

600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

September 10, 2015

Washington State Department of Ecology Northwest Regional Office 3190 – 160th Avenue SE Bellevue, Washington 98008-5452

Attention: Diane Escobedo, Site Manager, Toxics Cleanup Program

Subject: Request for NFA-Likely Opinion Letter

Seattle Marriott AC

739 9th Avenue North - VCP # NW2953

Seattle, Washington

GeoEngineers File No. 20776-003-00

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) is submitting this letter to the Washington State Department of Ecology (Ecology) in response to their May 11, 2015 opinion letter regarding a proposed Marriott Hotel development project (known also as the Maaco Auto Painting Bodywork site) in the South Lake Union neighborhood at 739 9th Avenue North in Seattle, Washington (herein referred to as the "subject property") on behalf of our client, White/Peterman Properties, Inc. Ecology's May 11, 2015 opinion letter is included as Appendix A.

The subject property is situated in a former industrial and currently underutilized area about one block south and west of the south shoreline of Lake Union. Based on site history and site characterization studies, recent project experience nearby, and our review of Ecology documents, two area-wide groundwater plumes are present through much of this part of the South Lake Union neighborhood.

- The first plume (a solvent plume) is sourced from the former American Linen industrial laundry. This plume is well known in the environmental community, has undergone significant investigation and remediation at the source and is currently being monitored and tracked by Ecology through the Voluntary Cleanup Program (VCP #NW2652). Based on groundwater data from 2014, this extensive groundwater plume remains beneath several nearby properties; including the subject property to some extent. Ecology has issued two Opinion Letters related to cleanup of the former American Linen site (dated November 6, 2013 and March 21, 2014). The March 21, 2014 Ecology opinion indicates that "upon completion of your proposed cleanup, no further remedial action will likely be necessary to cleanup contamination at the Site."
- The second plume (benzene and gasoline range hydrocarbons) is sourced from the adjacent former Seattle City Light Roy Street Shops site. The Roy Street Shops site was last reported to Ecology in 1995. However, the data we present in this response letter references and updates groundwater

results obtained in 2011. Like the solvent-plume from the upgradient American Linen site, the benzene- and gasoline- contaminated groundwater plume has also migrated onto the subject property.

This letter addresses the data gaps and other issues raised in Ecology's May 11, 2015 opinion letter. We request that a No Further Action (NFA) Likely opinion letter be issued by Ecology for the subject property following Ecology's review of this letter and its enclosures. These results combined with the following reports already provided to Ecology summarize the environmental conditions and proposed remedy at the subject property and provide the basis for an NFA-likely determination:

- Phase I Environmental Site Assessment, South Lake Union Marriott AC, 739 9th Avenue North, Seattle, Washington, WPPI Bellevue MFS, LLC, dated November 13, 2014.
- Phase II Environmental Site Assessment, South Lake Union Marriott AC, 739 9th Avenue North, Seattle, Washington, WPPI Bellevue MFS, LLC, dated November 13, 2014.
- Conceptual Cleanup Action and Request for NFA Likely Opinion Letter to Ecology, 739 9th Avenue North, Seattle, Washington, dated February 17, 2015 (which includes a VCP Application included in Appendix A).

Results and pertinent information from the above studies are summarized in the following section and included on the attached Figures 1 through 14 and Tables 1 through 5. These new figures and tables supplement the February 17, 2015 VCP request.

2.0 BACKGROUND

GeoEngineers submitted a Conceptual Cleanup Action and Request for NFA Likely Opinion Letter to Ecology on February 17, 2015, which summarized the results of the Phase I and II Environmental Site Assessments completed at the subject property in November 2014. Ecology responded to the February 17, 2015 letter with an opinion letter dated May 11, 2015 (included as Appendix A). In their letter, Ecology stated that prior to issuing a NFA-Likely opinion letter, further action is necessary at the site to address the data gaps summarized in the following bullets and described specifically below in Table A.

The data gaps identified in the May 11 Ecology opinion letter have been grouped into five main categories based on type. The five data gap categories are as follows:

- Vertical Extents of Soil Contamination Ecology determined that vertical extents of gasoline-range petroleum hydrocarbons, benzene, carcinogenic PAHs (cPAHs), and/or lead contamination in soil were not defined in the vicinity of six exploration locations;
- Lateral Extents of Soil Contamination Ecology determined that lateral extents of gasoline-, diesel-, and heavy oil-range petroleum hydrocarbons, benzene, lead, mercury, and/or naphthalenes contamination in soil were not defined in the vicinity of six exploration locations and at property boundaries:
- 3. **Vertical Extents of Soil Contamination Below Potential Planned Foundation** Ecology determined that soil contamination above MTCA Method A cleanup levels exists below the potential planned maximum foundation depth and vertical extents in these areas had not been defined;

- 4. **Separation of On-Property and Off-Property Groundwater Contamination** Ecology determined that there was inadequate delineation between groundwater contamination sourced from on-property and that from upgradient, off-property sources; and,
- 5. **Groundwater Evaluation** Ecology determined that groundwater flow direction, fluctuations over time, and potential on-property contamination sources had not been characterized.

A summary of the data gaps within each of the five categories is presented in Table A, below. For a full description of Ecology's determinations, refer to the May 11, 2015 opinion letter included as Appendix A at the end of this document. All of the Ecology comments outlined in Table A are addressed in this letter.

TABLE A. SUMMARY OF DATA GAPS DETERMINED BY ECOLOGY

Dat	ta Gaps Determined by E	cology in Response Letter Dated May 11, 2015
		Vertical extent of soil contamination was not defined for gasoline at borings DP-2 and DP-7 $$
		Vertical extent of soil contamination was not defined for benzene at borings DP-7 and DP-11 $$
1.	Vertical Extents of Soil Contamination	Vertical extent of soil contamination was not defined for cPAHs at borings DP-7 and DP-10.
		Samples DP-11 and DP-12 had no cPAHs detected, but the reporting limit exceeded the cleanup level.
		Vertical extent of soil contamination was not defined for lead at borings DP-12 and MW-2
		Lateral extent of soil contamination was not defined for gasoline and benzene contamination in the north and northeast portions of the site beyond DP-8, DP9, and DP-10 or to the west of DP-8, DP-2, and DP-11.
2.	Lateral Extents of Soil	Diesel- and heavy oil-range petroleum hydrocarbon contamination has not been defined near the oil/water separator or the underground storage tank (UST) area. However, based upon the proposed 15 feet deep excavation, shallow contamination would likely be removed.
	Contamination	Lateral extent of soil contamination was not defined for lead contamination in the western, northwestern, and southwestern portions of the Property and may extend off-Property.
		Lateral extent of soil contamination was not defined for mercury contamination in the north and west of DP-8 and DP-9 and may extend off-Property.
		Lateral extent of soil contamination was not defined for naphthalene contamination north and west of DP-2 and DP-8 and may extend off-Property.
3.	Vertical Extents of Soil Contamination Below the Planned Foundation	At various locations, the contamination is over double the MTCA A Cleanup levels at 13 feet below ground surface (bgs). And, the vertical extent has not been defined.

4	. Separation of On-Property and Off-Property Groundwater Contamination	Additional groundwater data is needed at the upgradient Property boundary, in the Property source areas, and in between to demonstrate where upgradient sources interact with on-Property sources.
5	. Groundwater	Groundwater impact extents have not been characterized. Monitoring wells must be placed in and immediately downgradient of each identified source area on the Property.
	Lvaluation	Groundwater flow direction is unknown and wells are needed to determine flow direction.

3.0 GEOENGINEERS' APPROACH TO ECOLOGY'S COMMENTS

Additional site Characterization on Subject Property (described in Section 3.0). In June 2015, GeoEngineers completed additional explorations at the subject property to obtain soil and groundwater samples to address the data gaps related to the vertical and lateral extent of soil and groundwater contamination on the subject property identified in the May 11, 2015 letter (elements 1 through 5 of Table A).

Additional Data – Roy Street Shops Property (described in Section 4.0). During July 2015 more information was obtained from the City of Seattle pertaining to the Roy Street Shops site to address the data gaps identified in the May 11, 2015 letter related to the lateral extent of contamination in soil and groundwater (elements 2, 4 and 5 of Table A). Additional site characterization had been completed during 2010 and 2011 by others on behalf of the City.

Groundwater Flow and Direction Evaluation (described in Section 5.0). In July and August 2015 GeoEngineers installed transducers in existing shallow groundwater monitoring wells and then completed a groundwater study across the Roy Street Shops property and subject property to address the data gaps identified in the May 11, 2015 letter related to the groundwater flow characteristics (elements 4 and 5 of Table A). The groundwater study consisted of a professional monitoring well survey and groundwater elevations of the shallow and deep aquifers.

4.0 ADDITIONAL SITE CHARACTERIZATION ON SUBJECT PROPERTY

In response to the data gaps determined by Ecology in the May 11, 2015 response letter, GeoEngineers completed additional explorations in order to satisfy each of the data gaps determined by Ecology (elements 1 through 5 of Table A). On June 8 and 9, 2015, eight direct push borings (DP-13 to DP-16 and MW-4 to MW-7) were completed to depths ranging from 30 to 35 feet below the ground surface (bgs), four of which were completed as monitoring wells screened within the shallow aquifer (MW-4 to MW-7). Approximate exploration locations are shown relative to previously completed explorations and site and neighboring features on Figure 2.

Twenty-four soil samples were obtained from the borings and submitted to Fremont Analytical in Seattle, Washington for at least one of the following:

- Gasoline-, diesel- and lube oil-range petroleum hydrocarbons using Northwest Methods NWTPH-Gx and NWTPH-Dx:
- Benzene or BTEX using EPA Method 8260B;
- Naphthalenes and/or PAHs, including cPAHs, using EPA Method 8270D/SIM;
- VOCs using EPA method 8260B; and,
- Lead, cadmium and/or mercury using EPA Methods 6000/7000 Series.

Groundwater samples were obtained from each of the four shallow monitoring wells (MW-4 through MW-7) and from two shallow monitoring wells (MW-101 and MW-105) located in the alley between the subject property and the Roy Street Shops site that were previously sampled as part of the Shannon & Wilson's June 2011 investigation. Each of the groundwater samples were submitted to Fremont Analytical for chemical analysis of the following:

- Gasoline-, diesel- and lube oil-range petroleum hydrocarbons using Northwest Methods NWTPH-Gx and NWTPH-Dx; and,
- BTEX using EPA Method 8260B.

Chemical analytical results for soil and groundwater samples obtained as part of the additional explorations are summarized in Section 7.0. For a full list of analyses and detections, refer to the laboratory report presented as Appendix C. Results from the 2015 explorations and the previous explorations completed in September 2014 are presented in the attached Chemical Analytical Data Tables 1 through 4. The approximate locations of the additional borings and previous borings, as well as a visual summary of the chemical analytical results of the soil samples obtained from all borings, are shown in site plan view on Figure 3 and cross section view on Figures 5 through 8. Groundwater results are presented on Figure 4.

5.0 ADDITIONAL DATA - ROY STREET SHOPS SITE DATA

Based on Ecology's May 11, 2015 response letter, the following two reports were obtained from the City of Seattle in order to provide additional information regarding subsurface soil and groundwater conditions beneath the Roy Street Shops site up to June 2011 (the most recent information available for that site). The information within these reports helped to respond to elements 2, 4 and 5 of Table A.

- Environmental Review, Seattle City Light, 8th and Roy Street Property, 800 Aloha Street, Seattle, Washington by Shannon & Wilson, Inc., dated December 20, 2010; and
- Current Conditions Report, Seattle City Light, 8th and Roy Street Property, 800 Aloha Street, Seattle, Washington by Shannon & Wilson, Inc., dated June 8, 2011.

Pertinent sections of each report are summarized in the following sections, and the full reports are included as Appendix B at the end of this letter.

5.1 "Environmental Review, Seattle City Light, 8th and Roy Street Property, 800 Aloha Street, Seattle, Washington" by Shannon & Wilson, Inc., dated December 20, 2010

Shannon & Wilson, Inc. (Shannon & Wilson) conducted an Environmental Review of the Roy Street Shops site, summarized in a letter reported to Seattle City Light dated December 20, 2010. The study consisted of review of available site files provided by Seattle City Light, a site visit to the Roy Street Shops site, a review of applicable Ecology files, and an interview with the owners of the neighboring Maryatt Industries (also known as American Linen) property. No subsurface investigation or sampling was conducted as part of the December 2010 study.

According to available records, Shannon & Wilson reported that gasoline and benzene contaminated soil and groundwater was first documented in a January 1992 memo from Seattle Parks and Recreation to Seattle City Light. The contamination reportedly resulted from a broken suction line on a 2,700-gallon underground storage tank (UST) that supplied unleaded gasoline to a fuel pump island located in the parking lot north of the building. Additionally, an abandoned 550-gallon UST of unknown contents was located at the northwest corner of the building (evidence of release from the 550-gallon UST was later identified). An air sparge/soil vapor extraction system was designed in 1997 and subsequently installed, but was apparently never operated. The system was eventually decommissioned. Approximate locations of the USTs are shown on the attached figures.

Shannon & Wilson's December 2010 letter report summarizes an evaluation by Urban Redevelopment, LLC in 2002 who apparently was interested in acquiring the property. The Urban Redevelopment, LLC effort consisted of 44 subsurface soil samples and 11 groundwater samples. The following is a summary of Shannon & Wilson's conclusions presented in their December 2010 letter report based upon Urban Redevelopment's raw environmental data.

■ 2002 Soil Contamination Beneath Roy Street Shops Site (as summarized in 2010 report)

- Gasoline-range hydrocarbons and BTEX compounds were detected above the applicable MTCA Method A cleanup levels in soil from approximately 12 to 15 feet bgs beneath the parking area and 3 to 8 feet bgs below the existing basement foundation.
- Diesel-range petroleum hydrocarbon and cPAHs were detected above the applicable MTCA Method A cleanup levels in soil from approximately 0 to 4 feet bgs beneath the parking area in the vicinity of an "oil storage shed."
- Lead and mercury were detected above the applicable MTCA Method A cleanup levels in soil from approximately 0 to 4 feet bgs beneath the parking area.

■ 2002 Groundwater Contamination beneath Roy Street Shops Site (as summarized in 2010 report)

- Gasoline-range petroleum hydrocarbons and BTEX compounds were detected above the applicable MTCA Method A cleanup levels in groundwater beneath the parking area and the east-adjacent alley (between the Roy Street Shops site and the subject property).
- Naphthalenes, cPAHs, and metals (arsenic, cadmium, chromium, mercury, lead, and silver) were detected above the applicable MTCA Method A cleanup levels in groundwater beneath the parking area.

5.2 "Current Conditions Report, Seattle City Light, 8th and Roy Street Property, 800 Aloha Street, Seattle, Washington" by Shannon & Wilson, Inc., dated June 8, 2011

Based on the findings in their 2010 study, Shannon & Wilson conducted a subsurface investigation of groundwater conditions beneath the Roy Street Shops site and the alley adjacent to the subject property. The investigation and results are described in their "Current Conditions Report" for Seattle City Light dated June 8, 2011. Groundwater samples were obtained from six existing wells (four on the Roy Street Shops site property [MW-6 through MW-9] and two in the east-adjacent alley [MW-101 and MW-105]) that were thought to be representative of the shallow aquifer present in the area. The six wells ranged in depth from 14.94 feet bgs (MW-101) to 29.69 feet bgs (MW-105). All groundwater samples were submitted for gasoline-, diesel-, and heavy oil-range petroleum hydrocarbons, volatile organic compounds (VOCs), and total and dissolved metals. Approximate locations of the monitoring wells are shown on Figure 9. The groundwater analytical results are as follows.

■ 2011 Groundwater Contamination beneath Roy Street Shops Site

- Gasoline-range petroleum hydrocarbons and benzene were detected above the applicable MTCA Method A cleanup levels in groundwater samples obtained from beneath the parking area and the east-adjacent alley (MW-6, MW-7, MW-101, and MW-105). Shannon & Wilson notes that the detected concentrations represent a general decrease in concentrations since the 2002 sampling event and that the decrease is likely due to natural attenuation since the air sparge/soil vapor extraction system was never operated.
- Naphthalenes and vinyl chloride were detected above the MTCA cleanup level beneath the parking area (MW-6 and MW-9, respectively).
- Total dissolved arsenic was detected above MTCA cleanup level beneath the parking area and east-adjacent alley (MW-9 and MW-105); however, Shannon & Wilson note the concentrations are likely naturally occurring elevated background concentrations.

GeoEngineers used the summary information provided in the 2010 and 2011 Shannon & Wilson reports to evaluate gasoline and benzene contaminated soil and groundwater extent as outlined in Figures 11 through 13 of our report.

6.0 GROUNDWATER FLOW AND DIRECTION EVALUATION

Prior to groundwater measurements being obtained, GeoEngineers evaluated the well screen intervals and well depth for 16 groundwater monitoring wells that were slated to be measured during August 2015. Additionally, before groundwater measurements were obtained, GeoEngineers subcontracted a professional surveyor to survey the top of well casing for each of the 16 wells to be monitored. Table 5 summarizes the top of casing elevations surveyed by the surveyor, well construction details (where available) and depth to water measurements obtained by GeoEngineers.

On August 17, 2015, groundwater elevations were manually measured using an electronic water level indicator for all 16 shallow monitoring wells located on and in the vicinity of the subject property (four wells on the subject property, three wells in the east-adjacent alley, one well in 8th Avenue, and eight wells on the Roy Street Shops site). Based on the August 17, 2015 elevation data, groundwater flow is east northeast, from the Roy Street Shops site toward Lake Union, in the direction of the subject property. Groundwater elevation contours and approximate flow direction are shown on Figure 9.

Additionally, groundwater transducers connected to automatic data loggers were placed in three of the four shallow monitoring wells installed on the subject property (MW-4, MW-6, and MW-7). Groundwater level data was obtained once per hour for approximately 4 weeks from July 15 to August 17, 2015. The transducer data verified our August 17, 2015 field-generated measurements that demonstrate and confirm that groundwater flow is to the east-northeast toward Lake Union. A graph showing groundwater levels and fluctuations over the 4-week time period is presented as Figure 10.

7.0 CONCLUSIONS

Additional soil and groundwater characterization and site research was conducted at the subject property and the west-adjacent Seattle City Light Roy Street Shops site to satisfy the data gaps described in Ecology's response letter dated May 11, 2015. The following sections describe our findings and conclusions regarding each of the five data gaps identified by Ecology.

7.1 Data Gaps Regarding Soil Contamination (Elements 1 through 3 in Table A)

7.1.1. Data Gap Category 1: Vertical Extents of Soil Contamination

Ecology identified the following data gaps regarding the vertical extent of soil contamination beneath the subject property. Based on the results of our additional subsurface explorations, each of the identified data gaps have been addressed:

TABLE B. DATA GAPS REGARDING VERTICAL EXTENT OF SOIL CONTAMINATION

	Data Gap	s Determined by Ecology	Exploration to Satisfy Data Gap	Data Gap Resolution
		Vertical extent of soil contamination was not defined for gasoline at borings DP-2 and DP-7 (the former UST area)	MW 7 1 DD 45	Based on the results of DP-8, MW-7 and DP-15, the vertical extent of benzene and gasoline
		Vertical extent of soil contamination was not defined for benzene at borings DP-7 and DP-11 (the former UST area)	MW-7 and DP-15	contaminated soil is 35 feet (as shown in the cross-section on Figures 11 and 12).
1.	Vertical Extents of Soil Contamination	Vertical extent of soil contamination was not defined for cPAHs at borings DP-7 (former UST area) and DP-10 (NE corner).	DP-15 and DP-9	Based on the results of DP-15, DP-9 and DP-16, the vertical extent of the cPAH contamination is 27.5 feet bgs in the former
		Samples DP-11 and DP-12 (southwest corner) had no cPAHs detected, but the reporting limit exceeded the cleanup level.	DP-15 and DP-16	UST area, 10 feet bgs in the northeast corner and 20 feet bgs in the southwest corner.
		Vertical extent of soil contamination was not defined for lead at borings DP-12 and MW-2 (both located in the southwest corner).	DP-16 and MW-2	Based on the results of DP-16 and MW-2, the vertical extent of lead contamination in the southwest corner is 15 feet bgs.

7.1.2. Data Gap Category 2: Lateral Extents of Soil Contamination

Ecology identified the following data gaps regarding lateral extents of soil contamination beneath the subject property. Based on the results of our additional subsurface explorations, we have addressed the lateral extent data gaps.

TABLE C. DATA GAPS REGARDING LATERAL EXTENT OF SOIL CONTAMINATION

	Data Gaps Det	ermined by Ecology	Exploration to Satisfy Data Gap	Data Gap Resolution
		Lateral extent of soil contamination was not defined for gasoline and benzene contamination in the north and northeast portions of the site beyond DP-8, DP9, and DP-10 or to the west of DP-8, DP-2, and DP-11.	DP-14, MW-4, MW-5	Based on the results of our additional explorations and research, the source of the gasoline and benzene is upgradient of the subject property and the lateral extent of the gasoline and benzene contaminated soil extends through the subject property onto the adjacent property to the north (as shown in Figures 11 and 12). However, the lateral limits of the gasoline and benzene contaminated soil and groundwater have been fully defined on the subject property by borings MW-4, MW-5, DP-3, GEI-4 and MW-3.
2.	Lateral Extents of Soil Contamination	Diesel- and oil-range petroleum hydrocarbon contamination has not been defined near the oil/water separator or the UST area. However, based upon the proposed 15 feet deep excavation, shallow contamination would likely be removed.	DP-14, DP-15, MW-4, MW-5, MW-6, and MW-7	Diesel- and/or oil-range petroleum hydrocarbons either were not detected or detected less than MTCA in all samples tested during this supplemental evaluation (DP-14, DP-15, MW-4, MW-5, MW-6, and MW-7). Based on these results diesel and oil range hydrocarbons are limited to the area around the oil/water separator (as shown on Figure 13) and are fully bounded. Diesel- and oil-range petroleum contamination will be removed to the maximum extent practicable to the vertical extent encountered (<15' bgs), but will be limited laterally due to the adjacent alley and significant in-place utilities.
		Lateral extent of soil contamination was not defined for lead contamination in the western, northwestern, and southwestern portions of the Property and may extend off-Property.	All borings	Based on the results of the chemical analytical data, the lateral extent of the on-property contamination has been fully identified. However, data indicates that metals and naphthalenes are in historical paighborhood fill soil that extend
		Lateral extent of soil contamination was not defined for mercury contamination in the north and west of DP-8 and DP-9 and may extend off-Property.	DP-13, DP-14	in historical neighborhood fill soil that extend beyond the property boundaries to the north and west.

Data Gaps Determined by Ecology	Exploration to Satisfy Data Gap	Data Gap Resolution
Lateral extent of soil contamination was not defined for naphthalene contamination north and west of DP-2 and DP-8 and may extend off-Property.	DP-14	

Diesel- and oil-range contaminated soil associated with the point-source oil/water separator extends to the west and is beneath a public right-of-way (ROW, the alley). We will address the off-property contamination in the future Feasibility Study (FS) and Disproportionate Cost Analysis (DCA), but our assumption is that the contaminated soil located in the alley will not be accessible for remedial excavation due to the presence of several significant utilities located in the alley. However, this soil is capped by the alley and is not a threat to human health or the environment. All accessible contaminated soil will be removed and off-property soil contamination remaining in sidewalls will be sampled and characterized in-place.

Metals (mercury and lead) contaminated soil will be removed from the subject property. Based on the 2014 and 2015 explorations on the subject property and the analytical data obtained in 2011 from the Roy Street Shops site, the metals contamination is associated with historical fill soil in the neighborhood and will remain in place until adjacent property owners remediate their properties.

7.1.3. Data Gap Number 3: Vertical Extents of Soil Contamination below the Planned Foundation

Based on the results of the analytical testing on the subject property, the northwest quadrant of the property is the only location where gasoline, benzene, naphthalene and cPAH contaminated soil extends below the planned excavation foundation of approximately 15 feet bgs. Following the remedial excavation down to approximately 15 feet bgs, in-situ chemical oxidation treatment will be conducted to remediate the contaminated soil and groundwater. The approximate area that will be treated is shown on Figure 14.

Additionally, the planned property redevelopment includes a chemical vapor barrier that will wrap the entire foundation of the building and prevent vapor intrusion from the Roy Street Shops site gasoline and benzene plume and the neighboring American Linen solvent plumein accordance with applicable Ecology draft guidance on vapor intrusion assessment and mitigation per Ecology's Draft Guidance for Evaluating Soil Vapor Intrusion In Washington State: Investigation and Remedial Action (publication number 09-09-047, October 2009).

7.2 Data Gaps Regarding Groundwater Contamination and Flow Characterization

Ecology identified data gaps regarding groundwater which included the extent of groundwater contamination and the flow characteristics of the shallow aquifer present beneath and in the vicinity of the subject property (referred to in Table A as numbers 4 and 5). In order to satisfy the groundwater data gaps, four new monitoring wells installed and were screened within the shallow aquifer up- and down-gradient of source areas on the subject property, and 12 pre-existing shallow wells (located in the alley adjacent to the subject property, on the Roy Street Shops Site and in 8th Avenue) were monitored. Approximate monitoring well locations are shown on Figure 9.

7.2.1. Data Gap Number 4: Separation of On Property and Off Property Groundwater Contamination

In June 2015, groundwater samples were obtained from the four shallow wells installed on the subject property (MW-4, MW-5, MW-6 and MW-7) and from two monitoring wells located in the alley adjacent to the property (MW-101 and MW-105). Gasoline- and diesel-range petroleum hydrocarbons and benzene were detected above MTCA Method A cleanup levels in groundwater samples obtained from each of the monitoring wells sampled with the exception of MW-4. Approximate well locations and sample results are shown on Figure 4.

Based on the results of the 2015 groundwater sampling by GeoEngineers and the sampling conducted by others on the Roy Street Shops property in 2011, the approximate extents of groundwater contamination for benzene, gasoline- and diesel-contamination were mapped relative to known historic sources of contamination, the subject property, and the Roy Street Shops site, as shown on Figures 11 through 13. Each of the figures are described in detail below.

- As shown on Figure 11 and 12, gasoline-range petroleum hydrocarbon and benzene contaminated groundwater flows from the Roy Street Shops former UST area toward the east-northeast onto the subject property.
- As shown on Figure 13, diesel-range petroleum hydrocarbon-contaminated groundwater is present beneath the subject property in the vicinity of the oil-water separator, drain, and catch basin near the west Property boundary.

Based on these data, the source of the gasoline- and benzene-contaminated groundwater on the northern portion of the subject property is the Roy Street Shops site. As stated in Section 7.1.3, gasoline and benzene- contaminated soil and groundwater will be treated in-situ on the subject property, but gasoline and benzene-contaminated groundwater will remain in the neighborhood.

The source of the diesel-contaminated groundwater on the subject property is the oil/water separator and a small volume of associated diesel-contaminated soil. The oil/water separator and diesel-contaminated soil above cleanup levels will be removed during the course of remedial excavation and property redevelopment, which will resolve the diesel-contaminated groundwater issue. Further, in-situ treatment of gasoline contaminated soil and groundwater in this area will also result in a quicker restoration timeframe for any residual diesel-contaminated groundwater that may remain after the diesel-contaminated soil is removed.

7.2.2. Data Gap Number 5: Shallow Groundwater Flow Characteristics

Based on the results of our extensive groundwater evaluation described in Section 6.0, we have confirmed that the groundwater flow direction is toward the northeast, as shown in Figure 9. These data confirm that the source of the gasoline- and benzene-contaminated soil and groundwater beneath the subject property is the UST release at the Roy Street Shops site.

CONCEPTUAL PROPOSED REMEDIATION PLAN

Based on the results of the 2015 site characterization, data presented in this report, and information obtained from past reports, the contamination related to both on-property (diesel and oil-range hydrocarbons; metals; cPAHs) and adjacent property (gasoline; BETX; solvents) sources of contamination has now been fully characterized both vertically and laterally within the bounds of the subject property.

Following the receipt of a No Further Action-Likely letter from Ecology, the property transaction will be finalized and a Feasibility Study (FS) and Disproportionate Cost Analysis (DCA) will be completed (along with the design of a new hotel building with one level of underground parking). Although the FS and DCA will explore and screen several remedial options for remediation of the subject property, GeoEngineers' conceptual remediation plan and how each aspect of the plan will address the soil and groundwater contamination on the property is described below.

- Step 1: Source Removal at the Subject Property. Following demolition of the existing structures, diesel and oi-range hydrocarbons, metals and cPAH-contaminated soil within the property boundary will be excavated and transported off-site for permitted disposal. Excavation will proceed from the ground surface to depths where MTCA Method A cleanup levels are achieved, or to 15 feet below the ground surface (the standard point of compliance for the direct contact pathway). The remedial excavation will remove soil contamination on the property with the exception of benzene, gasoline and cPAH-contaminated soil located in the NW quadrant of the property. Remediation of these "deeper" contaminants resulting from releases from the adjacent Roy Street Shops property will be treated in-situ as described in Step 2 (note that data suggests that the cPAH-contaminated soil observed in this area, at this depth is a de minimus condition).
- Step 2: Active Treatment of Soil and Groundwater at the Subject Property. Following remedial excavation and prior to new building construction, in-situ chemical oxidation treatment will be conducted in the NW corner of the property (as shown in Figure 14). The purpose of the in-situ treatment is three-fold:
 - 1) to treat and remove the benzene and gasoline-contaminated soil located on the property that had migrated onto the subject property from the adjacent Roy Street Shops site to depths below the vertical extent of the remedial excavation;
 - 2) to reduce the gasoline and benzene concentrations in groundwater present on the subject property that has migrated from the adjacent Roy Street Shops site; and,
 - 3) to increase the degradation rate (and possibly more rapidly remove) the diesel- and heavy oil-contaminated groundwater originating from the oil/water separator release on the subject property. This will resolve the issue of a co-mingled gasoline and diesel groundwater plume.

Following the active treatment, soil samples will be obtained from within the treatment area to confirm that contaminant concentrations in soil were reduced to below the applicable cleanup levels. And groundwater monitoring will be completed as described below.

- Step 3: Containment. During construction of the new building, a chemical vapor barrier will be installed to prevent vapor intrusion from the residual volatile contaminants in groundwater (benzene and gasoline from Roy Street Shops and solvents from the American Linen sites). Additionally, the shallow residual diesel and heavy oil contaminated soil in the alley adjacent to the oil/water separator that will likely not be able to be removed practically due to utilities will continue to be capped by the asphalt road where it is inaccessible and does not pose a threat to human health or the environment.
- Step 4: Environmental Covenant. Although the gasoline and benzene concentrations in groundwater will be significantly reduced through in-situ treatment, an environmental covenant will be completed for the subject property to prevent the contact or use of the gasoline, benzene and solvent contaminated groundwater that will continue to migrate beneath the subject property from the adjacent Roy Street Shops and American Linen gasoline and solvent sources, respectively.
- Step 5: Long-term Monitored Natural Attenuation (MNA). As documented in the 2010/2011 Shannon & Wilson reports, the USTs at the Roy Street Shops site have been removed, a limited remedial excavation of the contaminated soil was conducted and concentrations of gasoline- and benzene-contaminated groundwater have already naturally attenuated (reduced) over time. Since an air sparging and soil vapor extraction (AS/SVE) system installed at the Roy Street Shops property was never operated, Shannon & Wilson concluded in their report that the reduction in contaminant concentrations (of gasoline and BETX) in groundwater is due to natural attenuation. The in-situ treatment contemplated above by GeoEngineers will have a positive impact on the groundwater quality beneath the subject property; and contaminant concentrations in groundwater will continue to decline on the subject property due to the natural attenuation.

Following construction of the new building, three new shallow monitoring wells will be installed in the building's underground garage so that long-term groundwater monitoring of the shallow groundwater aquifer can be completed. The expectation is that the groundwater monitoring results will verify that the in-situ treatment will prove effective and that natural attenuation continues to occur. Additionally, we anticipate that for groundwater contamination sourced at the subject property (diesel and oil-range hydrocarbons), groundwater quality will at least meet MTCA Method A cleanup levels at a proposed conditional point of compliance at the relevant downgradient property boundary. We anticipate that the FS will demonstrate that there will be a reasonable restoration time frame. As the gasoline and benzene concentrations continue to decline through natural degradation at the Roy Street Shops source area, it will be less and less likely that recontamination of soil on the subject property will occur. Based on the reducing contaminant concentrations in groundwater, the introduction of in-situ treatment into the groundwater table, the depth to groundwater (10-15' bgs), the planned depth of excavation (15' bgs) and depth of the building foundation (12-15' bgs), it is unlikely that the dissolved benzene and gasoline in groundwater will recontaminate soil on the subject property above applicable cleanup levels.

A NFA-Likely opinion from Ecology should be provided now in consideration that, after these remediation, treatment, monitoring, engineering and institutional controls are deployed at the subject property the following threshold requirements will be met per Ecology WAC 173-340-360(2a): protection of human health and the environment, compliance with cleanup standards, compliance with applicable federal and state laws, and providing for compliance monitoring. Additionally the new development will not interfere with remediation or restoration timeframes that will need to continue for the gasoline and solvent contaminated groundwater sourced at the upgradient Roy Street Shops and American Linen sites.

We appreciate your review of the enclosed documents and look forward to speaking with you about this complex neighborhood and the proposed cleanup action and redevelopment of the subject property so that it can be put back into productive use. We request that following Ecology's review of this letter and previously submitted reports that a "No Further Action Likely" opinion letter be issued by Ecology for the subject property.

Sincerely,

GeoEngineers, Inc.

Jessica Smith, LG Project Manager

David A. Cook, LG, CPG

Principal

JAS: DAC:Iw

Attachments:

- Table 1. Soil Field Screening and Chemical Analytical Data (Petroleum Hydrocarbons, RCRA 8 Metals, and PCBs)
- Table 2. Soil Field Screening and Chemical Analytical Data (PAHs)
- Table 3. Soil Field Screening and Chemical Analytical Data (VOCs)
- Table 4. Groundwater Chemical Analytical Data (Petroleum Hydrocarbons, PAHs, VOCs and Metals)
- Table 5. Summary of Monitoring Well Data and Groundwater Elevations
- Figure 1. Neighborhood Vicinity Map
- Figure 2. Exploration Locations and Neighboring Environmental Features
- Figure 3. Boring Locations and Soil Chemical Analytical Results
- Figure 4. Groundwater Chemical Analytical Results
- Figure 5. Cross Section A-A'
- Figure 6. Cross Section B-B'
- Figure 7. Cross Section C-C'
- Figure 8. Cross Section D-D'
- Figure 9. Groundwater Elevation Contours for the Shallow Aquifer
- Figure 10. Groundwater Elevation Data
- Figure 11. Gasoline Contaminated Soil and Groundwater Sourced from Off-Property
- Figure 12. Benzene Contaminated Soil and Groundwater Sourced from Off-Property
- Figure 13. Diesel Contaminated Soil and Groundwater
- Figure 14. Approximate Area of Gasoline and Benzene In-Situ Soil Treatment
- Appendix A. Ecology Response Letter dated May 11, 2015
- Appendix B. Reports Provided by City of Seattle
- Appendix C. Laboratory Chemical Analytical Data Report

cc: White/Peterman Properties, Inc.

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Soil Field Screening and Chemical Analytical Data (Petroleum Hydrocarbons, RCRA 8 Metals and PCBs)

South Lake Union Marriott AC

739 9th Avenue North, Seattle, Washington

Exploration Location ¹	Sample ID	Sample Depth	Field Sc	ereening ²	Pet	roleum Hydrocark (mg/kg)	oons		BE	TX ⁵				Metals ⁶ (mg/kg)			PCBs ⁸
Location		(feet bgs)	Sheen	Headspace (ppm)	Gasoline Range ³	Diesel Range ⁴	Heavy Oil Range ⁴	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (µg/kg)	Cadmium	Chromium	Lead	TCLP Lead ⁷ mg/L	Mercury	(mg/kg)
Direct Push Bo	rings by GeoEng	ineers, Septen	ber 6, 201 4					1					1				1
DP-1	DP-1-2.5	2.5	SS	<1	4.70 U	19.7 U	19.5 U	0.0188 U	0.0282 U	0.0188 U	18.8 U	0.178	36.2	25		0.0588	
	DP-1-5.0	5	SS	<1	3.79 U	20.8 U	51.9 U	0.0152 U	0.0227 U	0.0152 U	15.2 U	0.129	37.6	12.9		0.0515	
	DP-2-2.5	2.5	MS	<1	3.35 U	22.6 U	383		-	-	-	-					-
DP-2	DP-2-10.0	10	HS	48	729	27.9 U	52.7	2.13	5.92	2.28	5,455	0.522	28.8	367	15.8	0.206	
	DP-2-12.5	12.5	NS	<1	57.4	23.5 U	58.8 U	0.0286	0.0760	0.0213	117	0.731	72.5 ⁹	8.31		0.0648	-
	DP-2-15.0	15	NS	<1	34.9	-	_	-	-	-	-	-		-		-	-
DP-3	DP-3-2.5	2.5	SS	<1	2.26	19.5 U	48.9 U	0.0232 U	0.0407	0.0206	133.7	0.228	24.4	121		0.155	0.203 U
	DP-3-7.5	7.5	NS	<1	4.62 U	21.0 U	52.4 U	0.0185 U	0.0277 U	0.0185 U	18.5 U	0.0615	28.6	2.4		0.0326	
DP-4	DP-4-5.0	5	SS	<1	2.97 U	19.1 U	47.7 U	0.0119 U	0.0178 U	0.0119 U	11.9 U	0.071	32.4	1.85		0.0158	
	DP-4-15.0	15	SS	<1	4.86	22.5 U	56.2 U	0.0243	0.0363	0.0195 U	95.8	0.0575	36.8	2.47		0.00983	-
DP-5	DP-5-7.5	7.5	MS	<1	6.09 U	21.0 U	52.4 U	0.0243 U	0.0365	0.0243 U	24.3 U	0.0868	41.6	3.23		0.0342	0.152 U
Di O	DP-5-15.0	15	SS	<1	4.89 U	22.3 U	55.6 U	0.0141	0.00472	0.0151	101.3	0.0898	31	21.7		0.0915	
DP-6	DP-6-2.5	2.5	SS	<1	4.64 U	19.4 U	48.4 U	0.0186 U	0.0279 U	0.0186 U	18.6 U	0.1	33.1	31.5	-	0.0183	-
DP-6	DP-6-10.0	10	NS	<1	3.42 U	20.6 U	51.4 U	0.0137 U	0.0205 U	0.0137 U	13.7 U	0.0507	24.9	1.81	-	0.0154	-
DD 7	DP-7-7.5	7.5	HS	80	175	468	74.4 U	0.346	0.170	0.225	669	2.75	18.9	355	0.996	0.592	_
DP-7	DP-7-13.0	13	HS	240	412	844	56.0 U	1.28	0.348	0.320	935	0.0837	31.7	18.7		0.0817	-
	DP-8-7.5	7.5	HS	410	2,820	31.9 U	1550	0.717	7.5	1.27	4,136	1.07	21.7	1,080	0.200 U	5.45 ¹⁰	
	DP-8-20.0	20	NS	55	3.48 U	22.5 U	56.4 U	0.312	0.0325	0.0183	162.7	0.0478	21.5	2.68		0.0158	-
DP-8	DP-8-25.0	25	NS	20			-	0.0864	-	-	-	_		-	-	_	-
	DP-8-35.0	35	NS	6	3.32 U	20.9 U	52.2 U	0.0103	0.0215	0.00625	104.7	_			-	_	-
	DP-9-5.0	5	MS	<1	152	20.5	16	4.12	3.17	0.676	8,240	0.592	26.1	244	-	5.51 ¹⁰	-
DP-9	DP-9-20.0	20	NS	<1	3.52 U	20.7 U	51.7 U	0.00798	0.00539	0.00888	100.5	0.0674	25.9	2.46		0.0142	_
DP-10	DP-10-10.0	10	NS	<1	4.17 U	20.6 U	51.4 U	0.0167 U	0.0250 U	0.0167 U	16.7 U	0.0525	28.4	2.29		0.0207	
	DP-11-2.5	2.5	HS	67	5.29 U	15,800	2,230	0.0212 U	0.0165	0.0120	119.1	1.83	27.1	1,370	3.26	0.099	_
DP-11	DP-11-15.0	15	SS	2	23.3	24.9 U	62.1 U	0.0375	0.0147	0.0252	203.3	0.161	66.3 ⁹	21.8		0.046	_
	DP-12-7.5	7.5	SS	<1	4.76	21.7 U	230	0.0261	0.0157	0.0232	219.7	0.38	44.5	604	0.200 U	0.166	-
DP-12				<1	3.62	29.7 U	54.6	0.0358	0.00994	0.0344	118.1	1.38	99.4 ⁹	1,390	0.200 U	0.443	-
	DP-12-15.0	15	NS	<1	_	_	_	0.0262	_	_	_	_	_	_	_	_	-
MTCA Method	A Cleanup Level	for Unrestricte	d Land Use	1	30/100 ¹¹	2,000	2,000	0.03	6	7	9,000	2	2,000 ¹²	250	NA	2	1
Metals Natural	Background Co	ncentration			NA NA	NA	NA	NA	NA	NA	NA	1	42	24	NA	0.07	NA
Metals Danger	ous Waste Thres	shold			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA

Exploration Location ¹	Sample ID	Sample Depth	Field Sc	reening ²	Pet	roleum Hydrocart (mg/kg)	oons		BE	ΓX ⁵				Metals ⁶ (mg/kg)			PCBs ⁸
Location		(feet bgs)	Sheen	Headspace (ppm)	Gasoline Range ³	Diesel Range ⁴	Heavy Oil Range ⁴	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (µg/kg)	Cadmium	Chromium	Lead	TCLP Lead ⁷ mg/L	Mercury	(mg/kg)
Direct Push Bo	rings by GeoEngi	neers, June 8	and 9, 2015														
	DP-13-8.0	8	NS	<1	4.88	-	-	0.0549	0.0540	0.0194	222.5	_		43.5	-	0.378	-
DP-13	DP-13-15.0	15	SS	5	8.27	-		0.00856 U	0.0128 U	0.00856 U	8.56 U	_	-	2.28		0.315 U	
	DP-14-5.0	5	MS		_	-				-		_				0.223 U	-
DD 4.4	DP-14-7.5	7.5	MS	60	1250	29.5 U	258	1.52	7.04	2.08	5788			-			
DP-14	DP-14-17.5	17.5	SS	<1	1.9	24.4 U	60.9 U	0.033	0.00887 U	0.00591 U	10.5	-		3.39			
	DP-14-30.0	30	NS	<1				0.0493									
	DP-15-5.0	5	NS	<1	3.73 U	22.1 U	55.4 U	0.016	0.0224 U	0.0149 U	35.4	-		5370	6.28	0.638	
22.45	DP-15-12.5	12.5	SS	<1	6.95	23.5 U	58.6 U	0.00508 U	0.00877	0.00508 U	6.48			3.17			
DP-15	DP-15-27.5	27.5	NS	<1	1.34 U			0.00534 U	0.00801 U	0.00534 U	12.3	-		-		-	
	DP-15-35.0	35	NS	<1	-	-				-	-	-		-		-	-
	DP-16-7.5	7.5	SS					-									-
DP-16	DP-16-15.0	15	SS		-		-	-				_		10.3		-	-
	DP-16-17.5	17.5	SS											5.07			-
Hollow Stem Au	ger Borings and	Deep Monito	ring Wells by	GeoEnginee	rs, August 22,												
	GEI-4-2-5.0	5	NS	<1	5.34 U	22.3 U	55.8 U	0.0214 U	0.0321 U	0.0214 U	21.4 U	0.114	25.6	9.19	_	0.0646	_
GEI-4	GEI-4-5-12.5	12.5	NS	<1	6.08 U	23.7 U	59.3 U	0.0243 U	0.0365 U	0.0243 U	24.3 U	0.113	42.5	3.44		0.0391	_
MW-1	MW-1-1-2.5	2.5	NS	<1	4.52 U	23.4 U	58.4 U	0.0181 U	0.0271 U	0.0181 U	18.1 U	0.105	43.9	6.07		0.239	_
	MW-2-2-5.0	5	NS	<1	9.29	24.5 U	61.2 U	0.0391 U ¹³	0.0587 U	0.0391 U	39.1 U	0.908	27.2	519	0.200 U	0.254	
MW-2	MW-2-4-10.0	10	NS	<1				0.03910			- 33.10			714	0.500 U		
	MW-2-8-20.0	20	NS	<1					_					2.02	_		
	MW-3-4-10.0	10	HS	180	14.7	21.5 U	93.4	0.0258 U	0.0388 U	0.0258 U	25.8 U	0.108	32.8	10.9		0.0309	
MW-3	MW-3-15-50.0	50	NS	<1		-	-	0.0166 U	0.0249 U	0.0166 U	16.6 U	-	-	-	_	-	
Borings Comple	eted as Shallow I							0.01000	0.0243 0	0.01000	10.00						
Domigo Compre	MW-4-5.0	5	NS	<1	1.88 U	22.1 U	55.3 U	0.00770 U	0.0115 U	0.00770 U	7.70 U			3.61		0.271 U	
MW-4	MW-4-17.5	17.5	NS	<1	1.53 U	21.5 U	53.7 U	0.00776 U	0.00113 U	0.00776 U	5.66 U					0.2710	<u> </u>
	MW-5-7.5	7.5	SS	-	1.92 U	21.2 U	52.9 U	0.00300 U	0.00043 U	0.00300 U	7.70 U	0.173 U		2.07			
MW-5	MW-5-15.0	15	SS	_	1.41 U			0.00770 U	0.00113 U	0.00770 U	5.66 U						
	MW-6-7.5	7.5	MS	55	362	21.5 U	147	0.00366 0	2.74	0.00366 0	294.5	-		33.5		0.248 U	
		15	HS						22.2		+						-
MW-6	MW-6-15.0			850	912	22.5 U	56.2 U	0.0265		0.023	1,926	-		4.81		0.292 U	-
	MW-6-20.0	20	SS	<1	3.95 U	-	-	0.145	0.0253	0.0174	53.8		-		-	-	-
	MW-6-25.0	25	SS	<1	-		-	0.0253	-	-							-
	MW-7-10.0	10	HS	20	3.47	29.3 U	73.3 U	0.0484	0.0160 U	0.0144	54.8	-		670	0.200 U		-
MW-7	MW-7-15.0	15	SS	<1	14.5	22.1 U	55.4 U	0.00450 U	0.00450 U	0.0139	4.95	-	-		-		-
	MW-7-20.0	20	SS	<1	1.24 U			0.0265	0.00742 U	0.00495 U	4.95U		-	2.1			
	MW-7-30.0 30 NS -							0.0806				-		-			-
MTCA Method	CA Method A Cleanup Level for Unrestricted Land Use					2,000	2,000	0.03	6	7	9,000	2	2,000 ¹²	250	NA	2	1
Metals Natural	Background Cor	centration			NA	NA	NA	NA	NA	NA	NA	1	42	24	NA	0.07	NA
Metals Danger	ous Waste Thresi	hold			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.0	NA	NA

Notes appear on Page 3

Exploration Location ¹	Sample ID	Sample Depth	Field Sc	reening ²	Petr	oleum Hydrocarl (mg/kg)	oons		BET					Metals ⁶ (mg/kg)			PCBs ⁸ (mg/kg)
		(feet bgs)	Sheen	Headspace (ppm)	Gasoline Range ³	Diesel Range ⁴	Heavy Oil Range ⁴	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (µg/kg)	Cadmium	Chromium	Lead	TCLP Lead ⁷ mg/L	Mercury	(a/a/

Notes:

¹Approximate exploration locations shown on the attached figure. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained between August 22 and September 6.

 $^2\mbox{Field}$ screening methods are described in Appendix B.

 $^{3}\mbox{Gasoline-range}$ hydrocarbons analyzed using Northwest Method NWTPH-Gx.

 $^4\mbox{Diesel-}$ and heavy oil-range hydrocarbons analyzed by Northwest Method NWTPH-Dx.

⁵Volatile organic compounds (VOCs) benzene (B), ethylbenzene (E), toluene (T), and xylenes (X) analyzed by U.S. Environmental Protection Agency (EPA) Method 8260B. Remaining VOCs analyzed are presented in Table 3.

⁶Total metals analyzed by U.S. Environmental Protection Agency (EPA) 6010B/7471A. For metals, only analytes detected above laboratory reporting limits in at least one sample are shown. For the full list of analytes and laboratory reporting limits, see the laboratory report.

⁷Toxicity Characteristic Leaching Procedure (TCLP) extraction using EPA Method 1311.

⁸Polychlorinated biphenyls (PCBs) analyzed by EPA 8082.

⁹The chromium detected in this sample was also submitted for Chromium Speciation using EPA Method 7196. Hexavalent chromium was not detected in this sample.

¹⁰This sample was submitted for a TCLP extraction TCLP for mercury. Mercury was not detected (<0.0169) in the analyzed sample.

¹¹When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

¹²Cleanup level for Chromium III.

¹³This analyte was not detected in the soil sample, but the reporting limit for this sample is greater than the MTCA Method A cleanup level.

-- = not tested

bgs = below ground surface

mg/kg = milligrams per kilogram

MTCA = Model Toxics Cleanup Act

NE = Not Established

NA = Not Applicable

NS = no sheen, SS= slight sheen, MS = moderate sheen

ppm = parts per million

 μ g/L = micrograms per liter

U = Analyte was not detected; detection limit listed

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentration greater than the MTCA Method A cleanup level. Yellow highlighting indicates the concentrations exceeds the dangerous waste threshold.

Soil Field Screening and Chemical Analytical Data (PAHs)

South Lake Union Marriott AC 739 9th Avenue North, Seattle, Washington

			Field	Screening					Non-Carcii	nogenic PAHs	² (µg/kg)							Carcino	genic PAHs ³	(µg/kg)			ଷ
Exploration Location	Sample ID	Sample Depth	Sheen	Headspace (ppm)	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAH TEQ ³ (µg/kg) (ND=0.5RL)
Direct Push Be	orings by GeoEng	gineers, Septemb	er 6, 2014																				
DP-1	DP-1-2.5	2.5	SS	<1	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	41.374 U
DF-1	DP-1-5.0	5	SS	<1	55.3 U	55.3 U	55.3 U	55.3 U	55.3 U	61.4	55.3 U	237	55.3 U	264	279	113	55.3 U	148	55.3 U	59.7	55.3 U	55.3 U	62.6
	DP-2-2.5	2.5	MS	<1	-	-	-	-	-	-	-	-			-	-	-		-	-	-	-	-
DP-2	DP-2-10.0	10	HS	48	14,700	12,000	20,900	90.8	76.5 U	76.5 U	76.5 U	150	76.5 U	99.4	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	76.5 U	57.7575 U
DP-2	DP-2-12.5	12.5	NS	<1	65.7 U	149	40.9	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	65.7 U	49.6035 U
	DP-2-15.0	15.0	NS	<1	-	-	-			-	-	-			-	-	-			-		-	
DP-3	DP-3-2.5	2.5	SS	<1	1120 U	1120 U	1120 U	1120 U	1120 U	1120 U	961	3,280	1120 U	1,890	3,540	1120 U	1120 U	1120 U	1120 U	1120 U	1120 U	1120 U	845.6 U ⁴
DP-3	DP-3-7.5	7.5	NS	<1	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	41.676 U
DD 4	DP-4-5.0	5	SS	<1	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	53.7 U	40.5435 U
DP-4	DP-4-15.0	15	SS	<1	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	56.3 U	42.5065 U
55.5	DP-5-7.5	7.5	MS	<1	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	55.8 U	42.129 U
DP-5	DP-5-15.0	15	SS	<1	56.5 U	25.0	34.5	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	56.5 U	42.6575 U
DD 6	DP-6-2.5	2.5	SS	<1	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	54.8 U	41.374 U
DP-6	DP-6-10.0	10	NS	<1	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	54.9 U	41.4495 U
55.7	DP-7-7.5	7.5	HS	80	312	1,580	666	489	78.8 U	78.8 U	78.8 U	583	78.8 U	846	583	354	78.8 U	407	78.8 U	188	78.8 U	78.8 U	129.2
DP-7	DP-7-13.0	13	HS	240	907	9,120	6,840	1,000	55.2 U	55.2 U	55.2 U	780	1,560	3,950	964	400	352	385	55.2 U	55.2 U	55.2 U	55.2 U	439.056
	DP-8-7.5	7.5	HS	410	-				-	-		-		-	-		-			-		-	-
55.0	DP-8-20.0	20	NS	55	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	174	52.9 U	52.9 U	52.9 U	52.9 U	52.9 U	187.5
DP-8	DP-8-25.0	25	NS	20		-				-	-	-				-	-					-	-
	DP-8-35.0	35	NS	6	188,000	120,000	266,000	8360 U ⁴	8360 U	8360 U	8360 U	8360 U	8360 U ⁴	8360 U	8360 U	8360 U	8,360 U ⁴	8360 U	8360 U	8360 U	8360 U	8360 U	6311.8 U ⁴
55.0	DP-9-5.0	5	MS	<1	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	68.0 U	326	68.0 U	68.0 U	68.0 U	68.0 U	80.5
DP-9	DP-9-20.0	20	NS	<1	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	55.6 U	41.978 U
DP-10	DP-10-10.0	10	NS	<1	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	13.7	53.5 U	53.5 U	53.5 U	174	53.5 U	53.5 U	53.5 U	53.5 U	53.5 U	187.6
DD 44	DP-11-2.5	2.5	HS	67	953	18,600	24,500	1,290	292 U	292 U	292 U	792	2,100	292 U	1,170	292 U	292 U	292 U	292 U	394	292 U	292 U	222.9
DP-11	DP-11-15.0	15	SS	2	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	1.25	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	62.5 U	47.1875 U
	DP-12-7.5	7.5	SS	<1	72.2	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	316 U	238.58 U ⁴
DP-12	DP-12-12.5	12.5	NS	<1	39.7	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	69.8 U	154	69.8 U	69.8 U	69.8 U	64.6
	DP-12-15.0	15.0	NS	<1	-		-	-	-	-	-	-		-	-		-		-	-		-	
	•	•		_	1	1				1	1		t		1	1				1		t e	

1.37E+03

137

1.37E+03 | 1.37E+04 | 1.37E+05

MTCA Method A or B Cleanup Level for Unrestricted Land Use⁵

3.20E+06 3.20E+06

2.40E+06

1,370

2.40E+07

3.45E+04 3.20E+05 4.80E+06

5,000

			Field S	Screening					Non-Carcii	nogenic PAHs²	(µg/kg)							Carcino	ogenic PAHs ³	(µg/kg)			
Exploration Location	Sample ID	Sample Depth	Sheen	Headspace (ppm)	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAH TEQ ³ (µg/kg) (ND=0.5RL)
Direct Push Bo	rings by GeoEng	ineers, June 8 an	d 9, 20 1 5	<u>'</u>		•		<u> </u>				•			•		•	•	•	•		<u>'</u>	
DP-13	DP-13-8.0	8	NS	<1	-		-			-						_				-	_	-	-
DF-13	DP-13-15.0	15	SS	5	-		-			-					-		-	-		-	-	-	-
DP-14	DP-14-7.5	7.5	MS	60			-		-			-			-	-	-	-		-	-	-	-
51 11	DP-14-17.5	17.5	SS	<1	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	60.9 U	45.980 U
	DP-15-5.0	5	NS	<1	-		-	-					-	-	-	-		_		-	-	-	
DP-15	DP-15-12.5	12.5	SS	<1	-			-					-		-			_	-	-	-	-	
5. 10	DP-15-27.5	27.5	NS	<1	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	61.4 U	46.357 U
	DP-15-35.0	35	NS	<1	60.1 U	60.1 U	60.1 U	-					-		-			-	-	-			
	DP-16-7.5	7.5	SS		67.8 U	67.8 U	67.8 U	67.8 U	67.8 U	138	67.8 U	1170	67.8 U	503	1430	566	608	709	199	667	87.1	396	810.4
DP-16	DP-16-10.0	10	SS		243	114	177	91.2 U	112	243	597	501	91.2 U	851	459	202	91.2 U	367	91.2 U	223	91.2 U	91.2 U	118.4
]	DP-16-15.0	15	SS		65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	65.0 U	49.075 U
	DP-16-17.5	17.5	SS							-	-					-		-		-	-		
Hollow Stem Au	uger Borings an	d Deep Monitoring	g Wells by Ge	eoEngineers, Aug	ust 22, 2014	_		T		, ,		1			•		T	•	1	T			
GEI-4	GEI-4-2-5.0	5	NS	<1	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	55.2 U	41.676 U
	GEI-4-5-12.5	12.5	NS	<1	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	57.0 U	43.035 U
MW-1	MW-1-1-2.5	2.5	NS	<1	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	55.9 U	42.205 U
	MW-2-2-5.0	5	NS	<1	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	60.1 U	45.3755 U
MW-2	MW-2-4-10.0	10	NS	<1	-	-	-	-	-		-	-	-		-	-	-	-		-	-		-
	MW-2-8-20.0	20	NS	<1	_			-	-		-		-	-		-			-	-			-
MW-3	MW-3-4-10.0	10	HS	180	57.6 U	125	91.2	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	42.8	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	57.6 U	43.488 U
	MW-3-15-50.0	50	NS	<1	-						-			-	-	-		-	-		-	-	-
Borings Comple		Monitoring Wells		· · ·	9, 2015	1		T I		1 1		1		ı			Π		1	Π		г г	
MW-4	MW-4-5.0	5	NS	<1	-		-		-			-		-			-	-		-	-	-	
	MW-4-17.5	17.5	NS	<1	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
MW-5	MW-5-7.5	7.5	SS	-	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	54.0 U	40.770 U
	MW-5-15.0	15	SS	_	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	
	MW-6-7.5	7.5	MS	55	-	-	-		-	-		-			-	-	-	-	-	-	-	-	-
MW-6	MW-6-15.0	15	HS	850	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-
	MW-6-20.0	20	SS	<1	-		-	-				-	-		-			-		-	-	-	-
	MW-7-10.0	10	HS	20	441			-	-	-	-	-	-		-	-		-	-	-	-	-	-
MW-7	MW-7-15.0	15	SS	<1	-			-	-	-	-	-	-		-	-		-	-	-	-	-	-
IVIVV-/	MW-7-20.0	20	SS	<1	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	52.2 U	39.411 U
	MW-7-30.0	30	NS			-		-	-		-	-	-				-	-					-
MTCA Method	A or B Cleanup I	evel for Unrestric	cted Land Use	e ⁵	5,000	3.45E+04	3.20E+05	4.80E+06	NE	2.40E+07	NE	3.20E+06	3.20E+06	NE	2.40E+06	1,370	100	1.37E+03	1.37E+04	1.37E+05	137	1.37E+03	100

Notes appear on Page 3

		Field S	Screening					Non-Carcir	nogenic PAHs ²	(µg/kg)							Carcino	ogenic PAHs ³	(µg/kg)			(8)
Exploration Location Sample ID	Sample Depth	Sheen	Headspace (ppm)	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Total cPAH TEQ ³ (μg/k (ND=0.5RL)

Notes:

¹Approximate exploration locations shown on the attached figure. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained between August 22 and September 6.

²Polycyclic aromatic hydrocarbons (PAHs) analyzed by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM. See the laboratory report for the full list of compounds analyzed.

³Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) analyzed by EPA Method 8270D/SIM. Total cPAHs calculated using the toxicity equivalency (TEQ) methodology specified in Washington Administrative Code (WAC) 173-340-780(8). cPAHs that were not detected were assigned half the value of the detection limit for these calculations.

⁴This analyte was not detected in the soil sample, but the reporting limit for this sample is greater than the MTCA Method A cleanup level.

⁵Model Toxics Cleanup Act (MTCA) Method A cleanup levels are listed here. If MTCA Method A cleanup level have not been established, Method B cleanup levels are listed instead.

-- = Not Tested

ug/kg = micrograms per kilogram

bgs = below ground surface

NE = not established

ppm = parts per million

U = Analyte was not detected; detection limit listed.

µg/kg = micrograms per kilogram

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentration greater than the MTCA Method A or B cleanup level.

Soil Field Screening and Chemical Analytical Data (VOCs)

South Lake Union Marriott AC 739 9th Avenue North, Seattle, Washington

									V	olatile Organic C	ompounds (VOC	s) ²				
Exploration Location ¹	Sample ID	Sample Depth	Field S	creening	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Isopropylbenzene (Cumene)	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,2-Dichloroethane (1,2-DCE)	Vinyl Chloride (VC)	cis-1,2-Dichloroethene (cis-1,2-DCE)
			Sheen	Headspace (ppm)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Direct Push Bo	rings by GeoEng	ineers, Septembe	r 6, 2014	•		•			•	•	•		•	•		
DP-1	DP-1-2.5	2.5	SS	<1	0.0188 U	0.0188 U	0.0752 U	0.0188 U	0.0188 U	0.0188 U	0.0188 U	0.0188 U	0.0188 U	0.0282 U	0.00188 U	0.0188 U
DP-I	DP-1-5.0	5	SS	<1	0.0152 U	0.0152 U	0.0606 U	0.0152 U	0.0152 U	0.0152 U	0.0152 U	0.0152 U	0.0152 U	0.0227 U	0.00152 U	0.0152 U
	DP-2-2.5	2.5	MS	<1						-						
DP-2	DP-2-10.0	10	HS	48	2.06	0.296	2.34	6.21	10.5	0.124	1.59	0.0284 U	0.0284 U	0.0426 U	0.00284 U	0.0284 U
DF-2	DP-2-12.5	12.5	NS	<1	0.0436	0.0384	0.483	0.301	1.61	0.0175 U	0.127	0.0175 U	0.0175 U	0.0263 U	0.00175 U	0.0175 U
	DP-2-15.0	15.0	NS	<1	1	-	-	_	_	-	_	_	_	-	-	-
DP-3	DP-3-2.5	2.5	SS	<1	0.0540	0.0232 U	0.0617	0.0513	0.0617	0.0232 U	0.0232 U	0.0232 U	0.0232 U	0.0348 U	0.00232 U	0.0232 U
DI -5	DP-3-7.5	7.5	NS	<1	0.0185 U	0.0185 U	0.0739 U	0.0185 U	0.0391	0.0185 U	0.0185 U	0.0185 U	0.0185 U	0.0277 U	0.00185 U	0.0185 U
DP-4	DP-4-5.0	5	SS	<1	0.0119 U	0.0119 U	0.0475 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0178 U	0.00119 U	0.0119 U
D1 4	DP-4-15.0	15	SS	<1	0.0412	0.0360	0.0978	0.0385	0.132	0.0195 U	0.0490	0.0195 U	0.0195 U	0.0292 U	0.00195 U	0.0195 U
DP-5	DP-5-7.5	7.5	MS	<1	0.0243 U	0.0243 U	0.0974 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0365 U	0.00243 U	0.0243 U
DI 3	DP-5-15.0	15	SS	<1	0.0433	0.0339	0.0471	0.0375	0.0374	0.0195 U	0.0195 U	0.0195 U	0.0195 U	0.0293 U	0.00195 U	0.0195 U
DP-6	DP-6-2.5	2.5	SS	<1	0.0186 U	0.0186 U	0.0743 U	0.0186 U	0.0186 U	0.0186 U	0.0186 U	0.0186 U	0.0186 U	0.0279 U	0.00186 U	0.0186 U
DI O	DP-6-10.0	10	NS	<1	0.0137 U	0.0137 U	0.0547 U	0.0137 U	0.0137 U	0.0137 U	0.0137 U	0.0137 U	0.0137 U	0.0205 U	0.00137 U	0.0137 U
DP-7	DP-7-7.5	7.5	HS	80	0.131	0.0973	0.730	0.607	0.926	0.0669	0.392	0.0333 U	0.0333 U	0.0499 U	0.00333 U	0.0333 U
51 1	DP-7-13.0	13	HS	240	0.172	0.214	0.651	0.432	0.790	0.375	0.293	0.0262 U	0.0262 U	0.0394 U	0.00262 U	0.0262 U
	DP-8-7.5	7.5	HS	410	1.54	0.332	10.0	22.2	0.0291 U	2.29	6.46	0.0291 U	0.0291 U	0.0436 U	0.00291 U	0.0291 U
DP-8	DP-8-20.0	20	NS	55	0.0380	0.0315	0.0760	0.0176 U	0.122	0.0176 U	0.0176 U	0.0176 U	0.0176 U	0.0265 U	0.00176 U	0.0176 U
2, 3	DP-8-25.0	25.0	NS	20	_	_	-	-	-	-	-	-	-	-	-	-
	DP-8-35.0	35	NS	6	0.0133 U	0.0133 U	0.0369	0.0241	0.0279	0.0133 U	0.0133 U	0.0133 U	0.0133 U	0.0199 U	0.00133 U	0.0133 U
DP-9	DP-9-5.0	5	MS	<1	0.987	1.06	1.44	0.222	1.21	1.46	0.365	0.0375 U	0.0375 U	0.0563 U	0.00375 U	0.0375 U
2, 0	DP-9-20.0	20	NS	<1	0.0289	0.0141 U	0.0459	0.0256	0.0299	0.0141 U	0.0141 U	0.0141 U	0.0141 U	0.0211 U	0.00141 U	0.0141 U
DP-10	DP-10-10.0	10	NS	<1	0.0167 U	0.0167 U	0.0667 U	0.0167 U	0.0167 U	0.0167 U	0.0167 U	0.0167 U	0.0167 U	0.0250 U	0.00167 U	0.0167 U

					Volatile Organic Compounds (VOCs) ²												
Exploration Location ¹	Sample ID	Sample Depth	Field Screening		1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Isopropylbenzene (Cumene)	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,2-Dichloroethane (1,2-DCE)	Vinyl Chloride (VC)	cis-1,2-Dichloroethene (cis-1,2-DCE)	
			Sheen	Headspace (ppm)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
DP-11	DP-11-2.5	2.5	HS	67	0.0533	0.0378	0.0526	0.105	0.0669	0.0212 U	0.0564	0.0212 U	0.0212 U	0.0318 U	0.00212 U	0.0212 U	
DP-11	DP-11-15.0	15	SS	2	0.0577	0.0516	0.471	0.0486	0.254	0.0242 U	0.0592	0.0242 U	0.0242 U	0.0363 U	0.00242 U	0.0242 U	
	DP-12-7.5	7.5	SS	<1	0.0869	0.0413 U	0.165 U	0.0813	0.0868	0.0217	0.0413 U	0.0413 U	0.0413 U	0.0619 U	0.00413 U	0.0413 U	
DP-12	DP-12-12.5	12.5	NS	<1	0.0220 U	0.0220 U	0.0882 U	0.0417	0.0450	0.0220 U	0.0220 U	0.0220 U	0.0220 U	0.0331 U	0.00220 U	0.0220 U	
	DP-12-15.0	15.0	NS	<1			_	_	_	_	_	_	_	_	_	_	
MTCA Method	A or B Cleanup L	evel for Unrestric	ted Land Use ³		NE	800	8,000	4,000	8,000	NE	8,000	0.05	0.05	11	0.67	160	
Direct Push Bo	rings by GeoEngi	ineers, June 8 and	d 9, 201 5														
DP-13	DP-13-8.0	8	NS	<1	-	-			-					-	-		
DP-13	DP-13-15.0	15	SS	5	-	-			-			-	-			-	
	DP-14-7.5	7.5	MS	60	-	-		-	-							-	
DP-14	DP-14-17.5	17.5	SS	<1	-	-										-	
	DP-14-30.0	30	NS	<1	-	-		-			-	-				-	
	DP-15-5.0	5	NS	<1				-	-			-				-	
DP-15	DP-15-12.5	12.5	SS	<1		-	-					-			-	-	
DF-13	DP-15-27.5	27.5	NS	<1		-	-					-	-				
	DP-15-35.0	35	NS	<1		-		-	-	-		-					
	DP-16-7.5	7.5	SS			-				-		-			-	-	
DP-16	DP-16-15.0	15	SS			-					-	-					
	DP-16-17.5	17.5	SS		-	1			-								
Hollow Stem A	uger Borings and	Deep Monitoring	g Wells by Geol	Engineers, Augus	st 22, 2014												
GEI-4	GEI-4-2-5.0	5	NS	<1	0.0214 U	0.0214 U	0.0855 U	0.0214 U	0.0214 U	0.0214 U	0.0214 U	0.0214 U	0.0214 U	0.0321 U	0.00214 U	0.0214 U	
GLI-4	GEI-4-5-12.5	12.5	NS	<1	0.0243 U	0.0243 U	0.0972 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0243 U	0.0365 U	0.00243 U	0.0243 U	
MW-1	MW-1-1-2.5	2.5	NS	<1	0.0181 U	0.0181 U	0.0723 U	0.0181 U	0.0181 U	0.0181 U	0.0181 U	0.0181 U	0.0181 U	0.0271 U	0.00181 U	0.0181 U	
	MW-2-2-5.0	5	NS	<1	0.0391 U	0.0391 U	0.156 U	0.0391 U	0.0391 U	0.0699	0.0391 U	0.0391 U	0.0391 U	0.0587 U	0.00391 U	0.0391 U	
MW-2	MW-2-4-10.0	10	NS	<1		-	-	-	-	-	-		-			-	
	MW-2-8-20.0	20	NS	<1	-	-					-		-	-	-	-	
MW-3	MW-3-4-10.0	10	HS	180	0.0258 U	0.0258 U	0.103 U	0.0525	0.0383	0.0435	0.0258 U	0.0258 U	0.0258 U	0.0388 U	0.00258 U	0.0258 U	
	MW-3-15-50.0	50	NS	<1	0.0166 U	0.0166 U	0.0663 U	0.0166 U	0.0166 U	0.0166 U	0.0166 U	0.0166 U	0.0166 U	0.0249 U	0.00166 U	0.0166 U	

	Sample ID				Volatile Organic Compounds (VOCs) ²												
Exploration Location ¹		Sample Depth	Field Screening		1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Isopropylbenzene (Cumene)	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,2-Dichloroethane (1,2-DCE)	Vinyl Chloride (VC)	cis-1,2-Dichloroethene (cis-1,2-DCE)	
			Sheen	Headspace (ppm)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Borings Compl	eted as Shallow	Monitoring Wells	by GeoEngine	ers, June 8 and 9	, 2015												
MW-4	MW-4-5.0	5	NS	<1	-		-		-							-	
10100-4	MW-4-17.5	17.5	NS	<1													
MW-5	MW-5-7.5	7.5	SS														
14144-2	MW-5-15.0	15	SS						_								
	MW-6-7.5	7.5	MS	55	_	-								-	-	_	
MW-6	MW-6-15.0	15	HS	850									-	-		-	
10100-0	MW-6-20.0	20	SS	<1		-		-	_							_	
	MW-6-25.0	25	SS	<1	1										-	-	
	MW-7-10.0	10	HS	20													
MW-7	MW-7-15.0	15	SS	<1													
IVIVV-1	MW-7-20.0	20	SS	<1													
	MW-7-30.0	30	NS	-		-		-				-					
MTCA Method	A or B Cleanup L	evel for Unrestric	ted Land Use ³		NE	800	8,000	4,000	8,000	NE	8,000	0.05	0.05	11	0.67	160	

Notes:

-- = Not Tested

bgs = below ground surface

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

NE = not established

ppm = parts per million

U = not detect; detection limit listed.

µg/kg = micrograms per kilogram

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentraion greater than the MTCA Method A cleanup level.

¹Approximate exploration locations shown on the attached figure. Chemical analytical testing by Fremont Analytical in Seattle, Washington. Samples were obtained between August 22 and September 6.

²Volatile organic compounds (VOCs) analyzed by U.S. Environmental Protection Agency (EPA) Method 8260B. For VOCs, only detected compounds or contaminants of concern are presented in the table or listed in footnotes. See the laboratory report for the full list of compounds analyzed and detection limits.

³Model Toxics Cleanup Act (MTCA) Method A cleanup levels are listed here. If MTCA Method A cleanup level have not been established, Method B cleanup levels are listed instead.

