_ _
Total Solids (Percent)								64.2				47.6		-	56.6			58.8		50.4		_ _
Metals	NO	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	-	mg/kg dw			-	mg/kg dw	 		mg/kg dw			mg/kg dw		mg/kg dw		
Arsenic Cadmium	NC	7	7	57 5.1	57 5.1	93 6.7		16.8 0.5				10.7 0.6	 		19.5 0.9			13.9 0.7	 	10.3	5	
Chromium			_	260	260	270		26.5			\vdash	28		⊦ ≣⊦−	49.3		=	33.2		27.3		
Copper				390	390	390		32.9			-	40.2		⊢	73.8	 	\vdash	40.9	 	37.6		
Lead	_	_	_	450	450	530		29		_		15	† †	t_t_	51	_		44	<u> </u>	18		
Mercury	_	_	_	0.41	0.41	0.59		0.06		_	_	0.11	_		0.21		_	0.09		0.1		
Silver	_	_	_	6.1	6.1	6.1		0.4 U	U	_	_	0.6 U	U —	_	0.5 U	U —	_	0.5 U U		0.6	S U U	
Zinc		_		410	410	960		87		_	_	85	_	_	124	_	_	99		83	3	
Nonionizable Organic Compounds Aromatic Hydrocarbons				mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw		mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC	μg/kg dw	++-	mg/kg OC
Total LPAH	_	_	_	370	5,200	780		307 J	J1	29.24	J	58 J	J1 3.72	J	88 J	J1 4.76	J	97 J J1	6.30 J	51		3.15
Naphthalene	_	_	_	99	2,100	170		24		2.29		19 U			16 J			11 J J1			U U	1.17 U
Acenaphthylene	_	_	_	66	1,300	66		12 J	J1	1.14	J	19 U			19 U			20 U U	1.30 U		U U	1.17 U
Acenaphthene	_	_	_	16	500	57		25		2.38		19 U			19 U			20 U U	1.30 U		U U	1.17 U
Fluorene		_	_	23	540	79		20		1.90	oxdot	19 U			19 U			20 U U	1.30 U		U U	1.17 U
Phenanthrene	_			100	1,500	480	<u> </u>	190		18.10	igwdot	46	2.95		59	3.19		68	4.42	51		3.15
Anthracene	_	_		220	960	1,200		36	14	3.43	.	12 J	J1 0.77					18 J J1	1.17 J		U U	1.17 U
2-Methylnaphthalene Total HPAH		_		38 960	670 12,000	64 5,300	1	15 J 2,524	J1	1.43 240.38	J	19 U 512	U 1.22 32.82		11 J 505	J1 0.59 27.30		11 J J1 813	0.71 J 52.79	573	OU U	1.17 U 35.37
Fluoranthene				160	1.700	1,200	1	590	-	56.19		100	6.41		110	5.95		140	9.09	110		6.79
Pyrene				1,000	2,600	1,400		520	+	49.52		89	5.71		100	5.41		190	12.34	100		6.17
Benz[a]anthracene	_	_	_	110	1,300	270	1	170		16.19		39	2.50		35	1.89		63	4.09	42		2.59
Chrysene	_	_	_	110	1,400	460		320		30.48		63	4.04		53	2.86		89	5.78	70		4.32
Total benzofluoranthenes	_	_	_	230	3,200	450		430		40.95		100	6.41		87	4.70		150	9.74	110		6.79
Benzo[a]pyrene	_	_	_	99	1,600	210		200		19.05		48	3.08		45	2.43		70	4.55	52	2	3.21
Indeno[1,2,3-c,d]pyrene	_	_	_	34	600	88		120		11.43		27	1.73		27	1.46		43	2.79	34	1	2.10
Dibenzo[a,h]anthracene	_	_	_	12	230	33		54		5.14		15	0.96		12	0.65		19	1.23	16		0.99
Benzo[g,h,i]perylene	_	_		31	670	78		120		11.43		31	1.99		36	1.95		49	3.18	39		2.41
cPAH (μg TEQ/kg dw)	NC	380	150					296.8				71.23			65.23			104.09		77.7	7	
Chlorinated Benzenes				mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw	-	mg/kg OC		µg/kg dw	mg/kg OC		µg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC	μg/kg dw	7 1 1 1 1	mg/kg OC
1,2-Dichlorobenzene 1.4-Dichlorobenzene			_	2.3 3.1	35 110	2.3 9		4.8 U 4.8 U	IJ	0.46 0.46		4.8 U 4.8 U	U 0.31 U 0.31		4.8 U 4.8 U	U 0.26		5 U U	0.32 U 0.32 U	4.7	7 U U	0.29 U 0.29 U
1,2,4-Trichlorobenzene				0.81	31	1.8		4.8 U	III	0.46		4.8 U	U 0.31			U 0.26		5 U U	0.32 U		7 U U	0.29 U
Hexachlorobenzene	_			0.38	22	2.3		4.8 U	U	0.46		4.8 U	U 0.31		4.8 U			5 U U	0.32 U	4.7		0.29 U
Phthalate Esters				mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw	1	mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC
Dimethyl phthalate	_	_	_	53	71	53		6.3		0.60			J1 0.22		10	0.54		19	1.23	4.1	I J J1	0.25 J
Diethyl phthalate	_	_	_	61	200	110		48 U	U	4.57	U	48 U			48 U			50 U U	3.25 U	1500)	92.59
Di-n-butyl phthalate	_	_	_	220	1,400	1,700		33		3.14		13 J	J1 0.83	J	74	4.00		110	7.14	56	6	3.46
Butyl benzyl phthalate	_	_		4.9	63	64		37		3.52		10	0.64		43	2.32		150	9.74	12		0.74
Bis[2-ethylhexyl]phthalate	_	_		47	1,300	78		140 B	U	13.33		110 B	U 7.05			U 3.89		110 B U	7.14 B		B U	5.43 B
Di-n-octyl phthalate	_	_	_	58	6,200	4,500		19 U	U	1.81		19 0	U 1.22		19 U			20 U U	1.30 U		U U	1.17 U
Miscellaneous Dibonzofuran			 	mg/kg OC	µg/kg dw	mg/kg OC	1	µg/kg dw	14	mg/kg OC		µg/kg dw	mg/kg OC		µg/kg dw	mg/kg OC U 1.03		µg/kg dw	mg/kg OC	μg/kg dw	111 111	mg/kg OC
Dibenzofuran Hexachlorobutadiene				15 3.9	540 11	58 6.2	1	14 J 4.8 U	JT II	1.33 0.46		19 U 4.8 U	U 1.22 U 0.31		19 U 4.8 U			10 J J1 5 U U	0.65 J 0.32 U	4.7	9 U U 7 11 11	1.17 U 0.29 U
N-nitrosodiphenylamine				3.9	28	11	 	4.8 U	U	0.46		4.8 U	U 0.31			U 0.26		5 U U	0.32 U	4.7		0.29 U
Carbazole	_		_					36	-	0.40		19 U	U 0.51		19 U	U		12 J J1	0.32 0		DU U	0.23 0
Pesticides and PCBs	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw		mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC
Aroclor 1016						_		19 U	U			20 U			19 U			19 U U	gg		U U	gg
Aroclor 1242	_	_	_	_	_	_		19 U	U			20 U			19 U			19 U U			U U	
Aroclor 1248	_	_	_	_	_	_		73 Y	U			31 Y	U		120			220			Y U	
Aroclor 1254	_	_	_	_	-	_		130				46			250			360		57		
Aroclor 1260	_	_	_	_	_	_		59				29			82			110		31		
Aroclor 1221							1	19 U				20 U			19 U			19 U U			U U	
Aroclor 1232	_	_	_	_		_	1	19 U		-	- -	20 U 20 U		+	19 U		 	19 U U	+ +		U U	+
Aroclor 1262 Aroclor 1268			_	_		_	1	19 U		-	$\vdash\vdash$	20 U		+	19 U 19 U		\vdash	19 U U	+ +		90 0	+ + +
Total PCBs	2	1,300	500	12	130		 	189	-	18.00	\vdash	75	4.81	++	452	24.43	\vdash	690	44.81	I S	3 0	5.43
Ionizable Organic Compounds		1,500	500	μg/kg dw	μg/kg dw	μg/kg dw		μg/kg dw	+	10.00		μg/kg dw	7.01		μg/kg dw	27.40		μg/kg dw	77.01	μg/kg dw		3.43
Phenol	_	_	_	420	420	1,200		20	1	_		13 J	J1 —	t=t=	18 J	J, J1 —		18 J J, J	1 – –) J J, J1	
2-Methylphenol	_	_	_	63	63	63		4.8 U	U	_		4.8 U		1=1=	4.8 U		-	5 U U			7 U U	
4-Methylphenol	_	_	_	670	670	670		38 U		_	-	10 J			30 J	J1 —	_	40 U U			BU U	
2,4-Dimethylphenol	_	_	_	29	29	29		4.8 U		_		4.8 U			2.5 J		-	5 U UJ			7 U UJ	
Pentachlorophenol	_	_	_	360	360	690		24 U		_		24 U		1-I	24 U			25 U UJ			1 U UJ	
Benzyl alcohol		_	_	57	57	73		23 QE		_		120 QB		-	24 B			20 B U			2 B U	
Benzoic acid	_	_	_	650	650	650	1	380 U	U	_		120 J	J1 —	I - I	390 U	U —	_	140 J J1	_ _	380	U U	- -

	RAO 1: Human Seafood			RAO 3: Benth Sediment M					S	D-514	G			s	D-515	G	
	Consumption	RAO 2: Human		Stand		SMS	Elev.		0.0	ft ML	LW			-9.7	ft ML	LW	
Analyte	Site-wide	Site-wide	Clamming areas	SCO 1	LAET 2	CSL ³		Value	Q1	Q2			Value	Q1	Q2		
Conventionals																	
Total Organic Carbon (Percent)								1.78			_	_	1.22				ᄪ
Total Solids (Percent)	_	— 			— — — — — — — — — — — — — — — — — — —			55.9			_		47.8				ᆂ
Metals Arsenic	NC	mg/kg dw 7	mg/kg dw 7	mg/kg dw 57	mg/kg dw 57	mg/kg dw 93		mg/kg dw 15.6			_	_	mg/kg dw 11.9				╁
Cadmium	-			5.1	5.1	6.7		0.9				_	0.5				듵
Chromium	_	_	_	260	260	270		47.6			_	_	33			_	
Copper	_	_	_	390	390	390		76.7			_	_	39.4			_	
Lead	_	_	_	450	450	530		54			_	_	18			1	\perp
Mercury		_	_	0.41	0.41	0.59		0.24			_		0.11				_
Silver			_	6.1	6.1	6.1		0.5			_		3.2				⊢
Zinc Nonionizable Organic Compounds		_		410 mg/kg OC	410 µg/kg dw	960 mg/kg OC		123 µg/kg dw			mg/kg OC		85 μg/kg dw			mg/kg OC	₩
Aromatic Hydrocarbons				ilig/kg oc	μg/kg uw	nig/kg oc		µg/kg uw			ilig/kg oc		µg/kg uw			ilig/kg OC	+-
Total LPAH	_	_	_	370	5,200	780		67	J	J1	3.76	J	47			3.85	-
Naphthalene	_	_	_	99	2,100	170		16		J1	0.90		20		U	1.64	
Acenaphthylene	_	_	_	66	1,300	66		19	U	U	1.07	U	20	U	U	1.64	U
Acenaphthene	_	_	_	16	500	57		19		U	1.07		20		U	1.64	
Fluorene	_	_	_	23	540	79		19		U	1.07	U	20		U	1.64	
Phenanthrene				100	1,500	480		40			2.25		47		ļ.,	3.85	
Anthracene			_	220	960	1,200		11		J1	0.62		20		U	1.64	
2-Methylnaphthalene		_		38 960	670 12,000	64 5,300		14		J1 J1	0.79		20		U	1.64 42.87	
Total HPAH Fluoranthene				160	1,700	1,200		420.7 96		JI	23.63 5.39	J	523 100			8.20	
Pyrene				1,000	2,600	1,400		87			4.89		94			7.70	
Benz[a]anthracene		_		110	1,300	270		37			2.08		39			3.20	
Chrysene	_	_	_	110	1,400	460		52			2.92		65			5.33	
Total benzofluoranthenes	_	_	_	230	3,200	450		68			3.82		100			8.20	
Benzo[a]pyrene	_	_	_	99	1,600	210		33			1.85		47			3.85	
Indeno[1,2,3-c,d]pyrene	_	_	_	34	600	88		18	J	J1	1.01	J	29			2.38	
Dibenzo[a,h]anthracene			_	12	230	33		8.7			0.49		13			1.07	
Benzo[g,h,i]perylene		_	_	31	670	78		21			1.18		36			2.95	<u> </u>
cPAH (µg TEQ/kg dw)	NC	380	150	— ————————————————————————————————————		— ————————————————————————————————————		49.3					69.65			// OC	+
Chlorinated Benzenes 1,2-Dichlorobenzene	_	_	_	mg/kg OC 2.3	μg/kg dw 35	mg/kg OC 2.3		μg/kg dw 4.8	11	U	mg/kg OC 0.27		μg/kg dw 4.9	11	11	mg/kg OC 0.40	
1,4-Dichlorobenzene	_			3.1	110	9		5.1	0	0	0.29	0	4.9		II.	0.40	
1,2,4-Trichlorobenzene	_	_	_	0.81	31	1.8		4.8	U	U	0.27	U	4.9		U	0.40	
Hexachlorobenzene	_	_	_	0.38	22	2.3		4.8		Ū	0.27		4.9		U	0.40	
Phthalate Esters				mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw			mg/kg OC		μg/kg dw			mg/kg OC	
Dimethyl phthalate	_	_	_	53	71	53		4.8		U	0.27		4.8		J1	0.39	
Diethyl phthalate	_	_	_	61	200	110		48		U	2.70	U	49		U	4.02	
Di-n-butyl phthalate				220	1,400	1,700		82			4.61		20		U	1.64	
Butyl benzyl phthalate				4.9 47	63 1,300	64 78		20			1.12	В	17 120			1.39 9.84	
Bis[2-ethylhexyl]phthalate Di-n-octyl phthalate	_	_	_	58	6,200	4,500		71 19		U U	3.99 1.07		20		U	1.64	
Miscellaneous			_	mg/kg OC	μg/kg dw	mg/kg OC		µg/kg dw	0		mg/kg OC	0	μg/kg dw	0	0	mg/kg OC	
Dibenzofuran	_	_	_	15	μ g/kg dw 540	58		ружу и 19	U	U	1.07	U	μ g/kg uw 20	U	U	1.64	
Hexachlorobutadiene	_	_	_	3.9	11	6.2		4.8		Ü	0.27		4.9		Ü	0.40	
N-nitrosodiphenylamine	_	_	_	11	28	11		4.8		U	0.27	U	4.9		U	0.40	U
Carbazole	_	_	_		ı	_		19	U	U			20	U	U		
Pesticides and PCBs	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw			mg/kg OC		μg/kg dw			mg/kg OC	
Aroclor 1016	_	_	_		_	_		20		U			20		U		<u> </u>
Aroclor 1242	_	_	_	_		_		20		U			20		U		₩
Aroclor 1248		_	_	_		_		360					42		U		₩
Aroclor 1254 Aroclor 1260		_					-	750 180					62 36		1		\vdash
Aroclor 1220		_						20		U			20		U		\vdash
Aroclor 1232	_		_	_				20		U			20		Ū		\vdash
Aroclor 1262	_	_	_	_	_	_		20		U			20		U		T
Aroclor 1268	_				ı	_		20		Ü			20		Ü		
Total PCBs	2	1,300	500	12	130	65		1,290			72.47		98			8.03	
Ionizable Organic Compounds				μg/kg dw	μg/kg dw	μg/kg dw		μg/kg dw					μg/kg dw				屸
Phenol	_	_	_	420	420	1,200			Q	J	_	_	14		J, J1	_	巨
	_	_	_	63	63	63		4.8	U	U	_	_	2.5		J1		 =
2-Methylphenol						-											
4-Methylphenol	_	_	_	670	670	670		15		J1			39		U		⊬≕
4-Methylphenol 2,4-Dimethylphenol	_	_	_	29	29	29		3.7	J	J, J1	_	_	4.9	U	UJ	_	Ξ
4-Methylphenol	_								J U					U U	_		Ē

RESULTS FROM RI SURFACE SEDIMENT GRAB SAMPLES BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Value above PCUL (Human Seafood Consumption) Value above PCUL (Human Direct Contact) Value above PCUL (Benthic Organism) Value above SMS CSL (Bold) Value above PCUL (Undetected Exceedance-italicized)

- Notes:

 1. Sediment Management Standards Sediment Cleanup Objectives (173-204-560) WAC.

 2. LAET = Lowest-Apparent-Effects Threshold.
- 3. Sediment Management Standards Cleanup Screening Levels (173-204-560) WAC.

Abbreviations:

cPAH = carcinogenic polycyclic aromatic hydrocarbons

CSL = cleanup screening level

dw = dry weight Elev = elevation

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

Q1 Laboratory Data Qualifier

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

U = Indicates the compound was not detected at the reported concentration.

Q2 Data Qualifiers Assigned during Data Validation

U = Indicates the compound was not detected at or above the reporting limit.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate

and less than the reporting limit, but equal to or greater than the detection limit.

LAET = lowest apparent effects threshold LPAH = low-molecular-weight polycyclic aromatic hydrocarbon mg/kg = milligrams per kilogram

MLLW = mean lower low water

OC = organic carbon

PCBs = polychlorinated biphenyls

RAO = remedial action objective

SMS = Wahington State Sediment Management Standards

SCO = sediment cleanup objective

TEQ = toxic equivalent concentration

μg/kg = micrograms per kilogram

TABLE 44

	RAO 3: Benth Sediment M Stand	lanagement	SMS		-501-0020 2 to 3 ft			0-501-0 4 to 5			SD-501-			-501-0080 3 to 9 ft			02-002	20
Analyte	SCO 1	LAET 2	CSL ³	Value Q1	Q2			Q2		Value	Q1 Q2	1		Q2		Value Q1 Q		
Conventionals				10.00												1 1	-	
Total Organic Carbon (Percent)	_	_	_	1.8	_	-	1.54		_ _	1.29		1 - 1-1	1.4		_	0.839		
Total Solids (Percent)	_	_	_	56.2		_	66.9		_ -	70.4	l l		75.2		_	88.6		_ [_
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw			mg/kg dw			mg/kg dw			mg/kg dw			mg/kg dw		
Arsenic	57	57	93	12.4	_	-	13		_ _	9.5	5		5.7		-	3.6		
Cadmium	5.1	5.1	6.7	1.2	_	-	0.8		_ _	0.5	5		0.4		-	0.2 U L	J	
Chromium	260	260	270	41.4	_	_	36.6		_ _	21.5			17.2			10.7		
Copper	390	390	390	63.9	_	_	66		_ _	46.5			23.8		_	10.7		
Lead	450	450	530	67	_	_	91		_ - -	53			13	J —	_	2 U L	J	
Mercury	0.41	0.41	0.59	0.16	_	_	0.15		_ - -	0.23			0.07		_	0.02 U L	J	
Silver	6.1	6.1	6.1	0.9	_		1.3			0.7		_ _	0.4 U			0.3 U L	J	
Zinc	410	410	960	144		_	158		_ _	85	5		63			26		
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw		mg/kg OC	μg/kg dw		mg/kg OC	μg/kg dw	mg/kg OC		μg/kg dw	m	g/kg OC
Aromatic Hydrocarbons								1			1.							
Total LPAH	370	5,200	780	569	31.61		1,256	1	81.56	978		75.81 J	20 U	1.43 L		32 J		3.81 J
Naphthalene	99	2,100	170	46	2.56		120	1	7.79	71		5.50		U 1.43 L		19 U L		2.26 U
Acenaphthylene	66	1,300	66	19 U	U 1.06	U	26	1	1.69	15		1.16 J	20 U	U 1.43 L		19 U L	,	2.26 U
Acenaphthene	16	500	57	47	2.61		150	1	9.74	82		6.36		U 1.43 L	_	21	_	2.50
Fluorene	23	540	79 480	45 360	2.50		110 650	1	7.14 42.21	120 580		9.30 44.96		U 1.43 L		19 U L		2.26 U
Phenanthrene	100	1,500			20.00			-						U 1.43 L		11 J J		1.31 J
Anthracene	220	960	1,200 64	71 29	3.94 1.61		200 45	1	12.99 2.92	110		8.53	20 U	1.10		19 U L		2.26 U
2-Methylnaphthalene Total HPAH	38	670	5,300	2,307			3,104		2.92	1,911		2.17 148.14	20 U 71 J	U 1.43 L 5.07 J		19 U L 85.8 J	,	2.26 U 10.23 J
	960	12,000	· · · · · · · · · · · · · · · · · · ·	380	128.17										_			
Fluoranthene Pyrene	160 1,000	1,700 2,600	1,200 1,400	520	21.11 28.89		570 920	-	37.01 59.74	300 620		23.26 48.06	38	J1 1.14 J 2.71		22		2.62
Benz[a]anthracene	1,000	1,300	270	170	9.44		290	1	18.83	170		13.18		U 1.43 L	_	10 J J	1	1.19 J
Chrysene	110	1,400	460	260	14.44		340	1	22.08	220		17.05		U 1.43 L		10 J J		1.19 J
Total benzofluoranthenes	230	3.200	450	420	23.33		350		22.73	210		16.28		J1 1.21 J		19	<u>' </u>	2.26
Benzo[a]pyrene	99	1,600	210	230	12.78		310		20.13	190		14.73		U 1.43 L		19 U L		2.26 U
Indeno[1,2,3-c,d]pyrene	34	600	88	130	7.22		110		7.14	72		5.58		U 1.43 L		19 U L		2.26 U
Dibenzo[a,h]anthracene	12	230	33	57	3.17		54		3.51	32		2.48		U 0.36 L		2.8 J J		0.33 J
Benzo[q,h,i]perylene	31	670	78	140	7.78		160		10.39	97		7.52		U 1.43 L	_	19 U L		2.26 U
cPAH (µg TEQ/kg dw)	_	_	_	327.4			410		10.00	250.2		1.02	14.8			14.58		2.20
Chlorinated Benzenes													1			1 1		
1.2-Dichlorobenzene	2.3	35	2.3	4.8 U	U 0.27	U	4.7 U	U	0.31 U	4.8	U U	0.37 U	5 U	U 0.36 L	J	4.7 U L	J	0.56 U
1,4-Dichlorobenzene	3.1	110	9	4.3 J	J1 0.24	J	5.3		0.34	2.5	J J1	193.80 J		U 0.36 L		4.7 U L	J	0.56 U
1,2,4-Trichlorobenzene	0.81	31	1.8	4.8 U	U 0.27	U	4.7 U	U	0.31 U	4.8	U U	372.09 U	5 U	U 0.36 L	J	4.7 U L	J	0.56 U
Hexachlorobenzene	0.38	22	2.3	4.8 U	U 0.27	U	4.7 U	U	0.31 U	4.8	U U	0.37 U	5 U	U 0.36 L	J	4.7 U L	J	0.56 U
Phthalate Esters																		
Dimethyl phthalate	53	71	53	11	0.61		15		0.97	3.4		0.26 J		U 0.36 L	J	4.7 U L	J	0.56 U
Diethyl phthalate	61	200	110		U 2.67		47 U	_	3.05 U		U U	3.72 U		U 3.57 L		47 U L		5.60 U
Di-n-butyl phthalate	220	1,400	1,700		U 1.06	U	1	J1	0.78 J		U U	1.47 U		U 1.43 L		19 U L		2.26 U
Butyl benzyl phthalate	4.9	63	64	31	1.72		14		0.91	15		1.16		U 0.36 L	_	4.7 U L	J	0.56 U
Bis[2-ethylhexyl]phthalate	47	1,300	78	330	18.33		70		4.55	38		2.95		UJ 1.79 L		26		3.10
Di-n-octyl phthalate	58	6,200	4,500	19 U	U 1.06	U	19 U	U	1.23 U	19	U U	1.47 U	20 U	UJ 1.43 L	J	19 U L	J	2.26 U
Miscellaneous		<u> </u>						1			\bot							
Dibenzofuran	15	540	58	28	1.56		29	!	1.88	31		2.40	20 U			19 U L		2.26 U
Hexachlorobutadiene	3.9	11	6.2	4.8 U			4.7 U		0.31 U		U U	0.37 U	5 U		_	4.7 U L		0.56 U
N-nitrosodiphenylamine	11	28	11	4.8 U	U 0.27	U	4.7 U		0.31 U	5.5		0.43	5 U		J	4.7 U L		0.56 U
Carbazole	_	_	_	53			18 J	J1		11	J J1	+ +	20 U	UJ		19 U L	,	
Pesticides and PCBs	40	400	05	500	00.00		4000		70.07	000		54.40	101	40.04		4011		0.0011
Total PCBs	12	130	65	580	32.22		1230	1	79.87	660	'	51.16	191	13.64		19 U U	<u> </u>	2.26 U
Ionizable Organic Compounds	µg/kg dw	µg/kg dw	µg/kg dw	μg/kg dw			μg/kg dw	14	 	μg/kg dw	1 14	+	μg/kg dw 20 U			μg/kg dw		
Phenol 2-Methylphenol	420 63	420 63	1,200 63	41 13		=+	16 J 3.1 J			2.9	J J1 J J1		20 U		=+	19 U U		_ _
2-Methylphenol	670	670	670	45		=+		J1			J J1	+ + +	40 U		=+	4.7 U U		_ _
2,4-Dimethylphenol	29	29	29	16		$=$ \vdash		J1	_ _	4.3			40 U		=+	4.7 U U		
Pentachlorophenol	360	360	690		UJ —	$=$ \vdash	24 U	_			I N N	 	25 U		$\equiv \vdash$	24 U U		
	57	57	73	51	03 —		32	OJ					8.6 B		=	8.8	,,,	
Benzyl alcohol							371		_ _	46	i	_ _	N KIR					

