CSID 1785 FSID 29583133

WORKSHEET 1 SUMMARY SCORE SHEET

Site Name/Location (Street, City, County, Section/Township/Range, TCP ID Number):

Bellingham Port Weldcraft Site	T38/R02E/Section 23
2929 Roeder Ave.	latitude 48º 45' 26.4"
Bellingham, WA 98225-2065	longitude 122º 30' 27.6"
	Facility Site I.D 9961698

Site assessed/ranked for February 26, 2002 Update.

Site Description (Include management areas, substances of concern, and quantities):

Bellingham Port Weldcraft Site (Weldcraft Steel & Marine):

A Brief Summary of Events

Bellingham Port Weldcraft Site (Weldcraft) was established in 1946 as Weldcraft Steel Works, and is located at 2929 Roeder Avenue, along Bellingham Bay at Squalicum Way and Harbor Loop Drive in Bellingham, WA. The business maintained its lease with the Port of Bellingham (the Port), owner of the property, until February 2000. Weldcraft operated as a shipyard and conducted boat construction, repair and maintenance; wood and metal fabrication; marine pipefitting; electrical; sheet metal work; painting; machinery construction, installation and repair; vessel haulout and launching; lofting and pattern-making; canvas and plastic work; storage, brokerage, retail and wholesale sales; and concrete work.

Landau Associates, contractor for the Port, completed three environmental site assessments (ESAs) at the Weldcraft site between the period of 1993 through 1998. The Phase I ESA was undertaken to resolve questions concerning potential impact by the operation at various locations onsite. Historical information was reviewed during this ESA, and areas identified as having been potentially impacted by the Weldcraft operation were sampled during the Phase II and III ESAs. Areas investigated and sampled included

- the location of a former UST
- oil stained areas
- boat maintenance work yards
- sediments in the vicinity of the site near shore activities and outfall areas (including catch basins)
- soil grab samples from the dry storage yard, and

• accumulated sediment and boat maintenance waste from Marine Way railway (submerged during high tide).

Bellingham Port Weldcraft Site was listed on Ecology's Confirmed and Suspected Contaminated Sites List on September 4, 2001.

Areas with contamination confirmed (and remaining to date) as a result of the three ESAs are summarized in the following table: (refer to Landau Associates, *Draft Work Plan*, March 28, 2001, for a complete description)

Contaminant	Removed UST (Northeast side of building)	Marine Railway (V144F)	Offshore sediments (SD2-01)	Soil under septic **	Soil under Catch basin 2**	Sandblast area
TPH - gas (mg/Kg)	3200 (SB-8) 180 (SB-25) 95 mg/L (SB-8W)	1600		470		
TPH - diesel (mg/Kg)		16000			2500	
TPH - heavy oil, (mg/Kg)		17000			1600	
BTEX (mg/Kg)	8.1 Benzene (SB-25) 31.6 xylenes (SB-25) 26 benzene (SB-30) all > MTCA (SB-8W)*					
Metals (mg/Kg)		28.7 Hg 110 As 10600 Cu 1610 Pb			8 As	1160 Pb (SB-20)
Benzo (a) pyrene (mg/Kg)		3.5				
Chrysene		11		-		
Benzo (b) fluoranthene		7.7				
Benzo (k) fluoranthene		6.3				
Benzo (a) pyrene		3.5				
Indeno (1,2,3- cd) pyrene		2.6				
Benzo (g,h,I) perylene		2.5				
Benzo (a) anthracene	· · · · · · · · · · · · · · · · · · ·	8.8				
Tributlytin (mg/Kg)		19.6	120		· · · · ·	

Note: The above table represents contamination remaining to date, and does not reflect areas where remediation has occurred.

* SB-8W is a groundwater sample collected at a depth of 9 - 10 feet.

** Sampled as part of an independent cleanup activity - technical memorandum not yet available.

The locations above are noted on the Landau Associates "Figure 2" and "Figure 3" which can be found at the end of this document.

Remedial activities that the Port has conducted at the site have included

- Removal of large quantities of waste materials including derelict boats, used oil, scrap metal and fiberglass, unused paints and solvents, and other boatyard wastes
- Cleaning out of three catch basins and two floor drains
- Removal of an apparent septic tank from the west side of Building 1 and sampling of soils underlying the septic tank see above table for results
- Removal of concrete dispenser island pad from the northwest side of Building 1 that was associated with the former UST (removed previously), and sampling of soil under pad
- Sampling of soil under open bottomed Catch Basin 2 see above table for results

The Port has outlined their future efforts at this site in their Remedial Investigation Feasibility Study Draft Work Plan, March 28, 2001.