Groundwater Chemical Analytical Data (Petroleum Hydrocarbons, PAHs, VOCs and Metals)

South Lake Union Marriott AC

739 9th Avenue North, Seattle, Washington Seattle, Washington

				Approximate			Petrolo	eum Hydroca (µg/L)	rbons					/OCs ⁴ µg/L)						AHs ⁵ g/L)	Dissolved RCRA 8 Metals ⁶ (μg/L)							
Monitoring Well and Sample ID ¹	Sample Date	Well Screen Depth (feet bgs)	Top of Casing (TOC) Elevation (feet NAVD88)	• •	Depth to Water (feet below TOC)	Groundwater Elevation (NAVD88)	Gasoline Range ²	Diesel Range ³	Heavy Oil Range ³	В	т	E	х	PCE	TCE	cis-1,2- Dichloro- ethene	1,2- Dichloro- ethane	Vinyl Chloride	Non- Carcinogenic PAHs	Carcinogenic	Arsenic	Barium	Cadmium		Lead	Mercury	Selenium	Silver
Deep Monitoring	Wells Sampled	September 9,	2014																									
MW-1-140906	09/06/14	39.8-59.8	30.1	-9.3	20.9	9.6	50.0 U	50.0 U	100 U	1.00 U	1.00 U	0.250	0.240	1.00 U	0.500 U	1.00 U	1.00 U	0.200 U	0.100 U	0.100 U	0.750	200	0.200 U	0.479	0.194	0.100 U	0.370	0.200 U
MW-2-140906	09/06/14	27.0-37.0	31.0	4.6	24.0	7.6	28.9	50.0 U	100 U	14.1	1.00 U	1.00 U	0.410	1.00 U	0.500 U	4.44	1.00 U	1.34	0.100 U	0.100 U	3.98	251	0.0160	0.666	0.226	0.100 U	0.644	0.0365
MW-2-150626	06/26/15	21.0-31.0	31.0	7.	13.7	17.3	50.0 U	280	99.8 U	1.00 U	1.00 U	1.00 U	1.00 U					_	-							-		_
MW-3-140906	09/06/14	49.4-59.4	31.5	30.8	23.0	8.5	50.0 U	50.0 U	100 U	1.69	1.00 U	1.00 U	0.610	1.00 U	0.500 U	9.03	4.34	3.14	0.100 U	0.100 U	7.60	124	0.0165	0.444	0.161	0.100 U	0.586	1.04
Shallow Monitoria	ng Wells Sampl	ed June 15 and	d 1 8, 201 5																									
MW-4	06/15/15	5-20	30.488	25	12.1	18.4	50.0 U	50.1 U	100 U	1.00 U	1.00 U	1.00 U	1.00 U	1		1	-		1	-	-		-		-	_	-	-
MW-5	06/15/15	5-15	30.718	26	11.9	18.8	99.3	897 ⁷	1,180	1.00 U	1.00 U	1.00 U	1.00 U	1		-	-					-	-		-		-	
MW-6	06/15/15	10-20	30.570	21	10.4	20.2	10,700	1 ,580 ⁷	408	187	9.39	1,010	97.04	1		-	-					-	-	_	-		-	-
MW-7	06/15/15	10-20	30.698	21	10.8	19.9	1,520	1,100 ⁷	653	16.7	1.23	4.76	2.98	-		-	-					-		_	-			
MW-101	06/18/15	6-16	29.987	24	9.5	20.5	3,900	157 ⁷	99.9 U	30.7	2.13	27.6	6.28									-		_	-			
MW-105	06/15/15	na	30.747	na	12.0	18.7	7,290	708 ⁷	255	600	23.6	337	219.77									-	-	_	-			
	MTCA Met	thod A or B Cle	anup Level for U	Inrestricted La	nd Use		800/1,000 ⁸	500	500	5	1,000	700	1,000	5	5	160	5	0.2	NE	NE	5	3,200	5	50	15	2	80	80

Notes:

¹Approximate exploration locations shown on the attached figures. Chemical analytical testing by Fremont Analytical in Seattle, Washington.

 $^2\mbox{Gasoline-range}$ hydrocarbons analyzed by Northwest Method NWTPH-Gx.

³Diesel- and heavy oil-range hydrocarbons analyzed by Northwest Method NWTPH-Dx.

⁴Volatile organic compounds (VOCs) and benzene (B), ethylbenzene (E), toluene (T) and total xylenes (X) analyzed by EPA Method 8260B. For VOCs, only select compounds are presented in the table. See the laboratory report for the full list of compounds analyzed and detection limits.

⁵Polycyclic aromatic hydrocarbons (PAHs) analyzed by EPA Method 8270D/SIM. For PAHs, only detected compounds are presented in the table. See the laboratory report for the full list of compounds analyzed and detection limits.

⁶Total metals analyzed by EPA 6010B/7471A.

7Diesel-range concentrations in samples MW-5, MW-6, MW-7, MW-101, and MW-105 indicate the presence of unresolved compounds eluting from dodecane through tetracosane (C12-C24).

⁸When benzene is present, the gasoline range cleanup level is 800 μg/L. When benzene is not present the gasoline range cleanup level is 1,000 μg/L.

bgs = below ground surface

NE = not established

na = not available

PCE = Tetrochloroethene
TCE = Trichloroethene

TOC = Top of Casing (reference point for measurements). Top of casings are within a few inches of ground surface at the respective monitoring well locations.

μg/L = micrograms per liter

Bolding indicates analyte was detected. Shading indicates analyte was detected at a concentration greater than the MTCA Method A or B cleanup level.

Summary of Monitoring Well Data and Groundwater Elevations

South Lake Union Marriott AC

739 9th Avenue North, Seattle, Washington Seattle, Washington

Site	Well ID	ECY Tag ID	Top of Monument Elevation (NAVD88, feet)	TOC Elevation (NAVD88, feet)	Well Casing Stick Up (feet)	Measured Bottom of Well Depth (feet bgs)	Bottom of Well from Well Log or Cross Section (feet bgs)	Depth to Water (feet below TOC)	Water Table Elevation (NAVD88, feet)	Well Casing Diameter (inches)	Screened Invterval (feet bgs)	Field Observations
	SCS-1**	ABV 824	40.236	39.480	0.756	21.26	-	19.85	19.63	4	5-20*	Very silty bottom
	SCS-5	CAN 751	39.241	38.981	0.260	20.98	20	18.83	20.15	4	5-20	Monument flooded to cap seam; cap loose.
	SCS-2	ABV 825	39.508	39.072	0.436	20.93	-	19.53	19.54	4	5-20*	
Roy Street Shops Site	MW-6	-	37.692	37.435	0.257	21.00	21	17.95	19.49	2	6-21	
	MW-10		38.222	37.929	0.293	22.09	22	17.00	20.93	2	7-22	
	SCS-3	ABV 826	36.401	36.342	0.059	21.62	-	17.02	19.32	4	5-20*	Minor silt on bottom
	MW-7	-	35.609	35.072	0.537	17.92	18	15.70	19.37	2	8-18	Minor silt on bottom
	SCS-4	-	35.272	34.793	0.479	19.43	20	15.72	19.07	4	5-20	Silty bottom
8 th Avenue	MW-9	-	41.046	40.716	0.330	22.08	-	17.76	22.96	2	-	Not bolted; contained sampling tubing
	MW-105**		31.053	30.747	0.306	29.80	-	12.87	17.88	2	-	Minor silt on bottom; not bolted
Public Alley	MW-102	-	30.994	30.367	0.627	15.20	16	11.19	19.18	19.18 2 6-16		Not bolted; no cap; debris in groundwater
	MW-101	-	30.450	29.987	0.463	14.99	16	10.63	19.36	2	6-16	Not bolted
	MW-4	BIQ 039	30.721	30.488	0.233	20.03	20	12.92	17.57	2	5-20	Contained transducer
Subject Property	MW-5	BIQ 038	30.942	30.718	0.224	15.15	15	12.38	18.34	2	5-15	Silty bottom
Subject Property	MW-6	BIQ 037	30.812	30.570	0.242	20.29	20	12.20	18.37	2	10-20	Contained transducer
	MW-7	BIQ 036	30.849	30.698	0.151	19.69	19.75	12.24	18.46	2	10-20	Contained transducer

Notes:

^{*}Screened interval is assumed based on the known interval of wells installed in the same installation event.

^{**}Wells were excluded from groundwater flow direction and gradient calculations due to unknown screened interval (MW-105) or evidence of being undeveloped (SCS-1).

^{– =} unknown

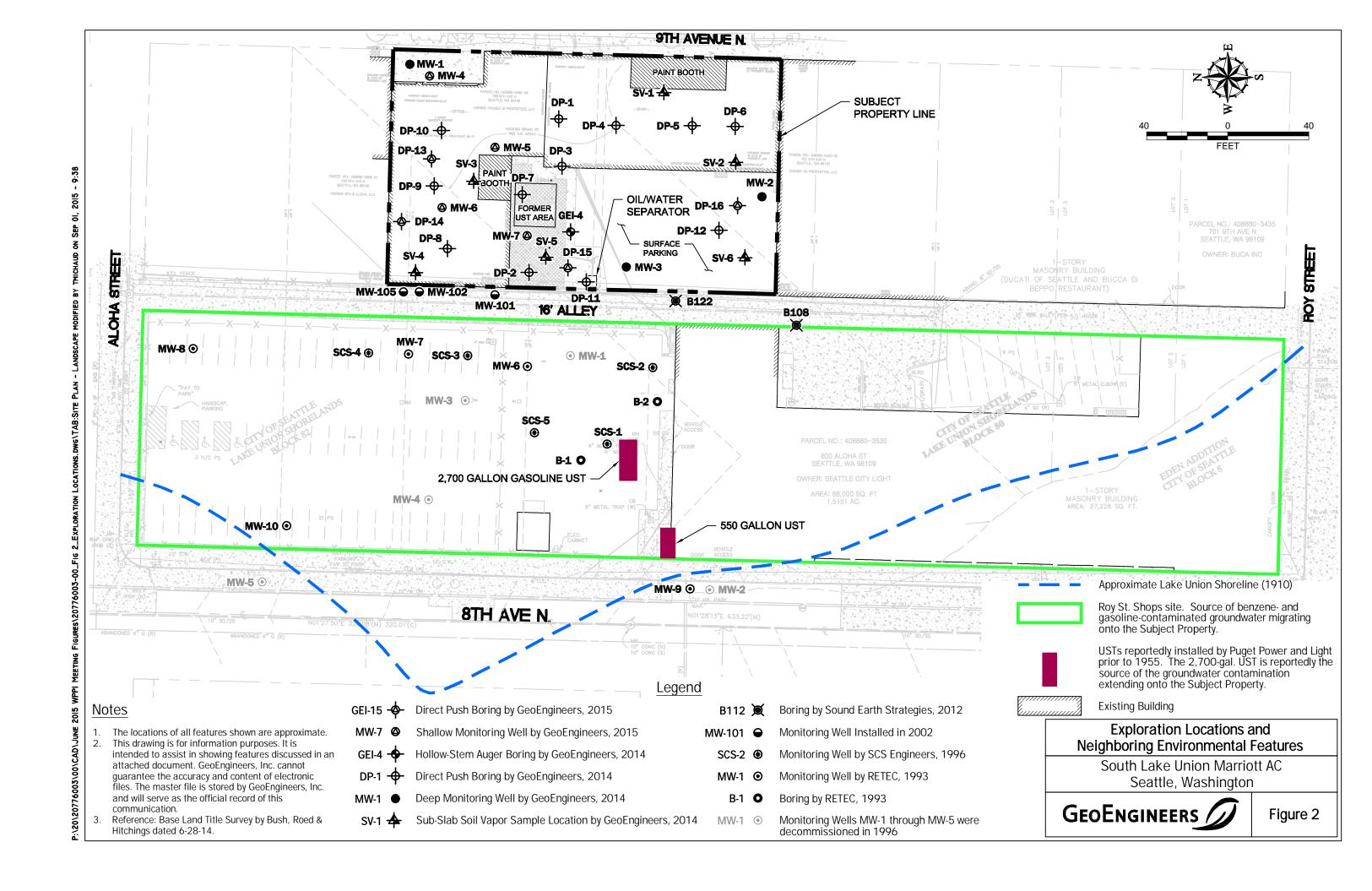
Notes

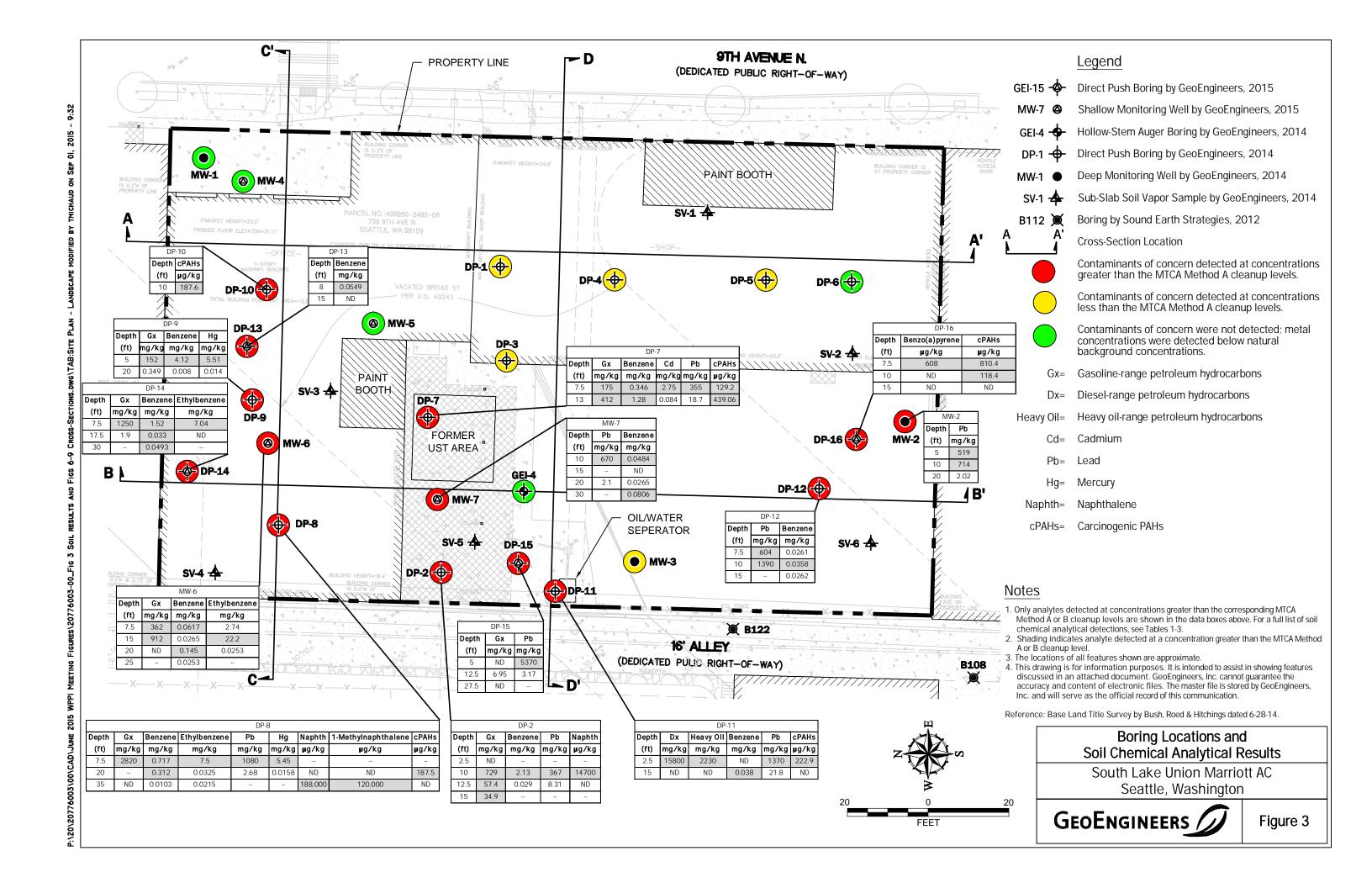
The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in

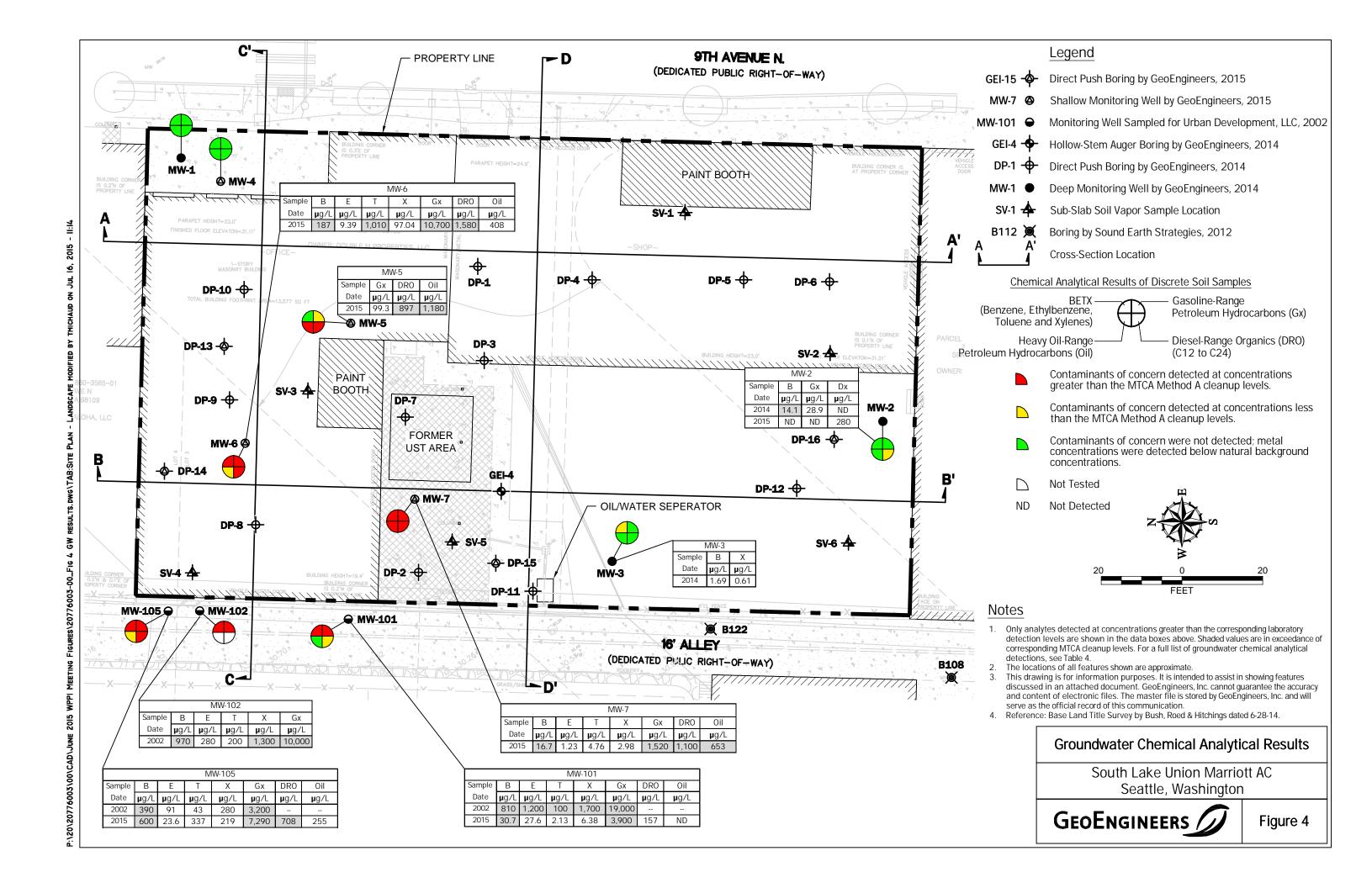
 This drawing is for information purposes, it is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

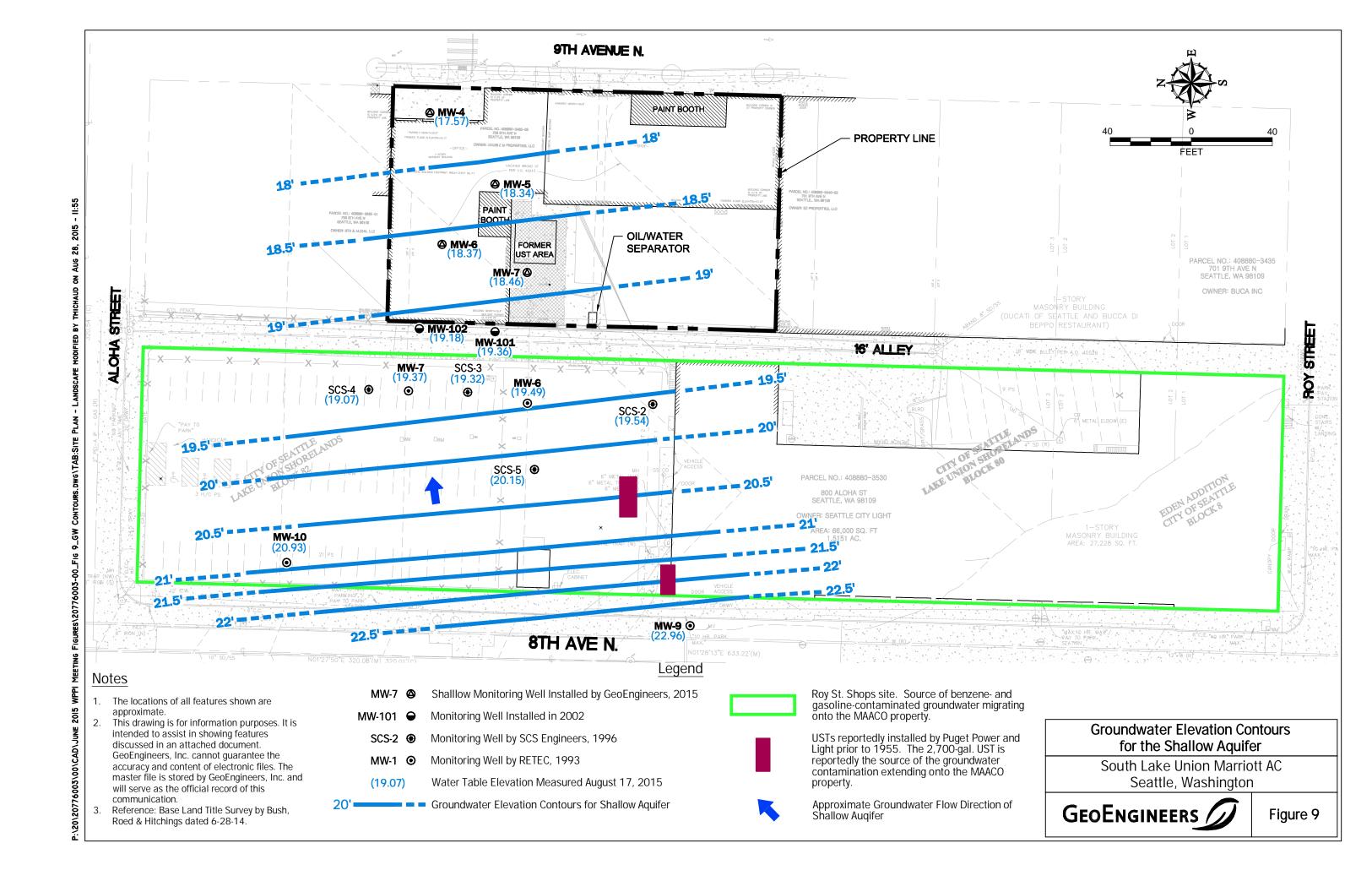
Data Source: Mapbox Open Street Map, 2015

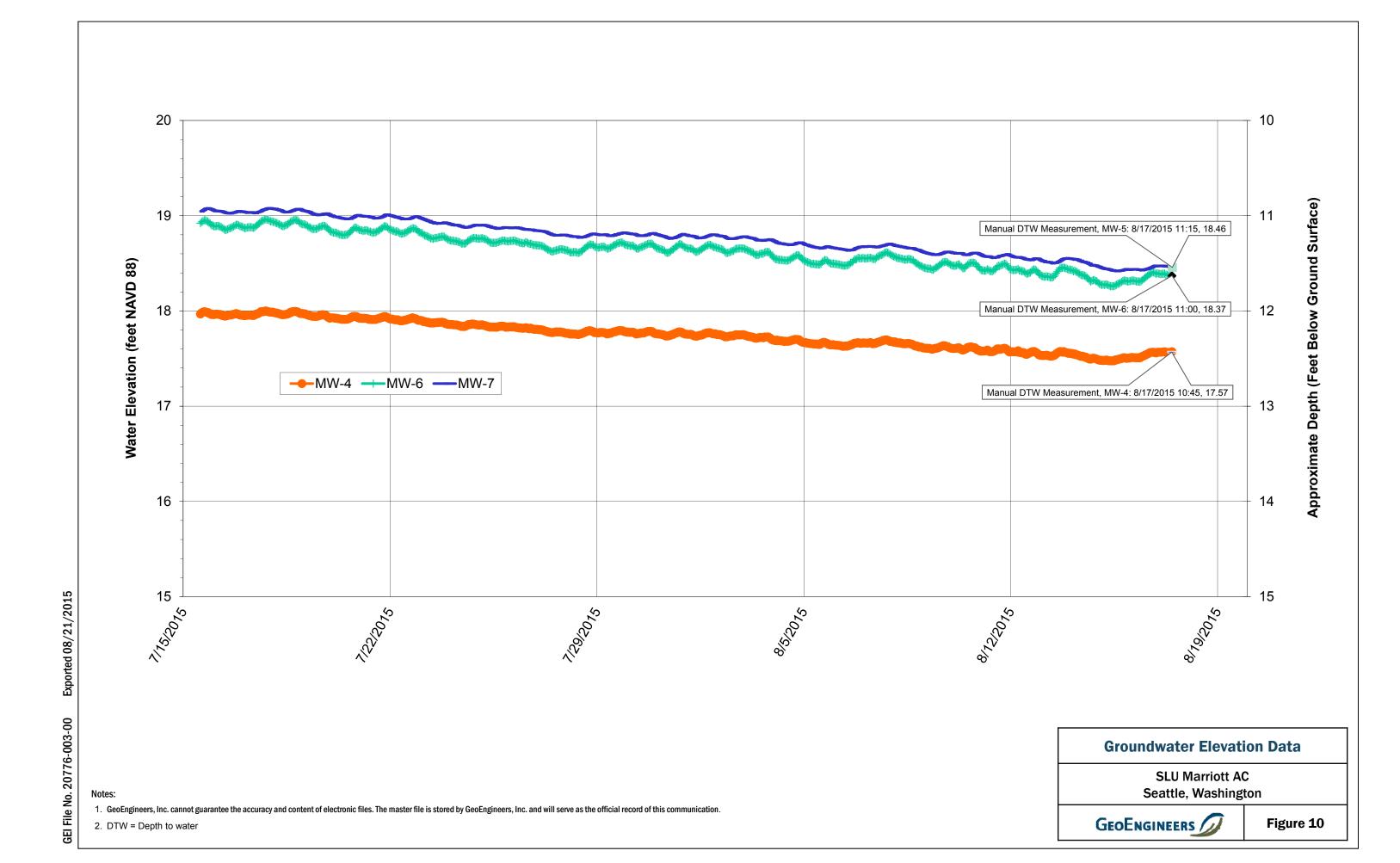
Projection: NAD 1983 UTM Zone 10N

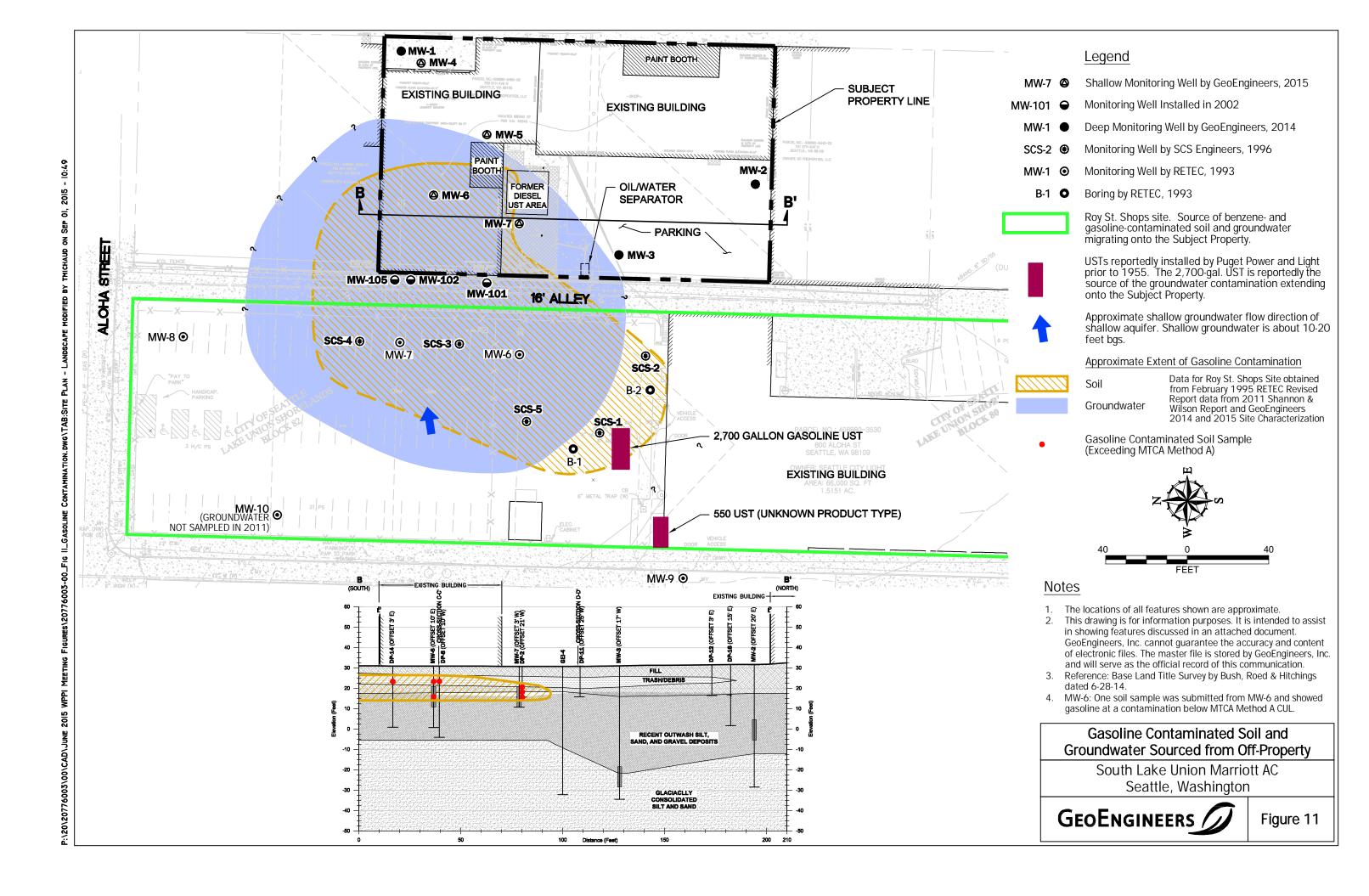


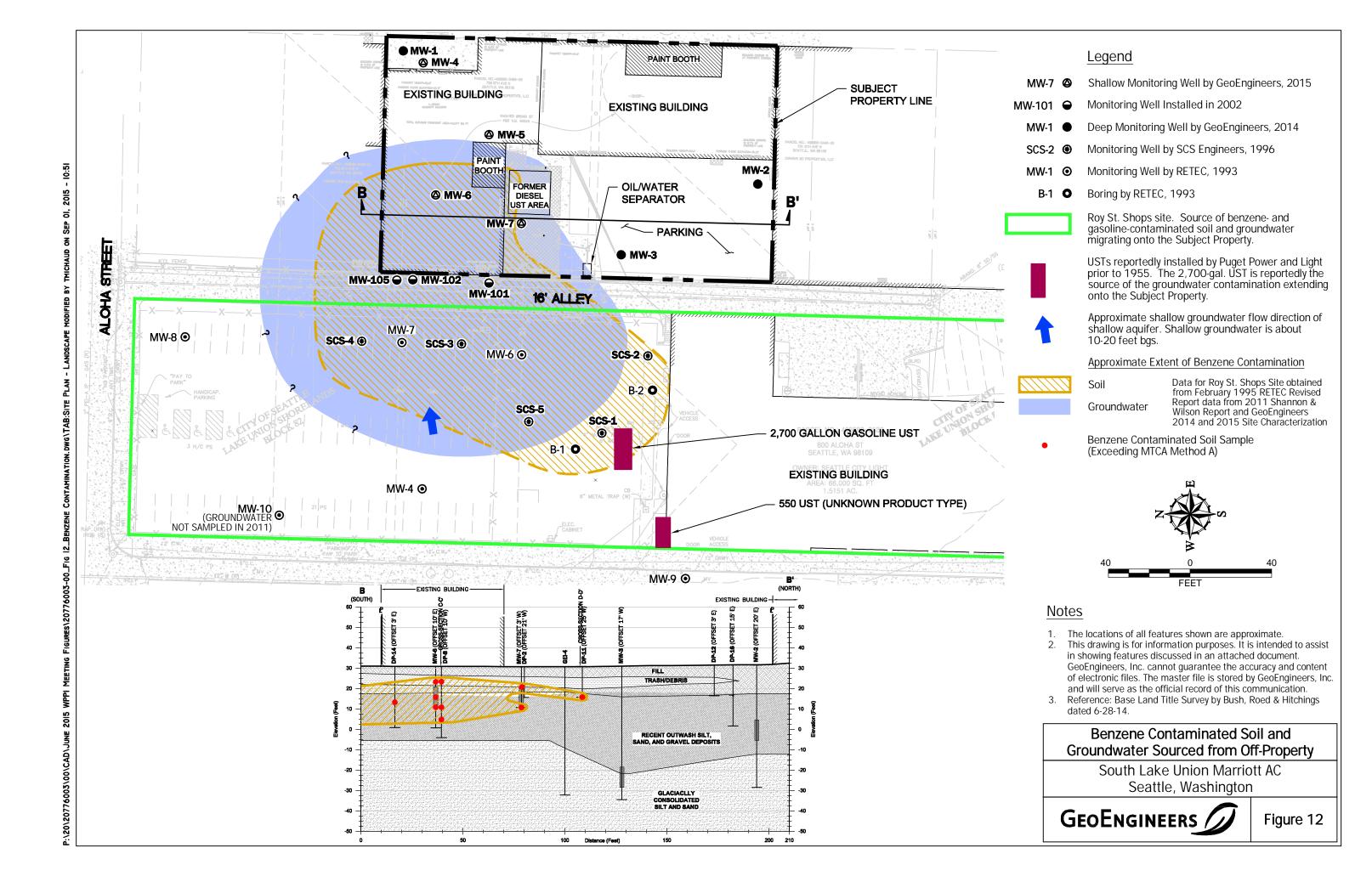

Neighborhood Vicinity Map

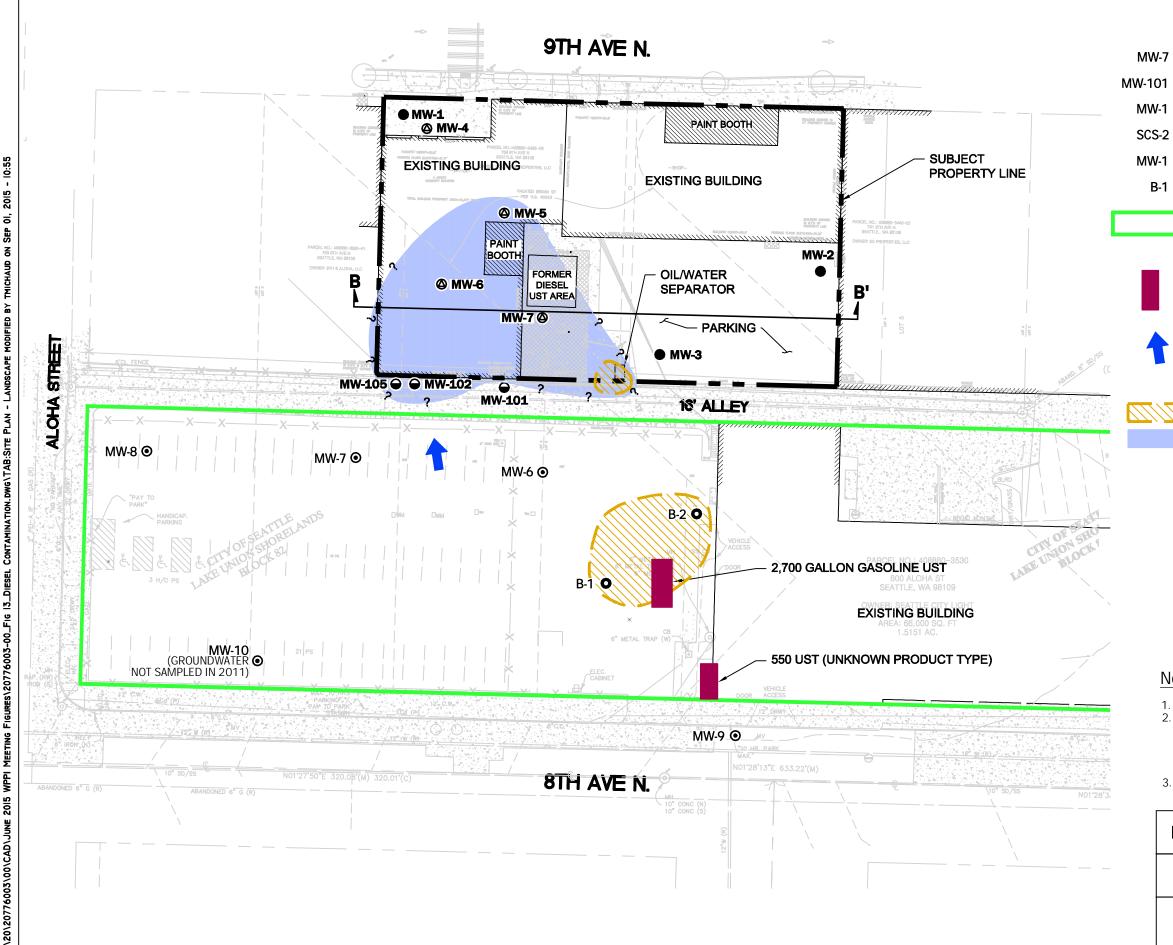

South Lake Union Marriott AC Seattle, Washington




Figure 1







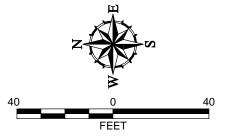
Legend

- Shallow Monitoring Well by GeoEngineers, 2015
- Monitoring Well Installed in 2002 MW-101 **⊖**
 - Deep Monitoring Well by GeoEngineers, 2014
 - Monitoring Well by SCS Engineers, 1996
 - MW-1 **⊙** Monitoring Well by RETEC, 1993
 - **B-1** Boring by RETEC, 1993

Roy St. Shops site. Source of benzene- and gasoline-contaminated soil and groundwater migrating onto the Subject Property.

USTs reportedly installed by Puget Power and Light prior to 1955. The 2,700-gal. UST is reportedly the source of the groundwater contamination extending onto the Subject Property.

Approximate shallow groundwater flow direction of shallow aquifer . Shallow groundwater is about 10-20


Approximate Extent of Diesel Contamination

Soil

Groundwater

Data for Roy St. Shops Site obtained from February 1995 RETEC Revised Report data from 2011 Shannon & Wilson Report and GeoEngineers 2014 and 2015 Site Characterization

Notes

- The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Reference: Base Land Title Survey by Bush, Roed & Hitchings dated 6-28-14.

Diesel Contaminated Soil and Groundwater

South Lake Union Marriott AC Seattle, Washington

Figure 13

GeoEngineers //

Figure 14

SEP 01, 2015 - 12:55

FIGURES\20776003-00_FIG I4 IN-SITU TREATMENT

APPENDIX A
Ecology Response Letter dated May 11, 2015

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office * 3190 160th Ave SE * Bellevue, WA 98008-5452 * 425-649-7000 711 for Washington Relay Service * Persons with a speech disability can call 877-833-6341

May 11, 2015

Mr. Richard J. Parks White/Peterman Properties Inc. 1000 East 80th Place, Suite 700N Merrillville, IN 46410

Re: Opinion Pursuant to WAC 173-340-515(5) on Remedial Action for the Following Hazardous Waste Site:

Site Name: Maaco Auto Painting Bodywork 9th Ave
 Address: 739 9th Avenue North, Seattle, WA 98109

Facility/Site No.: 2224749

VCP No.: NW2953
 Cleanup Site ID: 12571

Dear Mr. Parks:

Thank you for submitting documents regarding your proposed remedial action for the Maaco Auto Painting Bodywork 9th Ave (Site) for review by the Washington State Department of Ecology (Ecology) under the Voluntary Cleanup Program (VCP). Ecology appreciates your initiative in pursuing this administrative option for cleaning up hazardous waste sites under the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

This letter constitutes an advisory opinion regarding a review of submitted documents/reports pursuant to requirements of MTCA and its implementing regulations, Chapter 70.105D RCW and Chapter 173-340 WAC, for characterizing and addressing the following releases at the Site:

- Gasoline-, diesel- and oil-range petroleum hydrocarbons (TPH-g, TPH-d and TPH-o) into the Soil.
- TPH-g into the Ground Water.
- Benzene, toluene, ethylbenzene and xylenes (BTEX) into the Soil.
- Benzene, ethylbenzene and xylenes into the Ground Water.
- · Carcinogenic polyaromatic hydrocarbons (cPAHs) into the Soil.

- Cadmium, lead and mercury into the Soil.
- Naphthalene and 1-methylnaphthalene into the Soil.
- Arsenic into the Ground Water.
- Cis-1,2 dichloroethene, 1,2-dichloroethane and Vinyl Chloride into the Ground Water.

Ecology is providing this advisory opinion under the specific authority of RCW 70.105D.030(1)(i) and WAC 173-340-515(5).

This opinion does not resolve a person's liability to the state under MTCA or protect a person from contribution claims by third parties for matters addressed by the opinion. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). The opinion is advisory only and not binding on Ecology.

Ecology's Toxics Cleanup Program has reviewed the following information regarding your proposed remedial action(s):

- GeoEngineers, Conceptual Cleanup Action and Request for NFA-Likely Opinion Letter, dated February 17, 2015.
- 2. GeoEngineers, Phase II Environmental Site Assessment, dated November 13, 2014.
- 3. GeoEngineers, Phase I Environmental Site Assessment, dated November 13, 2014.

The reports listed above will be kept in the Central Files of the Northwest Regional Office of Ecology (NWRO) for review by appointment only. Appointments can be made by calling the NWRO resource contact at (425) 649-7235 or by sending an e-mail to nwro_public_request@ecy.wa.gov.

The Site is more particularly described in Enclosure A to this letter, which includes a detailed Site diagram. The description of the Site is based solely on the information contained in the documents listed above.

Based on a review of supporting documentation listed above, pursuant to requirements contained in MTCA and its implementing regulations, Chapter 70.105D RCW and Chapter 173-340 WAC, for characterizing and addressing the release(s) at the Site, Ecology has determined:

- Additional data is needed to define the interaction between soil and ground water contamination related to source areas on the Property and off-Property sources of contamination. Unless it can be demonstrated that there is separation between the on Property contamination and contamination migrating onto the Property from off-Property sources, the resulting contamination is viewed by Ecology as one Site under MTCA. Specifically, additional ground water data is needed at the upgradient Property boundary, in the Property source areas, and in between to demonstrate where upgradient sources interact with on-Property sources. In addition, engineered controls are necessary as part of any cleanup of the Property to prevent recontamination of the Property from off-Property sources. This opinion letter focuses on the data gaps identified for the Site as it relates to releases that occurred at this Property.
- The vertical extent of soil contamination was not defined at the following locations:
 - Soil samples were not collected to define the vertical extent of TPH-g at boring locations DP-2 and DP-7.
 - Soil samples were not collected to define the vertical extent of benzene at boring locations DP-7 and DP-11.
 - O Soil samples were not collected to define the vertical extent of cPAHs at boring locations DP-7 and DP-10. In samples DP-11 and DP-12, cPAHs were not detected but the reporting limit for these samples exceeded the MTCA Method A cleanup level for benzo-a-pyrene.
 - Soil samples were not collected to define the vertical extent of lead at boring locations DP-12 and MW-2.
 - Soil samples were not collected to define the vertical extent of naphthalene at boring location B-3.
- The lateral extent of soil contamination was not defined at the following locations:
 - TPH-g and benzene contamination in soil has not been defined in the north and northeastern portions of the Site beyond DP-8, DP-9 and DP-10 or to the west of DP-8, DP-2 and DP-11. Although TPH-g and benzene were not detected in soil at location DP-10 at 10 feet below the ground surface (bgs) contamination above MTCA Method A cleanup levels was confirmed at five feet bgs and therefore it is unknown how far north or east the shallow contamination extends. TPH-g and benzene concentrations detected in soil at locations DP-2 and DP-11 suggest an off-Property source. Neither contaminant was detected at 2.5 feet bgs but exceeded the MTCA Method A cleanup level at 10 and 15 feet bgs respectively.

The minimum depth of benzene contamination is between 2.5 and 10 feet bgs and as mentioned previously, the vertical extent is unknown in some locations.

- TPH-d and TPH-o contamination in soil has not been defined in the vicinity of the oil/water separator, west of DP-11 and likely extends off-Property. Based on detections of TPH-d at DP-7 (468 and 844 mg/kg at 7.5 and 13 feet bgs respectively) below the MTCA Method A cleanup level, a release may have occurred in the former UST area. However, based on the proposed depth of 15 feet bgs for the remedial excavation, any shallow TPH-d contamination not yet identified and delineated in association with the former UST area, would likely be removed.
- Lead contamination in soil has not been defined in the western, northwestern and southwestern portions of the Property and may extend off-Property.
- The extent of mercury contamination in soil has not been defined in the north and west of the DP-8 and DP-9 and may extend off-Property.
- The extent of naphthalene contamination in soil has not been defined north and west of DP-2 and DP-8 and may extend off-Property.
- Based on the above-mentioned data gaps, the remedial investigation for soil contamination at the Site and Property is not complete. Although the data collected to date is useful for guiding further characterization, additional soil sampling and analysis are needed to define the extent of contamination prior to evaluating cleanup options. Therefore, Ecology cannot provide an opinion regarding the appropriateness of the proposed remedial action for addressing soil contamination associated with the Property at this time. At various locations (as detailed above) soil contamination is more than double the MTCA Method A cleanup levels at 13 feet or greater and/or the vertical and lateral extent has not been delineated.
- Any future samples collected at the Property should be analyzed according to Table 830-1 of the MTCA regulation and Table 7.2, page 95, in the Guidance of the Remediation of Petroleum Contaminated Sites, Ecology Publication No. 10-09-057, September 2011. The additional parameters listed on Table 830-1 of the MTCA regulation should be analyzed in the samples with the greatest TPH concentrations.
- The extent of ground water impacts has not been characterized at the Site. Monitoring
 wells must be placed in and immediately downgradient of each identified source area on
 the Property. The predominant ground water flow direction and gradient, has not been
 established for the Site, and must be to determine optimum well locations. Based on data
 submitted to date, it appears that monitoring wells MW-1 through MW-3 are not

correctly positioned to assess conditions related to releases that have occurred at the Property. Additional ground water monitoring wells are needed at the Site to determine the ground water flow direction and to fully characterize the nature and extent of contamination at the Property.

In addition, during the September 2014 sampling event nearby dewatering activities lowered the water table to depths of between 21 to 24 feet bgs. Following the completion of a nearby construction project where the dewatering had been occurring, the depth to ground water measured between approximately 13 and 18 feet bgs on an unspecified date. Ground water monitoring wells should be placed and screened appropriately to determine if light non-aqueous phase liquid is present and migrating onto the Property from the adjacent Roy Street Shops and to assess the dissolved plume originating on the Property and from off-Property sources. Therefore, well screens in and downgradient of the likely on-Property source areas should straddle the water table, and ground water samples collected within a few feet of the water table.

- Ecology agrees that based on the soil vapor data collected to date; further evaluation of
 the potential vapor intrusion threat is needed. At this time, additional Site
 characterization is needed prior to selecting a cleanup action for the Property. Ecology
 recommends incorporating further vapor assessment as part of the development of the
 cleanup action plan.
- A Terrestrial Ecological Evaluation (TEE) may be required unless it is determined the Site qualifies for an exclusion. The TEE decision-making process must be documented as per WAC 173-340-7490. A TEE process interactive user's guide can be found at: http://www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm

This opinion does not represent a determination by Ecology that a proposed remedial action will be sufficient to characterize and address the specified contamination at the Site or that no further remedial action will be required at the Site upon completion of the proposed remedial action. To obtain either of these opinions, you must submit appropriate documentation to Ecology and request such an opinion under the VCP. This letter also does not provide an opinion regarding the sufficiency of any other remedial action proposed for or conducted at the Site.

Please note that this opinion is based solely on the information contained in the documents listed above. Therefore, if any of the information contained in those documents is materially false or misleading, then this opinion will automatically be rendered null and void.

The state, Ecology, and its officers and employees make no guarantees or assurances by providing this opinion, and no cause of action against the state, Ecology, its officers or employees may arise from any act or omission in providing this opinion.

Again, Ecology appreciates your initiative in conducting independent remedial action and requesting technical consultation under the VCP. As the cleanup of the Site progresses, you may request additional consultative services under the VCP, including assistance in identifying applicable regulatory requirements and opinions regarding whether remedial actions proposed for or conducted at the Site meet those requirements.

If you have any questions regarding this opinion, please contact me at (425) 649-7097 or e-mail at desc461@ecy.wa.gov.

Sincerely,

Diane Escobedo Site Manager

Toxics Cleanup Program

Enclosure: A - Site description

cc: Sonia Fernandez, VCP Coordinator, Ecology

Site Description

This section provides Ecology's understanding and interpretation of Site conditions, and is the basis for the opinions expressed in the body of the letter.

<u>Site</u>: The Site is defined by the release of gasoline-, diesel- and oil-range petroleum hydrocarbons (TPH-g, TPH-d and TPH-o), benzene, toluene, ethylbenzene, xylenes (BTEX), carcinogenic polyaromatic hydrocarbons (cPAHs), cadmium, lead, mercury and naphthalene to soil and TPH-g, benzene, ethylbenzene, xylenes, arsenic, cis-1,2-dichloroethene, 1,2-dichloroethane and vinyl chloride into ground water associated with the operation of automobile body repair and servicing, painting at the Property and potential off-Property sources to the west and southwest associated with an industrial laundry facility and gasoline service station. The Site is located at 739 9th Avenue North in Seattle, WA (Property).

Area and Property Description: The Property corresponds to King County parcel number 4088803485 which is 0.52 acres in size. The Property is occupied by two one-story buildings. The Property is bounded by 9th Avenue North to the east, a public right-of-way alley to the west, to the north by a commercial building used by an architectural firm and a building occupied by motorcycle dealership to the south. Land use surrounding the Site is mixed use (commercial businesses, industrial, hotels and residential) and is currently undergoing extensive redevelopment. Past uses of adjacent parcels may impact the Property. A former automotive repair facility, Bayside Volvo. Facility Site Identification No. (FSID):45221945, was located to the north. Three USTs were closed in place and petroleum hydrocarbons were released to soil and ground water. The south adjacent parcel was historically as a truck repair facility (Frank Kenney Toyota, FSID 43288835. A City of Seattle and Puget Sound Power and Light maintenance facility and gasoline service station (Roy Street Shops 89, FSID 95811428) with confirmed petroleum hydrocarbon and benzene contamination in soil and ground water is located on the adjacent parcel to the west. A large chlorinated solvent plume associated with a former industrial laundry and dry cleaning facility (American Linen Supply Company Dexter Avenue which is VCP project number NW2652) is located southwest of the Property.

Property History and Current Use: The Property was first developed in the 1920s and has been used for truck body assembly and welding (1940 to 1980), automobile body repair and servicing, steel tank manufacturing and welding (1948, north building) and vehicle painting. The north building was built in 1924 and the south building was built in 1955. An auto body repair and painting facility has operated at the Property from approximately 1980 to present. Proposed redevelopment will include an eight-story hotel building with one floor of underground parking.

Contaminant Source and History: Specifics regarding the possible use and storage of petroleum or hazardous substances on the Property and waste disposal practices associated with the historical businesses (truck body assembly and welding, automobile repair and servicing and/or vehicle or truck painting) that occupied the Property have not been identified. Significant quantities of paint and automotive fluids (oils, coatings) are currently and were likely historically used and stored at the Property. Vehicle fueling is not known to have occurred on the Property. A 500-gallon heating oil UST was formerly in use in the northwest corner of the Property storage yard. The UST was

closed in place in 1999 but soil and ground water sampling was not conducted at the time. Fill material containing fragments of glass, brick and other debris was identified in shallow soil and may be a source of the metals, petroleum and PAH contamination identified in soil. A floor drain is located in the work area and may be a potential pathway for contamination to enter soil and ground water. Paints and automotive fluids (paints, oils, coatings) are currently and likely were historically used and stored at the Property. Spills may have occurred that were then released to the subsurface via storm drains in the north building floor and in the northwest corner of the paved storage/work yard. Paint spray booths were installed in 1993 in the southern building and 1996 in the northwest corner of the south existing building.

<u>Physiographic Setting</u>: The Property is located in the Puget Sound Lowland. The Property is located approximately 30 feet above mean sea level.

<u>Surface/Storm Water System</u>: Storm drains are located in the north building floor and in the northwest corner of the paved storage/work yard. Precipitation collected on the paved storage/work yard flows into the catch basin located near the northwest corner of the yard and then enters the combined sewer stormwater system. The stormwater drainage pipes for the building connect to combined sewer and drainage subsurface piping that passes through the oil/water separator before connecting to the city pipe line in the alley. Lake Union is located approximately 0.1 miles to the northeast.

<u>Ecological Setting</u>: The Property is located in an urban setting; land surfaces are primarily covered by asphalt, buildings and landscaping. Lake Union Park is located approximately 450 feet east of the Property. The park is 12-acres and consists of landscaped lawns, paved footpaths and shoreline.

Geology: The fill material encountered from 12.5 to 19.5 feet below ground surface (bgs) consists of sand with variable silt and gravel and silt with variable gravel and cobble content with debris layers up to 10 feet thick containing decaying wood, plastic, glass and metal. Silt and clay with occasional sand interbeds and variable gravel or sand with variable silt and gravel were observed below the fill to depths of 35.5 to 55 feet bgs. Glacial till-like deposits were encountered at a depth of 56 feet in boring MW-1.

<u>Ground Water:</u> Depth to ground water measured during nearby redevelopment dewatering was between 21 and 24 feet bgs. Depth to ground water post-redevelopment dewatering ranged from 13 to 18 feet bgs. Ground water flows east-northeast.

Water Supply: Drinking water on the Property is provided by Seattle Public Utilities. According to Ecology's online well log database there are no drinking water wells located within ¼ mile of the Property.

Release and Extent of Soil and Ground Water Contamination: TPH-g, TPH-d and TPH-o, BTEX, cPAHs, cadmium, lead, mercury and naphthalene- contaminated soil has been identified at concentrations exceeding MTCA Method A cleanup levels on the western half of the Property to a maximum depth of 35 feet bgs. The vertical and lateral extent of contamination in soil has not been fully delineated.

Three ground water monitoring wells were installed, two in the southwest corner of the Property (MW-2 and MW-3) and one in the northeast corner (MW-1) of the Property. Benzene, vinyl chloride and arsenic were detected at concentrations exceeding MTCA Method A cleanup levels in southwest corner of the Property. The vertical and lateral extent of contamination in ground water has not been fully delineated.

The Property is located downgradient from a large chlorinated solvent ground water plume related to an industrial laundry facility, American Linen Supply Company, appears to extend onto the southwest corner of the Property. A historic gasoline service station and maintenance facility, Roy Street Shops, is located west of the Property. A gasoline release to soil and ground water also appears to be migrating onto the western portion of the Property. Ground water monitoring wells located in the west adjacent alley have not been sampled since the 1990s.

APPENDIX BReports Provided by City of Seattle

Environmental Review, Seattle City Light 8th and Roy Street Property 800 Aloha Street Seattle, Washington

December 20, 2010

Submitted To:
Ms. Jennifer Kindred
Seattle City Light, Environmental Affairs Division
700 5th Avenue, Suite 3316
Seattle, WA 98124-4023

By: Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, Washington 98103

21-1-12305-030

December 20, 2010

Ms. Jennifer Kindred City of Seattle Seattle City Light, Environmental Affairs Division 700 Fifth Avenue, Suite 3316 Seattle, WA 98104

RE: ENVIRONMENTAL REVIEW, SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY, 800 ALOHA STREET, SEATTLE, WASHINGTON

Dear Ms. Kindred:

This letter report provides our review of available environmental information concerning the Seattle City Light (SCL) property located at 800 Aloha Street in Seattle, Washington (the Property). Our review was completed in general accordance with our proposal dated September 20, 2010, and included a review of available site files provided by SCL, a site visit, a review of available Washington State Department of Ecology (Ecology) files for select adjacent properties, and an interview with the owners of the neighboring Maryatt Industries property.

PROPERTY LOCATION AND BACKGROUND

The Property is located at 800 Aloha Street in Seattle, Washington (Figure 1). The Property occupies the west half of the block along 8th Avenue N, between Aloha and Roy Streets. Historical land use in the vicinity of the Property has predominantly been commercial and light industrial (Figure 2). According to the 1995 RETEC, Inc. report provided in SCL files, the shoreline around Lake Union was expanded using fill from the Denny Regrade and topped with additional fill placed during development of the area. Fill soils described in this report are 18 to 27 feet thick and consist of sands, silts, clays, gravels, and construction debris. Beneath the fill is a medium dense layer of silty, clayey sand believed to act as a semi-confining aquitard. The aquitard is reported to be only a few feet thick. Gravelly sands underlie the medium dense sand layer to an unknown depth. Hydraulic groundwater gradients discussed in the 1995 RETEC report indicate an east-northeast groundwater flow direction with a depth to water range from 12 to 18 feet below ground surface (bgs).

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 2 of 14

SEATTLE CITY LIGHT RECORDS REVIEW

This section provides an overview of environmental-related activities that have occurred at the Property and on select adjacent sites, based on our review of SCL-provided files. Table 1 provides a list and brief summary of the documents contained in the SCL file. Figure 2 is an area map of the Property and adjacent sites, and Figure 3 is a site map of the Property.

8th and Roy Street Property

The Property was owned by SCL until it was transferred to the Seattle Department of Parks and Recreation (SDPR) in 1981. Potential subsurface contamination was first noted in a January 1992 memo from SDPR to SCL. The contamination resulted from a broken suction line on an 2,700-gallon underground storage tank (UST) that supplied unleaded gasoline to a fuel pump island located in the parking lot north of the building (Figure 3). Other tanks identified on the Property include an abandoned 550-gallon UST located at the northwest corner of the building and an aboveground storage tank (AST) associated with a boiler located at the southeast corner of the building. At the time, SDPR suspected that a 4,000-gallon UST was also present on the property. Subsequent activities conducted at the Property are summarized below:

- April 1992
- A site investigation to locate tanks was conducted by SCS Engineers. Using ground penetrating radar, the presence of the 2,700-gallon and 550-gallon USTs were confirmed, but the suspected 4,000-gallon UST was not found and was not believed to exist. A soil vapor survey indicated the release from the 2,700-gallon tank was likely limited to the immediate area around pump island, but also discovered contamination on the east side of the 550-gallon tank.
- March 1993
- Removal of the 2,700-gallon and 550-gallon USTs and a preliminary site assessment was conducted by E.P. Johnson Construction & Environmental. Seven borings were drilled and sampled; five of which had monitoring wells installed (MW-1 through MW-5). Gasoline, benzene, toluene, ethylbenzene, and xylenes (BTEX), and heavy oil were detected in soil above cleanup criteria, primarily from 12.5 to 17.5 feet bgs. Gasoline and BTEX were detected in groundwater above cleanup criteria. A total of 437 cubic yards (cy) of soil were removed, of which

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 3 of 14

an estimated 325 cy were contaminated with petroleum hydrocarbons.

- June 1993
- A site investigation was conducted by RETEC, Inc. Five existing monitoring wells (MW-1 through MW-5) and two trenches were excavated and sampled. Gasoline and BTEX were detected in soil and groundwater above cleanup criteria. Chlorinated solvents (vinyl chloride, 1,1-dichloroethene, t-1,1-dichloroethene, c-1,2-dichloroethene, trichloroethene, and tetrachloroethene) were detected above cleanup criteria in one groundwater sample (MW-2).
- September1993
- Additional contaminated soil was excavated by E.P. Johnson Construction & Environmental under supervision of SDPR. There was no separate report of this activity; it was described in a revised site investigation report prepared by RETEC, Inc. in February 1995. An additional 1,913 cy of soil was excavated and removed, with the base of the excavation between 20 and 25 feet bgs. Thirteen soil samples were collected. Gasoline and BTEX were detected in soil above cleanup criteria. Contamination appeared to be concentrated at the top of the water table (12 to 18 feet bgs).
- October
 1993
- Supplementary observations were made by RETEC, Inc. after contaminated soil was excavated. There was no separate report of this activity; it was described in a revised site investigation report prepared by RETEC, Inc. in February 1995. RETEC observed a semi-confining aquitard at approximately 20 feet bgs and questioned the usefulness of the existing monitoring wells (MW-1 through MW-5) because the well screens were placed across the aquitard. Five new monitoring wells (MW-6 through MW-10) and three borings were drilled and sampled. The five wells were also sampled in January 1994, April 1994, and September 1994. Gasoline and BTEX were detected in soil and groundwater above cleanup criteria.
- July 1994
- A remedial alternatives report was prepared by RETEC, Inc. and submitted to SDPR. Remediation options targeting gasoline and BTEX included air sparge/bioventing and

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 4 of 14

dewatering/bioventing.

-	February
	1996

Boring logs for five additional wells and vapor extraction test results were presented by SCS Engineers. Information suggests an air sparge/soil vapor extraction system was chosen as the remediation alternative.

February1997

A Puget Sound Air Pollution Control Agency permit application and notice of construction was submitted by SCS Engineers.

September1997

Final air sparge/soil vapor extraction system drawings were presented by SCS Engineers. A cover letter indicates groundwater sampling was conducted in February and April 1996, but the data were not present in the file. The file itself terms the drawings "As-Builts," suggesting the remediation system was installed.

■ June 2002

A site evaluation was conducted by Urban Redevelopment, Inc. Forty-four soil, 11 groundwater, and one concrete core sample was collected and analyzed, but no narrative or evaluation of the data was present in the file. (These data are further discussed in the *Recent Analytical Results* section of this letter report [starting on page 10].)

September 2003

The property was transferred back to SCL from SDPR.

Maryatt Industries/American Linen Supply (adjacent west)

A notification of contamination was prepared by Maryatt Industries, a former dry cleaner, for Ecology in December 1992. The letter includes an environmental summary report prepared by Dalton, Olmsted & Fuglevand, Inc. for Maryatt Industries.

- The report indicates that USTs were removed from the northeast corner of the property. The date of removal, the number removed, and the contents of the USTs are not known.
- Six monitoring wells were installed and sampled. The depths of the wells or well screen intervals are not known. The water level data indicates that the groundwater flow gradient is to the southeast.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 5 of 14

• Tetrachloroethene ranging from 3 to 4,500 parts per billion (ppb) and benzene ranging from 0.6 to 480 ppb were detected in groundwater above their cleanup criteria of 5 ppb. The highest concentrations were detected at the southeast corner of the site.

Seattle Public Schools/Futon Dealer (adjacent west)

A site characterization report was prepared by Hart Crowser in July 1989 to address petroleum contaminated soil encountered during UST removal and to develop a remediation plan.

- Six USTs containing gasoline (leaded and unleaded), diesel, waste oil, and heating oil were removed. The date of UST removal is not known. Two gasoline USTs were reported to be 2,000 gallons each; the sizes of the others are not known.
- Fifteen soil and five groundwater samples were collected from four monitoring wells installed and seven shallow test pits excavated.
- Total petroleum hydrocarbons ranging from 4 to 7,771 parts per million (ppm) were detected in soil above the cleanup criteria of 200 ppm established at that time. Low levels of total petroleum hydrocarbons were detected in groundwater below cleanup criteria.
- The report indicates that petroleum contamination was found to be adjacent to and hydraulically downgradient from each of the previously removed USTs. The groundwater flow gradient was reported to be toward the northeast.

Bay Side Volvo/Architecture Firm (adjacent east)

A UST site assessment report was prepared by Geotech Consultants in September 1992.

- Three USTs were removed in July 1992: 1,000-gallon gasoline, 500-gallon waste oil, and 500-gallon fuel oil.
- Groundwater was not encountered in the UST excavations.
- Gasoline-range petroleum hydrocarbons ranging from 80 to 3,000 ppm, benzene at 0.6 ppm, toluene ranging from 0.06 to 1.6 ppm, ethylbenzene ranging from 0.92 to 22 ppm, and xylenes ranging from 2.24 to 111 ppm were detected in soil above their respective cleanup criterion.
- The report indicates that the petroleum and BTEX soil contamination was believed to emanate from an upgradient source to the west (i.e., the Property); however, monitoring

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 6 of 14

well data evaluated but not presented in the report showed petroleum detections to the northeast of the property, but not to the west.

PROPERTY SITE VISIT

On September 29, 2010, we conducted a site visit with Greg Aramaki of SCL Real Estate Services. Our intent during the visit was to visually observe findings contained in the SCL files, identify additional potential environmental concerns, and to find evidence of the air sparge/soil vapor extraction remediation system installation. Observations made during our visit are summarized below:

- Evidence of the air sparge/soil vapor extraction system was observed in the parking lot, north of the building (Photos 1 through 8). The well monuments and asphalt cuts shown in Photos 1 through 6 mirror the final remediation system drawings in the file. Photos 7 and 8 show what appears to be the pipe collection point where the system equipment appears to have been removed.
- An AST labeled as "oil for waste oil burner" was observed near a wash down area at the northwest corner of the building (Photos 9 and 10). The AST appeared to be empty. A slight sheen was observed in the wash down area catch basin, where the depth to water in the basin was approximately 2 feet bgs.
- Piping believed to be associated with the AST that supplied the former boiler in the southeast corner of the basement was observed; however, the AST was no longer present.
- The basement level was being used primarily as vehicle storage and maintenance (Photos 11 through 21). Drum and container storage of leaded fuel (Photos 12 [in background] and 20), cleaning solvents (Photo 13), and motor oil (Photos 16 and 20) were observed throughout the basement area with no secondary containment. An AST with what appears to be a slight oil stain on the floor below the tank was also observed (Photo 14). Additional stored items observed included paints, thinners, grease, and coolants.
- The main floor of the building was primarily being used as storage of electrical transformers and associated equipment (Photos 22 through 28). Also observed was an empty, portable storage tank (Photo 22), a utility elevator (Photo 26), and a maintenance shop utility sink (Photos 27 and 28).

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 7 of 14

ECOLOGY FILE REVIEW

On October 6, 2010, we reviewed available Ecology files for the Property and select adjacent sites. The intent of this review was three-fold: (1) to locate information pertaining to the installation of the air sparge/soil vapor extraction remediation system at the Property and supplement information contained in the SCL files, (2) to locate information pertaining to the reported solvent release at the Maryatt Industries site, and (3) to review any other information available that pertains to sites adjacent to the Property. Additional findings from this review are described below:

8th and Roy Street Property

- Information pertaining to the installation and performance of the air sparge/soil vapor extraction remediation system was not present in the file.
- The information in the Ecology file was the same as that found in the SCL files, with the exception of a dangerous waste compliance inspection conducted by Ecology in August 2002. The letter report cites several areas of non-compliance pertaining to waste drums that were present at the Property. The inspection report indicated that the Property was in the process of being closed and that a contractor was collecting environmental samples in preparation of the transaction.

Maryatt Industries/American Linen Supply (adjacent west)

• There was no information pertaining to this site in Ecology's files.

Seattle Public Schools/Futon Dealer (adjacent west)

- The site characterization report prepared by Hart Crowser and provided by SCL was in the file
- The site was reported cleaned up in 1989; however, documentation that Ecology granted a no further action (NFA) designation was not found in the file.

Bay Side Volvo/Architecture Firm (adjacent east)

- The UST site assessment report prepared by Geotech Consultants and provided by SCL was in the file.
- No additional information was found.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 8 of 14

Jarvie Paint/Yellow Cab/Neptune Apartments (adjacent northwest)

- Several reports were found in the file indicating that the southern portion of this block was formerly occupied by Jarvie Paint Manufacturing Co. (Jarvie) and a Yellow Cab parking and maintenance yard. A large portion of the entire block was recently redeveloped as Neptune Apartments (Neptune).
- Solvent-stained soil was reported in 1977, and volatile organic compounds were detected in the 8th Avenue storm sewer in 1995.
- Six USTs were removed at the Jarvie property: 6,000-gallon toluene, 7,000-gallon mineral spirits 350, 2,700-gallon lacquer thinner, 1,000-gallon aliphatic petroleum distillates, 1,000-gallon xylene, and 2,700-gallon alkyd resin. The date of removal is not known. A 1,500-gallon heating oil tank was left during removal of the other USTs and its status is unknown; however, the UST was likely removed during the recent redevelopment of the property.
- One UST with unknown contents was removed at the Yellow Cab Facility. The date of removal is not known.
- Toluene, mineral spirits, lacquer thinner, petroleum distillates, xylenes and alkyd resins were detected in soil and groundwater at the Jarvie property. Diesel fuel, barium, cadmium, chromium, and lead were detected in near-surface soils at the Yellow Cab facility.
- The Jarvie property received an NFA from Ecology in 1999 after the site was remediated; however, new contamination was found in 2001 during redevelopment. Upon remediation, an NFA with a restrictive covenant was issued to Neptune by Ecology in 2007.
- The Yellow Cab facility received an NFA from Ecology in 1991 for soil only. A full NFA with restrictive covenant was issued to Neptune by Ecology in 2006.

Westlake Terminals/Double M Hotel (adjacent north)

- A Phase 1 Environmental Site Assessment and Subsurface Investigation report was prepared by Earth Consultants, Inc. in September 1992.
- The report indicated that two gas stations have occupied the property.
- Three USTs of unknown size and contents were removed. The date of removal is not known.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 9 of 14

• Gasoline-range hydrocarbons were detected in the soil and groundwater. Off-site detections are believed to be from an unspecified upgradient source to the west.

MAACO Auto Painting (adjacent east)

- The file identifies this site as a small quantity generator.
- No violations or additional information was found in the file.

Ducati Dealership (adjacent east)

- One UST of unknown size and contents was reportedly closed in place. The date of closure is not known.
- A lube oil spill onto the paved roadway was reported. The date of the spill is not known.
- Halogenated organic compounds and petroleum products were detected in soil and groundwater in 1993; however, the source of contamination was not indicated.
- The site is undergoing independent remedial action under Ecology's Voluntary Cleanup Program.

Buca de Beppos Restaurant (adjacent east)

• There was no information pertaining to this site in Ecology files.

Gas Station/Parking Lot (adjacent southwest)

There was no information pertaining to this site in Ecology files.

MARYATT INDUSTRIES INTERVIEW

On October 12, 2010, a telephone interview was conducted with Dave Maryatt, former owner of the Maryatt Industries site. The intent of this interview was to obtain information pertaining to the reported solvent release at the Maryatt Industries site and any plans for site remediation. Findings from this interview are described below:

- The site has been sold, but the transaction is currently being finalized.
- A solvent release was reported to be due to a minor barrel spill of tetrachloroethene in the 1980s.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 10 of 14

- Tetrachloroethene, benzene, and petroleum hydrocarbons (gasoline-, diesel-, and heavy oil-range) were detected in soil and groundwater and are believed to be present under the building.
- One gasoline UST was removed. The tank was not reported as leaking. The date of removal is not known.
- Three diesel USTs that fueled the building's boiler were reported to be in place, but currently empty. They are to be removed during redevelopment.
- No remediation has been conducted; however, plans for remediation have been made but would not take place until the property is transferred. Citing the pending sale of the property, details of the planned remediation were not provided.

RECENT ANALYTICAL RESULTS

Subsurface conditions at the Property were most recently evaluated by Urban Redevelopment in 2002. Forty-four soil, 11 groundwater, and 1 concrete core samples were collected; however, there was no narrative or evaluation of the sampling data present in the files. Figure 2 shows sampling locations and Tables 2 and 3 show soil and groundwater analytical results, respectively. Based on our evaluation of the raw data, the following conclusions can be made:

Soil Results

- Gasoline-range hydrocarbons were detected above the Washington State Model Toxics Control Act (MTCA) cleanup criterion of 100 ppm (30 ppm where benzene also detected) in 11 of 33 samples analyzed. Detection exceedences were predominantly 12 to 15 feet bgs in the parking area and 3 to 8 feet bgs below the building basement.
- Benzene was detected above the MTCA cleanup criterion of 0.03 ppm in 20 of 33 samples analyzed. Detection exceedences were predominantly 12 to 15 feet bgs in the parking area and 3 to 8 feet bgs below the building basement.
- Toluene was detected above the MTCA cleanup criterion of 7 ppm in 5 of 33 samples analyzed. Detection exceedences were predominantly 15 feet bgs in the parking area and 3 to 8 feet bgs below the building basement.
- Ethylbenzene was detected above the MTCA cleanup criterion of 6 ppm in 7 of 33 samples analyzed. Detection exceedences were predominantly 15 feet bgs in the parking area.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 11 of 14

- Xylenes were detected above the MTCA cleanup criterion of 9 ppm in 7 of 33 samples analyzed. Detection exceedences were predominantly 15 feet bgs in the parking area and 3 to 8 feet bgs below the building basement.
- Diesel-range hydrocarbons were detected above the MTCA cleanup criterion of 2,000 ppm in one of 22 samples analyzed. The detection exceedence was 0 to 4 feet bgs in the parking area near the existing shed.
- Carcinogenic PAHs (cPAHs) were detected above the MTCA cleanup criterion of 0.1 ppm in the three samples analyzed. The detection exceedences were 0 to 4 feet bgs in the parking area near the existing shed.
- Mercury was detected above the MTCA cleanup criterion of 2 ppm in 1 of 13 samples analyzed. The detection exceedence was 0 to 4 feet bgs in the parking lot.
- Lead was detected above the MTCA cleanup criterion of 250 ppm in 2 of 13 samples analyzed. One lead exceedence was 0 to 4 feet bgs in the parking lot and the second exceedence was 0 to 3 feet bgs below the building basement.