TABLE 44

	RAO 3: Benth	•																		
	Sediment M	•			SD-502-0				SD-502-				SD-503-			0-503-0040			03-0060	
	Stand		SMS		4 to 5	ft			6 to 7	ft			2 to 3	ft		4 to 5 ft			o 7 ft	
Analyte	SCO 1	LAET ²	CSL ³	Value	Q1 Q2			Value (Q1 Q2			Value	Q1 Q2		Value Q1	Q2	Valu	e Q1 C	2	
Conventionals								2.420							1.00					$-\!\!\!\!+$
Total Organic Carbon (Percent)		_		0.402		_	1-1	0.182		_		1.67		- -	1.69			0.917		
Total Solids (Percent)				84.1		_	$\perp = \perp$	86.6		_		56.9			65			74.6		
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	+			mg/kg dw				mg/kg dw			mg/kg dw		mg/k	g dw		$-\!\!\!\!+$
Arsenic	57	57	93	1.1				2.6		_		47			40.4			9.2		
Cadmium	5.1	5.1	6.7		U U	_		0.2 U	U	_		1.2		_	0.8			0.7		
Chromium	260	260	270	10.6		_	1-1	12.2		_		45.9			30.6			23.3		
Copper	390	390	390	10.2		_	$\perp = \perp$	10.1		_		59.4			41.9			29.8		
Lead	450	450	530		PU U	_	$\perp = \perp$	2 U		_		44			22			10		
Mercury	0.41	0.41	0.59	0.02		_	$\perp = \perp$	0.02 U		_		0.32	 	- -	0.3	<u> </u>		0.09		
Silver	6.1	6.1	6.1		U U		1-1	0.3 U	U	_			U U		0.4 U	U — —		0.4 U U		
Zinc	410	410	960	20)	_		24		_		319			226			64		
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw				μg/kg dw				μg/kg dw		mg/kg OC	μg/kg dw	mg/kg OC	μg/k	g dw	mg/kg C)C
Aromatic Hydrocarbons		5.000	700		 		\vdash		_		+	1	 	6						16
Total LPAH	370	5,200	780		B U	_	+-+	20 U		_	$\perp = \perp$	43	_	2.57 J	20	1.18		20		2.18
Naphthalene	99	2,100	170		U U	_	+-+	20 U		_	$\perp = \perp$	13		0.78 J	20 U	U 1.18 U		19 U U		2.07 U
Acenaphthylene	66	1,300	66		U U	_	+-+	20 U		_	$\perp = \perp$		U U	1.14 U	20 U	U 1.18 U		19 U U		2.07 U
Acenaphthene	16	500	57		BU U	_	+-+	20 U		_	$\perp = \perp$		U U	1.14 U	20 U	U 1.18 U		19 U U		2.07 U
Fluorene	23	540	79		U U	_	1-1	20 U		_			U U	1.14 U	20 U	U 1.18 U		19 U U		2.07 U
Phenanthrene	100	1,500	480		U U	_	1-1	20 U		_		30		1.80	20	1.18		20		2.18
Anthracene	220	960	1,200		U U	_		20 U		_			U U	1.14 U	20 U	U 1.18 U		19 U U		2.07 U
2-Methylnaphthalene	38	670	64		U U	_	1-1	20 U		_		10		0.60 J	20 U	U 1.18 U		19 U U		2.07 U
Total HPAH	960	12,000	5,300		U	_	1-1	20 U		_		260.9		15.62 J	66 J	3.91 J		60 J		6.54 J
Fluoranthene	160	1,700	1,200		U U	_	1-1	20 U		_		44		2.63	18 J	J1 1.07 J		19		2.07
Pyrene	1,000	2,600	1,400		U U	_		20 U		_		65		3.89	31	1.83		27		2.94
Benz[a]anthracene	110	1,300	270		U U	_		20 U		_		19		1.14	20 U	U 1.18 U		19 U U		2.07 U
Chrysene	110	1,400	460		U U	_		20 U		_		26		1.56	20 U	U 1.18 U		19 U U		2.07 U
Total benzofluoranthenes	230	3,200	450		U U	_	<u> </u>	20 U		_		49		2.93	17 J	J1 1.01 J		14 J J		1.53 J
Benzo[a]pyrene	99	1,600	210		U U	_	<u> </u>		U	_		26		1.56	20 U	U 1.18 U		19 U U		2.07 U
Indeno[1,2,3-c,d]pyrene	34	600	88		U U	_	<u> </u>	20 U		_		13		0.78 J	20 U	U 1.18 U		19 U U		2.07 U
Dibenzo[a,h]anthracene	12	230	33		U U	_	<u> </u>	4.9 U		_		3.9		0.23 J	4.9 U	U 0.29 U		4.8 U U		0.52 U
Benzo[g,h,i]perylene	31	670	78		U U	_	_	20 U	U	_		15	J J1	0.90 J	20 U	U 1.18 U		19 U U	1 2	2.07 U
cPAH (μg TEQ/kg dw)	_	_	_	12.71		_	_	14.08		_		35.92			14.78			13.855		
Chlorinated Benzenes																				
1,2-Dichlorobenzene	2.3	35	2.3	4.6	U U	_	_	4.9 U		_		17		1.02	2.5 J	J1 0.15 J		4.8 U U		0.52 U
1,4-Dichlorobenzene	3.1	110	9		U U	_	_	4.9 U		_		4.8		0.29	4.9 U	U 0.29 U		4.8 U U		0.52 U
1,2,4-Trichlorobenzene	0.81	31	1.8		U U	_	_	4.9 U		_		4.7		0.28 U	4.9 U	U 0.29 U		4.8 U U		0.52 U
Hexachlorobenzene	0.38	22	2.3	4.6	U U	_	_	4.9 U	U	_	_	4.7	UU	0.28 U	4.9 U	U 0.29 U		4.8 U U	0.).52 U
Phthalate Esters																				
Dimethyl phthalate	53	71	53		U U	_		4.9 U		_		7.1		0.43	5.4	0.32		3.5 J J).38 J
Diethyl phthalate	61	200	110	46	S U U	_	_	49 U	U	_	_	47	UU	2.81 U	49 U	U 2.90 U		40 JB U	IJ 4	4.36 JE
Di-n-butyl phthalate	220	1,400	1,700	18	U U	_		20 U	U	_		10	J J1	0.60 J	20 U	U 1.18 U		19 U U	2	2.07 U
Butyl benzyl phthalate	4.9	63	64	4.6	U U	_		4.9 U	U	_		5.9		0.35	2.5 J	J1 0.15 J		7.8	0	0.85
Bis[2-ethylhexyl]phthalate	47	1,300	78	23	U U	_	_	24 U	U	_	_	44	B U	2.63 B	28 B	U 1.66 B		22 JB U	IJ 2	2.40 JE
Di-n-octyl phthalate	58	6,200	4,500	18	U U	_		20 U	U	_		19	U U	1.14 U	20 U	U 1.18 U		19 U U	2	2.07 U
Miscellaneous																				
Dibenzofuran	15	540	58	18	U U	_	_	20 U	U	_		19	U U	1.14 U	20 U	U 1.18 U		19 U U	2	2.07 U
Hexachlorobutadiene	3.9	11	6.2		U U	_		4.9 U		_		4.7	U UJ	0.28 U	4.9 U	UJ 0.29 U		4.8 U U		0.52 U
N-nitrosodiphenylamine	11	28	11	4.6	U U	_	_	4.9 U	U	_		4.7	U U	0.28 U	4.9 U			4.8 U U	0	0.52 U
Carbazole	_	_	_	18	U U	_		20 U	U	_		19	U U		20 U	U		19 U U		
Pesticides and PCBs																				
Total PCBs	12	130	65	19	U U	_		20 U	U	_		201		12.04	203	12.01		61	6	6.65
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw				μg/kg dw				μg/kg dw			μg/kg dw		μg/k	g dw		
Phenol	420	420	1,200	18	U U	_	_	20 U	U	_		37		- -	20 U	U – –		19 U U	_	Π-
2-Methylphenol	63	63	63		U U	_		4.9 U		_		4.7	U U		4.9 U	U – –		4.8 U U	_	
4-Methylphenol	670	670	670		'U U	_		39 U		_		19	J J1	- -		J1 — —		18 J J	1 —	1-
2,4-Dimethylphenol	29	29	29		U U	_		4.9 U		_		4.1	J J1	- -	4.9 U			4.8 U U		1-
Pentachlorophenol	360	360	690		U UJ	_			UJ	_		24	U UJ	- -	24 U			24 U U	IJ —	1-
Benzyl alcohol	57	57	73	7.7		_		8.5		_			Q J		16 Q			9.3 Q J	1 —	T -
Benzoic acid	650	650	650	370		_		390 U	U	_	1_1		U U	_ _	390 U			380 U U		-

TABLE 44

Analyte Conventionals Total Organic Carbon (Percent) Total Solids (Percent) Metals Arsenic Cadmium Chromium Copper Lead	Sediment Ma Stand SCO ¹ ————————————————————————————————————	•	SMS CSL ³	Value 2.75	SD-504-0 2 to 3 Q1 Q2				0-504-0 4 to 5			:	SD-505-0			D-505-0040			505-00	
Conventionals Total Organic Carbon (Percent) Total Solids (Percent) Metals Arsenic Cadmium Chromium Copper	SCO 1 mg/kg dw 57 5.1 260	LAET ² — mg/kg dw	CSL ³			ft			4 to 5	£ı.									4 - 7 64	
Conventionals Total Organic Carbon (Percent) Total Solids (Percent) Metals Arsenic Cadmium Chromium Copper		— — mg/kg dw	_		Q1 Q2				7 10 0	π			2 to 3	ft		4 to 5 ft		6	to 7 ft	
Total Organic Carbon (Percent) Total Solids (Percent) Metals Arsenic Cadmium Chromium Copper		— mg/kg dw		2.75				Value Q1	1 Q2			Value (Q1 Q2		Value Q1	Q2	,	Value Q1	Q2	
Total Solids (Percent) Metals Arsenic Cadmium Chromium Copper		— mg/kg dw		2.75	1															
Metals Arsenic Cadmium Chromium Copper	mg/kg dw 57 5.1 260	mg/kg dw	_			_	_	0.129		_		1.49			2.24			2		
Arsenic Cadmium Chromium Copper	57 5.1 260			77.7	<u> </u>			82.2				60		_ _	58			63.6		_ -
Cadmium Chromium Copper	5.1 260	57	mg/kg dw	mg/kg dw				mg/kg dw				mg/kg dw			mg/kg dw			mg/kg dw		
Chromium Copper	260		93	268				17.6				16.8		_ _	12.1		-	20.3		_ _
Copper		5.1	6.7	0.2			_	0.2 U	U	_		0.8		_ _	1		-	0.6		
		260	270	13.1			_	10.6		_		30.5			31.5		-	27.7		
Lead	390	390	390	22.4	+ + +			9.8		_	+-	45.8			51.1			44		
	450	450	530	7				3	4	_		38			50		+-+	23		_ -
Mercury	0.41	0.41	0.59	0.03				0.03 U	U			0.12			0.12	 		0.15		_ -
Silver	6.1	6.1	6.1		U U		-		U		+-+		J U			U — —	-	0.5 U	U	_ -
Zinc	410	410	960	219	' 		-	71	-		+-+	118	-		119			110		
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw	 	mg/kg OC		μg/kg dw	_			μg/kg dw		mg/kg OC	μg/kg dw	mg/kg OC	+	μg/kg dw	п	ng/kg OC
Aromatic Hydrocarbons Total LPAH	370	5,200	780	185		6.73	, 	19 U	-	_	++	427 J		28.66 J	185 J	8.26 J	++	102 J		5.10 J
Naphthalene	99	5,200 2,100	170	59		2.15	J	19 U	-	 	+=+	427 J 15 J	J1	28.66 J 1.01 J	185 J 20 U	U 0.89 U	+		U	0.95 U
Acenaphthylene	99 66	1.300	66		ט ט	0.69	11			 	+=+	20 L		1.01 J 1.34 U	20 U	U 0.89 U	++		U	0.95 U
Acenaphthene Acenaphthene	16	500	57	93		3.38	U	19 U		 	+=+	20 C	, 0	1.34 U	20 U	J1 0.58 J	++		J1	0.95 U
Fluorene	23	540	79	16		0.58	+	19 U			+ = +	29		1.95	13 J	J1 0.58 J	++		J1	0.70 J
Phenanthrene	100	1,500	480		J J1	0.62		19 U			+=+	300	-	20.13	130	5.80	+	62	JI	3.10
Anthracene	220	960	1,200		U U	0.69		19 U			+=+	59		3.96	28	1.25	++		J1	0.80 J
2-Methylnaphthalene	38	670	64		U U	0.69		19 U	11		+	11 J	.J1	0.74 J	20 U	U 0.89 U	++		U	0.80 J
Total HPAH	960	12,000	5,300		J	1.20		19 U	U		+=+	3,181 J	31	213.49 J	1,158 J	51.70 J	++	482 J	0	24.10 J
Fluoranthene	160	1,700	1,200		J J1	0.62			U		+=+	560		37.58	210	9.38	+	100		5.00
Pyrene	1,000	2,600	1,400		J J1	0.02		19 U			+=+	670		44.97	250	11.16	+	120		6.00
Benz[a]anthracene	110	1,300	270		U U	0.69		19 U	IJ		+=+	250		16.78	91	4.06		43		2.15
Chrysene	110	1,400	460		U U	0.69		19 U		_	+_+	350		23.49	130	5.80	+++	56	-	2.80
Total benzofluoranthenes	230	3,200	450		U U	0.69		19 U		_	+	580		38.93	210	9.38	+	70		3.50
Benzo[a]pyrene	99	1,600	210		U U	0.69		19 U		_	+	310		20.81	110	4.91	+	38		1.90
Indeno[1,2,3-c,d]pyrene	34	600	88		U U	0.69		19 U	U	_	+	180		12.08	62	2.77	+	22		1.10
Dibenzo[a,h]anthracene	12	230	33		U U	0.17		3.4 U	U	_	+	81 C	J. C	5.44 Q	29 Q	J 1.29 Q		10 Q	J	0.50 Q
Benzo[g,h,i]perylene	31	670	78		U U	0.69		19 U		_	+	200		13.42	66	2.95		23		1.15
cPAH (µg TEQ/kg dw)	_	_	_	13.385		0.00		13.125			+	446.9		10.12	159.2	2.00		56.06		- 1.10
Chlorinated Benzenes				10.000		İ		101120				1.0.0			.00.2			00.00		
1,2-Dichlorobenzene	2.3	35	2.3	4.7	U U	0.17	U	3.4 U	U	_		4.9 L	J U	0.33 U	4.9 U	U 0.22 U		4.8 U	U	0.24 U
1,4-Dichlorobenzene	3.1	110	9	4.7	U U	0.17		3.4 U	Ū	_		4.9 L	J Ū	0.33 U	4.9 U	U 0.22 U		4.8 U	Ū	0.24 U
1,2,4-Trichlorobenzene	0.81	31	1.8	4.7	U U	0.17		3.4 U		_		4.9 L	J U	0.33 U	4.9 U	U 0.22 U			Ū	0.24 U
Hexachlorobenzene	0.38	22	2.3	4.7	U U	0.17			Ū	_		4.9 L	J U	0.33 U	4.9 U	U 0.22 U			Ū	0.24 U
Phthalate Esters																				
Dimethyl phthalate	53	71	53	4.7	U U	0.17	U	3.4 U	U	_	1-1	31		2.08	7.6	0.34		4.8 U	U	0.24 U
Diethyl phthalate	61	200	110	47	U U	1.71	U	48 U	U	_	1-1	49 L	J U	3.29 U	49 U	U 2.19 U		38 J	J1	1.90 J
Di-n-butyl phthalate	220	1,400	1,700	19	U U	0.69	U	19 U	U	_		740		49.66	20 U	U 0.89 U		19 U	U	0.95 U
Butyl benzyl phthalate	4.9	63	64	4.7	U U	0.17	U	3.4 U	U	_	1-1	34		2.28	14	0.63		8.3		0.42
Bis[2-ethylhexyl]phthalate	47	1,300	78	17	J J1	0.62	J	24 U	U	_	_	430 B	3	28.86 B	130 B	U 5.80 B		43 B	U	2.15 B
Di-n-octyl phthalate	58	6,200	4,500	19	U U	0.69	U	19 U	U	_	1-1	20 L	J U	1.34 U	20 U	U 0.89 U		19 U	U	0.95 U
Miscellaneous																				
Dibenzofuran	15	540	58		U U	0.69	U	19 U		_		14 J		0.94 J	20 U	U 0.89 U		19 U	U	0.95 U
Hexachlorobutadiene	3.9	11	6.2		U U	0.17		3.4 U		_	_	4.9 L		0.33 U	4.9 U			4.8 U		0.24 U
N-nitrosodiphenylamine	11	28	11		U U	0.17	U	3.4 U		_			J U	0.33 U	4.9 U			4.8 U		0.24 U
Carbazole	_	_	_	19	U U	1		19 U	U	_	$\perp - \perp$	42			17 J	J1		19 U	U	
Pesticides and PCBs						ļl			1		\bot						$\perp \perp$			
Total PCBs	12	130	65	22	<u> </u>	0.80			U		$\perp - \perp$	369		24.77	189	8.44	$\perp \perp$	211		10.55
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw		ļl		μg/kg dw			\bot	μg/kg dw		igwedge	μg/kg dw		4	μg/kg dw		
Phenol	420	420	1,200		J J1			19 U		_	$\perp - \perp$) J		19 J		- _	19 U		
2-Methylphenol	63	63	63		U U			3.4 U		_	+-+		J U		4.9 U	U — —	-	4.8 U		
4-Methylphenol	670	670	670		U U				U	_	+-+	11 J			39 U		-	38 U		
2,4-Dimethylphenol	29	29	29		J J1			3.4 U		_	+-+		J UJ		4.9 U		- _	4.8 U		_ -
Pentachlorophenol	360	360	690		U UJ			17 U	UJ	_	+-+	24 L			24 U			24 U		_ -
Benzyl alcohol Benzoic acid	57 650	57 650	73 650	9.5 380				6.8 380 U	4		+-+	19 B	J U		14 B 390 U		+-+	4.4 J 380 U		