Though further investigation and remedial action are planned, the Weldcraft property will be scored and ranked under MTCA, using the Washington Ranking Method (WARM), reflecting current conditions.

Special Considerations (Include limitations in site file data or data which cannot be accommodated in the model, but which are important in evaluating the risk associated with the site, or any other factor(s) over-riding a decision of no further action for the site): None

ROUTE SCORES:

Surface Water/Human Health: 33.4

Surface Water/Environ.: <u>64.5</u>

Air/Human Health: <u>39.0</u>

Air/Environmental: <u>32.4</u>

Ground Water/Human Health:43.7

OVERALL RANK: 1

3

Landau Associates, Inc. Phase II Environmental Site assessment Weldcraft Steel and Marine Site Bellingham, Washington. 25 June 1998. Landau Associates, Inc. Remedial Investigation and Feasibility Study Weldcraft Steel and Marine Facility Bellingham, Washington. Draft Work Plan. 28 March 2001.

WORKSHEET 2 ROUTE DOCUMENTATION

1. SURFACE WATER ROUTE : List those substances to be considered for scoring: Source: 11 TPH gas, diesel and motor oil, benzene, toluene, ethylbenzene, xvlenes, mercury, arsenic, copper, lead, benzo(a)pyrene, chrysene, benzo(a) anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, ineno(1,2,3-cd)pyrene, benzo(g,h,I)perylene, and tributyl tin. Explain basis for choice of substance(s) to be used in scoring. Source: 11 Ground water monitoring and sampling of soils conducted at site List those management units to be considered for scoring: Source:11 Contaminated soil, surficial lead, depths of less than 2.5' and upper intertidal soils collected at 0.05'. Explain basis for choice of unit to be used in scoring. Source:11 Product found in soils at site 2. AIR ROUTE : List those substances to be considered for scoring: Source: 11 TPH gas, diesel, mercury, arsenic, copper, lead, benzo(a)pyrene, chrysene, benzo(a) anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, benzo(g,h,I)perylene, and tributyl tin. Explain basis for choice of substance(s) to be used in scoring. Source: 11 Surficial lead found in former sandblast area, gas, diesel, PAH's found in railway upper intertidal region at a depth of 0.05', which is exposed during low tide. List those management units to be considered for scoring: Source:11 Contaminated soils Explain basis for choice of unit to be used in scoring. Source:11 Product found in surficial soils and intertidal soils. 3. GROUND WATER ROUTE List those substances to be considered for scoring: Source:11 TPH gas, diesel and motor oil, benzene, toluene, ethylbenzene, xylenes, mercury, arsenic, copper, lead, benzo(a)pyrene, chrysene, benzo(a) anthracene, benzo(b) fluoranthene, benzo(k) fluoranthene, indeno(1,2,3-cd) pyrene, benzo(g,h,I)perylene, and tributyl tin. Explain basis for choice of substance(s) to be used in scoring. Source:11 Ground water monitoring and sampling of soils conducted at site List those management units to be considered for scoring: Source:11 Contaminated groundwater and soil

Explain basis for choice of unit to be <u>used</u> in scoring. Product found subsurface in groundwater or in soil

WORKSHEET 4 SURFACE WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

	I	Drink:	ing							
Wa		Water		Acute		Chronic	Carcino-			
	\$	Standard Toxicity			tγ	Toxicity	genicity			
<u>Sub</u>	stance	<u>(ug/1)</u>	<u>Val.</u>	<u>(mg/kg-bw)</u>	<u>Val.</u>	<u>(mg/kg/day)</u>	<u>Val.</u>	WOE	<u>PF</u>	<u>_ Val</u>
1.	TPH as Gas	5	8	3306rat	3	ND	ND	1.0	5	5
2.	TPH as diesel	20	6	490rat	5	0.004	3	ND		ND
3.	TPH as heavy oil		ND	ND	ND	2	1			ND
4.	mercury	2	8	ND	ND	ND	5	ND		ND
5.	arsenic	50	6	763rat	5	0.001	5	1.0	7	7
6.	copper	1300	2	ND	ND	0.037	1	ND		ND
7.	lead	5	8	ND	ND	ND	ND	0.8	ND	\mathbf{ND}
8.	benzo(a)pyrene	0.2	10	50rat	10	ND	ND	0.8	9	7
9.	chrysene	0.2	10	ND	ND	ND	ND	0.8	9	7
10.	benzo(b)fluoranthene	0.2	10	ND	ND	ND	ND	0.8	9	7
11.	benzo(k)fluoranthene	0.2	10	ND	ND	ND	ND	0.8	9	7
12.	indeno(1,2,3cd)pyrene	e 0.2	10	ND	ND	ND	ND	ND		ND
13.	tributyltin		ND	46rat	10	ND	ND	ND		ND