Groundwater Results

- Gasoline-range hydrocarbons were detected above the MTCA cleanup criterion of 1,000 ppb (800 ppb where benzene also detected) in five of 11 samples analyzed. Detection exceedences were in the parking area and adjacent alley.
- Benzene was detected above the MTCA cleanup criterion of 5 ppb in 5 of 11 samples analyzed. Detection exceedences were in the parking area and adjacent alley.
- Ethylbenzene was detected above the MTCA cleanup criterion of 700 ppb in 1 of 11 samples analyzed. Detection exceedences were in the parking area and adjacent alley.
- Xylenes were detected above the MTCA cleanup criterion of 1,000 ppb in 2 of 11 samples analyzed. Detection exceedences were in the parking area and adjacent alley.
- cPAHs were detected above the MTCA cleanup criterion of 0.1 ppb in one of three samples analyzed. The detection exceedence was in the parking area.
- Naphthalene was detected above the MTCA cleanup criterion of 160 ppb in one of three samples analyzed. The detection exceedence was in the parking area.
- Arsenic was detected above the MTCA cleanup criterion of 5 ppb in the five samples analyzed. The detection exceedences were predominantly in the parking area.
- Cadmium was detected above the MTCA cleanup criterion of 5 ppb in four of five samples analyzed. The detection exceedences were predominantly in the parking area.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 12 of 14

- Chromium was detected above the MTCA cleanup criterion of 50 ppb in two of five samples analyzed. The detection exceedences were predominantly in the parking area.
- Mercury was detected above the MTCA cleanup criterion of 2 ppb in one of five samples analyzed. The detection exceedence was in the parking area.
- Lead was detected above the MTCA cleanup criterion of 15 ppb in the five samples analyzed. The detection exceedences were predominantly in the parking area.
- Silver was detected above the MTCA cleanup criterion of 0.32 ppb in one of five samples analyzed. The detection exceedence was in the parking area.
- Turbidity was analyzed for two samples and was 75 and 270 nephelometric turbidity units (NTU).

SUMMARY

Based on our review, field observations, and most recent analytical data, we offer the following summary regarding potential contamination at the Property:

- Two USTs were removed in 1993 and petroleum-contaminated soil (PCS) was encountered. Approximately 2,350 cy of PCS were subsequently excavated.
- An air sparge/soil vapor extraction remediation system was apparently installed based on 1997 drawings and site observations. However, records are incomplete regarding the installation and operation of the remediation system.
- Potential solvent contamination from Maryatt Industries reported in 1992 was not detected in site soil or groundwater samples collected in 2002 by Urban Redevelopment. Remediation plans have been developed, but the details were not divulged due to the pending sale of the property.
- The 2002 Urban Redevelopment sample results are the most recent environmental information found for the Property. They indicated the following:
 - Gasoline and BTEX exceeding MTCA cleanup criteria were present in site soil and groundwater in the parking lot and adjacent alley (SP-9, SP-10, SP-12, SP-13, SP-14, SP-17, SP-18, SP-19, SP-20, SP-21, MW-101, MW-102, MW-105, MW-6, and MW-7). The contamination was concentrated near the water table at 12 to 18 feet bgs and extended under the north end of the building basement. Assuming the remediation system was installed and operated, these petroleum contamination levels have probably been reduced.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 13 of 14

- Diesel and cPAHs exceeding MTCA cleanup criteria were present in shallow soils near the existing storage building (SP-1, SP-3, and SP-7).
- Lead and mercury exceeding MTCA cleanup criteria were present in shallow soils in the parking area and below the building basement (B-102 and SP-7). This contamination does not appear to be widespread and may be due to undocumented fill.
- Metals were present in site groundwater exceeding MTCA cleanup criteria; however, due to the low mobility of these constituents and relatively high turbidity measurements (75 and 270 NTU), these exceedences may have been due to unfiltered samples and may not have truly represented site groundwater (MW-6, MW-7, MW-8, MW-9, and MW-10).

CLOSURE

The findings and conclusions documented in this letter report have been prepared for specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our agreement. The conclusions presented in this letter report are professional opinions based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

Shannon & Wilson, Inc. has prepared the enclosed "Important Information About Your Geotechnical/Environmental Report." While not written specifically for this project, this enclosure should assist you and others in understanding the use and limitations of our reports.

SHANNON & WILSON, INC.

Ms. Jennifer Kindred City of Seattle December 20, 2010 Page 14 of 14

We appreciate the opportunity to be of service to you. If you have any questions or concerns, please call us at (206) 632-8020.

Sincerely,

SHANNON & WILSON, INC.

Michael S. Reynolds Environmental Engineer Mark A. Bryant, P.E.

Mark a. Byant

Associate

MSR:ACT:MAB:DNC/msr

Enc: Site Visit Reference Photographs, September 29, 2010 (14 pages)

Table 1 – Seattle City Light File Review, 8th and Roy Street Property (6 pages)

Table 2 – 2002 Urban Redevelopment Soil Analytical Results, Seattle City Light, 8th and Roy Street Property (5 pages)

Table 3 – 2002 Urban Redevelopment Groundwater Analytical Results, Seattle City Light, 8th and Roy Street Property (3 pages)

Figure 1 – Vicinity Map

Figure 2 – Area Map

Figure 3 – Site and Exploration Map

Important Information about Your Geotechnical/Environmental Report

Photo 1 – Possible air sparge well heads in parking lot at north end of property.

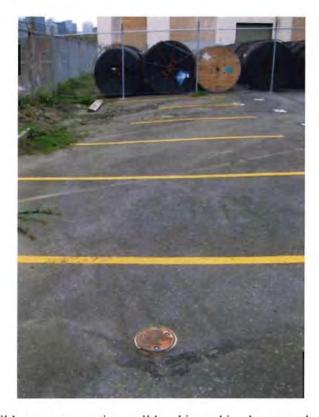


Photo 2 – Possible vapor extraction well head in parking lot at north end of property.

Photo 3 - Possible vapor extraction well head in parking lot at north end of property.

Photo 4 – Active and abandoned monitoring wells along west edge of property in 8th Avenue.

Photo 5 – Possible vapor extraction well head in parking lot at north end of property.

Photo 6 – Possible vapor extraction well head in parking lot at north end of property.

Photo 7 – Possible concrete pad for air sparge and soil vapor extraction equipment.

Photo 8 - Closeup of possible concrete pad for air sparge and soil vapor extraction equipment.

Photo 9 - Aboveground oil storage tank at northwest corner of building.

Photo 10 - Aboveground oil storage tank and wash down area at north end of property.

Photo 11 - Vehicle storage in southern portion of basement.

Photo 12 - Ducati maintenance shop with fuel drum storage in southern portion of basement.

Photo 13 - Parts washing station in Ducati maintenance shop.

Photo 14 – Storage tank in central portion of basement; contents unknown.

Photo 15 - Ducati test bay in central portion of basement.

Photo 16 - Oil storage in central portion of basement.

Photo 17 - General view of basement looking south.

Photo 18 - General view of basement looking north.

Photo 19 - Coolant usage in central portion of basement.

Photo 20 - Oil and fuel container storage in northern portion of basement.

Photo 21 - Motorcycle storage in northern portion of basement.

Photo 22 - Portable storage tank on main floor at north end of building.

Photo 23 – View looking south of covered loading area on main floor of building.

Photo 24 – Transformer storage in central portion of building main floor.

Photo 25 - Transformer storage in central portion of building main floor.

Photo 26 – Utility elevator in central portion of building main floor.

Photo 27 - Cleaning area in maintenance shop in southern portion of building main floor.

Photo 28 - Closeup of cleaning area in maintenance shop in southern portion of building main floor.

Dete	N. CEL D.	D	
Date	Name of File/Document	Purpose	Scope and Key Findings
1987	Roy Street Shops Roofing Dust Collection System	Roofing O&M Manual	Operations & Maintenance manual prepared by Western Construction dated July 29, 1987.
1988	O&M Manual for Roy Street Shops	HVAC O&M Manual	Operations & Maintenance manual prepared by Hart, Inc. dated October 5, 1988.
1700	HVAC Improvements, Hart, Inc.	Transmin and the second	operations of France manual prepared by Frank, mer anted between 5, 1766.
1989	Hart Crowser Report, Seattle Public Schools Site Characterization	Collect additional soil and groundwater quality data at property adjacent west	 Report dated July 24, 1989 4 exploratory borings (3 on site; 1 off site upgradient); MW installed in all
		necessary to develop a remediation work plan. PCS encountered during removal of	Soil samples screened at 2.5-ft intervals; 2 per boring submitted for analysis (the 2 with highest screening levels)
		6 USTs containing leaded and unleaded	• 7 test pits excavated
		gasoline.	• 5 GW samples (1 from each new well, 1 from existing well)
		B	 Soil Analyses: TPH, VOCs, and BTEX GW Analyses: TPH, VOCs, BTEX, and Total Metals
			Test Pit Analyses: TPH, VOCs, BTEX, and Total Metals, and PCBs
			TPH appears to be primary contaminant
			TPH and benzene above cleanup guidelines (TPH all downgradient from former UST sites)
			VOCs detected in MW-4 (in Aloha St) and possibly from upgradient source
			Low potential for GW contamination to migrate off-site
			Develop remediation work plan
			 Unconfined, shallow water table (DTW = 7.5 to 11.0 ft bgs); flow NE towards Lake Union
1991	Roy St Shops	Tank testing sheets	Tank info is for 2,700-gal tank (deemed a 2,800-gal tank)
			Test show tank is "tight" in May 1990 and 1991
1992	Project Manual, Roy St Shops UST	(1) Vehicle fuel pump malfunction at "Roy	
	Removal	Street Shops"; and (2) UST identification	1992; and a few hand written notes
		and prep for removal at SCL property	SDPR renting site in 1975; purchased in 1981
			Gasoline-contaminated soil under concrete pad due to pump malfunction (the 2,700-gal tank)
			1 UST was abandoned and left in place when a replacement was installed; exact location of tanks unknown to
			SDPR
			UST removal on April 1, 1992; SCS Engineers to consult; GPR to locate tank (approx 40-50 ft from existing gas
			pump)
			Soil vapor survey indicates that leak at fuel pump likely limited to immediate area around pump; however, survey suggest soil contamination on east side of an abandoned 550-gal UST near main gate entrance
			· Total of 3 USTs (2 indicated; 1 suspected); 1=550 gal, 1=2,700-gal, 1~4,000-gal
			· Suspected tank between storage shed and fuel island
			· SCL indicates 2 abandoned tanks
			· 2,700-gal unleaded gasoline tank approx 20 ft from north end of building
			• 550-gal gasoline tank at NW corner of service shop
			4,000-gal diesel tank adjacent to an oil storage building (existing storage shed) approx 60 feet north of main
			service building on west side of property

Date	Name of File/Document	Purpose	Scope and Key Findings
1992	SCS Engineers Site Investigation to Assess Soil Contamination and Locate USTs	Site characterization for release of fuel product and locate USTs	GPR survey performed in May 1992 inconclusive due to concrete and rebar in subsurface structures; only 2,700-gal tank identified Part of report missing
1992		UST removal at property adjacent east	Report dated September 15, 1992 3 USTs removed by Geotech at property to east of SCL site; gasoline (1,000 gal), used oil (300 gal), and fuel oil (675 gal) Gasoline-contaminated soil found at each UST location and extending under building and parking lot to west Contamination on west side of property likely from upgradient source No GW, but gasoline in wells (installed by Earth Consultants, Inc. for another property) in Aloha Street to north and northeast of property
1992	Memos	UST removal prep and concern about leak	 Memos regarding pending UST removal at SCL site dated May through December 1992 Memos regarding concern that leak from SCL site migrating to Bayside Motors and Westlake Terminals Memo detailing leak in 2,700-gal tank was in broken suction line not tank itself Memo indicating RETEC hired to remove tanks Memo concerning review of adjacent studies: Seattle Public School Characterization Report and Seattle Commons Report; neither provide data showing that the Roy St area is receiving substantial upgradient contamination
1992	T	Notification of contamination by Maryatt to Ecology	 Letter dated December 16, 1992 Six wells installed; DTW approx 7 to 22 feet with flow to SE GW samples tested for TPH, VOCs and SVOCs Contamination encountered likely associated with former dry cleaners on site (PCE and benzene) Petroleum also encountered possibly due to former service station adjacent south or from on site USTs previously removed
1992	Project Manual for Roy Street Shops UST Removal	Bid specifications for UST removal contract	Framework for contract dated December 1992
1993 1993	Photos RETEC Preliminary Cost Estimate for Remediation of Roy St Maint	Photos and slides Remedial options and cost estimates	 Photos appear to be of soil excavation after tanks removed Three alternatives presented September 10, 1993: No action; excavation and disposal; and air sparging Contaminants of concern are TPH and BTEX

Date	Name of File/Document	Purpose	Scope and Key Findings
1993	DOE 30 Day Notice to Close UST	DOE Notice of removal	· Signed notice on February 10, 1993
1993	Roy Street Tank Technical Committee		Summary of activities for March through July 1, 1993 includes awarding UST removal contract to E.P. Johnson or February 3, 1993 and removal began on March 1, 1993 (SDPR memo dated March 17, 1993)
			 Contractor encountered significant contamination during removal of 2,700- and 550-gal tanks; confirmed 4,000-gal tank was NOT present Contamination at deep as 27 ft bgs in area of 550-gal tank; subsequent investigation indicated clean soil at 40 ft bgs Removal contractor report insufficient; new consultant to be hired to complete work (RETEC)
1993	E.P. Johnson Construction & Environmental, Roy Street Shops Tank Removal	UST removal report	USTs removed on March 1, 1993; Reports dated March 26 and April 9, 1993 2,700- and 55-gal UST removed; 4,000-gal UST NOT present Contractor encountered significant contamination during removal of 2,700- and 550-gal tanks Report indicates knowledge of chlorinated solvent release from Maryatt Industries adjacent west (based on recently completed subsurface study) and sample taken nearest to point of suspected migration showed non-detect
			· Post-removal site assessment examined gasoline, BTEX, heavy oils, and PCBs, all except PCBs were found above cleanup criteria
			 437 cy of soil removed (325 petroleum contaminated; treated by thermal desorption) Identified possible petroleum contaminated GW from upgradient source Gasoline contamination is estimated at 12.5 to 17.5 feet bgs; no free product observed
1993	Site Characterization Report Roy Street Facility, Seattle Department of Parks and Recreation, Seattle, WA		Report dated August 1993 Bite covered by fill from Denny Regrade and other known sources From previous reports, area water quality in vicinity of Roy Street site exceeds cleanup criteria for several contaminants Swells sampled and analyzed for BTEX (VOCs in MW-2 nearest cleaners); 7 borings UST removal excavation sampled and analyzed for gasoline, diesel, heavy oil, and BTEX; 2 trenches dug to delineate extent of contamination to north and east, and sampled for gasoline and BTEX From Maryatt Report review (GW): fuel constituents (gasoline, diesel and heavy-range) detected in 5 of 6 wells, with highest near where USTs removed. Benzene detected above cleanup criterion with levels up to 0.48 ppm. Gasoline (4.2 ppm) and diesel (10.5 ppm) below. Solvents trichloroethene (0.27 ppm), 1,2-dichloroethene (0.83 ppm), and vinyl chloride (0.068 ppm). TCE and vinyl chloride exceed cleanup criteria From Jarvie Paint report review (GW): solvents and metals used in paints. Soils stained with solvents observed; evidence of solvent leaks or dumping into storm system along 8 Avenue N documented. VOCs detected in sewer. Potential for soil and groundwater contamination considered high, but no sampling yet From Seattle School District report review: petroleum releases from USTs. From 5 GW samples: no BTEX in
			any, acetone in two (5.7 and 2.9 ppb), carbon disulfide in one (9.1 ppb), cis-1,2-dichlorethene in one (1.8 ppb), TPH in two (2 and 1 ppm), barium in one (0.331 ppm)

Date	Name of File/Document	Purpose	Scope and Key Findings
1993	Site Characterization Report (cont')		Soil excavation analytical results from this study: gasoline detected from < 20 to 15,000 ppm (around leaking pump dispenser), diesel at < 50 ppm, heavy oils at < 100 ppm, PCBs at < 0.1 ppm, benzene from < 0.05 to 100 ppm, toluene from < 0.05 to 260 ppm, ethylbenzene from < 0.05 to 170 ppm, and xylenes from 0.31 to 460 ppm (highs for BTEX around pump dispenser), non-detect at 0.05 ppm for solvents
			Soil boring analytical results from this study: gasoline detected from $<$ 20 to 1800 ppm, diesel at $<$ 50 ppm, heavy oils at $<$ 25 to 770 ppm, benzene from $<$ 0.05 to 10 ppm, toluene from $<$ 0.05 to 24 ppm, ethylbenzene from $<$ 0.05 to 23 ppm, and xylenes from $<$ 0.05 to 115 ppm (BTEX highs from 12.5 to 17.5 foot range); solvents and PCBs not analyzed
			Soil trench analytical results from this study: gasoline detected from 18 to 2,200 ppm, benzene from < 1 to 14 ppm, toluene from < 1 to 38 ppm, ethylbenzene from < 1 to 32 ppm, and xylenes from < 1 to 180 ppm; solvents and PCBs not analyzed
			GW analytical results from this study: benzene from < 1 to 20,000 ppb, toluene from < 1 to 21,000 ppb, ethylbenzene from < 1 to 1,900 ppb, and xylenes from < 1 to 12,300 ppb (highest levels in MW-3); solvents in MW-2: vinyl chloride at 1,100 ppb, 1,1-dichloroethene at 25 ppb (no std), t-1,2-dichloroethene at 25 ppb (no std), c-1,2-dichloroethane at 9,300 ppb, TCE at 1,400 ppb, and PCE at 170 ppb
			· Contaminated soil delineated to north and west, but not to east (structures, roads, fences and retaining walls) or south (existing building)
			· Solvent contamination in MW-2 likely from off-site source
1993	RETEC Site Characterization Report	Comments to RETEC site characterization report	Comments for draft report contained in SCL and SDPR memos dated July 16, 1993
1994	RETEC Monitoring Well Data 10-10- 94	Comments to RETEC site characterization report	· Comments for draft report contained in an SCL memo dated July 26, 1994 and an SDPR memo dated September 7 1994
1994	MOA SCL/DPR	Memorandum of agreement and discussions	Determination of responsibilities contained in SDPR memos from July 1993 to December 1994
1994		Request for pollution information, City Attorney reply	 Memo in January 1994 from owner of 739-9th Avenue N wanted copies of studies regarding pollution pertaining to Roy Street Property; City Attorney reply in March 1994 indicates site report in the works
1994	RETEC Roy St Monitoring Wells Data	Quarterly GW sample results	 Quarterly results dated October 10, 1994 also includes info on sampling from April 1994 Gasoline and BTEX above for MW-6 and MW-7 (downgradient from tanks), below for MW-8, MW-9, and MW-10
			These MWs replace the five earlier wells due to poor installation (across aquifers)

Date	Name of File/Document	Purpose	Scope and Key Findings
1994	RETEC Remedial Alternatives Report	Remedial alternatives report	Remediation options presented July 1994 target gasoline and BTEX
	– Roy St		Option 1: air sparge/bioventing
			Option 2 : dewatering/bioventing
1995	Revised Site Characterization Report – RETEC	Revised RETEC report	Report dated February 1995 includes supplementary site info (groundwater monitoring)
1995	SCS Consultant Contract	Comments to revised RETEC report and consultant contract with SCL	· Comments for revised report contained in an SCL memo dated January 25, 1995 and SDPR memos dated January 24 and February 14, 1995
1995	RETEC – Revised Site	Re-revised RETEC report	Key change in conclusions: GW flowing onto site is not currently a source of contamination
	Characterization Report, Roy St Facility	-	· Solvents not sampled by RETEC since June 1993 (MW-2)
1995	Minority Set Aside Requirements SCS Engineers	Contractual agreements with SCS	Affirmative action agreement detailed in documents from October to December 1995
1996	Roy St Boring Log, SCS Engineers	Boring logs	5 logs dated February 1996; no detail on locations
1996	Onsite Enviro, Roy St VES Lab Data	Vapor extraction air sampling test results	Notes indicate that vapor extraction being utilized at remediation option
1996	Northwest Pump Invoice	Equipment rental quote	Quote dated April 29, 1996 for Self-Recuperative Catalytic Oxidizer
			Catalytic oxidizer needed because sample results indicate that lifetime TPH emissions (est. at 70,000 pounds over years) would exceed permit criteria of 1,000 pounds
1996	Roy St UST	Remediation test results and modeled scenarios	Data, modeling results and cost estimates in document dated May 1996
1997	Sound Enviro Estimate for Roy Street	Cost estimate for remediation activities	Sound Enviro started by Rick Alvord (formerly of SCS)
	Remediation Activities		Scope dated July 18 and August 20, 1997 for review and equipment purchase through setup and monitoring
1997	SCS Roy St Maint Fac Drawings	Cover letter for drawings	Letter dated August 15, 1995 indicates air sparge system installed
1997	SCS Roy St Remediation Monitoring Cost	Cost estimate for monitoring activities	Estimate dated February 17, 1997 for water and air emission testing
1997	PSAPCA Application and Approval	Permit application and notice of	Application submitted by SCS in February 1997 to PSAPCA
	Order	construction	Notice of construction by GC Engineers to PSAPCA
1997	RETEC – Roy St Maintenance Facility Remediation System As-Builts	As-Builts of vapor extraction system	Drawings of system dated September 17, 1997
1999	Roy St – Citizen Inquiry	Inquiry regarding petroleum odor	Reply to inquiry on January 8, 1999 indicates Air Sparge system not running yet and odor possibly from a test

Date	Name of File/Document	Purpose	Scope and Key Findings
2002		Boring logs and analytical results	- 28 boring logs prepared by Shannon & Wilson, Inc. in June 2002
	Urban Redevelopment		 GW sample results from MW-6, MW-7, MW-8, MW-9, and MW-10; no interpretation Soil and GW sample results from new borings; no interpretation
			Soil and GW analytical results are presented separately in Tables 2 and 3 of this report
			File also includes aerial photos from 1936 and 1946
2003	DOE Letters	Memos from SDPR to adjacent owner	 Memos dated April through May 2003 indicates transfer of parcel from SDPR back to SCL
			Letters to adjacent owner at 753 9 th Avenue N regarding providing info on pollution upgradient to property (from
			site)

Notes:

< = less than value indicated

bgs = below ground surface

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

cy = cubic yard

DOE = Washington Department of Ecology

DTW = Depth to water

gal=gallon

 $GPR = Ground\ penetrating\ radar$

GW = Groundwater

HVAC = heating, ventilation, air conditioning

MW = Monitoring Well

NE = northeast

NW = northwest

O&M = operation and maintenance

 $PCB = Polychlorinated\ Biphenyls$

PCE = tetrachloroethane

PCS = petroleum-contaminated soil

ppb = parts per billion

ppm = parts per million

PSAPCA = Puget Sound Air Pollution Control Agency

SCL = Seattle City Light

SDPR = Seattle Department of Parks and Recreation

SE = southeast

 $SVOC = semivolatile\ organic\ compound$

TCE = trichloroethane

TPH = Total Petroleum Hydrocarbons

UST = Underground Storage Tank

VOC = Volatile Organic Compound

2002 URBAN REDEVELOPMENT SOIL ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID:	B-100, S1	B-100, S2	B101-S1&2	B101-S3	B102-S1	B102-S2	SP-1 (S-1)	SP-1 (S-2)	SP-2 (S-1)	SP-2 (S-2)
Sample Depth:	5-6.5'	10-11.5'	0-3' & 3-6'	8'	0-3'	4'	0-2'	2-4'	1-2'	2-3'
Sample Date:	6/10/2002	6/10/2002	6/17/2002	6/17/2002	6/17/2002	6/17/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002
Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Petroleum & Constituents (ppr	n)									
Gasoline-range Hydrocarbons	< 1	< 1	2	< 1	6	< 1	7	2		
Diesel-range Hydrocarbons	< 50	< 50	140	< 50	430	< 50	2400	110	740	230
Benzene	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.1	< 0.02		
Toluene	< 0.02	< 0.02	< 0.02	< 0.02	0.09	< 0.02	< 0.1	< 0.02		
Ethylbenzene	< 0.02	< 0.02	< 0.02	< 0.02	0.04	< 0.02	< 0.1	< 0.02		
Xylenes	< 0.02	< 0.02	< 0.02	< 0.02	0.13	< 0.02	< 0.1	< 0.02		
Volatile Compounds (ppm)										
Vinyl Chloride	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Chloroethane	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,1-Dichloroethene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
trans-1,2-Dichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,1-Dichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
cis-1,2-Dichloroethene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,2-Dichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,1,1-Trichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Trichloroethene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Tetrachloroethene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Semi-Volatile Compounds (pp	m)									
Naphthalene							0.063			
Acenaphthylene							< 0.05			
Acenaphthene							< 0.05			
Fluorene							< 0.05			
Pentachlorophenol							< 0.05			
Phenanthrene							0.12			
Anthracene							< 0.05			
Fluoranthene							0.15			
Pyrene							0.26			
Benzo(a)anthracene							0.12			
Chrysene							0.20			
Benzo(a)pyrene							0.13			
Benzo(b)fluoranthene							0.22			
Benzo(k)fluoranthene							< 0.05			
Indeno(1,2,3-cd) pyrene							0.061			
Dibenz(a,h)anthracene							0.059			
Benzo(g,h,i)perylene							0.094			
cPAHs TEF-Adjusted							0.181			
RCRA 8 Metals (ppm)										
Silver	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10
Arsenic	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10
Barium	50	45	170	82	210	59	170			83
Cadmium	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			1.7
Chromium	25	24	18	27	24	28	24			18
Mercury	< 0.2	< 0.2	0.362	< 0.2	1.56	< 0.2	1.28			< 0.2
Lead	4.5	4.1	230	5.3	440	9.9	140			44
Selenium	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10
Polychlorinated Biphenyls (ug	/cm^2) ⁽¹⁾									
Aroclor 1221										
Aroclor 1232										
Aroclor 1016										
Aroclor 1242										
Aroclor 1248										
Aroclor 1254										
Aroclor 1260										
Aroclor 1262										

Notes:

Exceeds regulatory criteria =

(1) Results reported in ug/cm^2 because concrete sample could not be broken in to small pieces.

-- = Not measured

<= Analyte not detected above practical quantitation limit shown $\mbox{Bold}=\mbox{Analyte}$ detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

MTCA = Model Toxics Control Act

NTU = Nephelometric Turbidity Units ppm = parts per million RCRA = Resource Conservation and Recovery Act

 $TEF = Toxicity\ Equivalent\ Factor$

2002 URBAN REDEVELOPMENT SOIL ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID:	SP-3 (S-1)	SP-4 (S-1)	SP-5 (S-1)	SP-6 (S-1)	SP-6 (S-2)	SP-7 (S-1)	SP-8 (S-1)	SP-9 (S-1)	SP-9 (S-2)	SP-10 (S-2)
Sample Depth:	0-4'	0-4'	0-4'	11-12'	15-16'	0-4'	12-16'	12'	15'	15'
Sample Date:	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002	6/11/2002
Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Petroleum & Constituents (ppn										
Gasoline-range Hydrocarbons					< 1		< 1	32	500	3400
Diesel-range Hydrocarbons	670	320	280	190		210		1800		
Benzene					< 0.02		< 0.02	0.14	0.94	9.6
Toluene					< 0.02		< 0.02	0.17	1.7	11
Ethylbenzene					< 0.02		< 0.02	0.13	3.3	60
Xylenes					< 0.02		< 0.02	0.47	5.1	240
Volatile Compounds (ppm)										
Vinyl Chloride	< 0.05									
Chloroethane	< 0.05									
1,1-Dichloroethene	< 0.05									
trans-1,2-Dichloroethane	< 0.05									
	< 0.05									
1,1-Dichloroethane cis-1,2-Dichloroethene	< 0.05									
	< 0.05		-							
1,2-Dichloroethane			-							
1,1,1-Trichloroethane	< 0.05									
Trichloroethene Tetrachloroethene	< 0.05 < 0.05									
Tetrachloroethene										
Semi-Volatile Compounds (ppi						0.045				
Naphthalene	< 0.025					0.042				
Acenaphthylene	< 0.025					0.019				
Acenaphthene	< 0.025					0.022				
Fluorene	< 0.025					0.020				
Pentachlorophenol	< 0.05					< 0.01				
Phenanthrene	0.12					0.12				
Anthracene	0.033					0.034				
Fluoranthene	0.17					0.12				
Pyrene	0.30					0.23				
Benzo(a)anthracene	0.13					0.11				
Chrysene	0.18					0.11				
Benzo(a)pyrene	0.13					0.099				
Benzo(b)fluoranthene	0.25					0.14				
Benzo(k)fluoranthene	0.081					0.056				
Indeno(1,2,3-cd) pyrene	0.08					0.044				
Dibenz(a,h)anthracene	< 0.025					0.012				
Benzo(g,h,i)perylene	0.08					0.044				
cPAHs TEF-Adjusted	0.187					0.136				
RCRA 8 Metals (ppm)										
Silver	< 10					< 10				
Arsenic	< 10					16				
Barium	120					230				
Cadmium	< 1.0					1.0				
Chromium	20					18				
Mercury	1.32					2.81				
Lead	230					410				
Selenium	< 10					< 10				
Polychlorinated Biphenyls (ug.	/cm^2) (1)									
Aroclor 1221										-
Aroclor 1232										
Aroclor 1016										
Aroclor 1242										
Aroclor 1248										
Aroclor 1254										
Aroclor 1260										
Aroclor 1262										

Notes:

Exceeds regulatory criteria =

(1) Results reported in ug/cm^2 because concrete sample could not be broken in to small pieces.

-- = Not measured

< = Analyte not detected above practical quantitation limit shown

Bold = Analyte detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

MTCA = Model Toxics Control Act

NTU = Nephelometric Turbidity Units ppm = parts per million RCRA = Resource Conservation and Recovery Act

 $TEF = Toxicity\ Equivalent\ Factor$

2002 URBAN REDEVELOPMENT SOIL ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample Depth:	SP-11 (S-1) 15' 6/11/2002 Soil <1 < 0.02 < 0.02 < 0.02	SP-12 (S-1) 15' 6/11/2002 Soil 9 0.10 0.07 0.04 0.06	SP-13 (S-1) 8-12' 6/11/2002 Soil 26 0.34 0.17 0.03 0.15	SP-14 (S-1) 16' 6/11/2002 Soil 600 0.81 3.3 9.7 36	SP-15 (S-6) 20-24' 6/11/2002 Soil <1 <0.02 <0.02 <0.02 <0.02 -0.02	SP-16 (S1&S2) 0-1' & 6.5-8' 6/12/2002 Soil 650	SP-16 (S-5) 16-20' 6/12/2002 Soil <	SP-16 (S-6) 20-24' 6/12/2002 Soil < 50	SP-16 (S-7) 25' 6/12/2002 Soil < 50	SP-17 (S-2) 3' 6/12/2002 Soil 530 2.6 24 15 66
Sample Date: Matrix: Matrix: Petroleum & Constituents (ppm) Gasoline-range Hydrocarbons Diesel-range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane	6/11/2002 Soil < 1 0.02 < 0.02 < 0.02 < 0.02	6/11/2002 Soil 9 0.10 0.07 0.04	6/11/2002 Soil 26 0.34 0.17 0.03 0.15	6/11/2002 Soil 600 0.81 3.3 9.7 36	6/11/2002 Soil < 1 < 0.02 < 0.02 < 0.02	6/12/2002 Soil	6/12/2002 Soil	6/12/2002 Soil < 50	6/12/2002 Soil	6/12/2002 Soil 530 2.6 24 15 66
Matrix: Petroleum & Constituents (ppm) Gasoline-range Hydrocarbons Diesel-range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Tirchloroethane	Soil	9 0.10 0.07 0.04 0.06	26 0.34 0.17 0.03 0.15	Soil 600 0.81 3.3 9.7 36	Soil < 1 < 0.02 < 0.02 < 0.02 < 0.02	Soil	Soil	Soil	Soil < 50	530
Petroleum & Constituents (ppm) Gasoline-range Hydrocarbons Diesel-range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane 1,1-Dichloroethane isi-1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane	<1 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	9 0.10 0.07 0.04 0.06	26 0.34 0.17 0.03 0.15	600 0.81 3.3 9.7 36	<1 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02		< 50 	 < 50 	 < 50 	530
Gasoline-range Hydrocarbons Diesel-range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane 1,1-Dichloroethane is-1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02	0.10 0.07 0.04 0.06	0.34 0.17 0.03 0.15	0.81 3.3 9.7 36	 < 0.02 < 0.02 < 0.02 < 0.02 		< 50 	< 50 	< 50 	2.6 24 15 66
Diesel-range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane is-1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane	< 0.02 < 0.02 < 0.02 < 0.02 < 0.02	0.10 0.07 0.04 0.06	0.34 0.17 0.03 0.15	0.81 3.3 9.7 36	 < 0.02 < 0.02 < 0.02 < 0.02 		< 50 	< 50 	< 50 	2.6 24 15 66
Benzene Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane 1,1-Dichloroethane isi-1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane	< 0.02 < 0.02 < 0.02 < 0.02 	0.10 0.07 0.04 0.06	0.34 0.17 0.03 0.15	0.81 3.3 9.7 36	< 0.02 < 0.02 < 0.02 < 0.02 		 	 		2.6 24 15 66
Toluene Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane is-1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane	< 0.02 < 0.02 < 0.02 	0.07 0.04 0.06	0.17 0.03 0.15	3.3 9.7 36	< 0.02 < 0.02 < 0.02					24 15 66
Ethylbenzene Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane 1,1-Dichloroethane is-1,2-Dichloroethene 1,2-Dichloroethane 1,1-Trichloroethane	< 0.02 < 0.02	0.04 0.06	0.03 0.15	9,7	< 0.02 < 0.02					15 66
Xylenes Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane is-1,2-Dichloroethane 1,2-Dichloroethane 1,2-Tichloroethane 1,1-Tichloroethane				 	< 0.02 					66
Volatile Compounds (ppm) Vinyl Chloride Chloroethane 1,1-Dichloroethane trans-1,2-Dichloroethane 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane										
Vinyl Chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethane 1,1,1-Trichloroethane			 							
Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethane 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethane 1,1,1-Trichloroethane			 							
1,1-Dichloroethene trans-1,2-Dichloroethane 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethane 1,1,1-Trichloroethane	 		 						1	
trans-1,2-Dichloroethane 1,1-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethane 1,1,1-Trichloroethane	 									
1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane										
cis-1,2-Dichloroethene 1,2-Dichloroethane 1,1,1-Trichloroethane										
1,2-Dichloroethane 1,1,1-Trichloroethane										
1,1,1-Trichloroethane										
Trichloroethene										
Tetrachloroethene										
Semi-Volatile Compounds (ppm)										
Naphthalene										
Acenaphthylene										
Acenaphthene										
Fluorene										
Pentachlorophenol										
Phenanthrene			-							
Anthracene										
Fluoranthene			-							
Pyrene										
Benzo(a)anthracene										
Chrysene										
Benzo(a)pyrene										
Benzo(b)fluoranthene										
Benzo(k)fluoranthene										
Indeno(1,2,3-cd) pyrene										
Dibenz(a,h)anthracene										
Benzo(g,h,i)perylene										
cPAHs TEF-Adjusted										
RCRA 8 Metals (ppm)										
Silver						< 10				
Arsenic						< 10				
Barium						400		-		
Cadmium			-			< 1.0				
Chromium						30				
Mercury						0.247				
Lead						220				
Selenium		-				< 10				
Polychlorinated Biphenyls (ug/cm	·^2) ⁽¹⁾									
Aroclor 1221		-								
Aroclor 1232		-								
Aroclor 1016										
Aroclor 1242										
Aroclor 1248										
Aroclor 1254										
Aroclor 1260										
Aroclor 1262										

Notes:

Exceeds regulatory criteria =

(1) Results reported in ug/cm^2 because concrete sample could not be broken in to small pieces.

-- = Not measured

<= Analyte not detected above practical quantitation limit shown $\mbox{Bold}=\mbox{Analyte}$ detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons MTCA = Model Toxics Control Act

NTU = Nephelometric Turbidity Units ppm = parts per million RCRA = Resource Conservation and Recovery Act

 $TEF = Toxicity\ Equivalent\ Factor$

2002 URBAN REDEVELOPMENT SOIL ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID:	SP-17 (S-3)	SP-18 (S-2)	SP-19 (S-1)	SP-19 (S-2)	SP-20 (S-2-5')	SP-20 (S-2-8')	SP-21 (S-1)	SP-21 (S-2)	MW101-S3	MW-102, S1
Sample Depth:	11-12'	5-8'	0-4'	7-8'	5'	8'	3-4'	7-8'	16'	5-6.5'
Sample Date:	6/12/2002	6/12/2002	6/12/2002	6/12/2002	6/12/2002	6/12/2002	6/12/2002	6/12/2002	6/14/2002	6/10/2002
Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil Soil
Petroleum & Constituents (ppi		Son	Don	Don	Son	Son	Son	Son	Jon	Son
Gasoline-range Hydrocarbons	11	2600	85	4100	5	< 1	25	1200	< 1	99
Diesel-range Hydrocarbons			570				350			
Benzene	0.04	12	2.2	16	0.14	0.07	0.84	3.5	0.07	0.67
Toluene	0.04	83	1.0	120	0.03	< 0.02	0.23	12	< 0.02	0.47
Ethylbenzene	0.07	74	1.9	110	0.05	< 0.02	0.23	19	0.04	1.0
Xylenes	0.29	320	3.6	500	0.15	0.05	0.17	52	0.05	2.5
Volatile Compounds (ppm)	0.20	320	3.0	300	0.20	0.03	0.17	32	0.03	2.3
Vinyl Chloride										
Chloroethane										
1,1-Dichloroethene										
trans-1,2-Dichloroethane										
1,1-Dichloroethane										
cis-1,2-Dichloroethene										
1,2-Dichloroethane										
1,1,1-Trichloroethane										
Trichloroethene										
Tetrachloroethene										
Semi-Volatile Compounds (pp	m)									
Naphthalene										
Acenaphthylene										
Acenaphthene										
Fluorene										
Pentachlorophenol										
Phenanthrene										
Anthracene										
Fluoranthene										
Pyrene										
Benzo(a)anthracene										
Chrysene										
Benzo(a)pyrene										
Benzo(b)fluoranthene										
Benzo(k)fluoranthene										
Indeno(1,2,3-cd) pyrene										
Dibenz(a,h)anthracene										
Benzo(g,h,i)perylene										
cPAHs TEF-Adjusted										
RCRA 8 Metals (ppm)										
Silver									< 10	
Arsenic									< 10	
Barium									27	
Cadmium									< 1.0	
Chromium									16	
Mercury									< 0.2	
Lead									3.6	
Selenium									< 10	
Polychlorinated Biphenyls (ug	g/cm^2) ⁽¹⁾									
Aroclor 1221										
Aroclor 1232										
Aroclor 1016										
Aroclor 1242										
Aroclor 1248										
Aroclor 1254										
Aroclor 1254 Aroclor 1260								i e		
Aroclor 1262										
1 TOCIOI 1202										

Notes:

Exceeds regulatory criteria =

(1) Results reported in ug/cm^2 because concrete sample could not be broken in to small pieces.

-- = Not measured

<= Analyte not detected above practical quantitation limit shown $\mbox{Bold}=\mbox{Analyte}$ detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

MTCA = Model Toxics Control Act

NTU = Nephelometric Turbidity Units ppm = parts per million RCRA = Resource Conservation and Recovery Act

 $TEF = Toxicity\ Equivalent\ Factor$

2002 URBAN REDEVELOPMENT SOIL ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID:	MW-102, S2	MW103-S1&S2	MW-105, S2	MW-105, S4	Concrete Core			
Sample Depth:	10-11.5'	5-6.5' & 10-11.5'	10-11.5'	20-21.5'	Concrete Core			
Sample Depth:	6/10/2002	6/14/2002	6/10/2002	6/10/2002	6/12/2010	MTCA Method	MTCA Method	
Matrix:	Soil	Soil	Soil	Soil	Concrete	A Soil Cleanup Criteria	B Soil Cleanup Criteria	Puget Sound Background
Petroleum & Constituents (ppr		501	5011	5011	Concrete	Criteria	Criteria	Dackground
Gasoline-range Hydrocarbons	2	< 0.02	650	< 1		100/30	*	*
Diesel-range Hydrocarbons		< 0.02				2000	*	*
Benzene	0.05	< 0.02	2.1	0.05		0.03	*	*
Toluene	< 0.02	< 0.02	1.5	< 0.02		7	*	*
Ethylbenzene	0.12	< 0.02	11	< 0.02		6	*	*
Xylenes	0.07	< 0.02	24	0.03		9	*	*
Volatile Compounds (ppm)	0107	V 0.02		0,00				
Vinyl Chloride						0.67	*	*
Chloroethane						*	*	*
1,1-Dichloroethene						*	*	*
trans-1,2-Dichloroethane						*	1600	*
1,1-Dichloroethane						*	16000	*
cis-1,2-Dichloroethene						*	800	*
1,2-Dichloroethane						*	1600	*
1,1,1-Trichloroethane						2	*	*
Trichloroethene						0.03	*	*
Tetrachloroethene						0.05	*	*
Semi-Volatile Compounds (pp						0.00		
Naphthalene						5	*	*
Acenaphthylene						*	*	*
Acenaphthene						*	4800	*
Fluorene						*	3200	*
Pentachlorophenol						*	8.3	*
Phenanthrene						*	*	*
Anthracene						*	24000	*
Fluoranthene						*	3200	*
Pyrene						*	2400	*
Benzo(a)anthracene						*	*	*
Chrysene						*	*	*
Benzo(a)pyrene						*	*	*
Benzo(b)fluoranthene						*	*	*
Benzo(k)fluoranthene						**	*	*
Indeno(1,2,3-cd) pyrene						**	*	*
Dibenz(a,h)anthracene						**	*	*
Benzo(g,h,i)perylene						**	*	*
cPAHs TEF-Adjusted						0.1/2	*	*
RCRA 8 Metals (ppm)								
Silver		< 10				*	400	*
Arsenic		< 10				20	*	7
Barium		35				*	*	*
Cadmium		< 1.0				2	*	1
Chromium		33				19/2000	*	48
Mercury		< 0.2				2	*	0.07
Lead		4.5				250/1000	*	24
Selenium		< 10				*	400	*
Polychlorinated Biphenyls (ug	/cm^2) ⁽¹⁾							
Aroclor 1221					< 0.01	*	*	*
Aroclor 1232					< 0.01	*	*	*
Aroclor 1016					< 0.01	*	*	*
Aroclor 1242					< 0.01	*	*	*
Aroclor 1248					< 0.01	*	*	*
Aroclor 1254					0.04	*	*	*
Aroclor 1260					0.03	*	*	*
Aroclor 1262					< 0.01	*	*	*

Notes:

Notes:

Exceeds regulatory criteria =

(1) Results reported in ug/cm^2 because concrete sample could not be broken in to small pieces.

-- = Not measured

<= Analyte not detected above practical quantitation limit shown $\mbox{Bold}=\mbox{Analyte}$ detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

MTCA = Model Toxics Control Act

NTU = Nephelometric Turbidity Units ppm = parts per million RCRA = Resource Conservation and Recovery Act

TEF = Toxicity Equivalent Factor

 $ug/cm^2 = micrograms$ per centimeter squared

2002 URBAN REDEVELOPMENT GROUNDWATER ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID:	MW-6	MW-7	MW-8	MW-9	MW-10
Sample Depth (ft):	NA	NA	NA	NA	NA
Sample Date:	6/19/2002	6/19/2002	6/21/2002	6/20/2002	6/19/2002
Matrix:	Water	Water	Water	Water	Water
Petroleum & Constituents (ppb)					
Gasoline-range Hydrocarbons	8500	8400	< 50	< 50	< 50
Diesel-range Hydrocarbons					
Benzene	1900	650	< 1	< 1	< 1
Toluene	14	37	< 1	< 1	< 1
Ethylbenzene	250	470	< 1	< 1	< 1
Xylenes	53	150	< 1	< 1	< 1
Volatile Compounds (ppb)					
Vinyl Chloride				< 1	< 1
Chloroethane				< 1	< 1
1,1-Dichloroethene				< 1	< 1
trans-1,2-Dichloroethane				< 1	< 1
1,1-Dichloroethane				< 1	< 1
cis-1,2-Dichloroethene				< 1	< 1
1,2-Dichloroethane				< 1	< 1
1,1,1-Trichloroethane				< 1	< 1
Trichloroethene				< 1	< 1
Tetrachloroethene				< 1	< 1
Semi-Volatile Compounds (ppb)					
Naphthalene		190		< 0.1	< 0.1
Acenaphthylene		0.1		< 0.1	< 0.1
Acenaphthene		1.4		< 0.1	< 0.1
Fluorene		1.5		< 0.1	< 0.1
Pentachlorophenol		< 0.3		< 0.3	< 0.3
Phenanthrene	==	2.8		< 0.1	< 0.1
Anthracene	==	0.5		< 0.1	< 0.1
Fluoranthene		0.4		< 0.1	< 0.1
Pyrene		0.6		< 0.1	< 0.1
Benzo(a)anthracene		0.1		< 0.1	< 0.1
Chrysene		0.1		< 0.1	< 0.1
Benzo(a)pyrene		0.1		< 0.1	< 0.1
Benzo(b)fluoranthene		0.1		< 0.1	< 0.1
Benzo(k)fluoranthene		< 0.1		< 0.1	< 0.1
Indeno(1,2,3-cd) pyrene	-	< 0.1		< 0.1	< 0.1
Dibenz(a,h)anthracene	-	< 0.1		< 0.1	< 0.1
Benzo(g,h,i)perylene		0.5		< 0.1	< 0.1
cPAHs TEF-Adjusted		0.136		< 0.1	< 0.1
RCRA 8 Metals (ppb)					
Silver	2.3	< 1	< 1	< 1	< 1
Arsenic	60.8	15.7	15.5	23.5	16.1
Barium	1170	628	188	394	226
Cadmium	147	22.3	< 1	2.16	19.7
Chromium	187	16.2	7.07	62.7	15.4
Mercury	1.05	< 1	< 1	< 1	< 1
Lead	3980	44.5	12.2	56	5.63
Selenium	2.41	1.7	< 1	1.7	< 1
CONVENTIONALS					
Turbidity (NTU)				270	75

Notes:

 $Exceeds\ proposed\ remedial\ goals =$

Exceeds 1 or more regulatory criteria =

-- = Not measured

< = Analyte not detected above practical quantitation limit shown

Bold = Analyte detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

GW = Groundwater

IND = Insufficient Data

MTCA = Model Toxics Control Act

NA = Not Available

 $NTU = Nephelometric \ Turbidity \ Units$

ppb = parts per billion

RCRA = Resource Conservation and Recovery Act

 $SW = Surface\ Water$

 $TEF = Toxicity \ Equivalent \ Factor$

2002 URBAN REDEVELOPMENT GROUNDWATER ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID:	MW-101	MW-102	MW-103	MW-105	B101-W	B102-W
Sample Depth (ft):	NA	NA	NA	NA	12'	14'
Sample Date:	6/20/2002	6/20/2002	6/21/2002	6/20/2002	6/17/2002	6/17/2002
Matrix:	Water	Water	Water	Water	Water	Water
Petroleum & Constituents (ppb)						
Gasoline-range Hydrocarbons	19000	10000	< 50	3200	< 50	150
Diesel-range Hydrocarbons					< 250	360
Benzene	810	970	< 1	390	< 1	< 1
Toluene	100	200	< 1	43	< 1	1
Ethylbenzene	1200	280	< 1	91	< 1	< 1
Xylenes	1700	1300	< 1	280	< 1	3
Volatile Compounds (ppb)						
Vinyl Chloride					< 1	< 1
Chloroethane					< 1	< 1
1,1-Dichloroethene					< 1	< 1
trans-1,2-Dichloroethane					< 1	< 1
1,1-Dichloroethane					< 1	< 1
cis-1,2-Dichloroethene					< 1	< 1
1,2-Dichloroethane					< 1	< 1
1,1,1-Trichloroethane					< 1	< 1
Trichloroethene					< 1	< 1
Tetrachloroethene					< 1	< 1
Semi-Volatile Compounds (ppb)						
Naphthalene						
Acenaphthylene						
Acenaphthene						
Fluorene						
Pentachlorophenol						
Phenanthrene						
Anthracene						
Fluoranthene						
Pyrene						-
Benzo(a)anthracene						
Chrysene						
Benzo(a)pyrene						-
Benzo(b)fluoranthene						-
Benzo(k)fluoranthene						
Indeno(1,2,3-cd) pyrene						
Dibenz(a,h)anthracene						
Benzo(g,h,i)perylene						
cPAHs TEF-Adjusted						
RCRA 8 Metals (ppb)						
Silver					7.8	3.48
Arsenic					197	435
Barium	-				14900	6290
Cadmium					25.4	10.0
Chromium					4940	2740
Mercury					4.52	2.53
Lead					1430	544
Selenium					17.9	11.9
CONVENTIONALS						
Turbidity (NTU)						

Exceeds proposed remedial goals =

Exceeds 1 or more regulatory criteria =

-- = Not measured

< = Analyte not detected above practical quantitation limit shown

Bold = Analyte detected

cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

GW = Groundwater IND = Insufficient Data

MTCA = Model Toxics Control Act

NA = Not Available

 $NTU = Nephelometric \ Turbidity \ Units$ $ppb = parts \; per \; billion \;$

RCRA = Resource Conservation and Recovery Act

 $SW = Surface\ Water$

TEF = Toxicity Equivalent Factor

2002 URBAN REDEVELOPMENT GROUNDWATER ANALYTICAL RESULTS SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY

Sample ID: Sample Depth (ft): Sample Date: Matrix:	1993 Proposed Remedial Goals (RETEC) Chronic/Acute	MTCA Method A GW Cleanup Criteria	MTCA Method B GW Cleanup Criteria	Freshwater SW Cleanup Criteria (Aquatic Life) Chronic/Acute	MTCA Method B SW Cleanup Criteria
Petroleum & Constituents (ppb)					
Gasoline-range Hydrocarbons	IND/IND	1000/800	*	*	*
Diesel-range Hydrocarbons	*	500	*	*	*
Benzene	700/5100	5	*	*	23
Toluene	500/6300	1000	*	*	19000
Ethylbenzene	IND/430	700	*	*	6900
Xylenes	IND/IND	1000	*	*	*
Volatile Compounds (ppb)					
Vinyl Chloride	*	0.2	*	*	3.7
Chloroethane	*	*	*	*	*
1,1-Dichloroethene	*	*	*	*	*
trans-1,2-Dichloroethane	*	*	160	*	33000
1,1-Dichloroethane	*	*	400	*	23000
cis-1,2-Dichloroethene	*	*	80	*	*
1,2-Dichloroethane	*	5	*	*	59
1,1,1-Trichloroethane	*	200	*	*	93000
Trichloroethene	*	5	*	*	6.7
Tetrachloroethene	*	5	*	*	0.39
Semi-Volatile Compounds (ppb)					
Naphthalene	*	160	*	*	4900
Acenaphthylene	*	*	*	*	*
Acenaphthene	*	*	960	*	640
Fluorene	*	*	640	*	3500
Pentachlorophenol	*	*	0.73	13/20	*
Phenanthrene	*	*	*	*	*
Anthracene	*	*	4800	*	26000
Fluoranthene	*	*	640	*	90
Pyrene	*	*	480	*	2600
Benzo(a)anthracene	*	*	*	*	*
Chrysene	*	*	*	*	*
Benzo(a)pyrene	*	*	*	*	*
Benzo(b)fluoranthene	*	*	*	*	*
Benzo(k)fluoranthene	*	*	*	*	*
Indeno(1,2,3-cd) pyrene	*	*	*	*	*
Dibenz(a,h)anthracene	*	*	*	*	*
Benzo(g,h,i)perylene	*	*	*	*	*
cPAHs TEF-Adjusted	*	0.1	*	*	0.03
RCRA 8 Metals (ppb)					
Silver	*	*	80	*/0.32	*
Arsenic	*	5	*	190/360	*
Barium	*	*	3200	*	*
Cadmium	*	5	*	0.37/0.82	*
Chromium	*	50	*	57/180	*
Mercury	*	2	*	0.012/2.1	*
Lead	*	15	*	0.54/14	*
Selenium	*	*	80	5/20	*
CONVENTIONALS					
Turbidity (NTU)	*	*	*	*	*

Notes:

 $Exceeds\ proposed\ remedial\ goals =$

Exceeds 1 or more regulatory criteria =

-- = Not measured

< = Analyte not detected above practical quantitation limit shown

Bold = Analyte detected

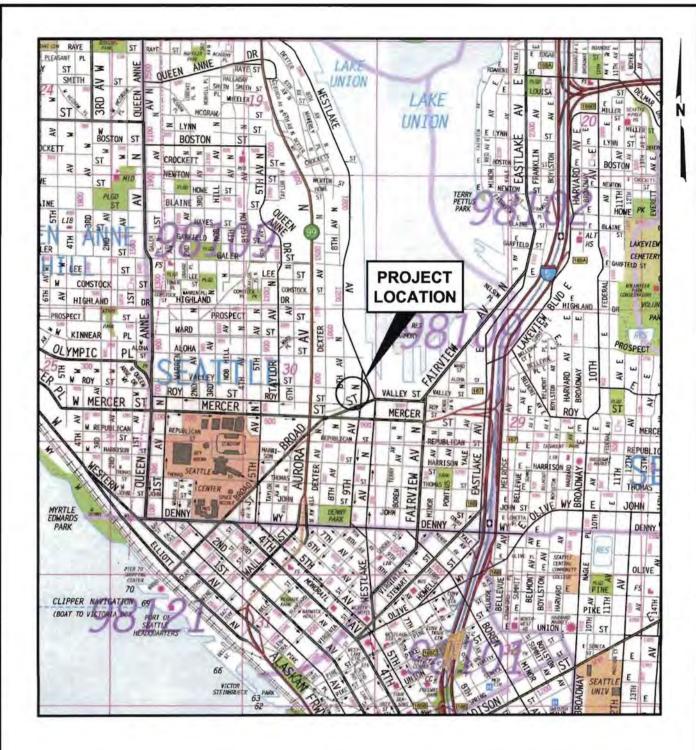
cPAHs = Carcinogenic Polynuclear Aromatic Hydrocarbons

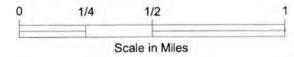
GW = Groundwater

IND = Insufficient Data

MTCA = Model Toxics Control Act

NA = Not Available


 $NTU = Nephelometric \ Turbidity \ Units$


 $ppb = \overline{parts} \ per \ billion$

RCRA = Resource Conservation and Recovery Act

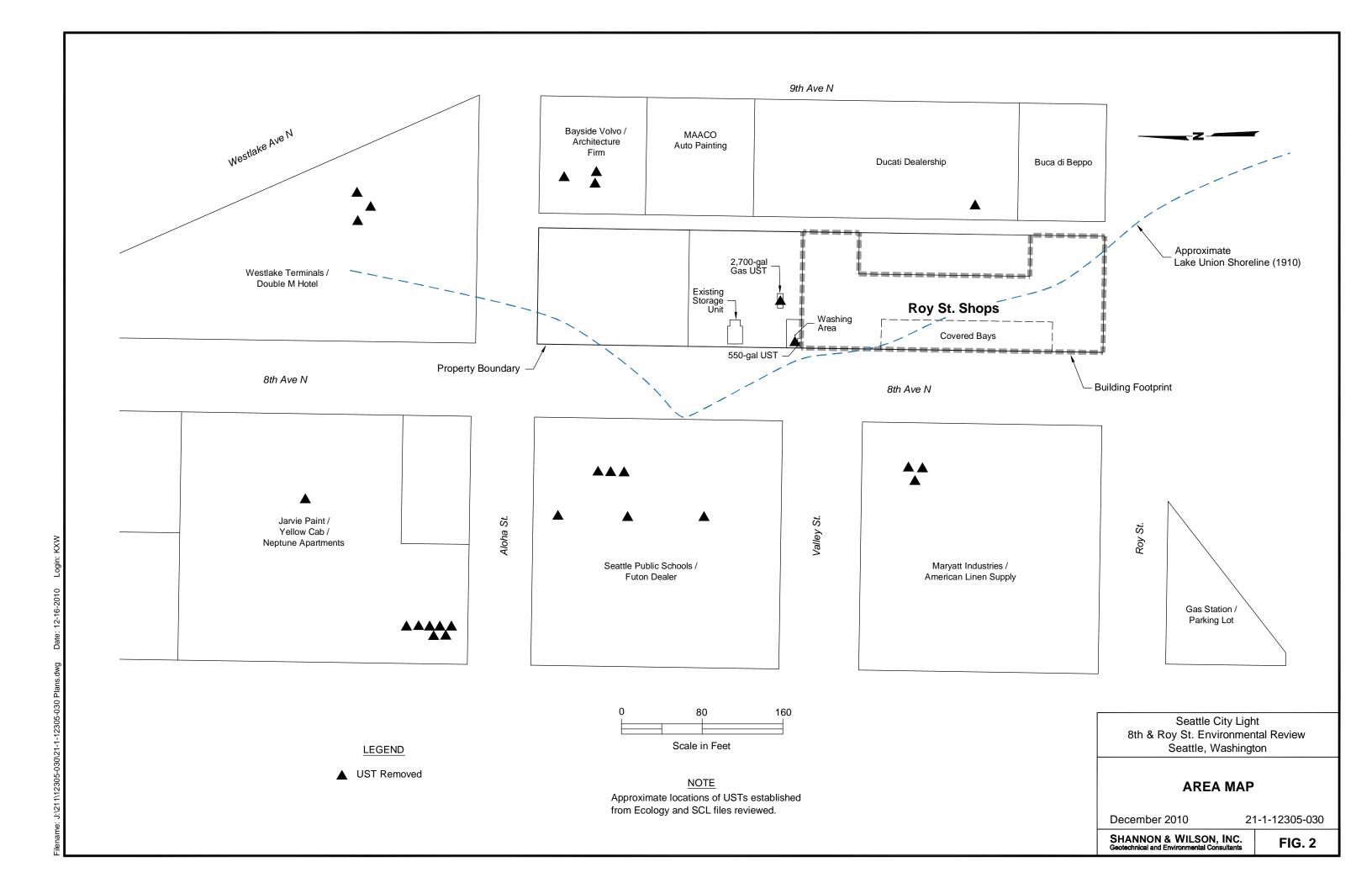
 $SW = Surface\ Water$

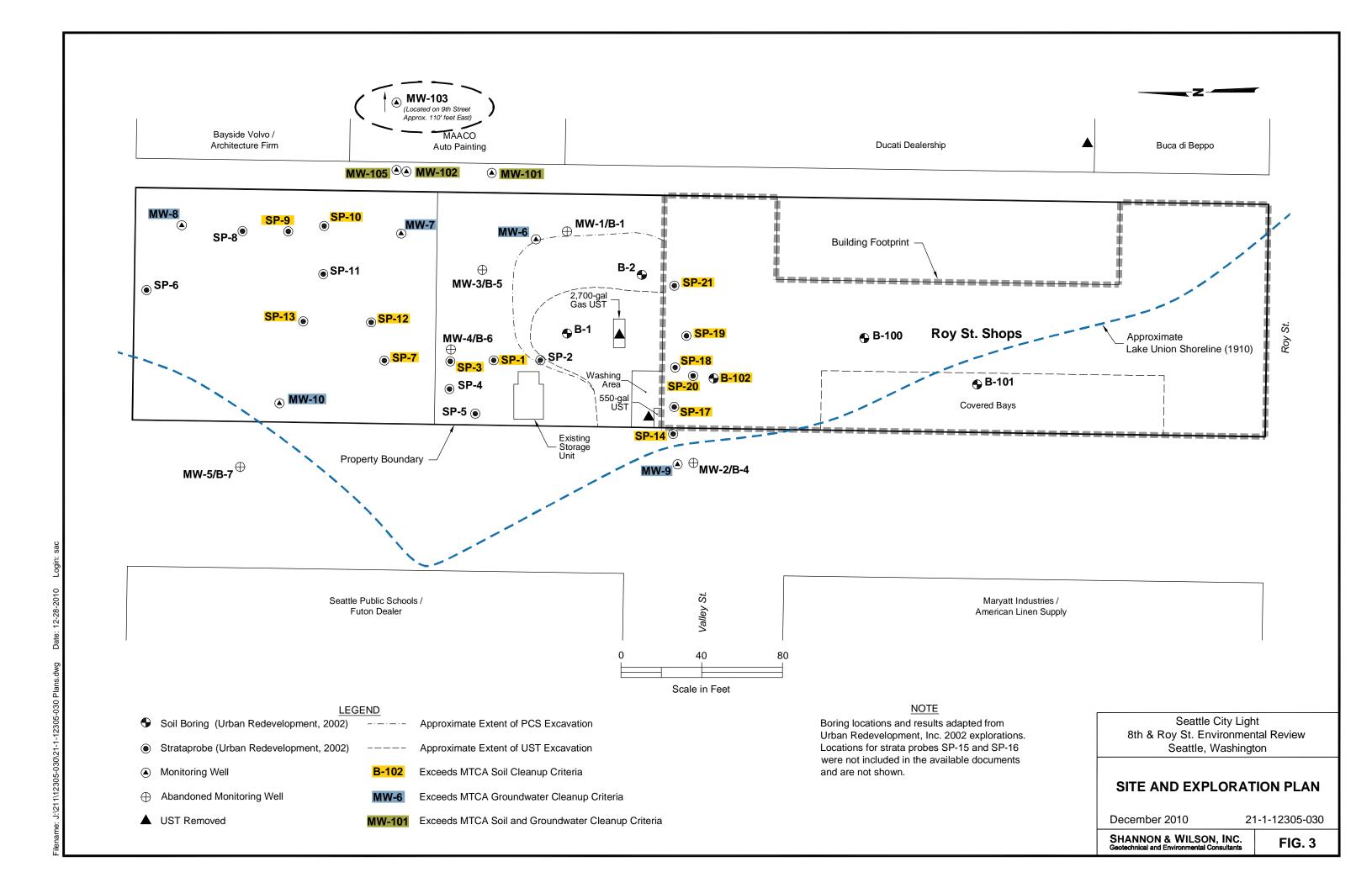
 $TEF = Toxicity \ Equivalent \ Factor$

NOTE

Reproduced with permission granted by THOMAS BROS. MAPS®. This map is copyrighted by Rand McNally R.L. 09-S-35. It is unlawful to copy or reproduce all or any part thereof, whether for personal use or resale, without permission. All rights reserved.

Seattle City Light 8th & Roy St. Environmental Review Seattle, Washington


VICINITY MAP


December 2010

21-1-12305-030

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. 1

Attachment to and part of Report 21-1-12305-030

Date: December 20, 2010
To: Ms. Jennifer Kindred

City of Seattle, Seattle City Light

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 4/2010

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 4/2010

Current Conditions Report Seattle City Light 8th and Roy Street Property 800 Aloha Street Seattle, Washington

June 8, 2011

Submitted To: Ms. Jennifer Kindred Seattle City Light, Environmental Affairs Division 700 5th Avenue, Suite 3316 Seattle, Washington 98124-4023

> By: Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, Washington 98103

> > 21-1-12305-031

ALASKA
CALIFORNIA
COLORADO
FLORIDA
MINNESOTA
MISSOURI
OREGON
WASHINGTON

June 8, 2011

Ms. Jennifer Kindred City of Seattle Seattle City Light, Environmental Affairs Division 700 Fifth Avenue, Suite 3316 Seattle, WA 98104

RE: CURRENT CONDITIONS REPORT, SEATTLE CITY LIGHT, 8TH AND ROY STREET PROPERTY, 800 ALOHA STREET, SEATTLE, WASHINGTON

Dear Ms. Kindred:

This letter report presents the results of our investigation into current environmental conditions at the Seattle City Light (SCL) property located at 800 Aloha Street in Seattle, Washington (the Property). Tasks included additional environmental information research, an inventory of existing monitoring wells, groundwater sampling from select monitoring wells, and preparation of this letter report. This work was completed in general accordance with our proposal dated January 26, 2011.

PROPERTY LOCATION AND BACKGROUND

The Property is located at 800 Aloha Street in Seattle, Washington (Figure 1). The Property occupies the west half of the block along 8th Avenue N, between Aloha and Roy Streets. Historical land use in the vicinity of the Property has predominantly been commercial and light industrial. A fuel spill occurred at the Property in 1992.

Shannon & Wilson performed a review of available environmental information concerning the Property and presented the results of that review in our Environmental Review Report dated December 20, 2010. That review identified significant gaps in the documentation of environmental remediation activities performed at the Property and a lack of recent data on site groundwater conditions. Follow-on actions recommended in our December 28, 2010, supplement to the Environmental Review Report included: (1) performing additional research to obtain missing historical site information such as installation, operation, and decommissioning records for the air sparge/soil vapor extraction (AS/SVE) system and (2) sampling existing monitoring wells to evaluate current groundwater conditions at the site. The scope of services

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 2 of 9

requested by SCL addresses these recommended follow-on actions. Specifically, the scope of services included the following tasks:

- Additional research to obtain historical information on site remediation activities,
- Preparation of a Sampling and Analysis Plan (SAP) and Health & Safety Plan to guide field activities (provided under separate cover),
- Inventory existing monitoring wells and conduct groundwater sampling at select monitoring wells,
- Coordination with SCL concerning disposal of investigation-derived waste (IDW) from this project temporarily stored at SCL's south service center, and
- Preparation of this letter report.

ADDITIONAL RESEARCH FINDINGS

Additional research was conducted to fill gaps in information regarding the installation, operation, and decommissioning of the AS/SVE remedial system that was identified during our initial review of available environmental information. Our research involved contacting individuals whose names were found on existing documentation during our initial review of the files that were provided to us by SCL and Washington State Department of Ecology.

Per phone conversations with Marrell Livesay, an employee of the Seattle Department of Parks and Recreation who was involved with cleanup of the fuel spill at the Property, the AS/SVE remedial system was installed and tested, but was not operated and eventually was decommissioned. He mentioned that the project manager at the time thought the Property was going to be sold shortly after the system was installed and decided not to operate the system. Specific dates regarding decommissioning of the AS/SVE system were not known, and follow-up calls to Property personnel during the time of installation and decommissioning provided by Mr. Livesay have not been successful.

Mr. Livesay also recalled that: (1) there was a thin aquitard in the fill soils at the site and (2) the fuel spill exhibited channelized subsurface flow toward Lake Union to the east along the glacial till interface. The thin aquitard he mentioned is likely the semi-confining layer described in the 1995 Site Characterization Report prepared by Remediation Technologies, Inc. (RETEC). The semi-confining layer is described by RETEC as a medium dense layer of silty sand that underlies the fill at the site. The fill layer was reported to extend 18 to 27 feet below ground surface (bgs),

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 3 of 9

and the semi-confining layer was believed to be only a few feet thick. There was no mention of channelized flow at the site in any of the reports or files reviewed in our initial environmental investigation.

FIELD ACTIVITIES

Field activities included an inventory of existing wells located on and adjacent to the Property and groundwater sampling from select wells. Field activities were conducted in general accordance with our SAP dated March 2, 2011.

Well Inventory

The inventory of existing wells was intended to gather information on their presence, purpose, and condition prior to groundwater sampling. Figure 1 shows the location of wells confirmed in our inventory, and Table 1 provides a summary of inventory details. Conclusions from our observations include:

- Seven of eight monitoring wells identified in our records review were confirmed to be present on site. The 2-inch wells are designated as MW-6, MW-7, MW-8, MW-9, MW-10, MW-101, and MW-105. MW-102, suspected to be in the alley adjacent east of the Property, was not found. A round concrete patch observed near MW-101 may have been MW-102; however, no record of decommissioning was found.
- Five remedial wells identified in our records review, designated as SCS-1, SCS-2, SCS-3, SCS-4, and SCS-5, were confirmed to be present on site. A single, 4-inch well casing was observed in each of the five wells. Per as-built plans prepared by SCS Engineers in 1996, all wells except SCS-1, which is not shown as being connected, were associated with the AS/SVE system. Additionally, the monument lid for SCS-1 was broken in half and the monument was filled with a mixture of water, sediment, and bentonite, which had to be removed to access the well head.
- Five vaults identified in our records review as part of the installed AS/SVE system, designated as AS-1, AS-2, AS-3, AS-4, and AS-5, were confirmed to be present on site. Two of the vaults (AS-2 and AS-3) each contained three 2-inch well casings, one vault (AS-5) contained two 2-inch well casings, and one vault (AS-4) contained one 6-inch, one 2-inch, and one 1-inch well casing. Contents of vault AS-1 were not confirmed because the vault was inaccessible under wire spools at the time of our site visit. According to the as-built plans prepared by SCS Engineers, the vaults with 2-inch well casings (including AS-1) housed wells for air sparging and soil vapor

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 4 of 9

extraction, and the vault with variable casing sizes housed wells for groundwater recovery. The 1-inch and 2-inch pipes in vault AS-4 and one of the 2-inch pipes in vault AS-5 did not have caps. Additionally, a pull cord was observed in the 1-inch pipe at vault AS-4. The vaults appear to be constructed in general accordance with the as-built plans; however, the plans show four pipes (instead of the observed three pipes) in AS-2 and AS-3.

Petroleum as a non-aqueous phase liquid (NAPL) was not observed floating on the groundwater surface in any location where it was investigated; however, a petroleum odor was observed at wells MW-6, SCS-1, and SCS-5, as well as in the 6-inch standpipe at vault AS-4.

Based on inventory data collected, the horizontal groundwater flow direction was estimated to be toward the east-northeast, as shown in Figure 2. Groundwater elevations shown on this figure were estimated based on field water level measurements in March 2011 and ground surface elevations for MW-6 through MW-10 presented in the 1995 Site Characterization Report by RETEC. Ground surface elevations for the remaining wells at the Property were estimated to a hundredth of a foot relative to MW-9 in the field using a survey transit and rod.

Groundwater at the Property ranged from approximately elevation 46 feet near MW-9 to 43 feet near MW-8. The groundwater elevation at MW-6 is slightly higher relative to other wells in the immediate area and the groundwater contour was generalized. It should be noted that the horizontal groundwater gradient is based on a single monitoring event and may vary throughout the year in response to precipitation.

Groundwater Sampling

Based on our well inventory and subsequent conversations with SCL, seven wells were selected for groundwater sampling instead of the six originally outlined in our SAP. The wells sampled were MW-6, MW-7, MW-8, MW-9, MW-101, MW-105, and SCS-1. A duplicate sample was collected at MW-101 and a sample blank was collected in the vicinity of MW-105, which is located next to a building used for painting and refinishing automobiles.

All environmental samples were submitted to OnSite Environmental (OnSite) in Redmond, Washington, to analyze for gasoline-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons (NWTPH)-Gasoline, diesel- and heavy oil-range petroleum by Method NWTPH-Diesel Extended, volatile organic compounds (VOCs) by Method Environmental

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 5 of 9

Protection Agency (EPA) 8260B, and total and dissolved Resource Conservation and Recovery Act 8 metals (arsenic, barium, cadmium, chromium, mercury, lead, selenium, and silver) by Method EPA 7470A/200.8. The sample blank was collected to assess potential VOC contamination and was submitted to OnSite for VOC analysis only.

Groundwater Analytical Results

Groundwater analytical results are summarized in Table 2 and the complete laboratory analytical reports are presented in Appendix A. Figures 3 through 5 show contaminant concentrations for petroleum, VOCs, and metals, respectively. These results were compared to groundwater sampling results from 2002 that were obtained during our review of SCL Property files. Our observations regarding analyte concentrations are described below:

- Gasoline-range petroleum was detected in MW-6, MW-7, MW-101, and MW-105 above its Model Toxics Control Act (MTCA) Method A cleanup criterion of 800 micrograms per liter (μg/L) (Figure 3). The detected exceedances ranged from 4,200 to 7,500 μg/L and represent a general decrease in concentrations since the 2002 sampling event. These detections are consistent with the documented petroleum release at the Property.
- Benzene was detected in MW-6, MW-7, MW-101, and MW-105 above its MTCA Method A cleanup criterion of 5 μg/L (Figure 3). The detected exceedances ranged from 19 to 460 μg/L and represent a general decrease in concentrations since the 2002 sampling event. These detections are consistent with the documented petroleum release at the Property.
- Naphthalene was detected at 310 μg/L in MW-6, above its MTCA Method A cleanup criterion of 160 μg/L (Figure 4). While not analyzed in MW-6 during the 2002 sampling event, naphthalene was detected in MW-7 at 190 μg/L in 2002. This detection is likely associated with the documented petroleum release at the Property.
- Vinyl chloride was detected at 0.42 μg/L in MW-9, above its MTCA Method A cleanup criterion of 0.2 μg/L (Figure 4). Vinyl chloride was not detected during the 2002 sampling event. Vinyl chloride is a degradation by-product of tetrachloroethene; the source of contamination is likely a barrel spill of tetrachloroethene that occurred in 1980 at the Maryatt Industries site upgradient of the Property.
- Total and dissolved arsenic was detected in MW-9 and MW-105 above its MTCA
 Method A cleanup criterion of 5 μg/L (Figure 5). Total and dissolved detections for

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 6 of 9

MW-9 were 8.8 and 9.1 μ g/L, respectively. Total and dissolved detections for MW-105 were 35 and 27 μ g/L, respectively. These detections represent a general decrease in concentrations since the 2002 sampling event. The source of contamination is likely naturally-occurring.