TABLE 44

		nic Organisms			SD-505-0	1080		QF	D-516-0	0020		SD-516-	0040	gn.	-516-0060		SD-5	516-00	80
		dards	SMS		8 to 9				2 to 3		+	4 to 5		_	6 to 7 ft			to 9 ft	
Analyte	SCO 1	LAET 2	CSL 3	Value	Q1 Q2				Q2		Value	Q1 Q2	Ti l		Q2	Value	Q1		
Conventionals				Value	٦. ٦-			vuido q.			Value	<u> </u>		Tuiuo Q.	-	Value			
Total Organic Carbon (Percent)	_	_	_	0.972		_	$=$ \vdash	1.98	1	_ _	1.97	,	<u> </u>	2.07	 	<u> </u>	1.36		
Total Solids (Percent)	_	_	_	75.4		_	_	55.4			56.6			58.2			70.9		_
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw			mg/kg dw	1		mg/kg dw		mg/kg			
Arsenic	57	57	93	21		_	_	14.9		 	11.9	9	 	30.2			24.1		
Cadmium	5.1	5.1	6.7	0.4		_	_	0.9		 	0.9		 	1.2	J — —		0.6		
Chromium	260	260	270	18		_	_	29.4	1	 	27.9		 	33.4			21.9		_ _
Copper	390	390	390	21		_	_	47.6	-		48.4		 	53.5			29.6	-	_ _
Lead	450	450	530	13		_	\equiv \vdash	37	-		40.4			57	J		19		
Mercury	0.41	0.41	0.59	0.06		_	\equiv \vdash	0.14	-		0.13			0.2			0.08		
Silver	6.1	6.1	6.1	0.00	11 11	_	\equiv \vdash	0.5 U	П			, 5 U U		0.8		 	0.4 U U		
Zinc	410	410	960	102	0 0			114	10	 	112			141		 	102	_	
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC	-	μg/kg dw	1	mg/kg OC	µg/kg dw	+ + -	mg/kg OC	µg/kg dw	mg/kg OC	μg/kg d		-	ng/kg OC
•	ilig/kg oc	µg/kg aw	ilig/kg oc	μg/kg aw		ilig/kg OC		µg/kg aw	-	ilig/kg oc	µg/kg uw	+ +	ilig/kg OC	µg/kg uw	ilig/kg oc	μg/kg t	uw		ig/kg oc
Aromatic Hydrocarbons Total LPAH	370	5,200	780	67	1	6.89	_	1,866 J	1	94.24 J	148	1	7.51 J	412 J	19.90 J	++	23		1.69
Naphthalene	99	5,200 2,100	170	19		1.95	J	1,866 J 56	+	2.83		DU U	7.51 J 1.02 U		J1 0.72 J	 	20 U U	. 	1.69 1.47 U
	66	1,300	66	18		1.95			J1	0.51 J		DU U	1.02 U		U 0.72 U	++	20 U U		1.47 U
Acenaphthylene									JT							 		_	
Acenaphthene	16	500	57	18		1.85		180 180	-	9.09		2 J J1	0.61 J	38	1.84	\square	20 U U	_	1.47 U
Fluorene	23	540	79	10		1.03	J			9.09		1 J J1	0.71 J	39	1.88		20 0	U	1.47 U
Phenanthrene	100	1,500	480	38		3.91		1,200		60.61	100		5.08	260	12.56	.	23		1.69
Anthracene	220	960	1,200	18		1.85		240		12.12	22		1.12	60	2.90	.	20 U U	U	1.47 U
2-Methylnaphthalene	38	670	64	11		1.13		30		1.52		U U	1.02 U		J1 0.48 J		20 U l	U	1.47 U
Total HPAH	960	12,000	5,300	241.1	J	24.80	J	6,500 J		328.28 J	856		43.45 J	2,034 J	98.26 J		210 J		15.44 J
Fluoranthene	160	1,700	1,200	52		5.35		1,300		65.66	160		8.12	440	21.26		38		2.79
Pyrene	1,000	2,600	1,400	64		6.58		1,400		70.71	210		10.66	470	22.71		49		3.60
Benz[a]anthracene	110	1,300	270	18		1.85		570		28.79	70		3.55	180	8.70		16 J .	J1	1.18 J
Chrysene	110	1,400	460	26		2.67		740		37.37	94		4.77	240	11.59		22		1.62
Total benzofluoranthenes	230	3,200	450	35		3.60		1,000		50.51	140		7.11	300	14.49		39		2.87
Benzo[a]pyrene	99	1,600	210	19		1.95		640		32.32	75		3.81	170	8.21			J1	1.32 J
Indeno[1,2,3-c,d]pyrene	34	600	88	10	J J1	1.03	J	340		17.17	43	3	2.18	93	4.49		9.8 J	J1	0.72 J
Dibenzo[a,h]anthracene	12	230	33	5.1	Q	0.52	Q	160 Q	J	8.08 Q	20	Q J	1.02 Q	42 Q	J 2.03 Q		5.2 Q	J	0.38 Q
Benzo[g,h,i]perylene	31	670	78	12	J J1	1.23	J	350		17.68	44	1	2.23	99	4.78		13 J J	J1	0.96 J
cPAH (μg TEQ/kg dw)	_	_	_	27.6				902.4			109.24	1		246.5		2	26.78		
Chlorinated Benzenes																			
1,2-Dichlorobenzene	2.3	35	2.3	4.6	U U	0.47	U	4.7 U	U	0.24 U	4.9	U U	0.25 U	3.4 J	J1 0.16 J		4.9 U l	U	0.36 U
1,4-Dichlorobenzene	3.1	110	9	4.6	U U	0.47	U	3.4 J	J1	0.17 J	4.9	U U	0.25 U	4 J	J1 0.19 J		4.9 U l	U	0.36 U
1,2,4-Trichlorobenzene	0.81	31	1.8	4.6	U U	0.47	U	4.7 U	U	0.24 U	4.9	U U	0.25 U	4.8 U	U 0.23 U		4.9 U l	U	0.36 U
Hexachlorobenzene	0.38	22	2.3	4.6	U U	0.47	U	4.7 U	U	0.24 U	4.9	U U	0.25 U	4.8 U	U 0.23 U		4.9 U l	U	0.36 U
Phthalate Esters													1 1						
Dimethyl phthalate	53	71	53	4.6	U U	0.47	U	14		0.71	5.4	1	0.27	7.6	0.37		4.9 U l	U	0.36 U
Diethyl phthalate	61	200	110	46		4.73		47 U	U	2.37 U		U U	2.49 U		U 2.32 U		49 U U		3.60 U
Di-n-butyl phthalate	220	1,400	1,700	18		1.85		18 J	J1	0.91 J	20	U U	1.02 U	19 U	U 0.92 U		20 U I	U	1.47 U
Butyl benzyl phthalate	4.9	63	64	3.4		0.35		30	1	1.52	12		0.61	30	1.45		7.7		0.57
Bis[2-ethylhexyl]phthalate	47	1,300	78	26		2.67		660 B	1	33.33 B		B U	8.12 B	200 B	9.66 B		64 B U	U	4.71 B
Di-n-octyl phthalate	58	6.200	4.500	18		1.85		19 U	U	0.96 U		U U	1.02 U		U 0.92 U		20 U U	_	1.47 U
Miscellaneous	- 55	-,200	.,	10					Ť		†		1.02.0	1	5.52.6				——————————————————————————————————————
Dibenzofuran	15	540	58	18	U U	1.85	U	80	1	4.04	20	U U	1.02 U	17 J	J1 0.82 J		20 U l	U	1.47 U
Hexachlorobutadiene	3.9	11	6.2		U U	0.47		4.7 U	U	0.24 U		JU U	0.25 U	4.8 U			4.9 U U		0.36 U
N-nitrosodiphenvlamine	11	28	11		U U	0.47		4.7 U		0.24 U		DU U	0.25 U	4.8 U			4.9 U U		0.36 U
Carbazole		_			U U	0.47	- -	150	Ť	5.27 0		3 J J1	5.25 6	28	0.200		20 U U		- 3.30 0
Pesticides and PCBs	+ -	 	 	10	-		-	100	1-	+ +	13	3 31	+ +	20	 	++	200	_	
Total PCBs	12	130	65	224		23.05		324	+	16.36	279	, 	14.16	480	23.19	++	566		41.62
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	µg/kg dw		23.03		µg/kg dw	+	10.50	µg/kg dw	' 	14.10	µg/kg dw	23.18	μg/kg d			41.02
Phenol	μ g/kg dw 420	μ g/kg dw 420	1,200		U UJ	_		22 Q	+) U UJ	+ +	μ g/kg dw 12 J	J. J1 — —		20 U U		_ +
					U U	_	-	3.4 J				9 U U			J, J1 — —		4.9 U U		_ _
2-Methylphenol	63	63	63			l				 									
4-Methylphenol	670	670	670		U U	_	-	38 U				OU U	- -	13 J	J1 — —		39 U U		
2,4-Dimethylphenol	29	29	29		U UJ	_		2.9 J				U UJ	- -	2.6 J			4.9 U U		
Pentachlorophenol	360	360	690		U UJ	_		24 U		- -		I U UJ	- -		UJ — —		24 U U		
Benzyl alcohol	57	57	73	6.1		_		37 B				B U		5.2 B			6.5 B U		
Benzoic acid	650	650	650	370	U U	_	_	380 U	U		390	U U		380 U	U — —		390 U U	U	_ _

TABLE 44

	RAO 3: Benth	ic Organisms																		
	Sediment M	•			SD-516-	0100			SD-506	5-0020		SD-506-	0040		SD	-507-0020		SD-5	507-004	.0
	Stand	dards	SMS		10 to 1	1 ft			2 to 3	ft		4 to 5	ft			2 to 3 ft	11	4	to 5 ft	-
Analyte	SCO 1	LAET 2	CSL ³	Value	Q1 Q2			Value Q1	Q2		Va	alue Q1 Q2			Value Q1	Q2		Value Q1	Q2	
Conventionals																				
Total Organic Carbon (Percent)	_	_	_	1.87		_	_	1.41		_ _		0.173	_	_	1.85		-1	2.44		
Total Solids (Percent)	_	_	_	71.4		_	_	64.2				84.7	_		61.7			55.7		
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw			mg	g/kg dw			mg/kg dw			mg/kg dw		
Arsenic	57	57	93		_	_	_	270		_ _		28.7	_	_	29.4			26.1		_ _
Cadmium	5.1	5.1	6.7	_		_	_	0.8				0.2 U U	_		1.3			1.7		
Chromium	260	260	270	_	_	_	_	31.2				10	_	_	39.2			40.4		
Copper	390	390	390	_	_	_	_	45.3				7.7	_	_	62.4			67.3		_ -
Lead	450	450	530	_	_	_	_	19				2 U U	_	_	63			71		
Mercury	0.41	0.41	0.59	_	_	_	_	0.2				0.02 U U	_	_	0.34			0.16		
Silver	6.1	6.1	6.1	_	_	_	_	0.5 U	U			0.3 U U	_	_	0.9			1.5		_ -
Zinc	410	410	960	_	_	_	_	129				31	_	_	152			155		_ -
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC		μg/kg dw		mg/kg OC	μg	/kg dw			μg/kg dw	mg/kg OC		μg/kg dw	m ^e	g/kg OC
Aromatic Hydrocarbons																				
Total LPAH	370	5,200	780	_		_		882 J		62.55 J		43	_		803	43.41		3,906 J		160.08 J
Naphthalene	99	2,100	170	_		_		48		3.40		19 U U	_		54	2.92		140		5.74
Acenaphthylene	66	1,300	66	_		_		14 J	J1	0.99 J		19 U U	_		21	1.14			J1	0.66 J
Acenaphthene	16	500	57	_		_	_	700		49.65		43	_		40	2.16		390		15.98
Fluorene	23	540	79	_		_			J1	1.13 J		19 U U	_		52	2.81		360		14.75
Phenanthrene	100	1,500	480		_	_	_	82		5.82		19 U U	_	_	550	29.73		2,600		106.56
Anthracene	220	960	1,200		_	_	_	22		1.56		19 U U	_	_	86	4.65		400		16.39
2-Methylnaphthalene	38	670	64		_	_	_	43		3.05		19 U U	_	_	31	1.68		76		3.11
Total HPAH	960	12,000	5,300	_	_	_	_	268.2 J		19.02 J		11 J	_	_	4,600	248.65		11,670		478.28
Fluoranthene	160	1,700	1,200	_	 -	_	_	75		5.32		11 J J1	_	_	860	46.49		2,600		106.56
Pyrene	1,000	2,600	1,400	_	 -	_	_	74		5.25		19 U U	_	_	1100	59.46		2,600		106.56
Benz[a]anthracene	110	1,300	270	_	 -	_	_	22		1.56		19 U U	_	_	310	16.76		1,000		40.98
Chrysene	110	1,400	460	_	 -	_	_	38		2.70		19 U U	_	_	480	25.95		1,400		57.38
Total benzofluoranthenes	230	3,200	450	_	_	_	_	39		2.77		19 U U	_	_	850	45.95		1,700		69.67
Benzo[a]pyrene	99	1,600	210		_	_	_	17 J	J1	1.21 J		19 U U	_	_	410	22.16		1,100		45.08
Indeno[1,2,3-c,d]pyrene	34	600	88	_	 -	_	_	20 U	U	1.42 U		19 U U	_	_	240	12.97		520		21.31
Dibenzo[a,h]anthracene	12	230	33		_	_	_	3.2 J	J1	0.23 J		4.8 U U	_	_	110	5.95		250		10.25
Benzo[g,h,i]perylene	31	670	78		_	_	_	20 U	U	1.42 U		19 U U	_	_	240	12.97		500		20.49
cPAH (μg TEQ/kg dw)		_	_		_			25.76				13.405	_	_	598.8			1,536		
Chlorinated Benzenes																				
1,2-Dichlorobenzene	2.3	35	2.3		_	_	_	2.7 J	J1	0.19 J		4.8 U U	_	_	8.4	0.45		8.6		0.35
1,4-Dichlorobenzene	3.1	110	9		_	_	_	2.9 J	J1	0.21 J		4.8 U U	_	_	12	0.65		8.8		0.36
1,2,4-Trichlorobenzene	0.81	31	1.8	_	_	_	_		U	0.35 U		4.8 U U	_	_	2.8 J	J1 0.15 J			U	0.20 U
Hexachlorobenzene	0.38	22	2.3		_	_	_	4.9 U	U	0.35 U		4.8 U U	_	_	4.9 U	U 0.26 U		4.8 U	U	0.20 U
Phthalate Esters																				
Dimethyl phthalate	53	71	53	_		_	_	7.3		0.52		4.8 U U	_		32	1.73		28		1.15
Diethyl phthalate	61	200	110	_		_		49 U	U	3.48 U		48 U U	_		49 U	U 2.65 U			U	1.97 U
Di-n-butyl phthalate	220	1,400	1,700	_		_		20 U	U	1.42 U		19 U U	_		44	2.38		19 U	J	0.78 U
Butyl benzyl phthalate	4.9	63	64	_		_	_	24		1.70		4.8 U U	_		370	20.00		32		1.31
Bis[2-ethylhexyl]phthalate	47	1,300	78	_		_		18 J	J1	1.28 J		24 U U	_		9,500 B	B 513.51 B			В	16.39 B
Di-n-octyl phthalate	58	6,200	4,500	_		_		20 U	U	1.42 U		19 U U	_		20 U	U 1.08 U		19 U	U	0.78 U
Miscellaneous																				
Dibenzofuran	15	540	58	_		_		25		1.77		19 U U	_		45	2.43		180		7.38
Hexachlorobutadiene	3.9	11	6.2	_		_			U	0.35 U		4.8 U U	_			UJ 0.26 U			UJ	0.20 U
N-nitrosodiphenylamine	11	28	11	_		_	$\lfloor - \rfloor$	4.9 U		0.35 U		4.8 U U	_		4.9 U	U 0.26 U	┸Ӏ	4.8 U	J	0.20 U
Carbazole	_	_	_			_		20 U	U			19 U U	_	-	98		Ш	320	\bot	
Pesticides and PCBs																	Ш		$\perp \perp$	
Total PCBs	12	130	65	204		10.91		141		10.00		19 U U	_	-	2070	111.89	Ш	420		17.21
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw				μg/kg dw			μg	/kg dw			μg/kg dw		\perp	μg/kg dw	\bot	
Phenol	420	420	1,200	_		_		23				19 U U	_		610		لل	35		
2-Methylphenol	63	63	63	_		_			J1			4.8 U U	_		10		لل	6.4		
4-Methylphenol	670	670	670	_		_		68				38 U U	_		25 J	J1 — —	·LJ	26 J .	J1	_ -
2,4-Dimethylphenol	29	29	29	_		_	_	6.3				4.8 U U	_		9.1			6.8		_ -
Pentachlorophenol	360	360	690	_		_	_	25 U	UJ			24 U U	_			UJ — —		24 U I	JJ	
Benzyl alcohol	57	57	73	_		_		45				10 J	_		45 Q	J – –		41 Q 、		_ -
Benzoic acid	650	650	650	_		_		140 J	J1	_ _		380 U U	_		110 J	J1 — —	. []	380 U I	Ū l	_ -

TABLE 44

	RAO 3: Benthi Sediment M	anagement			SD-507-0				D-507-0			SD-507-0				-508-0020			-508-00	
	Stand	lards	SMS		6 to 7	ft			8 to 9	ft		10 to 1	1 ft		2	2 to 3 ft			4 to 5 ft	t
Analyte	SCO 1	LAET 2	CSL ³	Value	Q1 Q2			Value Q1	Q2		Value	Q1 Q2			Value Q1	Q2		Value Q1	Q2	
Conventionals																				
Total Organic Carbon (Percent)	_	_		1.78		_	_	2.02			1.7		_	_	2.45		-	0.498		_
Total Solids (Percent)	_	_		62.6		_	_	71.5			80.4	1	_	_	60.9		-	84.2		_
letals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw			mg/kg dw				mg/kg dw			mg/kg dw		
Arsenic	57	57	93	35.6		_	_	20.5		_ _			_	_	248		-	3.4		_
Cadmium	5.1	5.1	6.7	1.3		_	_	1		_ _	_		_	_	2.9		-	0.2 U	U	_
Chromium	260	260	270	35.3		_	_	28.2		_ _	_		_		51.5		- -	10.4	1	_
Copper	390	390	390	55.8		_	_	34.3		_ _	_		_		67.1		- -	9.8	1	_
Lead	450	450	530	70		_	_	43		_ _	_		_		100		- -	2 U	U	_
Mercury	0.41	0.41	0.59	0.15		_	_	0.1	J	_ _	_		_	_	0.31		_	0.02 U	U	_
Silver	6.1	6.1	6.1	1		_	_	0.4 U	U	_ _	_		_	_	0.5 U	U — –	_	0.3 U	U	_
Zinc	410	410	960	147		_	_	117		_ _	_		_	_	1790		_	23		_
Ionionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC		μg/kg dw	1	mg/kg OC	μg/kg dw		mg/kg OC		μg/kg dw	mg/kg OC		μg/kg dw		
Aromatic Hydrocarbons		F-33		r-33		.55 - 5		raa		33			1.59.00		1.33			13.3	+	
Total LPAH	370	5,200	780	972	J	54.61	J	375		18.56	_	1_	<u> </u>		611	24.94		19 U	+	
Naphthalene	99	2,100	170	38		2.13	-	31	+	1.53	_	1_1	<u> </u>	+	190	7.76			U	
Acenaphthylene	66	1.300	66	10		0.56	.1	20 U	Ш	0.99 U	+ =	1_1		+	19 U	U 0.78 U	-	19 U	•	
Acenaphthylene	16	500	57	75		4.21	_	31	-	1.53	_	+_+	<u> </u>	+_+	100	4.08	+	19 U		
Fluorene	23	540	79	79		4.41		33	+	1.63	+ =	$+ \equiv +$		$+ \equiv +$	81	3.31		19 U		
Phenanthrene	100	1,500	480	630		35.39		220	-	10.89	+ =	+=+		+=+	140	5.71	-	19 U		
Anthracene	220	960	1,200	140		7.87		60		2.97	+=	+=+		+=+	100	4.08			U	
		670	64		-	1.40			-		_	+		+=+					10	
2-Methylnaphthalene	38			25				32		1.58	_	1-1	_		60	2.45	-	19 U	U	
Total HPAH	960	12,000	5,300	3,755		210.96		1,296		64.16	_	1-1-	_	1-1	1,868	76.24		19 U	 	
Fluoranthene	160	1,700	1,200	920		51.69		260		12.87	_	1-1-	_	1-1	440	17.96		19 U		
Pyrene	1,000	2,600	1,400	790	.	44.38		310		15.35		1-1		+=+	400	16.33		19 U		
Benz[a]anthracene	110	1,300	270	340	.	19.10		120		5.94		1-1			110	4.49			U	
Chrysene	110	1,400	460	430		24.16		160		7.92					290	11.84		19 U		
Total benzofluoranthenes	230	3,200	450	570		32.02		200		9.90		1-1-			290	11.84		19 U		
Benzo[a]pyrene	99	1,600	210	330		18.54		120		5.94					170	6.94			U	
Indeno[1,2,3-c,d]pyrene	34	600	88	150		8.43		52		2.57	_	1-1-			73	2.98			U	
Dibenzo[a,h]anthracene	12	230	33	65		3.65		22		1.09		-		1-1	23	0.94			U	
Benzo[g,h,i]perylene	31	670	78	160		8.99		52		2.57	_	-		$\perp = \perp$	72	2.94		19 U	U	_
cPAH (μg TEQ/kg dw)	_	_	_	466.3				167.6							229.4			13.385	\perp	_
hlorinated Benzenes																			\perp	
1,2-Dichlorobenzene	2.3	35	2.3	4.9		0.28		5.2		0.26	_	-	_		140	5.71		0	U	
1,4-Dichlorobenzene	3.1	110	9	4.1		0.23		6.9		0.34					77	3.14		4.7 U		
1,2,4-Trichlorobenzene	0.81	31	1.8	4.7		0.26		5 U	U	0.25 U					4.7 U	U 0.19 U			U	
Hexachlorobenzene	0.38	22	2.3	4.7	UU	0.26	U	5 U	U	0.25 U	_	_	_	_	4.7 U	U 0.19 U		4.7 U	U	_
hthalate Esters																				
Dimethyl phthalate	53	71	53	22		1.24		14		0.69	_		_	$\lfloor - \rfloor$	0	U 0.19 U		4.7 U	U	_
Diethyl phthalate	61	200	110	47		2.64		50 U	U	2.48 U	_		_		95	3.88			U	_
Di-n-butyl phthalate	220	1,400	1,700	19	UU	1.07	U	20 U	U	0.99 U	_		_		19 U	U 0.78 U		19 U	U	_
Butyl benzyl phthalate	4.9	63	64	32		1.80		36		1.78	_		_		13	0.53		4.7 U	U	_
Bis[2-ethylhexyl]phthalate	47	1,300	78	420	В В	23.60	В	460 B	В	22.77 B	_		_		80	3.27		39		_
Di-n-octyl phthalate	58	6,200	4,500	20		1.12		20 U	U	0.99 U	_		_		19 U	U 0.78 U		19 U	U	_
liscellaneous																				
Dibenzofuran	15	540	58	45		2.53		23		1.14	_		_		85	3.47		19 U	U	_
Hexachlorobutadiene	3.9	11	6.2	4.7		0.26	U	5 U	UJ	0.25 U	_		_			U 0.19 U		4.7 U		_
N-nitrosodiphenylamine	11	28	11		U U	0.26		5 U		0.25 U	_	1_1	† –	1-1	4.7 U			4.7 U		
Carbazole	<u> </u>	_		110		5.20		28	†		_	1_	1		19 U			19 U		
esticides and PCBs			+	110		†	-		1			1 1	†	1 1	'	-	\vdash		++	
Total PCBs	12	130	65	415		23.31	-+	481	+	23.81	34		19.94		1010	41.22		19 U	tu +	
onizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	µg/kg dw		20.01		µg/kg dw		20.01	μg/kg dw		13.34		µg/kg dw	71.22		μg/kg dw	+ +	
Phenol	420	μ g/kg dw 420	1,200	μg/kg uw 22		_		34	1	_ _	µg/kg uw	+_+	_	+	35		_	19 U	+	
2-Methylphenol	63	63	63	4.5			\equiv \vdash		U		+=	+=+		+ = +	19		-	4.7 U		
4-Methylphenol	670	670	670	54			\equiv \vdash		J1		+ =	+=+		+ = +	120		-	37 U		
7.1	29		29	54			-	8.5	JΙ		-	+=		+=+			+			
	. /4	29	29	5	1 1	_	-			- -	_	1 - 1	_	-	20			4.7 U		_
2,4-Dimethylphenol		000	000		11 111			Q.E		1 1					4410.	14		2011	111	
2,4-Dimethylphenol Pentachlorophenol Benzyl alcohol	360 57	360 57	690 73		U UJ Q J	_	_	25 U 25 Q							14 QJ 76		-	23 U 7.8	J	