^{*}Potency Factor

Source: <u>11,3</u>

Highest Value: 10

+2 Bonus Points?_2 Final Toxicity Value: 12

1.2 Environmental Toxicity

	() Freshwat (x) Marine	ter						
		Acute Quali	Water ty Cri	teria	Non-human Acute Toxi	Mammali Lcity	an	
<u>Sub</u>	stance	<u>(ug</u>	/1)	Value	<u>(mg/kg)</u>	<u>Value</u>	Source: <u>11,3</u>	Value: 8
1.	TPH as Gas		5	2				
2.	TPH as diesel		20	2				
4.	mercury		2	8				
5.	arsenic		50	6				
6.	copper		1300	8				
7.	lead		5	4				
8.	benzo(a)pyrene		0.2	4				
9.	chrysene		0.2	4				
10.	benzo(b)fluoranthene	Э	0.2	4				
11.	benzo(k) fluoranthene	9	0.2	4				
12.	indeno $(1,2,3-cd)$ pyr	rene	0.2	4				
13.	benzo (q,h,I)pervler	ne	0.2	4				
14.	tributyltin			ND				

WORKSHEET 4 (CONTINUED) SURFACE WATER ROUTE

1.3	Substance Quantity: <u>unknown, use default = 1</u> . Explain basis:	Source: <u>2</u> Value: <u>1</u> (Max.=10)
2.0	MIGRATION POTENTIAL	
2.1	Containment: <u>no run-on/run-off control system or cover</u>	Source: <u>11,2</u> Value: <u>10</u>
2.2	Surface Soil Permeability: <u>adjacent to surface water</u>	Source: <u>11,2_</u> Value: <u>7</u>
2.3	Total Annual Precipitation: 33.6	Source: 4 Value: 3
2.4	Max. 2-Yr/24-hour Precipitation: <u>1.5-2</u>	Source: <u>2</u> Value: <u>2</u> (Max.=5)
2.5	Flood Plain:not in 100 year flood plain	Source: <u>12</u> Value: 0 (Max.=2)
2.6	Terrain Slope: 0-2%	Source: <u>1,9 Value: 1</u>
3.0	TARGETS	
3.1	Distance to Surface Water: <u>≤1000'to Bay</u>	Source: 1 Value: 10
3.2	Population Served within 2 miles (See WARM Scoring Manual Regarding Direction): $\bullet pop.=\bullet 0 = 0$	Source: 7 Value: 0
3.3	Area Irrigated within 2 miles <u>0.75•no. acres</u> (Refer to note in 3.2.): <u>0.75 $\sqrt{0} = 0$</u>	Source: 7 Value: 0
3.4	Distance to Nearest Fishery Resource: <u>≤1000 ft</u>	Source: 1 Value: 12
3.5	Distance to, and Name(s) of, Nearest Sensitive Environment(s) <u>Bellingham Bay/fisheries/coastal</u>	Source: 1 Value: 12

4.0 RELEASE5.0 Explain basis for scoring a release to surface water: soils in surface water during high tide

Source: <u>11</u> Value: <u>5</u> (Max.=5)

WORKSHEET 5 AIR ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Introduction (WARM Scoring Manual) - Please review before scoring