Investigation-Derived Waste (IDW)

Approximately 25 gallons of groundwater was purged during sampling at the Property. Purged groundwater was containerized in a 55-gallon drum along with approximately 3 gallons of water used for decontamination of sampling equipment. The drum was labeled and transferred to SCL's south service center, pending disposal.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

A data quality review was conducted using the quality control results submitted by the laboratory and field information provided by the sampling team in conjunction with method requirements. Data review consisted of evaluation of the sample collection activities and documentation, sample handling and hold times, blank sample analyses, matrix spike, laboratory duplicates, and surrogate results.

- Field Parameters Prior to collecting samples, water quality parameters (temperature, pH, dissolved oxygen [DO], oxidation-reduction potential [ORP], specific conductance, and turbidity) were measured at each monitoring well and recorded on the appropriate field sampling sheet. A stabilization goal was established in the SAP for three consecutive readings of these water quality parameters to be within ± 5 percent to indicate that the produced water is representative of groundwater conditions. However, poor recovery in some wells caused us to make the field decision to collect samples before achieving this stabilization goal. Poor recovery was observed at MW-7, MW-9, MW-105, and SCS-1. Conditions at SCS-1 were such that sampling was conducted over the course of two days to allow for well recovery. Based on a review of recorded data, the following parameters were found to be outside of the 5 percent limit: turbidity in MW-7; ORP and turbidity in MW8; DO, ORP, and turbidity in MW-9; turbidity in MW-101; DO, ORP, and turbidity in MW-105; and DO, ORP, and turbidity in SCS-1.
- Sample Handling and Hold Times All samples were preserved according to sample preservation requirements specified in the SAP. The samples arrived at the laboratory in good condition, and were extracted and analyzed within the method-specific holding times.

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 7 of 9

- Sample Blank The sample blank was collected by filling sample collection vials in the field using laboratory-certified de-ionized water. The sample blank was collected in the vicinity of MW-105 to assess potential impacts from the adjacent auto painting shop. Methylene chloride and chloroform were detected in the sample blank at 9.5 parts per billion (ppb) and 0.98 ppb, respectively. The methylene chloride detection is above its MTCA Method A cleanup criterion but was not detected in any groundwater samples. Chloroform was also detected in groundwater samples collected from MW-7 and SCS-1, but all detections were below its MTCA Method A cleanup criterion. Groundwater detections of chloroform were flagged with a "B" to indicate that the analyte was detected in the sample blank.
- Method Blanks Method blanks were prepared and analyzed by the laboratory to assess potential impacts from the analytical procedures or equipment in the laboratory. No analytes were detected in any method blanks.
- Field Duplicate A field duplicate was collected and submitted blind to the laboratory. The field duplicate, designated Dup 1, was collected at MW-101. For field duplicates, a relative percent difference (RPD) limit of 25 percent was selected as the maximum RPD for data review purposes. All duplicate comparisons were below the 25 percent RPD limit.
- Laboratory Duplicate Analysis Laboratory duplicates were analyzed at the required frequency for all analyses. Acceptable RPD limits are established by the laboratory according to their approved QA/QC parameters. All duplicate comparisons were within established RPD limits.
- Surrogate Recoveries As required by method guidelines, surrogate spikes were added to the project samples. Acceptable recovery control limits are established by the laboratory and laboratory QC samples were analyzed according to method guidelines. All surrogate recoveries were within established control limits.
- Matrix Spikes/Matrix Spike Duplicates (MS/MSD) MS/MSD were analyzed at the required frequency. MS/MSD results were evaluated based on percent recovery and RPD. Spike recovery and RPD for all MS/MSD results were within established limits.
- Laboratory Flags General QA/QC issues associated with the analytical data were flagged by the laboratory. The following diesel-range hydrocarbon results were flagged U1, which indicates that the practical quantitation limit was elevated due to interferences present in the sample: MW-6, MW-7, MW-101, MW-105, SCS-1, and Dup 1. The diesel-range hydrocarbon result for SCS-1 was also flagged M1, which indicates that hydrocarbons in the gasoline range (toluene-naphthalene) were present

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 8 of 9

in the sample. While diesel-range hydrocarbons were not detected in any samples, these results should be considered estimates.

CONCLUSIONS

Based on our review, well inventory, and groundwater sampling data results, we offer the following conclusions regarding current environmental conditions at the Property:

- Although an AS/SVE remediation system was installed, it was never operated, and was subsequently decommissioned. The reduction in hydrocarbon and VOC concentrations since 2002 is likely due to natural attenuation.
- Detections of gasoline-range hydrocarbons are well below its solubility limit of approximately 100,000 μg/L, which suggests that NAPL is not present. This is supported by field observations.
- Gasoline-range hydrocarbon and benzene concentrations in groundwater at the Property exceed MTCA cleanup criteria. The lower relative concentrations detected at SCS-1, which is located adjacent to the former leaking pump station, suggest that previous excavation of petroleum-contaminated soils was effective at removing source contamination. Downgradient detections are likely the result of residual contamination in soil pore space.
- Vinyl chloride was detected in MW-9 above its MTCA cleanup criterion. Vinyl chloride is a degradation by-product of tetrachloroethene. Given the predominant groundwater flow is east-northeast toward Lake Union, the source of vinyl chloride is likely the 1980 barrel spill of tetrachloroethene reported at the Maryatt Industries site to the west of the Property.
- Dissolved arsenic was detected in MW-9 and MW-105 above its MTCA cleanup criterion. Both wells are located adjacent to the Property. The source of arsenic may be due to the presence of peat deposited prior to the lowering of Lake Union.
- Metals contamination detected in 2002 is likely due to samples being collected using a bailer, a sampling technique which is known to artificially increase turbidity and mobilize particles that are likely not normally mobile in groundwater.
- Groundwater is estimated to flow toward Lake Union based on a single set of water level measurements. Groundwater flow could be influenced by the topography of glacial till that underlies the Property and/or by the building foundation to the south, which is estimated to extend 15 bgs to approximately elevation 47 feet.

Ms. Jennifer Kindred City of Seattle June 8, 2011 Page 9 of 9

CLOSURE

The findings and conclusions documented in this letter report have been prepared for specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our agreement. The conclusions presented in this letter report are professional opinions based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

Shannon & Wilson, Inc. has prepared Appendix B, "Important Information About Your Geotechnical/Environmental Report." While not written specifically for this project, this enclosure should assist you and others in understanding the use and limitations of our reports. We appreciate the opportunity to be of service to you. If you have any questions or concerns, please call us at (206) 632-8020.

Sincerely,

SHANNON & WILSON, INC.

Michael S. Reynolds

Environmental Engineer

Mark A. Bryant, P.E.

Mark a . Wyen

Associate

MSR:ACT:MAB:DNC/msr

Enc: Table 1 – Well Inventory Summary (2 pages)

Table 2 – Groundwater Analytical Results

Figure 1 – Site Plan

Figure 2 – Groundwater Contour Map

Figure 3 – TPH-G and Benzene Concentrations in Groundwater

Figure 4 – VOC Concentrations in Groundwater

Figure 5 – Metals Concentrations in Groundwater

Appendix A – Laboratory Analytical Results

Appendix B - Important Information About Your Geotechnical/Environmental Report

Mr. Bill Devereaux, SCL c:

TABLE 1 WELL INVENTORY SUMMARY

Well ID	Install Date	Purpose	Well Markings	Monument Type	Well Material	Free Product?	Ecology Tag?	Casing Distance Below Ground Surface, ft	Measured Well Depth, ft	Measured Depth to Water, ft	Notes
MW-6	Oct-93	Site Assessment, RETEC	None	8-inch CI	2-inch PVC	No	No	0.25	21.07	14.73	Monument filled with water. No obvious leak at cap. Strong petroleum odor. Monitoring well bolts missing.
MW-7	Oct-93	Site Assessment, RETEC	None	8-inch CI	2-inch PVC	No	No	0.57	17.88	12.36	Monument filled with water. No obvious leak at cap. Slight sheen on water in monument.
MW-8	Oct-93	Site Assessment, RETEC	MW-8	8-inch CI	2-inch PVC	No	No	0.25	19.23	10.81	Monument filled with water. No obvious leak at cap. Slight sheen on water in monument.
MW-9	Oct-93	Site Assessment, RETEC	MW-9	8-inch CI	2-inch PVC	No	No	0.33	22.12	14.81	Monument filled with water. No obvious leak at cap. Slight sheen on water in monument.
MW-10	Oct-93	Site Assessment, RETEC	None	8-inch CI	2-inch PVC	No	No	0.27	22.05	14.78	Monument filled with water. No obvious leak at cap. Slight sheen on water in monument.
SCS-1	Feb-96	Site Assessment, SCS Engineers	None	12-inch CI	4-inch PVC	No	ABV 824	0.75	21.30	16.85	Monument lid broken in two. Monument filled with water, sediment and bentonite. No obvious leak at cap. Slight sheen on water in monument.
SCS-2	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	12-inch CI	4-inch PVC	No	ABV 825	0.42	20.89	16.30	Asphalt cut goes around well. Petroluem odor.
SCS-3	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	12-inch CI	4-inch PVC	No	ABV 826	0.21	21.56	13.78	Asphalt cut goes around well.
SCS-4	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	12-inch CI	4-inch PVC	No	No	0.48	19.69	12.42	Asphalt cut goes around well.
SCS-5	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	12-inch CI	4-inch PVC	No	ANC 751	0.23	20.91	16.21	Monument filled with water. No obvious leak at cap. Petroleum odor.
MW-101	Jun-02	Site Assessment, Urban Redevelopment	None	8-inch CI	2-inch PVC	No	AGI 540	0.49	14.94	7.30	Monitoring well bolts stripped.

TABLE 1 WELL INVENTORY SUMMARY

Well ID	Install Date	Purpose	Well Markings	Monument Type	Well Material	Free Product?	Ecology Tag?	Casing Distance Below Ground Surface, ft	Measured Well Depth, ft	Measured Depth to Water, ft	Notes
MW-105	Jun-02	Site Assessment, Urban Redevelopment	None	8-inch CI	2-inch PVC	No	No	0.33	29.69	10.09	
AS-1	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	14-inch x 24-inch Concrete Vault	Not Confirmed	NM	No	NM	NM	NM	
AS-2	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	14-inch x 24-inch Concrete Vault	3-2-inch PVC	No	No	Varies	NM	NM	
AS-3	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	14-inch x 24-inch Concrete Vault	3-2-inch PVC	No	No	Varies	NM	NM	Some water in vault.
AS-4	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	14-inch x 24-inch Concrete Vault	1-1-inch, 2-inch, 6-inch PVC	No	No	Varies	NM		1-inch pipe - uncapped with rope leading down pipe. 2-inch pipe - uncapped and filled with water. 6-inch pipe - petroleum odor.
AS-5	Feb-96	Site Assessment & Remediation System, SCS Engineers	None	14-inch x 24-inch Concrete Vault	2-2-inch PVC	No	No	Varies	NM	NM	One of pipes uncapped.

Notes: CI = cast iron ft = feet

PVC = polyvinyl chloride

 $RETEC = \ Remediation \ Technologies, Inc.$

GROUNDWATER ANALYTICAL RESULTS

Sample ID:	MW-6 3/24/2011	MW-7 3/24/2011	MW-8 3/25/2011	MW-9 3/25/2011	MW-101 3/25/2011	MW-105 3/25/2011	SCS-1 3/24/2011	Dup 1 3/25/2011	Sample Blank 3/25/2011	MTCA Method A GW Cleanup Criteria	MTCA Method B GW Cleanup Criteria
Petroleum and BTEX (ug/L) Gasoline-range Hydrocarbons	6,800	4,900	< 100	< 100	7,500	4,200	670	7,500	NM	1.000/800(1)	*
Diesel-range Hydrocarbons	< 3,700 U1	< 3,200 U1	< 260	< 260	< 4,500 U1	< 1,700 U1	< 370 U1, M1	< 4.700 U1	NM	500	*
Heavy Oil-range Hydrocarbons	< 420	< 410	< 200	< 410	< 420	< 440	< 450	< 4,700 01	NM	500	*
, , ,	< 420 180	20	< 0.2	< 0.2	< 420 19	< 440 460	1.2	< 410 18	< 0.2	5	*
Benzene Toluene	< 5.0	< 2.0	< 0.2	< 0.2	< 10	< 20	< 1.0	< 10	< 0.2	1,000	*
Ethylbenzene	120	22.0	< 0.2	< 0.2	88	230	< 0.2	88	< 0.2	700	*
Xylenes	20.1	9.3	< 0.2	< 0.2	5.5	78.2	3	5.4	< 0.2	1,000	*
Volatile Compounds (ug/L) ⁽²⁾	20.1	3.3	< 0.4	< 0.4	3.3	76.2	3	3.4	< 0.4	1,000	
Vinyl Chloride	< 1.0	< 0.4	< 0.2	0.42	< 2.0	< 4.0	< 0.2	< 2.0	< 0.2	0.2	0.029
Acetone	< 25	< 10	< 5.0	< 5.0	< 50	< 100	5	< 50	< 5.0	*	800
Methylene Chloride	< 5.0	< 2.0	< 1.0	< 1.0	< 10	< 20	< 1.0	< 10	9.5	5	*
Methyl t-Butyl Ether	< 1.0	< 0.4	< 0.2	< 0.2	< 2.0	< 4.0	3.2	< 2.0	< 0.2	20	24
Chloroform	< 1.0	1.3 B	< 0.2	< 0.2	< 2.0	< 4.0	0.83 B	< 2.0	0.98	*	80
Isopropylbenzene	75	43	< 0.2	< 0.2	73	67	5.8	74	< 0.2	*	800
n-Propylbenzene	170	96	< 0.2	< 0.2	220	120	5.9	230	< 0.2	*	*
1,3,5-Trimethylbenzene	5	1	< 0.2	< 0.2	< 2.0	16	< 0.2	< 2.0	< 0.2	*	400
1,2,4-Trimethylbenzene	12	1.4	< 0.2	< 0.2	2.7	5.3	< 0.2	2.6	< 0.2	*	400
sec-Butylbenzene	10	6.8	< 0.2	< 0.2	18	< 4.0	0.77	19	< 0.2	*	*
n-Butylbenzene	< 1.0	19	< 0.2	< 0.2	< 2.0	< 4.0	< 0.2	< 2.0	< 0.2	*	*
Naphthalene	310	7	< 1.0	< 1.0	61	< 20	< 1.0	63	< 1.0	160	*
RCRA 8 Metals - Total / Dissolved (ug/L)									•		
Arsenic	< 3.3 / < 3.0	4.7 / < 3.0	3.7 / 4.5	8.8 / 9.1	< 3.3 / < 3.0	35 / 27	7.1 / 4.3	< 3.3 / < 3.0	NM	5	*
Barium	430 / 310	810 / 630	60 / 60	170 / 88	300 / 250	180 / 96	630 / 450	300 / 230	NM	*	3,200
Cadmium	< 4.4 / < 4.0	< 4.4 / < 4.0	< 4.4 / < 4.0	< 4.4 / < 4.0	< 4.4 / < 4.0	< 4.4 / < 4.0	< 4.4 / < 4.0	< 4.4 / < 4.0	NM	5	*
Chromium	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	NM	50	*
Lead	2.6 / < 1.0	4 / < 1.0	< 1.1 / < 1.0	< 1.1 / < 1.0	< 1.1 / < 1.0	< 1.1 / < 1.0	< 1.1 / < 1.0	< 1.1 / < 1.0	NM	15	*
Mercury	< 0.5 / < 0.5	< 0.5 / < 0.5	< 0.5 / < 0.5	< 0.5 / < 0.5	< 0.5 / < 0.5	< 0.5 / < 0.5	< 0.5 / < 0.5	< 0.5 / < 0.5	NM	2	*
Selenium	< 5.6 / < 5.0	< 5.6 / < 5.0	< 5.6 / < 5.0	< 5.6 / < 5.0	< 5.6 / < 5.0	< 5.6 / < 5.0	< 5.6 / < 5.0	< 5.6 / < 5.0	NM	*	80
Silver	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	< 11 / < 10	NM	*	80

Notes

Bold = Analyte detected

Highlighted = Analyte detected above cleanup criteria.

B = Analyte detected in sample blank

BTEX = benzene, toluene, ethylbenzene, and xylenes

GW = groundwater

IND = insufficient data

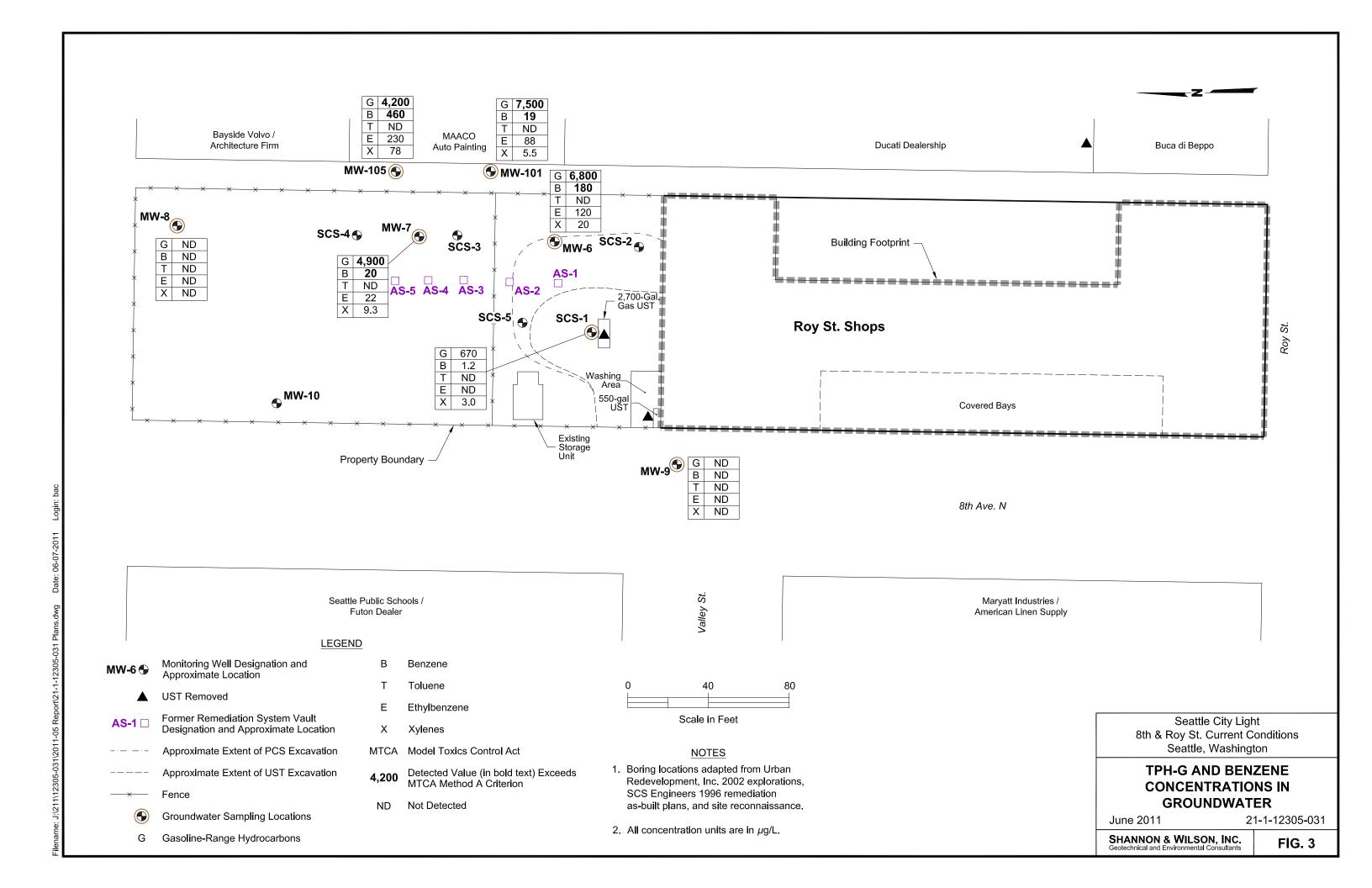
 $M1 = Hydrocarbons \ in \ gasoline \ range \ (toluene-naphthalene) \ present \ in \ sample.$

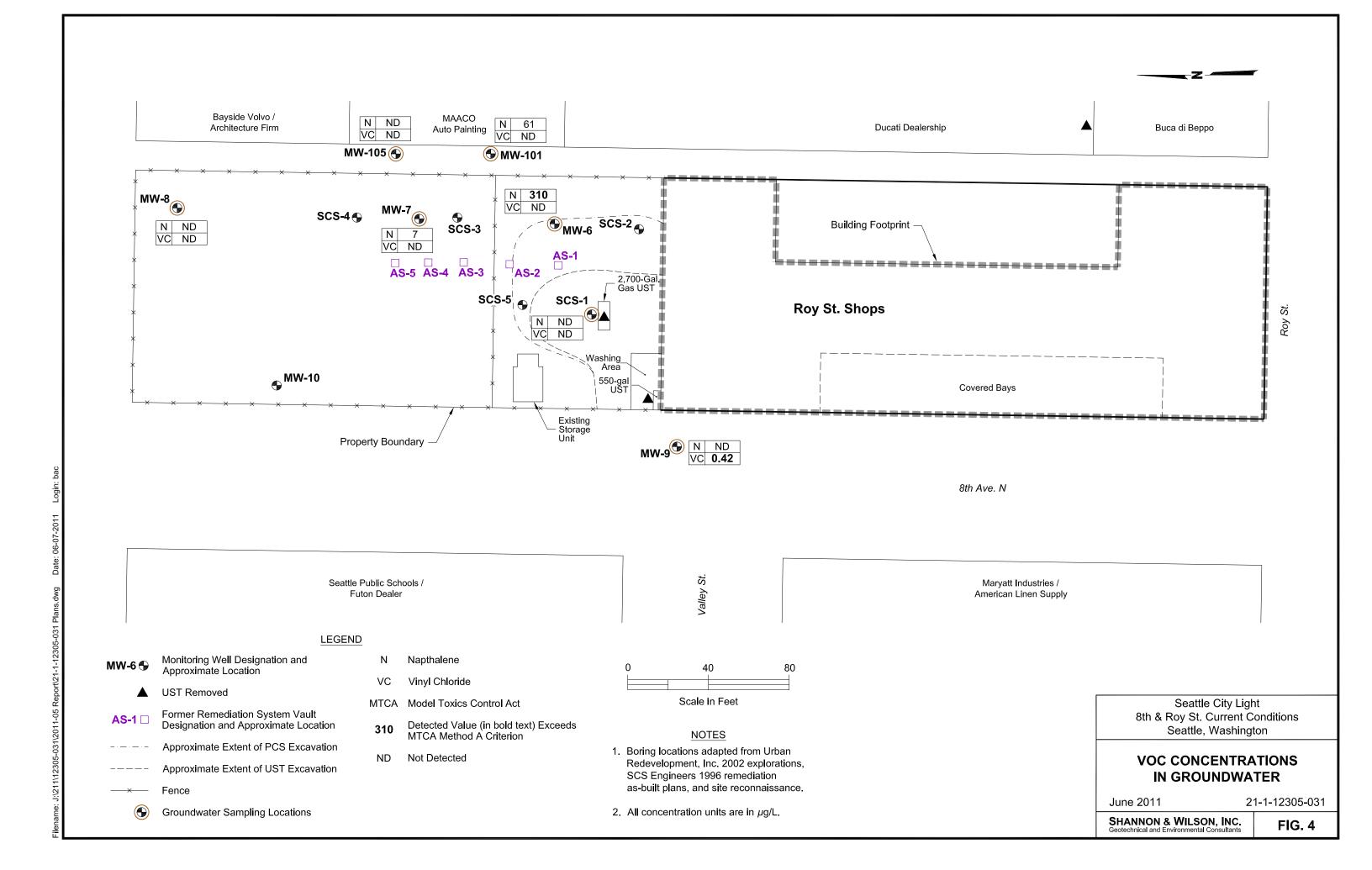
MTCA = Model Toxics Control Act

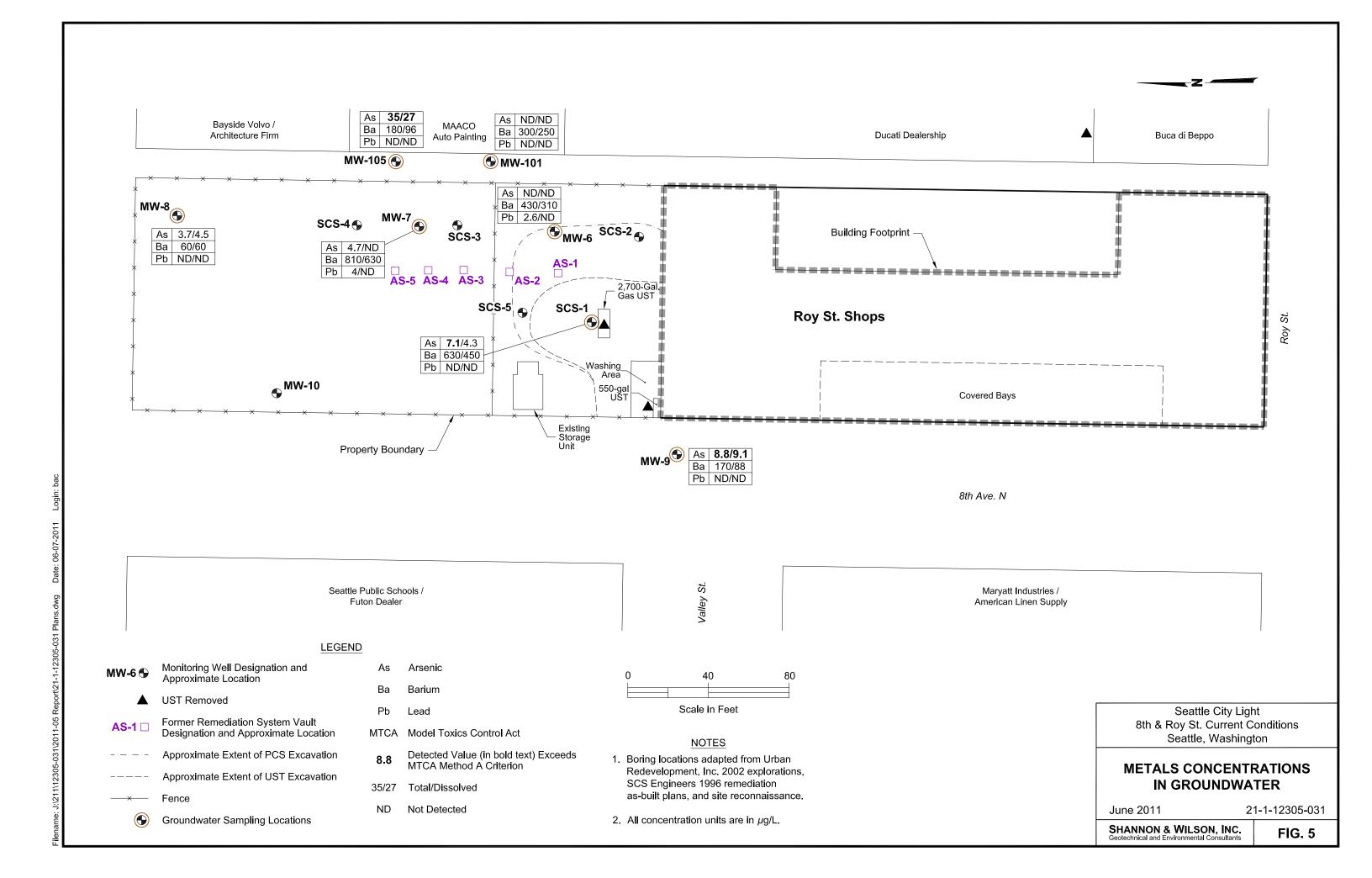
NM = not measured

RCRA = Resource Conservation and Recovery Act

SW = surface water


U1 = Practical quantitation limit elevated due to interferences present in sample.


ug/L = micrograms per liter


 $^{^{(1)}}$ Criteria is 1,000 parts per billion (ppb) if benzene is not present, 800 ppb if present.

⁽²⁾ Only detected analytes shown.

< = Analyte not detected above practical quantitation limit shown.

SHANNON & WILSON, INC.

APPENDIX A LABORATORY ANALYTICAL RESULTS

SHANNON & WILSON, INC.

APPENDIX A

LABORATORY ANALYTICAL RESULTS

TABLE OF CONTENTS

REPORTS

OnSite Environmental Report No. 1103-238 (34 pages) OnSite Environmental Report No. 1103-247 (47 pages)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 1, 2011

Mark Bryant Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-12305-031

Laboratory Reference No. 1103-238

Dear Mark:

Enclosed are the analytical results and associated quality control data for samples submitted on March 25, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-12305-031

Case Narrative

Samples were collected on March 24, 2011 and received by the laboratory on March 25, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-12305-031

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	03-238-01					
Gasoline	6800	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	73-121				
Client ID:	MW-7					
Laboratory ID:	03-238-02					
Gasoline	4900	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	73-121				
Client ID:	SCS-1					
Laboratory ID:	03-238-03					
Gasoline	670	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	73-121				

Project: 21-1-12305-031

NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0329W1					
Gasoline	ND	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	73-121				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	03-24	41-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						85 83	73-121			

Project: 21-1-12305-031

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	03-238-01					
Diesel Range Organics	ND	3.7	NWTPH-Dx	3-29-11	3-29-11	U1
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	MW-7					
Laboratory ID:	03-238-02					
Diesel Range Organics	ND	3.2	NWTPH-Dx	3-29-11	3-29-11	U1
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

Project: 21-1-12305-031

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0329W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	3-29-11	3-29-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	03-23	38-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			98	85	50-150			

Project: 21-1-12305-031

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	03-238-01					
CFC-12	ND	1.0	EPA 8260	3-30-11	3-30-11	
Chloromethane	ND	5.0	EPA 8260	3-30-11	3-30-11	
Vinyl Chloride	ND	1.0	EPA 8260	3-30-11	3-30-11	
Bromomethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Chloroethane	ND	5.0	EPA 8260	3-30-11	3-30-11	
CFC-11	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Acetone	ND	25	EPA 8260	3-30-11	3-30-11	
Methyl Iodide	ND	5.0	EPA 8260	3-30-11	3-30-11	
Carbon Disulfide	ND	1.0	EPA 8260	3-30-11	3-30-11	
Methylene Chloride	ND	5.0	EPA 8260	3-30-11	3-30-11	
Trans-1,2-Dichloroethene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Methyl t-Butyl Ether	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Vinyl Acetate	ND	10	EPA 8260	3-30-11	3-30-11	
2,2-Dichloropropane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Cis-1,2-Dichloroethene	ND	1.0	EPA 8260	3-30-11	3-30-11	
2-Butanone	ND	25	EPA 8260	3-30-11	3-30-11	
Bromochloromethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Chloroform	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,1,1-Trichloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Carbon Tetrachloride	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,1-Dichloropropene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Benzene	180	1.0	EPA 8260	3-30-11	3-30-11	
1,2-Dichloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Trichloroethene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2-Dichloropropane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Dibromomethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Dichlorobromomethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
2-Chloroethylvinylether	ND	5.0	EPA 8260	3-30-11	3-30-11	
Cis-1,3-Dichloropropene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Methyl Isobutyl Ketone	ND	10	EPA 8260	3-30-11	3-30-11	
Toluene	ND	5.0	EPA 8260	3-30-11	3-30-11	
Trans-1,3-Dichloropropene	ND	1.0	EPA 8260	3-30-11	3-30-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B Page 2 of 2

Amalista	Danak	DOL	B# - (11	Date	Date	El
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	03-238-01		EDA 0000	0.00.11	0.00.44	
1,1,2-Trichloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Tetrachloroethene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,3-Dichloropropane	ND	1.0	EPA 8260	3-30-11	3-30-11	
2-Hexanone	ND	10	EPA 8260	3-30-11	3-30-11	
Dibromochloromethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Ethylene dibromide	ND	1.0	EPA 8260	3-30-11	3-30-11	
Chlorobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,1,1,2-Tetrachloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Ethylbenzene	120	1.0	EPA 8260	3-30-11	3-30-11	
m,p-Xylene	18	2.0	EPA 8260	3-30-11	3-30-11	
o-Xylene	2.1	1.0	EPA 8260	3-30-11	3-30-11	
Styrene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Bromoform	ND	5.0	EPA 8260	3-30-11	3-30-11	
Isopropylbenzene	75	1.0	EPA 8260	3-30-11	3-30-11	
Bromobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,1,2,2-Tetrachloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichloropropane	ND	1.0	EPA 8260	3-30-11	3-30-11	
n-Propylbenzene	170	1.0	EPA 8260	3-30-11	3-30-11	
2-Chlorotoluene	ND	1.0	EPA 8260	3-30-11	3-30-11	
4-Chlorotoluene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,3,5-Trimethylbenzene	5.0	1.0	EPA 8260	3-30-11	3-30-11	
tert-Butylbenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2,4-Trimethylbenzene	12	1.0	EPA 8260	3-30-11	3-30-11	
sec-Butylbenzene	10	1.0	EPA 8260	3-30-11	3-30-11	
1,3-Dichlorobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
p-Isopropyltoluene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,4-Dichlorobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2-Dichlorobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
n-Butylbenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2-Dibromo-3-chloropropane	ND	5.0	EPA 8260	3-30-11	3-30-11	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Hexachlorobutadiene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Naphthalene	310	50	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Surrogate:	Percent Recovery	Control Limits	L1 /1 0200	0 00 11	0 00 11	

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 83 68-107 Toluene-d8 88 73-102 Benzene, 1-bromo-4-fluoro-84 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7					
Laboratory ID:	03-238-02					
CFC-12	ND	0.40	EPA 8260	3-30-11	3-30-11	
Chloromethane	ND	2.0	EPA 8260	3-30-11	3-30-11	
Vinyl Chloride	ND	0.40	EPA 8260	3-30-11	3-30-11	
Bromomethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Chloroethane	ND	2.0	EPA 8260	3-30-11	3-30-11	
CFC-11	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Acetone	ND	10	EPA 8260	3-30-11	3-30-11	
Methyl Iodide	ND	2.0	EPA 8260	3-30-11	3-30-11	
Carbon Disulfide	ND	0.40	EPA 8260	3-30-11	3-30-11	
Methylene Chloride	ND	2.0	EPA 8260	3-30-11	3-30-11	
Trans-1,2-Dichloroethene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Methyl t-Butyl Ether	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Vinyl Acetate	ND	4.0	EPA 8260	3-30-11	3-30-11	
2,2-Dichloropropane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Cis-1,2-Dichloroethene	ND	0.40	EPA 8260	3-30-11	3-30-11	
2-Butanone	ND	10	EPA 8260	3-30-11	3-30-11	
Bromochloromethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Chloroform	1.3	0.40	EPA 8260	3-30-11	3-30-11	
1,1,1-Trichloroethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Carbon Tetrachloride	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,1-Dichloropropene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Benzene	20	0.40	EPA 8260	3-30-11	3-30-11	
1,2-Dichloroethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Trichloroethene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,2-Dichloropropane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Dibromomethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Dichlorobromomethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
2-Chloroethylvinylether	ND	2.0	EPA 8260	3-30-11	3-30-11	
Cis-1,3-Dichloropropene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Methyl Isobutyl Ketone	ND	4.0	EPA 8260	3-30-11	3-30-11	
Toluene	ND	2.0	EPA 8260	3-30-11	3-30-11	
Trans-1,3-Dichloropropene	ND	0.40	EPA 8260	3-30-11	3-30-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7					
Laboratory ID:	03-238-02					
1,1,2-Trichloroethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Tetrachloroethene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,3-Dichloropropane	ND	0.40	EPA 8260	3-30-11	3-30-11	
2-Hexanone	ND	4.0	EPA 8260	3-30-11	3-30-11	
Dibromochloromethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Ethylene dibromide	ND	0.40	EPA 8260	3-30-11	3-30-11	
Chlorobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
Ethylbenzene	22	0.40	EPA 8260	3-30-11	3-30-11	
m,p-Xylene	8.1	0.80	EPA 8260	3-30-11	3-30-11	
o-Xylene	1.2	0.40	EPA 8260	3-30-11	3-30-11	
Styrene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Bromoform	ND	2.0	EPA 8260	3-30-11	3-30-11	
Isopropylbenzene	43	0.40	EPA 8260	3-30-11	3-30-11	
Bromobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichloropropane	ND	0.40	EPA 8260	3-30-11	3-30-11	
n-Propylbenzene	96	2.0	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	0.40	EPA 8260	3-30-11	3-30-11	
4-Chlorotoluene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,3,5-Trimethylbenzene	1.0	0.40	EPA 8260	3-30-11	3-30-11	
tert-Butylbenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,2,4-Trimethylbenzene	1.4	0.40	EPA 8260	3-30-11	3-30-11	
sec-Butylbenzene	6.8	0.40	EPA 8260	3-30-11	3-30-11	
1,3-Dichlorobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
p-Isopropyltoluene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,4-Dichlorobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
1,2-Dichlorobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
n-Butylbenzene	19	0.40	EPA 8260	3-30-11	3-30-11	
1,2-Dibromo-3-chloropropane	e ND	2.0	EPA 8260	3-30-11	3-30-11	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Hexachlorobutadiene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Naphthalene	7.0	2.0	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260	3-30-11	3-30-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit
Dibromofluoromethane 88 68-107
Toluene-d8 92 73-102
Benzene, 1-bromo-4-fluoro- 89 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SCS-1					
Laboratory ID:	03-238-03					
CFC-12	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chloromethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Vinyl Chloride	ND	0.20	EPA 8260	3-30-11	3-30-11	
Bromomethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
CFC-11	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Acetone	5.0	5.0	EPA 8260	3-30-11	3-30-11	
Methyl Iodide	ND	1.0	EPA 8260	3-30-11	3-30-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-30-11	3-30-11	
Methylene Chloride	ND	1.0	EPA 8260	3-30-11	3-30-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Methyl t-Butyl Ether	3.2	0.20	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-30-11	3-30-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Butanone	ND	5.0	EPA 8260	3-30-11	3-30-11	
Bromochloromethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chloroform	0.83	0.20	EPA 8260	3-30-11	3-30-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Benzene	1.2	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Trichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Dibromomethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-30-11	3-30-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-30-11	3-30-11	
Toluene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-30-11	3-30-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B Page 2 of 2

Anglista	Dogult	DOL	Mathad	Date	Date	Elege
Analyte Client ID:	Result SCS-1	PQL	Method	Prepared	Analyzed	Flags
	03-238-03					
Laboratory ID:	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1,2-Trichloroethane						
Tetrachloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Hexanone	ND	2.0	EPA 8260	3-30-11	3-30-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Ethylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
m,p-Xylene	2.3	0.40	EPA 8260	3-30-11	3-30-11	
o-Xylene	0.70	0.20	EPA 8260	3-30-11	3-30-11	
Styrene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Bromoform	ND	1.0	EPA 8260	3-30-11	3-30-11	
Isopropylbenzene	5.8	0.20	EPA 8260	3-30-11	3-30-11	
Bromobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
n-Propylbenzene	5.9	0.20	EPA 8260	3-30-11	3-30-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-30-11	3-30-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
tert-Butylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
sec-Butylbenzene	0.77	0.20	EPA 8260	3-30-11	3-30-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	3-30-11	3-30-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Naphthalene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Surrogate:	Percent Recovery	Control Limits	21710200	0 00 11	0 00 11	

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 68-107 83 Toluene-d8 88 73-102 Benzene, 1-bromo-4-fluoro-82 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

Offits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0330W1					
CFC-12	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chloromethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
Vinyl Chloride	ND	0.20	EPA 8260	3-30-11	3-30-11	
Bromomethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chloroethane	ND	1.0	EPA 8260	3-30-11	3-30-11	
CFC-11	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Acetone	ND	5.0	EPA 8260	3-30-11	3-30-11	
Methyl Iodide	ND	1.0	EPA 8260	3-30-11	3-30-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-30-11	3-30-11	
Methylene Chloride	ND	1.0	EPA 8260	3-30-11	3-30-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-30-11	3-30-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Butanone	ND	5.0	EPA 8260	3-30-11	3-30-11	
Bromochloromethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chloroform	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Benzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Trichloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Dibromomethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-30-11	3-30-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-30-11	3-30-11	
Toluene	ND	1.0	EPA 8260	3-30-11	3-30-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-30-11	3-30-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
_aboratory ID:	MB0330W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Tetrachloroethene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Hexanone	ND	2.0	EPA 8260	3-30-11	3-30-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-30-11	3-30-11	
Chlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
Ethylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
m,p-Xylene	ND	0.40	EPA 8260	3-30-11	3-30-11	
o-Xylene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Styrene	ND	0.20	EPA 8260	3-30-11	3-30-11	
- Bromoform	ND	1.0	EPA 8260	3-30-11	3-30-11	
sopropylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Bromobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-30-11	3-30-11	
n-Propylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-30-11	3-30-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
ert-Butylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
sec-Butylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Naphthalene	ND	1.0	EPA 8260	3-30-11	3-30-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-30-11	3-30-11	
Surrogate: F	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 80 68-107 Toluene-d8 85 73-102 Benzene, 1-bromo-4-fluoro-82 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

Office. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0331W1					
CFC-12	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Acetone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	1.0	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Benzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Toluene	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte	Nesuit	FQL	Wethou	гтератец	Allalyzeu	i iags
Laboratory ID:	MB0331W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	ND	0.40	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Styrene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	1.0	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Naphthalene	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	

Surrogate: Control Limits Percent Recovery Dibromofluoromethane 82 68-107 73-102 Toluene-d8 86 Benzene, 1-bromo-4-fluoro-84 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	nalyte Result Spike Level		Rece	Recovery Limits		RPD	Limit	Flags		
SPIKE BLANKS										
Laboratory ID:	SB03	30W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.84	9.48	10.0	10.0	98	95	70-130	4	11	
Benzene	9.58	9.32	10.0	10.0	96	93	79-123	3	8	
Trichloroethene	9.67	9.30	10.0	10.0	97	93	82-113	4	9	
Toluene	9.75	9.43	10.0	10.0	98	94	84-113	3	8	
Chlorobenzene	10.2	9.88	10.0	10.0	102	99	89-111	3	8	
Surrogate:										
Dibromofluoromethane	е				81	80	68-107			
Toluene-d8					85	85	73-102			
Benzene, 1-bromo-4-f	luoro-				81	83	65-104			

Project: 21-1-12305-031

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	Result		Spike Level		Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	31W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.66	9.84	10.0	10.0	97	98	70-130	2	11	
Benzene	9.52	9.76	10.0	10.0	95	98	79-123	2	8	
Trichloroethene	9.65	9.67	10.0	10.0	97	97	82-113	0	9	
Toluene	9.69	9.85	10.0	10.0	97	99	84-113	2	8	
Chlorobenzene	9.94	10.2	10.0	10.0	99	102	89-111	3	8	
Surrogate:										
Dibromofluoromethan	е				84	85	68-107			
Toluene-d8					90	89	73-102			
Benzene, 1-bromo-4-f	luoro-				85	86	65-104			

Project: 21-1-12305-031

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-238-01 MW-6					
Arsenic	ND	3.3	200.8	3-29-11	3-29-11	
Barium	430	28	200.8	3-29-11	3-29-11	
Cadmium	ND	4.4	200.8	3-29-11	3-29-11	
Chromium	ND	11	200.8	3-29-11	3-29-11	
Lead	2.6	1.1	200.8	3-29-11	3-29-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-29-11	3-29-11	
Silver	ND	11	200.8	3-29-11	3-29-11	
Lab ID:	03-238-02 MW-7					
Arsenic	4.7	3.3	200.8	3-29-11	3-29-11	
Barium	810	28	200.8	3-29-11	3-29-11	
Cadmium	ND	4.4	200.8	3-29-11	3-29-11	
Chromium	ND	11	200.8	3-29-11	3-29-11	
Lead	4.0	1.1	200.8	3-29-11	3-29-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-29-11	3-29-11	
Silver	ND	11	200.8	3-29-11	3-29-11	

Project: 21-1-12305-031

TOTAL METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Extracted: 3-29-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0329W2

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.3
Barium	200.8	ND	28
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	11
Lead	200.8	ND	1.1
Selenium	200.8	ND	5.6
Silver	200.8	ND	11

Date of Report: April 1, 2011

Samples Submitted: March 25, 2011 Laboratory Reference: 1103-238

Project: 21-1-12305-031

TOTAL METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0330W1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

Project: 21-1-12305-031

TOTAL METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Extracted: 3-29-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-229-04

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	17.1	16.6	3	3.3	
Barium	ND	ND	NA	28	
Cadmium	ND	ND	NA	4.4	
Chromium	ND	ND	NA	11	
Lead	2.93	2.83	3	1.1	
Selenium	ND	ND	NA	5.6	
Silver	ND	ND	NA	11	

Date of Report: April 1, 2011

Samples Submitted: March 25, 2011 Laboratory Reference: 1103-238

Project: 21-1-12305-031

TOTAL METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.50

Project: 21-1-12305-031

TOTAL METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Extracted: 3-29-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-229-04

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	110	131	104	132	104	0	
Barium	110	127	115	127	115	0	
Cadmium	110	110	100	113	103	3	
Chromium	110	106	96	107	97	1	
Lead	110	119	105	121	107	2	
Selenium	110	123	112	125	113	2	
Silver	110	107	97	110	100	3	

Date of Report: April 1, 2011

Samples Submitted: March 25, 2011 Laboratory Reference: 1103-238

Project: 21-1-12305-031

TOTAL METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	11.4	92	11.5	92	1	

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-238-01 MW-6					
Arsenic	ND	3.0	200.8	3-25-11	3-29-11	
Barium	310	25	200.8	3-25-11	3-29-11	
Cadmium	ND	4.0	200.8	3-25-11	3-29-11	
Chromium	ND	10	200.8	3-25-11	3-29-11	
Lead	ND	1.0	200.8	3-25-11	3-29-11	
Mercury	ND	0.50	7470A	3-25-11	3-30-11	
Selenium	ND	5.0	200.8	3-25-11	3-29-11	
Silver	ND	10	200.8	3-25-11	3-29-11	
Lab ID:	03-238-02 MW-7					
Arsenic	ND	3.0	200.8	3-25-11	3-29-11	
Barium	630	25	200.8	3-25-11	3-29-11	
Cadmium	ND	4.0	200.8	3-25-11	3-29-11	
Chromium	ND	10	200.8	3-25-11	3-29-11	
Lead	ND	1.0	200.8	3-25-11	3-29-11	
Mercury	ND	0.50	7470A	3-25-11	3-30-11	
Selenium	ND	5.0	200.8	3-25-11	3-29-11	
Silver	ND	10	200.8	3-25-11	3-29-11	

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Filtered: 3-25-11
Date Analyzed: 3-29-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0325F1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

Date of Report: April 1, 2011

Samples Submitted: March 25, 2011 Laboratory Reference: 1103-238

Project: 21-1-12305-031

DISSOLVED METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Filtered: 3-25-11
Date Analyzed: 3-30-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0325F1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-220-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	21.5	22.0	2	3.0	
Barium	32.2	32.6	1	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Date of Report: April 1, 2011

Samples Submitted: March 25, 2011 Laboratory Reference: 1103-238

Project: 21-1-12305-031

DISSOLVED METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

Sample Duplicate

Analyte Result Repl PQL Flags

Mercury ND ND NA 0.50

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-220-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	236	107	233	106	1	
Barium	200	231	99	228	98	1	
Cadmium	200	206	103	204	102	1	
Chromium	200	187	94	190	95	2	
Lead	200	209	104	204	102	2	
Selenium	200	222	111	224	112	1	
Silver	200	197	99	200	100	1	

Date of Report: April 1, 2011

Samples Submitted: March 25, 2011 Laboratory Reference: 1103-238

Project: 21-1-12305-031

DISSOLVED METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-30-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 03-231-18

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	11.5	92	11.3	90	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received (A)	Relinquished	Signature	Project Number: 21-1-12305-031 Project Name: SL 8h & Roy St, Rape-to Project Manager: Michael Regrolds Michael Regrolds Mw-6 3 SCS-1 Sample Identification	Company:	Environmental Inc. 14648 NE 55th Street • Redmond, WA 98052
Reviewed/Date					087	Stanow + Wilson	Company	Same Day 2 Days X Standard (7 Days) (TPH analysis 5 Days) Date Time Sampled Sampled Sampled Sampled Watrix 3/24/11 1600 Wda-1 3/24/11 1340 Wda-1	(One)	Turnaround Request (in working days)
					3/25/11 1157	2/8/11/12/2	Date Time	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx Volatiles 8260B Halogenated Volatiles 8260B Semivolatiles 8270D/SIM		Laboratory Number:
Chromatograms with final report					* Lab Filter		Comments/Special Instructions	(with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA/ MTCA Metals (circle one		al and
								HEM (oil and grease) 1664		03-238

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 5, 2011

Mark Bryant Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-12305-031

Laboratory Reference No. 1103-247

Dear Mark:

Enclosed are the analytical results and associated quality control data for samples submitted on March 26, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 5, 2011 Samples Submitted: March 26, 2011

Laboratory Reference: 1103-247

Project: 21-1-12305-031

Case Narrative

Samples were collected on March 25, 2011 and received by the laboratory on March 26, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-12305-031

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	03-247-01					
Gasoline	ND	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	73-121				
Client ID:	MW-105					
Laboratory ID:	03-247-02					
Gasoline	4200	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	73-121				
Client ID:	MW-101					
Laboratory ID:	03-247-03					
Gasoline	7500	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	73-121				
Client ID:	MW-9					
Laboratory ID:	03-247-04					
Gasoline	ND	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	73-121				
Client ID:	Dup-1					
Laboratory ID:	03-247-05					
Gasoline	7500	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	73-121				

Project: 21-1-12305-031

NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0329W4					
Gasoline	ND	100	NWTPH-Gx	3-29-11	3-29-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike	Spike Level	Result	Recovery	y Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	03-23	39-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						83 82	2 73-121			

Project: 21-1-12305-031

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	03-247-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-31-11	3-31-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	MW-105					
Laboratory ID:	03-247-02					
Diesel Range Organics	ND	1.7	NWTPH-Dx	3-31-11	3-31-11	U1
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
O ID						
Client ID:	MW-101					
Laboratory ID:	03-247-03					
Diesel Range Organics	ND	4.5	NWTPH-Dx	3-31-11	3-31-11	U1
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	MW-9					
Laboratory ID:	03-247-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-31-11	3-31-11	
Lube Oil Range Organics	ND ND	0.26	NWTPH-Dx	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits	INVVIETI-DX	3-31-11	3-31-11	
o-Terphenyl	98	50-150				
0-Terprierryi	90	30-130				
Client ID:	DUP-1					
Laboratory ID:	03-247-05					
Diesel Range Organics	ND	4.7	NWTPH-Dx	3-31-11	3-31-11	U1
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-31-11	3-31-11	0.
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	<i>50-150</i>				
Client ID:	SCS-1					
Laboratory ID:	03-247-06					
Diesel Range Organics	ND	0.37	NWTPH-Dx	3-31-11	3-31-11	U1,M1
Lube Oil Range Organics	ND	0.45	NWTPH-Dx	3-31-11	3-31-11	,
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
· •						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 21-1-12305-031

NWTPH-Dx **QUALITY CONTROL** (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0331W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	3-31-11	3-31-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

			P	ercent	Recovery		RPD	
Analyte	Res	sult	Re	ecovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	03-24	47-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
T 1			4.4	4 440	50.450			

o-Terphenyl 111 110 50-150

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	03-247-01					
CFC-12	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Acetone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	1.0	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Benzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Toluene	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 2 of 2

Amahata	Do and	DOL	BA - (ll	Date	Date	5 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	03-247-01	0.00	EDA 0000	0.04.44	0.04.44	
1,1,2-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	ND	0.40	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Styrene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	1.0	EPA 8260	3-31-11	3-31-11	
lsopropylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Naphthalene	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 81 68-107 Toluene-d8 86 73-102 Benzene, 1-bromo-4-fluoro-82 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-105					
Laboratory ID:	03-247-02					
CFC-12	ND	4.0	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	20	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	4.0	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	20	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Acetone	ND	100	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	20	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	4.0	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	20	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	40	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	4.0	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	100	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Benzene	460	4.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	20	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	40	EPA 8260	3-31-11	3-31-11	
Toluene	ND	20	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	4.0	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-105					
Laboratory ID:	03-247-02					
1,1,2-Trichloroethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	4.0	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	40	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	4.0	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	230	4.0	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	73	8.0	EPA 8260	3-31-11	3-31-11	
o-Xylene	5.2	4.0	EPA 8260	3-31-11	3-31-11	
Styrene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	20	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	67	4.0	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	4.0	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	120	4.0	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	4.0	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	16	4.0	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	5.3	4.0	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane		20	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Naphthalene	ND	20	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	4.0	EPA 8260	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 82 68-107 Toluene-d8 86 73-102 Benzene, 1-bromo-4-fluoro-85 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-101					
Laboratory ID:	03-247-03					
CFC-12	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	10	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	2.0	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	10	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Acetone	ND	50	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	10	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	2.0	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	10	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	20	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	50	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Benzene	19	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	10	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	20	EPA 8260	3-31-11	3-31-11	
Toluene	ND	10	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	2.0	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 2 of 2

A 1 . 4 .	5	DOL	No. al I	Date	Date	-1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-101					
Laboratory ID:	03-247-03					
1,1,2-Trichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	20	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	88	2.0	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	5.5	4.0	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Styrene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	10	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	73	2.0	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	220	2.0	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	2.0	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	2.7	2.0	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	18	2.0	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Naphthalene	61	10	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
	Percent Recovery	Control Limits	L1 /1 0200	00111	0 01 11	

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 83 68-107 Toluene-d8 86 73-102 Benzene, 1-bromo-4-fluoro-86 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	03-247-04					
CFC-12	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	0.42	0.20	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Acetone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	1.0	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Benzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Toluene	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 2 of 2

Anglisto	Pagult	PQL	Mothod	Date	Date	Elogo
Analyte Client ID:	Result MW-9	PQL	Method	Prepared	Analyzed	Flags
	03-247-04					
Laboratory ID:	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,2-Trichloroethane						
Tetrachloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	ND	0.40	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Styrene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	1.0	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Naphthalene	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits		00111		

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 68-107 84 Toluene-d8 85 73-102 Benzene, 1-bromo-4-fluoro-84 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP-1					
Laboratory ID:	03-247-05					
CFC-12	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	10	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	2.0	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	10	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Acetone	ND	50	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	10	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	2.0	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	10	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	20	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	50	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Benzene	18	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	10	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	20	EPA 8260	3-31-11	3-31-11	
Toluene	ND	10	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	2.0	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP-1					
Laboratory ID:	03-247-05					
1,1,2-Trichloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	20	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	2.0	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	88	2.0	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	5.4	4.0	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Styrene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	10	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	74	2.0	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	2.0	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	230	2.0	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	2.0	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	2.6	2.0	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	19	2.0	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Naphthalene	63	10	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260	3-31-11	3-31-11	
Company to the	Damant Danas (am.)	Cambral Limita				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 86 68-107
Toluene-d8 91 73-102
Benzene, 1-bromo-4-fluoro- 91 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Sample Blank					
Laboratory ID:	03-247-07					
CFC-12	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Acetone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	1.0	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	9.5	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroform	0.98	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Benzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Toluene	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B page 2 of 2

Amalista	Dazuli	DOL	Made al	Date	Date	F 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Sample Blank					
Laboratory ID:	03-247-07	0.00	EDA 0000	0.04.44	0.04.44	
1,1,2-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	ND	0.40	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Styrene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	1.0	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Naphthalene	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Surrogate:	Percent Recovery	Control Limits	2.7.0200	00111	00711	

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 82 68-107
Toluene-d8 84 73-102
Benzene, 1-bromo-4-fluoro-81 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0331W1					
CFC-12	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloromethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
Vinyl Chloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroethane	ND	1.0	EPA 8260	3-31-11	3-31-11	
CFC-11	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Acetone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Methyl Iodide	ND	1.0	EPA 8260	3-31-11	3-31-11	
Carbon Disulfide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methylene Chloride	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Vinyl Acetate	ND	2.0	EPA 8260	3-31-11	3-31-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Butanone	ND	5.0	EPA 8260	3-31-11	3-31-11	
Bromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chloroform	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Benzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Trichloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dibromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Dichlorobromomethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	3-31-11	3-31-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Toluene	ND	1.0	EPA 8260	3-31-11	3-31-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	3-31-11	3-31-11	

Project: 21-1-12305-031

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Anglyto	Result	PQL	Method	Date Prepared	Date	Elogo
Analyte	Result	PQL	wethod	Prepared	Analyzed	Flags
Laboratory ID:	MB0331W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Tetrachloroethene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Hexanone	ND	2.0	EPA 8260	3-31-11	3-31-11	
Dibromochloromethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylene dibromide	ND	0.20	EPA 8260	3-31-11	3-31-11	
Chlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
Ethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
m,p-Xylene	ND	0.40	EPA 8260	3-31-11	3-31-11	
o-Xylene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Styrene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromoform	ND	1.0	EPA 8260	3-31-11	3-31-11	
Isopropylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Bromobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Propylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
2-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
4-Chlorotoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
tert-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
sec-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
n-Butylbenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Naphthalene	ND	1.0	EPA 8260	3-31-11	3-31-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	3-31-11	3-31-11	
Surrogate:	Parcent Recovery	Control Limits	<u> </u>	·	<u> </u>	

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 82 68-107 73-102 Toluene-d8 86 Benzene, 1-bromo-4-fluoro-84 65-104

Project: 21-1-12305-031

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Rec	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	31W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.66	9.84	10.0	10.0	97	98	70-130	2	11	_
Benzene	9.52	9.76	10.0	10.0	95	98	79-123	2	8	
Trichloroethene	9.65	9.67	10.0	10.0	97	97	82-113	0	9	
Toluene	9.69	9.85	10.0	10.0	97	99	84-113	2	8	
Chlorobenzene	9.94	10.2	10.0	10.0	99	102	89-111	3	8	
Surrogate:										
Dibromofluoromethan	е				84	85	68-107			
Toluene-d8					90	89	73-102			
Benzene, 1-bromo-4-f	luoro-				85	86	65-104			

Project: 21-1-12305-031

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-247-01					
Client ID:	MW-8					
Arsenic	3.7	3.3	200.8	3-30-11	3-30-11	
Barium	60	28	200.8	3-30-11	3-30-11	
Cadmium	ND	4.4	200.8	3-30-11	3-30-11	
Chromium	ND	11	200.8	3-30-11	3-30-11	
Lead	ND	1.1	200.8	3-30-11	3-31-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-30-11	3-30-11	
Silver	ND	11	200.8	3-30-11	3-30-11	
Lab ID:	03-247-02					
Client ID:	MW-105					
Arsenic	35	3.3	200.8	3-30-11	3-30-11	
Barium	180	28	200.8	3-30-11	3-30-11	
Cadmium	ND	4.4	200.8	3-30-11	3-30-11	
Chromium	ND	11	200.8	3-30-11	3-30-11	
Lead	ND	1.1	200.8	3-30-11	3-31-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-30-11	3-30-11	
Silver	ND	11	200.8	3-30-11	3-30-11	

Project: 21-1-12305-031

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-247-03					
Client ID:	MW-101					
Arsenic	ND	3.3	200.8	3-30-11	3-30-11	
Barium	300	28	200.8	3-30-11	3-30-11	
Cadmium	ND	4.4	200.8	3-30-11	3-30-11	
Chromium	ND	11	200.8	3-30-11	3-30-11	
Lead	ND	1.1	200.8	3-30-11	3-31-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-30-11	3-30-11	
Silver	ND	11	200.8	3-30-11	3-30-11	

Lab ID: Client ID:	03-247-04 MW-9					
Arsenic	8.8	3.3	200.8	3-30-11	3-30-11	
Barium	170	28	200.8	3-30-11	3-30-11	
Cadmium	ND	4.4	200.8	3-30-11	3-30-11	
Chromium	ND	11	200.8	3-30-11	3-30-11	
Lead	ND	1.1	200.8	3-30-11	3-31-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-30-11	3-30-11	
Silver	ND	11	200.8	3-30-11	3-30-11	

Project: 21-1-12305-031

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

	,			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-247-05					
Client ID:	DUP-1					
Arsenic	ND	3.3	200.8	3-30-11	3-30-11	
Barium	300	28	200.8	3-30-11	3-30-11	
Cadmium	ND	4.4	200.8	3-30-11	3-30-11	
Chromium	ND	11	200.8	3-30-11	3-30-11	
Lead	ND	1.1	200.8	3-30-11	3-31-11	
Mercury	ND	0.50	7470A	3-30-11	3-30-11	
Selenium	ND	5.6	200.8	3-30-11	3-30-11	
Silver	ND	11	200.8	3-30-11	3-30-11	
Lab ID:	03-247-06					
Client ID:	SCS-1					
Arsenic	7.1	3.3	200.8	3-30-11	3-30-11	
Rarium	630	28	200.8	3-30-11	3-30-11	

Project: 21-1-12305-031

TOTAL METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30&31-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0330W3

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.3
Barium	200.8	ND	28
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	11
Lead	200.8	ND	1.1
Selenium	200.8	ND	5.6
Silver	200.8	ND	11

Date of Report: April 5, 2011

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

TOTAL ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Extracted: 3-30-11 Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0330W3

Analyte Method Result PQL

Arsenic 200.8 ND 3.3

Date of Report: April 5, 2011

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

TOTAL MERCURY EPA 7470A METHOD BLANK QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	11.4	92	11.5	92	1	

Project: 21-1-12305-031

TOTAL METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30&31-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-260-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.3	
Barium	ND	ND	NA	28	
Cadmium	ND	ND	NA	4.4	
Chromium	ND	ND	NA	11	
Lead	ND	ND	NA	1.1	
Selenium	ND	ND	NA	5.6	
Silver	ND	ND	NA	11	

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

TOTAL ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30&31-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-260-02

Analyte Sample Duplicate
Result Result RPD PQL Flags

Arsenic ND ND NA 3.3

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

TOTAL MERCURY EPA 7470A DUPLICATE QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.50

Project: 21-1-12305-031

TOTAL METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30&31-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-260-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	110	109	99	110	100	1	
Barium	110	117	106	118	107	1	
Cadmium	110	109	99	113	102	4	
Chromium	110	120	109	120	109	0	
Lead	110	108	98	110	100	2	
Selenium	110	106	96	105	96	1	
Silver	110	103	93	105	95	2	

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

TOTAL ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-260-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	110	107	97	107	98	0	

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

TOTAL MERCURY EPA 7470A MS/MSD QUALITY CONTROL

Date Extracted: 3-30-11
Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.50

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-247-01					
Client ID:	MW-8					
Arsenic	4.5	3.0	200.8	3-26-11	3-29-11	
Barium	60	25	200.8	3-26-11	3-29-11	
Cadmium	ND	4.0	200.8	3-26-11	3-29-11	
Chromium	ND	10	200.8	3-26-11	3-29-11	
Lead	ND	1.0	200.8	3-26-11	3-29-11	
Mercury	ND	0.50	7470A	3-26-11	3-30-11	
Selenium	ND	5.0	200.8	3-26-11	3-29-11	
Silver	ND	10	200.8	3-26-11	3-29-11	
Lab ID:	03-247-02					
Client ID:	MW-105					
Arsenic	27	3.0	200.8	3-26-11	3-29-11	
Barium	96	25	200.8	3-26-11	3-29-11	
Cadmium	ND	4.0	200.8	3-26-11	3-29-11	
Chromium	ND	10	200.8	3-26-11	3-29-11	
Lead	ND	1.0	200.8	3-26-11	3-29-11	
Mercury	ND	0.50	7470A	3-26-11	3-30-11	
Selenium	ND	5.0	200.8	3-26-11	3-29-11	
Silver	ND	10	200.8	3-26-11	3-29-11	

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

Lead

Mercury

Selenium

Silver

ND

ND

ND

ND

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-247-03					
Client ID:	MW-101					
Arsenic	ND	3.0	200.8	3-26-11	3-29-11	
Barium	250	25	200.8	3-26-11	3-29-11	
Cadmium	ND	4.0	200.8	3-26-11	3-29-11	
Chromium	ND	10	200.8	3-26-11	3-29-11	
Lead	ND	1.0	200.8	3-26-11	3-29-11	
Mercury	ND	0.50	7470A	3-26-11	3-30-11	
Selenium	ND	5.0	200.8	3-26-11	3-29-11	
Silver	ND	10	200.8	3-26-11	3-29-11	
Lab ID:	03-247-04					
Client ID:	MW-9					
Arsenic	9.1	3.0	200.8	3-26-11	3-29-11	
Barium	ium 88		200.8	3-26-11	3-29-11	
Cadmium	ND	4.0	200.8	3-26-11	3-29-11	
Chromium	ND	10	200.8	3-26-11	3-29-11	

200.8

7470A

200.8

200.8

3-26-11

3-26-11

3-26-11

3-26-11

3-29-11

3-30-11

3-29-11

3-29-11

1.0

0.50

5.0

10

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

	3 (11 /			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-247-05					
Client ID:	DUP-1					
Arsenic	ND	3.0	200.8	3-26-11	3-29-11	
Barium	230	25	200.8	3-26-11	3-29-11	
Cadmium	ND	4.0	200.8	3-26-11	3-29-11	
Chromium	ND	10	200.8	3-26-11	3-29-11	
Lead	ND	1.0	200.8	3-26-11	3-29-11	
Mercury	ND	0.50	7470A	3-26-11	3-30-11	
Selenium	ND	5.0	200.8	3-26-11	3-29-11	
Silver	ND	10	200.8	3-26-11	3-29-11	
Lab ID:	03-247-06					
Client ID:	SCS-1					
Arsenic	4.3	3.0	200.8	3-26-11	3-31-11	
Barium	450	25	200.8	3-26-11	3-29-11	
Cadmium	ND	4.0	200.8	3-26-11	3-29-11	
Chromium	ND	10	200.8	3-26-11	3-29-11	
Lead	ND	1.0	200.8	3-26-11	3-29-11	
Mercury	ND	0.50	7470A	3-26-11	3-30-11	
Selenium	ND	5.0	200.8	3-26-11	3-29-11	
Silver	ND	10	200.8	3-26-11	3-29-11	

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Filtered: 3-26-11
Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0325F1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Filtered: 3-26-11
Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0325F1

Analyte Method Result PQL

Arsenic 200.8 **ND** 3.0

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Filtered: 3-26-11
Date Analyzed: 3-30-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0325F1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-29-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 03-220-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	21.5	22.0	2	3.0	
Barium	32.2	32.6	1	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-220-01

Analyte Sample Duplicate
Result Result RPD PQL Flags

Arsenic 22.7 22.9 1 3.0

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.50

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-29-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 03-220-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	236	107	233	106	1	
Barium	200	231	99	228	98	1	
Cadmium	200	206	103	204	102	1	
Chromium	200	187	94	190	95	2	
Lead	200	209	104	204	102	2	
Selenium	200	222	111	224	112	1	
Silver	200	197	99	200	100	1	

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-29-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-220-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	236	107	235	106	1	

Samples Submitted: March 26, 2011 Laboratory Reference: 1103-247

Project: 21-1-12305-031

DISSOLVED METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Filtered: 3-24-11 Date Analyzed: 3-30-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 03-231-18

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Mercury	12.5	11.5	92	11.3	90	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Company Comp	Company Comp	Review	Received	Relinquished	Received	Relinquished	Received	Relinquished		7	6	N	I	W	12	-	Company: Project Number: 2/ Project Name: Scampled by: Sampled by: Multiple Additional Company: Additional Company: Project Manager Multiple Additional Company: Addit
Company Comp	Company Comp	Reviewed/Date	/ed	uished	red	uished	led (uished	Signature	8	505-1	Dup-1			MW-105	8-mm	Environmental II 14648 NE 95th Street - Redmond, WA 14648 NE 95th Street - Redmond, WA Phone: (425) 883-3881 • www.onsite-en Sharmor 4 Wils mber: 21-1-12365-031 me: SCL 8th 4 Roy Purp nager: Namel Bruga 4 y: Michael Buga 4 y: Michael Buga 4 Sample Identification
NWTPH-HCID NWTPH-Gx NWTPH-Gx NWTPH-Dx Volatiles 8260B Halogenated Volatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM (Chlorinated Acid Herbicides 8151A) Total RCRA MTCA Metals (circle one) Total RCRA MTCA Metals (circle one)	Domining of Comments (North-Horizon North-Horizon North-Ho	. Reviewed/Date					W CRIVET	Danner Hard	Company	1	1325			,		/25/11 0850 hade	maround Reques n working days) (Check One) me Day ays ays (Time Sampled
PAHs 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA MTCA Metals (circle one)	PAHs 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Chlorinated Acid Herbicides 8151A TCLP Metals HEM (oil and grease) 1664						-	3/26/11/11	Time	×	4	6 X X X	XX	×	×	× × ×	NWTPH-HCID NWTPH-Gx/PTEX NWTPH-Gx NWTPH-Dx
	HEM (oil and grease) 1664						~		Comments/Special Instructions		>	×	X	×	×	×	PAHs 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA MTCA Metals (circle one)

SHANNON & WILSON, INC.