TABLE 44

	RAO 3: Benth	•															
	Sediment M	•			SD-508-0			S	D-508-0			SD-509-0			-509-0040		9-0060
	Stand		SMS		6 to 7	ft			8 to 9	ft		2 to 3	ft		4 to 5 ft		o 7 ft
Analyte	SCO 1	LAET ²	CSL ³	Value	Q1 Q2			Value Q	I Q2		Value	Q1 Q2		Value Q1	Q2	Value Q1 Q	2
Conventionals																	
Total Organic Carbon (Percent)		_	_	0.192	<u> </u>		1-1	1.85				0.965	_ _	2.77		2.07	
Total Solids (Percent)				84.1	ļļ	_		80.2				60.5	_ _	57.8		58.3	
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	ļļ			mg/kg dw			mg/kg			mg/kg dw		mg/kg dw	
Arsenic	57	57	93	2.3		_		3.5				10.9	_ _	22.7		32.2	
Cadmium	5.1	5.1	6.7	0.2				0.2 U	U			0.6	_ _	1		1	
Chromium	260	260	270	11		_		9.9				26.4	_ _	30.1		32	
Copper	390	390	390	8.6		_		11				38.5	_ _	51.6		51.1	
Lead	450	450	530		U U	_		2 U	U			25	_ _	43		43	
Mercury	0.41	0.41	0.59	0.02		_	$\perp = \perp$	0.03 U	U			0.1	_ _	0.14	- -	0.14	
Silver	6.1	6.1	6.1		U U	_	1-1	0.4 U	U			0.5 U U	_ _		U — —	0.5	
Zinc	410	410	960	22	<u> </u>			22				91		176		198	
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw				μg/kg dw		mg/kg OC	μg/kg	dw	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC
Aromatic Hydrocarbons					 		 		-	 							
Total LPAH	370	5,200	780		U		\vdash	20 U	ļ.,	1.08 U		95 J	9.84 J	88 J	3.18 J	310 J	14.98 J
Naphthalene	99	2,100	170		U U		\vdash	20 U	U	1.08 U		19 U U	1.97 U	20 U	U 0.72 U	13 J J1	
Acenaphthylene	66	1,300	66		U U		\vdash	20 U	U	1.08 U		19 U U	1.97 U	20 U	U 0.72 U	20 U U	0.0.
Acenaphthene	16	500	57		U U	_	\vdash	20 U		1.08 U		19 U U	1.97 U	20 U	U 0.72 U	29	1.40
Fluorene	23	540	79		UU	_		20 U		1.08 U		19 U U	1.97 U	20 U	U 0.72 U	27	1.30
Phenanthrene	100	1,500	480		UU	_		20 U		1.08 U		78	8.08	70	2.53	190	9.18
Anthracene	220	960	1,200		U U	_		20 U	U	1.08 U		17 J J1	1.76 J	18 J	J1 0.65 J	51	2.46
2-Methylnaphthalene	38	670	64		U U	_		20 U	U	1.08 U		19 U U	1.97 U	20 U	U 0.72 U	12 J J1	
Total HPAH	960	12,000	5,300		U	_		20 U		1.08 U		1,047	108.50	791	28.56	1,839	88.84
Fluoranthene	160	1,700	1,200		U U		<u> </u>	20 U		1.08 U		160	16.58	140	5.05	400	19.32
Pyrene	1,000	2,600	1,400		U U		<u> </u>	20 U	U	1.08 U		220	22.80	200	7.22	420	20.29
Benz[a]anthracene	110	1,300	270		U U		<u> </u>	20 U	U	1.08 U		74	7.67	57	2.06	170	8.21
Chrysene	110	1,400	460	18	UU	_	_	20 U	U	1.08 U		110	11.40	78	2.82	200	9.66
Total benzofluoranthenes	230	3,200	450		UU	_	_	20 U		1.08 U		210	21.76	140	5.05	280	13.53
Benzo[a]pyrene	99	1,600	210		UU	_	_	20 U	U	1.08 U		110	11.40	76	2.74	170	8.21
Indeno[1,2,3-c,d]pyrene	34	600	88		UU	_	_	20 U	U	1.08 U		66	6.84	38	1.37	80	3.86
Dibenzo[a,h]anthracene	12	230	33	4.6		_	_	4.9 U	U	0.26 U		30	3.11	20	0.72	40	1.93
Benzo[g,h,i]perylene	31	670	78		UU	_	_	20 U	U	1.08 U		67	6.94	42	1.52	79	3.82
cPAH (μg TEQ/kg dw)	_	_	_	12.71		_	_	14.08				158.1		108.28		241	
Chlorinated Benzenes																	
1,2-Dichlorobenzene	2.3	35	2.3	4.6	UU		_	4.9 U	U	0.26 U		4.7 U U	0.49 U	3.2 J	J1 0.12 J	3.8 J J1	0.18 J
1,4-Dichlorobenzene	3.1	110	9	4.6	UU		_	4.9 U	U	0.26 U		4.7 U U	0.49 U	2.7 J	J1 0.10 J	2.6 J J1	0.13 J
1,2,4-Trichlorobenzene	0.81	31	1.8	4.6	UU		_	4.9 U	U	0.26 U		4.7 U U	0.49 U	4.9 U	U 0.18 U	4.9 U U	0.24 U
Hexachlorobenzene	0.38	22	2.3	4.6	UU		_	4.9 U	U	0.26 U		4.7 U U	0.49 U	4.9 U	U 0.18 U	4.9 U U	0.24 U
Phthalate Esters																	
Dimethyl phthalate	53	71	53	4.6		_		5.5		0.30		8.6	0.89	7.8	0.28	7.4	0.36
Diethyl phthalate	61	200	110		U U	_		49 U	U	2.65 U		47 U U	4.87 U	49 U	U 1.77 U	49 U U	
Di-n-butyl phthalate	220	1,400	1,700	18	U U	_		20 U	U	1.08 U		19 U U	1.97 U	20 U	U 0.72 U	11 J J1	0.53 J
Butyl benzyl phthalate	4.9	63	64	4.6	U U	_		4.9 U	U	0.26 U		20	2.07	18	0.65	26	1.26
Bis[2-ethylhexyl]phthalate	47	1,300	78	23	U U	_		24 U	U	1.30 U		130 B U	13.47 B	160 B	U 5.78 B	120 B U	5.80 B
Di-n-octyl phthalate	58	6,200	4,500	18	U U	_		20 U	U	1.08 U		19 U U	1.97 U	20 U	U 0.72 U	20 U U	0.97 U
Miscellaneous																	
Dibenzofuran	15	540	58	18	U U	_	_	20 U	U	1.08 U		19 U U	1.97 U	20 U	U 0.72 U	13 J J1	0.63 J
Hexachlorobutadiene	3.9	11	6.2		U U	_		4.9 U		0.26 U		4.7 U U	0.49 U	4.9 U	U 0.18 U	4.9 U U	
N-nitrosodiphenylamine	11	28	11	4.6	U U	_	_	4.9 U	U	0.26 U		4.7 U U	0.49 U	4.9 U		4.9 U U	0.24 U
Carbazole	_	_	_	18	U U	_		20 U				11 J J1		20 U	U	24	
Pesticides and PCBs																	
Total PCBs	12	130	65	19	U U	_		20 U	U	1.08 U		187	19.38	262	9.46	330	15.94
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw				μg/kg dw			μg/kg			μg/kg dw		μg/kg dw	
Phenol	420	420	1,200		U U	_	1-1	20 U	U		1.5.5	10 J J1	_	20 U	U — —	20 U U	
2-Methylphenol	63	63	63		U U	_	1-1	4.9 U				4.7 U U	_ _		U — —	4.9 U U	
4-Methylphenol	670	670	670		U U	_		39 U	Ü	_ _		38 U U	_	39 U		21 J J1	
2,4-Dimethylphenol	29	29	29		U U	_	1-1	4.9 U		_ _		4.7 U UJ	_ _	4.9 U		4.9 U U	
Pentachlorophenol	360	360	690		U U	_	1-1	24 U		_ _		24 U U	_ _	24 U		24 U U	
Benzyl alcohol	57	57	73	8.5			1-1	9.7	J	_ _		18 BQ U	_ _	18 BQ		19 BQ U	

TABLE 44

		lanagement			SD-509-0				SD-509				SD-510-			-510-0040			510-00	
	Stand		SMS		8 to 9	ft			10 to				2 to 3	ft		4 to 5 ft		+	to 7 ft	
Analyte	SCO 1	LAET ²	CSL ³	Value	Q1 Q2			Value	Q1 Q2			Value	Q1 Q2		Value Q1	Q2		Value Q1	Q2	
Conventionals																				
Total Organic Carbon (Percent)	_	_	_	1.45		_	_	0.5		_		1.31		_ _	1.91		_	0.191		
Total Solids (Percent)		_	_	70.8		_	_	75.7				62.5		_ _	64.6			88.1		_ -
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw				mg/kg dw			mg/kg dw			mg/kg dw		
Arsenic	57	57	93	18.3		_	_	_	_	_	—	10.9			278		-	4.5		_ -
Cadmium	5.1	5.1	6.7	0.7		_	_	_	_	_	_	0.8			1.7		- [0.2 U	U	_ -
Chromium	260	260	270	26.5		_	_	_	_	_	_	26.8			37.8		_ [11		_ -
Copper	390	390	390	29.8		_			_	_	1-1	35.8		_ _	50.9		-	9.9		_ -
Lead	450	450	530	13		_	_		_	_	_	31		_ _	34	T	_	2 U	U	_ -
Mercury	0.41	0.41	0.59	0.09		_	_		_	_		0.16			0.23		_ _	0.02 U	Ū	_ -
Silver	6.1	6.1	6.1	0.4	U U	_			_ _	_		0.4	U U	_ _	0.4 U	U — I-	_		Ü	_
Zinc	410	410	960	127		_	_			_		80			510			24		_
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC		μg/kg dw	-	mg/kg OC		μg/kg dw		mg/kg OC	μg/kg dw	mg/kg OC	-	μg/kg dw		
Aromatic Hydrocarbons	ilig/kg oc	µg/kg uw	mg/kg oc	pg/kg uw		ilig/kg CC		µg/kg uw		ilig/kg OC	<u> </u>	µg/kg uw		ilig/kg oc	µg/kg uw	llig/kg oc		pg/kg uw		
Total LPAH	370	5,200	780	97		6.69		_	-	_	+ +	105	1	8.02 J	128 J	6.70 J	+	18 U		
	99	2,100		15		1.03			=	+ =	+=+	105		1.45	22	1.15	+	18 U	+	
Naphthalene			170					<u> </u>	$=$ \vdash		+-+									
Acenaphthylene	66	1,300	66	18		1.24			$=$ \vdash	_	+=	19		1.45 U	20 U	U 1.05 U	_	18 U	_	
Acenaphthene	16	500	57	18		1.24			$=$ \downarrow		+-	19		1.45 U	12 J	J1 0.63 J	_		U	
Fluorene	23	540	79	13		0.90				_	$\perp = \perp$	12	J J1	0.92 J	20	1.05	_ _	18 U		_ -
Phenanthrene	100	1,500	480	57		3.93				_		57		4.35	58	3.04		18 U	<u> </u>	
Anthracene	220	960	1,200	12		0.83			_	_		17	J J1	1.30 J	16 J	J1 0.84 J		18 U	U	
2-Methylnaphthalene	38	670	64	18		1.24		_	_	_	—	27		2.06	25	1.31		18 U	U	_ -
Total HPAH	960	12,000	5,300	313.9	J	21.65	J	_	_	_	_	121	J	9.24 J	278.9 J	14.60 J		18 U		_ -
Fluoranthene	160	1,700	1,200	73		5.03		_	_	_	_	32		2.44	69	3.61		18 U	U	_ -
Pyrene	1,000	2,600	1,400	80		5.52			_ _	_	1-1	35		2.67	79	4.14		18 U	U	_ -
Benz[a]anthracene	110	1,300	270	29		2.00			_	_		13	J J1	0.99 J	23	1.20		18 U	Ū	_ -
Chrysene	110	1,400	460	37		2.55			_	_		20		1.53	35	1.83		18 U		_ -
Total benzofluoranthenes	230	3,200	450	40		2.76			_ _	_		21		1.60	39	2.04		18 U	Ü	_
Benzo[a]pyrene	99	1,600	210	23		1.59				_		19	u u	1.45 U	20 U	U 1.05 U			Ŭ II	_
Indeno[1,2,3-c,d]pyrene	34	600	88	11		0.76			_	_		19		1.45 U	13 J	J1 0.68 J	-	18 U	_	_ +
Dibenzo[a,h]anthracene	12	230	33	5.9		0.41			_	_		4.8		0.37 U	2.9 J	J1 0.15 J	-	4.6 U		_ +
Benzo[g,h,i]perylene	31	670	78	15		1.03				-		19		1.45 U		J1 0.13 J		18 U	_	
cPAH (µg TEQ/kg dw)		- 070 -		33.73	J J1	1.03	J	+ = +	=	+ =	+	15.01	0 0	1.45 0	19.01	0.54 3		12.71	-	
			_	33.73		+			=			13.01		 	19.01			12.71		
Chlorinated Benzenes	0.0	0.5	0.0	0.5	J J1	0.47						4.0		0.0711	4011	U 0.26 U	_	4.011		
1,2-Dichlorobenzene	2.3	35	2.3	2.5		0.17			=		+-+	4.8		0.37 U	4.9 U	0.20		4.6 U		
1,4-Dichlorobenzene	3.1	110	9	4.6		0.32			_			4.8		0.37 U	4.9 U	U 0.26 U			U	
1,2,4-Trichlorobenzene	0.81	31	1.8	4.6		0.32			_			4.8		0.37 U	4.9 U	U 0.26 U		4.6 U	_	
Hexachlorobenzene	0.38	22	2.3	4.6	U U	0.32	U			_		4.8	U U	0.37 U	4.9 U	U 0.26 U		4.6 U	U	_ -
Phthalate Esters		ļ									\perp	ļl		 			_ _	1 1		
Dimethyl phthalate	53	71	53	3.6		0.25			-	_		6.5		0.50	8.4	0.44		4.6 U		
Diethyl phthalate	61	200	110	46		3.17			$-\downarrow$			48		3.66 U	49 U	U 2.57 U			U	_ -
Di-n-butyl phthalate	220	1,400	1,700	18		1.24		_		_		19		1.45 U	22	1.15		18 U	U	
Butyl benzyl phthalate	4.9	63	64	14		0.97				_		4.8		0.37 U	5.3	0.28		4.6 U	U	_ [-
Bis[2-ethylhexyl]phthalate	47	1,300	78	23	B U	1.59	В		_	_		18	JB UJ	1.37 JB	20 JB	UJ 1.05 JE	3	23 U	U	
Di-n-octyl phthalate	58	6,200	4,500	18	U U	1.24	U		_	_		19	U U	1.45 U	20 U	U 1.05 U		18 U	U	
Miscellaneous												1								
Dibenzofuran	15	540	58	13	J J1	0.90	J		_	_	1-1	13	J J1	0.99 J	14 J	J1 0.73 J	_	18 U	U	
Hexachlorobutadiene	3.9	11	6.2		U U	0.32			_	_	1_1		U UJ	0.37 U	4.9 U			4.6 U		_ -
N-nitrosodiphenylamine	11	28	11		U U	0.32				_	1 _1		U U	0.37 U	4.9 U			4.6 U		_ -
Carbazole	<u> </u>	_	_		U U	5.52		1			+		U U	3.0. 0	20 U		_	18 U		_ 1-
Pesticides and PCBs		1	 	10				1			+	 	<u> </u>	 		 	_	 	-	
Total PCBs	12	130	65	320		22.07		20 1	J U	4 ∩	10 U	48		3.66	130	6.81	\dashv	19 U	U	_ +-
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw		22.57		μg/kg dw		7.0		μg/kg dw		7.00	μg/kg dw	0.01	\dashv	μg/kg dw	_	-
Phenol	420	420	1,200		U UJ	_	\vdash	μg/kg uw		_	+	μ g/kg uw 13	J J1		ружу и	J1 — -		18 U	 	
2-Methylphenol	63	63	63	4.6					=		+		U U				=+-	4.6 U		
			670				\vdash		=	-	+=+		0	 			_			
4-Methylphenol	670	670		11		_	$ \vdash$		= $lacksquare$		+	47	1 14	- -	28 J			37 U		
2,4-Dimethylphenol	29	29	29		U UJ	_	_			_	+		J J1		5.2			4.6 U		
Pentachlorophenol	360	360	690		U UJ	_			= $lacktrian$	_	+		U UJ				_	23 U		
Benzyl alcohol	57	57	73	11					$-\!\!\perp$		+-	35			23 Q		= -	7.2 Q		
Benzoic acid	650	650	650	370	UU	_	 		— I	_	1-1	120	J J1		100 J	J1 — -	— I	370 U	U	_ -