1.2 Human Toxicity

		Air	_	Acute		Chronic		Carci	no-	
Sub	stance	Standar (ug/m ³)	d Val.	Toxicity (mg/m ³) V	/ /al.	Toxicity (mg/kg/dav) Val.	genic. WOE	ıty PF	Val.
		<u></u>		, <u></u> .		. <u></u>	<i>_</i> , <u></u>			_
1.	TPH as Gas	0.12 166 F	10	31947rat	3		NID	1.0	5	5
⊿. ર	mercury	100.5	4 10		ND	8 58-05	8			
4.	Lead	0.5	10		ND	0,58-05	ND			ND
5.	copper	3.3	9		ND		ND			ND
б.	arsenic	.00023	10		ND		ND	1.0	9	9
7.	benzo(a)pyrene	.0006	10		ND		ND			ND
								Sour	ce: <u>3</u>	
Pot	ency Factor						Highe	est Va	lue:	<u>10</u> =10)
						+2 Bo	nus Po	oints?	2	
						Fin	al Tox	ricity	Val	1e: <u>12</u>
1 2	Mobility (Mao numbers to	rofor t	o obe	Tro listod	1	hatonaoa)				,
т.э	1.3.1 Gaseous Mobility	rerer c	U abi	Jve IIsted	i su	Dstances/				
	Vapor Pressure(s)	(mmHg)	: <u>1)=</u>	4, 2) = 3,	3)=	<u>3 , 7)=1</u>	Sourc	:e: <u>2,3</u>	_Val	
									(Max.	=4)
	1 3 2 Particulate Mobil	lity _								
	Soil type: gravel	llv coar	se to	o fine san	ıd		Sourc	e: 2	Valu	ıe: 3
	Erodibility: 220								(Max	=4)
	Climatic Factor:1	<u>L-10</u>								
1 /	Highogt Human Haalth May	aitu/Mo	h;1;+	w Matrix	17-1	uo (from To	hlo N_	7)		
1.4	nighest numan hearth fox	LCTCA/MO	ωττι	y Macrix	Var	equals Fina	l Matr	ix Va:	lue:	24
									(Max .	=24)
1.5	Environmental Toxicity/Mo	bility					Sourc	:e:	2,3	
~ '	Non-human N	Iammalia	n Acu	ite			Г)	able A	<u>4</u> -7)	
Subs	Tinhal. Toxicit	<u>y (mg/m</u> /wat	<u>) Va</u>	lue Mobili	ity	(mmHg) Valu	<u>le Mati</u>	<u>rıx Va</u>	lue	
⊥ •	1rn as Gas 31947	Idl		3 95			**	U		
Hi	ghest Environmental Toxici	.ty/Mobi	lity	Matrix Va	lue					
		(From T	able	A-7) equ	als	Final	Matri	x Valu	10: <u>(</u> Max.	5 =24)

WORKSHEET 5 (CONTINUED) AIR ROUTE

1.6 Substance Quantity: <u>unknown</u> Explain basis:

Source:<u>2,3</u>

Value:1 (Max.=10)

2.0 MIGRATION POTENTIAL

2.1	Containment: vapor-spill/discharges to surface soil	Source: 2,11	Value: 10
3.0	TARGETS		
3.1	Nearest Population: <u>≤1000 feet</u>	Source: 1	Value: 10 (Max.=10)
3.2	Distance to, and Name(s) of, Nearest Sensitive Environment(s) wetland ≤ 1000' Estuary/coastal	Source: 1	Value: 7 (Max.=7)
3.3	Population within 0.5 miles: \bullet pop.= $\sqrt{3441(.25)}$ = 29 (Note: am using one-quarter of the 0-1 mile population determined from the U.S. EPA SITEINFO database)	Source: 5	Value: 29 (Max.=75)
4.0	RELEASE		,

Explain basis for scoring a release to air: <u>None</u> Source: <u>2</u> **Value: 0** <u>documented.</u>