APPENDIX B

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 21-1-12305-031

Date:

June 8, 2011

To: Ms. Jennifer Kindred

City of Seattle, Seattle City Light

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2011

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2011

APPENDIX C
Chemical Analytical Data Laboratory Reports

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondGrace Philpy
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1409077

September 24, 2014

Attention Grace Philpy:

Fremont Analytical, Inc. received 75 sample(s) on 9/8/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Dissolved Mercury by EPA Method 245.1

Dissolved Metals by EPA Method 200.8

Gasoline by NWTPH-Gx

Hexavalent Chromium by EPA Method 7196

Mercury by EPA Method 7470

Mercury by EPA Method 7471

Metals (SW6020) with TCLP Extraction (EPA 1311)

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malc. Rody

Sincerely,

Mike Ridgeway President

Date: 09/24/2014

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott **Lab Order:** 1409077

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1409077-001	DP-1-2.5	09/06/2014 9:24 AM	09/08/2014 12:00 PM
1409077-002	DP-1-5.0	09/06/2014 9:30 AM	09/08/2014 12:00 PM
1409077-003	DP-1-7.5	09/06/2014 9:45 AM	09/08/2014 12:00 PM
1409077-004	DP-1-10.0	09/06/2014 9:52 AM	09/08/2014 12:00 PM
1409077-005	DP-1-12.5	09/06/2014 10:03 AM	09/08/2014 12:00 PM
1409077-006	DP-1-15.0	09/06/2014 10:10 AM	09/08/2014 12:00 PM
1409077-007	DP-2-2.5	09/06/2014 11:25 AM	09/08/2014 12:00 PM
1409077-008	DP-2-5.0	09/06/2014 11:31 AM	09/08/2014 12:00 PM
1409077-009	DP-2-7.5	09/06/2014 11:45 AM	09/08/2014 12:00 PM
1409077-010	DP-2-10.0	09/06/2014 11:50 AM	09/08/2014 12:00 PM
1409077-011	DP-2-12.5	09/06/2014 12:05 PM	09/08/2014 12:00 PM
1409077-012	DP-2-15.0	09/06/2014 12:10 PM	09/08/2014 12:00 PM
1409077-013	DP-3-2.5	09/06/2014 10:25 AM	09/08/2014 12:00 PM
1409077-014	DP-3-5.0	09/06/2014 10:31 AM	09/08/2014 12:00 PM
1409077-015	DP-3-7.5	09/06/2014 10:43 AM	09/08/2014 12:00 PM
1409077-016	DP-3-10.0	09/06/2014 10:52 AM	09/08/2014 12:00 PM
1409077-017	DP-3-12.5	09/06/2014 11:00 AM	09/08/2014 12:00 PM
1409077-018	DP-3-15.0	09/06/2014 11:06 AM	09/08/2014 12:00 PM
1409077-019	DP-4-2.5	09/06/2014 9:46 AM	09/08/2014 12:00 PM
1409077-020	DP-4-5.0	09/06/2014 9:50 AM	09/08/2014 12:00 PM
1409077-021	DP-4-7.5	09/06/2014 10:05 AM	09/08/2014 12:00 PM
1409077-022	DP-4-10	09/06/2014 10:13 AM	09/08/2014 12:00 PM
1409077-023	DP-4-12.5	09/06/2014 10:25 AM	09/08/2014 12:00 PM
1409077-024	DP-4-15.0	09/06/2014 10:31 AM	09/08/2014 12:00 PM
1409077-025	DP-4-17.5	09/06/2014 10:45 AM	09/08/2014 12:00 PM
1409077-026	DP-4-20.0	09/06/2014 10:54 AM	09/08/2014 12:00 PM
1409077-027	DP-5-2.5	09/06/2014 11:21 AM	09/08/2014 12:00 PM
1409077-028	DP-5-5.0	09/06/2014 11:30 AM	09/08/2014 12:00 PM
1409077-029	DP-5-7.5	09/06/2014 11:41 AM	09/08/2014 12:00 PM
1409077-030	DP-6-2.5	09/06/2014 8:47 AM	09/08/2014 12:00 PM
1409077-031	DP-6-5.0	09/06/2014 8:52 AM	09/08/2014 12:00 PM
1409077-032	DP-6-7.5	09/06/2014 9:00 AM	09/08/2014 12:00 PM
1409077-033	DP-6-10.0	09/06/2014 9:04 AM	09/08/2014 12:00 PM
1409077-034	DP-6-12.5	09/06/2014 9:07 AM	09/08/2014 12:00 PM
1409077-035	DP-6-15.0	09/06/2014 9:10 AM	09/08/2014 12:00 PM
1409077-036	DP-7-2.5	09/06/2014 2:22 PM	09/08/2014 12:00 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Work Order Sample Summary

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott **Lab Order:** 1409077

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1409077-037	DP-7-7.5	09/06/2014 2:29 PM	09/08/2014 12:00 PM
1409077-038	DP-7-13.0	09/06/2014 2:30 PM	09/08/2014 12:00 PM
1409077-039	DP-8-2.5	09/06/2014 12:23 PM	09/08/2014 12:00 PM
1409077-040	DP-5-10.0	09/06/2014 11:49 AM	09/08/2014 12:00 PM
1409077-041	DP-5-12.5	09/06/2014 12:02 PM	09/08/2014 12:00 PM
1409077-042	DP-5-15.0	09/06/2014 12:08 PM	09/08/2014 12:00 PM
1409077-043	DP-9-2.5	09/06/2014 2:00 PM	09/08/2014 12:00 PM
1409077-044	DP-9-5.0	09/06/2014 2:52 PM	09/08/2014 12:00 PM
1409077-045	DP-9-7.5	09/06/2014 2:22 PM	09/08/2014 12:00 PM
1409077-046	DP-9-12.5	09/06/2014 2:30 PM	09/08/2014 12:00 PM
1409077-047	DP-9-17.5	09/06/2014 2:39 PM	09/08/2014 12:00 PM
1409077-048	DP-9-20.0	09/06/2014 2:50 PM	09/08/2014 12:00 PM
1409077-049	DP-8-35.0	09/06/2014 1:30 PM	09/08/2014 12:00 PM
1409077-050	MW-2-140906	09/06/2014 9:40 AM	09/08/2014 12:00 PM
1409077-051	MW-3-140906	09/06/2014 11:10 AM	09/08/2014 12:00 PM
1409077-052	MW-1-140906	09/06/2014 1:30 PM	09/08/2014 12:00 PM
1409077-053	DP-8-5.0	09/06/2014 12:25 PM	09/08/2014 12:00 PM
1409077-054	DP-8-7.5	09/06/2014 12:40 PM	09/08/2014 12:00 PM
1409077-055	DP-8-10.0	09/06/2014 12:43 PM	09/08/2014 12:00 PM
1409077-056	DP-8-12.5	09/06/2014 12:50 PM	09/08/2014 12:00 PM
1409077-057	DP-8-15.0	09/06/2014 12:55 PM	09/08/2014 12:00 PM
1409077-058	DP-8-20.0	09/06/2014 1:05 PM	09/08/2014 12:00 PM
1409077-059	DP-8-25.0	09/06/2014 1:20 PM	09/08/2014 12:00 PM
1409077-060	DP-10-2.5	09/06/2014 1:46 PM	09/08/2014 12:00 PM
1409077-061	DP-10-10.0	09/06/2014 1:53 PM	09/08/2014 12:00 PM
1409077-062	DP-11-2.5	09/06/2014 12:36 PM	09/08/2014 12:00 PM
1409077-063	DP-11-5.0	09/06/2014 12:42 PM	09/08/2014 12:00 PM
1409077-064	DP-11-7.5	09/06/2014 12:59 PM	09/08/2014 12:00 PM
1409077-065	DP-11-9.5	09/06/2014 1:02 PM	09/08/2014 12:00 PM
1409077-066	DP-11-12.5	09/06/2014 1:14 PM	09/08/2014 12:00 PM
1409077-067	DP-11-15.0	09/06/2014 1:27 PM	09/08/2014 12:00 PM
1409077-068	DP-12-2.5	09/06/2014 8:10 AM	09/08/2014 12:00 PM
1409077-069	DP-12-5.0	09/06/2014 8:13 AM	09/08/2014 12:00 PM
1409077-070	DP-12-7.5	09/06/2014 8:21 AM	09/08/2014 12:00 PM
1409077-071	DP-12-10.0	09/06/2014 8:27 AM	09/08/2014 12:00 PM
1409077-072	DP-12-12.5	09/06/2014 8:30 AM	09/08/2014 12:00 PM
1409077-073	DP-12-15.0	09/06/2014 8:31 AM	09/08/2014 12:00 PM
1409077-074	Trip Blank	09/04/2014 11:15 AM	09/08/2014 12:00 PM
1409077-075	Trip Blank	09/04/2014 11:23 AM	09/08/2014 12:00 PM

Case Narrative

WO#: **1409077**Date: **9/24/2014**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Lab ID: 1409077-001 **Matrix:** Soil

Client Sample ID: DP-1-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC	
Diesel (Fuel Oil)	ND	19.7		mg/Kg-dry	1	9/10/2014 10:03:00 AM	
Heavy Oil	ND	49.3		mg/Kg-dry	1	9/10/2014 10:03:00 AM	
Surr: 2-Fluorobiphenyl	102	50-150		%REC	1	9/10/2014 10:03:00 AM	
Surr: o-Terphenyl	94.6	50-150		%REC	1	9/10/2014 10:03:00 AM	
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG	
Naphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
2-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
1-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Acenaphthylene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Acenaphthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Fluorene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Phenanthrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Benz(a)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Chrysene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Benzo(b)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Benzo(k)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Benzo(a)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Indeno(1,2,3-cd)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Dibenz(a,h)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Benzo(g,h,i)perylene	ND	54.8		μg/Kg-dry	1	9/12/2014 2:34:00 AM	
Surr: 2-Fluorobiphenyl	92.2	42.7-132		%REC	1	9/12/2014 2:34:00 AM	
Surr: Terphenyl-d14 (surr)	121	48.8-157		%REC	1	9/12/2014 2:34:00 AM	
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM	
Gasoline	ND	4.70		mg/Kg-dry	1	9/10/2014 7:04:00 AM	
Surr: Toluene-d8	102	65-135		%REC	1	9/10/2014 7:04:00 AM	
Surr: 4-Bromofluorobenzene	91.2	65-135		%REC	1	9/10/2014 7:04:00 AM	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Lab ID: 1409077-001 **Matrix**: Soil

Client Sample ID: DP-1-2.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 7:04:00 AM Dichlorodifluoromethane (CFC-12) 0.0564 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0564 9/10/2014 7:04:00 AM 1 Vinyl chloride ND 0.00188 mg/Kg-dry 9/10/2014 7:04:00 AM 1 Bromomethane ND 0.0846 9/10/2014 7:04:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0470 mg/Kg-dry 1 9/10/2014 7:04:00 AM Chloroethane ND 0.0564 9/10/2014 7:04:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0470 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND 0.0188 9/10/2014 7:04:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0188 trans-1,2-Dichloroethene mg/Kg-dry 1 9/10/2014 7:04:00 AM Methyl tert-butyl ether (MTBE) ND 0.0470 9/10/2014 7:04:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 2,2-Dichloropropane ND 0.0470 mg/Kg-dry 1 9/10/2014 7:04:00 AM cis-1,2-Dichloroethene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Chloroform ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0188 9/10/2014 7:04:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Carbon tetrachloride ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,2-Dichloroethane (EDC) ND 0.0282 9/10/2014 7:04:00 AM mg/Kg-dry 1 ND 9/10/2014 7:04:00 AM Benzene 0.0188 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,2-Dichloropropane ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Bromodichloromethane ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND 9/10/2014 7:04:00 AM Dibromomethane 0.0376 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM Toluene ND 0.0188 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND 0.0282 9/10/2014 7:04:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0282 mg/Kg-dry 1 9/10/2014 7:04:00 AM 1,3-Dichloropropane ND 0.0470 9/10/2014 7:04:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0188 9/10/2014 7:04:00 AM mg/Kg-dry 1 ND 9/10/2014 7:04:00 AM Dibromochloromethane 0.0282 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00470 mg/Kg-dry 1 9/10/2014 7:04:00 AM Chlorobenzene ND 0.0188 mg/Kg-dry 9/10/2014 7:04:00 AM 1 1,1,1,2-Tetrachloroethane ND 0.0282 mg/Kg-dry 1 9/10/2014 7:04:00 AM ND Ethylbenzene 0.0282 mg/Kg-dry 1 9/10/2014 7:04:00 AM m,p-Xylene ND 0.0188 mg/Kg-dry 9/10/2014 7:04:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-001 Matrix: Soil

Client Sample ID: DP-1-2.5

nalyses	Result	RL	Qual Units DF I		Date Analyzed		
Volatile Organic Compounds by E		Batch	ID:	8663 Analyst: EM			
o-Xylene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Styrene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Isopropylbenzene	ND	0.0752		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Bromoform	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
n-Propylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Bromobenzene	ND	0.0282		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,3,5-Trimethylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
2-Chlorotoluene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
4-Chlorotoluene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
tert-Butylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,3-Trichloropropane	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,4-Trichlorobenzene	ND	0.0470		mg/Kg-dry	1		9/10/2014 7:04:00 AM
sec-Butylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
4-Isopropyltoluene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,3-Dichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,4-Dichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
n-Butylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2-Dichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0282		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,4-Trimethylbenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Hexachlorobutadiene	ND	0.0940		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Naphthalene	ND	0.0282		mg/Kg-dry	1		9/10/2014 7:04:00 AM
1,2,3-Trichlorobenzene	ND	0.0188		mg/Kg-dry	1		9/10/2014 7:04:00 AM
Surr: Dibromofluoromethane	96.2	63.7-129		%REC	1		9/10/2014 7:04:00 AM
Surr: Toluene-d8	104	61.4-128		%REC	1		9/10/2014 7:04:00 AM
Surr: 1-Bromo-4-fluorobenzene	92.8	63.1-141		%REC	1		9/10/2014 7:04:00 AM
Mercury by EPA Method 7471				Batch	ID:	8665	Analyst: TN
Mercury	ND	0.270		mg/Kg-dry	1		9/9/2014 4:54:24 PM
Total Metals by EPA Method 6020				Batch	ID:	8664	Analyst: TN
Arsenic	5.77	0.0815		mg/Kg-dry	1		9/9/2014 5:42:25 PM

- Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- Holding times for preparation or analysis exceeded Н
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:24:00 AM

Project: SLU Marriott

Lab ID: 1409077-001 **Matrix:** Soil

Client Sample ID: DP-1-2.5

Analyses	Result	RL	Qual Units DF		Date Analyzed	
Total Metals by EPA Meth	nod 6020			Batcl	h ID:	8664 Analyst: TN
Barium	116	0.407		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Cadmium	0.178	0.163		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Chromium	36.2	0.0815	[RA]	mg/Kg-dry	1	9/10/2014 2:37:15 PM
Lead	25.0	0.163		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Selenium	ND	0.407		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Silver	0.422	0.0815		mg/Kg-dry	1	9/9/2014 5:42:25 PM
Sample Moisture (Percen	t Moisture)			Batcl	h ID:	R16685 Analyst: SL
Percent Moisture	11.1			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-002 **Matrix:** Soil

Client Sample ID: DP-1-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC			
Diesel (Fuel Oil)	ND	20.8		mg/Kg-dry	1	9/10/2014 11:06:00 AM			
Heavy Oil	ND	51.9		mg/Kg-dry	1	9/10/2014 11:06:00 AM			
Surr: 2-Fluorobiphenyl	95.7	50-150		%REC	1	9/10/2014 11:06:00 AM			
Surr: o-Terphenyl	85.7	50-150		%REC	1	9/10/2014 11:06:00 AM			
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG			
Naphthalene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
2-Methylnaphthalene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
1-Methylnaphthalene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Acenaphthylene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Acenaphthene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Fluorene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Phenanthrene	264	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Anthracene	61.4	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Fluoranthene	237	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Pyrene	279	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Benz(a)anthracene	113	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Chrysene	59.7	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Benzo(b)fluoranthene	148	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Benzo(k)fluoranthene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Benzo(a)pyrene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Indeno(1,2,3-cd)pyrene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Dibenz(a,h)anthracene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Benzo(g,h,i)perylene	ND	55.3		μg/Kg-dry	1	9/12/2014 2:57:00 AM			
Surr: 2-Fluorobiphenyl	92.7	42.7-132		%REC	1	9/12/2014 2:57:00 AM			
Surr: Terphenyl-d14 (surr)	113	48.8-157		%REC	1	9/12/2014 2:57:00 AM			
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM			
Gasoline	ND	3.79		mg/Kg-dry	1	9/10/2014 8:03:00 AM			
Surr: Toluene-d8	103	65-135		%REC	1	9/10/2014 8:03:00 AM			
Surr: 4-Bromofluorobenzene	90.3	65-135		%REC	1	9/10/2014 8:03:00 AM			

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-002 **Matrix:** Soil

Client Sample ID: DP-1-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 8:03:00 AM Dichlorodifluoromethane (CFC-12) 0.0455 mg/Kg-dry 1 Chloromethane ND 0.0455 9/10/2014 8:03:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00152 mg/Kg-dry 9/10/2014 8:03:00 AM 1 Bromomethane ND 0.0682 9/10/2014 8:03:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM Chloroethane ND 0.0455 9/10/2014 8:03:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 0.0152 9/10/2014 8:03:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Methyl tert-butyl ether (MTBE) ND 0.0379 9/10/2014 8:03:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 2,2-Dichloropropane ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM cis-1,2-Dichloroethene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Chloroform ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Carbon tetrachloride ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2-Dichloroethane (EDC) ND 0.0227 9/10/2014 8:03:00 AM mg/Kg-dry 1 ND 9/10/2014 8:03:00 AM Benzene 0.0152 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2-Dichloropropane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Bromodichloromethane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 9/10/2014 8:03:00 AM Dibromomethane 0.0303 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Toluene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 0.0227 9/10/2014 8:03:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,3-Dichloropropane ND 0.0379 9/10/2014 8:03:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 ND 9/10/2014 8:03:00 AM Dibromochloromethane 0.0227 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00379 mg/Kg-dry 1 9/10/2014 8:03:00 AM Chlorobenzene ND 9/10/2014 8:03:00 AM 0.0152 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 9/10/2014 8:03:00 AM Ethylbenzene 0.0227 mg/Kg-dry 1 m,p-Xylene ND 0.0152 mg/Kg-dry 9/10/2014 8:03:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-002 Matrix: Soil

Client Sample ID: DP-1-5.0

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 8:03:00 AM o-Xylene 0.0152 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0152 9/10/2014 8:03:00 AM 1 Isopropylbenzene ND 0.0606 mg/Kg-dry 9/10/2014 8:03:00 AM 1 Bromoform ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM n-Propylbenzene ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 Bromobenzene ND 0.0227 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 0.0152 9/10/2014 8:03:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 ND 2-Chlorotoluene 9/10/2014 8:03:00 AM 0.0152 mg/Kg-dry 1 4-Chlorotoluene ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2,3-Trichloropropane ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,2,4-Trichlorobenzene ND 0.0379 mg/Kg-dry 1 9/10/2014 8:03:00 AM sec-Butylbenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 0.0152 ND 9/10/2014 8:03:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM 1,4-Dichlorobenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM n-Butylbenzene ND 0.0152 9/10/2014 8:03:00 AM mg/Kg-dry ND 9/10/2014 8:03:00 AM 1,2-Dichlorobenzene 0.0152 mg/Kg-dry 1 ND 9/10/2014 8:03:00 AM 1,2-Dibromo-3-chloropropane 0.0227 mg/Kg-dry 1 1,2,4-Trimethylbenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Hexachlorobutadiene ND 0.0758 mg/Kg-dry 1 9/10/2014 8:03:00 AM ND 9/10/2014 8:03:00 AM Naphthalene 0.0227 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0152 mg/Kg-dry 1 9/10/2014 8:03:00 AM Surr: Dibromofluoromethane 94.2 63.7-129 %REC 1 9/10/2014 8:03:00 AM Surr: Toluene-d8 104 61.4-128 %REC 1 9/10/2014 8:03:00 AM Surr: 1-Bromo-4-fluorobenzene 92.0 63.1-141 %REC 1 9/10/2014 8:03:00 AM Batch ID: 8665 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.260 mg/Kg-dry 9/9/2014 4:56:00 PM Batch ID: 8664 Analyst: TN Total Metals by EPA Method 6020 Arsenic 4.29 0.0853 mg/Kg-dry 1 9/9/2014 5:45:50 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-002 **Matrix:** Soil

Client Sample ID: DP-1-5.0

Analyses	Result	RL	Qual	Units	DF	Date A	Date Analyzed	
Total Metals by EPA Meth	od 6020			Batch	n ID:	8664 Ar	alyst: TN	
Barium	80.6	0.426		mg/Kg-dry	1	9/9/2014 5	45:50 PM	
Cadmium	ND	0.171		mg/Kg-dry	1	9/9/2014 5	45:50 PM	
Chromium	37.6	0.0853	[RA]	mg/Kg-dry	1	9/10/2014	2:40:40 PM	
Lead	12.9	0.171		mg/Kg-dry	1	9/9/2014 5	:45:50 PM	
Selenium	ND	0.426		mg/Kg-dry	1	9/9/2014 5	:45:50 PM	
Silver	0.259	0.0853		mg/Kg-dry	1	9/9/2014 5	:45:50 PM	
Sample Moisture (Percent	t Moisture)			Batch	n ID:	R16685 Ar	alyst: SL	
Percent Moisture	12.5			wt%	1	9/10/2014	10:35:08 AM	

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-007 **Matrix:** Soil

Client Sample ID: DP-2-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.				Batch	n ID: 867	70 Analyst: EC
Diesel (Fuel Oil)	ND	22.6		mg/Kg-dry	1	9/10/2014 11:38:00 AM
Heavy Oil	383	56.5		mg/Kg-dry	1	9/10/2014 11:38:00 AM
Surr: 2-Fluorobiphenyl	96.8	50-150		%REC	1	9/10/2014 11:38:00 AM
Surr: o-Terphenyl	92.0	50-150		%REC	1	9/10/2014 11:38:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R16	6693 Analyst: EM
Gasoline	ND	3.35		mg/Kg-dry	1	9/10/2014 10:01:00 AM
Surr: Toluene-d8	103	65-135		%REC	1	9/10/2014 10:01:00 AM
Surr: 4-Bromofluorobenzene	95.5	65-135		%REC	1	9/10/2014 10:01:00 AM
Sample Moisture (Percent Moi	sture)			Batch	n ID: R16	6685 Analyst: SL
Percent Moisture	16.6			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-010 **Matrix:** Soil

Client Sample ID: DP-2-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC	
Diesel (Fuel Oil)	ND	27.9		mg/Kg-dry	1	9/10/2014 12:09:00 PM	
Heavy Oil	ND	69.7		mg/Kg-dry	1	9/10/2014 12:09:00 PM	
Surr: 2-Fluorobiphenyl	106	50-150		%REC	1	9/10/2014 12:09:00 PM	
Surr: o-Terphenyl	82.6	50-150		%REC	1	9/10/2014 12:09:00 PM	
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG	
Naphthalene	14,700	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
2-Methylnaphthalene	20,900	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
1-Methylnaphthalene	12,000	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Acenaphthylene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Acenaphthene	90.8	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Fluorene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Phenanthrene	99.4	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Anthracene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Fluoranthene	150	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Pyrene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Benz(a)anthracene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Chrysene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Benzo(b)fluoranthene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Benzo(k)fluoranthene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Benzo(a)pyrene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Indeno(1,2,3-cd)pyrene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Dibenz(a,h)anthracene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Benzo(g,h,i)perylene	ND	76.5		μg/Kg-dry	1	9/12/2014 3:19:00 AM	
Surr: 2-Fluorobiphenyl	104	42.7-132		%REC	1	9/12/2014 3:19:00 AM	
Surr: Terphenyl-d14 (surr)	126	48.8-157		%REC	1	9/12/2014 3:19:00 AM	
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM	
Gasoline	729	70.9	D	mg/Kg-dry	10	9/11/2014 10:52:00 PM	
Surr: Toluene-d8	94.3	65-135		%REC	1	9/10/2014 10:30:00 AM	
Surr: 4-Bromofluorobenzene	109	65-135		%REC	1	9/10/2014 10:30:00 AM	

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-010 **Matrix**: Soil

Client Sample ID: DP-2-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM 9/10/2014 10:30:00 AM ND Dichlorodifluoromethane (CFC-12) 0.0851 mg/Kg-dry 1 Chloromethane ND 0.0851 9/10/2014 10:30:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00284 9/10/2014 10:30:00 AM mg/Kg-dry 1 Bromomethane ND 0.128 9/10/2014 10:30:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM Chloroethane ND 0.0851 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 0.0284 9/10/2014 10:30:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Methyl tert-butyl ether (MTBE) ND 0.0709 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 2,2-Dichloropropane ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM cis-1,2-Dichloroethene ND 0.0284 1 9/10/2014 10:30:00 AM mg/Kg-dry Chloroform ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0284 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Carbon tetrachloride ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2-Dichloroethane (EDC) ND 0.0426 9/10/2014 10:30:00 AM mg/Kg-dry 1 2.13 9/10/2014 10:30:00 AM Benzene 0.0284 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2-Dichloropropane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Bromodichloromethane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 9/10/2014 10:30:00 AM Dibromomethane 0.0567 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Toluene 2.28 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 0.0426 9/10/2014 10:30:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0426 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,3-Dichloropropane ND 0.0709 9/10/2014 10:30:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0284 9/10/2014 10:30:00 AM mg/Kg-dry 1 ND 9/10/2014 10:30:00 AM Dibromochloromethane 0.0426 mg/Kg-dry 1 ND 0.00709 1,2-Dibromoethane (EDB) mg/Kg-dry 1 9/10/2014 10:30:00 AM Chlorobenzene ND 0.0284 9/10/2014 10:30:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0426 mg/Kg-dry 1 9/10/2014 10:30:00 AM 5.92 D Ethylbenzene 0.426 mg/Kg-dry 10 9/11/2014 10:52:00 PM m,p-Xylene 4.65 0.0284 mg/Kg-dry 9/10/2014 10:30:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Ε

J

RL

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-010 **Matrix:** Soil

Client Sample ID: DP-2-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM 0.805 0.0284 9/10/2014 10:30:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0284 9/10/2014 10:30:00 AM 1 Isopropylbenzene 2.34 mg/Kg-dry 9/10/2014 10:30:00 AM 0.113 1 Bromoform ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,1,2,2-Tetrachloroethane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM n-Propylbenzene 10.5 0.284 D mg/Kg-dry 10 9/11/2014 10:52:00 PM Bromobenzene ND 0.0426 mg/Kg-dry 1 9/10/2014 10:30:00 AM 0.296 0.0284 9/10/2014 10:30:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene 0.0284 ND mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 4-Chlorotoluene 0.0284 mg/Kg-dry 9/10/2014 10:30:00 AM 1 0.0836 tert-Butylbenzene 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2,3-Trichloropropane ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,2,4-Trichlorobenzene ND 0.0709 mg/Kg-dry 1 9/10/2014 10:30:00 AM sec-Butylbenzene 1.59 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 0.124 0.0284 1 9/10/2014 10:30:00 AM 4-Isopropyltoluene mg/Kg-dry 1,3-Dichlorobenzene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM 1,4-Dichlorobenzene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM n-Butylbenzene 6.21 0.284 D mg/Kg-dry 10 9/11/2014 10:52:00 PM ND 0.0284 1,2-Dichlorobenzene mg/Kg-dry 1 9/10/2014 10:30:00 AM ND 9/10/2014 10:30:00 AM 1,2-Dibromo-3-chloropropane 0.0426 mg/Kg-dry 1 1,2,4-Trimethylbenzene 2.06 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Hexachlorobutadiene ND 0.142 mg/Kg-dry 1 9/10/2014 10:30:00 AM 3.17 9/10/2014 10:30:00 AM Naphthalene 0.0426 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0284 mg/Kg-dry 1 9/10/2014 10:30:00 AM Surr: Dibromofluoromethane 98.6 63.7-129 %REC 1 9/10/2014 10:30:00 AM Surr: Toluene-d8 93.4 61.4-128 %REC 1 9/10/2014 10:30:00 AM Surr: 1-Bromo-4-fluorobenzene 111 63.1-141 %REC 1 9/10/2014 10:30:00 AM Batch ID: 8665 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.373 mg/Kg-dry 9/9/2014 4:57:37 PM Batch ID: 8664 Analyst: TN **Total Metals by EPA Method 6020** 0.114 Arsenic 10.1 mg/Kg-dry 1 9/9/2014 5:49:15 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-010 **Matrix:** Soil

Client Sample ID: DP-2-10.0

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Total Metals by EPA Method 6020				Batch	ı ID:	8664 Analyst: TN
Barium	2,140	0.571		mg/Kg-dry	1	9/9/2014 5:49:15 PM
Cadmium	0.522	0.228		mg/Kg-dry	1	9/9/2014 5:49:15 PM
Chromium	28.8	0.114	[RA]	mg/Kg-dry	1	9/10/2014 2:44:05 PM
Lead	367	0.228		mg/Kg-dry	1	9/9/2014 5:49:15 PM
Selenium	ND	0.571		mg/Kg-dry	1	9/9/2014 5:49:15 PM
Silver	0.483	0.114		mg/Kg-dry	1	9/9/2014 5:49:15 PM
Metals (SW6020) with TCLP Extract	tion (EPA 1	<u>311)</u>		Batch	ID:	8796 Analyst: TN
Lead	15.8	0.200		mg/L	1	9/22/2014 11:30:53 AM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R16685 Analyst: SL
Percent Moisture	35.6			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-011 **Matrix:** Soil

Client Sample ID: DP-2-12.5

Analyses	Result	RL	Qual	Units DF		Date Analyzed	
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC	
Diesel (Fuel Oil)	ND	23.5		mg/Kg-dry	1	9/10/2014 12:41:00 PM	
Heavy Oil	ND	58.8		mg/Kg-dry	1	9/10/2014 12:41:00 PM	
Surr: 2-Fluorobiphenyl	90.5	50-150		%REC	1	9/10/2014 12:41:00 PM	
Surr: o-Terphenyl	76.7	50-150		%REC	1	9/10/2014 12:41:00 PM	
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG	
Naphthalene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
2-Methylnaphthalene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
1-Methylnaphthalene	149	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Acenaphthylene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Acenaphthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Fluorene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Phenanthrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Anthracene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Fluoranthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Pyrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Benz(a)anthracene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Chrysene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Benzo(b)fluoranthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Benzo(k)fluoranthene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Benzo(a)pyrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Indeno(1,2,3-cd)pyrene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Dibenz(a,h)anthracene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Benzo(g,h,i)perylene	ND	65.7		μg/Kg-dry	1	9/12/2014 3:42:00 AM	
Surr: 2-Fluorobiphenyl	87.5	42.7-132		%REC	1	9/12/2014 3:42:00 AM	
Surr: Terphenyl-d14 (surr)	117	48.8-157		%REC	1	9/12/2014 3:42:00 AM	
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM	
Gasoline	57.4	4.38		mg/Kg-dry	1	9/10/2014 11:00:00 AM	
Surr: Toluene-d8	97.6	65-135		%REC	1	9/10/2014 11:00:00 AM	
Surr: 4-Bromofluorobenzene	96.9	65-135		%REC	1	9/10/2014 11:00:00 AM	

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-011 **Matrix**: Soil

Client Sample ID: DP-2-12.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 11:00:00 AM Dichlorodifluoromethane (CFC-12) 0.0525 mg/Kg-dry 1 Chloromethane ND 0.0525 9/10/2014 11:00:00 AM mg/Kg-dry 1 Vinyl chloride ND mg/Kg-dry 9/10/2014 11:00:00 AM 0.00175 1 Bromomethane ND 0.0788 9/10/2014 11:00:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0438 mg/Kg-dry 1 9/10/2014 11:00:00 AM Chloroethane ND 0.0525 9/10/2014 11:00:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0438 mg/Kg-dry 1 9/10/2014 11:00:00 AM ND 0.0175 9/10/2014 11:00:00 AM Methylene chloride mg/Kg-dry 1 ND 9/10/2014 11:00:00 AM trans-1,2-Dichloroethene 0.0175 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/10/2014 11:00:00 AM 0.0438 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 2,2-Dichloropropane ND 0.0438 mg/Kg-dry 1 9/10/2014 11:00:00 AM cis-1,2-Dichloroethene ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Chloroform ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0175 9/10/2014 11:00:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Carbon tetrachloride ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 1,2-Dichloroethane (EDC) ND 0.0263 9/10/2014 11:00:00 AM mg/Kg-dry 1 0.0286 9/10/2014 11:00:00 AM Benzene 0.0175 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM 0.0175 1,2-Dichloropropane ND mg/Kg-dry 1 9/10/2014 11:00:00 AM Bromodichloromethane ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM ND 9/10/2014 11:00:00 AM Dibromomethane 0.0350 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM Toluene 0.0213 0.0175 mg/Kg-dry 1 9/10/2014 11:00:00 AM ND 0.0263 9/10/2014 11:00:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0263 mg/Kg-dry 1 9/10/2014 11:00:00 AM 1,3-Dichloropropane ND 0.0438 9/10/2014 11:00:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0175 9/10/2014 11:00:00 AM mg/Kg-dry 1 ND 9/10/2014 11:00:00 AM Dibromochloromethane 0.0263 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00438 mg/Kg-dry 1 9/10/2014 11:00:00 AM Chlorobenzene ND 0.0175 9/10/2014 11:00:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0263 mg/Kg-dry 1 9/10/2014 11:00:00 AM 0.0760 9/10/2014 11:00:00 AM Ethylbenzene 0.0263 mg/Kg-dry 1 m,p-Xylene 0.117 0.0175 mg/Kg-dry 9/10/2014 11:00:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Qualifiers:

В

Ε

J

Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Value above quantitation range

Reporting Limit

Lab ID: 1409077-011 **Matrix**: Soil

Client Sample ID: DP-2-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	PA Method 8260		Batch ID: 8663		Analyst: EM
o-Xylene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Styrene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Isopropylbenzene	0.483	0.0701		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Bromoform	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,1,2,2-Tetrachloroethane	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
n-Propylbenzene	1.61	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Bromobenzene	ND	0.0263		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,3,5-Trimethylbenzene	0.0384	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
2-Chlorotoluene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
4-Chlorotoluene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
tert-Butylbenzene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,2,3-Trichloropropane	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,2,4-Trichlorobenzene	ND	0.0438		mg/Kg-dry	1	9/10/2014 11:00:00 AM
sec-Butylbenzene	0.127	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
4-Isopropyltoluene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,3-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,4-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
n-Butylbenzene	0.301	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,2-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,2-Dibromo-3-chloropropane	ND	0.0263		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,2,4-Trimethylbenzene	0.0436	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Hexachlorobutadiene	ND	0.0876		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Naphthalene	0.107	0.0263		mg/Kg-dry	1	9/10/2014 11:00:00 AM
1,2,3-Trichlorobenzene	ND	0.0175		mg/Kg-dry	1	9/10/2014 11:00:00 AM
Surr: Dibromofluoromethane	88.8	63.7-129		%REC	1	9/10/2014 11:00:00 AM
Surr: Toluene-d8	96.5	61.4-128		%REC	1	9/10/2014 11:00:00 AM
Surr: 1-Bromo-4-fluorobenzene	98.7	63.1-141		%REC	1	9/10/2014 11:00:00 AM
Mercury by EPA Method 7471				Batch	1D: 8	Analyst: TN
Mercury	ND	0.308		mg/Kg-dry	1	9/9/2014 4:59:13 PM
Total Metals by EPA Method 602	<u>o</u>			Batch	n ID: 8	Analyst: TN
Arsenic	5.57	0.101		mg/Kg-dry	1	9/9/2014 5:52:41 PM

D

Н

ND

Dilution was required

Not detected at the Reporting Limit

Holding times for preparation or analysis exceeded

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-011 **Matrix:** Soil

Client Sample ID: DP-2-12.5

Analyses	Result	RL	Qual	Units DF		'	Date Analyzed
Total Metals by EPA Method 602	<u>20</u>			Batch	n ID:	8664	Analyst: TN
Barium	141	0.507		mg/Kg-dry	1	9/	9/2014 5:52:41 PM
Cadmium	0.731	0.203		mg/Kg-dry	1	9/	9/2014 5:52:41 PM
Chromium	72.5	0.101	[RA]	mg/Kg-dry	1	9/	10/2014 2:47:31 PM
Lead	8.31	0.203		mg/Kg-dry	1	9/	9/2014 5:52:41 PM
Selenium	ND	0.507		mg/Kg-dry	1	9/	9/2014 5:52:41 PM
Silver	0.134	0.101		mg/Kg-dry	1	9/	/9/2014 5:52:41 PM
Sample Moisture (Percent Moist	ture)			Batch	ı ID:	R16685	Analyst: SL
Percent Moisture	24.7			wt%	1	9/	10/2014 10:35:08 AM
Hexavalent Chromium by EPA	<u>/lethod 7196</u>			Batch	ı ID:	8795	Analyst: MW
Chromium, Hexavalent	ND	0.648		mg/Kg-dry	1	9/	/21/2014 10:18:25 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:10:00 PM

Project: SLU Marriott

Lab ID: 1409077-012 **Matrix:** Soil

Client Sample ID: DP-2-15.0

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Gasoline by NWTPH-Gx				Batch	n ID: 8	8838 Analyst: EM
Gasoline	34.9	4.37	Н	mg/Kg-dry	1	9/24/2014 2:43:00 PM
Surr: Toluene-d8	101	65-135	Н	%REC	1	9/24/2014 2:43:00 PM
Surr: 4-Bromofluorobenzene	95.2	65-135	Н	%REC	1	9/24/2014 2:43:00 PM
Sample Moisture (Percent Mois	ture)			Batch	n ID: F	R16932 Analyst: SL
Percent Moisture	22.5			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix:** Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (Polychlorinated Biphenyls)	CB) by EPA 808	<u>2</u>		Batch	n ID: 8688	Analyst: NG
Aroclor 1016	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1221	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1232	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1242	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1248	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1254	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1260	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1262	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Aroclor 1268	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Total PCBs	ND	0.109		mg/Kg-dry	1	9/11/2014 7:31:00 PM
Surr: Decachlorobiphenyl	79.4	50.2-159		%REC	1	9/11/2014 7:31:00 PM
Surr: Tetrachloro-m-xylene	78.0	60.3-134		%REC	1	9/11/2014 7:31:00 PM
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	19.5		mg/Kg-dry	1	9/10/2014 1:12:00 PM
Heavy Oil	ND ND	48.9		mg/Kg-dry	1	9/10/2014 1:12:00 PM
Surr: 2-Fluorobiphenyl	88.2	50-150		%REC	1	9/10/2014 1:12:00 PM
Surr: o-Terphenyl	81.3	50-150		%REC	1	9/10/2014 1:12:00 PM
Polyaromatic Hydrocarbons b	y EPA Method	8270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
2-Methylnaphthalene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
1-Methylnaphthalene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Acenaphthylene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Acenaphthene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Fluorene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Phenanthrene	1,890	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Anthracene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Fluoranthene	3,280	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Pyrene	3,540	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Benz(a)anthracene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Chrysene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM
Benzo(b)fluoranthene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix:** Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG	
Benzo(k)fluoranthene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM	
Benzo(a)pyrene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM	
Indeno(1,2,3-cd)pyrene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM	
Dibenz(a,h)anthracene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM	
Benzo(g,h,i)perylene	ND	1,120	D	μg/Kg-dry	20	9/12/2014 4:05:00 AM	
Surr: 2-Fluorobiphenyl	58.2	42.7-132	D	%REC	20	9/12/2014 4:05:00 AM	
Surr: Terphenyl-d14 (surr)	62.2	48.8-157	D	%REC	20	9/12/2014 4:05:00 AM	
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM	
Gasoline	ND	5.80		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 11:29:00 AM	
Surr: 4-Bromofluorobenzene	93.3	65-135		%REC	1	9/10/2014 11:29:00 AM	
Volatile Organic Compounds b	y EPA Method	8260		Batch	n ID: 8663	Analyst: EM	
Dichlorodifluoromethane (CFC-12)	ND	0.0696		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Chloromethane	ND	0.0696		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Vinyl chloride	ND	0.00232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Bromomethane	ND	0.104		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Trichlorofluoromethane (CFC-11)	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Chloroethane	ND	0.0696		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
1,1-Dichloroethene	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Methylene chloride	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
trans-1,2-Dichloroethene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Methyl tert-butyl ether (MTBE)	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
1,1-Dichloroethane	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
2,2-Dichloropropane	ND	0.0580		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
cis-1,2-Dichloroethene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
Chloroform	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
1,1,1-Trichloroethane (TCA)	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
1, 1, 1-1 Horiotoctilano (10A)	ND						
1,1-Dichloropropene	ND ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM	
				mg/Kg-dry mg/Kg-dry	1 1	9/10/2014 11:29:00 AM 9/10/2014 11:29:00 AM	
1,1-Dichloropropene	ND	0.0232		0 0 ,			

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix:** Soil

Client Sample ID: DP-3-2.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0232 9/10/2014 11:29:00 AM Trichloroethene (TCE) mg/Kg-dry 1 1,2-Dichloropropane ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 Bromodichloromethane ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 Dibromomethane ND 0.0464 9/10/2014 11:29:00 AM mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM Toluene ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 trans-1,3-Dichloropropylene ND 0.0348 mg/Kg-dry 1 9/10/2014 11:29:00 AM ND 0.0348 9/10/2014 11:29:00 AM 1,1,2-Trichloroethane mg/Kg-dry 1 ND 9/10/2014 11:29:00 AM 1,3-Dichloropropane 0.0580 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 Dibromochloromethane ND 0.0348 mg/Kg-dry 1 9/10/2014 11:29:00 AM 1,2-Dibromoethane (EDB) ND 0.00580 mg/Kg-dry 1 9/10/2014 11:29:00 AM Chlorobenzene ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 1,1,1,2-Tetrachloroethane ND 0.0348 mg/Kg-dry 1 9/10/2014 11:29:00 AM Ethylbenzene 0.0407 0.0348 9/10/2014 11:29:00 AM mg/Kg-dry 1 m,p-Xylene 0.0765 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM o-Xylene 0.0572 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM Styrene ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 ND 9/10/2014 11:29:00 AM Isopropylbenzene 0.0928 mg/Kg-dry 1 ND 9/10/2014 11:29:00 AM Bromoform 0.0232 mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM n-Propylbenzene 0.0617 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 9/10/2014 11:29:00 AM Bromobenzene ND 0.0348 mg/Kg-dry 1 1,3,5-Trimethylbenzene ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 2-Chlorotoluene ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 4-Chlorotoluene ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 1,2,3-Trichloropropane ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 1,2,4-Trichlorobenzene ND 0.0580 9/10/2014 11:29:00 AM mg/Kg-dry 1 ND 9/10/2014 11:29:00 AM sec-Butylbenzene 0.0232 mg/Kg-dry 1 ND 4-Isopropyltoluene 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 1,3-Dichlorobenzene ND 0.0232 9/10/2014 11:29:00 AM mg/Kg-dry 1 1,4-Dichlorobenzene ND 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM n-Butylbenzene 0.0513 0.0232 mg/Kg-dry 1 9/10/2014 11:29:00 AM 1,2-Dichlorobenzene ND 0.0232 mg/Kg-dry 9/10/2014 11:29:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:25:00 AM

Project: SLU Marriott

Lab ID: 1409077-013 **Matrix:** Soil

Client Sample ID: DP-3-2.5

Analyses	Result	RL	Qual	Units DF		F Date Analyzed
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Batch	ı ID:	: 8663 Analyst: EM
1,2-Dibromo-3-chloropropane	ND	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2,4-Trimethylbenzene	0.0540	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Hexachlorobutadiene	ND	0.116		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Naphthalene	0.0796	0.0348		mg/Kg-dry	1	9/10/2014 11:29:00 AM
1,2,3-Trichlorobenzene	ND	0.0232		mg/Kg-dry	1	9/10/2014 11:29:00 AM
Surr: Dibromofluoromethane	86.3	63.7-129		%REC	1	9/10/2014 11:29:00 AM
Surr: Toluene-d8	95.6	61.4-128		%REC	1	9/10/2014 11:29:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.0	63.1-141		%REC	1	9/10/2014 11:29:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	: 8681 Analyst: TN
Mercury	ND	0.265		mg/Kg-dry	1	9/10/2014 3:35:13 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	ı ID:	: 8664 Analyst: TN
Arsenic	4.50	0.0841		mg/Kg-dry	1	9/9/2014 5:56:06 PM
Barium	124	0.421		mg/Kg-dry	1	9/9/2014 5:56:06 PM
Cadmium	0.228	0.168		mg/Kg-dry	1	9/9/2014 5:56:06 PM
Chromium	24.4	0.0841	[RA]	mg/Kg-dry	1	9/10/2014 2:50:56 PM
Lead	121	0.168		mg/Kg-dry	1	9/9/2014 5:56:06 PM
Selenium	ND	0.421		mg/Kg-dry	1	9/9/2014 5:56:06 PM
Silver	0.106	0.0841		mg/Kg-dry	1	9/9/2014 5:56:06 PM
Sample Moisture (Percent Mois	ture)			Batch	ı ID:	: R16685 Analyst: SL
Percent Moisture	12.6			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Lab ID: 1409077-015 **Matrix:** Soil

Client Sample ID: DP-3-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670) Analyst: EC	
Diesel (Fuel Oil)	ND	21.0		mg/Kg-dry	1	9/10/2014 1:44:00 PM	
Heavy Oil	ND	52.4		mg/Kg-dry	1	9/10/2014 1:44:00 PM	
Surr: 2-Fluorobiphenyl	93.6	50-150		%REC	1	9/10/2014 1:44:00 PM	
Surr: o-Terphenyl	78.8	50-150		%REC	1	9/10/2014 1:44:00 PM	
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)			Batch	n ID: 8667	Analyst: NG		
Naphthalene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
2-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
1-Methylnaphthalene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Acenaphthylene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Acenaphthene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Fluorene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Phenanthrene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Fluoranthene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Pyrene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Benz(a)anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Chrysene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Benzo(b)fluoranthene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Benzo(k)fluoranthene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Benzo(a)pyrene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Indeno(1,2,3-cd)pyrene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Dibenz(a,h)anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Benzo(g,h,i)perylene	ND	55.2		μg/Kg-dry	1	9/12/2014 5:12:00 AM	
Surr: 2-Fluorobiphenyl	96.9	42.7-132		%REC	1	9/12/2014 5:12:00 AM	
Surr: Terphenyl-d14 (surr)	112	48.8-157		%REC	1	9/12/2014 5:12:00 AM	
Gasoline by NWTPH-Gx				Batch	n ID: R160	693 Analyst: EM	
Gasoline	ND	4.62		mg/Kg-dry	1	9/10/2014 11:58:00 AM	
Surr: Toluene-d8	102	65-135		%REC	1	9/10/2014 11:58:00 AM	
Surr: 4-Bromofluorobenzene	92.6	65-135		%REC	1	9/10/2014 11:58:00 AM	

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Lab ID: 1409077-015 **Matrix:** Soil

Client Sample ID: DP-3-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 11:58:00 AM Dichlorodifluoromethane (CFC-12) 0.0554 mg/Kg-dry 1 Chloromethane ND 0.0554 9/10/2014 11:58:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00185 9/10/2014 11:58:00 AM mg/Kg-dry 1 Bromomethane ND 0.0831 9/10/2014 11:58:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM Chloroethane ND 0.0554 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 0.0185 9/10/2014 11:58:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0185 9/10/2014 11:58:00 AM trans-1,2-Dichloroethene mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0462 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 2,2-Dichloropropane ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM cis-1,2-Dichloroethene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Chloroform ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Carbon tetrachloride ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,2-Dichloroethane (EDC) ND 0.0277 9/10/2014 11:58:00 AM mg/Kg-dry 1 ND 9/10/2014 11:58:00 AM Benzene 0.0185 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,2-Dichloropropane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Bromodichloromethane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 9/10/2014 11:58:00 AM Dibromomethane 0.0369 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Toluene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 0.0277 9/10/2014 11:58:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,3-Dichloropropane ND 9/10/2014 11:58:00 AM 0.0462 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 ND 9/10/2014 11:58:00 AM Dibromochloromethane 0.0277 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00462 mg/Kg-dry 1 9/10/2014 11:58:00 AM Chlorobenzene ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND Ethylbenzene 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM m,p-Xylene ND 0.0185 mg/Kg-dry 9/10/2014 11:58:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Ε

J

RL

Value above quantitation range

Analyte detected below quantitation limits

Lab ID: 1409077-015 **Matrix:** Soil

Client Sample ID: DP-3-7.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0185 9/10/2014 11:58:00 AM o-Xylene mg/Kg-dry 1 Styrene ND 0.0185 mg/Kg-dry 9/10/2014 11:58:00 AM 1 Isopropylbenzene ND 0.0739 9/10/2014 11:58:00 AM mg/Kg-dry 1 Bromoform ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM n-Propylbenzene 0.0391 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 Bromobenzene ND 0.0277 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 0.0185 9/10/2014 11:58:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 4-Chlorotoluene ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,2,3-Trichloropropane ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,2,4-Trichlorobenzene ND 0.0462 mg/Kg-dry 1 9/10/2014 11:58:00 AM sec-Butylbenzene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 0.0185 9/10/2014 11:58:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM 1,4-Dichlorobenzene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM n-Butylbenzene ND 0.0185 9/10/2014 11:58:00 AM mg/Kg-dry 1 ND 9/10/2014 11:58:00 AM 1,2-Dichlorobenzene 0.0185 mg/Kg-dry 1 ND 9/10/2014 11:58:00 AM 1,2-Dibromo-3-chloropropane 0.0277 mg/Kg-dry 1 1,2,4-Trimethylbenzene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Hexachlorobutadiene ND 0.0924 mg/Kg-dry 1 9/10/2014 11:58:00 AM ND 9/10/2014 11:58:00 AM Naphthalene 0.0277 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0185 mg/Kg-dry 1 9/10/2014 11:58:00 AM Surr: Dibromofluoromethane 90.7 63.7-129 %REC 1 9/10/2014 11:58:00 AM Surr: Toluene-d8 95.1 61.4-128 %REC 1 9/10/2014 11:58:00 AM Surr: 1-Bromo-4-fluorobenzene 94.1 63.1-141 %REC 1 9/10/2014 11:58:00 AM Batch ID: 8665 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.264 mg/Kg-dry 9/9/2014 5:02:28 PM Batch ID: 8664 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 2.05 0.0822 mg/Kg-dry 1 9/9/2014 5:59:31 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

Holding times for preparation or analysis exceeded

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:43:00 AM

Project: SLU Marriott

Lab ID: 1409077-015 **Matrix:** Soil

Client Sample ID: DP-3-7.5

Analyses	Result	RL	Qual	Units	DF		Date Analyzed	
Total Metals by EPA Metho	d 6020			Batch	n ID:	8664	Analyst: TN	
Barium	53.9	0.411		mg/Kg-dry	1	9/9/2	014 5:59:31 PM	
Cadmium	ND	0.164		mg/Kg-dry	1	9/9/2	014 5:59:31 PM	
Chromium	28.6	0.0822	[RA]	mg/Kg-dry	1	9/10/	2014 2:54:21 PM	
Lead	2.40	0.164		mg/Kg-dry	1	9/9/2	014 5:59:31 PM	
Selenium	ND	0.411		mg/Kg-dry	1	9/9/2	014 5:59:31 PM	
Silver	ND	0.0822		mg/Kg-dry	1	9/9/2	014 5:59:31 PM	
Sample Moisture (Percent I	<u>Moisture)</u>			Batch	n ID:	R16685	Analyst: SL	
Percent Moisture	10.6			wt%	1	9/10/	/2014 10:35:08 AM	

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-020 **Matrix:** Soil

Client Sample ID: DP-4-5.0

Analyses	Result	RL	Qual	Units	DF	Da	Date Analyzed		
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 86	670	Analyst: EC		
Diesel (Fuel Oil)	ND	19.1		mg/Kg-dry	1	9/10/	2014 2:16:00 PM		
Heavy Oil	ND	47.7		mg/Kg-dry	1	9/10/	2014 2:16:00 PM		
Surr: 2-Fluorobiphenyl	93.5	50-150		%REC	1	9/10/	2014 2:16:00 PM		
Surr: o-Terphenyl	81.9	50-150		%REC	1	9/10/	2014 2:16:00 PM		
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID: 86	667	Analyst: NG		
Naphthalene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
2-Methylnaphthalene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
1-Methylnaphthalene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Acenaphthylene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Acenaphthene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Fluorene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Phenanthrene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Anthracene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Fluoranthene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Pyrene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Benz(a)anthracene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Chrysene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Benzo(b)fluoranthene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Benzo(k)fluoranthene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Benzo(a)pyrene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Indeno(1,2,3-cd)pyrene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Dibenz(a,h)anthracene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Benzo(g,h,i)perylene	ND	53.7		μg/Kg-dry	1	9/12/	2014 5:35:00 AM		
Surr: 2-Fluorobiphenyl	94.0	42.7-132		%REC	1	9/12/	2014 5:35:00 AM		
Surr: Terphenyl-d14 (surr)	110	48.8-157		%REC	1	9/12/	2014 5:35:00 AM		
Gasoline by NWTPH-Gx				Batch	n ID: R	16693	Analyst: EM		
Gasoline	ND	2.97		mg/Kg-dry	1	9/10/	2014 12:28:00 PM		
Surr: Toluene-d8	90.9	65-135		%REC	1	9/10/	2014 12:28:00 PM		
Surr: 4-Bromofluorobenzene	95.2	65-135		%REC	1	9/10/	2014 12:28:00 PM		

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-020 **Matrix:** Soil

Client Sample ID: DP-4-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0356 9/10/2014 12:28:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 Chloromethane ND 0.0356 9/10/2014 12:28:00 PM mg/Kg-dry 1 Vinyl chloride ND 9/10/2014 12:28:00 PM 0.00119 mg/Kg-dry 1 Bromomethane ND 0.0535 9/10/2014 12:28:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0297 mg/Kg-dry 1 9/10/2014 12:28:00 PM Chloroethane ND 0.0356 9/10/2014 12:28:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0297 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND 9/10/2014 12:28:00 PM Methylene chloride 0.0119 mg/Kg-dry 1 ND 9/10/2014 12:28:00 PM trans-1,2-Dichloroethene 0.0119 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/10/2014 12:28:00 PM 0.0297 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM 2,2-Dichloropropane ND 0.0297 mg/Kg-dry 1 9/10/2014 12:28:00 PM cis-1,2-Dichloroethene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Chloroform ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0119 9/10/2014 12:28:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Carbon tetrachloride ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM 1,2-Dichloroethane (EDC) ND 0.0178 9/10/2014 12:28:00 PM mg/Kg-dry 1 ND 9/10/2014 12:28:00 PM Benzene 0.0119 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 12:28:00 PM 0.0119 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Bromodichloromethane ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND 9/10/2014 12:28:00 PM Dibromomethane 0.0238 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM Toluene ND 0.0119 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND 0.0178 9/10/2014 12:28:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0178 mg/Kg-dry 1 9/10/2014 12:28:00 PM 1,3-Dichloropropane ND 9/10/2014 12:28:00 PM 0.0297 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0119 9/10/2014 12:28:00 PM mg/Kg-dry 1 ND 9/10/2014 12:28:00 PM Dibromochloromethane 0.0178 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00297 mg/Kg-dry 1 9/10/2014 12:28:00 PM Chlorobenzene ND 9/10/2014 12:28:00 PM 0.0119 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0178 mg/Kg-dry 1 9/10/2014 12:28:00 PM ND Ethylbenzene 0.0178 mg/Kg-dry 1 9/10/2014 12:28:00 PM m,p-Xylene ND 0.0119 mg/Kg-dry 9/10/2014 12:28:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-020 Matrix: Soil

Client Sample ID: DP-4-5.0

Analyses	Result	RL	Qual	Units	DF		Date Analyzed
Volatile Organic Compounds by E	PA Method	<u>8260</u>		Batch	ID:	8663	Analyst: EM
o-Xylene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Styrene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Isopropylbenzene	ND	0.0475		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Bromoform	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
n-Propylbenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Bromobenzene	ND	0.0178		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,3,5-Trimethylbenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
2-Chlorotoluene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
4-Chlorotoluene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
tert-Butylbenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,2,3-Trichloropropane	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,2,4-Trichlorobenzene	ND	0.0297		mg/Kg-dry	1		9/10/2014 12:28:00 PM
sec-Butylbenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
4-Isopropyltoluene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,3-Dichlorobenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,4-Dichlorobenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
n-Butylbenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,2-Dichlorobenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0178		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,2,4-Trimethylbenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Hexachlorobutadiene	ND	0.0594		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Naphthalene	ND	0.0178		mg/Kg-dry	1		9/10/2014 12:28:00 PM
1,2,3-Trichlorobenzene	ND	0.0119		mg/Kg-dry	1		9/10/2014 12:28:00 PM
Surr: Dibromofluoromethane	88.8	63.7-129		%REC	1		9/10/2014 12:28:00 PM
Surr: Toluene-d8	90.9	61.4-128		%REC	1		9/10/2014 12:28:00 PM
Surr: 1-Bromo-4-fluorobenzene	95.2	63.1-141		%REC	1		9/10/2014 12:28:00 PM
Mercury by EPA Method 7471				Batch	ID:	8665	Analyst: TN
Mercury	ND	0.265		mg/Kg-dry	1		9/9/2014 5:05:16 PM
Total Metals by EPA Method 6020				Batch	ID:	8664	Analyst: TN
Arsenic	2.01	0.0861		mg/Kg-dry	1		9/9/2014 6:02:57 PM

- Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- Holding times for preparation or analysis exceeded Н
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:50:00 AM

Project: SLU Marriott

Lab ID: 1409077-020 **Matrix:** Soil

Client Sample ID: DP-4-5.0

Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Total Metals by EPA Method 6020				Batch	n ID:	8664	Analyst: TN
Barium	54.1	0.431		mg/Kg-dry	1	9/9/201	4 6:02:57 PM
Cadmium	ND	0.172		mg/Kg-dry	1	9/9/201	4 6:02:57 PM
Chromium	32.4	0.0861	[RA]	mg/Kg-dry	1	9/10/20	14 2:57:47 PM
Lead	1.85	0.172		mg/Kg-dry	1	9/9/201	4 6:02:57 PM
Selenium	ND	0.431		mg/Kg-dry	1	9/9/201	4 6:02:57 PM
Silver	ND	0.0861		mg/Kg-dry	1	9/9/201	4 6:02:57 PM
Sample Moisture (Percent Moistur	<u>·e)</u>			Batch	n ID:	R16685	Analyst: SL
Percent Moisture	9.30			wt%	1	9/10/20	014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-024 **Matrix:** Soil

Client Sample ID: DP-4-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 867	0 Analyst: EC
Diesel (Fuel Oil)	ND	22.5		mg/Kg-dry	1	9/10/2014 3:51:00 PM
Heavy Oil	ND	56.2		mg/Kg-dry	1	9/10/2014 3:51:00 PM
Surr: 2-Fluorobiphenyl	92.9	50-150		%REC	1	9/10/2014 3:51:00 PM
Surr: o-Terphenyl	90.2	50-150		%REC	1	9/10/2014 3:51:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 866	7 Analyst: NG
Naphthalene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
2-Methylnaphthalene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
1-Methylnaphthalene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Acenaphthylene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Acenaphthene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Fluorene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Phenanthrene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Anthracene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Fluoranthene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Pyrene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Benz(a)anthracene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Chrysene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Benzo(b)fluoranthene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Benzo(k)fluoranthene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Benzo(a)pyrene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Indeno(1,2,3-cd)pyrene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Dibenz(a,h)anthracene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Benzo(g,h,i)perylene	ND	56.3		μg/Kg-dry	1	9/12/2014 5:58:00 AM
Surr: 2-Fluorobiphenyl	82.4	42.7-132		%REC	1	9/12/2014 5:58:00 AM
Surr: Terphenyl-d14 (surr)	103	48.8-157		%REC	1	9/12/2014 5:58:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R16	Analyst: EM
Gasoline	ND	4.87		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 12:57:00 PM
Surr: 4-Bromofluorobenzene	94.0	65-135		%REC	1	9/10/2014 12:57:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-024 **Matrix**: Soil

Client Sample ID: DP-4-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 12:57:00 PM Dichlorodifluoromethane (CFC-12) 0.0585 mg/Kg-dry 1 Chloromethane ND 0.0585 9/10/2014 12:57:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00195 mg/Kg-dry 9/10/2014 12:57:00 PM 1 Bromomethane ND 0.0877 9/10/2014 12:57:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0487 mg/Kg-dry 1 9/10/2014 12:57:00 PM 9/10/2014 12:57:00 PM Chloroethane ND 0.0585 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0487 mg/Kg-dry 1 9/10/2014 12:57:00 PM ND 0.0195 9/10/2014 12:57:00 PM Methylene chloride mg/Kg-dry 1 ND 9/10/2014 12:57:00 PM trans-1,2-Dichloroethene 0.0195 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0487 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 2,2-Dichloropropane ND 0.0487 mg/Kg-dry 1 9/10/2014 12:57:00 PM cis-1,2-Dichloroethene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Chloroform ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 0.0195 1,1,1-Trichloroethane (TCA) ND 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Carbon tetrachloride ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 1,2-Dichloroethane (EDC) ND 0.0292 9/10/2014 12:57:00 PM mg/Kg-dry 1 0.0243 9/10/2014 12:57:00 PM Benzene 0.0195 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM 1,2-Dichloropropane ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Bromodichloromethane ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM ND 9/10/2014 12:57:00 PM Dibromomethane 0.0390 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM Toluene ND 0.0195 mg/Kg-dry 1 9/10/2014 12:57:00 PM ND 0.0292 9/10/2014 12:57:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0292 mg/Kg-dry 1 9/10/2014 12:57:00 PM 1,3-Dichloropropane ND 0.0487 9/10/2014 12:57:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0195 9/10/2014 12:57:00 PM mg/Kg-dry 1 ND 9/10/2014 12:57:00 PM Dibromochloromethane 0.0292 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00487 mg/Kg-dry 1 9/10/2014 12:57:00 PM Chlorobenzene ND 0.0195 9/10/2014 12:57:00 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0292 mg/Kg-dry 1 9/10/2014 12:57:00 PM Ethylbenzene 0.0363 0.0292 mg/Kg-dry 1 9/10/2014 12:57:00 PM m,p-Xylene 0.0958 0.0195 mg/Kg-dry 9/10/2014 12:57:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

Collection Date: 9/6/2014 10:31:00 AM Client: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

Lab ID: 1409077-024 Matrix: Soil

Client Sample ID: DP-4-15.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
olatile Organic Compounds by	EPA Method	8260		Batch	ID: 8663	Analyst: EM
o-Xylene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Styrene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Isopropylbenzene	0.0978	0.0780		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Bromoform	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
n-Propylbenzene	0.132	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Bromobenzene	ND	0.0292		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,3,5-Trimethylbenzene	0.0360	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
2-Chlorotoluene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
4-Chlorotoluene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
tert-Butylbenzene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,2,3-Trichloropropane	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,2,4-Trichlorobenzene	ND	0.0487		mg/Kg-dry	1	9/10/2014 12:57:00 PI
sec-Butylbenzene	0.0490	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PI
4-Isopropyltoluene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PI
1,3-Dichlorobenzene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,4-Dichlorobenzene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
n-Butylbenzene	0.0385	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,2-Dichlorobenzene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0292		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,2,4-Trimethylbenzene	0.0412	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Hexachlorobutadiene	ND	0.0975		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Naphthalene	ND	0.0292		mg/Kg-dry	1	9/10/2014 12:57:00 PM
1,2,3-Trichlorobenzene	ND	0.0195		mg/Kg-dry	1	9/10/2014 12:57:00 PM
Surr: Dibromofluoromethane	97.1	63.7-129		%REC	1	9/10/2014 12:57:00 PM
Surr: Toluene-d8	112	61.4-128		%REC	1	9/10/2014 12:57:00 PM
Surr: 1-Bromo-4-fluorobenzene	95.5	63.1-141		%REC	1	9/10/2014 12:57:00 PM
lercury by EPA Method 7471				Batch	ID: 8665	Analyst: TN
Mercury	ND	0.251		mg/Kg-dry	1	9/9/2014 5:06:53 PM
otal Metals by EPA Method 602	<u>o</u>			Batch	ID: 8664	Analyst: TN
Arsenic	2.12	0.0856		mg/Kg-dry	1	9/9/2014 6:06:22 PM

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 10:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-024 **Matrix:** Soil

Client Sample ID: DP-4-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 80	664 Analyst: TN
Barium	63.5	0.428		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Chromium	36.8	0.0856	[RA]	mg/Kg-dry	1	9/10/2014 3:01:12 PM
Lead	2.47	0.171		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Selenium	ND	0.428		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Silver	ND	0.0856		mg/Kg-dry	1	9/9/2014 6:06:22 PM
Sample Moisture (Percent	t Moisture)			Batch	n ID: R	16685 Analyst: SL
Percent Moisture	14.1			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

Project: SLU Marriott

Lab ID: 1409077-029 **Matrix:** Soil

Client Sample ID: DP-5-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	21.0		mg/Kg-dry	1	9/10/2014 4:23:00 PM
Heavy Oil	ND	52.4		mg/Kg-dry	1	9/10/2014 4:23:00 PM
Surr: 2-Fluorobiphenyl	94.5	50-150		%REC	1	9/10/2014 4:23:00 PM
Surr: o-Terphenyl	87.2	50-150		%REC	1	9/10/2014 4:23:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
2-Methylnaphthalene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
1-Methylnaphthalene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Acenaphthylene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Acenaphthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Fluorene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Phenanthrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Anthracene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Fluoranthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Pyrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benz(a)anthracene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Chrysene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(b)fluoranthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(k)fluoranthene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(a)pyrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Dibenz(a,h)anthracene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Benzo(g,h,i)perylene	ND	55.8		μg/Kg-dry	1	9/12/2014 6:20:00 AM
Surr: 2-Fluorobiphenyl	79.5	42.7-132		%REC	1	9/12/2014 6:20:00 AM
Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	9/12/2014 6:20:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	6.09		mg/Kg-dry	1	9/10/2014 1:27:00 PM
Surr: Toluene-d8	99.5	65-135		%REC	1	9/10/2014 1:27:00 PM
Surr: 4-Bromofluorobenzene	90.0	65-135		%REC	1	9/10/2014 1:27:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

Project: SLU Marriott

Lab ID: 1409077-029 **Matrix**: Soil

Client Sample ID: DP-5-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 0.0730 9/10/2014 1:27:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0730 9/10/2014 1:27:00 PM 1 Vinyl chloride ND 0.00243 mg/Kg-dry 9/10/2014 1:27:00 PM 1 Bromomethane ND 0.110 9/10/2014 1:27:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0609 mg/Kg-dry 1 9/10/2014 1:27:00 PM 9/10/2014 1:27:00 PM Chloroethane ND 0.0730 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0609 mg/Kg-dry 1 9/10/2014 1:27:00 PM ND 9/10/2014 1:27:00 PM Methylene chloride 0.0243 mg/Kg-dry 1 ND 9/10/2014 1:27:00 PM trans-1,2-Dichloroethene 0.0243 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0609 9/10/2014 1:27:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM 2,2-Dichloropropane ND 0.0609 mg/Kg-dry 1 9/10/2014 1:27:00 PM cis-1,2-Dichloroethene ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM Chloroform ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0243 9/10/2014 1:27:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM Carbon tetrachloride ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM 1,2-Dichloroethane (EDC) ND 0.0365 9/10/2014 1:27:00 PM mg/Kg-dry 1 ND 9/10/2014 1:27:00 PM Benzene 0.0243 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 1:27:00 PM 0.0243 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM Bromodichloromethane ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM ND 9/10/2014 1:27:00 PM Dibromomethane 0.0487 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM Toluene ND 0.0243 mg/Kg-dry 1 9/10/2014 1:27:00 PM ND 0.0365 9/10/2014 1:27:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0365 mg/Kg-dry 1 9/10/2014 1:27:00 PM 1,3-Dichloropropane ND 0.0609 9/10/2014 1:27:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0243 9/10/2014 1:27:00 PM mg/Kg-dry 1 9/10/2014 1:27:00 PM ND 0.0365 Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00609 mg/Kg-dry 1 9/10/2014 1:27:00 PM Chlorobenzene ND mg/Kg-dry 9/10/2014 1:27:00 PM 0.0243 1 1,1,1,2-Tetrachloroethane ND 0.0365 mg/Kg-dry 1 9/10/2014 1:27:00 PM ND Ethylbenzene 0.0365 mg/Kg-dry 1 9/10/2014 1:27:00 PM m,p-Xylene ND 0.0243 mg/Kg-dry 9/10/2014 1:27:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-029 Matrix: Soil

Client Sample ID: DP-5-7.5

nalyses	Result	RL	Qual	Units	DF		Date Analyzed
Volatile Organic Compounds by E	PA Method	8260		Batch	ID:	8663	Analyst: EN
o-Xylene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Styrene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Isopropylbenzene	ND	0.0974		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Bromoform	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
n-Propylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Bromobenzene	ND	0.0365		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,3,5-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
2-Chlorotoluene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
4-Chlorotoluene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
tert-Butylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,3-Trichloropropane	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,4-Trichlorobenzene	ND	0.0609		mg/Kg-dry	1		9/10/2014 1:27:00 PM
sec-Butylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
4-Isopropyltoluene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,3-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,4-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
n-Butylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2-Dichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0365		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,4-Trimethylbenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Hexachlorobutadiene	ND	0.122		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Naphthalene	ND	0.0365		mg/Kg-dry	1		9/10/2014 1:27:00 PM
1,2,3-Trichlorobenzene	ND	0.0243		mg/Kg-dry	1		9/10/2014 1:27:00 PM
Surr: Dibromofluoromethane	90.2	63.7-129		%REC	1		9/10/2014 1:27:00 PM
Surr: Toluene-d8	100	61.4-128		%REC	1		9/10/2014 1:27:00 PM
Surr: 1-Bromo-4-fluorobenzene	91.6	63.1-141		%REC	1		9/10/2014 1:27:00 PM
Mercury by EPA Method 7471				Batch	ID:	8665	Analyst: TN
Mercury	ND	0.251		mg/Kg-dry	1		9/9/2014 5:12:56 PM
Total Metals by EPA Method 6020				Batch	ID:	8664	Analyst: TN
Arsenic	3.29	0.0860		mg/Kg-dry	1		9/9/2014 6:16:43 PM

- Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- Holding times for preparation or analysis exceeded Н
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:41:00 AM

Project: SLU Marriott

Lab ID: 1409077-029 **Matrix:** Soil

Client Sample ID: DP-5-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 602	0			Batcl	n ID:	8664 Analyst: TN
Barium	71.3	0.430		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Cadmium	ND	0.172		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Chromium	41.6	0.0860	[RA]	mg/Kg-dry	1	9/10/2014 3:04:37 PM
Lead	3.23	0.172		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Selenium	ND	0.430		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Silver	ND	0.0860		mg/Kg-dry	1	9/9/2014 6:16:43 PM
Sample Moisture (Percent Moist	ure)			Batcl	n ID:	R16685 Analyst: SL
Percent Moisture	11.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix:** Soil

Client Sample ID: DP-6-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	19.4		mg/Kg-dry	1	9/10/2014 5:27:00 PM
Heavy Oil	ND	48.4		mg/Kg-dry	1	9/10/2014 5:27:00 PM
Surr: 2-Fluorobiphenyl	95.8	50-150		%REC	1	9/10/2014 5:27:00 PM
Surr: o-Terphenyl	85.2	50-150		%REC	1	9/10/2014 5:27:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
2-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
1-Methylnaphthalene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Acenaphthylene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Acenaphthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Fluorene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Phenanthrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benz(a)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Chrysene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(b)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(k)fluoranthene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(a)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Indeno(1,2,3-cd)pyrene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Dibenz(a,h)anthracene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Benzo(g,h,i)perylene	ND	54.8		μg/Kg-dry	1	9/12/2014 6:43:00 AM
Surr: 2-Fluorobiphenyl	73.4	42.7-132		%REC	1	9/12/2014 6:43:00 AM
Surr: Terphenyl-d14 (surr)	115	48.8-157		%REC	1	9/12/2014 6:43:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	4.64		mg/Kg-dry	1	9/10/2014 2:26:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 2:26:00 PM
Surr: 4-Bromofluorobenzene	88.9	65-135		%REC	1	9/10/2014 2:26:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix:** Soil

Client Sample ID: DP-6-2.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 2:26:00 PM Dichlorodifluoromethane (CFC-12) 0.0557 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0557 9/10/2014 2:26:00 PM 1 Vinyl chloride ND 0.00186 mg/Kg-dry 9/10/2014 2:26:00 PM 1 Bromomethane ND 0.0836 9/10/2014 2:26:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0464 mg/Kg-dry 1 9/10/2014 2:26:00 PM Chloroethane ND 0.0557 9/10/2014 2:26:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0464 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND 0.0186 9/10/2014 2:26:00 PM Methylene chloride mg/Kg-dry 1 ND 0.0186 trans-1,2-Dichloroethene mg/Kg-dry 1 9/10/2014 2:26:00 PM Methyl tert-butyl ether (MTBE) ND 0.0464 9/10/2014 2:26:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM 2,2-Dichloropropane ND 0.0464 mg/Kg-dry 1 9/10/2014 2:26:00 PM cis-1,2-Dichloroethene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Chloroform ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0186 9/10/2014 2:26:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Carbon tetrachloride ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM 1,2-Dichloroethane (EDC) ND 0.0279 9/10/2014 2:26:00 PM mg/Kg-dry 1 ND 9/10/2014 2:26:00 PM Benzene 0.0186 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 2:26:00 PM 0.0186 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Bromodichloromethane ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND 9/10/2014 2:26:00 PM Dibromomethane 0.0372 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM Toluene ND 0.0186 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND 0.0279 9/10/2014 2:26:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0279 mg/Kg-dry 1 9/10/2014 2:26:00 PM 1,3-Dichloropropane ND 0.0464 9/10/2014 2:26:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0186 9/10/2014 2:26:00 PM mg/Kg-dry 1 ND 9/10/2014 2:26:00 PM Dibromochloromethane 0.0279 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00464 mg/Kg-dry 1 9/10/2014 2:26:00 PM Chlorobenzene ND 0.0186 mg/Kg-dry 9/10/2014 2:26:00 PM 1 1,1,1,2-Tetrachloroethane ND 0.0279 mg/Kg-dry 1 9/10/2014 2:26:00 PM ND Ethylbenzene 0.0279 mg/Kg-dry 1 9/10/2014 2:26:00 PM m,p-Xylene ND 0.0186 mg/Kg-dry 9/10/2014 2:26:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Value above quantitation range

RL Reporting Limit

Analyte detected below quantitation limits

Analytical Report

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix:** Soil

Client Sample ID: DP-6-2.5

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EF	PA Method	<u>8260</u>		Batch	1D: 8	3663 Analyst: EN
- Volen-	ND	0.0400			4	0/40/0044 0:00:00 FU
o-Xylene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PN
Styrene	ND ND	0.0186 0.0743		mg/Kg-dry	1	9/10/2014 2:26:00 PN
Isopropylbenzene				mg/Kg-dry	1	9/10/2014 2:26:00 PN
Bromoform	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PN
1,1,2,2-Tetrachloroethane	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
n-Propylbenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
Bromobenzene	ND	0.0279		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,3,5-Trimethylbenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
2-Chlorotoluene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
4-Chlorotoluene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
tert-Butylbenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,2,3-Trichloropropane	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,2,4-Trichlorobenzene	ND	0.0464		mg/Kg-dry	1	9/10/2014 2:26:00 PM
sec-Butylbenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
4-Isopropyltoluene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,3-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,4-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
n-Butylbenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,2-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0279		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,2,4-Trimethylbenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
Hexachlorobutadiene	ND	0.0929		mg/Kg-dry	1	9/10/2014 2:26:00 PM
Naphthalene	ND	0.0279		mg/Kg-dry	1	9/10/2014 2:26:00 PM
1,2,3-Trichlorobenzene	ND	0.0186		mg/Kg-dry	1	9/10/2014 2:26:00 PM
Surr: Dibromofluoromethane	90.9	63.7-129		%REC	1	9/10/2014 2:26:00 PM
Surr: Toluene-d8	101	61.4-128		%REC	1	9/10/2014 2:26:00 PM
Surr: 1-Bromo-4-fluorobenzene	90.2	63.1-141		%REC	1	9/10/2014 2:26:00 PM
Mercury by EPA Method 7471				Batch	ID: 8	Analyst: TN
Mercury	ND	0.244		mg/Kg-dry	1	9/9/2014 5:15:00 PM
Total Metals by EPA Method 6020				Batch	ID: 8	8664 Analyst: TN
Arsenic	3.17	0.0872		mg/Kg-dry	1	9/9/2014 6:20:08 PM