TABLE 44

		nic Organisms Ianagement			SD-510-0	080		SI	D-511-	0020		SD-511-	0040	SD	-511-0060	SD-5	511-0080
	Stand	dards	SMS		8 to 9 f	't			2 to 3	ft		4 to 5	ft	(6 to 7 ft	8	to 9 ft
Analyte	SCO 1	LAET 2	CSL ³	Value	Q1 Q2			Value Q1	I Q2		Value	Q1 Q2		Value Q1	Q2	Value Q1	Q2
Conventionals																	
Total Organic Carbon (Percent)	_	_	_	0.143		_	_	1.88		_ _	2.05			2.33		2.15	
Total Solids (Percent)	_	_	_	83.8		_	_	54.1		_ _	58.2			60.3		59.4	
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw			mg/kg dw			mg/kg dw		mg/kg dw	
Arsenic	57	57	93	3.2		_	_	9.8		_ _	9.5			9.7		11.4	
Cadmium	5.1	5.1	6.7	0.2	U U	_	_	0.7		_ _	0.9			0.8		0.9	
Chromium	260	260	270	11		_		33.5		_ _	27.3			26.3		29.9	
Copper	390	390	390	9.1		_		51.2		_ _	48.1		- -	46.3		49.6	
Lead	450	450	530	2	UU	_		27		_ _	39		- -	33		34	
Mercury	0.41	0.41	0.59	0.02	UU	_		0.11		_ _	0.13		- -	0.12		0.12	
Silver	6.1	6.1	6.1	0.4		_		0.5 U	U	_ _	0.6		- -		U — —	0.5 U	J — —
Zinc	410	410	960	21			1-1	118	1		111		 	103		105	
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw				μg/kg dw		mg/kg OC	μg/kg dw		mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg OC
Aromatic Hydrocarbons	gr.tg c c	F3/1.5 w.i.	gg c c	mg/g w.i.				mg/g w		g.n.g o o	rg/Ng un			-5,g	grg c c	pg/g	gg o o
Total LPAH	370	5,200	780	19	U		1_1	97 J		5.16 J	165	J	8.05 J	179 J	7.68 J	365	16.98
Naphthalene	99	2,100	170	19			t = t	20 U	U	1.06 U	11		0.54 J		J1 0.47 J	19 U	
Acenaphthylene	66	1,300	66	19			+	20 U		1.06 U	20		0.98 U		U 0.82 U	19 U	
Acenaphthene	16	500	57	19			+	20 U	ii	1.06 U	20		0.98 U		J1 0.60 J	34	1.58
Fluorene	23	540	79	19			+ = +	20 U	U	1.06 U	15		0.98 J	21	0.90	34	1.58
Phenanthrene	100	1,500	480	19			$+ \equiv +$	81	-	4.31	110	0 01	5.37	100	4.29	240	11.16
Anthracene	220	960	1,200	19			+=+	16 J	J1	0.85 J	29		1.41	33	1.42	57	2.65
	38	670	64	19			+=+	20 U	U		29		0.98 U		J1 0.52 J	19 U	
2-Methylnaphthalene									U	1.06 U		U U					
Total HPAH	960	12,000	5,300	19				1,113	_	59.20	1,322		64.49	1,153	49.48	1,795	83.49
Fluoranthene	160	1,700	1,200	19			+-+	180		9.57	220		10.73	270	11.59	420	19.53
Pyrene	1,000	2,600	1,400	19		_	+-+	220		11.70	290		14.15	270	11.59	400	18.60
Benz[a]anthracene	110	1,300	270	19		_	+-+	76		4.04	100		4.88	88	3.78	160	7.44
Chrysene	110	1,400	460	19				130		6.91	150		7.32	120	5.15	200	9.30
Total benzofluoranthenes	230	3,200	450	19				230		12.23	250		12.20	180	7.73	260	12.09
Benzo[a]pyrene	99	1,600	210	19		_	1-1	110		5.85	130		6.34	96	4.12	160	7.44
Indeno[1,2,3-c,d]pyrene	34	600	88	19		_	1-1	67		3.56	72		3.51	54	2.32	78	3.63
Dibenzo[a,h]anthracene	12	230	33	4.8		_		28		1.49	33		1.61	18	0.77	40	1.86
Benzo[g,h,i]perylene	31	670	78	19	U U	_		72		3.83	77		3.76	57	2.45	77	3.58
cPAH (μg TEQ/kg dw)		_	_	13.405				159.8			186.9			136.6		227.8	
Chlorinated Benzenes																	
1,2-Dichlorobenzene	2.3	35	2.3	4.8	UU			4.9 U	U	0.26 U	4.9		0.24 U		J1 0.12 J	4.7 U	0.22
1,4-Dichlorobenzene	3.1	110	9	4.8			_	4.9 U	U	0.26 U	2.5		0.12 J		J1 0.15 J	4.7 U	J 0.22 U
1,2,4-Trichlorobenzene	0.81	31	1.8	4.8			_	4.9 U	U	0.26 U	4.9		0.24 U		J1 0.16 J	4.7 U	
Hexachlorobenzene	0.38	22	2.3	4.8	UU	_	_	4.9 U	U	0.26 U	4.9	U U	0.24 U	4.7 U	U 0.20 U	4.7 U	J 0.22 U
Phthalate Esters																	
Dimethyl phthalate	53	71	53	4.8		_		13		0.69	12		0.59	41	1.76		J1 0.21 J
Diethyl phthalate	61	200	110	48	UU	_		49 U	U	2.61 U	49	U	2.39 U	47 U	U 2.02 U	47 U I	J 2.19 U
Di-n-butyl phthalate	220	1,400	1,700	19	U U	_	_	20 U	U	1.06 U	20	U U	0.98 U	19 U	U 0.82 U	19 U	J 0.88 U
Butyl benzyl phthalate	4.9	63	64	4.8	U U	_		17		0.90	35		1.71	74	3.18	14	0.65
Bis[2-ethylhexyl]phthalate	47	1,300	78	16	JB UJ			110 B	U	5.85 B	240	В	11.71 B	250 B	10.73 B	120 B	J 5.58 B
Di-n-octyl phthalate	58	6,200	4,500	19		_		20 U	Ū	1.06 U	20		0.98 U		U 0.82 U	19 U	
Miscellaneous		-,	,										1 1 1	1 1		1 1	
Dibenzofuran	15	540	58	19	U U			20 U	U	1.06 U	20	U U	0.98 U	15 J	J1 0.64 J	15 J .	J1 0.70 J
Hexachlorobutadiene	3.9	11	6.2		U UJ			4.9 U		0.26 U		U U	0.24 U	4.7 U		4.7 U	
N-nitrosodiphenylamine	11	28	11		U U		-	4.9 U		0.26 U	8.1	-	0.40	4.7 U		4.7 U	
Carbazole	<u> </u>	_	_		U U		1_1	14 J		5.20		J J1	9.10	11 J		26	0.22
Pesticides and PCBs		<u> </u>	+	19	- 0		+	1710	-		1-1	- 0 	 	1110	* 	20	
Total PCBs	12	130	65	20	U U		+	160	+	8.51	189		9.22	208	8.93	196	9.12
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	- 0		+	μg/kg dw	+	5.51	μg/kg dw	-	Ÿ.ZZ	µg/kg dw	0.00	µg/kg dw	J.12
Phenol	μ g/kg dw 420	μ g/kg dw 420	1,200		U U		+_+	μg/kg dw 22	1	 	μ g/kg uw 22	-		11 J	J1 — —	19 U	,
2-Methylphenol	63	63	63		U U		+=+	4.9 U	11			U U		2.6 J			
4-Methylphenol	670	670	670		U U		+	4.9 U		 		J J1	+	2.6 J			
7 1							+=+		_								
2,4-Dimethylphenol	29	29	29		U U	_	-	4.9 U				U UJ	_ _	2.6 J			
Pentachlorophenol	360	360	690		U UJ		+-+	25 U				U U			U — —	24 U U	
Benzyl alcohol	57	57	73	8.1			+-+	38 BC		_ _		BQ U	_ _	30 BQ		23 BQ I	
Benzoic acid	650	650	650	380	U U	_		390 U	U	_ _	390	U		380 U	U — —	380 U	J - -

	RAO 3: Benth Sediment M	lanagement	SMS		SD-512-0 2 to 3				D-512-0 4 to 5			SD-512- 6 to 7			_	-517-0020 2 to 3 ft			517-004 to 5 ft	40	
Analyte	SCO 1	LAET 2	CSL ³	Value	Q1 Q2				Q2		Value	Q1 Q2				Q2		Value Q1			\top
Conventionals				1				14.40	<u> </u>			1			1 1 1			7	~-		1
Total Organic Carbon (Percent)	_	_	_	1.86			_	1.79			0.104	ı İ	_	1-1	2.3	_	_	0.1		_	
Total Solids (Percent)	_	_	_	65.1		_	_	78.6		_ _	84.6	3	_		60.3	_	_	86.4		_	
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw			mg/kg dw				mg/kg dw			mg/kg dw			
Arsenic	57	57	93	290		_	_	5.2			0.9)	_		56.3	_	_	2.3		_	
Cadmium	5.1	5.1	6.7	1.7			_	0.2 U	U	_ _	_	U U	_		2.6		_	V V	U	_	_
Chromium	260	260	270	31.3			_	15.4		_ _	10.6		_		39.1		_	11.4		_	
Copper	390	390	390	62.7			_	9.1		_ _	9.4		_		53.6		_	10.6		_	
Lead	450	450	530	22		_	-	2 U	U	_ _		U U	_		25	_			U	_	$\perp = \perp$
Mercury	0.41	0.41	0.59	0.21		_	-	0.03 U	U	_ _	0.03		_		0.22	_		0.03 U	U	_	$\perp = \perp$
Silver	6.1	6.1	6.1	0.5			_		U	_ _		U U	_	1-1	0.5 U		_	0.3 U	U		1=
Zinc	410	410	960	138				23			22	2	_		91	_	_	23			
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC		μg/kg dw		mg/kg OC	μg/kg dw				μg/kg dw	mg/kg OC		μg/kg dw			
Aromatic Hydrocarbons						1															\perp
Total LPAH	370	5,200	780	144		7.74	J	18 U	1	1.01 U		U		1-1	280 J	12.17	J	19 U			$\perp \perp \perp$
Naphthalene	99	2,100	170	48		2.58	_	18 U	U	1.01 U		U U		+-	93	4.04	_	19 U			$\perp = \downarrow$
Acenaphthylene	66	1,300	66	12		0.65		18 U	U	1.01 U		U U		+-	33	1.43			U		$\perp \perp \perp$
Acenaphthene	16	500	57	11	-	0.59		18 U	U	1.01 U		U U		$\perp - \downarrow$		J1 0.83	J	19 U	-		+=
Fluorene	23	540	79	14		0.75	J	18 U	U	1.01 U		U U	_	$\perp - \downarrow$	21	0.91	_	19 U	_	_	$\perp \perp \perp$
Phenanthrene	100	1,500	480	48		2.58			U	1.01 U		U U	_	$\perp - \downarrow$	92	4.00	_	19 U		_	$\perp \perp \perp$
Anthracene	220	960	1,200	11		0.59	J	18 U	U	1.01 U		U U	_		22	0.96			U	_	$\perp =$
2-Methylnaphthalene	38	670	64	19		1.02		18 U	U	1.01 U		U U		1-1	32	1.39		19 U	U		$\perp = \mid$
Total HPAH	960	12,000	5,300	179		9.62	J	18 U	1	1.01 U		U		1-1	388 J	16.87	J	19 U			$\perp = \mid$
Fluoranthene	160	1,700	1,200	50		2.69		18 U	U	1.01 U		U U		1-1	110	4.78		19 U			$\perp = \mid$
Pyrene	1,000	2,600	1,400	52		2.80		18 U		1.01 U		U U			110	4.78		19 U			$\perp = \mid$
Benz[a]anthracene	110	1,300	270	15		0.81	J	18 U	U	1.01 U		U U		 - 	28	1.22		19 U			+=
Chrysene	110 230	1,400 3,200	460 450	21 27		1.13 1.45		18 U	U	1.01 U		U U			40	1.74 2.22		.00	U		+=
Total benzofluoranthenes	99	-,	210	19		1.45		18 U 18 U	_	1.01 U 1.01 U		U U		+=+	51 20 U	U 0.87 I		19 U 19 U	_		+=
Benzo[a]pyrene Indeno[1,2,3-c,d]pyrene	34	1,600 600	88	19		1.02		18 U	U	1.01 U		DU U	+ =	+-+		J1 0.87 (19 U			+=
Dibenzo[a,h]anthracene	12	230	33	4.8		0.26		4.6 U	U	0.26 U) U U	+ =			J1 0.74 3	_	4.7 U			+=
Benzo[q,h,i]perylene	31	670	78	14		0.26		4.6 U	U	1.01 U			+ =	+-+	28	1.22	J	4.7 U			+=
cPAH (µg TEQ/kg dw)	- 31			15.82		0.75	J	12.71	U	1.010	14.08		+ =	+-+	20.4	1.22		13.385	0		+=
Chlorinated Benzenes		_	_	13.62		1		12.71			14.00	,		+=+	20.4			13.303			+=
1.2-Dichlorobenzene	2.3	35	2.3	4.8	U U	0.26	11	4.6 U	111	0.26 U	10	U U	+ _	+_+	5 U	U 0.22 I		4.7 U	U		+
1,4-Dichlorobenzene	3.1	110	9	4.8		0.26		4.6 U	U	0.26 U		olu lu	 	$\pm \pm \pm$		U 0.22 U		4.7 U			$+ \equiv 1$
1.2.4-Trichlorobenzene	0.81	31	1.8	4.8		0.26		4.6 U	U	0.26 U			+	+		U 0.22 I			Ü		+
Hexachlorobenzene	0.38	22	2.3	4.8		0.26			U	0.26 U		U U		1_		U 0.22 I		4.7 U	_		+
Phthalate Esters	0.00		2.0	1.0		0.20	_	1.00		0.20 0	1.0	, 0				0.22	_	0			+
Dimethyl phthalate	53	71	53	4.8	U U	0.26	U	4.6 U	U	0.26 U	4.9	U U	_	1_1	5 U	U 0.22 I	IJ	4.7 U	U		\Box
Diethyl phthalate	61	200	110		U U	2.58		46 U	Ü	2.57 U		U U	_	1_1	52	2.26		47 U	_	_	1-1
Di-n-butyl phthalate	220	1,400	1,700	19		1.02		18 U	Ü	1.01 U		U U	_	1_1		U 0.87 I	U	19 U		_	+
Butyl benzyl phthalate	4.9	63	64	3.8		0.20			Ü	0.26 U		U U	_	1=1		U 0.22 I		4.7 U	_		$\dagger = 1$
Bis[2-ethylhexyl]phthalate	47	1,300	78	24		1.29		23 U	U	1.28 U		U U	—	1-1	25 U	U 1.09 l		24 U		_	1=1
Di-n-octyl phthalate	58	6,200	4,500	19	U U	1.02	U	18 U	U	1.01 U	20	U U	_	_	20 U	U 0.87 I	U	19 U	U	_	
Miscellaneous						1															
Dibenzofuran	15	540	58	14	J J1	0.75	J	18 U	U	1.01 U	20	U U	_	1-1	24	1.04		19 U	U	_	
Hexachlorobutadiene	3.9	11	6.2		U U	0.26		4.6 U	U	0.26 U		U U	_	1-1	5 U		U	4.7 U		_	
N-nitrosodiphenylamine	11	28	11		U U	0.26	U	4.6 U		0.26 U	4.9	U U	_		5 U	U 0.22 l	U	4.7 U		_	
Carbazole	_	_	_	19	U U			18 U	U		20	U U	_		20 U	U		19 U	U	_	
Pesticides and PCBs																					
Total PCBs	12	130	65	110		5.91		19 U	U	1.06 U		U U	_		95	4.13		19 U	U	_	
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw		1		μg/kg dw			μg/kg dw				μg/kg dw			μg/kg dw			\perp
Phenol	420	420	1,200		QJ J, J1		-	18 U				U UJ		$\perp \mid - \mid$	20 U			19 U		_	$\perp \perp \perp$
2-Methylphenol	63	63	63		U U		-	4.6 U				U U		$\perp - \downarrow$	3.7 J			4.7 U			$\perp \perp \perp$
4-Methylphenol	670	670	670	40				10 J				U U	_	$\perp = \downarrow$	52	_	_	38 U			$\perp \perp \perp$
2,4-Dimethylphenol	29	29	29	2.6				4.6 U				U U	_	$\perp = \downarrow$	4.4 J		_	4.7 U			$\perp \perp \perp$
Pentachlorophenol	360	360	690		U UJ		_	23 U				U UJ	_	$\perp - \downarrow$	25 U		_	24 U			$\perp \perp \downarrow$
Benzyl alcohol	57	57	73		BQ U			8.6 BQ				BQ U	_	$\perp = \downarrow$	16 BQ		_	8.8 BQ			$\perp \perp \perp$
Benzoic acid	650	650	650	390	UU	_	_	370 U	U	_ _	390	UU	_		110 J	J1 —	-	380 U	U	_	

TABLE 44

	RAO 3: Benth Sediment M	ic Organisms lanagement			SD-513-0	020		SE)-513-(0040		SD-513-	0060	SD	-513-0080	SD-	514-0020	
	Stand	dards	SMS		2 to 3	ft			4 to 5	ft		6 to 7	ft	8	8 to 9 ft	2	to 3 ft	
Analyte	SCO ¹	LAET 2	CSL ³	Value	Q1 Q2			Value Q1	Q2		Value	Q1 Q2		Value Q1	Q2	Value Q1	Q2	
Conventionals																		
Total Organic Carbon (Percent)	_	_	_	1.66		_	_	1.99			3.07			1.42		1.71	_	
Total Solids (Percent)	_	_	_	55.9		_	_	59.5		_ _	53.7		_ _	68.3		79.3	_	\neg
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw				mg/kg dw			mg/kg dw			mg/kg dw		mg/kg dw		-
Arsenic	57	57	93	9.4		_	_	10		_ _	13.5			18.9		5.1	_	
Cadmium	5.1	5.1	6.7	0.6		_	_	0.8			1			0.6	1	0.2 U	J —	\neg
Chromium	260	260	270	29.6		_	_	28.4			29			20.8		13.8	_	\neg
Copper	390	390	390	43.5		_		45.4	1	_ _	57.1			26.3		14.3	_	\neg
Lead	450	450	530	23		_		40		_ _	52			8		4	_	-
Mercury	0.41	0.41	0.59	0.1		_		0.13	1	_ _	0.21			0.08		0.03 U	J —	\neg
Silver	6.1	6.1	6.1	0.5	U U	_	_	0.5 U	U	 	0.6		 		U — I—	0.4 U		-
Zinc	410	410	960	97			_	103	+		120		<u> </u>	61		31	_	-
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw		mg/kg OC		µg/kg dw	-	mg/kg OC	µg/kg dw		mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dw	mg/kg O0	_
Aromatic Hydrocarbons	ilig/kg 00	µg/kg uw	ilig/kg oc	µg/kg uw		ilig/kg OC		pg/kg uw	-	ilig/kg oc	µg/kg uw		ilig/kg OC	µg/kg uw	Illig/kg OC	µg/kg uw	ilig/kg Ot	-
Total LPAH	370	5,200	780	79	1	4.76	1	86.5 J	+	4.35 J	312	1	10.16 J	57 J	4.01 J	23 J	4.3	35 J
Naphthalene	99	2,100	170	19		1.14		19 U	11	0.95 U	12		0.39 J		J1 1.06 J			.70 J
Acenaphthylene	66	1,300	66	19		1.14		19 U		0.95 U		U U	0.39 J 0.62 U		U 1.34 U	12 J 19 U		11 U
' '	16	500	57	19		1.14		19 U	U	0.95 U	26		0.62 0	19 U	U 1.34 U	19 U	_	11 U
Acenaphthene	23	540	79	19		1.14		9.5 J	J1	0.95 U	23		0.85		U 1.34 U			
Fluorene			480	66			U		JI									11 U
Phenanthrene	100	1,500				3.98		61	14	3.07	200		6.51	42	2.96			64 J
Anthracene	220	960	1,200	13		0.78		16 J	J1	0.80 J	51		1.66	19 U	U 1.34 U			11 U
2-Methylnaphthalene	38	670	64	19		1.14		19 U	U	0.95 U	9.6		0.31 J	19	1.34	19 U		.11 U
Total HPAH	960	12,000	5,300	875	J	52.71	J	686 J		34.47 J	2,011		65.50	127 J	8.94 J	29 J		.70 J
Fluoranthene	160	1,700	1,200	130		7.83		110		5.53	410		13.36	31	2.18			76 J
Pyrene	1,000	2,600	1,400	180		10.84		180		9.05	490		15.96	43	3.03			.94 J
Benz[a]anthracene	110	1,300	270	62		3.73		47		2.36	170		5.54		J1 0.92 J	19 U		.11 U
Chrysene	110	1,400	460	89		5.36		68		3.42	220		7.17	19	1.34	19 U	-	.11 U
Total benzofluoranthenes	230	3,200	450	180		10.84		120		6.03	300		9.77	21	1.48	19 U		.11 U
Benzo[a]pyrene	99	1,600	210	87		5.24		63		3.17	180		5.86		U 1.34 U	.00		.11 U
Indeno[1,2,3-c,d]pyrene	34	600	88	58		3.49		38		1.91	96		3.13		U 1.34 U	19 U		.11 U
Dibenzo[a,h]anthracene	12	230	33	24	Q J	1.45	Q	17 Q	J	0.85 Q	45	Q J	1.47 Q		UJ 0.34 U	4.8 U	J 0.2	.28 U
Benzo[g,h,i]perylene	31	670	78	65		3.92		43		2.16	100		3.26	19 U	U 1.34 U	19 U	J 1.1	.11 U
cPAH (μg TEQ/kg dw)	_	_	_	127.49				90.98			256.8			15		13.405		
Chlorinated Benzenes																		
1,2-Dichlorobenzene	2.3	35	2.3	4.8	U U	0.29	U	4.8 U	U	0.24 U	4.8	U U	0.16 U	4.8 U	U 0.34 U	4.8 U	J 0.2	28 U
1,4-Dichlorobenzene	3.1	110	9	4.8	UU	0.29	U	2.4 J	J1	0.12 J	3.2	J J1	0.10 J	4.8 U	U 0.34 U	4.8 U	J 0.2	28 U
1,2,4-Trichlorobenzene	0.81	31	1.8	4.8	U U	0.29	U	4.8 U	U	0.24 U	4.8	U U	0.16 U	4.8 U	U 0.34 U	4.8 U	J 0.2	28 U
Hexachlorobenzene	0.38	22	2.3	4.8	U U	0.29	U	4.8 U	U	0.24 U	4.8	U U	0.16 U	4.8 U	U 0.34 U	4.8 U	J 0.2	28 U
Phthalate Esters																		
Dimethyl phthalate	53	71	53	22		1.33		6.6		0.33	12		0.39	4.8 U	U 0.34 U	4.8 U	J 0.2	28 U
Diethyl phthalate	61	200	110	48		2.89		48 U	U	2.41 U		U U	1.56 U	48 U	U 3.38 U			75 U
Di-n-butyl phthalate	220	1,400	1,700	19		1.14		19 U	U	0.95 U		U U	0.62 U		J1 0.77 J	19 U		11 U
Butyl benzyl phthalate	4.9	63	64	17	Ť	1.02		25	†	1.26	57		1.86	4.8 U	U 0.34 U	4.8 U		28 U
Bis[2-ethylhexyl]phthalate	47	1,300	78	130	ВШ	7.83	В	190 B	1	9.55 B	180		5.86 B		UJ 1.41 J	24 U		40 U
Di-n-octyl phthalate	58	6.200	4.500	19		1.14		19 U	U	0.95 U		U U	0.62 U		U 1.34 U	19 U		11 U
Miscellaneous		5,200	.,550	13	-	1.14	-	1 10	Ť	5.00	†		3.02 0	 ' 	- 1.010		- '.	
Dibenzofuran	15	540	58	10	U U	1.14	П	19 U	Ш	0.95 U	15	J J1	0.49 J	19 U	U 1.34 U	19 U	1 1 1	.11 U
Hexachlorobutadiene	3.9	11	6.2		U U	0.29		4.8 U		0.93 U		UU	0.49 J	4.8 U		4.8 U		28 U
N-nitrosodiphenvlamine	3.9	28	11		U U	0.29		4.8 U		0.24 U		U U	0.16 U	4.8 U		4.8 U		28 U
Carbazole			_		J J1	0.29	5	19 U		0.24 0	26		0.100	19 U		19 U		-5 0
Pesticides and PCBs	+ -	+ -		9.0	J JI		-	1910	U	+ + +	20		+ +	190		190	-	+
Total PCBs	12	130	65	168		10.12	-	302	+	15.18	272		8.86	12 J	J1 0.85 J	18 U	1 1/	.05 U
Ionizable Organic Compounds						10.12			1	13.10		+-+-	0.00		U.00 J		1.0	JJ U
	µg/kg dw	µg/kg dw	µg/kg dw	µg/kg dw	1 1 14		-	µg/kg dw	1 14	+ +	μg/kg dw	1 1 14	+ +	µg/kg dw	 	µg/kg dw		+
Phenol 2 Mathydahanal	420	420	1,200	12		_		10 J				J J, J1		19 U		19 U		\dashv
2-Methylphenol	63	63	63	4.8		_	-	4.8 U		- -	2.9			4.8 U		4.8 U		\dashv
4-Methylphenol	670	670	670		U U			38 U				U U		12 J		38 U		\dashv
2,4-Dimethylphenol	29	29	29		U UJ			3.9 J				U UJ		4.8 U		4.8 U		
Pentachlorophenol	360	360	690		U UJ			24 U		_ _		U UJ			UJ — —	24 U		
Benzyl alcohol	57	57	73	24		_		25 B				B U		17 B		7.2 BQ		
Benzoic acid	650	650	650	380	UU	_		380 U	U	_ _	380	U U	_ _	380 U	U	380 U	J —	1 — 1