WORKSHEET 6 GROUND WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

		Drink Water	ing	Acute		Chronic		Ca	rcino-	
		Stand	ard	Toxicit	y	Toxicity		ge	nicity	
<u>Subs</u>	stance ,	<u>(ug/1)</u>	<u>Val.</u>	(mg/kg-bw)	<u>Val.</u>	(mg/kg/da	<u>y) Val.</u>	WÕE	_ <u>PF[*]</u>	<u>Val.</u>
1.	TPH as Diesel	20	6	490rat	5	0.004	3			ND
2.	TPH as Gas	5	8	3306rat	3	ND	ND	1.0	5	5
3.	TPH as heavy oil	_	ND		ND	2	1		_	ND
4.	benzene	5.	8	3306rat	3	ND	ND	1.0	5	5
5.	toluene	2000	2	5000rat	3	0.2	1			ND
6.	Ethylbenzene	700	4	3500rat	3	0.1	1			ND
7.	xylenes	10000	2	50	10	2	1		-	ND
8.	arsenic	50	6	763rat	5	0.001	5	1.0	/	/
9.	Tead	Э	8	ИЛ	ND	ND	ND			MD
• Pote	ency Factor						Sou Highest V	irce: /alue	<u>3, 11</u> : <u>10</u>	·
							D Donug	Doin	(Max.=10)	
						F	+2 Bonus inal Toxi	.citv	Value:	12
								-	(Ma:	<.=12)
1.2	Mobility (Use num)	hers to	refe	r to above '	listeć	l substance	eg)			
±	Cations/Anions: 8)=3, 9)=	=2				Source:2,	3	Value:	3
	· · · · · · · · · · · · · · · · · · ·						· ·		(Ma)	(.=3)
	OR									
	Solubility(mg/l):_	<u>1)=1, 2</u>	<u>2)=3,</u>	3)=0, 4)=3	<u>, 5)=2</u>	2 <u>, 6)=2_7)</u> :	<u>=2</u>			
1.3	Substance Quantity	<i>z</i> : T	Inknou	vm = 1			Source:	2	Value:	1
210	Explain basis:			<u> </u>		,			(Max	c.=10)
2 0		л т.								
2.0	MIGNATION FOIDATI					-				
2.1	Containment					:	Source:	2	Value:	10
	Explain basis <u>sp</u>	<u>lll/disc</u>	charge	<u>es_to_surfac</u>	<u>ce soi</u>	.1			(110)	(.=10)
2 2	Net Precipitation	22) 3_5	6-167	nchee		Source	Δ	Value	2
4.2	Met FICCIPICATION	1. 42		.0- 10./		<u> </u>	Jource		Max.	.=5)
2.3	Subsurface Hydrau	lic Cond	luctiv	vity:		5	Source:	9	Value:	4
24	Vertical Depth to	Ground	Water	r. average d	lenth	of				
2. 1	3 wells = 9.94 fe	et: obs	erved	f release to	o grou	<u>or</u> Ind water 9	Source: 2	. 6	Value:	8
	<u>0 10210 0101 10</u>	, <u>, , , , , , , , , , , , , , , , , , </u>	<u>/01 / 01</u>	<u>10104000</u> 0	9100	<u>Ing Waber</u> .			(Max	(.=8)
3.0	TARGETS									
~ 4		•					~ ^	<i>c</i> 0		
3.1	Ground Water Usage	: <u>priva</u>	<u>ite su</u>	upply with u	inthre	atened S	Source:2,	<u>6,8</u>	Value:	4 =10)
	<u>alternate</u>	ivallabi	<u>.e</u> .							
3.2	Dist. to Nearest I	Drinking	Wate	er Well: <u>>50</u>	00-10	0001	Source:	6	Value:	1
									(Max	(.=5)
3.3	Population Served	within	2 Mil	les:√21=	:5		Source: <u>6</u>	<u>, 8</u>	Value:	5 =100)
3.4	Area Irrigated by	(Ground	lwater	:) Wells wit	hin 2	miles:				

Value: 0

4.0 RELEASE

3.5

Explain basis for scoring a release to ground water: <u>Documented product recovery from on site wells</u>

Source:<u>1</u>

Value: 5

SOURCES USED IN SCORING

- 1. Relevant Site History/Investigations/Whatcom County Health & Human Services File.
- 2. Washington State Department of Ecology. <u>WARM Scoring Manual</u>. April 1992
- 3. Washington State Department of Ecology. <u>Toxicology Database for Use</u> <u>in Washington Ranking Method Scoring</u>. January 1992.
- 4. Washington State University Cooperative Extension Service, Washington Climate.
- 5. U.S. EPA SITEINFO GIS Query for BMI location.
- 6. Whatcom County Health and Human Services, well logs.
- 7. Water Rights Application Tracking System, NWRO Ecology. List of Wells and Water Usage in Surrounding Area.
- 8. Washington State Department of Health Public Water Systems (list on file at Whatcom County Health and Human Services Drinking Water Program).
- 9. Goldin, Alan. PhD. <u>Soil Survey of Whatcom County Area, Washington</u>. United States Department of Agriculture, Soil Conservation Service, 1985.
- 10. Landau Associates, Inc. Phase II Environmental Site assessment Weldcraft Steel and Marine Site Bellingham, Washington. 25 June 1998.
- 11. Landau Associates, Inc. Remedial Investigation and Feasibility Study Weldcraft Steel and Marine Facility Bellingham, Washington. Draft Work Plan. 28 March 2001.
- 12. Whatcom County Planning & Development. <u>CAO Articles III & IV</u> (Geohaz. & Flooding) T38N - R2E. Map. 5/1/99.