Н

ND

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:47:00 AM

Project: SLU Marriott

Lab ID: 1409077-030 **Matrix:** Soil

Client Sample ID: DP-6-2.5

Analyses	Result	RL	Qual	Units	DF	Date Ana	lyzed
Total Metals by EPA Method	6020			Batch	n ID:	8664 Anal	yst: TN
Barium	50.5	0.436		mg/Kg-dry	1	9/9/2014 6:20):08 PM
Cadmium	ND	0.174		mg/Kg-dry	1	9/9/2014 6:20):08 PM
Chromium	33.1	0.0872	[RA]	mg/Kg-dry	1	9/10/2014 3:0	08:02 PM
Lead	31.5	0.174		mg/Kg-dry	1	9/9/2014 6:20):08 PM
Selenium	ND	0.436		mg/Kg-dry	1	9/9/2014 6:20):08 PM
Silver	ND	0.0872		mg/Kg-dry	1	9/9/2014 6:20):08 PM
Sample Moisture (Percent M	oisture)			Batch	n ID:	R16685 Anal	yst: SL
Percent Moisture	11.8			wt%	1	9/10/2014 10	:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM

Project: SLU Marriott

Lab ID: 1409077-033 **Matrix:** Soil

Client Sample ID: DP-6-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.				Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	20.6		mg/Kg-dry	1	9/10/2014 5:59:00 PM
Heavy Oil	ND	51.4		mg/Kg-dry	1	9/10/2014 5:59:00 PM
Surr: 2-Fluorobiphenyl	92.8	50-150		%REC	1	9/10/2014 5:59:00 PM
Surr: o-Terphenyl	78.2	50-150		%REC	1	9/10/2014 5:59:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batch ID: 8667		Analyst: NG
Naphthalene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
2-Methylnaphthalene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
1-Methylnaphthalene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Acenaphthylene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Acenaphthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Fluorene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Phenanthrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Anthracene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Fluoranthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Pyrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benz(a)anthracene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Chrysene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(b)fluoranthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(k)fluoranthene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(a)pyrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Indeno(1,2,3-cd)pyrene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Dibenz(a,h)anthracene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Benzo(g,h,i)perylene	ND	54.9		μg/Kg-dry	1	9/12/2014 7:05:00 AM
Surr: 2-Fluorobiphenyl	62.4	42.7-132		%REC	1	9/12/2014 7:05:00 AM
Surr: Terphenyl-d14 (surr)	97.6	48.8-157		%REC	1	9/12/2014 7:05:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R166	93 Analyst: EM
Gasoline	ND	3.42		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/10/2014 2:56:00 PM
Surr: 4-Bromofluorobenzene	89.7	65-135		%REC	1	9/10/2014 2:56:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM

Project: SLU Marriott

Lab ID: 1409077-033 **Matrix:** Soil

Client Sample ID: DP-6-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8663 Analyst: EM ND 9/10/2014 2:56:00 PM Dichlorodifluoromethane (CFC-12) 0.0410 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0410 9/10/2014 2:56:00 PM 1 Vinyl chloride ND 0.00137 mg/Kg-dry 9/10/2014 2:56:00 PM 1 Bromomethane ND 0.0615 9/10/2014 2:56:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM Chloroethane ND 0.0410 9/10/2014 2:56:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 0.0137 9/10/2014 2:56:00 PM Methylene chloride mg/Kg-dry 1 ND 9/10/2014 2:56:00 PM trans-1,2-Dichloroethene 0.0137 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0342 9/10/2014 2:56:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 2,2-Dichloropropane ND 0.0342 mg/Kg-dry 1 9/10/2014 2:56:00 PM cis-1,2-Dichloroethene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Chloroform ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0137 9/10/2014 2:56:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Carbon tetrachloride ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,2-Dichloroethane (EDC) ND 0.0205 9/10/2014 2:56:00 PM mg/Kg-dry 1 ND 9/10/2014 2:56:00 PM Benzene 0.0137 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/10/2014 2:56:00 PM 0.0137 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Bromodichloromethane ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 9/10/2014 2:56:00 PM Dibromomethane 0.0273 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM Toluene ND 0.0137 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND 0.0205 9/10/2014 2:56:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM 1,3-Dichloropropane ND 0.0342 9/10/2014 2:56:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0137 9/10/2014 2:56:00 PM mg/Kg-dry 1 ND 9/10/2014 2:56:00 PM Dibromochloromethane 0.0205 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00342 mg/Kg-dry 1 9/10/2014 2:56:00 PM Chlorobenzene ND mg/Kg-dry 9/10/2014 2:56:00 PM 0.0137 1 1,1,1,2-Tetrachloroethane ND 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM ND Ethylbenzene 0.0205 mg/Kg-dry 1 9/10/2014 2:56:00 PM m,p-Xylene ND 0.0137 mg/Kg-dry 9/10/2014 2:56:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM Client:

Project: SLU Marriott

Lab ID: 1409077-033 Matrix: Soil

Client Sample ID: DP-6-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by E	PA Method	<u>8260</u>		Batch	ID: 8663	Analyst: EM
o-Xylene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Styrene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Isopropylbenzene	ND	0.0547		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Bromoform	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,1,2,2-Tetrachloroethane	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
n-Propylbenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Bromobenzene	ND	0.0205		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,3,5-Trimethylbenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
2-Chlorotoluene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
4-Chlorotoluene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
tert-Butylbenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,2,3-Trichloropropane	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,2,4-Trichlorobenzene	ND	0.0342		mg/Kg-dry	1	9/10/2014 2:56:00 PM
sec-Butylbenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
4-Isopropyltoluene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,3-Dichlorobenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,4-Dichlorobenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
n-Butylbenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,2-Dichlorobenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,2-Dibromo-3-chloropropane	ND	0.0205		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,2,4-Trimethylbenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Hexachlorobutadiene	ND	0.0684		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Naphthalene	ND	0.0205		mg/Kg-dry	1	9/10/2014 2:56:00 PM
1,2,3-Trichlorobenzene	ND	0.0137		mg/Kg-dry	1	9/10/2014 2:56:00 PM
Surr: Dibromofluoromethane	92.3	63.7-129		%REC	1	9/10/2014 2:56:00 PM
Surr: Toluene-d8	102	61.4-128		%REC	1	9/10/2014 2:56:00 PM
Surr: 1-Bromo-4-fluorobenzene	91.1	63.1-141		%REC	1	9/10/2014 2:56:00 PM
Mercury by EPA Method 7471				Batch	ID: 8665	Analyst: TN
Mercury	ND	0.266		mg/Kg-dry	1	9/9/2014 5:16:37 PM
Total Metals by EPA Method 6020				Batch	i ID: 8674	Analyst: TN
Arsenic	1.67	0.0855		mg/Kg-dry	1	9/10/2014 4:05:10 PM

- Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- Holding times for preparation or analysis exceeded Н
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:04:00 AM

Project: SLU Marriott

Lab ID: 1409077-033 **Matrix:** Soil

Client Sample ID: DP-6-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 8	Analyst: TN
Barium	46.5	0.428		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Chromium	24.9	0.0855		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Lead	1.81	0.171		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Selenium	0.997	0.428		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Silver	ND	0.0855		mg/Kg-dry	1	9/10/2014 4:05:10 PM
Sample Moisture (Percent	: Moisture)			Batch	n ID: F	R16685 Analyst: SL
Percent Moisture	11.4			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

Project: SLU Marriott

Lab ID: 1409077-037 **Matrix:** Soil

Client Sample ID: DP-7-7.5

Result	RL	Qual	Units	DF	Date Analyzed
B) by EPA 808	<u>2</u>		Batch	n ID: 8688	Analyst: NG
ND	0 152		ma/Ka-dry	1	9/11/2014 8:10:00 PM
					9/11/2014 8:10:00 PM
			0 0 ,		9/11/2014 8:10:00 PM
					9/11/2014 8:10:00 PM
	0.152				9/11/2014 8:10:00 PM
	0.152				9/11/2014 8:10:00 PM
ND	0.152			1	9/11/2014 8:10:00 PM
ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
ND	0.152		mg/Kg-dry	1	9/11/2014 8:10:00 PM
80.2	50.2-159		%REC	1	9/11/2014 8:10:00 PM
86.6	60.3-134		%REC	1	9/11/2014 8:10:00 PM
H-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
460	20.0			4	0/40/2044 6:24:00 PM
					9/10/2014 6:31:00 PM
					9/10/2014 6:31:00 PM
					9/10/2014 6:31:00 PM 9/10/2014 6:31:00 PM
87.0	50-150		%KEC	Į.	9/10/2014 6:31:00 PW
EPA Method	8270 (SIM)		Batch	n ID: 8667	Analyst: NG
312	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
666	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
1,580	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
489	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
846	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
583	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
583	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
354	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
188	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
407	78.8		μg/Kg-dry	1	9/12/2014 7:28:00 AM
	B) by EPA 808 ND 80.2 86.6 H-Dx/Dx Ext. 468 ND 102 87.0 EPA Method 8 312 666 1,580 ND 489 ND 489 ND 846 ND 583 583 354 188	ND 0.152 ND	ND 0.152 80.2 50.2-159 86.6 60.3-134 H-Dx/Dx Ext. 468 29.8 ND 74.4 102 50-150 87.0 50-150 TEPA Method 8270 (SIM) TEPA Method 8270 (SIM) 312 78.8 666 78.8 1,580 78.8 ND 78.8	B by EPA 8082 Batch	B by EPA 8082 Batch ID: 8688

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Date Analyzed

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

RL

Qual

Units

DF

Project: SLU Marriott

Analyses

Lab ID: 1409077-037 **Matrix:** Soil

Result

Client Sample ID: DP-7-7.5

Analyses	Result	RL	Quai	Units	DF	Date Analy	zeu
Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)		Batch	n ID: 866	7 Analys	t: NG
Benzo(k)fluoranthene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:0	00 AM
Benzo(a)pyrene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:0	00 AM
Indeno(1,2,3-cd)pyrene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:0	00 AM
Dibenz(a,h)anthracene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:0	00 AM
Benzo(g,h,i)perylene	ND	78.8		μg/Kg-dry	1	9/12/2014 7:28:0	00 AM
Surr: 2-Fluorobiphenyl	64.5	42.7-132		%REC	1	9/12/2014 7:28:0	00 AM
Surr: Terphenyl-d14 (surr)	153	48.8-157		%REC	1	9/12/2014 7:28:0	00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R16	714 Analys	t: EM
Gasoline	175	8.32		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Surr: Toluene-d8	98.0	65-135		%REC	1	9/11/2014 4:40:0	00 AM
Surr: 4-Bromofluorobenzene	97.1	65-135		%REC	1	9/11/2014 4:40:0	00 AM
Volatile Organic Compounds by	/ EPA Method	8260		Batch	n ID: 867	2 Analys	t: EM
Dichlorodifluoromethane (CFC-12)	ND	0.0998		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Chloromethane	ND	0.0998		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Vinyl chloride	ND	0.00333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Bromomethane	ND	0.150		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Trichlorofluoromethane (CFC-11)	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Chloroethane	ND	0.0998		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
1,1-Dichloroethene	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Methylene chloride	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
trans-1,2-Dichloroethene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Methyl tert-butyl ether (MTBE)	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
1,1-Dichloroethane	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
2,2-Dichloropropane	ND	0.0832		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
cis-1,2-Dichloroethene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Chloroform	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
1,1,1-Trichloroethane (TCA)	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
1,1-Dichloropropene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Carbon tetrachloride	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
1,2-Dichloroethane (EDC)	ND	0.0499		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM
Benzene	0.346	0.0333		mg/Kg-dry	1	9/11/2014 4:40:0	00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

Project: SLU Marriott

Lab ID: 1409077-037 **Matrix:** Soil

Client Sample ID: DP-7-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0333 9/11/2014 4:40:00 AM Trichloroethene (TCE) mg/Kg-dry 1 1,2-Dichloropropane ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 Bromodichloromethane ND 0.0333 mg/Kg-dry 9/11/2014 4:40:00 AM 1 Dibromomethane ND 0.0665 9/11/2014 4:40:00 AM mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM Toluene 0.225 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 trans-1,3-Dichloropropylene ND 0.0499 mg/Kg-dry 1 9/11/2014 4:40:00 AM ND 0.0499 9/11/2014 4:40:00 AM 1,1,2-Trichloroethane mg/Kg-dry 1 ND 9/11/2014 4:40:00 AM 1,3-Dichloropropane 0.0832 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 Dibromochloromethane ND 0.0499 mg/Kg-dry 1 9/11/2014 4:40:00 AM 1,2-Dibromoethane (EDB) ND 0.00832 mg/Kg-dry 1 9/11/2014 4:40:00 AM Chlorobenzene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM ND 1,1,1,2-Tetrachloroethane 0.0499 mg/Kg-dry 1 9/11/2014 4:40:00 AM Ethylbenzene 0.170 0.0499 9/11/2014 4:40:00 AM mg/Kg-dry 1 m,p-Xylene 0.545 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM o-Xylene 0.124 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM Styrene ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 0.730 9/11/2014 4:40:00 AM Isopropylbenzene 0.133 mg/Kg-dry 1 9/11/2014 4:40:00 AM Bromoform ND 0.0333 mg/Kg-dry 1 ND 1,1,2,2-Tetrachloroethane 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM n-Propylbenzene 0.926 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM ND 9/11/2014 4:40:00 AM Bromobenzene 0.0499 mg/Kg-dry 1 0.0973 1,3,5-Trimethylbenzene 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 2-Chlorotoluene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 4-Chlorotoluene ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 1,2,3-Trichloropropane ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 1,2,4-Trichlorobenzene ND 0.0832 9/11/2014 4:40:00 AM mg/Kg-dry 1 0.392 0.0333 9/11/2014 4:40:00 AM sec-Butylbenzene mg/Kg-dry 1 0.0669 0.0333 9/11/2014 4:40:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0333 9/11/2014 4:40:00 AM mg/Kg-dry 1 1,4-Dichlorobenzene ND 0.0333 mg/Kg-dry 1 9/11/2014 4:40:00 AM 0.607 9/11/2014 4:40:00 AM n-Butylbenzene 0.0333 mg/Kg-dry 1 1,2-Dichlorobenzene ND 0.0333 mg/Kg-dry 9/11/2014 4:40:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:29:00 PM

Project: SLU Marriott

Lab ID: 1409077-037 **Matrix:** Soil

Client Sample ID: DP-7-7.5

Analyses	Result	RL	Qual	Units	DF	Date An	alyzed
Volatile Organic Compounds by	/ EPA Method	8260		Batch	n ID:	8672 Ana	lyst: EM
1,2-Dibromo-3-chloropropane	ND	0.0499		mg/Kg-dry	1	9/11/2014 4:	40:00 AM
1,2,4-Trimethylbenzene	0.131	0.0333		mg/Kg-dry	1	9/11/2014 4:	40:00 AM
Hexachlorobutadiene	ND	0.166		mg/Kg-dry	1	9/11/2014 4:	40:00 AM
Naphthalene	ND	0.0499		mg/Kg-dry	1	9/11/2014 4:	40:00 AM
1,2,3-Trichlorobenzene	ND	0.0333		mg/Kg-dry	1	9/11/2014 4:	40:00 AM
Surr: Dibromofluoromethane	98.4	63.7-129		%REC	1	9/11/2014 4:	40:00 AM
Surr: Toluene-d8	109	61.4-128		%REC	1	9/11/2014 4:	40:00 AM
Surr: 1-Bromo-4-fluorobenzene	101	63.1-141		%REC	1	9/11/2014 4:	40:00 AM
Mercury by EPA Method 7471				Batch	n ID:	8681 Ana	lyst: TN
Mercury	0.592	0.340		mg/Kg-dry	1	9/10/2014 3:	41:43 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID:	8674 Ana	lyst: TN
Arsenic	10.3	0.127		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Barium	1,210	0.636		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Cadmium	2.75	0.254		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Chromium	18.9	0.127		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Lead	355	0.254		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Selenium	4.45	0.636		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Silver	0.542	0.127		mg/Kg-dry	1	9/10/2014 4:	25:43 PM
Metals (SW6020) with TCLP Ext	raction (EPA	<u>1311)</u>		Batch	n ID:	8796 Ana	lyst: TN
Lead	0.996	0.200		mg/L	1	9/22/2014 11	I:34:19 AM
Sample Moisture (Percent Mois	ture)			Batch	n ID:	R16685 Ana	lyst: SL
Percent Moisture	37.6			wt%	1	9/10/2014 10	0:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-038 **Matrix:** Soil

Client Sample ID: DP-7-13.0

Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	844	22.4		mg/Kg-dry	1	9/10/2014 7:03:00 PM
Heavy Oil	ND	56.0		mg/Kg-dry	1	9/10/2014 7:03:00 PM
Surr: 2-Fluorobiphenyl	88.8	50-150		%REC	1	9/10/2014 7:03:00 PM
Surr: o-Terphenyl	85.6	50-150		%REC	1	9/10/2014 7:03:00 PM
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID: 8667	Analyst: NG
Naphthalene	907	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
2-Methylnaphthalene	6,840	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
1-Methylnaphthalene	9,120	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Acenaphthylene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Acenaphthene	1,000	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Fluorene	1,560	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Phenanthrene	3,950	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Fluoranthene	780	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Pyrene	964	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benz(a)anthracene	400	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Chrysene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(b)fluoranthene	385	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(k)fluoranthene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(a)pyrene	352	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Dibenz(a,h)anthracene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Benzo(g,h,i)perylene	ND	55.2		μg/Kg-dry	1	9/12/2014 7:51:00 AM
Surr: 2-Fluorobiphenyl	65.0	42.7-132		%REC	1	9/12/2014 7:51:00 AM
Surr: Terphenyl-d14 (surr)	150	48.8-157		%REC	1	9/12/2014 7:51:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	14 Analyst: EM
Gasoline	412	65.6	D	mg/Kg-dry	10	9/11/2014 11:21:00 PM
Surr: Toluene-d8	99.4	65-135		%REC	1	9/11/2014 5:39:00 AM
Surr: 4-Bromofluorobenzene	95.4	65-135		%REC	1	9/11/2014 5:39:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-038 **Matrix:** Soil

Client Sample ID: DP-7-13.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0787 9/11/2014 5:39:00 AM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0787 9/11/2014 5:39:00 AM 1 Vinyl chloride ND 0.00262 mg/Kg-dry 9/11/2014 5:39:00 AM 1 Bromomethane ND 0.118 9/11/2014 5:39:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM Chloroethane ND 0.0787 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM ND 0.0262 9/11/2014 5:39:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Methyl tert-butyl ether (MTBE) ND 0.0656 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 2,2-Dichloropropane ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM cis-1,2-Dichloroethene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Chloroform ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Carbon tetrachloride ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2-Dichloroethane (EDC) ND 0.0394 9/11/2014 5:39:00 AM mg/Kg-dry 1.28 Benzene 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Trichloroethene (TCE) ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2-Dichloropropane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Bromodichloromethane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM ND 9/11/2014 5:39:00 AM Dibromomethane 0.0525 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Toluene 0.320 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM ND 0.0394 9/11/2014 5:39:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,3-Dichloropropane ND 0.0656 9/11/2014 5:39:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 ND 0.0394 9/11/2014 5:39:00 AM Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00656 mg/Kg-dry 1 9/11/2014 5:39:00 AM Chlorobenzene ND 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.348 Ethylbenzene 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM m,p-Xylene 0.775 0.0262 mg/Kg-dry 9/11/2014 5:39:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-038 **Matrix:** Soil

Client Sample ID: DP-7-13.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.160 0.0262 9/11/2014 5:39:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0262 9/11/2014 5:39:00 AM 1 Isopropylbenzene 0.651 0.105 9/11/2014 5:39:00 AM mg/Kg-dry 1 Bromoform ND 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM n-Propylbenzene 0.790 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 Bromobenzene ND 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.214 0.0262 9/11/2014 5:39:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene 9/11/2014 5:39:00 AM ND 0.0262 mg/Kg-dry 1 0.0799 4-Chlorotoluene 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2,3-Trichloropropane ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,2,4-Trichlorobenzene ND 0.0656 mg/Kg-dry 1 9/11/2014 5:39:00 AM sec-Butylbenzene 0.293 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.375 0.0262 9/11/2014 5:39:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM 1,4-Dichlorobenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM n-Butylbenzene 0.432 0.0262 9/11/2014 5:39:00 AM mg/Kg-dry ND 1,2-Dichlorobenzene 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM ND 1,2-Dibromo-3-chloropropane 0.0394 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.172 1,2,4-Trimethylbenzene 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Hexachlorobutadiene ND 0.131 mg/Kg-dry 1 9/11/2014 5:39:00 AM 0.411 9/11/2014 5:39:00 AM Naphthalene 0.0394 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0262 mg/Kg-dry 1 9/11/2014 5:39:00 AM Surr: Dibromofluoromethane 94.6 63.7-129 %REC 1 9/11/2014 5:39:00 AM Surr: Toluene-d8 114 61.4-128 %REC 1 9/11/2014 5:39:00 AM Surr: 1-Bromo-4-fluorobenzene 98.9 63.1-141 %REC 1 9/11/2014 5:39:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.279 mg/Kg-dry 9/10/2014 3:43:18 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 3.43 0.0878 mg/Kg-dry 1 9/10/2014 4:29:08 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-038 **Matrix:** Soil

Client Sample ID: DP-7-13.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6	020			Batch	n ID: 86	74 Analyst: TN
Barium	100	0.439		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Cadmium	ND	0.176		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Chromium	31.7	0.0878		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Lead	18.7	0.176		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Selenium	1.06	0.439		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Silver	ND	0.0878		mg/Kg-dry	1	9/10/2014 4:29:08 PM
Sample Moisture (Percent Moi	sture)			Batch	n ID: R1	6685 Analyst: SL
Percent Moisture	13.7			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix:** Soil

Client Sample ID: DP-5-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 86	70 Analyst: EC
Diesel (Fuel Oil)	ND	22.3		ma/Ka dn/	1	9/10/2014 7:34:00 PM
Heavy Oil	ND ND	55.6		mg/Kg-dry mg/Kg-dry	1	9/10/2014 7:34:00 PM
Surr: 2-Fluorobiphenyl	89.7	50-150		%REC	1	9/10/2014 7:34:00 PM
Surr: o-Terphenyl	75.5	50-150		%REC	1	9/10/2014 7:34:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)			Batch ID: 8667			67 Analyst: NG
Naphthalene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
2-Methylnaphthalene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
1-Methylnaphthalene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Acenaphthylene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Acenaphthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Fluorene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Phenanthrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Anthracene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Fluoranthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Pyrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benz(a)anthracene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Chrysene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(b)fluoranthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(k)fluoranthene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(a)pyrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Indeno(1,2,3-cd)pyrene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Dibenz(a,h)anthracene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Benzo(g,h,i)perylene	ND	56.5		μg/Kg-dry	1	9/12/2014 8:13:00 AM
Surr: 2-Fluorobiphenyl	78.2	42.7-132		%REC	1	9/12/2014 8:13:00 AM
Surr: Terphenyl-d14 (surr)	119	48.8-157		%REC	1	9/12/2014 8:13:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R1	16714 Analyst: EM
Gasoline	ND	4.89		mg/Kg-dry	1	9/11/2014 7:37:00 AM
Surr: Toluene-d8	98.7	65-135		%REC	1	9/11/2014 7:37:00 AM
Surr: 4-Bromofluorobenzene	90.7	65-135		%REC	1	9/11/2014 7:37:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix:** Soil

Client Sample ID: DP-5-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 7:37:00 AM Dichlorodifluoromethane (CFC-12) 0.0586 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0586 9/11/2014 7:37:00 AM 1 Vinyl chloride ND 0.00195 mg/Kg-dry 9/11/2014 7:37:00 AM 1 Bromomethane ND 0.0880 9/11/2014 7:37:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM Chloroethane ND 0.0586 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 0.0195 9/11/2014 7:37:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0195 trans-1,2-Dichloroethene mg/Kg-dry 1 9/11/2014 7:37:00 AM 0.0489 Methyl tert-butyl ether (MTBE) ND 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 2,2-Dichloropropane ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM cis-1,2-Dichloroethene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Chloroform ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 0.0195 1,1,1-Trichloroethane (TCA) ND 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Carbon tetrachloride ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,2-Dichloroethane (EDC) ND 0.0293 9/11/2014 7:37:00 AM mg/Kg-dry 1 ND 9/11/2014 7:37:00 AM Benzene 0.0195 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/11/2014 7:37:00 AM 0.0195 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Bromodichloromethane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 9/11/2014 7:37:00 AM Dibromomethane 0.0391 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Toluene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 0.0293 9/11/2014 7:37:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,3-Dichloropropane ND 0.0489 9/11/2014 7:37:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 ND 9/11/2014 7:37:00 AM Dibromochloromethane 0.0293 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00489 mg/Kg-dry 1 9/11/2014 7:37:00 AM Chlorobenzene ND 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND Ethylbenzene 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM m,p-Xylene 0.0639 0.0195 mg/Kg-dry 9/11/2014 7:37:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM Client:

Project: SLU Marriott

Lab ID: 1409077-042 Matrix: Soil

Client Sample ID: DP-5-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0374 9/11/2014 7:37:00 AM o-Xylene 0.0195 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0195 9/11/2014 7:37:00 AM 1 Isopropylbenzene ND 0.0782 mg/Kg-dry 9/11/2014 7:37:00 AM 1 Bromoform ND 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM n-Propylbenzene 0.0374 0.0195 mg/Kg-dry 9/11/2014 7:37:00 AM 1 Bromobenzene ND 0.0293 mg/Kg-dry 1 9/11/2014 7:37:00 AM 0.0339 9/11/2014 7:37:00 AM 1,3,5-Trimethylbenzene 0.0195 mg/Kg-dry 1 2-Chlorotoluene 9/11/2014 7:37:00 AM ND 0.0195 mg/Kg-dry 1 ND 4-Chlorotoluene 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry 1 ND tert-Butylbenzene 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,2,3-Trichloropropane ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,2,4-Trichlorobenzene ND 0.0489 mg/Kg-dry 1 9/11/2014 7:37:00 AM sec-Butylbenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM ND 0.0195 9/11/2014 7:37:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM 1,4-Dichlorobenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM n-Butylbenzene 0.0375 0.0195 9/11/2014 7:37:00 AM mg/Kg-dry ND 9/11/2014 7:37:00 AM 1,2-Dichlorobenzene 0.0195 mg/Kg-dry 1 ND 9/11/2014 7:37:00 AM 1,2-Dibromo-3-chloropropane 0.0293 mg/Kg-dry 1 0.0433 1,2,4-Trimethylbenzene 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Hexachlorobutadiene ND 0.0977 mg/Kg-dry 1 9/11/2014 7:37:00 AM 0.0621 9/11/2014 7:37:00 AM Naphthalene 0.0293 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0195 mg/Kg-dry 1 9/11/2014 7:37:00 AM Surr: Dibromofluoromethane 92.3 63.7-129 %REC 1 9/11/2014 7:37:00 AM Surr: Toluene-d8 109 61.4-128 %REC 1 9/11/2014 7:37:00 AM Surr: 1-Bromo-4-fluorobenzene 94.5 63.1-141 %REC 1 9/11/2014 7:37:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.282 mg/Kg-dry 9/10/2014 3:44:54 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 3.68 0.0902 mg/Kg-dry 1 9/10/2014 4:32:34 PM D

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

- Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:08:00 PM

Project: SLU Marriott

Lab ID: 1409077-042 **Matrix:** Soil

Client Sample ID: DP-5-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Metho	od 6020			Batch	n ID: 8674	Analyst: TN
Barium	96.2	0.451		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Cadmium	ND	0.180		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Chromium	31.0	0.0902		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Lead	21.7	0.180		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Selenium	1.15	0.451		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Silver	ND	0.0902		mg/Kg-dry	1	9/10/2014 4:32:34 PM
Sample Moisture (Percent	Moisture)			Batch	n ID: R166	85 Analyst: SL
Percent Moisture	14.7			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix:** Soil

Client Sample ID: DP-9-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	27.0		mg/Kg-dry	1	9/10/2014 8:06:00 PM
Heavy Oil	ND	67.5		mg/Kg-dry	1	9/10/2014 8:06:00 PM
Surr: 2-Fluorobiphenyl	91.6	50-150		%REC	1	9/10/2014 8:06:00 PM
Surr: o-Terphenyl	75.3	50-150		%REC	1	9/10/2014 8:06:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
2-Methylnaphthalene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
1-Methylnaphthalene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Acenaphthylene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Acenaphthene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Fluorene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Phenanthrene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Anthracene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Fluoranthene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Pyrene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Benz(a)anthracene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Chrysene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Benzo(b)fluoranthene	326	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Benzo(k)fluoranthene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Benzo(a)pyrene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Indeno(1,2,3-cd)pyrene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Dibenz(a,h)anthracene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Benzo(g,h,i)perylene	ND	68.0		μg/Kg-dry	1	9/12/2014 8:35:00 AM
Surr: 2-Fluorobiphenyl	103	42.7-132		%REC	1	9/12/2014 8:35:00 AM
Surr: Terphenyl-d14 (surr)	139	48.8-157		%REC	1	9/12/2014 8:35:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	152	9.38		mg/Kg-dry	1	9/11/2014 12:02:00 PM
Surr: Toluene-d8	98.1	65-135		%REC	1	9/11/2014 12:02:00 PM
Surr: 4-Bromofluorobenzene	93.0	65-135		%REC	1	9/11/2014 12:02:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix**: Soil

Client Sample ID: DP-9-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 12:02:00 PM Dichlorodifluoromethane (CFC-12) 0.113 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.113 9/11/2014 12:02:00 PM 1 Vinyl chloride ND 0.00375 mg/Kg-dry 9/11/2014 12:02:00 PM 1 Bromomethane ND 0.169 9/11/2014 12:02:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM 9/11/2014 12:02:00 PM Chloroethane ND 0.113 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM ND 0.0375 9/11/2014 12:02:00 PM Methylene chloride mg/Kg-dry 1 ND 9/11/2014 12:02:00 PM trans-1,2-Dichloroethene 0.0375 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 0.0938 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 2,2-Dichloropropane ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM cis-1,2-Dichloroethene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Chloroform ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Carbon tetrachloride ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,2-Dichloroethane (EDC) ND 0.0563 9/11/2014 12:02:00 PM mg/Kg-dry 1 4.12 9/11/2014 12:02:00 PM Benzene 0.0375 mg/Kg-dry 1 Trichloroethene (TCE) ND 9/11/2014 12:02:00 PM 0.0375 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Bromodichloromethane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM ND 9/11/2014 12:02:00 PM Dibromomethane 0.0750 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 0.676 Toluene 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM ND 0.0563 9/11/2014 12:02:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,3-Dichloropropane ND 0.0938 9/11/2014 12:02:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 9/11/2014 12:02:00 PM ND Dibromochloromethane 0.0563 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00938 mg/Kg-dry 1 9/11/2014 12:02:00 PM Chlorobenzene ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM 3.17 Ethylbenzene 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM m,p-Xylene 6.85 0.0375 mg/Kg-dry 9/11/2014 12:02:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix:** Soil

Client Sample ID: DP-9-5.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0375 9/11/2014 12:02:00 PM o-Xylene 1.39 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0375 9/11/2014 12:02:00 PM 1 Isopropylbenzene 1.44 mg/Kg-dry 9/11/2014 12:02:00 PM 0.150 1 Bromoform ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM n-Propylbenzene 1.21 0.0375 mg/Kg-dry 9/11/2014 12:02:00 PM 1 Bromobenzene ND 0.0563 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1.06 0.0375 9/11/2014 12:02:00 PM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 4-Chlorotoluene ND 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry 1 tert-Butylbenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,2,3-Trichloropropane ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,2,4-Trichlorobenzene ND 0.0938 mg/Kg-dry 1 9/11/2014 12:02:00 PM sec-Butylbenzene 0.365 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1.46 0.0375 9/11/2014 12:02:00 PM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 1,4-Dichlorobenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM n-Butylbenzene 0.222 0.0375 9/11/2014 12:02:00 PM mg/Kg-dry ND 9/11/2014 12:02:00 PM 1,2-Dichlorobenzene 0.0375 mg/Kg-dry 1 ND 9/11/2014 12:02:00 PM 1,2-Dibromo-3-chloropropane 0.0563 mg/Kg-dry 1 0.987 1,2,4-Trimethylbenzene 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM Hexachlorobutadiene ND 0.188 mg/Kg-dry 1 9/11/2014 12:02:00 PM 0.330 9/11/2014 12:02:00 PM Naphthalene 0.0563 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0375 mg/Kg-dry 1 9/11/2014 12:02:00 PM 90.6 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 12:02:00 PM Surr: Toluene-d8 110 61.4-128 %REC 1 9/11/2014 12:02:00 PM Surr: 1-Bromo-4-fluorobenzene 97.0 63.1-141 %REC 1 9/11/2014 12:02:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury 5.51 3.13 D mg/Kg-dry 10 9/10/2014 4:16:16 PM Batch ID: 8811 Analyst: MW **Mercury by EPA Method 7470** Mercury ND 0.138 µg/L-dry 1 9/23/2014 4:43:29 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:52:00 PM

Project: SLU Marriott

Lab ID: 1409077-044 **Matrix:** Soil

Client Sample ID: DP-9-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Met	hod 6020			Batch	n ID: 86	74 Analyst: TN
Arsenic	19.3	0.106		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Barium	1,490	0.530		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Cadmium	0.592	0.212		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Chromium	26.1	0.106		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Lead	244	0.212		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Selenium	5.02	0.530		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Silver	1.07	0.106		mg/Kg-dry	1	9/10/2014 4:42:54 PM
Sample Moisture (Percer	nt Moisture)			Batch	n ID: R1	6685 Analyst: SL
Percent Moisture	27.4			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Lab ID: 1409077-048 **Matrix:** Soil

Client Sample ID: DP-9-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.			Batcl	n ID: 86	70 Analyst: EC
Diesel (Fuel Oil)	ND	20.7		mg/Kg-dry	1	9/10/2014 8:38:00 PM
Heavy Oil	ND	51.7		mg/Kg-dry	1	9/10/2014 8:38:00 PM
Surr: 2-Fluorobiphenyl	87.2	50-150		%REC	1	9/10/2014 8:38:00 PM
Surr: o-Terphenyl	76.4	50-150		%REC	1	9/10/2014 8:38:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)				Batcl	n ID: 86	75 Analyst: NG
Naphthalene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
2-Methylnaphthalene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
1-Methylnaphthalene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Acenaphthylene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Acenaphthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Fluorene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Phenanthrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Anthracene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Fluoranthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Pyrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benz(a)anthracene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Chrysene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(b)fluoranthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(k)fluoranthene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(a)pyrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Indeno(1,2,3-cd)pyrene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Dibenz(a,h)anthracene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Benzo(g,h,i)perylene	ND	55.6		μg/Kg-dry	1	9/12/2014 9:20:00 AM
Surr: 2-Fluorobiphenyl	96.1	42.7-132		%REC	1	9/12/2014 9:20:00 AM
Surr: Terphenyl-d14 (surr)	127	48.8-157		%REC	1	9/12/2014 9:20:00 AM
Gasoline by NWTPH-Gx				Batcl	n ID: R1	6714 Analyst: EM
Gasoline	ND	3.52		mg/Kg-dry	1	9/11/2014 8:06:00 AM
Surr: Toluene-d8	99.8	65-135		%REC	1	9/11/2014 8:06:00 AM
Surr: 4-Bromofluorobenzene	92.6	65-135		%REC	1	9/11/2014 8:06:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Lab ID: 1409077-048 **Matrix:** Soil

Client Sample ID: DP-9-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 8:06:00 AM Dichlorodifluoromethane (CFC-12) 0.0422 mg/Kg-dry 1 Chloromethane ND 9/11/2014 8:06:00 AM 0.0422 mg/Kg-dry 1 Vinyl chloride ND 0.00141 9/11/2014 8:06:00 AM mg/Kg-dry 1 Bromomethane ND 0.0633 9/11/2014 8:06:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM Chloroethane ND 0.0422 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0141 9/11/2014 8:06:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0141 trans-1,2-Dichloroethene mg/Kg-dry 1 9/11/2014 8:06:00 AM Methyl tert-butyl ether (MTBE) ND 0.0352 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 2,2-Dichloropropane ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM cis-1,2-Dichloroethene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Chloroform ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Carbon tetrachloride ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2-Dichloroethane (EDC) ND 0.0211 9/11/2014 8:06:00 AM mg/Kg-dry 1 ND 9/11/2014 8:06:00 AM Benzene 0.0141 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2-Dichloropropane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Bromodichloromethane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 9/11/2014 8:06:00 AM Dibromomethane 0.0281 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Toluene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0211 9/11/2014 8:06:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,3-Dichloropropane ND 0.0352 9/11/2014 8:06:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 ND 0.0211 9/11/2014 8:06:00 AM Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00352 mg/Kg-dry 1 9/11/2014 8:06:00 AM Chlorobenzene ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND Ethylbenzene 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM m,p-Xylene 0.0698 0.0141 mg/Kg-dry 9/11/2014 8:06:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Analyte detected below quantitation limits

Lab ID: 1409077-048 **Matrix:** Soil

Client Sample ID: DP-9-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0307 0.0141 9/11/2014 8:06:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0141 9/11/2014 8:06:00 AM 1 Isopropylbenzene ND 0.0563 mg/Kg-dry 9/11/2014 8:06:00 AM 1 Bromoform ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM n-Propylbenzene 0.0299 0.0141 mg/Kg-dry 9/11/2014 8:06:00 AM 1 Bromobenzene ND 0.0211 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0141 9/11/2014 8:06:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 4-Chlorotoluene ND 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2,3-Trichloropropane ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,2,4-Trichlorobenzene ND 0.0352 mg/Kg-dry 1 9/11/2014 8:06:00 AM sec-Butylbenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM ND 0.0141 9/11/2014 8:06:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 1,4-Dichlorobenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM n-Butylbenzene 0.0256 0.0141 9/11/2014 8:06:00 AM mg/Kg-dry ND 0.0141 9/11/2014 8:06:00 AM 1,2-Dichlorobenzene mg/Kg-dry 1 ND 9/11/2014 8:06:00 AM 1,2-Dibromo-3-chloropropane 0.0211 mg/Kg-dry 1 1,2,4-Trimethylbenzene 0.0289 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM Hexachlorobutadiene ND 0.0704 mg/Kg-dry 1 9/11/2014 8:06:00 AM 0.0459 9/11/2014 8:06:00 AM Naphthalene 0.0211 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0141 mg/Kg-dry 1 9/11/2014 8:06:00 AM 90.6 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 8:06:00 AM Surr: Toluene-d8 107 61.4-128 %REC 1 9/11/2014 8:06:00 AM Surr: 1-Bromo-4-fluorobenzene 96.6 63.1-141 %REC 1 9/11/2014 8:06:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** 9/10/2014 4:02:31 PM Mercury ND 0.251 mg/Kg-dry Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 2.51 0.0879 mg/Kg-dry 1 9/10/2014 4:46:20 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

Holding times for preparation or analysis exceeded

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 2:50:00 PM

Project: SLU Marriott

Lab ID: 1409077-048 **Matrix:** Soil

Client Sample ID: DP-9-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Meth	od 6020			Batch	n ID: 867	74 Analyst: TN
Barium	50.0	0.440		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Cadmium	ND	0.176		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Chromium	25.9	0.0879		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Lead	2.46	0.176		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Selenium	1.26	0.440		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Silver	ND	0.0879		mg/Kg-dry	1	9/10/2014 4:46:20 PM
Sample Moisture (Percent	t Moisture)			Batch	n ID: R1	6685 Analyst: SL
Percent Moisture	11.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-049 **Matrix:** Soil

Client Sample ID: DP-8-35.0

Analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
Diesel and Heavy Oil by NWTP	I-Dx/Dx Ext.			Batch	n ID: 86	70	Analyst: EC
Diesel (Fuel Oil)	ND	20.9		mg/Kg-dry	1	9/10	/2014 9:10:00 PM
Heavy Oil	ND	52.2		mg/Kg-dry	1	9/10	/2014 9:10:00 PM
Surr: 2-Fluorobiphenyl	88.8	50-150		%REC	1	9/10	/2014 9:10:00 PM
Surr: o-Terphenyl	76.3	50-150		%REC	1	9/10	/2014 9:10:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R1	6714	Analyst: EM
Gasoline	ND	3.32		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Surr: Toluene-d8	100	65-135		%REC	1	9/11	/2014 8:36:00 AM
Surr: 4-Bromofluorobenzene	91.7	65-135		%REC	1	9/11	/2014 8:36:00 AM
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Batch	n ID: 86	72	Analyst: EM
Dichlorodifluoromethane (CFC-12)	ND	0.0399		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Chloromethane	ND	0.0399		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Vinyl chloride	ND	0.00133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Bromomethane	ND	0.0598		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Trichlorofluoromethane (CFC-11)	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Chloroethane	ND	0.0399		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1-Dichloroethene	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Methylene chloride	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
trans-1,2-Dichloroethene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1-Dichloroethane	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
2,2-Dichloropropane	ND	0.0332		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
cis-1,2-Dichloroethene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Chloroform	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1,1-Trichloroethane (TCA)	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,1-Dichloropropene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Carbon tetrachloride	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,2-Dichloroethane (EDC)	ND	0.0199		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Benzene	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Trichloroethene (TCE)	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
1,2-Dichloropropane	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM
Bromodichloromethane	ND	0.0133		mg/Kg-dry	1	9/11	/2014 8:36:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-049 **Matrix**: Soil

Client Sample ID: DP-8-35.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0266 9/11/2014 8:36:00 AM Dibromomethane mg/Kg-dry 1 mg/Kg-dry cis-1,3-Dichloropropene ND 0.0133 9/11/2014 8:36:00 AM 1 Toluene ND 0.0133 mg/Kg-dry 9/11/2014 8:36:00 AM 1 trans-1,3-Dichloropropylene ND 0.0199 9/11/2014 8:36:00 AM mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,3-Dichloropropane ND 0.0332 mg/Kg-dry 9/11/2014 8:36:00 AM 1 Tetrachloroethene (PCE) ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM Dibromochloromethane ND 0.0199 9/11/2014 8:36:00 AM mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00332 mg/Kg-dry 1 9/11/2014 8:36:00 AM ND Chlorobenzene 9/11/2014 8:36:00 AM 0.0133 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM Ethylbenzene 0.0215 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM m,p-Xylene 0.0774 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM o-Xylene 0.0273 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM ND 0.0133 9/11/2014 8:36:00 AM Styrene mg/Kg-dry 1 Isopropylbenzene ND 0.0531 mg/Kg-dry 1 9/11/2014 8:36:00 AM Bromoform ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,1,2,2-Tetrachloroethane ND 0.0133 9/11/2014 8:36:00 AM mg/Kg-dry 1 0.0279 9/11/2014 8:36:00 AM n-Propylbenzene 0.0133 mg/Kg-dry 1 Bromobenzene ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,3,5-Trimethylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 2-Chlorotoluene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM ND 9/11/2014 8:36:00 AM 4-Chlorotoluene 0.0133 mg/Kg-dry 1 tert-Butylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2,3-Trichloropropane ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2,4-Trichlorobenzene ND 0.0332 9/11/2014 8:36:00 AM mg/Kg-dry 1 sec-Butylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 4-Isopropyltoluene ND 0.0133 9/11/2014 8:36:00 AM mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0133 1 9/11/2014 8:36:00 AM mg/Kg-dry ND 9/11/2014 8:36:00 AM 0.0133 1,4-Dichlorobenzene mg/Kg-dry 1 0.0241 n-Butylbenzene 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2-Dichlorobenzene ND 0.0133 mg/Kg-dry 9/11/2014 8:36:00 AM 1 1,2-Dibromo-3-chloropropane ND 0.0199 mg/Kg-dry 1 9/11/2014 8:36:00 AM 1,2,4-Trimethylbenzene ND 0.0133 mg/Kg-dry 1 9/11/2014 8:36:00 AM Hexachlorobutadiene ND 0.0664 mg/Kg-dry 9/11/2014 8:36:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-049 **Matrix:** Soil

Client Sample ID: DP-8-35.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	y EPA Method	8260		Batch	n ID: 8	672 Analyst: EM
Naphthalene	0.0516	0.0199		mg/Kg-dry	1	9/11/2014 8:36:00 AM
1,2,3-Trichlorobenzene	ND	0.0133		mg/Kg-dry	1	9/11/2014 8:36:00 AM
Surr: Dibromofluoromethane	92.1	63.7-129		%REC	1	9/11/2014 8:36:00 AM
Surr: Toluene-d8	108	61.4-128		%REC	1	9/11/2014 8:36:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.7	63.1-141		%REC	1	9/11/2014 8:36:00 AM
Sample Moisture (Percent Mois	ture)			Batch	n ID: R	R16685 Analyst: SL
Percent Moisture	14.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix:** Water

Client Sample ID: MW-2-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batc	h ID: 8679	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	9/11/2014 3:25:00 PM
Heavy Oil	ND	100		μg/L	1	9/11/2014 3:25:00 PM
Surr: 2-Fluorobiphenyl	79.3	50-150		%REC	1	9/11/2014 3:25:00 PM
Surr: o-Terphenyl	76.1	50-150		%REC	1	9/11/2014 3:25:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Bato	h ID: 8680	Analyst: NG
Naphthalene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
2-Methylnaphthalene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
1-Methylnaphthalene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Acenaphthylene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Acenaphthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Fluorene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Phenanthrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Anthracene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Fluoranthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Pyrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benz(a)anthracene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Chrysene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(b)fluoranthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(k)fluoranthene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(a)pyrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Dibenz(a,h)anthracene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Benzo(g,h,i)perylene	ND	0.100		μg/L	1	9/11/2014 11:55:00 PM
Surr: 2-Fluorobiphenyl	87.5	23.9-122		%REC	1	9/11/2014 11:55:00 PM
Surr: Terphenyl-d14	125	33.4-135		%REC	1	9/11/2014 11:55:00 PM
Gasoline by NWTPH-Gx				Bato	h ID: R166	82 Analyst: EM
Gasoline	ND	50.0		μg/L	1	9/9/2014 11:26:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/9/2014 11:26:00 PM
Surr: 4-Bromofluorobenzene	102	65-135		%REC	1	9/9/2014 11:26:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix**: Water

Client Sample ID: MW-2-140906

Analyses Result RL Qual Units DF **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: R16668 Analyst: BC 9/9/2014 11:26:00 PM ND Dichlorodifluoromethane (CFC-12) 1.00 μg/L 1 Chloromethane ND 1.00 μg/L 1 9/9/2014 11:26:00 PM Vinyl chloride 1.34 0.200 μg/L 1 9/9/2014 11:26:00 PM Bromomethane ND 1.00 μg/L 9/9/2014 11:26:00 PM 1 Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 9/9/2014 11:26:00 PM Chloroethane ND 1.00 9/9/2014 11:26:00 PM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 9/9/2014 11:26:00 PM ND Methylene chloride 1.00 µg/L 1 9/9/2014 11:26:00 PM ND trans-1,2-Dichloroethene 1.00 µg/L 9/9/2014 11:26:00 PM Methyl tert-butyl ether (MTBE) ND 1.00 μg/L 1 9/9/2014 11:26:00 PM μg/L 1,1-Dichloroethane ND 1.00 9/9/2014 11:26:00 PM 2,2-Dichloropropane ND 2.00 µg/L 1 9/9/2014 11:26:00 PM cis-1,2-Dichloroethene 4.44 1.00 1 9/11/2014 1:53:00 AM µg/L Chloroform ND 1.00 µg/L 1 9/9/2014 11:26:00 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 9/9/2014 11:26:00 PM 1 1,1-Dichloropropene ND 1.00 μg/L 1 9/9/2014 11:26:00 PM Carbon tetrachloride ND 1.00 µg/L 1 9/9/2014 11:26:00 PM 1,2-Dichloroethane (EDC) ND 1.00 9/9/2014 11:26:00 PM µg/L Benzene 14.1 1.00 1 9/11/2014 1:53:00 AM μg/L Trichloroethene (TCE) 0.500 ND µg/L 1 9/9/2014 11:26:00 PM 1,2-Dichloropropane ND 1.00 μg/L 1 9/9/2014 11:26:00 PM Bromodichloromethane ND 1.00 µg/L 9/9/2014 11:26:00 PM ND Dibromomethane 1.00 µg/L 1 9/9/2014 11:26:00 PM cis-1,3-Dichloropropene ND 1.00 1 9/9/2014 11:26:00 PM µg/L Toluene ND 1.00 µg/L 1 9/9/2014 11:26:00 PM ND 1.00 μg/L 9/9/2014 11:26:00 PM trans-1,3-Dichloropropene 1 1,1,2-Trichloroethane ND 1.00 µg/L 1 9/9/2014 11:26:00 PM 1,3-Dichloropropane ND 9/9/2014 11:26:00 PM 1.00 µg/L 1 Tetrachloroethene (PCE) ND 1.00 9/9/2014 11:26:00 PM µg/L 1 9/9/2014 11:26:00 PM ND Dibromochloromethane 1.00 µg/L 1 ND 0.0600 1,2-Dibromoethane (EDB) µg/L 1 9/9/2014 11:26:00 PM ND Chlorobenzene 1.00 μg/L 1 9/9/2014 11:26:00 PM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 9/9/2014 11:26:00 PM Ethylbenzene ND 1.00 µg/L 1 9/9/2014 11:26:00 PM m,p-Xylene ND 1.00 9/9/2014 11:26:00 PM µg/L

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix:** Water

Client Sample ID: MW-2-140906

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
/olatile Organic Compounds by	y EPA Method	8260		Batc	h ID: R166	668 Analyst: BC
o-Xylene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Styrene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Isopropylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Bromoform	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	9/9/2014 11:26:00 PN
n-Propylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Bromobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
2-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
4-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
tert-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	9/9/2014 11:26:00 PM
sec-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 Pf
1,4-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 Pf
n-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 Pf
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:26:00 PM
Hexachlorobutadiene	ND	4.00		μg/L	1	9/9/2014 11:26:00 PM
Naphthalene	ND	1.00		μg/L	1	9/9/2014 11:26:00 Pf
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	9/9/2014 11:26:00 PM
Surr: Dibromofluoromethane	94.3	61.7-130		%REC	1	9/9/2014 11:26:00 PM
Surr: Toluene-d8	93.7	40.1-139		%REC	1	9/9/2014 11:26:00 PM
Surr: 1-Bromo-4-fluorobenzene	93.2	68.2-127		%REC	1	9/9/2014 11:26:00 PM
issolved Mercury by EPA Met	hod 245.1			Bato	h ID: 8690	Analyst: TN
Mercury	ND	0.100		μg/L	1	9/11/2014 4:50:43 PM
issolved Metals by EPA Metho	od 200.8			Bato	h ID: 8658	Analyst: TN
Arsenic	3.98	1.00		μg/L	1	9/9/2014 1:21:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 9:40:00 AM

Project: SLU Marriott

Lab ID: 1409077-050 **Matrix:** Water

Client Sample ID: MW-2-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Metals by EF	PA Method 200.8			Bato	ch ID: 8658	Analyst: TN
Barium	251	0.500		μg/L	1	9/9/2014 1:21:00 PM
Cadmium	ND	0.200		μg/L	1	9/9/2014 1:21:00 PM
Chromium	0.666	0.500		μg/L	1	9/9/2014 1:21:00 PM
Lead	ND	1.00		μg/L	1	9/9/2014 1:21:00 PM
Selenium	ND	1.00		μg/L	1	9/9/2014 1:21:00 PM
Silver	ND	0.200		μg/L	1	9/9/2014 1:21:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix:** Water

Client Sample ID: MW-3-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Bato	h ID: 8679	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	9/11/2014 4:28:00 PM
Heavy Oil	ND	100		μg/L	1	9/11/2014 4:28:00 PM
Surr: 2-Fluorobiphenyl	84.6	50-150		%REC	1	9/11/2014 4:28:00 PM
Surr: o-Terphenyl	78.2	50-150		%REC	1	9/11/2014 4:28:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Bato	h ID: 8680	Analyst: NG
Naphthalene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
2-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
1-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Acenaphthylene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Acenaphthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Fluorene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Phenanthrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Anthracene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Fluoranthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Pyrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benz(a)anthracene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Chrysene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(b)fluoranthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(k)fluoranthene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(a)pyrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Indeno(1,2,3-cd)pyrene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Dibenz(a,h)anthracene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Benzo(g,h,i)perylene	ND	0.100		μg/L	1	9/12/2014 12:41:00 AM
Surr: 2-Fluorobiphenyl	91.0	23.9-122		%REC	1	9/12/2014 12:41:00 AM
Surr: Terphenyl-d14	115	33.4-135		%REC	1	9/12/2014 12:41:00 AM
Gasoline by NWTPH-Gx				Bato	h ID: R166	82 Analyst: EM
Gasoline	ND	50.0		μg/L	1	9/9/2014 11:53:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	9/9/2014 11:53:00 PM
Surr: 4-Bromofluorobenzene	102	65-135		%REC	1	9/9/2014 11:53:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix:** Water

Client Sample ID: MW-3-140906

Analyses Result RL Qual Units DF **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: R16668 Analyst: BC 9/9/2014 11:53:00 PM ND Dichlorodifluoromethane (CFC-12) 1.00 μg/L 1 Chloromethane ND 1.00 μg/L 1 9/9/2014 11:53:00 PM Vinyl chloride 3.14 0.200 μg/L 1 9/9/2014 11:53:00 PM Bromomethane ND 1.00 μg/L 9/9/2014 11:53:00 PM 1 Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 9/9/2014 11:53:00 PM Chloroethane ND 1.00 9/9/2014 11:53:00 PM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 9/9/2014 11:53:00 PM ND Methylene chloride 1.00 µg/L 1 9/9/2014 11:53:00 PM ND trans-1,2-Dichloroethene 1.00 µg/L 9/9/2014 11:53:00 PM Methyl tert-butyl ether (MTBE) ND 1.00 μg/L 1 9/9/2014 11:53:00 PM μg/L 1,1-Dichloroethane ND 1.00 1 9/9/2014 11:53:00 PM 2,2-Dichloropropane ND 2.00 µg/L 1 9/9/2014 11:53:00 PM cis-1,2-Dichloroethene 9.03 1.00 1 9/11/2014 1:25:00 AM µg/L Chloroform ND 1.00 µg/L 1 9/9/2014 11:53:00 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 9/9/2014 11:53:00 PM 1 1,1-Dichloropropene ND 1.00 μg/L 1 9/9/2014 11:53:00 PM Carbon tetrachloride ND 1.00 µg/L 1 9/9/2014 11:53:00 PM 1,2-Dichloroethane (EDC) 4.34 1.00 9/11/2014 1:25:00 AM µg/L 1.69 Benzene 1.00 1 9/11/2014 1:25:00 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 9/9/2014 11:53:00 PM 1,2-Dichloropropane ND 1.00 μg/L 1 9/9/2014 11:53:00 PM Bromodichloromethane ND 1.00 µg/L 9/9/2014 11:53:00 PM ND Dibromomethane 1.00 µg/L 1 9/9/2014 11:53:00 PM cis-1,3-Dichloropropene ND 1.00 1 9/9/2014 11:53:00 PM µg/L Toluene ND 1.00 µg/L 1 9/9/2014 11:53:00 PM ND 1.00 μg/L 9/9/2014 11:53:00 PM trans-1,3-Dichloropropene 1 1,1,2-Trichloroethane ND 1.00 µg/L 1 9/9/2014 11:53:00 PM 1,3-Dichloropropane ND 9/9/2014 11:53:00 PM 1.00 µg/L 1 Tetrachloroethene (PCE) ND 1.00 9/9/2014 11:53:00 PM µg/L 1 9/9/2014 11:53:00 PM ND Dibromochloromethane 1.00 µg/L 1 ND 0.0600 1,2-Dibromoethane (EDB) µg/L 1 9/9/2014 11:53:00 PM ND Chlorobenzene 1.00 μg/L 1 9/9/2014 11:53:00 PM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 9/9/2014 11:53:00 PM Ethylbenzene ND 1.00 µg/L 1 9/9/2014 11:53:00 PM m,p-Xylene ND 1.00 9/9/2014 11:53:00 PM µg/L

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix**: Water

Client Sample ID: MW-3-140906

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds b	y EPA Method	8260		Batc	h ID: R166	68 Analyst: BC
o-Xylene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Styrene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Isopropylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Bromoform	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
n-Propylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Bromobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
2-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
4-Chlorotoluene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
tert-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	9/9/2014 11:53:00 PM
sec-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
n-Butylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
Hexachlorobutadiene	ND	4.00		μg/L	1	9/9/2014 11:53:00 PM
Naphthalene	ND	1.00		μg/L	1	9/9/2014 11:53:00 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	9/9/2014 11:53:00 PM
Surr: Dibromofluoromethane	97.5	61.7-130		%REC	1	9/9/2014 11:53:00 PM
Surr: Toluene-d8	93.9	40.1-139		%REC	1	9/9/2014 11:53:00 PM
Surr: 1-Bromo-4-fluorobenzene	93.2	68.2-127		%REC	1	9/9/2014 11:53:00 PM
Dissolved Mercury by EPA Met	hod 245.1			Batc	h ID: 8690	Analyst: TN
Mercury	ND	0.100		μg/L	1	9/11/2014 4:57:32 PM
Dissolved Metals by EPA Metho	od 200.8			Batc	h ID: 8658	Analyst: TN
Arsenic	7.60	1.00		μg/L	1	9/9/2014 1:34:42 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 11:10:00 AM

Project: SLU Marriott

Lab ID: 1409077-051 **Matrix:** Water

Client Sample ID: MW-3-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Metals by EP	A Method 200.8			Bato	ch ID: 8658	Analyst: TN
Barium	124	0.500		μg/L	1	9/9/2014 1:34:42 PM
Cadmium	ND	0.200		μg/L	1	9/9/2014 1:34:42 PM
Chromium	ND	0.500		μg/L	1	9/9/2014 1:34:42 PM
Lead	ND	1.00		μg/L	1	9/9/2014 1:34:42 PM
Selenium	ND	1.00		μg/L	1	9/9/2014 1:34:42 PM
Silver	1.04	0.200		μg/L	1	9/9/2014 1:34:42 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix:** Water

Client Sample ID: MW-1-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Bato	h ID: 8679	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	9/12/2014 10:35:00 AM
Heavy Oil	ND	100		μg/L	1	9/12/2014 10:35:00 AM
Surr: 2-Fluorobiphenyl	72.0	50-150		%REC	1	9/12/2014 10:35:00 AM
Surr: o-Terphenyl	65.9	50-150		%REC	1	9/12/2014 10:35:00 AM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Bato	h ID: 8680	Analyst: NG
Naphthalene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
2-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
1-Methylnaphthalene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Acenaphthylene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Acenaphthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Fluorene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Phenanthrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Anthracene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Fluoranthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Pyrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benz(a)anthracene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Chrysene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(b)fluoranthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(k)fluoranthene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(a)pyrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Indeno(1,2,3-cd)pyrene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Dibenz(a,h)anthracene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Benzo(g,h,i)perylene	ND	0.100		μg/L	1	9/12/2014 1:26:00 AM
Surr: 2-Fluorobiphenyl	83.9	23.9-122		%REC	1	9/12/2014 1:26:00 AM
Surr: Terphenyl-d14	108	33.4-135		%REC	1	9/12/2014 1:26:00 AM
Gasoline by NWTPH-Gx				Bato	h ID: R166	82 Analyst: EM
Gasoline	ND	50.0		μg/L	1	9/10/2014 12:22:00 AM
Surr: Toluene-d8	99.1	65-135		%REC	1	9/10/2014 12:22:00 AM
Surr: 4-Bromofluorobenzene	107	65-135		%REC	1	9/10/2014 12:22:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix:** Water

Client Sample ID: MW-1-140906

Analyses Result RL Qual Units DF **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: R16668 Analyst: BC Dichlorodifluoromethane (CFC-12) ND 1.00 μg/L 1 9/10/2014 12:22:00 AM Chloromethane ND 1.00 9/10/2014 12:22:00 AM μg/L 1 Vinyl chloride ND 0.200 9/10/2014 12:22:00 AM μg/L 1 Bromomethane ND 1.00 μg/L 9/10/2014 12:22:00 AM 1 Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 9/10/2014 12:22:00 AM Chloroethane ND 1.00 9/10/2014 12:22:00 AM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 9/10/2014 12:22:00 AM ND 9/10/2014 12:22:00 AM Methylene chloride 1.00 µg/L 1 ND 9/10/2014 12:22:00 AM trans-1,2-Dichloroethene 1.00 µg/L Methyl tert-butyl ether (MTBE) ND 9/10/2014 12:22:00 AM 1.00 μg/L 1 μg/L 1,1-Dichloroethane ND 1.00 1 9/10/2014 12:22:00 AM 2,2-Dichloropropane ND 2.00 µg/L 1 9/10/2014 12:22:00 AM cis-1,2-Dichloroethene ND 1.00 1 9/10/2014 12:22:00 AM µg/L Chloroform ND 1.00 µg/L 1 9/10/2014 12:22:00 AM 1,1,1-Trichloroethane (TCA) ND 1.00 9/10/2014 12:22:00 AM µg/L 1 1,1-Dichloropropene ND 1.00 μg/L 1 9/10/2014 12:22:00 AM Carbon tetrachloride ND 1.00 µg/L 1 9/10/2014 12:22:00 AM 1,2-Dichloroethane (EDC) ND 1.00 9/10/2014 12:22:00 AM µg/L ND Benzene 1.00 1 9/10/2014 12:22:00 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 9/10/2014 12:22:00 AM 1,2-Dichloropropane ND 1.00 μg/L 1 9/10/2014 12:22:00 AM Bromodichloromethane ND 1.00 µg/L 9/10/2014 12:22:00 AM ND Dibromomethane 1.00 µg/L 1 9/10/2014 12:22:00 AM cis-1,3-Dichloropropene ND 1.00 1 9/10/2014 12:22:00 AM µg/L Toluene ND 1.00 µg/L 1 9/10/2014 12:22:00 AM ND 1.00 μg/L 9/10/2014 12:22:00 AM trans-1,3-Dichloropropene 1 1,1,2-Trichloroethane ND 1.00 µg/L 1 9/10/2014 12:22:00 AM 1,3-Dichloropropane ND 9/10/2014 12:22:00 AM 1.00 µg/L 1 Tetrachloroethene (PCE) ND 1.00 9/10/2014 12:22:00 AM µg/L ND Dibromochloromethane 1.00 µg/L 1 9/10/2014 12:22:00 AM ND 0.0600 1,2-Dibromoethane (EDB) µg/L 1 9/10/2014 12:22:00 AM ND Chlorobenzene 1.00 μg/L 1 9/10/2014 12:22:00 AM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 9/10/2014 12:22:00 AM Ethylbenzene ND 1.00 µg/L 1 9/10/2014 12:22:00 AM m,p-Xylene ND 1.00 9/10/2014 12:22:00 AM µg/L

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix**: Water

Client Sample ID: MW-1-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds b	y EPA Method	<u>8260</u>		Batc	h ID: R166	68 Analyst: BC
o-Xylene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Styrene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Isopropylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Bromoform	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
n-Propylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Bromobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
2-Chlorotoluene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
4-Chlorotoluene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
tert-Butylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	9/10/2014 12:22:00 AN
sec-Butylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
4-Isopropyltoluene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
1,3-Dichlorobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
1,4-Dichlorobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
n-Butylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
1,2-Dichlorobenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AM
Hexachlorobutadiene	ND	4.00		μg/L	1	9/10/2014 12:22:00 AN
Naphthalene	ND	1.00		μg/L	1	9/10/2014 12:22:00 AN
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	9/10/2014 12:22:00 AN
Surr: Dibromofluoromethane	100	61.7-130		%REC	1	9/10/2014 12:22:00 AN
Surr: Toluene-d8	95.3	40.1-139		%REC	1	9/10/2014 12:22:00 AN
Surr: 1-Bromo-4-fluorobenzene	97.8	68.2-127		%REC	1	9/10/2014 12:22:00 AN
Dissolved Mercury by EPA Met	hod 245.1			Bato	h ID: 8690	Analyst: TN
Mercury	ND	0.100		μg/L	1	9/11/2014 4:59:13 PM
Dissolved Metals by EPA Metho	od 200.8			Bato	h ID: 8658	Analyst: TN
Arsenic	ND	1.00		μg/L	1	9/9/2014 1:38:08 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:30:00 PM

Project: SLU Marriott

Lab ID: 1409077-052 **Matrix:** Water

Client Sample ID: MW-1-140906

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Metals by EP	A Method 200.8			Bato	ch ID: 8658	Analyst: TN
Barium	200	0.500		μg/L	1	9/9/2014 1:38:08 PM
Cadmium	ND	0.200		μg/L	1	9/9/2014 1:38:08 PM
Chromium	ND	0.500		μg/L	1	9/9/2014 1:38:08 PM
Lead	ND	1.00		μg/L	1	9/9/2014 1:38:08 PM
Selenium	ND	1.00		μg/L	1	9/9/2014 1:38:08 PM
Silver	ND	0.200		μg/L	1	9/9/2014 1:38:08 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix:** Soil

Client Sample ID: DP-8-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 8670	Analyst: EC
Diesel (Fuel Oil)	ND	31.9		mg/Kg-dry	1	9/11/2014 8:02:00 AM
Heavy Oil	1,550	79.6		mg/Kg-dry	1	9/11/2014 8:02:00 AM
Surr: 2-Fluorobiphenyl	111	50-150		%REC	1	9/11/2014 8:02:00 AM
Surr: o-Terphenyl	99.0	50-150		%REC	1	9/11/2014 8:02:00 AM
Polyaromatic Hydrocarbons k	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: DB
Naphthalene	188,000	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
2-Methylnaphthalene	266,000	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
1-Methylnaphthalene	120,000	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Acenaphthylene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Acenaphthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Fluorene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Phenanthrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Anthracene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Fluoranthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Pyrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benz(a)anthracene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Chrysene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(b)fluoranthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(k)fluoranthene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(a)pyrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Indeno(1,2,3-cd)pyrene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Dibenz(a,h)anthracene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Benzo(g,h,i)perylene	ND	8,360	D	μg/Kg-dry	100	9/16/2014 2:07:00 PM
Surr: 2-Fluorobiphenyl	73.2	42.7-132	D	%REC	100	9/16/2014 2:07:00 PM
Surr: Terphenyl-d14 (surr)	145	48.8-157	D	%REC	100	9/16/2014 2:07:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: 8672	Analyst: EM
Gasoline	2,820	364	D	mg/Kg-dry	50	9/15/2014 10:47:00 AM
Surr: Toluene-d8	104	65-135		%REC	1	9/11/2014 11:03:00 AM
Surr: 4-Bromofluorobenzene	131	65-135		%REC	1	9/11/2014 11:03:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix**: Soil

Client Sample ID: DP-8-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 11:03:00 AM Dichlorodifluoromethane (CFC-12) 0.0873 mg/Kg-dry 1 Chloromethane ND 0.0873 9/11/2014 11:03:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00291 9/11/2014 11:03:00 AM mg/Kg-dry 1 Bromomethane ND 0.131 9/11/2014 11:03:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0727 mg/Kg-dry 1 9/11/2014 11:03:00 AM Chloroethane ND 0.0873 9/11/2014 11:03:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0727 mg/Kg-dry 1 9/11/2014 11:03:00 AM ND 9/11/2014 11:03:00 AM Methylene chloride 0.0291 mg/Kg-dry 1 ND 9/11/2014 11:03:00 AM trans-1,2-Dichloroethene 0.0291 mg/Kg-dry 1 Methyl tert-butyl ether (MTBE) ND 9/11/2014 11:03:00 AM 0.0727 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 2,2-Dichloropropane ND 0.0727 mg/Kg-dry 1 9/11/2014 11:03:00 AM cis-1,2-Dichloroethene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Chloroform ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0291 9/11/2014 11:03:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Carbon tetrachloride ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,2-Dichloroethane (EDC) ND 0.0436 9/11/2014 11:03:00 AM mg/Kg-dry 1 0.717 9/11/2014 11:03:00 AM Benzene 0.0291 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,2-Dichloropropane ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Bromodichloromethane ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM ND 9/11/2014 11:03:00 AM Dibromomethane 0.0582 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Toluene 1.27 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM ND 0.0436 9/11/2014 11:03:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0436 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,3-Dichloropropane ND 0.0727 9/11/2014 11:03:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0291 9/11/2014 11:03:00 AM mg/Kg-dry 1 ND 9/11/2014 11:03:00 AM Dibromochloromethane 0.0436 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00727 mg/Kg-dry 1 9/11/2014 11:03:00 AM Chlorobenzene ND 0.0291 9/11/2014 11:03:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0436 mg/Kg-dry 1 9/11/2014 11:03:00 AM 27.7 D Ethylbenzene 2.18 mg/Kg-dry 50 9/15/2014 10:47:00 AM m,p-Xylene 3.30 0.0291 mg/Kg-dry 9/11/2014 11:03:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix:** Soil

Client Sample ID: DP-8-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.836 9/11/2014 11:03:00 AM o-Xylene 0.0291 mg/Kg-dry 1 Styrene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Isopropylbenzene 10.0 5.82 D mg/Kg-dry 50 9/15/2014 10:47:00 AM Bromoform ND 0.0291 9/11/2014 11:03:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM n-Propylbenzene ND 0.0291 mg/Kg-dry 9/11/2014 11:03:00 AM 1 Bromobenzene ND 0.0436 mg/Kg-dry 1 9/11/2014 11:03:00 AM 0.332 0.0291 9/11/2014 11:03:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 ND 9/11/2014 11:03:00 AM 2-Chlorotoluene 0.0291 mg/Kg-dry 1 ND 4-Chlorotoluene 0.0291 9/11/2014 11:03:00 AM mg/Kg-dry 1 tert-Butylbenzene 0.167 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,2,3-Trichloropropane ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,2,4-Trichlorobenzene ND 0.0727 mg/Kg-dry 1 9/11/2014 11:03:00 AM sec-Butylbenzene 6.46 1.45 D mg/Kg-dry 50 9/15/2014 10:47:00 AM 2.29 0.0291 9/11/2014 11:03:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,4-Dichlorobenzene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM n-Butylbenzene 22.2 D mg/Kg-dry 9/15/2014 10:47:00 AM 1.45 50 ND 0.0291 9/11/2014 11:03:00 AM 1,2-Dichlorobenzene mg/Kg-dry 1 ND 1,2-Dibromo-3-chloropropane 0.0436 mg/Kg-dry 1 9/11/2014 11:03:00 AM 1,2,4-Trimethylbenzene 1.54 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Hexachlorobutadiene ND 0.145 mg/Kg-dry 1 9/11/2014 11:03:00 AM 149 D 9/15/2014 10:47:00 AM Naphthalene 2.18 mg/Kg-dry 50 1,2,3-Trichlorobenzene ND 0.0291 mg/Kg-dry 1 9/11/2014 11:03:00 AM Surr: Dibromofluoromethane 93.4 63.7-129 %REC 1 9/11/2014 11:03:00 AM Surr: Toluene-d8 119 61.4-128 %REC 1 9/11/2014 11:03:00 AM Surr: 1-Bromo-4-fluorobenzene 114 63.1-141 %REC 9/11/2014 11:03:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury 5.45 4.15 D mg/Kg-dry 10 9/10/2014 4:17:54 PM Batch ID: 8811 Analyst: MW **Mercury by EPA Method 7470** Mercury ND 0.169 µg/L-dry 1 9/23/2014 4:50:19 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:40:00 PM

Project: SLU Marriott

Lab ID: 1409077-054 **Matrix:** Soil

Client Sample ID: DP-8-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method	6020			Batch	1D: 8	Analyst: TN
Arsenic	14.6	0.126		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Barium	780	0.632		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Cadmium	1.07	0.253		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Chromium	21.7	0.126		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Lead	1,080	0.253		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Selenium	2.55	0.632		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Silver	0.543	0.126		mg/Kg-dry	1	9/10/2014 4:49:45 PM
Metals (SW6020) with TCLP	Extraction (EPA 13	<u>11)</u>		Batch	1D: 8	3796 Analyst: TN
Lead	ND	0.200		mg/L	1	9/22/2014 11:37:44 AM
Sample Moisture (Percent M	oisture)			Batch	ID: F	R16685 Analyst: SL
Percent Moisture	41.0			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-058 **Matrix:** Soil

Client Sample ID: DP-8-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	22.5		mg/Kg-dry	1	9/10/2014 1:32:00 PM
Heavy Oil	ND	56.4		mg/Kg-dry	1	9/10/2014 1:32:00 PM
Surr: 2-Fluorobiphenyl	77.4	50-150		%REC	1	9/10/2014 1:32:00 PM
Surr: o-Terphenyl	89.2	50-150		%REC	1	9/10/2014 1:32:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
2-Methylnaphthalene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
1-Methylnaphthalene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Acenaphthylene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Acenaphthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Fluorene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Phenanthrene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Anthracene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Fluoranthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Pyrene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benz(a)anthracene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Chrysene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(b)fluoranthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(k)fluoranthene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(a)pyrene	174	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Indeno(1,2,3-cd)pyrene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Dibenz(a,h)anthracene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Benzo(g,h,i)perylene	ND	52.9		μg/Kg-dry	1	9/12/2014 10:28:00 AM
Surr: 2-Fluorobiphenyl	93.4	42.7-132		%REC	1	9/12/2014 10:28:00 AM
Surr: Terphenyl-d14 (surr)	120	48.8-157		%REC	1	9/12/2014 10:28:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	14 Analyst: EM
Gasoline	ND	4.41		mg/Kg-dry	1	9/11/2014 9:05:00 AM
Surr: Toluene-d8	102	65-135		%REC	1	9/11/2014 9:05:00 AM
Surr: 4-Bromofluorobenzene	92.4	65-135		%REC	1	9/11/2014 9:05:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-058 **Matrix:** Soil