TABLE 44

	RAO 3: Benth Sediment M	lanagement	SMS			15-0020 o 3 ft				SD-515-0 4 to 5				SD-515-0				515-00 to 9 ft		
Analyte	SCO 1	LAET 2	CSL ³	Value	Q1			\top	Value (Q1 Q2			Value	Q1 Q2	Ī		Value Q1			一
Conventionals		LALI		Value	Q1 0	(2		+	value (Q I QZ			Value	Q I QZ			Value Q1	QZ		\dashv
Total Organic Carbon (Percent)	_	_	_	 	1.7		_ _	_	2.38				2.37		_	 _ 	1.5		_	\rightarrow
Total Solids (Percent)	_				7.2			_	57.5				55.6		_		68			〓
Metals	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg d			-	-	mg/kg dw				mg/kg dw				mg/kg dw			\dashv
Arsenic	57	57	93	mg/kg u	9			_	10.4				16.3		_		24.4			〓
Cadmium	5.1	5.1	6.7		0.6				1.3				2		_		1.1			\rightrightarrows
Chromium	260	260	270		0.4		_ _	_	31.3		_		38.9		_		24.8		_ +	〓
Copper	390	390	390		2.9		_ _	_	55.5				62.5		_		30.6			〓
Lead	450	450	530		24				51			_	60		_		13			=
Mercury	0.41	0.41	0.59		.09				0.21			_	0.18		_		0.07			=
Silver	6.1	6.1	6.1		0.5 U L				0.5 U	J U		_	0.5 (J U	_			U		=
Zinc	410	410	960		95			_	122				136				80	0		〓
Nonionizable Organic Compounds	mg/kg OC	μg/kg dw	mg/kg OC	μg/kg dv		mg/k		+	μg/kg dw		mg/kg OC		μg/kg dw		mg/kg OC	h	μg/kg dw		mg/kg OC	\dashv
Aromatic Hydrocarbons	mg/kg 00	pg/kg uw	mg/kg 00	µg/kg uv	-	g/r	9 00	-	µg/kg uw		mg/kg 00		µg/kg uw		mg/kg 00		pg/kg uw		ilig/kg 00	\dashv
Total LPAH	370	5,200	780	1	05 J	-	6.18 J	+	156 J		6.55	J	522	_	22.03	1	81 J		5.40 J	\vdash
Naphthalene	99	2,100	170		15 J J	1	0.18 J	+	17 J		0.33		58		2.45	 	24	-	1.60	\dashv
Acenaphthylene	66	1,300	66		20 U L		1.18 U	+	17 J		0.80		19 (J U	0.80	lu l		U	1.00 1.27 L	$\overline{+}$
Acenaphthene	16	500	57		20 U L		1.18 U	+	9.5 J		0.40		44	- -	1.86			U	1.27 L	
Fluorene	23	540	79		20 U L		1.18 U	+	9.5 J		0.40		56	-	2.36	 		J1	1.27 C	
Phenanthrene	100	1,500	480		75	<u> </u>	4.41	+	9.5 3	J 1	3.99	J	270	-	11.39	1	42	J I	2.80	\dashv
Anthracene	220	960	1,200		15 J J	1	0.88 J	+	25		1.05	\vdash	94	-	3.97	1		U	1.27 L	\dashv
2-Methylnaphthalene	38	670	1,200		20 U L		1.18 U	+	12 J	J1	0.50	-	190		8.02	 	33	U	2.20	' —
Total HPAH	960		5,300	1,1		'	66.00	_	1,298	JI	54.54	J	2,236		94.35					\dashv
		12,000						-								-	141.4 J		9.43 J	-
Fluoranthene	160	1,700	1,200		50		8.82	-	180		7.56		480		20.25	-	37		2.47	\dashv
Pyrene	1,000	2,600	1,400		30		13.53	_	340		14.29		590		24.89	 	44	14	2.93	\rightarrow
Benz[a]anthracene	110	1,300	270		73		4.29	_	80		3.36		180		7.59	 		J1	0.87 J	-
Chrysene	110	1,400	460		10		6.47		120		5.04		250		10.55		19		1.27	\dashv
Total benzofluoranthenes	230	3,200	450		40		14.12	_	250		10.50		300		12.66		19		1.27	
Benzo[a]pyrene	99	1,600	210		20		7.06	_	130		5.46		190		8.02			U	1.27 L	
Indeno[1,2,3-c,d]pyrene	34	600	88		77		4.53		77		3.24		93		3.92			U	1.27 L	
Dibenzo[a,h]anthracene	12	230	33		33		1.94		34		1.43		43		1.81			U	0.31 L	
Benzo[g,h,i]perylene	31	670	78		89		5.24		87		3.66		110		4.64			J1	0.63 J	j j
cPAH (µg TEQ/kg dw)	_			173	3.3			_	185.5				267				14.78			
Chlorinated Benzenes								_								<u> </u>				
1,2-Dichlorobenzene	2.3	35	2.3		4.9 U L		0.29 U		4.7 L		0.20		2.5		0.11	_		U	0.31 L	
1,4-Dichlorobenzene	3.1	110	9		4.9 U L		0.29 U		4.1 J		0.17		4.4		0.19			U	0.31 L	
1,2,4-Trichlorobenzene	0.81	31	1.8		4.9 U L		0.29 U	_	4.7 L		0.20		4.8 l		0.20			U	0.31 L	
Hexachlorobenzene	0.38	22	2.3		4.9 U L		0.29 U		4.7 L	J U	0.20	U	4.8 l	J U	0.20	U	4.7 U	U	0.31 L	J
Phthalate Esters		<u> </u>		\vdash				_					1		<u> </u>	 				
Dimethyl phthalate	53	71	53		12		0.71	_	20		0.84		17		0.72	 ↓		U	0.31 L	
Diethyl phthalate	61	200	110		49 U L		2.88 U	_	47 L		1.97		48 l		2.03			U	3.13 L	
Di-n-butyl phthalate	220	1,400	1,700		20 U L		1.18 U	1	19 L) U	0.80	U	19 l	J U	0.80	U		U	1.27 L	
Butyl benzyl phthalate	4.9	63	64		27		1.59	_	37		1.55		48		2.03	├		U	0.31 L	
Bis[2-ethylhexyl]phthalate	47	1,300	78		72		4.24	1	140		5.88		82		3.46			U	1.60 L	
Di-n-octyl phthalate	58	6,200	4,500		20 U L	1	1.18 U	\perp	19 L	J U	0.80	U	19 l	J U	0.80	U	19 U	U	1.27 L	J
Miscellaneous								\perp												
Dibenzofuran	15	540	58		20 U L		1.18 U	\perp	13 J		0.55		32		1.35			J1	0.63 J	
Hexachlorobutadiene	3.9	11	6.2		4.9 U L		0.29 U	\perp	4.7 L		0.20		4.8 l		0.20			U	0.31 L	
N-nitrosodiphenylamine	11	28	11		4.9 U L		0.29 U		4.7 L		0.20	U		J U	0.20	U	4.7 U		0.31 L	J
Carbazole	_	_	_		13 J J	1			15 J	J1			19 l	J U			19 U	U		
Pesticides and PCBs																				
Total PCBs	12	130	65		92		5.41		243		10.21		371		15.65		33		2.20	
Ionizable Organic Compounds	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dv					μg/kg dw				μg/kg dw				μg/kg dw			
Phenol	420	420	1,200		12 QJ J		_ _			QJ J, J1	_	-		QJ J, J1	_			UJ		三
2-Methylphenol	63	63	63		4.9 U L		_ _	<u>.</u>	2.6 J	J1		_	3.4	J J1	_	L		U	_	一「
4-Methylphenol	670	670	670		40 U L		_ _		38 L		_		47		_		22 J		_	_
2,4-Dimethylphenol	29	29	29		4.9 U L		_ [_	-]	4.7 L		I		4.8 l		_		4.7 U		_	_
Pentachlorophenol	360	360	690		25 U L		_ [_	-]	24 L		I		24 l		_		24 U		_	_1
5 1 1 1 1			70		00 00 1			$\overline{}$	_				20.5	20 1		r	00 00			$-\tau$
Benzyl alcohol	57	57	73		20 BQ L)	- -	-	65 B	3Q J	_	_	66	3Q J	_	_	23 BQ	U	_	

RESULTS FROM RI SEDIMENT CORE SAMPLES **BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON**

Value above SMS SCO or LAET Value above SMS CSL (Bold) Undetected exceedance of the SMS criteria (Italicized)

- 1. Sediment Management Standards Sediment Quality Objectives (173-204-560) WAC.
- 2. LAET = Lowest-Apparent-Effects Threshold.
- 3. Sediment Management Standards Cleanup Screening Levels (173-204-560) WAC.

Q1 Laboratory Data Qualifier

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

U = Indicates the compound was not detected at the reported concentration.

Q2 Data Qualifiers Assigned during Data Validation

U = Indicates the compound was not detected at or above the reporting limit.

J1 = Laboratory flag indicating the analyte was positively identified; the associated concentration is approximate and less than the reporting limit, but equal to or greater than the detection limit.

Abbreviations:

cPAH = carcinogenic polycyclic aromatic hydrocarbons

CSL = cleanup screening level dw = dry weight

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon LAET = lowest apparent effects threshold

mg/kg = milligrams per kilogram OC = organic carbon PCBs = polychlorinated biphenyls RAO = remedial action objective

LPAH = low-molecular-weight polycyclic aromatic hydrocarb SMS = Wahington State Sediment Management Standards SCO = sediment cleanup objective TEQ = toxic equivalent concentration

DIOXIN/FURAN RESULTS FROM RI SURFACE SEDIMENT GRAB SAMPLES BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

			SD-514G			SD-515G			SD-5070	}		SD-508G)		SD-509G	
Dioxins (ng/kg dw)	TEF ²	Value	Q1 ¹	Q2 ¹												
2,3,7,8-TCDD	1	1.1			0.287	JEMPC	UJ	0.588	JEMPC	UJ	1.04	EMPC	J	0.322	JEMPC	UJ
1,2,3,7,8-PeCDD	1	3.85			0.754	J	J1	1.0			1.29)		0.844	J	J1
1,2,3,4,7,8-HxCDD	0.1	4.79			0.937	J	J1	1.22	2 J	J1	1.59	J	J1	0.985	JEMPC	UJ
1,2,3,6,7,8-HxCDD	0.1	24.5			4.59			4.33	3		4.88	3		3.63		
1,2,3,7,8,9-HxCDD	0.1	10.8			2.46			2.95	5		3.41			2.44		
1,2,3,4,6,7,8-HpCDD	0.01	606			97.1			103	3		128	3		86.7		
OCDD	0.0003	4950			760			936	6		1080)		703		
Furans (ng/kg dw)																
2,3,7,8-TCDF	0.1	2.93			0.77	J	J1	0.85	J	J1	1.1			0.563	J	J1
1,2,3,7,8-PeCDF	0.03	3.42			0.841	J	J1	0.632	2 J	J1	0.787	' J	J1	0.466	JX	JX
2,3,4,7,8-PeCDF	0.3	8.62			2.8			1.03			1.3			0.838		J1
1,2,3,4,7,8-HxCDF	0.1	66.6			10.7			2.7			3.4			2.43		
1,2,3,6,7,8-HxCDF	0.1	14.6			2.27			1.13	3 J	J1	1.68	J	J1	0.864	JEMPC	UJ
2,3,4,6,7,8-HxCDF	0.1	19.6			2.61			1.64		J1	2.1			2.94		
1,2,3,7,8,9-HxCDF	0.1	11.6			2.37			0.624		J1	0.797		J1	0.555	JEMPC	UJ
1,2,3,4,6,7,8-HpCDF	0.01	243			22.4			18.5	5		24	l.		17		
1,2,3,4,7,8,9-HpCDF	0.01	38.4			2.5			1.72	2 J	J1	2.03			1.51	J	J1
OCDF	0.0003	619			49.7			49.4	ļ		63.3	3		47.4		
TEQ (ND=1/2RL) 3		33.73			5.90			4.7			6.52	2		3.87		
TEQ (ND=0) 3		33.73			5.75			4.4			6.52	2		3.69		
Homolog Totals (ng/kg d	lw)												+			
Total TCDD		20.1			3.77			4.97	,		5.06	3		4.55		
Total PeCDD		38.8			6.91			7.75	5		8.41			6.95		
Total HpCDD		1140			239			282	2		417	,		235		
Total HxCDD		164			33.4			41.7	7		54.5	5		33.5		
OCDD		4950			760			936	6		1080)		703		
Total TCDF		72.1			13.8			12.4			19.9			11.1		
Total PeCDF		162			32.4			20.8	3		28.1			17.4		
Total HxCDF		494			63.5			32.6	3		42.5	5		44.2		
Total HpCDF		1010			77.1			61.4			76.9			64.6		
OCDF		619			49.7			49.4	l _		63.3	3		47.4		

Notes(s)

1. Data qualifiers are as follows.

EMPC = Estimated Maximum Possible Concentration

- J = Estimated value, concentration less than reporting limit.
- J1 = Estimated value, concentration less than reporting limit. Assigned during data validation
- JEMPC = Estimated Maximum Possible Concentration (EMPC), concentration less than reporting limit.
- JX = Estimated value, concentration less than the reporting limit. Polychlorinated diphenyl ether interference.
- UJ = Undetected at the reporting limit. Reporting limit estimated.
- 2. 2005 World Health Organization (WHO) (Van den Berg et al. 2006).
- 3. Expressed as ng TEQ/kg dw.

Abbreviation(s)

ND = nondetect

ng/kg dw = nanograms per kilogram dry weight

Q1 = laboratory assigned qualifier

Q2 = qualifier assigned during data validation

RI = Remedial Investigation

RL= reporting limit

TEF = toxicity equivalency factor

TEQ = toxic equivalent concentration

SUMMARY STATISTICS FOR CHEMICALS OF CONCERN IN RI SEDIMENT SAMPLES BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

		Р	reliminary C	leanup Levels												Surface S	Samples (only	y)		Core Samples
	RAO 1: Human Seafood Consumption		man Direct	RAO 3: Benthi Sediment M: Stand Sediment Qual	anagement ards	RAO 4: Ecological (River	Sediment Management Standards Cleanup	Min Value (Detected Value or RL)	Max Value (Detected Value or RL)	Min Detected Value	Max Detected Value	Min OC Norm Value	Max OC Norm Value	Total # of Samples Analyzed ⁴	RAO 1: Human Seafood Consumption Exceedance	RAO 2: Hu Cor	uman Direct ntact edance	RAO 3: Benthic Organisms SCO Exceedance	Total Number of Detected SCO Exceedances (# undetected) ⁵	Total Number of detected CSL Exceedances (# undetected) ⁶
			Clamming			Otter Site-	Screening										Clamming			
Analyte	Site-wide	Site-wide	areas	SCO 1	LAET 3	wide)	Levels								Site-wide	Site-wide	areas			
Conventionals																				
Total Organic Carbon (Percent)	_	_	_	_	_	_	_	0.1	3.07	0.1	3.07	_	_	17 / 59	_	_	_	_	_	_
Total Solids (Percent)	_	_	_	_	_	_	_	44.8	88.6	44.8	88.6	_	_	17 / 59	_	_	_	_	_	_
Metals		mg/l	kg dw	mg/kg dw	mg/kg dw		mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw									
Arsenic	NC	7	7	57	57	_	93	0.9	684	0.9	684	_	_	17 / 56	_	17	8	2	7 (0)	7 (0)
Cadmium	_	_	_	5.1	5.1	_	6.7	0.2	2.9	0.4	2.9	_	_	17 / 56	_	_	_	0	0	0
Chromium	_	_	_	260	260	_	270	9.9	55	9.9	55	_	_	17 / 56	_	_	_	0	0	0
Copper	_	_	_	390	390	_	390	7.7	76.7	7.7	76.7	_	_	17 / 56	_	_	_	0	0	0
Lead	_	_	_	450	450	_	530	2	100	3.0	100	_	_	17 / 56	_	_	_	0	0	0
Mercury	_	_	_	0.41	0.41	_	0.59	0.02	0.34	0.06	0.34	_	_	17 / 56	_	_	_	0	0	0
Silver	_	_	_	6.1	6.1	_	6.1	0.3	3.2	0.5	3.2	_	_	17 / 56	_	_	_	0	0	0
Zinc	_	_	_	410	410	_	960	20	1,790	20	1,790	_	_	17 / 56	_	_	_	0	2 (0)	1 (0)
Nonionizable Organic Compounds																				
Aromatic Hydrocarbons				mg/kg OC	μg/kg dw		mg/kg OC	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	mg/kg OC							
LPAH	_	_	_	370	5,200	_	780	18	3,906	20	3,906	1.18	160.08	17 / 56	_	_	_	0	0	0
Naphthalene	_	_	_	99	2,100	_	170	11	190	11	190	0.4	7.8	17 / 56	_	_	_	0	0	0
Acenaphthylene	_	_	_	66	1,300	_	66	10	57	10	33	0.5	3.3	17 / 56	_	_	_	0	0	0
Acenaphthene	_	_	_	16	500	_	57	9.5	700	9.5	700	0.4	49.6	17 / 56	_	_	_	0	1 (0)	0
Fluorene	_	_	_	23	540	_	79	9.5	360	9.5	360	0.4	14.8	17 / 56	_	_	_	0	0	0
Phenanthrene	_	_	_	100	1,500	_	480	11	2,600	11	2,600	0.6	106.6	17 / 56	_	_	_	0	1 (0)	0
Anthracene	_	_	_	220	960	_	1,200	11	400	11	400	0.6	16.4	17 / 56	_	_	_	0	0	0
2-Methylnaphthalene	_	_	_	38	670	_	64	9.6	190	9.6	190	0.3	8.0	17 / 56	_	_	_	0	0	0
HPAH	_	_	_	960	12,000	_	5,300	11	12,330	11	12,330	1.0	704.6	17 / 56	_	_	_	0	0	0
Fluoranthene	_	_	_	160	1,700	_	1,200	11	2,800	11	2,800	0.6	160.0	17 / 56	_	_	_	1	1 (0)	0
Pyrene	_	_	_	1,000	2,600	_	1,400	16	2,600	16	2,600	0.6	125.7	17 / 56	_	_	_	0	0	0
Benz[a]anthracene	_	_	_	110	1,300	_	270	10	1,000	10	1,000	0.7	57.1	17 / 56	_	_	_	0	0	0
Chrysene	_	_	_	110	1,400	_	460	11	1,400	11	1,400	0.7	80.0	17 / 56	_	_	_	0	0	0
Total benzofluoranthenes	_	_	_	230	3,200	_	450	14	2,100	14	2100	0.7	120.0	17 / 56	_	_	_	0	0	0
Benzo[a]pyrene	_	_	_	99	1,600	_	210	17	1,200	17	1,200	0.7	68.6	17 / 56	_	_	_	0	0	0
Indeno[1,2,3-c,d]pyrene	_	_	_	34	600	_	88	9.8	670	9.8	670	0.7	38.3	17 / 56	_	_	_	1	1 (0)	0
Dibenzo[a,h]anthracene	_	_	_	12	230	_	33	2.8	280	2.8	280	0.2	16.0	17 / 56	_	_	_	1	1 (0)	0
Benzo[g,h,i]perylene	_	_	_	31	670	_	78	9.4	680	9.4	680	0.6	38.9	17 / 56	_	_	_	1	1 (0)	0
cPAH (µg TEQ/kg dw) ⁷	NC	380	150	_	_	_		_	_	12.7	1703	_	_	17 / 56	_	3	4	_		_

SUMMARY STATISTICS FOR CHEMICALS OF CONCERN IN RI SEDIMENT SAMPLES BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

		Р	reliminary C	Cleanup Levels			Ī									Surface S	amples (only	/)	Surface and (Core Samples
	RAO 1: Human Seafood Consumption	RAO 2: Hu	ıman Direct	RAO 3: Benthi Sediment M Stand Sediment Qual	anagement ards	RAO 4: Ecological (River	Sediment Management Standards Cleanup	Min Value (Detected Value or RL)	Max Value (Detected Value or RL)	Min Detected Value	Max Detected Value	Min OC Norm Value	Max OC Norm Value	Total # of Samples Analyzed ⁴	RAO 1: Human Seafood Consumption Exceedance	RAO 2: Hu Cor	ıman Direct ntact edance	RAO 3: Benthic Organisms SCO Exceedance	Total Number of Detected SCO Exceedances (# undetected) ⁵	Total Number of detected CSL Exceedances (# undetected) ⁶
			Clamming		_	Otter Site-	Screening										Clamming			
Analyte	Site-wide	Site-wide	areas	SCO ¹	LAET 3	wide)	Levels								Site-wide	Site-wide	areas			
Chlorinated Benzenes (µg/kg)				mg/kg OC	μg/kg dw			μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	mg/kg OC							
1,2-Dichlorobenzene	_	_	_	2.3	35	_	2.3	2.5	160	2.5	160	0.1	6.5	17 / 56	_	_	_	0	1 (0)	1 (0)
1,4-Dichlorobenzene	_	_		3.1	110		9	2.4	77	2.4	77	0.1	3.1	17 / 56	_	_		0	1 (0)	0
1,2,4-Trichlorobenzene	_	_		0.81	31		1.8	2.5	14	2.5	3.7	0.14	0.80	17 / 56	_	_		0	0	0
Hexachlorobenzene	_	_	_	0.38	22	_	2.3	3.4	14	_	_	0.16	0.80	17 / 56	_	_		4	0 (8)	0
Phthalate Esters (µg/kg)				mg/kg OC	μg/kg dw			μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	mg/kg OC							
Dimethyl phthalate	_	_	_	53	71	_	53	3.4	44	3.4	44	0.2	2.2	17 / 56	_	_		0	0	0
Diethyl phthalate	_	_	_	61	200	_	110	38	1,500	38	1,500	1.6	92.6	17 / 56	_	_		1	1 (0)	0
Di-n-butyl phthalate	_	_	_	220	1,400	_	1,700	9.8	740	9.8	740	0.5	49.7	17 / 56	_	_		0	0	0
Butyl benzyl phthalate	_	_	_	4.9	63	_	64	2.5	380	2.5	380	0.1	20.5	17 / 56	_	_		1	2 (0)	0
Bis[2-ethylhexyl]phthalate	_	_	_	47	1,300	_	78	16	9,500	16	9,500	0.6	513.5	17 / 56	_	_	_	0	1 (0)	1 (0)
Di-n-octyl phthalate	_	_	_	58	6,200	_	4,500	18	100	20	100	0.6	5.7	17 / 56	_	_	_	0	0	0
Miscellaneous (µg/kg)				mg/kg OC	μg/kg dw			μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	mg/kg OC							
Dibenzofuran	_	_	_	15	540	_	58	9.4	180	9.4	180	0.5	7.4	17 / 56	_	_	_	0	0	0
Hexachlorobutadiene	_	_	_	3.9	11	_	6.2	3.4	14	_	_	0.2	0.8	17 / 56	_	_	_	0	0	0
N-nitrosodiphenylamine	_	_	_	11	28	_	11	3.4	14	5.5	8.1	0.2	0.8	17 / 56	_	_		0	0	0
Carbazole	_	_	_	_	_	_	_	9.6	320	9.6	320	_	_	17 / 56	_	_			_	
Pesticides and PCBs	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	μg/kg dw	μg/kg dw		μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	mg/kg OC	mg/kg OC							
Total PCBs	2	1,300	500	12	130	128-159	65	12	2,070	12	2,070	0.8	111.9	17 / 59	17	0	3	7	30 (0)	3 (0)
Ionizable Organic Compounds				μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw	μg/kg dw									
Phenol	_	_	_	420	420	_	1,200	10	610	10	610	_	_	17 / 56	_	_		0	1 (0)	0
2-Methylphenol	_	_	_	63	63	_	63	2.5	19	2.5	19	_	_	17 / 56	_	_	_	0	0	0
4-Methylphenol	_	_	_	670	670	_	670	10	120	10	120	_	_	17 / 56	_	_	_	0	0	0
2,4-Dimethylphenol	_	_	_	29	29	_	29	2.4	23	2.4	23	_	_	17 / 56	_	_	_	0	0	0
Pentachlorophenol	_	_	_	360	360	_	690	14	71	14	14	_	_	17 / 56	_	_	_	0	0	0
Benzyl alcohol	_	_	_	57	57	_	73	4.4	130	6.8	130	_	_	17 / 56	_	_	_	6	5 (6)	3 (1)
Benzoic acid	_	_	_	650	650	_	650	100	1,100	100	150	_	_	17 / 56	_	_	_	1	0 (1)	0 (1)

SUMMARY STATISTICS FOR CHEMICALS OF CONCERN IN RI SEDIMENT SAMPLES BOEING ISAACSON-THOMPSON SITE **TUKWILA, WASHINGTON**

		Pr	eliminary C	leanup Levels												Surface S	amples (only	')	Surface and (Core Samples
	RAO 1: Human Seafood Consumption	RAO 2: Hui Con	man Direct	RAO 3: Benthic Sediment Ma Standa Sediment Quali	anagement ards	RAO 4: Ecological (River	Sediment Management Standards Cleanup	Min Value (Detected Value or RL)	Max Value (Detected Value or RL)	Min Detected Value	Max Detected Value	Min OC Norm Value	Max OC Norm Value	Total # of Samples Analyzed ⁴	RAO 1: Human Seafood Consumption Exceedance		ıman Direct ntact edance	RAO 3: Benthic Organisms SCO Exceedance	Total Number of Detected SCO Exceedances (# undetected) ⁵	Total Number of detected CSL Exceedances (# undetected) ⁶
Analyte	Site-wide	Site-wide	Clamming areas	SCO 1	LAET ³	Otter Site- wide)	Screening Levels								Site-wide	Site-wide	Clamming areas			ı l
Dioxins/Furans	µg TEQ/kg dw	µg TEQ		300	LACI	wide)	Leveis	na/ka dw	na/ka dw	na/ka dw	na/ka dw				Site-wide	Site-wide	areas			
2,3,7,8-TCDD	ру 12 челку и w	μg 1 L G		_			_	0.287	11g/kg uw 1 1	1.1	11g/kg uw	_	_	5/0	_		_	_		_
2.3.7.8-TCDF	_	_	_	_	_	_	_	0.563	2.93	0.563	2.93	_	_	5/0	_		_	_	_	_
1,2,3,7,8-PeCDD	_	_	_	_	_	_	_	0.754	3.85	0.754	3.85		_	5/0	_	_	_	_	_	_
1,2,3,7,8-PeCDF	_	_	_	_	_	_	_	0.466	3.42	0.466	3.42	_	_	5/0	_	_	_	_	_	_
2,3,4,7,8-PeCDF	_	_	_	_		_	_	0.838	8.62	0.838	8.62	_	_	5/0	_	_	_	_	_	_
1,2,3,4,7,8-HxCDD	_	_	_	_	_	_	_	0.937	4.79	0.937	4.79	_	_	5/0	_	_	_	_	_	_
1,2,3,6,7,8-HxCDD	_	_		_	_	_	_	3.63	24.5	3.63	24.5	_	_	5/0	_	_	_	_	_	_
1,2,3,7,8,9-HxCDD	_	_	_	_	_	_	_	2.44	10.8	2.44	10.8	_	_	5/0	_	_	_	_	_	_
1,2,3,4,7,8-HxCDF	_	_	_			_	_	2.43	66.6	2.43	66.6	_	_	5/0	_	_	_	_	_	_
1,2,3,6,7,8-HxCDF	_	_	_	I		_	_	0.864	14.6	1.13	14.6	_	_	5/0	_		_		_	_
1,2,3,7,8,9-HxCDF	_	_	_	_	_	_	_	0.555	11.6	0.624	11.6	_	_	5/0	_	_	_	_	_	_
2,3,4,6,7,8-HxCDF	_	_	_	_	_	_	_	1.64	19.6	1.64	19.6	_	_	5/0	_	_	_	_	_	_
1,2,3,4,6,7,8-HpCDD	_	_				_	_	86.7	606	86.7	606	_	_	5/0	_		_	_	_	_
1,2,3,4,6,7,8-HpCDF	_	_				_	_	17	243	17	243		_	5/0	_			_	_	_
1,2,3,4,7,8,9-HpCDF	_	_	_			_	_	1.51	38.4	1.51	38.4		_	5/0	_		_	_	_	_
OCDD	_	_	_	_	_	_	_	703	4950	7.3	4950	_	_	5/0	_		_	_	_	
OCDF	_	_	_	_	_	_	_	47.4	619	47.4	619	_	_	5/0	_		_	_	_	
TEQ (ND=1/2RL) 7	2	37	13	_	_	_	_	_	_	3.87	33.73	_	_	5/0	5	0	1	_	_	_
TEQ (ND=0) 8	2	37	13	_	_	_	_	_	_	3.69	33.73	_	_	5/0	5	0	1	_	_	_

- Notes:

 1. Sediment Management Standards Sediment Cleanup Objectives (173-204-560) WAC.

 2. Sediment Management Standards Cleanup Screening Levels (173-204-560) WAC.
- 4. Number of Surface Samples / Core Samples Analyzed (Including Field Duplicates)
- Number of Samples with Detected Exceedances of SCO (Number of Undetected Exceedances). Number Includes Samples that Exceed CSL.
 Number of Samples with Detected Exceedances of CSL (Number of Undetected Exceedances)
- 7. TEQ values calculated using 1/2 the RL for non-detected compounds.
- 8. TEQ values calculated using zero for non-detected compounds: expressed as ng TEQ/kg dw

Abbreviations:

CSL = cleanup screening level

dw = dry weight

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

LAET = lowest apparent effects threshold LPAH = low-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligrams per kilogram

ND = non detects ng/kg = nanograms per kilogram OC = organic carbon PCBs = polychlorinated biphenyls RI = Remedial Investigation RL = reporting limit

RAO = remedial action objective SMS = Washington State Sediment Management Standards SCO = sediment cleanup objective TEQ = toxic equivalent concentration μg/kg = micrograms per kilogram

SUMMARY OF CONSTITUENTS DETECTED IN UPLAND SOIL AND GROUNDWATER AND SEDIMENTS AT CONCENTRATIONS EXCEEDING THE PRELIMINARY CLEANUP LEVELS BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

Constituents Exceeding		th of lip 5 Area		mer 5 Area		th of lip 5 Area		Property ndary	Outers		Sedime	ents (a)		
Preliminary Cleanup Levels in One or More Samples	Soil	GW	Soil	GW	Soil	GW	Soil	GW	Surface (0-10 cm)	2 ft to 3 ft	4 ft to 5 ft	6 ft to 7 ft	8 ft to 9 ft	10 ft to 11 ft
Acrylonitrile		Х				Х								
Naphthalene			х											
1,1-Dichloroethene						х								
cis-1,2-Dichloroethene						х								
Trichloroethene					х	х		х						
Vinyl Chloride		х				х								
Benzoic Acid		х												
Bis(2-ethylhexyl)phthalate		х		х						х				
Total cPAHs (TEQ)	х	х	х	х	х	х	х	х	х					
PCBs	Х	х	х	х	х		х	х	х	х	х	х	х	х
TPH-Dx	х													
TPH-Gx	х		х		х									
Arsenic	х	х	х	х	х	х	х	х	х	х	х			
Barium			х											
Cadmium	х	х	х	х			х	х						
Chromium			х											
Chromium VI		х	х			х								
Copper	х	х	х		х		х							
Lead	х	х	х				х							
Nickel		Х	Х	х		Х		х						
Mercury	Х	Х	Х											
Selenium		Х												
Thallium		х	х											
Zinc	Х	х	х				х			х	х			

TPH-Dx = total petroleum hydrocarbons-Diesel
TPH-Gx = total petroleum hydrocarbons-Gasoline
cPAHs = carcinogenic polycyclic aromatic hydrocarbons
TEQ = Toxic Equivalent Concentration

DCDa palvablarinated higherula

PCBs = polychlorinated biphenyls

(a) Listed sediment exceedances are for constituents that exceed soil or groundwater preliminary cleanups levels only. All sediment exceedances are summarized in Table 51.

TABLE 48 SUMMARY OF PRELIMINARY CLEANUP LEVELS EXCEEDANCES IN SOIL REMAINING NORTH OF THE FORMER SLIP 5 AREA ON BOEING PROPERTY

BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

North of Slip 5 Soil Statistics	Preliminary Cleanup Levels	Number of Soil Samples Analyzed	Number of Nondetects	Number of Samples with Detected Concentrations	Frequency of Detection (percent)	Number of Soil Samples with Concentrations Exceeding Preliminary Cleanup Levels	Frequency of Exceedance (percent)	Maximum Detection
SEMIVOLATILES (µg/kg)								
Method SW8270D/SW8270C-SIM								
Total cPAHs TEQ	15	80	30	50	63	33	41	6593
PCBs (µg/kg)								
Method SW8082								
Aroclor 1254	0.29	79	78	1	1	1	1	43
Aroclor 1260	5.4	79	76	3	4	2	3	56
Total PCBs	1.8	81	77	4	5	4	5	56
TOTAL PETROLEUM HYDROCARBONS (mg/kg)								
Method NWTPH-Dx								
Diesel-Range Organics	2000	74	40	34	46	2	3	7400
Oil-Range Organics	2000	74	33	41	55	2	3	25000
Method NWTPH-G								
Gasoline-Range Organics	100/30	70	62	8	11	1	1	36 (a)
TOTAL METALS (mg/kg)								
Methods 200.8/7471A/SW7196A								
Arsenic	7	309	42	267	86	204	66	3500
Cadmium	1.3	114	54	60	53	18	16	15
Copper	36	89	0	89	100	45	51	1170
Lead	250	116	5	111	96	5	4	1210
Mercury	1.5	114	34	80	70	1	1	1.82
Zinc	1418	103	0	103	100	2	2	3030

 μ g/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

SIM = Selected Ion Monitoring

cPAHs = carginogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

TPH-Dx = total petroleum hydrocarbons-Diesel

TPH-G = total petroleum hydrocarbons-Gasoline

(a) Benzene is present at a concentration of 4.4 µg/kg

TABLE 49 SUMMARY OF PRELIMINARY CLEANUP LEVELS EXCEEDANCES IN SOIL REMAINING WITHIN THE FORMER SLIP 5 AREA ON BOEING PROPERTY BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Preliminary Cleanup	Number of Soil Samples	Number of	Number of Samples with Detected	Frequency of Detection	Number of Soil Samples with Concentrations Exceeding	Frequency of Exceedance	Maximum
Slip 5 Soil Statistics	Levels	Analyzed	Nondetects	Concentrations	(percent)	Preliminary Cleanup Levels	(percent)	Detection
SEMIVOLATILES (µg/kg)					үрэгээлгү		(регенту	
Method SW8270D								
Naphthalene	2,100	73	33	40	55	1	1	2200
Tvapritilalerie	2,100	75	33	40	33	'	'	2200
Method SW8270D/SW8270D-SIM								
Total cPAHs TEQ	15	73	10	63	86	42	58	8394
PCBs (μg/kg)								
Method SW8082								
Aroclor 1242	0.72	83	82	1	1	1	1	60
Aroclor 1254	0.29	83	60	23	28	23	28	12,000
Aroclor 1260	5.4	83	63	20	24	20	24	5200
Total PCBs	1.8	93	62	31	33	31	33	12,000
TOTAL PETROLEUM HYDROCARBONS (mg/kg)								
Method NWTPH-G								
Gasoline-Range Organics	100/30	70	55	15	21	3 (a)	4	120
TOTAL METALS (mg/kg)								
Methods 200.8/7471A/SW7196A								
Arsenic	7	182	14	168	92	100	55	4000
Barium	640	91	0	91	100	2	2	650
Cadmium	1.3	127	38	89	70	36	28	28.1
Chromium	1480	180	0	180	100	10	6	4180
Chromium VI	3.8	70	63	7	10	1	1	8.32
Copper	36	157	0	157	100	84	54	1500
Lead	250	176	16	160	91	39	22	4200
Mercury	1.5	126	47	79	63	3	2	4.3
Nickel	210	140	0	140	100	21	15	4940
Thallium	0.67	70	69	1	1	1	1	1.1
Zinc	1400	172	0	172	100	14	8	9040

μg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

SIM = Selected Ion Monitoring

cPAHs = carginogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

TPH-G = total petroleum hydrocarbons-Gasoline

(a) One additional sample above 30 mg/kg and below 100 mg/kg was also analyzed for benzene and benzene was not detected.

TABLE 50 SUMMARY OF PRELIMINARY CLEANUP LEVELS EXCEEDANCES IN SOIL REMAINING SOUTH OF THE FORMER SLIP 5 AREA ON BOEING PROPERTY BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

South of Slip 5 Soil Statistics	Preliminary Cleanup Levels	Number of Soil Samples Analyzed	Number of Nondetects	Number of Samples with Detected Concentrations	Frequency of Detection (percent)	Number of Soil Samples with Concentrations Exceeding Preliminary Cleanup Levels	Frequency of Exceedance (percent)	Maximum Detection
VOLATILES (µg/kg)								
Method SW8260C Trichloroethene	51	126	101	25	20	4	3	270
Tichloroethene	51	120	101	25	20	4	3	270
SEMIVOLATILES (µg/kg)								
Method SW8270D/SW8270C-SIM								
Total cPAHs TEQ	15	84	27	57	68	20	24	537
PCBs (µg/kg)								
Method SW8082								
Aroclor 1254	0.29	99	89	10	10	10	10	660
Aroclor 1260	5.4	99	94	5	5	5	5	73
Total PCBs	1.8	100	88	12	12	12	12	660
TOTAL METALO (//)								
TOTAL METALS (mg/kg)								
Methods 200.8/7471A/SW7196A	7	400	00	400	00	00	40	40
Arsenic	7	192	26	166	86	20	10	43
Copper	36	118	0	118	100	15	13	97.1
TOTAL PETROLEUM HYDROCARBONS (mg/kg) NWTPH-G								
Gasoline-Range Organics	100/30	76	69	7	9	1	1	150

μg/kg = micrograms per kilogram mg/kg = milligrams per kilogram

SIM = Selected Ion Monitoring

cPAHs = carginogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

TPH-G = total petroleum hydrocarbons-Gasoline

SUMMARY OF PRELIMINARY CLEANUP LEVELS EXCEEDANCES IN GROUNDWATER NORTH OF THE FORMER SLIP 5 AREA ON BOEING PROPERTY BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Preliminary	Number of GW		Number of Samples	Frequency of	Number of Samples with	Frequency of	
	Cleanup	Samples	Number of	with Detected	Detection	Concentrations Exceeding	Exceedance	Maximum
North of Slip 5 Groundwater Statistics	Levels	Analyzed	Nondetects	Concentrations	(percent)	Preliminary Cleanup Levels	(percent)	Detection
VOLATILES (μg/L)								
Method SW8260C/SW8260C-SIM								
Acrylonitrile	0.057	12	11	1	8	1	8	0.059
Vinyl Chloride	0.53	48	26	22	46	5	10	2.0
SEMIVOLATILES (µg/L)								
Method SW8270D/SW8270C-SIM								
Benzoic Acid	2,240	48	40	8	17	1	2	3400
bis(2-Ethylhexyl)phthalate	1.2	48	47	1	2	1	2	1.8
cPAHs (μg/L)								
Method SW8270D-SIM								
Total cPAHs TEQ	0.00018	48	40	8	17	8	17	0.008
DCD- (vall)								
PCBs (µg/L)								
Method SW8082								
Aroclor 1248	0.000023	48	47	1	2	1	2	0.0086
Aroclor 1260	0.000023	48	44	4	8	4	8	0.024
Total PCBs	0.000023	48	43	5	10	5	10	0.024
DISSOLVED METALS (μg/L)								
Methods 200.8/SW7196A								
Arsenic	8	48	2	46	96	38	79	285,000
Cadmium	0.25	48	38	10	21	5	10	0.8
Copper	8	48	11	37	77	18	38	2050
Lead	2.5	48	29	19	40	3	6	5.5
Nickel	8.2	48	3	45	94	12	25	297
Selenium	5	48	26	22	46	5	10	13.4
Thallium	0.47	48	46	2	4	1	2	0.5
Zinc	56	48	13	35	73	15	31	477
TOTAL METALS								
Method SW7470A/EPA 1631E (ng/L)								
Mercury	12	48	18	30	63	7	15	1750
Method SW7196A (mg/L)								
Chromium VI	0.00058	48	45	3	6	3	6	0.037

GW = groundwater

μg/L = micrograms per liter

mg/L = milligrams per liter

ng/L = nanograms per liter

SIM = Selected Ion Monitoring

cPAHs = carginogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

TABLE 52 SUMMARY OF PRELIMINARY CLEANUP LEVELS EXCEEDANCES IN GROUNDWATER WITHIN THE FORMER SLIP 5 AREA ON BOEING PROPERTY BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

	Preliminary	Number of GW		Number of Samples	Frequency of	Number of Samples with	Frequency of	
Slip 5 Groundwater Statistics	Cleanup Levels	Samples Analyzed	Number of Nondetects	with Detected Concentrations	Detection (percent)	Concentrations Exceeding Preliminary Cleanup Levels	Exceedance (percent)	Maximum Detection
SEMIVOLATILES (µg/L)	2010.0	7111019200	110110010010	00110011111111111	(рогосия)	Trommany Greating 2010.0	(регесть)	20.00
Method SW8270D/SW8270C-SIM								
bis(2-Ethylhexyl)phthalate	1.2	56	53	3	5	3	5	3.7
cPAHs (µg/L) Method SW8270D-SIM								
Chrysene	0.018	56	48	8	14	2	4	0.13
Total cPAHs TEQ	0.00018	56	42	14	25	13	23	0.152
PCBs (μg/L)								
Method SW8082								
Aroclor 1248	0.000023	56	52	4	7	4	7	0.024
Aroclor 1254	0.0000055	56	47	9	16	9	16	0.015
Aroclor 1260	0.000023	56	54	2	4	2	4	0.0065
Total PCBs	0.000023	56	42	14	25	14	25	0.024
DISSOLVED METALS (μg/L) Methods 200.8/SW7196A								
Arsenic	8	56	1	55	98	27	48	8,010
Cadmium	0.25	56	48	8	14	5	9	0.47
Nickel	8.2	56	12	44	79	1	2	9.1