Client Sample ID: DP-8-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 9:05:00 AM Dichlorodifluoromethane (CFC-12) 0.0529 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0529 9/11/2014 9:05:00 AM 1 Vinyl chloride ND mg/Kg-dry 9/11/2014 9:05:00 AM 0.00176 1 Bromomethane ND 0.0794 9/11/2014 9:05:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM Chloroethane ND 0.0529 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 0.0176 9/11/2014 9:05:00 AM Methylene chloride mg/Kg-dry 1 ND 0.0176 trans-1,2-Dichloroethene mg/Kg-dry 1 9/11/2014 9:05:00 AM 0.0441 Methyl tert-butyl ether (MTBE) ND 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 2,2-Dichloropropane ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM cis-1,2-Dichloroethene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Chloroform ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Carbon tetrachloride ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,2-Dichloroethane (EDC) ND 0.0265 9/11/2014 9:05:00 AM mg/Kg-dry 1 0.312 9/11/2014 9:05:00 AM Benzene 0.0176 mg/Kg-dry 1 Trichloroethene (TCE) 9/11/2014 9:05:00 AM ND 0.0176 mg/Kg-dry 1 1,2-Dichloropropane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Bromodichloromethane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 9/11/2014 9:05:00 AM Dibromomethane 0.0353 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Toluene 0.0183 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 0.0265 9/11/2014 9:05:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,3-Dichloropropane ND 0.0441 9/11/2014 9:05:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 ND 0.0265 9/11/2014 9:05:00 AM Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00441 mg/Kg-dry 1 9/11/2014 9:05:00 AM Chlorobenzene ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM Ethylbenzene 0.0325 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM m,p-Xylene 0.128 0.0176 mg/Kg-dry 9/11/2014 9:05:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Ε

J

RL

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-058 **Matrix:** Soil

Client Sample ID: DP-8-20.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0347 0.0176 9/11/2014 9:05:00 AM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0176 9/11/2014 9:05:00 AM 1 Isopropylbenzene 0.0760 0.0706 mg/Kg-dry 9/11/2014 9:05:00 AM 1 Bromoform ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM n-Propylbenzene 0.122 0.0176 mg/Kg-dry 9/11/2014 9:05:00 AM 1 Bromobenzene ND 0.0265 mg/Kg-dry 1 9/11/2014 9:05:00 AM 0.0315 0.0176 9/11/2014 9:05:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene 0.0176 9/11/2014 9:05:00 AM ND mg/Kg-dry 1 ND 4-Chlorotoluene 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry 1 ND tert-Butylbenzene 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,2,3-Trichloropropane ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,2,4-Trichlorobenzene ND 0.0441 mg/Kg-dry 1 9/11/2014 9:05:00 AM sec-Butylbenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM ND 0.0176 9/11/2014 9:05:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 1,4-Dichlorobenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM n-Butylbenzene ND 0.0176 9/11/2014 9:05:00 AM mg/Kg-dry ND 9/11/2014 9:05:00 AM 1,2-Dichlorobenzene 0.0176 mg/Kg-dry 1 ND 9/11/2014 9:05:00 AM 1,2-Dibromo-3-chloropropane 0.0265 mg/Kg-dry 1 1,2,4-Trimethylbenzene 0.0380 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM Hexachlorobutadiene ND 0.0882 mg/Kg-dry 1 9/11/2014 9:05:00 AM 0.0617 9/11/2014 9:05:00 AM Naphthalene 0.0265 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0176 mg/Kg-dry 1 9/11/2014 9:05:00 AM 93.0 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 9:05:00 AM Surr: Toluene-d8 110 61.4-128 %REC 1 9/11/2014 9:05:00 AM Surr: 1-Bromo-4-fluorobenzene 96.4 63.1-141 %REC 1 9/11/2014 9:05:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.246 mg/Kg-dry 9/10/2014 4:06:36 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 1.65 0.0893 mg/Kg-dry 1 9/10/2014 4:53:10 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:05:00 PM

Project: SLU Marriott

Lab ID: 1409077-058 **Matrix:** Soil

Client Sample ID: DP-8-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Metho	d 6020			Batch	n ID: 867	4 Analyst: TN
Barium	40.6	0.447		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Cadmium	ND	0.179		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Chromium	21.5	0.0893		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Lead	2.68	0.179		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Selenium	0.749	0.447		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Silver	ND	0.0893		mg/Kg-dry	1	9/10/2014 4:53:10 PM
Sample Moisture (Percent	Moisture)			Batch	n ID: R16	6685 Analyst: SL
Percent Moisture	13.9			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:20:00 PM

Project: SLU Marriott

Lab ID: 1409077-059 **Matrix:** Soil

Client Sample ID: DP-8-25.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	y EPA Method	8260		Batch	n ID: 8	824 Analyst: EM
Benzene	0.0864	0.0160	Н	mg/Kg-dry	1	9/24/2014 9:16:00 AM
Surr: Dibromofluoromethane	101	63.7-129	Н	%REC	1	9/24/2014 9:16:00 AM
Surr: Toluene-d8	100	64.3-131	Н	%REC	1	9/24/2014 9:16:00 AM
Surr: 1-Bromo-4-fluorobenzene	98.2	63.1-141	Н	%REC	1	9/24/2014 9:16:00 AM
Sample Moisture (Percent Mois	ture)			Batch	n ID: F	R16932 Analyst: SL
Percent Moisture	28.0			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Lab ID: 1409077-061 **Matrix:** Soil

Client Sample ID: DP-10-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	20.6		mg/Kg-dry	1	9/10/2014 2:33:00 PM
Heavy Oil	ND	51.4		mg/Kg-dry	1	9/10/2014 2:33:00 PM
Surr: 2-Fluorobiphenyl	75.8	50-150		%REC	1	9/10/2014 2:33:00 PM
Surr: o-Terphenyl	88.4	50-150		%REC	1	9/10/2014 2:33:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
2-Methylnaphthalene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
1-Methylnaphthalene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Acenaphthylene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Acenaphthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Fluorene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Phenanthrene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Anthracene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Fluoranthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Pyrene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benz(a)anthracene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Chrysene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(b)fluoranthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(k)fluoranthene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(a)pyrene	174	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Indeno(1,2,3-cd)pyrene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Dibenz(a,h)anthracene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Benzo(g,h,i)perylene	ND	53.5		μg/Kg-dry	1	9/12/2014 10:50:00 AM
Surr: 2-Fluorobiphenyl	97.3	42.7-132		%REC	1	9/12/2014 10:50:00 AM
Surr: Terphenyl-d14 (surr)	115	48.8-157		%REC	1	9/12/2014 10:50:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	'14 Analyst: EM
Gasoline	ND	4.17		mg/Kg-dry	1	9/11/2014 9:35:00 AM
Surr: Toluene-d8	99.8	65-135		%REC	1	9/11/2014 9:35:00 AM
Surr: 4-Bromofluorobenzene	91.4	65-135		%REC	1	9/11/2014 9:35:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Lab ID: 1409077-061 **Matrix**: Soil

Client Sample ID: DP-10-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 9:35:00 AM Dichlorodifluoromethane (CFC-12) 0.0500 mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0500 9/11/2014 9:35:00 AM 1 Vinyl chloride ND 0.00167 mg/Kg-dry 9/11/2014 9:35:00 AM 1 Bromomethane ND 0.0750 9/11/2014 9:35:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM Chloroethane ND 0.0500 9/11/2014 9:35:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 0.0167 9/11/2014 9:35:00 AM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Methyl tert-butyl ether (MTBE) ND 9/11/2014 9:35:00 AM 0.0417 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 2,2-Dichloropropane ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM cis-1,2-Dichloroethene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Chloroform ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Carbon tetrachloride ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,2-Dichloroethane (EDC) ND 0.0250 9/11/2014 9:35:00 AM mg/Kg-dry 1 ND 9/11/2014 9:35:00 AM Benzene 0.0167 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,2-Dichloropropane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Bromodichloromethane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 9/11/2014 9:35:00 AM Dibromomethane 0.0333 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Toluene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 0.0250 9/11/2014 9:35:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,3-Dichloropropane ND 0.0417 9/11/2014 9:35:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 ND 9/11/2014 9:35:00 AM Dibromochloromethane 0.0250 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00417 mg/Kg-dry 1 9/11/2014 9:35:00 AM Chlorobenzene ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND Ethylbenzene 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM m,p-Xylene ND 0.0167 mg/Kg-dry 9/11/2014 9:35:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-061 **Matrix**: Soil

Client Sample ID: DP-10-10.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 9:35:00 AM o-Xylene 0.0167 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0167 9/11/2014 9:35:00 AM 1 Isopropylbenzene ND 0.0667 9/11/2014 9:35:00 AM mg/Kg-dry 1 Bromoform ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM n-Propylbenzene ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 Bromobenzene ND 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 0.0167 9/11/2014 9:35:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene ND 9/11/2014 9:35:00 AM 0.0167 mg/Kg-dry 1 4-Chlorotoluene ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry 1 tert-Butylbenzene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,2,3-Trichloropropane ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,2,4-Trichlorobenzene ND 0.0417 mg/Kg-dry 1 9/11/2014 9:35:00 AM sec-Butylbenzene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 0.0167 9/11/2014 9:35:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,4-Dichlorobenzene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM n-Butylbenzene ND 0.0167 9/11/2014 9:35:00 AM mg/Kg-dry ND 1,2-Dichlorobenzene 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 1,2-Dibromo-3-chloropropane 0.0250 mg/Kg-dry 1 9/11/2014 9:35:00 AM 1,2,4-Trimethylbenzene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Hexachlorobutadiene ND 0.0833 mg/Kg-dry 1 9/11/2014 9:35:00 AM ND 9/11/2014 9:35:00 AM Naphthalene 0.0250 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0167 mg/Kg-dry 1 9/11/2014 9:35:00 AM Surr: Dibromofluoromethane 90.6 63.7-129 %REC 1 9/11/2014 9:35:00 AM Surr: Toluene-d8 105 61.4-128 %REC 1 9/11/2014 9:35:00 AM Surr: 1-Bromo-4-fluorobenzene 95.4 63.1-141 %REC 1 9/11/2014 9:35:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** 9/10/2014 4:08:14 PM Mercury ND 0.253 mg/Kg-dry Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 1.96 0.0857 mg/Kg-dry 1 9/10/2014 4:56:36 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:53:00 PM

Project: SLU Marriott

Lab ID: 1409077-061 **Matrix:** Soil

Client Sample ID: DP-10-10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method	6020			Batch	n ID: 8674	4 Analyst: TN
Barium	53.2	0.428		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Cadmium	ND	0.171		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Chromium	28.4	0.0857		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Lead	2.29	0.171		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Selenium	1.13	0.428		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Silver	ND	0.0857		mg/Kg-dry	1	9/10/2014 4:56:36 PM
Sample Moisture (Percent M	oisture)			Batch	n ID: R16	685 Analyst: SL
Percent Moisture	10.2			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Lab ID: 1409077-062 **Matrix:** Soil

Client Sample ID: DP-11-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 86	71 Analyst: EC
Diesel (Fuel Oil)	15,800	22.5		mg/Kg-dry	1	9/10/2014 3:04:00 PM
Heavy Oil	2,230	56.1		mg/Kg-dry	1	9/10/2014 3:04:00 PM
Surr: 2-Fluorobiphenyl	134	50-150		%REC	1	9/10/2014 3:04:00 PM
Surr: o-Terphenyl	107	50-150		%REC	1	9/10/2014 3:04:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	8270 (SIM)		Batch	n ID: 86	75 Analyst: DB
Naphthalene	953	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
2-Methylnaphthalene	24,500	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
1-Methylnaphthalene	18,600	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Acenaphthylene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Acenaphthene	1,290	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Fluorene	2,100	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Phenanthrene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Anthracene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Fluoranthene	792	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Pyrene	1,170	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Benz(a)anthracene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Chrysene	394	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Benzo(b)fluoranthene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Benzo(k)fluoranthene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Benzo(a)pyrene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Indeno(1,2,3-cd)pyrene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Dibenz(a,h)anthracene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Benzo(g,h,i)perylene	ND	292	D	μg/Kg-dry	5	9/16/2014 5:19:00 PM
Surr: 2-Fluorobiphenyl	84.8	42.7-132	D	%REC	5	9/16/2014 5:19:00 PM
Surr: Terphenyl-d14 (surr)	116	48.8-157	D	%REC	5	9/16/2014 5:19:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R1	6714 Analyst: EM
Gasoline	ND	5.29		mg/Kg-dry	1	9/11/2014 10:04:00 AM
Surr: Toluene-d8	99.3	65-135		%REC	1	9/11/2014 10:04:00 AM
Surr: 4-Bromofluorobenzene	93.2	65-135		%REC	1	9/11/2014 10:04:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Lab ID: 1409077-062 **Matrix:** Soil

Client Sample ID: DP-11-2.5

DF **Analyses** Result RL Qual Units **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 9/11/2014 10:04:00 AM ND Dichlorodifluoromethane (CFC-12) 0.0635 mg/Kg-dry 1 Chloromethane ND 0.0635 9/11/2014 10:04:00 AM mg/Kg-dry 1 Vinyl chloride ND 0.00212 9/11/2014 10:04:00 AM mg/Kg-dry 1 Bromomethane ND 0.0953 9/11/2014 10:04:00 AM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM Chloroethane ND 0.0635 9/11/2014 10:04:00 AM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 9/11/2014 10:04:00 AM Methylene chloride 0.0212 mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Methyl tert-butyl ether (MTBE) ND 0.0529 9/11/2014 10:04:00 AM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 2,2-Dichloropropane ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM cis-1,2-Dichloroethene ND 0.0212 1 9/11/2014 10:04:00 AM mg/Kg-dry Chloroform ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,1,1-Trichloroethane (TCA) ND 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Carbon tetrachloride ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,2-Dichloroethane (EDC) ND 0.0318 9/11/2014 10:04:00 AM mg/Kg-dry 1 ND 9/11/2014 10:04:00 AM Benzene 0.0212 mg/Kg-dry 1 Trichloroethene (TCE) ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,2-Dichloropropane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Bromodichloromethane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 9/11/2014 10:04:00 AM Dibromomethane 0.0424 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Toluene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 0.0318 9/11/2014 10:04:00 AM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,3-Dichloropropane ND 0.0529 9/11/2014 10:04:00 AM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 ND 9/11/2014 10:04:00 AM Dibromochloromethane 0.0318 mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00529 mg/Kg-dry 1 9/11/2014 10:04:00 AM Chlorobenzene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,1,1,2-Tetrachloroethane ND 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND Ethylbenzene 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM m,p-Xylene 0.0776 0.0212 mg/Kg-dry 9/11/2014 10:04:00 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Ε

J

Value above quantitation range

Reporting Limit

Analyte detected below quantitation limits

Lab ID: 1409077-062 **Matrix:** Soil

Client Sample ID: DP-11-2.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 9/11/2014 10:04:00 AM 0.0415 o-Xylene 0.0212 mg/Kg-dry 1 Styrene ND 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 Isopropylbenzene ND 0.0847 9/11/2014 10:04:00 AM mg/Kg-dry 1 Bromoform ND 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM n-Propylbenzene 0.0669 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 Bromobenzene ND 0.0318 mg/Kg-dry 1 9/11/2014 10:04:00 AM 0.0378 0.0212 9/11/2014 10:04:00 AM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 4-Chlorotoluene 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry 1 ND tert-Butylbenzene 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,2,3-Trichloropropane ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,2,4-Trichlorobenzene ND 0.0529 mg/Kg-dry 1 9/11/2014 10:04:00 AM sec-Butylbenzene 0.0564 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM ND 0.0212 9/11/2014 10:04:00 AM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM 1,4-Dichlorobenzene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM n-Butylbenzene 0.105 0.0212 9/11/2014 10:04:00 AM mg/Kg-dry ND 9/11/2014 10:04:00 AM 1,2-Dichlorobenzene 0.0212 mg/Kg-dry 1 ND 9/11/2014 10:04:00 AM 1,2-Dibromo-3-chloropropane 0.0318 mg/Kg-dry 1 1,2,4-Trimethylbenzene 0.0533 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Hexachlorobutadiene ND 0.106 mg/Kg-dry 1 9/11/2014 10:04:00 AM 0.0704 9/11/2014 10:04:00 AM Naphthalene 0.0318 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0212 mg/Kg-dry 1 9/11/2014 10:04:00 AM Surr: Dibromofluoromethane 90.4 63.7-129 %REC 1 9/11/2014 10:04:00 AM Surr: Toluene-d8 106 61.4-128 %REC 1 9/11/2014 10:04:00 AM Surr: 1-Bromo-4-fluorobenzene 97.4 63.1-141 %REC 1 9/11/2014 10:04:00 AM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.256 mg/Kg-dry 9/10/2014 4:09:50 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 2.59 0.0866 mg/Kg-dry 1 9/10/2014 5:00:01 PM В Analyte detected in the associated Method Blank Qualifiers: D Dilution was required

Н

ND

S

Holding times for preparation or analysis exceeded

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 12:36:00 PM

Project: SLU Marriott

Lab ID: 1409077-062 **Matrix:** Soil

Client Sample ID: DP-11-2.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batch	ID: 867	74 Analyst: TN
Barium	424	0.433		mg/Kg-dry	1	9/10/2014 5:00:01 PM
Cadmium	1.83	0.173		mg/Kg-dry	1	9/10/2014 5:00:01 PM
Chromium	27.1	0.0866		mg/Kg-dry	1	9/10/2014 5:00:01 PM
Lead	1,370	0.173		mg/Kg-dry	1	9/10/2014 5:00:01 PM
Selenium	1.01	0.433		mg/Kg-dry	1	9/10/2014 5:00:01 PM
Silver	0.235	0.0866		mg/Kg-dry	1	9/10/2014 5:00:01 PM
Metals (SW6020) with TCLP Extract	ion (EPA ′	<u>1311)</u>		Batch	D: 879	96 Analyst: TN
Lead	3.26	0.200		mg/L	1	9/22/2014 11:41:10 AM
Sample Moisture (Percent Moisture)			Batch	ID: R1	6685 Analyst: SL
Percent Moisture	14.4			wt%	1	9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix:** Soil

Client Sample ID: DP-11-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	24.9		mg/Kg-dry	1	9/10/2014 3:35:00 PM
Heavy Oil	ND	62.1		mg/Kg-dry	1	9/10/2014 3:35:00 PM
Surr: 2-Fluorobiphenyl	84.5	50-150		%REC	1	9/10/2014 3:35:00 PM
Surr: o-Terphenyl	100	50-150		%REC	1	9/10/2014 3:35:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
2-Methylnaphthalene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
1-Methylnaphthalene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Acenaphthylene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Acenaphthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Fluorene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Phenanthrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Anthracene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Fluoranthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Pyrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benz(a)anthracene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Chrysene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(b)fluoranthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(k)fluoranthene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(a)pyrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Indeno(1,2,3-cd)pyrene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Dibenz(a,h)anthracene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Benzo(g,h,i)perylene	ND	62.5		μg/Kg-dry	1	9/12/2014 11:58:00 AM
Surr: 2-Fluorobiphenyl	79.1	42.7-132		%REC	1	9/12/2014 11:58:00 AM
Surr: Terphenyl-d14 (surr)	121	48.8-157		%REC	1	9/12/2014 11:58:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: R167	'14 Analyst: EM
Gasoline	23.3	6.05		mg/Kg-dry	1	9/11/2014 2:59:00 PM
Surr: Toluene-d8	99.1	65-135		%REC	1	9/11/2014 2:59:00 PM
Surr: 4-Bromofluorobenzene	94.4	65-135		%REC	1	9/11/2014 2:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix:** Soil

Client Sample ID: DP-11-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 2:59:00 PM Dichlorodifluoromethane (CFC-12) 0.0726 mg/Kg-dry 1 Chloromethane ND 0.0726 9/11/2014 2:59:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00242 9/11/2014 2:59:00 PM mg/Kg-dry 1 Bromomethane ND 0.109 9/11/2014 2:59:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM Chloroethane ND 0.0726 9/11/2014 2:59:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 0.0242 9/11/2014 2:59:00 PM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Methyl tert-butyl ether (MTBE) ND 0.0605 9/11/2014 2:59:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 2,2-Dichloropropane ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM cis-1,2-Dichloroethene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Chloroform ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Carbon tetrachloride ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2-Dichloroethane (EDC) ND 0.0363 9/11/2014 2:59:00 PM mg/Kg-dry 1 0.0375 Benzene 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Trichloroethene (TCE) ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2-Dichloropropane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Bromodichloromethane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 9/11/2014 2:59:00 PM Dibromomethane 0.0484 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Toluene 0.0252 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 0.0363 9/11/2014 2:59:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,3-Dichloropropane ND 0.0605 9/11/2014 2:59:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 ND 0.0363 9/11/2014 2:59:00 PM Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00605 mg/Kg-dry 1 9/11/2014 2:59:00 PM Chlorobenzene ND 9/11/2014 2:59:00 PM 0.0242 mg/Kg-dry 1 1,1,1,2-Tetrachloroethane ND 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND Ethylbenzene 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM m,p-Xylene 0.144 0.0242 mg/Kg-dry 9/11/2014 2:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix**: Soil

Client Sample ID: DP-11-15.0

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0593 9/11/2014 2:59:00 PM o-Xylene 0.0242 mg/Kg-dry 1 Styrene ND 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 Isopropylbenzene 0.471 0.0968 9/11/2014 2:59:00 PM mg/Kg-dry 1 Bromoform ND 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM n-Propylbenzene 0.254 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 Bromobenzene ND 0.0363 mg/Kg-dry 1 9/11/2014 2:59:00 PM 0.0516 0.0242 9/11/2014 2:59:00 PM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene 9/11/2014 2:59:00 PM ND 0.0242 mg/Kg-dry 1 4-Chlorotoluene ND 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry 1 ND tert-Butylbenzene 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2,3-Trichloropropane ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,2,4-Trichlorobenzene ND 0.0605 mg/Kg-dry 1 9/11/2014 2:59:00 PM sec-Butylbenzene 0.0592 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 9/11/2014 2:59:00 PM ND 0.0242 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM 1,4-Dichlorobenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM n-Butylbenzene 0.0486 0.0242 9/11/2014 2:59:00 PM mg/Kg-dry ND 1,2-Dichlorobenzene 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM ND 9/11/2014 2:59:00 PM 1,2-Dibromo-3-chloropropane 0.0363 mg/Kg-dry 1 1,2,4-Trimethylbenzene 0.0577 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Hexachlorobutadiene ND 0.121 mg/Kg-dry 1 9/11/2014 2:59:00 PM 0.0767 9/11/2014 2:59:00 PM Naphthalene 0.0363 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0242 mg/Kg-dry 1 9/11/2014 2:59:00 PM Surr: Dibromofluoromethane 93.9 63.7-129 %REC 1 9/11/2014 2:59:00 PM Surr: Toluene-d8 112 61.4-128 %REC 1 9/11/2014 2:59:00 PM Surr: 1-Bromo-4-fluorobenzene 98.2 63.1-141 %REC 1 9/11/2014 2:59:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.293 mg/Kg-dry 9/10/2014 4:11:26 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 6.21 0.0955 mg/Kg-dry 1 9/10/2014 5:03:26 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 1:27:00 PM

Project: SLU Marriott

Lab ID: 1409077-067 **Matrix:** Soil

Client Sample ID: DP-11-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Metho	d 6020			Batch	n ID: 867	74 Analyst: TN
Barium	139	0.477		mg/Kg-dry	1	9/10/2014 5:03:26 PM
Cadmium	ND	0.191		mg/Kg-dry	1	9/10/2014 5:03:26 PM
Chromium	66.3	0.0955		mg/Kg-dry	1	9/10/2014 5:03:26 PM
Lead	21.8	0.191		mg/Kg-dry	1	9/10/2014 5:03:26 PM
Selenium	2.23	0.477		mg/Kg-dry	1	9/10/2014 5:03:26 PM
Silver	0.103	0.0955		mg/Kg-dry	1	9/10/2014 5:03:26 PM
Sample Moisture (Percent I	<u>Moisture)</u>			Batch	1D: R16	6685 Analyst: SL
Percent Moisture	22.4			wt%	1	9/10/2014 10:35:08 AM
Hexavalent Chromium by E	PA Method 7196			Batch	n ID: 879	95 Analyst: MW
Chromium, Hexavalent	ND	0.640		mg/Kg-dry	1	9/21/2014 10:22:25 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix:** Soil

Client Sample ID: DP-12-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	21.7		mg/Kg-dry	1	9/10/2014 4:06:00 PM
Heavy Oil	230	54.3		mg/Kg-dry	1	9/10/2014 4:06:00 PM
Surr: 2-Fluorobiphenyl	91.4	50-150		%REC	1	9/10/2014 4:06:00 PM
Surr: o-Terphenyl	92.2	50-150		%REC	1	9/10/2014 4:06:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: DB
Naphthalene	72.2	316	JD	μg/Kg-dry	5	9/16/2014 5:50:00 PM
2-Methylnaphthalene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
1-Methylnaphthalene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Acenaphthylene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Acenaphthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Fluorene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Phenanthrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Anthracene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Fluoranthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Pyrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Benz(a)anthracene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Chrysene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Benzo(b)fluoranthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Benzo(k)fluoranthene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Benzo(a)pyrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Indeno(1,2,3-cd)pyrene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Dibenz(a,h)anthracene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Benzo(g,h,i)perylene	ND	316	D	μg/Kg-dry	5	9/16/2014 5:50:00 PM
Surr: 2-Fluorobiphenyl	72.1	42.7-132	D	%REC	5	9/16/2014 5:50:00 PM
Surr: Terphenyl-d14 (surr)	125	48.8-157	D	%REC	5	9/16/2014 5:50:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	ND	10.3		mg/Kg-dry	1	9/11/2014 3:29:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	9/11/2014 3:29:00 PM
Surr: 4-Bromofluorobenzene	96.7	65-135		%REC	1	9/11/2014 3:29:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix:** Soil

Client Sample ID: DP-12-7.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 9/11/2014 3:29:00 PM Dichlorodifluoromethane (CFC-12) 0.124 mg/Kg-dry 1 Chloromethane ND 0.124 9/11/2014 3:29:00 PM mg/Kg-dry 1 Vinyl chloride ND 0.00413 9/11/2014 3:29:00 PM mg/Kg-dry 1 Bromomethane ND 0.186 9/11/2014 3:29:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM Chloroethane ND 9/11/2014 3:29:00 PM 0.124 mg/Kg-dry 1 1,1-Dichloroethene ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0413 9/11/2014 3:29:00 PM Methylene chloride mg/Kg-dry 1 ND 0.0413 trans-1,2-Dichloroethene mg/Kg-dry 1 9/11/2014 3:29:00 PM Methyl tert-butyl ether (MTBE) ND 9/11/2014 3:29:00 PM 0.103 mg/Kg-dry 1 1,1-Dichloroethane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 2,2-Dichloropropane ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM cis-1,2-Dichloroethene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Chloroform ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Carbon tetrachloride ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2-Dichloroethane (EDC) ND 0.0619 9/11/2014 3:29:00 PM mg/Kg-dry 1 ND Benzene 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Trichloroethene (TCE) ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2-Dichloropropane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Bromodichloromethane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 9/11/2014 3:29:00 PM Dibromomethane 0.0825 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Toluene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0619 9/11/2014 3:29:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,3-Dichloropropane ND 9/11/2014 3:29:00 PM 0.103 mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 ND 0.0619 9/11/2014 3:29:00 PM Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.0103 mg/Kg-dry 1 9/11/2014 3:29:00 PM Chlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,1,1,2-Tetrachloroethane ND 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND Ethylbenzene 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM m,p-Xylene 0.138 0.0413 mg/Kg-dry 9/11/2014 3:29:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: 1409077 Date Reported: 9/24/2014

Date Analyzed

GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM Client:

RL

Qual

Project: SLU Marriott

Analyses

Lab ID: 1409077-070 Matrix: Soil

Result

Client Sample ID: DP-12-7.5

Volatile Organic Compounds by EPA Method 8260 Batch ID: 8672 Analyst: EM 0.0817 9/11/2014 3:29:00 PM o-Xylene 0.0413 mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0413 9/11/2014 3:29:00 PM 1 Isopropylbenzene ND 0.165 9/11/2014 3:29:00 PM mg/Kg-dry 1 Bromoform ND 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM n-Propylbenzene 0.0868 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 Bromobenzene ND 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0413 9/11/2014 3:29:00 PM 1,3,5-Trimethylbenzene mg/Kg-dry 1 2-Chlorotoluene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 4-Chlorotoluene ND 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry 1 tert-Butylbenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2,3-Trichloropropane ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,2,4-Trichlorobenzene ND 0.103 mg/Kg-dry 1 9/11/2014 3:29:00 PM sec-Butylbenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 0.0413 9/11/2014 3:29:00 PM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM 1,4-Dichlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM n-Butylbenzene 0.0813 0.0413 9/11/2014 3:29:00 PM mg/Kg-dry ND 1,2-Dichlorobenzene 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM ND 1,2-Dibromo-3-chloropropane 0.0619 mg/Kg-dry 1 9/11/2014 3:29:00 PM 0.0869 1,2,4-Trimethylbenzene 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Hexachlorobutadiene ND 0.206 mg/Kg-dry 1 9/11/2014 3:29:00 PM 0.179 9/11/2014 3:29:00 PM Naphthalene 0.0619 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0413 mg/Kg-dry 1 9/11/2014 3:29:00 PM Surr: Dibromofluoromethane 89.3 63.7-129 %REC 1 9/11/2014 3:29:00 PM Surr: Toluene-d8 97.6 61.4-128 %REC 1 9/11/2014 3:29:00 PM Surr: 1-Bromo-4-fluorobenzene 101 63.1-141 %REC 1 9/11/2014 3:29:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury ND 0.281 mg/Kg-dry 9/10/2014 4:13:02 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 8.76 0.0956 mg/Kg-dry 1 9/10/2014 5:06:52 PM D

Qualifiers:

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Limit

Dilution was required

Units

DF

- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:21:00 AM

Project: SLU Marriott

Lab ID: 1409077-070 **Matrix:** Soil

Client Sample ID: DP-12-7.5

Analyses	Result	RL	Qual	Units	DF	:	Date Analyzed
Total Metals by EPA Method 6020				Batch	ı ID:	8674	Analyst: TN
Barium	677	0.478		mg/Kg-dry	1		9/10/2014 5:06:52 PM
Cadmium	0.380	0.191		mg/Kg-dry	1		9/10/2014 5:06:52 PM
Chromium	44.5	0.0956		mg/Kg-dry	1		9/10/2014 5:06:52 PM
Lead	604	0.191		mg/Kg-dry	1		9/10/2014 5:06:52 PM
Selenium	1.88	0.478		mg/Kg-dry	1		9/10/2014 5:06:52 PM
Silver	0.909	0.0956		mg/Kg-dry	1		9/10/2014 5:06:52 PM
Metals (SW6020) with TCLP Extracti	ion (EPA 1	<u>311)</u>		Batch	ı ID:	8796	Analyst: TN
Lead	ND	0.200		mg/L	1		9/22/2014 11:51:29 AM
Sample Moisture (Percent Moisture)	1			Batch	ı ID:	R166	85 Analyst: SL
Percent Moisture	21.9			wt%	1		9/10/2014 10:35:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix:** Soil

Client Sample ID: DP-12-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 8671	Analyst: EC
Diesel (Fuel Oil)	ND	29.7		mg/Kg-dry	1	9/10/2014 4:37:00 PM
Heavy Oil	ND	74.4		mg/Kg-dry	1	9/10/2014 4:37:00 PM
Surr: 2-Fluorobiphenyl	86.2	50-150		%REC	1	9/10/2014 4:37:00 PM
Surr: o-Terphenyl	96.0	50-150		%REC	1	9/10/2014 4:37:00 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	n ID: 8675	Analyst: NG
Naphthalene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
2-Methylnaphthalene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
1-Methylnaphthalene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Acenaphthylene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Acenaphthene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Fluorene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Phenanthrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Anthracene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Fluoranthene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Pyrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benz(a)anthracene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Chrysene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(b)fluoranthene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(k)fluoranthene	154	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(a)pyrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Indeno(1,2,3-cd)pyrene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Dibenz(a,h)anthracene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Benzo(g,h,i)perylene	ND	69.8		μg/Kg-dry	1	9/12/2014 4:10:00 PM
Surr: 2-Fluorobiphenyl	91.0	42.7-132		%REC	1	9/12/2014 4:10:00 PM
Surr: Terphenyl-d14 (surr)	133	48.8-157		%REC	1	9/12/2014 4:10:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: R167	714 Analyst: EM
Gasoline	ND	5.51		mg/Kg-dry	1	9/11/2014 3:59:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	9/11/2014 3:59:00 PM
Surr: 4-Bromofluorobenzene	94.5	65-135		%REC	1	9/11/2014 3:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix:** Soil

Client Sample ID: DP-12-12.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM ND 0.0661 9/11/2014 3:59:00 PM Dichlorodifluoromethane (CFC-12) mg/Kg-dry 1 mg/Kg-dry Chloromethane ND 0.0661 9/11/2014 3:59:00 PM 1 Vinyl chloride ND 0.00220 mg/Kg-dry 9/11/2014 3:59:00 PM 1 Bromomethane ND 0.0992 9/11/2014 3:59:00 PM mg/Kg-dry 1 Trichlorofluoromethane (CFC-11) ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM Chloroethane ND 0.0661 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1-Dichloroethene ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 0.0220 9/11/2014 3:59:00 PM Methylene chloride mg/Kg-dry 1 ND trans-1,2-Dichloroethene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Methyl tert-butyl ether (MTBE) ND 0.0551 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1-Dichloroethane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 2,2-Dichloropropane ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM cis-1,2-Dichloroethene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Chloroform ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,1,1-Trichloroethane (TCA) ND 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1-Dichloropropene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Carbon tetrachloride ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2-Dichloroethane (EDC) ND 0.0331 9/11/2014 3:59:00 PM mg/Kg-dry 1 0.0358 Benzene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Trichloroethene (TCE) ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2-Dichloropropane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Bromodichloromethane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 9/11/2014 3:59:00 PM Dibromomethane 0.0441 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Toluene 0.0344 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 0.0331 9/11/2014 3:59:00 PM trans-1,3-Dichloropropylene mg/Kg-dry 1 1,1,2-Trichloroethane ND 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,3-Dichloropropane ND 0.0551 9/11/2014 3:59:00 PM mg/Kg-dry 1 Tetrachloroethene (PCE) ND 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 ND 0.0331 9/11/2014 3:59:00 PM Dibromochloromethane mg/Kg-dry 1 ND 1,2-Dibromoethane (EDB) 0.00551 mg/Kg-dry 1 9/11/2014 3:59:00 PM Chlorobenzene ND mg/Kg-dry 9/11/2014 3:59:00 PM 0.0220 1 1,1,1,2-Tetrachloroethane ND 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND Ethylbenzene 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM m,p-Xylene 0.0745 0.0220 mg/Kg-dry 9/11/2014 3:59:00 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix:** Soil

Client Sample ID: DP-12-12.5

Units DF **Analyses** Result RL Qual **Date Analyzed Volatile Organic Compounds by EPA Method 8260** Batch ID: 8672 Analyst: EM 0.0436 0.0220 9/11/2014 3:59:00 PM o-Xylene mg/Kg-dry 1 mg/Kg-dry Styrene ND 0.0220 9/11/2014 3:59:00 PM 1 Isopropylbenzene ND 0.0882 9/11/2014 3:59:00 PM mg/Kg-dry 1 Bromoform ND 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 1,1,2,2-Tetrachloroethane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM n-Propylbenzene 0.0450 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry 1 Bromobenzene ND 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 9/11/2014 3:59:00 PM 1,3,5-Trimethylbenzene 0.0220 mg/Kg-dry 1 2-Chlorotoluene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 4-Chlorotoluene ND 9/11/2014 3:59:00 PM 0.0220 mg/Kg-dry 1 tert-Butylbenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2,3-Trichloropropane ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,2,4-Trichlorobenzene ND 0.0551 mg/Kg-dry 1 9/11/2014 3:59:00 PM sec-Butylbenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 0.0220 9/11/2014 3:59:00 PM 4-Isopropyltoluene mg/Kg-dry 1 1,3-Dichlorobenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 1,4-Dichlorobenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM n-Butylbenzene 0.0417 0.0220 9/11/2014 3:59:00 PM mg/Kg-dry ND 1,2-Dichlorobenzene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 1,2-Dibromo-3-chloropropane 0.0331 mg/Kg-dry 1 9/11/2014 3:59:00 PM ND 1,2,4-Trimethylbenzene 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM Hexachlorobutadiene ND 0.110 mg/Kg-dry 1 9/11/2014 3:59:00 PM 0.0914 9/11/2014 3:59:00 PM Naphthalene 0.0331 mg/Kg-dry 1 1,2,3-Trichlorobenzene ND 0.0220 mg/Kg-dry 1 9/11/2014 3:59:00 PM 87.0 Surr: Dibromofluoromethane 63.7-129 %REC 1 9/11/2014 3:59:00 PM Surr: Toluene-d8 96.6 61.4-128 %REC 1 9/11/2014 3:59:00 PM Surr: 1-Bromo-4-fluorobenzene 98.4 63.1-141 %REC 1 9/11/2014 3:59:00 PM Batch ID: 8681 Analyst: TN **Mercury by EPA Method 7471** Mercury 0.443 0.353 mg/Kg-dry 9/10/2014 4:14:39 PM Batch ID: 8674 Analyst: TN **Total Metals by EPA Method 6020** Arsenic 10.3 0.112 mg/Kg-dry 1 9/10/2014 5:10:17 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:30:00 AM

Project: SLU Marriott

Lab ID: 1409077-072 **Matrix:** Soil

Client Sample ID: DP-12-12.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method	6020			Batch	n ID: 8674	Analyst: TN
Barium	976	0.558		mg/Kg-dry	1	9/10/2014 5:10:17 PM
Cadmium	1.38	0.223		mg/Kg-dry	1	9/10/2014 5:10:17 PM
Chromium	99.4	0.112		mg/Kg-dry	1	9/10/2014 5:10:17 PM
Lead	1,390	0.223		mg/Kg-dry	1	9/10/2014 5:10:17 PM
Selenium	1.71	0.558		mg/Kg-dry	1	9/10/2014 5:10:17 PM
Silver	0.530	0.112		mg/Kg-dry	1	9/10/2014 5:10:17 PM
Metals (SW6020) with TCLP E	Extraction (EPA 13	<u>311)</u>		Batch	n ID: 8796	Analyst: TN
Lead	ND	0.200		mg/L	1	9/22/2014 11:54:55 AM
Sample Moisture (Percent Mo	oisture)			Batch	n ID: R166	85 Analyst: SL
Percent Moisture	33.2			wt%	1	9/10/2014 10:35:08 AM
Hexavalent Chromium by EP	A Method 7196			Batch	n ID: 8795	Analyst: MW
Chromium, Hexavalent	ND	0.731		mg/Kg-dry	1	9/21/2014 10:23:25 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1409077**Date Reported: **9/24/2014**

Client: GeoEngineers, Inc. - Redmond Collection Date: 9/6/2014 8:31:00 AM

Project: SLU Marriott

Lab ID: 1409077-073 **Matrix:** Soil

Client Sample ID: DP-12-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds b	y EPA Method	<u>8260</u>		Batch	n ID: 88	24 Analyst: EM
Benzene	ND	0.0262	Н	mg/Kg-dry	1	9/24/2014 10:14:00 AM
Surr: Dibromofluoromethane	99.3	63.7-129	Н	%REC	1	9/24/2014 10:14:00 AM
Surr: Toluene-d8	100	64.3-131	Н	%REC	1	9/24/2014 10:14:00 AM
Surr: 1-Bromo-4-fluorobenzene	95.8	63.1-141	Н	%REC	1	9/24/2014 10:14:00 AM
Sample Moisture (Percent Mois	sture)			Batch	n ID: R1	16932 Analyst: SL
Percent Moisture	23.2			wt%	1	9/23/2014 3:54:00 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngine	ers, Inc Redmond							40.			• • •
Project: SLU Marrio	•						Hexaval	ent Chromi	ium by EP	A Method	d 719
Sample ID: MB-8795	SampType: MBLK			Units: mg/l	〈 g	Prep Da	te: 9/21/20	14	RunNo: 168	890	
Client ID: MBLKS	Batch ID: 8795					Analysis Da	te: 9/21/20	14	SeqNo: 339	9168	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Chromium, Hexavalent	ND	0.500									
Sample ID: LCS-8795	SampType: LCS			Units: mg/l	K g	Prep Da	te: 9/21/20	14	RunNo: 168	890	
Client ID: LCSS	Batch ID: 8795					Analysis Da	te: 9/21/20	14	SeqNo: 339	9169	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.41	0.500	2.500	0	96.3	65	135				
Sample ID: 1409077-011ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 9/21/20	14	RunNo: 168	890	
Client ID: DP-2-12.5	Batch ID: 8795					Analysis Da	te: 9/21/20	14	SeqNo: 339	9171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Chromium, Hexavalent	ND	0.646						0		30	
Sample ID: 1409077-011AMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 9/21/20	14	RunNo: 168	890	
Client ID: DP-2-12.5	Batch ID: 8795					Analysis Da	te: 9/21/20	14	SeqNo: 339	9172	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Chromium, Hexavalent	3.82	0.646	3.231	0	118	65	135				
Sample ID: 1409077-011AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Da	te: 9/21/20	14	RunNo: 168	890	
Client ID: DP-2-12.5	Batch ID: 8795					Analysis Da	te: 9/21/20	14	SeqNo: 339	9173	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Chromium, Hexavalent	3.70	0.660	3.299	0	112	65	135	3.816	3.10	30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Dissolved Metals by EPA Method 200.8

Sample ID: MB-8658	SampType: MBLK			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	661	
Client ID: MBLKW	Batch ID: 8658					Analysis Da	te: 9/9/201	4	SeqNo: 334	919	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	1.00									
Barium	ND	0.500									
Cadmium	ND	0.200									
Chromium	ND	0.500									
Lead	ND	1.00									
Selenium	ND	1.00									
Silver	ND	0.200									

Sample ID: LCS-8658	SampType: LCS			Units: µg/L		Prep Da	RunNo: 16661		
Client ID: LCSW	Batch ID: 8658					Analysis Da	te: 9/9/2014	SeqNo: 334920	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual
Arsenic	101	1.00	100.0	0	101	85	115		
Barium	105	0.500	100.0	0	105	85	115		
Cadmium	4.48	0.200	5.000	0	89.7	85	115		
Chromium	104	0.500	100.0	0	104	85	115		
Lead	50.3	1.00	50.00	0	101	85	115		
Selenium	9.80	1.00	10.00	0	98.0	85	115		
Silver	4.80	0.200	5.000	0	96.0	85	115		

Sample ID: 1409077-050DDUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	661	·
Client ID: MW-2-140906	Batch ID: 8658					Analysis Da	te: 9/9/201	4	SeqNo: 334	1922	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	3.20	1.00						3.984	21.9	30	
Barium	251	0.500						251.1	0.0910	30	
Cadmium	ND	0.200						0		30	
Chromium	0.560	0.500						0.6665	17.4	30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
 - Analyte detected below quantitation limits
- Reporting Limit

- Е Value above quantitation range
- Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Dissolved Metals by EPA Method 200.8

Project:	SLU Marriott							Dis	Solved Meta	als by Li F	- Wietiiou	200.0
Sample ID:	1409077-050DDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 9/9/201	4	RunNo: 166	661	
Client ID:	MW-2-140906	Batch ID: 8658					Analysis Dat	e: 9/9/201	4	SeqNo: 334	1922	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	1.00						0		30	
Selenium		ND	1.00						0		30	
Silver		ND	0.200						0		30	
Sample ID:	1409077-050DMS	SampType: MS			Units: µg/L		Prep Dat	e: 9/9/201	4	RunNo: 166	661	
Client ID:	MW-2-140906	Batch ID: 8658					Analysis Dat	e: 9/9/201	4	SeqNo: 334	1923	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Sample ID: 1409077-050DMS	SampType: MS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	61	
Client ID: MW-2-140906	Batch ID: 8658					Analysis Da	te: 9/9/201	4	SeqNo: 334	1923	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	540	1.00	500.0	3.984	107	70	130				
Barium	788	0.500	500.0	251.1	107	70	130				
Cadmium	25.6	0.200	25.00	0.01600	102	70	130				
Chromium	529	0.500	500.0	0.6665	106	70	130				
Lead	237	1.00	250.0	0.2265	94.9	70	130				
Selenium	59.4	1.00	50.00	0.6435	117	70	130				
Silver	20.9	0.200	25.00	0.03650	83.3	70	130				

Sample ID: 1409077-050DMSD	SampType: MSD			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	661	
Client ID: MW-2-140906	Batch ID: 8658					Analysis Da	te: 9/9/201	4	SeqNo: 334	1924	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	547	1.00	500.0	3.984	109	70	130	540.3	1.32	30	
Barium	779	0.500	500.0	251.1	106	70	130	788.5	1.21	30	
Cadmium	25.2	0.200	25.00	0.01600	101	70	130	25.60	1.66	30	
Chromium	540	0.500	500.0	0.6665	108	70	130	528.8	2.05	30	
Lead	238	1.00	250.0	0.2265	95.0	70	130	237.4	0.121	30	
Selenium	59.0	1.00	50.00	0.6435	117	70	130	59.36	0.672	30	
Silver	20.5	0.200	25.00	0.03650	81.8	70	130	20.86	1.85	30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Dissolved Metals by EPA Method 200.8

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

CLIENT: Project:	GeoEngineers SLU Marriott	s, Inc Redmond					Dissolved Merc	ury by EPA Method 2	245.1
Sample ID: M	IB-8690	SampType: MBLK			Units: µg/L		Prep Date: 9/11/2014	RunNo: 16733	
Client ID: M	IBLKW	Batch ID: 8690					Analysis Date: 9/11/2014	SeqNo: 336195	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		ND	0.100						
Sample ID: Lo	CS-8690	SampType: LCS			Units: µg/L		Prep Date: 9/11/2014	RunNo: 16733	
Client ID: Lo	csw	Batch ID: 8690					Analysis Date: 9/11/2014	SeqNo: 336196	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		2.30	0.100	2.000	0	115	85 115		
Sample ID: 14	409077-050DDUP	SampType: DUP			Units: µg/L		Prep Date: 9/11/2014	RunNo: 16733	
Client ID: M	IW-2-140906	Batch ID: 8690					Analysis Date: 9/11/2014	SeqNo: 336198	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		ND	0.100				0	20	
Sample ID: 14	409077-050DMS	SampType: MS			Units: µg/L		Prep Date: 9/11/2014	RunNo: 16733	
Client ID: M	IW-2-140906	Batch ID: 8690					Analysis Date: 9/11/2014	SeqNo: 336199	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		2.38	0.100	2.000	0	119	80 120		
Sample ID: 14	409077-050DMSD	SampType: MSD			Units: µg/L		Prep Date: 9/11/2014	RunNo: 16733	
Client ID: M	IW-2-140906	Batch ID: 8690					Analysis Date: 9/11/2014	SeqNo: 336200	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury		2.38	0.100	2.000	0	119	80 120 2.380	0 20	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Chromium

Selenium

Lead

Silver

QC SUMMARY REPORT

CLIENT: Project:		GeoEngineers, Inc R SLU Marriott	edmond							•	tals by EP		
Sample ID: I	MB-8664	SampType	MBLK			Units: mg/Kg		Prep Da	te: 9/9/20	14	RunNo: 166	578	
Client ID:	MBLKS	Batch ID:	8664					Analysis Da	te: 9/9/20	14	SeqNo: 335	5221	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	0.100									
Barium			ND	0.500									
Cadmium			ND	0.200									
Chromium			ND	0.100									
Lead			ND	0.200									
Selenium			ND	0.500									
Silver			ND	0.100									
Sample ID: I	LCS-8664	SampType	LCS			Units: mg/Kg		Prep Da	te: 9/9/20	14	RunNo: 166	578	
Client ID:	LCSS	Batch ID:	8664					Analysis Da	te: 9/9/20	14	SeqNo: 335	5222	
Analyte		Ī	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			107	0.100	104.0	0	103	69.5	130.8				
Barium			836	0.500	779.0	0	107	74.8	125.3				
Cadmium			86.4	0.200	92.80	0	93.1	73.3	127.2				

Sample ID: 1409084-001ADUP	SampType: DUP			Units: mg/l	(g-dry	Prep Dat	e: 9/9/20 1	4	RunNo: 166	578	
Client ID: BATCH	Batch ID: 8664					Analysis Dat	e: 9/9/20 1	4	SeqNo: 335	5224	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	3.12	0.0819						3.031	2.77	30	
Barium	59.5	0.410						57.43	3.56	30	
Cadmium	ND	0.164						0		30	
Chromium	27.5	0.0819						25.37	8.01	30	

0

0

0

0

127

98.5

103

97.6

67.9

75.9

63.1

66.4

132

124.1

136.4

133.6

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

79.6

314

79.7

47.3

0.100

0.200

0.500

0.100

RPD outside accepted recovery limits

D Dilution was required

62.90

319.0

77.70

48.50

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

CLIENT:

GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Total Metals by EPA Method 6020

Sample ID: 1409084-001ADUP				Units: mg/K	g-dry	Prep Dat	e: 9/9/201	4	RunNo: 166	578	
Client ID: BATCH	Batch ID: 8664					Analysis Dat	e: 9/9/201	4	SeqNo: 335	5224	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	6.56	0.164						7.209	9.43	30	
Selenium	ND	0.410						0		30	
Silver	ND	0.0819						0		30	

Sample ID: 1409084-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 9/9/2014	RunNo: 16678	
Client ID: BATCH	Batch ID: 8664				Analysis Date: 9/9/2014			SeqNo: 335226	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	of Val %RPD RPDLimit	Qual
Arsenic	44.9	0.0802	40.08	3.031	104	75	125		
Barium	103	0.401	40.08	57.43	114	75	125		
Cadmium	2.53	0.160	2.004	0.1030	121	75	125		
Chromium	75.8	0.0802	40.08	25.37	126	75	125		S
Lead	30.9	0.160	20.04	7.209	118	75	125		
Selenium	4.75	0.401	4.008	0	119	75	125		
Silver	1.94	0.0802	2.004	0.05412	94.2	75	125		

NOTES:

S - Outlying spike recovery observed. A duplicate analysis was performed and was within range.

Sample ID: 1409084-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 166	578	
Client ID: BATCH	Batch ID: 8664				Analysis Date: 9/9/2014				SeqNo: 335	5227	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	47.1	0.0858	42.88	3.031	103	75	125	44.90	4.71	30	
Barium	110	0.429	42.88	57.43	123	75	125	102.9	6.62	30	
Cadmium	2.59	0.172	2.144	0.1030	116	75	125	2.527	2.33	30	
Chromium	78.2	0.0858	42.88	25.37	123	75	125	75.84	3.06	30	
Lead	31.6	0.172	21.44	7.209	114	75	125	30.95	1.99	30	
Selenium	4.83	0.429	4.288	0	113	75	125	4.751	1.55	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

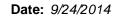
Total Metals by EPA Method 6020

Project:	SLU Marriott									Total Me	tals by EP	A Method	d 6020
Sample ID:	1409084-001AMSD	SampType	MSD			Units: mg/Kg-	dry	Prep Date	: 9/9/201	4	RunNo: 166	678	
Client ID:	BATCH	Batch ID:	8664					Analysis Date	9/9/201	4	SeqNo: 335	5227	
Analyte		ı	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver			1.97	0.0858	2.144	0.05412	89.3	75	125	1.942	1.42	30	
Sample ID:	CCV-8664E	SampType	CCV			Units: µg/L		Prep Date	: 9/10/20	14	RunNo: 16 6	678	
Client ID:	CCV	Batch ID:	8664					Analysis Date	: 9/10/20	14	SeqNo: 335	5530	
Analyte		ſ	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			101	1.00	100.0	0	101	90	110				
Sample ID:	CCV-8664F	SampType	CCV			Units: µg/L		Prep Date	: 9/10/20	14	RunNo: 166	678	
Client ID:	CCV	Batch ID:	8664					Analysis Date	: 9/10/20	14	SeqNo: 335	5542	
Analyte		ſ	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			100	1.00	100.0	0	100	90	110				
Sample ID:	MB-8674	SampType	MBLK			Units: mg/Kg		Prep Date	: 9/10/20	14	RunNo: 167	702	
Client ID:	MBLKS	Batch ID:	8674					Analysis Date	: 9/10/20	14	SeqNo: 335	5676	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	0.100									
Barium			ND	0.500									
Cadmium			ND	0.200									
Chromium			ND	0.100									
Lead			ND	0.200									
Selenium			ND	0.500									
Silver			ND	0.100									

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

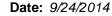
E Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT: GeoEngineers, Inc. - Redmond

R RPD outside accepted recovery limits

Project: SLU Marriott


QC SUMMARY REPORT

Total Metals by EPA Method 6020

Spike recovery outside accepted recovery limits

Sample ID:	LCS-8674	SampType: LCS			Units: mg/K	g	Prep Dat	e: 9/10/20	14	RunNo: 167	702	
Client ID:	LCSS	Batch ID: 8674					Analysis Dat	e: 9/10/2 0	14	SeqNo: 335	679	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		108	0.100	104.0	0	104	69.5	130.8				
Barium		834	0.500	779.0	0	107	74.8	125.3				
Cadmium		93.5	0.200	92.80	0	101	73.3	127.2				
Chromium		68.1	0.100	62.90	0	108	67.9	132				
Lead		349	0.200	319.0	0	109	75.9	124.1				
Selenium		73.9	0.500	77.70	0	95.0	63.1	136.4				
Silver		50.6	0.100	48.50	0	104	66.4	133.6				
Sample ID:	1409077-033ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 9/10/20	114	RunNo: 167	702	
Client ID:	DP-6-10.0	Batch ID: 8674					Analysis Dat	e: 9/10/2 0	14	SeqNo: 335	5681	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		1.60	0.0849						1.672	4.56	30	
Barium		46.3	0.425						46.47	0.317	30	
Cadmium		ND	0.170						0		30	
Chromium		23.8	0.0849						24.88	4.50	30	
Lead		1.86	0.170						1.815	2.54	30	
Selenium		0.877	0.425						0.9969	12.8	30	
Silver		ND	0.0849						0		30	
Sample ID:	1409077-033AMS	SampType: MS			Units: mg/K	g-dry	Prep Dat	e: 9/10/20)14	RunNo: 167	702	
Client ID:	DP-6-10.0	Batch ID: 8674					Analysis Dat	e: 9/10/20	14	SeqNo: 335	5683	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		43.9	0.0862	43.10	1.672	97.9	75	125				
Barium		89.9	0.431	43.10	46.47	101	75	125				
Cadmium		2.05	0.172	2.155	0.05073	92.7	75	125				
Chromium		71.8	0.0862	43.10	24.88	109	75	125				
Qualifiers: B Analyte detected in the associated Method Blank				D Dilution wa	as required			E Value	e above quantitation ra	ange		
	H Holding times for pr	reparation or analysis exceeded		J Analyte de	tected below quantitation	n limits		ND Not d	letected at the Reporti	ing Limit		

Reporting Limit

GeoEngineers, Inc. - Redmond

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond
Project: SLU Marriott

Total Metals by EPA Method 6020

Sample ID: 1409077-033AMS	SampType: MS		Units: mg/l	(g-dry	Prep Da	te: 9/10/20	14	RunNo: 167	702		
Client ID: DP-6-10.0	Batch ID: 8674					Analysis Da	te: 9/10/20	14	SeqNo: 335	683	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	24.6	0.172	21.55	1.815	106	75	125				
Selenium	5.27	0.431	4.310	0.9969	99.0	75	125				
Silver	2.08	0.0862	2.155	0.03289	95.0	75	125				

Sample ID: 1409077-033AMSD			Units: mg/	Kg-dry	Prep Da	te: 9/10/20	14	RunNo: 167	702		
Client ID: DP-6-10.0						Analysis Da	te: 9/10/20	14	SeqNo: 335	5684	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.2	0.0855	42.77	1.672	102	75	125	43.87	3.06	30	
Barium	95.4	0.428	42.77	46.47	114	75	125	89.86	6.02	30	
Cadmium	2.13	0.171	2.139	0.05073	97.4	75	125	2.049	4.05	30	
Chromium	76.4	0.0855	42.77	24.88	121	75	125	71.82	6.24	30	
Lead	24.0	0.171	21.39	1.815	104	75	125	24.58	2.31	30	
Selenium	4.87	0.428	4.277	0.9969	90.4	75	125	5.266	7.90	30	
Silver	2.06	0.0855	2.139	0.03289	94.6	75	125	2.080	1.18	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

Mercury by EPA Method 7471

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Sample ID: MB-8665 SampType: MBLK Units: mg/Kg Prep Date: 9/9/2014 RunNo: 16677 Client ID: **MBLKS** Batch ID: 8665 Analysis Date: 9/9/2014 SeqNo: 335131

SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result RL %REC Qual

ND 0.250 Mercury

Sample ID: LCS-8665 SampType: LCS Units: mg/Kg Prep Date: 9/9/2014 RunNo: 16677 Client ID: LCSS Batch ID: 8665 Analysis Date: 9/9/2014 SeqNo: 335132 RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val **RPDLimit** Result %REC %RPD Qual Analyte 6.35 0.250 5.000 0 127 80 120 S Mercury

NOTES:

Project:

S - Outlying spike recovery observed (high bias). Samples with detections may be qualified with an *

Sample ID: 1409084-001ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 166	577	
Client ID: BATCH	ent ID: BATCH Batch ID: 8665					Analysis Da	te: 9/9/201	4	SeqNo: 335	134	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.247						0		20	

Sample ID: 1409084-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 166	677	
Client ID: BATCH	Batch ID: 8665				Analysis Da	te: 9/9/201	4	SeqNo: 335	5135		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.628	0.247	0.4939	0.02533	122	70	130				

Sample ID: 1409084-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 166	577	
Client ID: BATCH	Batch ID: 8665 A					Analysis Da	te: 9/9/201	4	SeqNo: 335	i136	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.643	0.247	0.4939	0.02533	125	70	130	0.6282	2.33	20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Mercury by EPA Method 7471

 Sample ID:
 1409084-001AMSD
 SampType:
 MSD
 Units:
 mg/Kg-dry
 Prep Date:
 9/9/2014
 RunNo:
 16677

 Client ID:
 BATCH
 Batch ID:
 8665
 Analysis Date:
 9/9/2014
 SeqNo:
 335136

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: CCV-8665C	SampType: CCV	SampType: CCV Batch ID: 8665		Units: µg/L		Prep Date: 9/9/2014 Analysis Date: 9/9/2014			RunNo: 16677 SegNo: 335151		
Client ID: CCV	Batch ID: 8665					Analysis Date	e: 9/9/201	4	Sedivo: 33;	0151	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	5.19	0.250	5.000	0	104	90	110				
Sample ID: CCV-8665D	SampType: CCV			Units: µg/L		Prep Date	e: 9/9/201	4	RunNo: 166	677	

Sample ID:	CCV-8665D	SampType: CCV			Units: µg/L		Prep Dat	te: 9/9/201	4	RunNo: 166	577	
Client ID:	CCV	Batch ID: 8665					Analysis Dat	te: 9/9/201	4	SeqNo: 335	5157	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		5.23	0.250	5.000	0	105	90	110				

Sample ID: MB-8681	SampType: MBLK			Units: mg/Kg		Prep Date:	9/10/2014	RunNo: 16699	
Client ID: MBLKS	Batch ID: 8681					Analysis Date:	9/10/2014	SeqNo: 335622	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ighLimit RPD Ref Val	%RPD RP	DLimit Qual

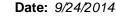
Mercury ND 0.250

Sample ID: LCS-8681	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/10/20	14	RunNo: 166	699	
Client ID: LCSS	Batch ID: 8681					Analysis Da	te: 9/10/20	14	SeqNo: 335	623	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	4.56	0.250	5.000	0	91.2	80	120				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Mercury by EPA Method 7471

Sample ID: 1409077-013ADUP	SampType: DUP		Units: mg/Kg-dry			Prep Da	te: 9/10/2 0	14	RunNo: 166	699	
Client ID: DP-3-2.5	Batch ID: 8681					Analysis Da	te: 9/10/2 0	14	SeqNo: 335	5625	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.280						0		20	

Sample ID: 1409077-013AMS	SampType: MS	Units: mg/Kg-dry			Prep Da	te: 9/10/20	14	RunNo: 16699			
Client ID: DP-3-2.5	Batch ID: 8681					Analysis Da	te: 9/10/20	14	SeqNo: 335	626	ļ
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.617	0.242	0.4849	0.2762	70.2	70	130				

Sample ID: 1409077-013AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 9/10/20	14	RunNo: 166	99	
Client ID: DP-3-2.5	Batch ID: 8681					Analysis Da	te: 9/10/20	14	SeqNo: 335	627	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.700	0.242	0.4849	0.2762	87.4	70	130	0.6168	12.7	20	

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

CLIENT: GeoEngineers, Inc. - Redmond **QC SUMMARY REPORT**

Margury by EDA Mathed 7470

Project: SLU Marrio	tt						Mer	cury by EPA Method	d 7470
Sample ID: MB-8811	SampType: MBLK			Units: µg/L		Prep Date:	9/23/2014	RunNo: 16940	
Client ID: MBLKW	Batch ID: 8811					Analysis Date:	9/23/2014	SeqNo: 340076	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100							
Sample ID: LCS-8811	SampType: LCS			Units: µg/L		Prep Date:	9/23/2014	RunNo: 16940	
Client ID: LCSW	Batch ID: 8811					Analysis Date:	9/23/2014	SeqNo: 340077	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.31	0.100	2.500	0	92.4	70	130		
Sample ID: 1409077-044ADUP	SampType: DUP			Units: µg/L	-dry	Prep Date:	9/23/2014	RunNo: 16940	
Client ID: DP-9-5.0	Batch ID: 8811					Analysis Date:	9/23/2014	SeqNo: 340079	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.138					0	20	
Sample ID: 1409077-044AMS	SampType: MS			Units: µg/L	-dry	Prep Date:	9/23/2014	RunNo: 16940	
Client ID: DP-9-5.0	Batch ID: 8811					Analysis Date:	9/23/2014	SeqNo: 340080	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	3.06	0.138	3.445	0.01516	88.4	70	130		
Sample ID: 1409077-044AMSD	SampType: MSD			Units: µg/L	-dry	Prep Date:	9/23/2014	RunNo: 16940	
Client ID: DP-9-5.0	Batch ID: 8811					Analysis Date:	9/23/2014	SeqNo: 340081	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	3.06	0.138	3.445	0.01516	88.4	70	130 3.059	0 20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

CLIENT:	GeoEngineers	s, IIIC K	eamona					Metals	(SW602	0) with TCL	_P Extract	ion (EPA	1311)
Project:	SLU Marriott								(01100_			(
Sample ID: LCS	-8796	SampType:	LCS			Units: mg/L		Prep Da	te: 9/22/20	14	RunNo: 168	895	
Client ID: LCS	S	Batch ID:	8796					Analysis Da	te: 9/22/20	14	SeqNo: 339	9276	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			2.23	0.200	2.500	0	89.2	65	135				
Sample ID: 1408	3231-020ADUP	SampType:	DUP			Units: mg/L		Prep Da	te: 9/22/20	14	RunNo: 168	895	
Client ID: BAT	СН	Batch ID:	8796					Analysis Da	te: 9/22/20	14	SeqNo: 339	9278	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.200						0		30	
Sample ID: 1408	3231-020AMS	SampType:	MS			Units: mg/L		Prep Da	te: 9/22/20	14	RunNo: 168	895	
Client ID: BAT	СН	Batch ID:	8796					Analysis Da	te: 9/22/20	14	SeqNo: 339	9279	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			2.10	0.200	2.500	0	84.0	65	135				
Sample ID: 1408	3231-020AMSD	SampType:	MSD			Units: mg/L		Prep Da	te: 9/22/20	14	RunNo: 168	895	
Client ID: BAT	СН	Batch ID:	8796					Analysis Da	te: 9/22/20	14	SeqNo: 339	9280	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			2.10	0.200	2.500	0	84.0	65	135	2.099	0.0148	30	_

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marriott

Sample ID: 1409077-058ADUP	SampType: DUP			Units: mg/Kg	j-dry	Prep Date	e: 9/9/201 4	ļ	RunNo: 166	694	
Client ID: DP-8-20.0	Batch ID: 8671					Analysis Date	e: 9/10/20 1	14	SeqNo: 335	5486	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	23.1						0		30	
Heavy Oil	ND	57.7						0		30	
Surr: 2-Fluorobiphenyl	17.4		23.06		75.3	50	150		0		
Surr: o-Terphenyl	20.2		23.06		87.6	50	150		0		
Sample ID: LCS-8671	SampType: LCS			Units: mg/Kg	1	Prep Date	e: 9/9/201 4	ļ	RunNo: 166	694	
Client ID: LCSS	Batch ID: 8671					Analysis Date	e: 9/10/20 1	14	SeqNo: 335	5490	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	512	20.0	500.0	0	102	65	135				
Surr: 2-Fluorobiphenyl	17.9		20.00		89.5	50	150				
Surr: o-Terphenyl	18.4		20.00		91.9	50	150				
Sample ID: MB-8671	SampType: MBLK			Units: mg/Kg]	Prep Date	e: 9/9/201 4	<u> </u>	RunNo: 166	694	
Client ID: MBLKS	Batch ID: 8671					Analysis Date	e: 9/10/20 1	14	SeqNo: 335	5491	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	15.4		20.00		77.2	50	150				
Surr: o-Terphenyl	18.2		20.00		91.2	50	150				
Sample ID: 1409077-001ADUP	SampType: DUP			Units: mg/Kg	j-dry	Prep Date	e: 9/9/201 4	ļ	RunNo: 166	 696	
Client ID: DP-1-2.5	Batch ID: 8670					Analysis Date	e: 9/10/20 1	14	SeqNo: 335	5505	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	19.5						0		30	

Qualifiers: B Analyte detected in the associated Method Blank

.,.....