GW = groundwater

μg/L = micrograms per liter

mg/L = milligrams per liter

ng/L = nanograms per liter

SIM = Selected Ion Monitoring

cPAHs = carginogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

TABLE 53 SUMMARY OF PRELIMINARY CLEANUP LEVELS EXCEEDANCES IN GROUNDWATER SOUTH OF THE FORMER SLIP 5 AREA ON BOEING PROPERTY BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

South of Slip 5 Groundwater Statistics	Preliminary Cleanup Levels	Number of GW Samples Analyzed	Number of Nondetects	Number of Samples with Detected Concentrations	Frequency of Detection (percent)	Number of Samples with Concentrations Exceeding Preliminary Cleanup Levels	Frequency of Exceedance (percent)	Maximum Detection
VOLATILES (µg/L)								
Method SW8260C/SW8260C-SIM								
Vinyl Chloride	0.53	48	20	28	58	5	10	140.0
1,1-Dichloroethene	3.2	48	43	5	10	1	2	4.3
cis-1,2-Dichloroethene	130	48	26	22	46	4	8	260
Trichloroethene	1.4	48	40	8	17	5	10	150
Acrylonitrile	0.057	13	12	1	8	1	8	0.16
cPAHs (µg/L) Method SW8270D-SIM Total cPAHs TEQ	0.00018	48	47	1	2	1	2	0.0007
DISSOLVED METALS (μg/L) Methods 200.8/SW7196A								
Arsenic	8	48	4	44	92	15	31	464
Nickel	8.2	48	4	44	92	1	2	10.3
TOTAL METALS Method SW7196A (mg/L)								
Chromium VI	0.00058	48	44	4	8	4	8	0.019

GW = groundwater

μg/L = micrograms per liter

mg/L = milligrams per liter

ng/L = nanograms per liter

SIM = Selected Ion Monitoring

cPAHs = carginogenic polycyclic aromatic hydrocarbons

TEQ = Toxic Equivalent Concentration

PCBs = polychlorinated biphenyls

EXCEEDANCES OF THE SMS CRITERIA FOR THE SMS CHEMICALS

Boeing Isaacson-Thompson Site Tukwila, Washington

						Subsurfac	e Core Segments				
Sample	Surface (0.40 em)	1 ft to 2 ft -0010	2 ft to 3 ft -0020	3 ft to 4 ft -0030	4 ft to 5 ft -0040	5 ft to 6 ft -0050	6 ft to 7 ft -0060	7 ft to 8 ft -0070	8 ft to 9 ft -0080	9 ft to 10 ft -0090	10 ft to 11 ft -0100
Location	Surface (0-10 cm) Arsenic	-0010	-0020	-0030	-0040	-0030	-0000	-0070	-0000	-0030	-0100
SD-501	Total PCBs		Total PCBs		Total PCBs		Total PCBs		Total PCBs		
	Benzyl Alcohol										
SD-502	Arsenic cPAHs		Hexachlorobenzene								
05-302	Total PCBs		Ticxacilloroperizerie								
	Benzyl Alcohol										
SD-503	Arsenic Total PCBs		Total PCBs		Total PCBs		Hexachlorobenzene				
	Total PCBs										
SD-504	Arsenic cPAHs		Arsenic								
	cPAHs Arsenic										
	Total PCBs		T						Total PCBs		
SD-505 ¹	Benzyl Alcohol		Total PCBs						Hexachlorobenzene	•	
									T TOXAGOTIOT ODGITZCITO		
SD-516	Benzyl Alcohol Arsenic		Total PCBs		Total PCBs		Total PCBs		Total PCBs		
02 0.0	Total PCBs		Total TODS		10(4)1 003		Total TODS		10(4)1 003		
	Total PCBs										
	Arsenic cPAHs		Acenaphthene								
	Benzo(g,h,i)perylene		Acenaphinene								
SD-506	Dibenzo(a,h)anthracene										
	Indeno(1,2,3-cd)pyrene Fluoranthene										
	Benzoic Acid		Arsenic								
	Hexachlorobenzene										
	Arsenic		Total PCBs		Total PCBs						
SD-507	Total PCBs		Phenol Butyl benzyl phthalate				Total PCBs		Total PCBs		Total PCBs
	Hexachlorobenzene		Bis(2-ethylhexyl phthalate		Phenanthrene						
			Total PCBs								
	Arsenic		Arsenic								
SD-508	Total PCBs		Zinc 1,2-Dichlorobenzene								
			1,4-Dichlorobenzene								
	cPAHs Aronia		Benzyl Alcohol								
SD-509	Arsenic Total PCBs		Total PCBs Hexachlorobenzene				Total PCBs		Total PCBs		
	Total PCBs				Arsenic						
SD-510	Hexachlorobenzene cPAH										
	CPAH Arsenic				Zinc						
	Benzyl Alcohol										
SD-511	Arsenic										
	Total PCBs Total PCBs										
SD-512 ²	Arsenic		Arsenic								
05 517	Total PCBs										
SD-517	Butyl benzyl phthalate Arsenic										
	Diethyl phthalate										
SD-513	Total PCBs				Total PCBs						
	Arsenic										
SD-514	Total PCBs										
	Arsenic										
	Hexachlorobenzene Benzyl Alcohol						Total PCBs				
SD-515	Arsenic				Benzyl Alcohol		Benzyl Alcohol				
	Total PCBs						DOTIZYI AICUTUI				

Value above PCUL (Human Seafood Consumption) Value above PCUL (Human Direct Contact) Detected Chemical Exceeds the SMS SCO Detected Chemical Exceeds the SMS Cleanup Screeing Level (Bold)

Subsurface Core Sample Color Coding

All SMS Chemicals Below the SMS Sediment Cleanup Objectives (SCO)

Detected Chemical Exceeds the SMS Cleanup Screeing Level (Bold)

Undetected Chemical Exceeds the SMS criteria (Italicized).

REMEDIAL ACTION LEVELS FROM EPA'S PROPOSED PLAN (EPA 2013) BOEING ISAACSON-THOMPSON SITE TUKWILA, WASHINGTON

			Intertidal	Sediments		Subtidal Sediments (> -4 ft MLLW)				
		(+	+11.3 ft MLLW	to -4 ft MLLW	')					
				Recovery C	ategories 2			Recovery Categories 2 and 3 ^a		
		Recovery Category 1 ^a		and	l 3 ^a	Recovery	Category 1 ^a			
		0-10 cm	0-45 cm	0-10 cm	0-45 cm	0-10 cm	0-60 cm	0-10 cm	0-60 cm	
Contaminant	Units	depth	depth	depth	depth	depth	depth	depth	depth	
PCBs (Total)	mg/kg OC	12	12	12	65	12	12	12	195 where	
									there is the	
									potential for	
									vessel scour	
cPAHs	μg TEQ /kg-dw	1,000	900	1,000	900	1,000	1,000	1,000		
Dioxins/Furans	ng TEQ/kg-dw	25	28	25	28	25	25	25		
Arsenic (Total)	mg/kg-dw	57	28	57	28	57	57	57		
SMS contaminants	contaminant-specific	SQO		2 x SCO		SQO	SQO	2 x SCO		
				(but not to				(but not to		
				exceed the				exceed the		
				CSL)				CSL)		

Notes:

cm = centimeter; cPAHs = carcinogenic polycyclic aromatic hydrocarbons; CSL = cleanup screening level; dw = dry weight; ft = feet; kg = kilogram; ug = micrograms; mg = milligrams; MLLW = mean lower low water; ng = nanograms; PCB = polychlorinated biphenyl; RAL = remedial action level; SMS = Sediment Management Standards; SCO = sediment cleanup objective, TEQ = toxic equivalent concentration

a. Recovery categories were designated in the EPA's Proposed Plan for the LDW Superfund site (EPA 2013a). Recovery Category 1 areas are those where the potential for natural recovery to occur is limited; Recovery Category 2 areas are those where natural recovery may occur but is less certain; and Recovery Category 3 areas where natural recovery is predicted to occur. At the Isaacson-Thompson site, all of the intertidal and shallow subtidal areas were judged to be Recovery Category 2, while the deeper subtidal areas (including the navigation channel) were judged to be Recovery Category 1.

TABLE 56 STORAGE TANK AND SUMP INVENTORY BOEING ISAACSON-THOMPSON PROPERTY TUKWILA, WASHINGTON

Name	Tank		r	T	1	1		Size	T	
TS-01 TS-01 UST 14-02 Week Yard Reserve tooler (set 1 1000 Classic-register) 18-02 Week Yard States of department of the control of the cont		Alternate ID	Type	Building	Location	Purnose	Contents		Status	Release
TS-03 UST 14-02 West Yord generated by Deed 000 (n) Removed Months of the previous expenses from MV-10, which are better better the previous expenses from MV-10, which are better the previous methods and results for all samples from TDP-64, TP-068, and MV-10, and generated services from MV-10, which are better better the previous expenses from MV-10, which are better better the previous methods and results and previous methods and results and previous methods and results are better the previous expenses from MV-10, which are better better the previous methods and results are better the previous expenses from MV-10, which are better better the previous previous free from MV-10, which are better better the previous methods and results are better the previous expenses from MV-10, which are better better the previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed in 1804. Per previous methods and removed and rem	TS-01	TS 01								
1910 1940 West Yard generator field Desid 2010 (s) Serritored (AW-10, and genurobates caraptes from MV-10, which are below the RI preliminary sciencial provided from the Company of Copyright (and a special provided from MV-11). The AST 14-01 West Yard Configuration (and a special provided from MV-11) and the Company of Copyright (and Agricultus) and Company of Copyright (and Agricultus) and Company of Copyright (and Agricultus) and Company of Copyright (and Agricultus) and Company of Copyright (and Agricultus) and Copyrig	TS-02		UST	14-02	West Yard	_	Gasoline	1,000	R DMOV/DO	No indication of release based on TPH results for soil samples from TDP-24, TP-106B, and MW-10, and groundwater samples from MW-10, which are below the RI preliminary cleanup levels.
TS-04 UST 14-03 Esist Yurid OWS TS-92 Stormwinderfoli 4000 (b) Removed with FRI preliminary deating Law Every Removed with FRI preliminary deating Law Every Removed with Trystatilis of Law Preliminary deating Law Every Removed with Trystatilis of Law Preliminary deating Law Every Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis of Law Preliminary Removed with Trystatilis and Control Cont	TS-03		UST	14-02	West Yard		Diesel	500 (a)	Pamovad	No indication of release based on TPH results for soil samples from TDP-24, TP-106B, and MW-10, and groundwater samples from MW-10, which are below the RI preliminary cleanup levels.
TSA-15 BMA 015 / Tank B AST 14-01 West Yard Accumulation for disposal results. TSA-21 BMA 021 / Tank C / BP-1 AST 14-01 West Yard Accumulation for disposal results. TSA-25 BMA 021 / Tank C / BP-1 AST 14-01 West Yard Accumulation for disposal results. TSA-26 BMA 021 / Tank C / BP-1 AST 14-01 West Yard Accumulation for disposal results. TSA-27 BMA 026 AST 14-13 North Side Emergency generator fivel TSA-28 BMA 026 / BP-2 Sump 14-01 Column D1-6 Temporary holding sump sump sump sump sump sump sump sump	TS-04		UST	14-03	East Yard		Stormwater/oil	4000 (b)	Removed	with hydraulic oil, no preliminary cleanup levels were exceeded in soil and groundwater samples
TSA-21 BMA 025 / BP-1 AST 14-01 West Side Energoncy BMA 026 / BP-2 Sump 14-01 Column B-12 Lift station sump BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-04 West Side Energoncy generator fuel BMA 050 AST 14-05 West Side Energoncy generator fuel BMA 050 AST 14-01 West Side Energoncy generator fuel BMA 050 AST 14-01 AST 14-01 AST 14-01 AST 14-01 AST 14-02 AST 14-02 AST 14-02 AST 14-03 Inside Building BMA 050 AST 14-03 Inside Building BMA 050 AST 14-04 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-05 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-06 AST 14-07 AST	TSA-14	BMA 014 / Tank A	AST	14-01	West Yard		Paint booth waste	10,000	Removed	
TSA-25 BMA 025 AST 14-13 North Side Emergency generator fuel gener	TSA-15	BMA 015 / Tank B	AST	14-01	West Yard		Paint booth waste	10,000	Removed	No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results, and construction-related soil sample results.
TS-26 BMA 026 / BP-2 Sump 14-01 Column D1-6 Temporary nolding sump Copper plating / aqueous degreaser 400 Removed The sump, constructed of fiberglass, was encased in concrete and no soil was exposed during removal; therefore, no soil samples were collected. There are no indications of a release based on soil and groundwater results for MW-1 located adjacent to the sump. BMA046 Sump 14-01 Column B-12 Lift station sump Sewage Unknown; No investigation was conducted since this is a sanitary sewer sump. BMA050 AST 14-03 Inside Building Fatigue test Hydraulic oil 3,100 Removed Unknown; No investigation was conducted since this tank was located inside an existing building. BMA051 AST 14-03 Inside Building Fatigue test Hydraulic oil 3,100 Removed Unknown; No investigation was conducted since this tank was located inside an existing building. TS-57 BMA 057 AST 14-02 West Side Emergency generator fuel Diesel 500 Active None observed. BMA064 AST 14-01 West Side Fueling vehicles Propane 500 Removed / relocated None observed. TS-67 BMA 067 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-68 BMA 068 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	TSA-21	BMA 021 / Tank C / BP-1	AST	14-01	West Yard			5,000	Removed	No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results and construction-related soil sample results.
TS-26 BMA 026 / BP-2 Sump 14-01 Column D1-6 Interpolarly holding sump sump sump sump sump sump sump sump	TSA-25	BMA 025	AST	14-13	North Side		Diesel	200	Active	None observed
BMA050 AST 14-03 Inside Building Fatigue test Hydraulic oil 3,100 Removed Unknown; No investigation was conducted since this tank was located inside an existing building. BMA051 AST 14-03 Inside Building Fatigue test Hydraulic oil 3,100 Removed Unknown; No investigation was conducted since this tank was located inside an existing building. TS-57 BMA 057 AST 14-02 West Side Emergency generator fuel BMA064 AST 14-01 West Side Fueling vehicles Propane 500 Removed / relocated None observed. TS-67 BMA 067 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed And construction-related soil sample results. RI soil and groundwater sample results. TS-68 BMA 068 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	TS-26	BMA 026 / BP-2	Sump	14-01	Column D1-6			400	Removed	removal; therefore, no soil samples were collected. There are no indications of a release based on R
BMA051 AST 14-03 Inside Building Fatigue test Hydraulic oil 3,100 Removed Unknown; No investigation was conducted since this tank was located inside an existing building. TS-57 BMA 057 AST 14-02 West Side Emergency generator fuel Diesel 500 Active None observed. BMA064 AST 14-01 West Side Fueling vehicles Propane 500 Removed / relocated None observed. TS-67 BMA 067 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results. RI soil and groundwater sample results. TS-68 BMA 068 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results. RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E9 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	BMA046		Sump	14-01	Column B-12	Lift station sump	Sewage		Unknown	Unknown; No investigation was conducted since this is a sanitary sewer sump.
TS-57 BMA 057 AST 14-02 West Side Emergency generator fuel Diesel 500 Active None observed. BMA064 AST 14-01 West Side Fueling vehicles Propane 500 Removed / relocated None observed. TS-67 BMA 067 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-68 BMA 068 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results. TS-69 BMA 069 Sump 14-01 E9 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E9 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	BMA050		AST	14-03	Inside Building	Fatigue test	Hydraulic oil	3,100	Removed	Unknown; No investigation was conducted since this tank was located inside an existing building.
BMA064 AST 14-01 West Side generator fuel generato	BMA051		AST	14-03	Inside Building	Fatigue test	Hydraulic oil	3,100	Removed	Unknown; No investigation was conducted since this tank was located inside an existing building.
TS-67 BMA 067 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-68 BMA 068 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E9 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	TS-57	BMA 057	AST	14-02	West Side		Diesel	500	Active	None observed.
TS-67 BMA 067 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed and construction-related soil sample results. No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. TS-69 BMA 069 Sump 14-01 E7 (Outside) Wastewater collection Paint booth waste 100 Removed No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results. No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	BMA064		AST	14-01	West Side	Fueling vehicles	Propane	500	Removed / relocated	None observed.
TS-69 RMA 069 Sump 14-01 E8 (Outside) Wastewater collection Paint booth waste 100 Removed and construction-related soil sample results. No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results.	TS-67	BMA 067	Sump	14-01	E7 (Outside)	Wastewater collection	Paint booth waste	100		No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results and construction-related soil sample results.
	TS-68	BMA 068	Sump	14-01	E8 (Outside)	Wastewater collection	Paint booth waste	100		No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results and construction-related soil sample results.
	TS-69	BMA 069	Sump	14-01	E9 (Outside)	Wastewater collection	Paint booth waste	100	Removed	No indication of release based on pre-RI soil sample results, RI soil and groundwater sample results and construction-related soil sample results.

TABLE 56 STORAGE TANK AND SUMP INVENTORY BOEING ISAACSON-THOMPSON PROPERTY TUKWILA, WASHINGTON

Tank Number	Alternate ID	Туре	Building	Location	Purpose	Contents	Size (gallons)	Status	Release
TS-92	SEP 04	ows	14-03	East Yard	Hydraulics and parking lot	Stormwater/oil		Removed	Petroleum-impacted soil removed in 1994. Post-remedial action investigation conducted and results are below the RI preliminary cleanup levels, except for cPAHs, which are not typically associated with hydraulic oil. No preliminary cleanup levels were exceeded in soil and groundwater samples collected from MW-11.
TS-93	SEP N	ows	14-01	Southwest Yard	Oil trap for parking lot	Stormwater/oil		Active	Unknown; no investigation planned.
TS-91	SEP S	ows	14-03	North End	Oil trap for parking lot	Stormwater/oil		Active	Unknown; no investigation planned.
SMPTS1		Sump	14-03	737 Fatigue Test Pad	Hydraulic fluid leaks	Hydraulic fluid		Removed	Petroleum-impacted soil removed in 1994. Post-remedial action investigation conducted and results are below the RI preliminary cleanup levels, except for cPAHs, which are not typically associated with hydraulic oil. No preliminary cleanup levels were exceeded in soil and groundwater samples collected from MW-11
TS-05		UST	14-05	Southeast Yard	Storage for dispensing	Diesel	6,000	Removed	No indication of a release based on field screening and soil sample results at RI test pit TP-109.
TS-06		UST	14-05	Southeast Yard	Storage for dispensing	Diesel	6,000	Removed	No indication of a release based on field screening and soil sample results at RI test pit TP-109.
TS-07		UST	14-05	Southeast Yard	Storage for dispensing	Diesel	6,000	Removed	No indication of a release based on field screening and soil sample results at RI test pit TP-109.
TS-08		UST	14-05	Southeast Yard	Storage for dispensing	Diesel	6,000	Removed	No indication of a release based on field screening and soil sample results at RI test pit TP-109.
TS-09		Sump	14-08	North Yard	Unknown	Paint Sludge	10,000	Removed	No indication of a release based on pre-RI soil sample results, RI soil sample results for SB-9, SB-10, and SB-11, and RI groundwater results for MW-15.
TS-10		Sump	14-08	North Yard	Unknown	Paint Sludge	10,000	Removed	No indication of a release based on pre-RI soil sample results, RI soil sample results for SB-9, SB-10, and SB-11, and RI groundwater results for MW-15.
TS-11		Sump	14-08	North Yard	Unknown	Paint Sludge	10,000	Removed	No indication of a release based on pre-RI soil sample results, RI soil sample results for SB-9, SB-10, and SB-11, and RI groundwater results for MW-15.
TS-12		UST	14-05	North Yard	Reserve Boiler Fuel	Fuel Oil	two 1,000	Removed	Previously investigated and results are below the RI preliminary cleanup levels.
14-02 Indoor Sump		Sump	14-02	Inside at SE Corner	Mechanical Pit	Pipes	60	Active	A reconnaissance of the sump was conducted and the sump has no outlet pipe. A pump was in the sump during the reconnaissance.
Tunnel Sump		Sump	14-01	North (outside)	Rainwater Collection	Rainwater	Approx 60	Active	None
Tunnel Sump		Sump	14-01	North (outside)	Rainwater Collection	Rainwater	Approx 60	Active	None
Stair Sump		Sump	14-01	Northeast (outside)	Rainwater Collection	Rainwater	Approx 60	Active	None
NE Former Sump		Sump	14-05	East Side	Unknown	Unknown	Approx 50	Removed	Previously investigated and results are below the RI preliminary cleanup levels with the exception of arsenic and PCBs, which are not an indication of a release.
Former Steam Cleaning Rack and Sump		Sump	14-05	Courtyard	Wastewater Collection	Steam Cleaning Waste		Removed	Previously investigated and results are below the RI preliminary cleanup levels with the exception of arsenic, which is not an indication of a release.

TPH = total petroleum hydrocarbon
RI = remedial investigation
cPAHs = polycyclic aromatic hydrocarbons
PCBs = polychlorinated biphenyls

UST = Underground storage tank
AST = Aboveground storage tank
OWS = Oil/water separator

⁽a) Some historical records indicate that this was a 500-gallon tank and others indicate that it may have been a 2,000-gallon tank.

⁽b) Some historical records indicate that this was a 4,000-gallon tank and others indicate that it may have been a 5,000-gallon tank.