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marriott

Project: SLU Marrio	tt						Diooci ai	id ricavy c	J.I. Dy 1444		
Sample ID: 1409077-001ADUP	SampType: DUP			Units: mg/K	(g-dry	Prep Dat	e: 9/9/2014		RunNo: 16 6	696	
Client ID: DP-1-2.5	Batch ID: 8670					Analysis Dat	e: 9/10/201	4	SeqNo: 33	5505	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	ND	48.6						0		30	
Surr: 2-Fluorobiphenyl	18.4		19.45		94.7	50	150		0		
Surr: o-Terphenyl	18.4		19.45		94.8	50	150		0		
Sample ID: LCS-8670	SampType: LCS			Units: mg/K	Kg	Prep Dat	e: 9/9/2014		RunNo: 166		
Client ID: LCSS	Batch ID: 8670					Analysis Dat	e: 9/10/201	4	SeqNo: 33	5512	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	539	20.0	500.0	0	108	65	135				
Surr: 2-Fluorobiphenyl	20.2		20.00		101	50	150				
Surr: o-Terphenyl	17.7		20.00		88.4	50	150				
Sample ID: MB-8670	SampType: MBLK			Units: mg/K	Kg	Prep Dat	e: 9/9/2014		RunNo: 166	596	
Client ID: MBLKS	Batch ID: 8670					Analysis Dat	e: 9/10/201	4	SeqNo: 33	5513	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	21.5		20.00		108	50	150				
Surr: o-Terphenyl	17.2		20.00		86.0	50	150				
Sample ID: 1409077-029ADUP	SampType: DUP			Units: mg/K	(g-dry	Prep Dat	e: 9/9/2014		RunNo: 166	596	
Client ID: DP-5-7.5	Batch ID: 8670					Analysis Dat	e: 9/10/201	4	SeqNo: 33	5704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	21.1						0		30	
Heavy Oil	ND	52.6						0		30	
Overliffens - P. Analyta datastad in	the accessing at Market Disease		D. Dilution wa				- V.	hove quantitation re			

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

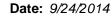
CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: 1409077-029ADUP	SampType: DUP			Units: mg/Kg-dry Prep Date: 9/9/2014				4	RunNo: 160	696	
Client ID: DP-5-7.5	Batch ID: 8670					Analysis Da	te: 9/10/20	14	SeqNo: 33	5704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	19.9		21.05		94.5	50	150		0		
Surr: o-Terphenyl	16.2		21.05		76.9	50	150		0		

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Reporting Limit

D Dilution was required

Analyte detected below quantitation limits

Е Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marriott

Project: SLU Marrio	ott								.		
Sample ID: 1409077-050BDUP	SampType: DUP			Units: µg/L		Prep Date	: 9/10/20	14	RunNo: 167	728	
Client ID: MW-2-140906	Batch ID: 8679					Analysis Date	: 9/11/20	14	SeqNo: 336	3090	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0						0	-	30	
Heavy Oil	ND	100						0		30	
Surr: 2-Fluorobiphenyl	59.9		80.00		74.9	50	150		0		
Surr: o-Terphenyl	56.2		80.00		70.2	50	150		0		
Sample ID: MB-8679	SampType: MBLK			Units: µg/L		Prep Date	: 9/10/20	14	RunNo: 167	 728	
Client ID: MBLKW	Batch ID: 8679					Analysis Date	: 9/11/20	14	SeqNo: 336	3167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Surr: 2-Fluorobiphenyl	51.1		80.00		63.8	50	150				
Surr: o-Terphenyl	56.3		80.00		70.3	50	150				
Sample ID: LCS-8679	SampType: LCS			Units: µg/L		Prep Date	: 9/10/20	14	RunNo: 167	 728	
Client ID: LCSW	Batch ID: 8679					Analysis Date	: 9/11/20	14	SeqNo: 336	3168	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	874	50.0	1,000	0	87.4	65	135				
Surr: 2-Fluorobiphenyl	56.5		80.00		70.6	50	150				
Surr: o-Terphenyl	58.8		80.00		73.5	50	150				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-8667	SampType: MBLK			Units: µg/Kg		Prep Date:	9/9/201	4	RunNo: 167	703	
Client ID: MBLKS	Batch ID: 8667					Analysis Date:	9/10/20	14	SeqNo: 335	5711	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	391		500.0		78.3	42.7	132				
Surr: Terphenyl-d14 (surr)	516		500.0		103	48.8	157				

Sample ID: LCS-8667	SampType: LCS			Units: µg/Kg		Prep Dat	e: 9/9/201	4	RunNo: 167	703	
Client ID: LCSS	Batch ID: 8667					Analysis Dat	e: 9/10/20	14	SeqNo: 335	712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,110	50.0	1,000	0	111	61.6	125				
2-Methylnaphthalene	1,060	50.0	1,000	0	106	58.2	129				
1-Methylnaphthalene	982	50.0	1,000	0	98.2	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8667	SampType: LCS			Units: µg/Kg		Prep Dat	e: 9/9/201	4	RunNo: 167	'03	
Client ID: LCSS	Batch ID: 8667					Analysis Dat	e: 9/10/20	14	SeqNo: 335	712	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	902	50.0	1,000	0	90.2	52.2	133				
Acenaphthene	926	50.0	1,000	0	92.6	54	131				
Fluorene	941	50.0	1,000	0	94.1	53.4	131				
Phenanthrene	886	50.0	1,000	0	88.6	55.6	128				
Anthracene	835	50.0	1,000	0	83.5	51	132				
Fluoranthene	1,040	50.0	1,000	0	104	48.4	134				
Pyrene	1,050	50.0	1,000	0	105	48.6	135				
Benz(a)anthracene	1,060	50.0	1,000	0	106	41.9	136				
Chrysene	866	50.0	1,000	0	86.6	51.4	135				
Benzo(b)fluoranthene	661	50.0	1,000	0	66.1	39.7	137				
Benzo(k)fluoranthene	775	50.0	1,000	0	77.5	45.7	138				
Benzo(a)pyrene	651	50.0	1,000	0	65.1	45.3	135				
Indeno(1,2,3-cd)pyrene	522	50.0	1,000	0	52.2	45.4	137				
Dibenz(a,h)anthracene	535	50.0	1,000	0	53.5	45.8	134				
Benzo(g,h,i)perylene	454	50.0	1,000	0	45.4	45	134				
Surr: 2-Fluorobiphenyl	560		500.0		112	42.7	132				
Surr: Terphenyl-d14 (surr)	624		500.0		125	48.8	157				

Sample ID: 1409084-004AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 9/9/201	4	RunNo: 167	703	
Client ID: BATCH	Batch ID: 8667					Analysis Da	te: 9/10/20	14	SeqNo: 335	5722	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	849	52.0	1,040	0	81.6	42.9	138				
2-Methylnaphthalene	923	52.0	1,040	0	88.7	42.8	151				
1-Methylnaphthalene	905	52.0	1,040	0	86.9	41.6	148				
Acenaphthylene	883	52.0	1,040	0	84.9	32.6	160				
Acenaphthene	969	52.0	1,040	152.3	78.5	46.3	142				
Fluorene	966	52.0	1,040	184.3	75.1	43.4	153				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409084-004AMS	SampType: MS			Units: µg/l	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 167	703	
Client ID: BATCH	Batch ID: 8667					Analysis Da	te: 9/10/2 0	14	SeqNo: 335	5722	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	1,260	52.0	1,040	1,423	-15.4	45.5	140				S
Anthracene	856	52.0	1,040	171.4	65.8	32.6	160				
Fluoranthene	1,540	52.0	1,040	1,154	36.7	44.6	161				S
Pyrene	1,570	52.0	1,040	1,031	51.4	48.3	158				
Benz(a)anthracene	1,240	52.0	1,040	303.6	90.0	57.5	169				
Chrysene	907	52.0	1,040	192.5	68.7	45.2	146				
Benzo(b)fluoranthene	873	52.0	1,040	180.2	66.6	42.2	168				
Benzo(k)fluoranthene	843	52.0	1,040	0	81.1	48	161				
Benzo(a)pyrene	720	52.0	1,040	115.9	58.1	34.4	179				
Indeno(1,2,3-cd)pyrene	577	52.0	1,040	67.28	49.0	41.1	165				
Dibenz(a,h)anthracene	573	52.0	1,040	0	55.1	38.1	166				
Benzo(g,h,i)perylene	504	52.0	1,040	64.49	42.3	45.6	157				S
Surr: 2-Fluorobiphenyl	499		520.2		96.0	42.7	132				
Surr: Terphenyl-d14 (surr)	569		520.2		109	48.8	157				

NOTES:

S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

Sample ID: 1409084-005ADUP	SampType: DUP			Units: µg/Kg-dry		Prep Date: 9/9/2014			RunNo: 167		
Client ID: BATCH	Batch ID: 8667					Analysis Dat	e: 9/10/20	14	SeqNo: 335	5723	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	52.4						0		30	
2-Methylnaphthalene	ND	52.4						0		30	
1-Methylnaphthalene	ND	52.4						0		30	
Acenaphthylene	ND	52.4						0		30	
Acenaphthene	ND	52.4						0		30	
Fluorene	ND	52.4						0		30	
Phenanthrene	ND	52.4						0		30	
Anthracene	ND	52.4						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409084-005ADUP	SampType: DUP			Units: µg/Kg-dry Prep Date: 9/9/2014					RunNo: 16	703	
Client ID: BATCH	Batch ID: 8667					Analysis Dat	te: 9/10/20	14	SeqNo: 33	5723	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	ND	52.4						0		30	
Pyrene	ND	52.4						0		30	
Benz(a)anthracene	ND	52.4						0		30	
Chrysene	ND	52.4						0		30	
Benzo(b)fluoranthene	ND	52.4						0		30	
Benzo(k)fluoranthene	ND	52.4						0		30	
Benzo(a)pyrene	ND	52.4						0		30	
Indeno(1,2,3-cd)pyrene	ND	52.4						0		30	
Dibenz(a,h)anthracene	ND	52.4						0		30	
Benzo(g,h,i)perylene	ND	52.4						0		30	
Surr: 2-Fluorobiphenyl	458		523.9		87.5	42.7	132		0		
Surr: Terphenyl-d14 (surr)	602		523.9		115	48.8	157		0		

Sample ID: MB-8675	SampType: MBLK			Units: µg/Kg		Prep Date: 9/10/2014	RunNo: 16704
Client ID: MBLKS	Batch ID: 8675					Analysis Date: 9/10/2014	SeqNo: 335728
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Re	ef Val %RPD RPDLimit Qual
Naphthalene	ND	50.0					
2-Methylnaphthalene	ND	50.0					
1-Methylnaphthalene	ND	50.0					
Acenaphthylene	ND	50.0					
Acenaphthene	ND	50.0					
Fluorene	ND	50.0					
Phenanthrene	ND	50.0					
Anthracene	ND	50.0					
Fluoranthene	ND	50.0					
Pyrene	ND	50.0					
Benz(a)anthracene	ND	50.0					

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project:	SLU Marriott

Sample ID: MB-8675	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 9/10/20	14	RunNo: 167	704	
Client ID: MBLKS	Batch ID: 8675					Analysis Dat	te: 9/10/20	14	SeqNo: 335	5728	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	379		500.0		75.8	42.7	132				
Surr: Terphenyl-d14 (surr)	548		500.0		110	48.8	157				

Sample ID: LCS-8675	SampType: LCS			Units: µg/Kg		Prep Date	9/10/20°	14	RunNo: 167	704	
Client ID: LCSS	Batch ID: 8675					Analysis Date	e: 9/10/20 ⁴	14	SeqNo: 335	5729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,090	50.0	1,000	0	109	61.6	125				
2-Methylnaphthalene	1,140	50.0	1,000	0	114	58.2	129				
1-Methylnaphthalene	1,120	50.0	1,000	0	112	56.4	132				
Acenaphthylene	1,110	50.0	1,000	0	111	52.2	133				
Acenaphthene	1,130	50.0	1,000	0	113	54	131				
Fluorene	1,120	50.0	1,000	0	112	53.4	131				
Phenanthrene	1,090	50.0	1,000	0	109	55.6	128				
Anthracene	1,060	50.0	1,000	0	106	51	132				
Fluoranthene	1,210	50.0	1,000	0	121	48.4	134				
Pyrene	1,250	50.0	1,000	0	125	48.6	135				
Benz(a)anthracene	1,310	50.0	1,000	0	131	41.9	136				
Chrysene	1,050	50.0	1,000	0	105	51.4	135				
Benzo(b)fluoranthene	1,090	50.0	1,000	0	109	39.7	137				
Benzo(k)fluoranthene	973	50.0	1,000	0	97.3	45.7	138				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8675	SampType: LCS			Units: µg/Kg		Prep Da	te: 9/10/2 0	14	RunNo: 167	704	
Client ID: LCSS	Batch ID: 8675					Analysis Da	te: 9/10/2 0	14	SeqNo: 335	5729	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	862	50.0	1,000	0	86.2	45.3	135				
Indeno(1,2,3-cd)pyrene	675	50.0	1,000	0	67.5	45.4	137				
Dibenz(a,h)anthracene	681	50.0	1,000	0	68.1	45.8	134				
Benzo(g,h,i)perylene	588	50.0	1,000	0	58.8	45	134				
Surr: 2-Fluorobiphenyl	549		500.0		110	42.7	132				
Surr: Terphenyl-d14 (surr)	594		500.0		119	48.8	157				

Sample ID: CCV-B-8667	SampType: CCV			Units: µg/L		Prep Dat	te: 9/11/20	14	RunNo: 167	'03	
Client ID: CCV	Batch ID: 8667					Analysis Dat	te: 9/11/20	14	SeqNo: 336	405	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,010	50.0	1,000	0	101	80	120				
2-Methylnaphthalene	1,020	50.0	1,000	0	102	80	120				
1-Methylnaphthalene	1,020	50.0	1,000	0	102	80	120				
Acenaphthylene	1,020	50.0	1,000	0	102	80	120				
Acenaphthene	1,030	50.0	1,000	0	103	80	120				
Fluorene	1,000	50.0	1,000	0	100	80	120				
Phenanthrene	1,010	50.0	1,000	0	101	80	120				
Anthracene	1,000	50.0	1,000	0	100	80	120				
Fluoranthene	956	50.0	1,000	0	95.6	80	120				
Pyrene	943	50.0	1,000	0	94.3	80	120				
Benz(a)anthracene	973	50.0	1,000	0	97.3	80	120				
Chrysene	1,000	50.0	1,000	0	100	80	120				
Benzo(b)fluoranthene	853	50.0	1,000	0	85.3	80	120				
Benzo(k)fluoranthene	1,070	50.0	1,000	0	107	80	120				
Benzo(a)pyrene	879	50.0	1,000	0	87.9	80	120				
Indeno(1,2,3-cd)pyrene	923	50.0	1,000	0	92.3	80	120				
Dibenz(a,h)anthracene	877	50.0	1,000	0	87.7	80	120				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

SLU Marriott

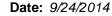
Sample ID: CCV-B-8667	SampType: CCV	Units: µg/L				Prep Da	te: 9/11/20	14	RunNo: 16703		
Client ID: CCV	Batch ID: 8667					Analysis Da	te: 9/11/20	14	SeqNo: 336	405	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(g,h,i)perylene	1,140	50.0	1,000	0	114	80	120				
Surr: 2-Fluorobiphenyl	489		500.0		97.8	50.4	142				
Surr: Terphenyl-d14 (surr)	460		500.0		91.9	48.8	157				

Sample ID: 1409077-044ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Dat	te: 9/10/2 0	14	RunNo: 167	704	
Client ID: DP-9-5.0	Batch ID: 8675					Analysis Dat	te: 9/12/20	114	SeqNo: 336	5768	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	70.1	67.9						0	200	30	
2-Methylnaphthalene	ND	67.9						0		30	
1-Methylnaphthalene	ND	67.9						0		30	
Acenaphthylene	ND	67.9						0		30	
Acenaphthene	ND	67.9						0		30	
Fluorene	ND	67.9						0		30	
Phenanthrene	ND	67.9						0		30	
Anthracene	ND	67.9						0		30	
Fluoranthene	ND	67.9						0		30	
Pyrene	ND	67.9						0		30	
Benz(a)anthracene	ND	67.9						0		30	
Chrysene	ND	67.9						0		30	
Benzo(b)fluoranthene	255	67.9						326.3	24.5	30	
Benzo(k)fluoranthene	ND	67.9						0		30	
Benzo(a)pyrene	257	67.9						0	200	30	
Indeno(1,2,3-cd)pyrene	ND	67.9						0		30	
Dibenz(a,h)anthracene	ND	67.9						0		30	
Benzo(g,h,i)perylene	ND	67.9						0		30	
Surr: 2-Fluorobiphenyl	631		678.8		93.0	42.7	132		0		
Surr: Terphenyl-d14 (surr)	971		678.8		143	48.8	157		0		

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409077-044ADUP SampType: **DUP** Units: µg/Kg-dry Prep Date: 9/10/2014 RunNo: 16704

Client ID: **DP-9-5.0** Batch ID: 8675 Analysis Date: 9/12/2014 SeqNo: 336768

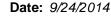
Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte

Sample ID: 1409077-048AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 9/10/20	14	RunNo: 167	704	
Client ID: DP-9-20.0	Batch ID: 8675					Analysis Da	te: 9/12/20	14	SeqNo: 336	5770	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	968	53.4	1,068	0	90.7	42.9	138				
2-Methylnaphthalene	1,030	53.4	1,068	0	96.9	42.8	151				
1-Methylnaphthalene	1,070	53.4	1,068	0	100	41.6	148				
Acenaphthylene	1,160	53.4	1,068	0	109	32.6	160				
Acenaphthene	1,140	53.4	1,068	0	107	46.3	142				
Fluorene	1,180	53.4	1,068	0	111	43.4	153				
Phenanthrene	1,150	53.4	1,068	0	108	45.5	140				
Anthracene	1,140	53.4	1,068	0	107	32.6	160				
Fluoranthene	1,210	53.4	1,068	71.19	107	44.6	161				
Pyrene	1,220	53.4	1,068	72.13	108	48.3	158				
Benz(a)anthracene	1,480	53.4	1,068	0	139	57.5	169				
Chrysene	1,090	53.4	1,068	0	102	45.2	146				
Benzo(b)fluoranthene	1,430	53.4	1,068	0	134	42.2	168				
Benzo(k)fluoranthene	1,250	53.4	1,068	0	117	48	161				
Benzo(a)pyrene	1,270	53.4	1,068	0	119	34.4	179				
Indeno(1,2,3-cd)pyrene	1,610	53.4	1,068	0	151	41.1	165				
Dibenz(a,h)anthracene	1,520	53.4	1,068	0	142	38.1	166				
Benzo(g,h,i)perylene	1,290	53.4	1,068	0	121	45.6	157				
Surr: 2-Fluorobiphenyl	377		533.9		70.6	42.7	132				
Surr: Terphenyl-d14 (surr)	593		533.9		111	48.8	157				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: ICV	SampType: ICV			Units: µg/L		Prep Da	ite: 9/16/20	14	RunNo: 167	790	
Client ID: ICV	Batch ID: R16790					Analysis Da	te: 9/16/20	14	SeqNo: 337	7515	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	953	50.0	1,000	0	95.3	70	130				
2-Methylnaphthalene	910	50.0	1,000	0	91.0	70	130				
1-Methylnaphthalene	896	50.0	1,000	0	89.6	70	130				
Acenaphthylene	914	50.0	1,000	0	91.4	70	130				
Acenaphthene	948	50.0	1,000	0	94.8	70	130				
Fluorene	865	50.0	1,000	0	86.5	70	130				
Phenanthrene	958	50.0	1,000	0	95.8	70	130				
Anthracene	980	50.0	1,000	0	98.0	70	130				
Fluoranthene	988	50.0	1,000	0	98.8	70	130				
Pyrene	1,000	50.0	1,000	0	100	70	130				
Benz(a)anthracene	988	50.0	1,000	0	98.8	70	130				
Chrysene	961	50.0	1,000	0	96.1	70	130				
Benzo(b)fluoranthene	1,020	50.0	1,000	0	102	70	130				
Benzo(k)fluoranthene	1,020	50.0	1,000	0	102	70	130				
Benzo(a)pyrene	1,020	50.0	1,000	0	103	70	130				
Indeno(1,2,3-cd)pyrene	823	50.0	1,000	0	82.3	70	130				
Dibenz(a,h)anthracene	761	50.0	1,000	0	76.1	70	130				
Benzo(g,h,i)perylene	813	50.0	1,000	0	81.3	70	130				
Surr: 2-Fluorobiphenyl	416		500.0		83.3	50.4	142				
Surr: Terphenyl-d14 (surr)	561		500.0		112	48.8	157				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

1 Tojour See Marrior											
Sample ID: MB-8680	SampType: MBLK			Units: µg/L		Prep Date:	9/10/201	14	RunNo: 167	36	
Client ID: MBLKW	Batch ID: 8680					Analysis Date:	9/11/201	4	SeqNo: 336	243	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.100									
2-Methylnaphthalene	ND	0.100									
1-Methylnaphthalene	ND	0.100									
Acenaphthylene	ND	0.100									
Acenaphthene	ND	0.100									
Fluorene	ND	0.100									
Phenanthrene	ND	0.100									
Anthracene	ND	0.100									
Fluoranthene	ND	0.100									
Pyrene	ND	0.100									
Benz(a)anthracene	ND	0.100									
Chrysene	ND	0.100									
Benzo(b)fluoranthene	ND	0.100									
Benzo(k)fluoranthene	ND	0.100									
Benzo(a)pyrene	ND	0.100									
Indeno(1,2,3-cd)pyrene	ND	0.100									
Dibenz(a,h)anthracene	ND	0.100									
Benzo(g,h,i)perylene	ND	0.100									
Surr: 2-Fluorobiphenyl	1.47		2.000		73.5	23.9	122				
Surr: Terphenyl-d14	1.76		2.000		87.9	33.4	135				

Sample ID: 1409077-050CDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 9/10/2 0	14	RunNo: 167	'36	
Client ID: MW-2-140906	Batch ID: 8680					Analysis Dat	e: 9/12/2 0	114	SeqNo: 336	247	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.100						0		30	
2-Methylnaphthalene	ND	0.100						0		30	
1-Methylnaphthalene	ND	0.100						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
 - Analyte detected below quantitation limits
- Reporting Limit

- Е Value above quantitation range
- Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409077-050CDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 9/10/2 0)14	RunNo: 167	736	
Client ID: MW-2-140906	Batch ID: 8680					Analysis Dat	e: 9/12/2 0)14	SeqNo: 336	6247	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	ND	0.100						0		30	
Acenaphthene	ND	0.100						0		30	
Fluorene	ND	0.100						0		30	
Phenanthrene	ND	0.100						0		30	
Anthracene	ND	0.100						0		30	
Fluoranthene	ND	0.100						0		30	
Pyrene	ND	0.100						0		30	
Benz(a)anthracene	ND	0.100						0		30	
Chrysene	ND	0.100						0		30	
Benzo(b)fluoranthene	ND	0.100						0		30	
Benzo(k)fluoranthene	ND	0.100						0		30	
Benzo(a)pyrene	ND	0.100						0		30	
Indeno(1,2,3-cd)pyrene	ND	0.100						0		30	
Dibenz(a,h)anthracene	ND	0.100						0		30	
Benzo(g,h,i)perylene	ND	0.100						0		30	
Surr: 2-Fluorobiphenyl	1.77		2.000		88.4	23.9	122		0		
Surr: Terphenyl-d14	1.64		2.000		82.2	33.4	135		0		

Sample ID: 1409077-051CMS	SampType: MS			Units: µg/L		Prep Da	te: 9/10/20	14	RunNo: 167	736	
Client ID: MW-3-140906	Batch ID: 8680					Analysis Dat	te: 9/12/20	14	SeqNo: 336	6249	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	3.10	0.100	4.000	0	77.5	31.2	104				
2-Methylnaphthalene	3.40	0.100	4.000	0	85.0	33.9	109				
1-Methylnaphthalene	3.43	0.100	4.000	0	85.7	33.2	110				
Acenaphthylene	3.57	0.100	4.000	0	89.1	40.5	98.7				
Acenaphthene	3.72	0.100	4.000	0	93.1	30.6	117				
Fluorene	4.08	0.100	4.000	0	102	35.2	99.1				S

Qualifiers: Analyte detected in the associated Method Blank

RPD outside accepted recovery limits

D Dilution was required Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1409077-051CMS	SampType: MS			Units: µg/L		Prep Da	te: 9/10/20	14	RunNo: 167	736	
Client ID: MW-3-140906	Batch ID: 8680					Analysis Da	te: 9/12/20	14	SeqNo: 336	6249	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	4.03	0.100	4.000	0	101	42.7	111				
Anthracene	3.07	0.100	4.000	0	76.7	43.9	103				
Fluoranthene	4.41	0.100	4.000	0	110	56.1	115				
Pyrene	4.28	0.100	4.000	0	107	44.2	134				
Benz(a)anthracene	4.73	0.100	4.000	0	118	50.4	128				
Chrysene	3.64	0.100	4.000	0	90.9	41.4	118				
Benzo(b)fluoranthene	4.39	0.100	4.000	0	110	50.8	121				
Benzo(k)fluoranthene	3.58	0.100	4.000	0	89.4	43.4	113				
Benzo(a)pyrene	3.68	0.100	4.000	0	91.9	40.8	128				
Indeno(1,2,3-cd)pyrene	4.13	0.100	4.000	0	103	29.5	126				
Dibenz(a,h)anthracene	4.41	0.100	4.000	0	110	31.4	120				
Benzo(g,h,i)perylene	4.27	0.100	4.000	0	107	30	116				
Surr: 2-Fluorobiphenyl	1.79		4.000		44.8	23.9	122				
Surr: Terphenyl-d14	2.20		4.000		54.9	33.4	135				
NOTES:											

NOTES:

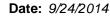
S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

Sample ID: LCS-8680	SampType: LCS			Units: µg/L		Prep Da	te: 9/10/2 0	14	RunNo: 16736			
Client ID: LCSW	Batch ID: 8680					Analysis Da	te: 9/11/2 0	14	SeqNo: 336	6254		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	2.78	0.100	4.000	0	69.6	13.7	121					
2-Methylnaphthalene	2.80	0.100	4.000	0	70.1	35.4	110					
1-Methylnaphthalene	2.85	0.100	4.000	0	71.3	37.5	116					
Acenaphthylene	3.02	0.100	4.000	0	75.5	39.2	114					
Acenaphthene	3.18	0.100	4.000	0	79.4	37	113					
Fluorene	3.44	0.100	4.000	0	86.0	40.3	117					
Phenanthrene	3.64	0.100	4.000	0	90.9	35.1	118					
Anthracene	3.54	0.100	4.000	0	88.4	45.4	115					

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Surr: Terphenyl-d14

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project:	SLU Marriott						Ро	lyaromat	ic Hydro	carbons by	/ EPA Met	hod 8270	(SIM)
Sample ID: LCS-86	80 Sa	ampType:	LCS			Units: µg/L		Prep Da	te: 9/10/2 0	14	RunNo: 167	736	
Client ID: LCSW	В	atch ID:	8680					Analysis Da	te: 9/11/2 0	14	SeqNo: 336	6254	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene		;	3.85	0.100	4.000	0	96.2	49.7	126				
Pyrene		;	3.88	0.100	4.000	0	96.9	48.1	123				
Benz(a)anthracene		4	1.44	0.100	4.000	0	111	48.7	126				
Chrysene		;	3.61	0.100	4.000	0	90.3	45.1	114				
Benzo(b)fluoranthen	е	4	1.09	0.100	4.000	0	102	52.2	126				
Benzo(k)fluoranthene	е	4	4.08	0.100	4.000	0	102	45.5	121				
Benzo(a)pyrene		(3.76	0.100	4.000	0	94.0	38.4	121				
Indeno(1,2,3-cd)pyre	ene	4	1.61	0.100	4.000	0	115	23.9	143				
Dibenz(a,h)anthrace	ne	4	1.46	0.100	4.000	0	112	24.9	141				
Benzo(g,h,i)perylene	;	4	1.27	0.100	4.000	0	107	35.9	139				
Surr: 2-Fluorobiph	nenyl		1.54		4.000		38.4	23.9	122				

53.7

33.4

135

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

2.15

RPD outside accepted recovery limits

D Dilution was required

4.000

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polychlorinated Biphenyls (PCB) by EPA 8082

Project: **SLU Marriott** Sample ID: MB-8688 SampType: MBLK Units: mg/Kg Prep Date: 9/11/2014 RunNo: 16738 Client ID: **MBLKS** Batch ID: 8688 Analysis Date: 9/11/2014 SeqNo: 336292 Result RL SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte %REC Qual Aroclor 1016 ND 0.100 Aroclor 1221 ND 0.100

Aroclor 1232 ND 0.100 Aroclor 1242 ND 0.100 Aroclor 1248 ND 0.100 Aroclor 1254 ND 0.100 Aroclor 1260 ND 0.100

Aroclor 1262 ND 0.100 Aroclor 1268 ND 0.100 Total PCBs ND 0.100

43.3 50.00 86.6 Surr: Decachlorobiphenyl 50.2 159 Surr: Tetrachloro-m-xylene 38.8 50.00 77.6 60.3 134

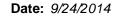
Sample ID: LCS-8688	SampType: LCS	Units: mg/Kg				Prep Dat	e: 9/11/20 1	14	RunNo: 167	' 38	
Client ID: LCSS	Batch ID: 8688					Analysis Dat	e: 9/11/20 1	14	SeqNo: 336	293	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.10	0.100	1.000	0	110	45.8	133				
Aroclor 1260	1.13	0.100	1.000	0	113	57	134				
Surr: Decachlorobiphenyl	45.3		50.00		90.6	50.2	159				
Surr: Tetrachloro-m-xylene	39.7		50.00		79.4	60.3	134				

Sample ID: 1409077-013ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 9/11/20	14	RunNo: 167	738	
Client ID: DP-3-2.5	Batch ID: 8688					Analysis Da	te: 9/11/20	14	SeqNo: 336	6295	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.108						0		30	
Aroclor 1221	ND	0.108						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID: 1409077-013ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	e: 9/11/20	14	RunNo: 167	738	
Client ID: DP-3-2.5	Batch ID: 8688					Analysis Dat	e: 9/11/20	14	SeqNo: 336	6295	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1232	ND	0.108						0		30	
Aroclor 1242	ND	0.108						0		30	
Aroclor 1248	ND	0.108						0		30	
Aroclor 1254	ND	0.108						0		30	
Aroclor 1260	ND	0.108						0		30	
Aroclor 1262	ND	0.108						0		30	
Aroclor 1268	ND	0.108						0		30	
Total PCBs	ND	0.108						0		30	
Surr: Decachlorobiphenyl	42.5		53.93		78.9	50.2	159		0		
Surr: Tetrachloro-m-xylene	40.0		53.93		74.2	60.3	134		0		

Sample ID: 1409077-037AMS	SampType: MS			Units: mg/l	Units: mg/Kg-dry		e: 9/11/201	4	RunNo: 167	38	
Client ID: DP-7-7.5	Batch ID: 8688					Analysis Dat	e: 9/11/201	4	SeqNo: 336	297	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.64	0.147	1.465	0	112	61.7	139				
Aroclor 1260	1.59	0.147	1.465	0	108	63.1	138				
Surr: Decachlorobiphenyl	63.2		73.25		86.3	50.2	159				
Surr: Tetrachloro-m-xylene	59.9		73.25		81.7	60.3	134				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	ott								Gasoline		
Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/k	(g-dry	Prep Da	te: 9/9/201	4	RunNo: 16	693	
Client ID: DP-1-2.5	Batch ID: R16693					Analysis Da	te: 9/10/20	14	SeqNo: 33	5470	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	4.70						0		30	
Surr: Toluene-d8	2.41		2.350		103	65	135		0		
Surr: 4-Bromofluorobenzene	2.13		2.350		90.5	65	135		0		
Sample ID: LCS-R16693	SampType: LCS			Units: mg/k	 Сg	Prep Da	te: 9/10/20	14	RunNo: 16	693	
Client ID: LCSS	Batch ID: R16693					Analysis Da	te: 9/10/20	14	SeqNo: 33	5479	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	24.2	5.00	25.00	0	96.8	65	135				
Surr: Toluene-d8	2.54		2.500		101	65	135				
Surr: 4-Bromofluorobenzene	2.36		2.500		94.3	65	135				
Sample ID: MB-R16693	SampType: MBLK			Units: mg/k	<u></u> (g	Prep Da	te: 9/9/201	4	RunNo: 16	693	
Client ID: MBLKS	Batch ID: R16693					Analysis Da	te: 9/9/201	4	SeqNo: 33	5480	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.55		2.500		102	65	135				
Surr: 4-Bromofluorobenzene	2.24		2.500		89.8	65	135				
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/k	(g-dry	Prep Da	te: 9/10/20	14	RunNo: 16	714	
Client ID: DP-7-7.5	Batch ID: R16714					Analysis Da	te: 9/11/20	14	SeqNo: 33	5913	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	189	8.32						174.6	8.17	30	
Surr: Toluene-d8	4.06		4.158		97.7	65	135		0		
Surr: 4-Bromofluorobenzene	3.99		4.158		96.0	65	135		0		

Qualifiers: B Analyte detected in the associated Method Blank

Helding the extension of the constant of the first terms of the constant of th

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Gasoline by NWTPH-Gx

Project: **SLU Marriott**

Sample ID: 1409077-037BDUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 9/10/2014 RunNo: 16714 Client ID: DP-7-7.5 Batch ID: R16714

Analysis Date: 9/11/2014 SeqNo: 335913

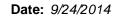
Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte

Sample ID: LCS-R16714	SampType	LCS			Units: mg/	K g	Prep Da	te: 9/11/20	14	RunNo: 16	714	
Client ID: LCSS	Batch ID:	R16714					Analysis Da	te: 9/11/20	14	SeqNo: 33	5922	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		22.9	5.00	25.00	0	91.4	65	135				
Surr: Toluene-d8		2.51		2.500		101	65	135				
Surr: 4-Bromofluorobenzene		2.42		2.500		96.6	65	135				
Sample ID: MB-R16714	SampType	MBLK			Units: mg/	K g	Prep Da	te: 9/11/20	14	RunNo: 16	714	
Client ID: MBLKS	Batch ID:	R16714					Analysis Dat	te: 9/11/20	14	SeqNo: 33	5923	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	5.00									
Surr: Toluene-d8		2.45		2.500		98.0	65	135				
Surr: 4-Bromofluorobenzene		2.30		2.500		92.0	65	135				
Sample ID: 1409090-001BDUP	SampType	: DUP			Units: mg/	Kg-dry	Prep Da	te: 9/10/20	14	RunNo: 16	714	
Client ID: BATCH	Batch ID:	R16714					Analysis Da	te: 9/11/20	14	SeqNo: 330	6612	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	5.18						0		30	
Surr: Toluene-d8		2.50		2.590		96.6	65	135		0		
Surr: 4-Bromofluorobenzene		2.56		2.590		98.8	65	135		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

CLIENT: GeoEngineers, Inc. - Redmond

R RPD outside accepted recovery limits

Project: SLU Marriott

QC SUMMARY REPORT

Spike recovery outside accepted recovery limits

Gasoline by NWTPH-Gx

Project: SLU Marrio	TT									,	
Sample ID: CCV-R16693C	SampType: CCV	Units: mg/Kg Prep Date: 9/11/2014)14	RunNo: 166	693			
Client ID: CCV	Batch ID: R16693					Analysis Date	e: 9/11/2 0)14	SeqNo: 336	6617	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	554	5.00	500.0	0	111	80	120				
Surr: Toluene-d8	50.6		50.00		101	65	135				
Surr: 4-Bromofluorobenzene	49.1		50.00		98.2	65	135				
Sample ID: CCV-R16714D	SampType: CCV			Units: mg/Kg		Prep Date	e: 9/15/2 0)14	RunNo: 167	714	
Client ID: CCV	Batch ID: R16714					Analysis Date	e: 9/15/2 0	114	SeqNo: 336	6672	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	431	5.00	500.0	0	86.1	80	120				
Surr: Toluene-d8	49.2		50.00		98.4	65	135				
Surr: 4-Bromofluorobenzene	48.6		50.00		97.2	65	135				
Sample ID: 1409077-012BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 9/24/2 0)14	RunNo: 169	994	
Client ID: DP-2-15.0	Batch ID: 8838					Analysis Date	e: 9/24/2 0	114	SeqNo: 340	0730	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	33.2	4.37						34.95	5.05	30	Н
Surr: Toluene-d8	2.19		2.187		100	65	135		0		Н
Surr: 4-Bromofluorobenzene	2.05		2.187		94.0	65	135		0		Н
Sample ID: LCS-8838	SampType: LCS			Units: mg/Kg		Prep Date	e: 9/24/2 0)14	RunNo: 169	994	
Client ID: LCSS	Batch ID: 8838					Analysis Date	e: 9/24/2 0	14	SeqNo: 340	0732	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	27.1	5.00	25.00	0	108	65	135				
Surr: Toluene-d8	2.50		2.500		100	65	135				
Surr: 4-Bromofluorobenzene	2.47		2.500		98.9	65	135				
Qualifiers: B Analyte detected in	ifiers: B Analyte detected in the associated Method Blank D Dilution was required				E Value above quantitation range						
H Holding times for pr	reparation or analysis exceeded		J Analyte de	tected below quantitation lin	mits		ND Not o	detected at the Report	ing Limit		

Reporting Limit

Analytical

Date: 9/24/2014

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Gasoline by NWTPH-Gx

Project: SLU Marriott

Sample ID: LCS-8838 SampType: LCS Units: mg/Kg Prep Date: 9/24/2014 RunNo: 16994

Client ID: LCSS Batch ID: 8838 Analysis Date: 9/24/2014 SeqNo: 340732

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: MB-8838 Client ID: MBLKS	SampType: MBLK Batch ID: 8838			Units: mg/Kg		Prep Da	te: 9/24/20		RunNo: 169 SeqNo: 340	-	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	,		RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.49		2.500		99.6	65	135				
Surr: 4-Bromofluorobenzene	2.44		2.500		97.5	65	135				

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

CLIENT:

GeoEngineers, Inc. - Redmond

R RPD outside accepted recovery limits

Project: SLU Marriott

QC SUMMARY REPORT

S Spike recovery outside accepted recovery limits

Gasoline by NWTPH-Gx

ττ									,	
SampType: DUP			Units: µg/L		Prep Da	te: 9/10/20	14	RunNo: 166	682	
Batch ID: R16682					Analysis Da	te: 9/10/20	14	SeqNo: 335	5254	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
ND	50.0						0		30	
50.0		50.00		100	65	135		0	0	
54.3		50.00		109	65	135		0	0	
SampType: DUP			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	682	
Batch ID: R16682					Analysis Da	te: 9/9/201	4	SeqNo: 335	5257	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
ND	50.0						0		30	
51.7		50.00		103	65	135		0	0	
51.9		50.00		104	65	135		0	0	
SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	682	
Batch ID: R16682					Analysis Da	te: 9/9/201	4	SeqNo: 335	5261	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
593	50.0	500.0	0	119	65	135				
50.5		50.00		101	65	135				
50.6		50.00		101	65	135				
SampType: MBLK			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	682	
Batch ID: R16682					Analysis Da	te: 9/9/201	4	SeqNo: 335	5262	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
ND	50.0									
52.5		50.00		105	65	135				
50.3		50.00		101	65	135				
the associated Method Blank		D Dilution wa	as required			E Value	e above quantitation ra	ange		
eparation or analysis exceeded		J Analyte de	tected below quantitation I	imits		ND Not d	letected at the Report	ina Limit		
	SampType: DUP Batch ID: R16682 Result ND 50.0 54.3 SampType: DUP Batch ID: R16682 Result ND 51.7 51.9 SampType: LCS Batch ID: R16682 Result SampType: LCS Batch ID: R16682 Result ND 51.7 51.9 SampType: LCS Batch ID: R16682 Result ND 52.5 50.3 the associated Method Blank	SampType: DUP Batch ID: R16682 Result RL ND 50.0 50.0 54.3 SampType: DUP Batch ID: R16682 Result RL ND 50.0 51.7 51.9 SampType: LCS Batch ID: R16682 Result RL 593 50.0 50.5 50.6 SampType: MBLK Batch ID: R16682 Result RL ND 50.0 52.5 50.3 the associated Method Blank	SampType: DUP Batch ID: R16682 Result RL SPK value ND 50.0 50.00 50.0 50.00 50.00 SampType: DUP Batch ID: R16682 Result RL SPK value ND 50.0 50.00 51.7 50.00 50.00 51.9 50.00 50.00 SampType: LCS LCS Batch ID: R16682 Result RL SPK value SampType: MBLK MBLK Batch ID: R16682 Result RL SPK value ND 50.0 52.5 50.00 50.00 50.00 50.00 50.3 50.00 50.00 50.00 50.00 the associated Method Blank D Dillution was	SampType: DUP Units: µg/L Batch ID: Result RL SPK value SPK Ref Val ND 50.0 50.00 50.00 SPK Ref Val SampType: DUP Units: µg/L Batch ID: R16682 Result RL SPK value SPK Ref Val SampType: LCS Units: µg/L Batch ID: R16682 Result RL SPK value SPK Ref Val SampType: MBLK Units: µg/L Batch ID: R16682 Result RL SPK value SPK Ref Val ND 50.0 SPK value SPK Ref Val	SampType: DUP Units: μg/L Batch ID: R16682 Result RL SPK value SPK Ref Val %REC ND 50.0 50.00 100 50.0 50.00 109 SampType: DUP Units: μg/L Batch ID: R16682 Result RL SPK value SPK Ref Val %REC ND 50.0 50.00 103 104 104 104 SampType: LCS Units: μg/L LCS LCS LCS WREC 104	SampType: DUP Units: µg/L Prep Da Batch ID: R16682 Result RL SPK value SPK Ref Val %REC LowLimit ND 50.0 50.00 100 65 50.0 50.00 109 65 SampType: DUP Units: µg/L Prep Da Batch ID: R16682 Analysis Da Analysis Da Result RL SPK value SPK Ref Val %REC LowLimit ND 50.0 103 65 51.7 50.00 104 65 SampType: LCS Units: µg/L Prep Da Analysis Da Analysis Da Result RL SPK value SPK Ref Val %REC LowLimit 593 50.0 50.0 0 119 65 50.5 50.5 50.00 101 65 SampType: MBLK Units: µg/L Prep Da Analysis Da Result RL SPK value	SampType: DUP Units: µg/L Prep Date: 9/10/20 Batch ID: R16682 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit ND 50.0 50.0 100 65 135 50.0 50.0 109 65 135 SampType: DUP Units: µg/L Prep Date: 9/9/201 Batch ID: R16682 Result RE SPK value SPK Ref Val %REC LowLimit HighLimit ND 50.0 50.0 103 65 135 51.7 50.00 103 65 135 SampType: LCS Units: µg/L Prep Date: 9/9/201 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit 593 50.0 50.0 0 119 65 135 50.5 50.0 0 101 65 135	Batch ID: R16682 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	SampType: DUP	SampType: DUP Figure Prep Date: Prep Date: Prep Prep

RL Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

SLU Marriott

Gasoline by NWTPH-Gx

Sample ID: MB-R16682

SampType: MBLK

Units: µg/L

Prep Date: 9/9/2014

RunNo: 16682

Client ID: **MBLKW** Batch ID: R16682

Analysis Date: 9/9/2014

SeqNo: 335262

Analyte

Project:

Result

RL SPK value SPK Ref Val %REC

LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 160	692	
Client ID: DP-1-2.5	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0564						0		30	
Chloromethane	ND	0.0564						0		30	
Vinyl chloride	ND	0.00188						0		30	
Bromomethane	ND	0.0846						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0470						0		30	
Chloroethane	ND	0.0564						0		30	
1,1-Dichloroethene	ND	0.0470						0		30	
Methylene chloride	ND	0.0188						0		30	
trans-1,2-Dichloroethene	ND	0.0188						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0470						0		30	
1,1-Dichloroethane	ND	0.0188						0		30	
2,2-Dichloropropane	ND	0.0470						0		30	
cis-1,2-Dichloroethene	ND	0.0188						0		30	
Chloroform	ND	0.0188						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0188						0		30	
1,1-Dichloropropene	ND	0.0188						0		30	
Carbon tetrachloride	ND	0.0188						0		30	
1,2-Dichloroethane (EDC)	ND	0.0282						0		30	
Benzene	ND	0.0188						0		30	
Trichloroethene (TCE)	ND	0.0188						0		30	
1,2-Dichloropropane	ND	0.0188						0		30	
Bromodichloromethane	ND	0.0188						0		30	
Dibromomethane	ND	0.0376						0		30	
cis-1,3-Dichloropropene	ND	0.0188						0		30	
Toluene	ND	0.0188						0		30	
trans-1,3-Dichloropropylene	ND	0.0282						0		30	
1,1,2-Trichloroethane	ND	0.0282						0		30	
1,3-Dichloropropane	ND	0.0470						0		30	
Tetrachloroethene (PCE)	ND	0.0188						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 9/9/201	4	RunNo: 16 6	692	
Client ID: DP-1-2.5	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0282						0		30	
1,2-Dibromoethane (EDB)	ND	0.00470						0		30	
Chlorobenzene	ND	0.0188						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0282						0		30	
Ethylbenzene	ND	0.0282						0		30	
m,p-Xylene	ND	0.0188						0		30	
o-Xylene	ND	0.0188						0		30	
Styrene	ND	0.0188						0		30	
Isopropylbenzene	ND	0.0752						0		30	
Bromoform	ND	0.0188						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0188						0		30	
n-Propylbenzene	ND	0.0188						0		30	
Bromobenzene	ND	0.0282						0		30	
1,3,5-Trimethylbenzene	ND	0.0188						0		30	
2-Chlorotoluene	ND	0.0188						0		30	
4-Chlorotoluene	ND	0.0188						0		30	
tert-Butylbenzene	ND	0.0188						0		30	
1,2,3-Trichloropropane	ND	0.0188						0		30	
1,2,4-Trichlorobenzene	ND	0.0470						0		30	
sec-Butylbenzene	ND	0.0188						0		30	
4-Isopropyltoluene	ND	0.0188						0		30	
1,3-Dichlorobenzene	ND	0.0188						0		30	
1,4-Dichlorobenzene	ND	0.0188						0		30	
n-Butylbenzene	ND	0.0188						0		30	
1,2-Dichlorobenzene	ND	0.0188						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0282						0		30	
1,2,4-Trimethylbenzene	ND	0.0188						0		30	
Hexachlorobutadiene	ND	0.0940						0		30	
Naphthalene	ND	0.0282						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

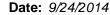
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-001BDUP	SampType: DUP			Units: mg/k	(g-dry	Prep Da	te: 9/9/201	4	RunNo: 16 0	692	
Client ID: DP-1-2.5	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	ND	0.0188						0		30	
Surr: Dibromofluoromethane	2.15		2.350		91.5	63.7	129		0		
Surr: Toluene-d8	2.26		2.350		96.1	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.17		2.350		92.2	63.1	141		0		
Sample ID: 1409077-002BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 9/9/201	4	RunNo: 160		
Client ID: DP-1-5.0	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5450	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.729	0.0455	0.7581	0	96.2	43.5	121				
Chloromethane	0.696	0.0455	0.7581	0	91.8	45	130				
Vinyl chloride	0.764	0.00152	0.7581	0	101	51.2	146				
Bromomethane	0.651	0.0682	0.7581	0	85.8	21.3	120				
Trichlorofluoromethane (CFC-11)	0.327	0.0379	0.7581	0	43.1	35	131				
Chloroethane	0.454	0.0455	0.7581	0	59.9	43.8	117				
1,1-Dichloroethene	0.880	0.0379	0.7581	0	116	61.9	141				
Methylene chloride	0.885	0.0152	0.7581	0	117	54.7	142				
trans-1,2-Dichloroethene	0.845	0.0152	0.7581	0	111	52	136				
Methyl tert-butyl ether (MTBE)	0.675	0.0379	0.7581	0	89.1	54.4	132				
1,1-Dichloroethane	0.816	0.0152	0.7581	0	108	51.8	141				
2,2-Dichloropropane	0.528	0.0379	0.7581	0	69.6	36	123				
cis-1,2-Dichloroethene	0.722	0.0152	0.7581	0	95.3	58.6	136				
Chloroform	0.803	0.0152	0.7581	0	106	53.2	129				
1,1,1-Trichloroethane (TCA)	0.815	0.0152	0.7581	0	108	58.3	145				
1,1-Dichloropropene	0.779	0.0152	0.7581	0	103	55.1	138				
Carbon tetrachloride	0.779	0.0152	0.7581	0	103	53.3	144				
1,2-Dichloroethane (EDC)	0.693	0.0227	0.7581	0	91.4	51.3	139				
Benzene	0.791	0.0152	0.7581	0	104	63.5	133				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Client ID: DP-1-5.0 Batch ID: 8663 Result RL SPK value SPK Ref Val WREC LowLimit HighLimit RPD Ref Val WRPD	6692	
Trichloroethene (TCE) 0.815 0.0152 0.7581 0 108 68.6 132 1,2-Dichloropropane 0.782 0.0152 0.7581 0 103 59 136 Bromodichloromethane 0.770 0.0152 0.7581 0 102 50.7 141 Dibromomethane 0.751 0.0303 0.7581 0 99.0 50.6 137 cis-1,3-Dichloropropene 0.686 0.0152 0.7581 0 90.5 50.4 138 Toluene 0.803 0.0152 0.7581 0 90.5 50.4 138 Toluene 0.803 0.0152 0.7581 0 106 63.4 132 trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 <	35450	
1,2-Dichloropropane 0.782 0.0152 0.7581 0 103 59 136 Bromodichloromethane 0.770 0.0152 0.7581 0 102 50.7 141 Dibromomethane 0.751 0.0303 0.7581 0 99.0 50.6 137 cis-1,3-Dichloropropene 0.686 0.0152 0.7581 0 90.5 50.4 138 Toluene 0.803 0.0152 0.7581 0 106 63.4 132 trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane 0.798 0.0152	RPDLimit	Qual
Bromodichloromethane 0.770 0.0152 0.7581 0 102 50.7 141 Dibromomethane 0.751 0.0303 0.7581 0 99.0 50.6 137 cis-1,3-Dichloropropene 0.686 0.0152 0.7581 0 90.5 50.4 138 Toluene 0.803 0.0152 0.7581 0 106 63.4 132 trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane 0.798 0.00379 0.7581 0		
Dibromomethane 0.751 0.0303 0.7581 0 99.0 50.6 137 cis-1,3-Dichloropropene 0.686 0.0152 0.7581 0 90.5 50.4 138 Toluene 0.803 0.0152 0.7581 0 106 63.4 132 trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 1		
cis-1,3-Dichloropropene 0.686 0.0152 0.7581 0 90.5 50.4 138 Toluene 0.803 0.0152 0.7581 0 106 63.4 132 trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0		
Toluene 0.803 0.0152 0.7581 0 106 63.4 132 trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
trans-1,3-Dichloropropylene 0.708 0.0227 0.7581 0 93.4 44.1 147 1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
1,1,2-Trichloroethane 0.776 0.0227 0.7581 0 102 51.6 137 1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
1,3-Dichloropropane 0.787 0.0379 0.7581 0 104 53.1 134 Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
Tetrachloroethene (PCE) 0.831 0.0152 0.7581 0 110 35.6 158 Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
Dibromochloromethane 0.748 0.0227 0.7581 0 98.7 55.3 140 1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
1,2-Dibromoethane (EDB) 0.769 0.00379 0.7581 0 101 50.4 136 Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
Chlorobenzene 0.798 0.0152 0.7581 0 105 60 133 1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
1,1,1,2-Tetrachloroethane 0.789 0.0227 0.7581 0 104 53.1 142		
Ethylhenzene 0.707 0.0227 0.7581 0 105 54.5 124		
Ethylperizerie 0.737 0.0227 0.7301 0 103 34.3 134		
m,p-Xylene 1.62 0.0152 1.516 0 107 53.1 132		
o-Xylene 0.795 0.0152 0.7581 0 105 53.3 139		
Styrene 0.793 0.0152 0.7581 0 105 51.1 132		
Isopropylbenzene 0.791 0.0606 0.7581 0 104 58.9 138		
Bromoform 0.707 0.0152 0.7581 0 93.2 57.9 130		
1,1,2,2-Tetrachloroethane 0.776 0.0152 0.7581 0 102 51.9 131		
n-Propylbenzene 0.803 0.0152 0.7581 0 106 53.6 140		
Bromobenzene 0.795 0.0227 0.7581 0 105 54.2 140		
1,3,5-Trimethylbenzene 0.820 0.0152 0.7581 0 108 51.8 136		
2-Chlorotoluene 0.817 0.0152 0.7581 0 108 51.6 136		
4-Chlorotoluene 0.811 0.0152 0.7581 0 107 50.1 139		
tert-Butylbenzene 0.816 0.0152 0.7581 0 108 50.5 135		
1,2,3-Trichloropropane 0.793 0.0152 0.7581 0 105 50.5 131		
1,2,4-Trichlorobenzene 0.742 0.0379 0.7581 0 97.9 50.8 130		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

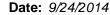
Sample ID: 1409077-002BMS	SampType: MS			Units: mg/	/Kg-dry	Prep Da	te: 9/9/201	4	RunNo: 166	692	
Client ID: DP-1-5.0	Batch ID: 8663					Analysis Da	te: 9/10/20	14	SeqNo: 33	5450	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	0.818	0.0152	0.7581	0	108	52.6	141				
4-Isopropyltoluene	0.835	0.0152	0.7581	0	110	52.9	134				
1,3-Dichlorobenzene	0.794	0.0152	0.7581	0	105	52.6	131				
1,4-Dichlorobenzene	0.801	0.0152	0.7581	0	106	52.9	129				
n-Butylbenzene	0.779	0.0152	0.7581	0	103	52.6	130				
1,2-Dichlorobenzene	0.761	0.0152	0.7581	0	100	55.8	129				
1,2-Dibromo-3-chloropropane	0.790	0.0227	0.7581	0	104	40.5	131				
1,2,4-Trimethylbenzene	0.812	0.0152	0.7581	0	107	50.6	137				
Hexachlorobutadiene	0.825	0.0758	0.7581	0	109	40.6	158				
Naphthalene	0.754	0.0227	0.7581	0	99.5	52.3	124				
1,2,3-Trichlorobenzene	0.787	0.0152	0.7581	0	104	54.4	124				
Surr: Dibromofluoromethane	1.83		1.895		96.6	63.7	129				
Surr: Toluene-d8	1.99		1.895		105	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	1.97		1.895		104	63.1	141				

Sample ID: LCS-8663	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/9/201	4	RunNo: 166	592	
Client ID: LCSS	Batch ID: 8663					Analysis Da	te: 9/10/2 0	14	SeqNo: 335	5463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.719	0.0600	1.000	0	71.9	37.7	136				
Chloromethane	0.728	0.0600	1.000	0	72.8	38.8	132				
Vinyl chloride	0.820	0.00200	1.000	0	82.0	56.1	130				
Bromomethane	0.774	0.0900	1.000	0	77.4	41.3	148				
Trichlorofluoromethane (CFC-11)	0.771	0.0500	1.000	0	77.1	42.9	147				
Chloroethane	0.707	0.0600	1.000	0	70.7	37.1	144				
1,1-Dichloroethene	0.794	0.0500	1.000	0	79.4	49.7	142				
Methylene chloride	0.727	0.0200	1.000	0	72.7	54.5	131				
trans-1,2-Dichloroethene	0.878	0.0200	1.000	0	87.8	68	130				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

-											
Sample ID: LCS-8663	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/9/20 1	14	RunNo: 16 0	692	
Client ID: LCSS	Batch ID: 8663					Analysis Da	te: 9/10/2 0)14	SeqNo: 33	5463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	0.763	0.0500	1.000	0	76.3	59.1	138				
1,1-Dichloroethane	0.881	0.0200	1.000	0	88.1	65.5	132				
2,2-Dichloropropane	0.776	0.0500	1.000	0	77.6	28.1	149				
cis-1,2-Dichloroethene	0.924	0.0200	1.000	0	92.4	71.6	123				
Chloroform	0.955	0.0200	1.000	0	95.5	67.5	129				
1,1,1-Trichloroethane (TCA)	0.906	0.0200	1.000	0	90.6	69	132				
1,1-Dichloropropene	0.914	0.0200	1.000	0	91.4	72.7	131				
Carbon tetrachloride	0.886	0.0200	1.000	0	88.6	63.4	137				
1,2-Dichloroethane (EDC)	0.815	0.0300	1.000	0	81.5	61.9	136				
Benzene	1.02	0.0200	1.000	0	102	74.6	124				
Trichloroethene (TCE)	0.936	0.0200	1.000	0	93.6	65.5	137				
1,2-Dichloropropane	0.952	0.0200	1.000	0	95.2	63.2	142				
Bromodichloromethane	0.904	0.0200	1.000	0	90.4	76.1	136				
Dibromomethane	0.924	0.0400	1.000	0	92.4	70	130				
cis-1,3-Dichloropropene	0.883	0.0200	1.000	0	88.3	59.1	143				
Toluene	0.967	0.0200	1.000	0	96.7	67.3	138				
trans-1,3-Dichloropropylene	0.905	0.0300	1.000	0	90.5	49.2	149				
1,1,2-Trichloroethane	0.987	0.0300	1.000	0	98.7	74.5	129				
1,3-Dichloropropane	0.961	0.0500	1.000	0	96.1	70	130				
Tetrachloroethene (PCE)	0.950	0.0200	1.000	0	95.0	52.7	150				
Dibromochloromethane	0.909	0.0300	1.000	0	90.9	70.6	144				
1,2-Dibromoethane (EDB)	0.960	0.00500	1.000	0	96.0	70	130				
Chlorobenzene	1.01	0.0200	1.000	0	101	76.1	123				
1,1,1,2-Tetrachloroethane	0.984	0.0300	1.000	0	98.4	74.8	131				
Ethylbenzene	0.992	0.0300	1.000	0	99.2	74	129				
m,p-Xylene	2.04	0.0200	2.000	0	102	79.8	128				
o-Xylene	1.00	0.0200	1.000	0	100	72.7	124				
Styrene	0.997	0.0200	1.000	0	99.7	76.8	130				
Lancaca Discourses	0.000	0.0000	4 000	•	00.0	70	400				

Qualifiers: Analyte detected in the associated Method Blank

Isopropylbenzene

Holding times for preparation or analysis exceeded

0.963

0.0800

RPD outside accepted recovery limits

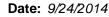
D Dilution was required

Analyte detected below quantitation limits

0

96.3

70


Reporting Limit

1.000

Е Value above quantitation range

130

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

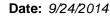
Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8663	SampType: LCS			Units: mg/K	g	Prep Da	te: 9/9/201	4	RunNo: 166	692	
Client ID: LCSS	Batch ID: 8663					Analysis Da	te: 9/10/2 0	14	SeqNo: 335	5463	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	0.935	0.0200	1.000	0	93.5	67	154				
1,1,2,2-Tetrachloroethane	1.03	0.0200	1.000	0	103	60	130				
n-Propylbenzene	0.977	0.0200	1.000	0	97.7	74.8	125				
Bromobenzene	1.01	0.0300	1.000	0	101	49.2	144				
1,3,5-Trimethylbenzene	0.988	0.0200	1.000	0	98.8	74.6	123				
2-Chlorotoluene	0.992	0.0200	1.000	0	99.2	76.7	129				
4-Chlorotoluene	0.987	0.0200	1.000	0	98.7	77.5	125				
tert-Butylbenzene	0.969	0.0200	1.000	0	96.9	66.2	130				
1,2,3-Trichloropropane	1.01	0.0200	1.000	0	101	67.9	136				
1,2,4-Trichlorobenzene	0.928	0.0500	1.000	0	92.8	65.6	137				
sec-Butylbenzene	0.962	0.0200	1.000	0	96.2	75.6	133				
4-Isopropyltoluene	0.985	0.0200	1.000	0	98.5	76.8	131				
1,3-Dichlorobenzene	1.01	0.0200	1.000	0	101	72.8	128				
1,4-Dichlorobenzene	1.03	0.0200	1.000	0	103	72.6	126				
n-Butylbenzene	0.969	0.0200	1.000	0	96.9	65.3	136				
1,2-Dichlorobenzene	1.00	0.0200	1.000	0	100	72.8	126				
1,2-Dibromo-3-chloropropane	0.955	0.0300	1.000	0	95.5	61.2	139				
1,2,4-Trimethylbenzene	1.01	0.0200	1.000	0	101	77.5	129				
Hexachlorobutadiene	0.972	0.100	1.000	0	97.2	42	151				
Naphthalene	0.954	0.0300	1.000	0	95.4	62.3	134				
1,2,3-Trichlorobenzene	0.972	0.0200	1.000	0	97.2	62.1	140				
Surr: Dibromofluoromethane	2.33		2.500		93.2	63.7	129				
Surr: Toluene-d8	2.52		2.500		101	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.57		2.500		103	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

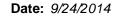
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8663	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 9/9/20 1	14	RunNo: 166	92	
Client ID: MBLKS	Batch ID: 8663					Analysis Dat	e: 9/9/20 1	14	SeqNo: 335	3464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8663	SampType: MBLK			Units: mg/Kg		Prep Da	te: 9/9/201	4	RunNo: 16 6	692	
Client ID: MBLKS	Batch ID: 8663					Analysis Da	te: 9/9/201	4	SeqNo: 33	5464	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

MBLKS

Sample ID: MB-8663

Client ID:

Analyte

QC SUMMARY REPORT

RunNo: 16692

SeqNo: 335464

%RPD RPDLimit

Qual

CLIENT: GeoEngineers, Inc. - Redmond

SampType: MBLK

8663

RL

Result

Batch ID:

Volatile Organic Compounds by EPA Method 8260

Prep Date: 9/9/2014

LowLimit HighLimit RPD Ref Val

Analysis Date: 9/9/2014

Project: SLU Marriott

1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	2.37		2.500		94.7	63.7	129				
Surr: Toluene-d8	2.51		2.500		100	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.28		2.500		91.3	63.1	141				
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/Kg	-dry	Prep Dat	e: 9/10/20 1	14	RunNo: 167	'10	
Client ID: DP-7-7.5	Batch ID: 8672					Analysis Dat	e: 9/11/20 1	14	SeqNo: 335	859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0998						0		30	
Chloromethane	ND	0.0998						0		30	
Vinyl chloride	ND	0.00333						0		30	
Bromomethane	ND	0.150						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0832						0		30	
Chloroethane	ND	0.0998						0		30	
1,1-Dichloroethene	ND	0.0832						0		30	
Methylene chloride	ND	0.0333						0		30	
trans-1,2-Dichloroethene	ND	0.0333						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0832						0		30	
1,1-Dichloroethane	ND	0.0333						0		30	
2,2-Dichloropropane	ND	0.0832						0		30	
cis-1,2-Dichloroethene	ND	0.0333						0		30	
Chloroform	ND	0.0333						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0333						0		30	
1,1-Dichloropropene	ND	0.0333						0		30	
Carbon tetrachloride	ND	0.0333						0		30	
1,2-Dichloroethane (EDC)	ND	0.0499						0		30	
Benzene	0.350	0.0333						0.3458	1.31	30	

Units: mg/Kg

%REC

SPK value SPK Ref Val

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

L Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marrio	ott					Volatil	e Organ	ic Compour	nds by EP	A Method	8260
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/k	(g-dry	Prep Da	ite: 9/10/20	14	RunNo: 167	10	
Client ID: DP-7-7.5	Batch ID: 8672					Analysis Da	ite: 9/11/2 0	14	SeqNo: 335	859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	ND	0.0333						0		30	
1,2-Dichloropropane	ND	0.0333						0		30	
Bromodichloromethane	ND	0.0333						0		30	
Dibromomethane	ND	0.0665						0		30	
cis-1,3-Dichloropropene	ND	0.0333						0		30	
Toluene	0.207	0.0333						0.2252	8.53	30	
trans-1,3-Dichloropropylene	ND	0.0499						0		30	
1,1,2-Trichloroethane	ND	0.0499						0		30	
1,3-Dichloropropane	ND	0.0832						0		30	
Tetrachloroethene (PCE)	ND	0.0333						0		30	
Dibromochloromethane	ND	0.0499						0		30	
1,2-Dibromoethane (EDB)	ND	0.00832						0		30	
Chlorobenzene	ND	0.0333						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0499						0		30	
Ethylbenzene	0.156	0.0499						0.1702	8.47	30	
m,p-Xylene	0.529	0.0333						0.5451	2.97	30	
o-Xylene	0.117	0.0333						0.1243	6.49	30	
Styrene	ND	0.0333						0		30	
Isopropylbenzene	0.753	0.133						0.7296	3.14	30	
Bromoform	ND	0.0333						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0333						0		30	
n-Propylbenzene	0.941	0.0333						0.9261	1.57	30	
Bromobenzene	ND	0.0499						0		30	
1,3,5-Trimethylbenzene	0.102	0.0333						0.09731	4.27	30	
2-Chlorotoluene	ND	0.0333						0		30	
4-Chlorotoluene	ND	0.0333						0		30	
tert-Butylbenzene	ND	0.0333						0		30	
1,2,3-Trichloropropane	ND	0.0333						0		30	
1,2,4-Trichlorobenzene	ND	0.0832						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project:	SLU Marriott
----------	--------------

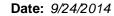
Sample ID: 1409077-037BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 9/10/2 0)14	RunNo: 167	710	
Client ID: DP-7-7.5	Batch ID: 8672					Analysis Da	te: 9/11/2 0	114	SeqNo: 335	5859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	0.413	0.0333						0.3919	5.29	30	
4-Isopropyltoluene	0.0753	0.0333						0.06688	11.8	30	
1,3-Dichlorobenzene	ND	0.0333						0		30	
1,4-Dichlorobenzene	ND	0.0333						0		30	
n-Butylbenzene	0.630	0.0333						0.6071	3.77	30	
1,2-Dichlorobenzene	ND	0.0333						0		30	
1,2-Dibromo-3-chloropropane	ND	0.0499						0		30	
1,2,4-Trimethylbenzene	0.117	0.0333						0.1307	10.7	30	
Hexachlorobutadiene	ND	0.166						0		30	
Naphthalene	ND	0.0499						0		30	
1,2,3-Trichlorobenzene	ND	0.0333						0		30	
Surr: Dibromofluoromethane	3.91		4.158		94.0	63.7	129		0		
Surr: Toluene-d8	4.52		4.158		109	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	4.15		4.158		99.9	63.1	141		0		

Sample ID: 1409077-038BMS	SampType: MS			Units: mg/h	(g-dry	Prep Da	te: 9/10/2 0	14	RunNo: 16 7		
Client ID: DP-7-13.0	Batch ID: 8672					Analysis Da	te: 9/11/2 0	14	SeqNo: 335	5861	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.36	0.0787	1.312	0	103	43.5	121				
Chloromethane	1.28	0.0787	1.312	0	97.7	45	130				
Vinyl chloride	1.52	0.00262	1.312	0	116	51.2	146				
Bromomethane	1.14	0.118	1.312	0	87.0	21.3	120				
Trichlorofluoromethane (CFC-11)	0.505	0.0656	1.312	0	38.5	35	131				
Chloroethane	0.821	0.0787	1.312	0	62.6	43.8	117				
1,1-Dichloroethene	1.47	0.0656	1.312	0	112	61.9	141				
Methylene chloride	1.86	0.0262	1.312	0	142	54.7	142				
trans-1,2-Dichloroethene	1.51	0.0262	1.312	0	115	52	136				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

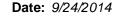
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-038BMS	SampType: MS			Units: mg/h	(g-dry	Prep Da	te: 9/10/2 0	114	RunNo: 16 7	710	
Client ID: DP-7-13.0	Batch ID: 8672					Analysis Da	te: 9/11/2 0	14	SeqNo: 335	5861	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	1.34	0.0656	1.312	0	102	54.4	132				
1,1-Dichloroethane	1.25	0.0262	1.312	0	95.2	51.8	141				
2,2-Dichloropropane	1.08	0.0656	1.312	0	82.4	36	123				
cis-1,2-Dichloroethene	1.32	0.0262	1.312	0	101	58.6	136				
Chloroform	1.02	0.0262	1.312	0	77.7	53.2	129				
1,1,1-Trichloroethane (TCA)	1.23	0.0262	1.312	0	94.1	58.3	145				
1,1-Dichloropropene	1.27	0.0262	1.312	0	96.6	55.1	138				
Carbon tetrachloride	1.29	0.0262	1.312	0	98.0	53.3	144				
1,2-Dichloroethane (EDC)	1.06	0.0394	1.312	0	80.7	51.3	139				
Benzene	2.55	0.0262	1.312	1.277	97.2	63.5	133				
Trichloroethene (TCE)	1.51	0.0262	1.312	0	115	68.6	132				
1,2-Dichloropropane	1.39	0.0262	1.312	0	106	59	136				
Bromodichloromethane	1.58	0.0262	1.312	0	120	50.7	141				
Dibromomethane	1.45	0.0525	1.312	0	111	50.6	137				
cis-1,3-Dichloropropene	1.45	0.0262	1.312	0	110	50.4	138				
Toluene	1.73	0.0262	1.312	0.3196	107	63.4	132				
trans-1,3-Dichloropropylene	1.43	0.0394	1.312	0	109	44.1	147				
1,1,2-Trichloroethane	3.21	0.0394	1.312	0	245	51.6	137				S
1,3-Dichloropropane	1.52	0.0656	1.312	0	116	53.1	134				
Tetrachloroethene (PCE)	1.50	0.0262	1.312	0	114	35.6	158				
Dibromochloromethane	1.36	0.0394	1.312	0	104	55.3	140				
1,2-Dibromoethane (EDB)	1.67	0.00656	1.312	0	127	50.4	136				
Chlorobenzene	1.19	0.0262	1.312	0	90.4	60	133				
1,1,1,2-Tetrachloroethane	1.39	0.0394	1.312	0	106	53.1	142				
Ethylbenzene	1.83	0.0394	1.312	0.3479	113	54.5	134				
m,p-Xylene	3.23	0.0262	2.624	0.7749	93.4	53.1	132				
o-Xylene	1.40	0.0262	1.312	0.1598	94.9	53.3	139				
Styrene	1.28	0.0262	1.312	0	97.4	51.1	132				
Isopropylbenzene	1.97	0.105	1.312	0.6508	100	58.9	138				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

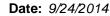
Sample ID: 1409077-038BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 9/10/20	14	RunNo: 167	710	
Client ID: DP-7-13.0	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 335	5861	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	1.37	0.0262	1.312	0	104	57.9	130				
1,1,2,2-Tetrachloroethane	1.04	0.0262	1.312	0	79.2	51.9	131				
n-Propylbenzene	2.07	0.0262	1.312	0.7902	97.2	53.6	140				
Bromobenzene	1.36	0.0394	1.312	0	104	54.2	140				
1,3,5-Trimethylbenzene	1.43	0.0262	1.312	0.2136	92.7	51.8	136				
2-Chlorotoluene	1.18	0.0262	1.312	0	89.9	51.6	136				
4-Chlorotoluene	1.25	0.0262	1.312	0.07995	89.3	50.1	139				
tert-Butylbenzene	1.32	0.0262	1.312	0	101	50.5	135				
1,2,3-Trichloropropane	1.17	0.0262	1.312	0	89.2	50.5	131				
1,2,4-Trichlorobenzene	1.90	0.0656	1.312	0	145	50.8	130				S
sec-Butylbenzene	1.58	0.0262	1.312	0.2930	98.2	52.6	141				
4-Isopropyltoluene	1.96	0.0262	1.312	0.3752	121	52.9	134				
1,3-Dichlorobenzene	1.38	0.0262	1.312	0	105	52.6	131				
1,4-Dichlorobenzene	1.14	0.0262	1.312	0	87.3	52.9	129				
n-Butylbenzene	1.83	0.0262	1.312	0.4319	106	52.6	130				
1,2-Dichlorobenzene	1.47	0.0262	1.312	0	112	55.8	129				
1,2-Dibromo-3-chloropropane	1.49	0.0394	1.312	0	114	40.5	131				
1,2,4-Trimethylbenzene	1.39	0.0262	1.312	0.1724	92.4	50.6	137				
Hexachlorobutadiene	1.77	0.131	1.312	0	135	40.6	158				
Naphthalene	1.95	0.0394	1.312	0.4111	117	52.3	124				
1,2,3-Trichlorobenzene	1.88	0.0262	1.312	0	143	54.4	124				S
Surr: Dibromofluoromethane	3.12		3.280		95.2	63.7	129				
Surr: Toluene-d8	3.73		3.280		114	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	3.24		3.280		98.9	63.1	141				
NOTES:											

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required


Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8672	SampType: LCS			Units: mg/Kg		Prep Dat	e: 9/10/20	14	RunNo: 167	710	
Client ID: LCSS	Batch ID: 8672					Analysis Dat	e: 9/11/20	14	SeqNo: 335	5866	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.923	0.0600	1.000	0	92.3	37.7	136				
Chloromethane	0.969	0.0600	1.000	0	96.9	38.8	132				
Vinyl chloride	0.926	0.00200	1.000	0	92.6	56.1	130				
Bromomethane	1.00	0.0900	1.000	0	100	41.3	148				
Trichlorofluoromethane (CFC-11)	0.964	0.0500	1.000	0	96.4	42.9	147				
Chloroethane	1.04	0.0600	1.000	0	104	37.1	144				
1,1-Dichloroethene	0.984	0.0500	1.000	0	98.4	49.7	142				
Methylene chloride	1.03	0.0200	1.000	0	103	54.5	131				
trans-1,2-Dichloroethene	1.06	0.0200	1.000	0	106	68	130				
Methyl tert-butyl ether (MTBE)	0.918	0.0500	1.000	0	91.8	59.1	138				
1,1-Dichloroethane	0.951	0.0200	1.000	0	95.1	65.5	132				
2,2-Dichloropropane	0.946	0.0500	1.000	0	94.6	28.1	149				
cis-1,2-Dichloroethene	1.00	0.0200	1.000	0	100	71.6	123				
Chloroform	0.873	0.0200	1.000	0	87.3	67.5	129				
1,1,1-Trichloroethane (TCA)	1.03	0.0200	1.000	0	103	69	132				
1,1-Dichloropropene	0.974	0.0200	1.000	0	97.4	72.7	131				
Carbon tetrachloride	1.07	0.0200	1.000	0	107	63.4	137				
1,2-Dichloroethane (EDC)	0.921	0.0300	1.000	0	92.1	61.9	136				
Benzene	0.927	0.0200	1.000	0	92.7	74.6	124				
Trichloroethene (TCE)	1.07	0.0200	1.000	0	107	65.5	137				
1,2-Dichloropropane	1.01	0.0200	1.000	0	101	63.2	142				
Bromodichloromethane	1.17	0.0200	1.000	0	117	76.1	136				
Dibromomethane	1.03	0.0400	1.000	0	103	70	130				
cis-1,3-Dichloropropene	0.980	0.0200	1.000	0	98.0	59.1	143				
Toluene	0.999	0.0200	1.000	0	99.9	67.3	138				
trans-1,3-Dichloropropylene	0.974	0.0300	1.000	0	97.4	49.2	149				
1,1,2-Trichloroethane	1.01	0.0300	1.000	0	101	74.5	129				
1,3-Dichloropropane	1.05	0.0500	1.000	0	105	70	130				
Tetrachloroethene (PCE)	1.08	0.0200	1.000	0	108	52.7	150				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8672	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/10/20	14	RunNo: 167	710	
Client ID: LCSS	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 335	5866	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	1.01	0.0300	1.000	0	101	70.6	144				
1,2-Dibromoethane (EDB)	1.14	0.00500	1.000	0	114	70	130				
Chlorobenzene	0.953	0.0200	1.000	0	95.3	76.1	123				
1,1,1,2-Tetrachloroethane	1.17	0.0300	1.000	0	117	74.8	131				
Ethylbenzene	1.12	0.0300	1.000	0	112	74	129				
m,p-Xylene	1.96	0.0200	2.000	0	98.0	79.8	128				
o-Xylene	0.944	0.0200	1.000	0	94.4	72.7	124				
Styrene	0.962	0.0200	1.000	0	96.2	76.8	130				
Isopropylbenzene	0.947	0.0800	1.000	0	94.7	70	130				
Bromoform	1.12	0.0200	1.000	0	112	67	154				
1,1,2,2-Tetrachloroethane	0.950	0.0200	1.000	0	95.0	60	130				
n-Propylbenzene	0.970	0.0200	1.000	0	97.0	74.8	125				
Bromobenzene	1.05	0.0300	1.000	0	105	49.2	144				
1,3,5-Trimethylbenzene	0.989	0.0200	1.000	0	98.9	74.6	123				
2-Chlorotoluene	0.980	0.0200	1.000	0	98.0	76.7	129				
4-Chlorotoluene	0.980	0.0200	1.000	0	98.0	77.5	125				
tert-Butylbenzene	0.949	0.0200	1.000	0	94.9	66.2	130				
1,2,3-Trichloropropane	0.916	0.0200	1.000	0	91.6	67.9	136				
1,2,4-Trichlorobenzene	1.08	0.0500	1.000	0	108	65.6	137				
sec-Butylbenzene	0.944	0.0200	1.000	0	94.4	75.6	133				
4-Isopropyltoluene	1.15	0.0200	1.000	0	115	76.8	131				
1,3-Dichlorobenzene	1.05	0.0200	1.000	0	105	72.8	128				
1,4-Dichlorobenzene	0.883	0.0200	1.000	0	88.3	72.6	126				
n-Butylbenzene	0.951	0.0200	1.000	0	95.1	65.3	136				
1,2-Dichlorobenzene	1.02	0.0200	1.000	0	102	72.8	126				
1,2-Dibromo-3-chloropropane	1.01	0.0300	1.000	0	101	61.2	139				
1,2,4-Trimethylbenzene	0.975	0.0200	1.000	0	97.5	77.5	129				
Hexachlorobutadiene	1.03	0.100	1.000	0	103	42	151				
Naphthalene	0.874	0.0300	1.000	0	87.4	62.3	134				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-8672	SampType:	LCS			Units: mg/Kg		Prep Dat	e: 9/10/2 0	14	RunNo: 167	'10	
Client ID: LCSS	Batch ID:	8672					Analysis Dat	e: 9/11/2 0	14	SeqNo: 335	866	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene		1.14	0.0200	1.000	0	114	62.1	140				
Surr: Dibromofluoromethane		2.51		2.500		100	63.7	129				
Surr: Toluene-d8		2.55		2.500		102	61.4	128				
Surr: 1-Bromo-4-fluorobenzene		2.65		2.500		106	63.1	141				

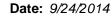
Sample ID: MB-8672	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 9/10/20 ⁴	14	RunNo: 167	'10	
Client ID: MBLKS	Batch ID: 8672					Analysis Dat	te: 9/11/20	14	SeqNo: 335	867	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CEC-12)	ND	0.0600									

Dictiorodiffuorometriane (CFC-12)	ND	0.0000
Chloromethane	ND	0.0600
Vinyl chloride	ND	0.00200
Bromomethane	ND	0.0900
Trichlorofluoromethane (CFC-11)	ND	0.0500
Chloroethane	ND	0.0600
1,1-Dichloroethene	ND	0.0500
Methylene chloride	ND	0.0200
trans-1,2-Dichloroethene	ND	0.0200
Methyl tert-butyl ether (MTBE)	ND	0.0500
1,1-Dichloroethane	ND	0.0200
2,2-Dichloropropane	ND	0.0500
cis-1,2-Dichloroethene	ND	0.0200
Chloroform	ND	0.0200
1,1,1-Trichloroethane (TCA)	ND	0.0200
1,1-Dichloropropene	ND	0.0200
Carbon tetrachloride	ND	0.0200
1,2-Dichloroethane (EDC)	ND	0.0300
Benzene	ND	0.0200

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

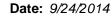
Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8672	SampType: MBLK			Units: mg/Kg		Prep Da	te: 9/10/20	14	RunNo: 167	710	
Client ID: MBLKS	Batch ID: 8672					Analysis Da	te: 9/11/20	14	SeqNo: 335	5867	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-8672	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 9/10/2 0)14	RunNo: 167	'10	
Client ID: MBLKS	Batch ID: 8672					Analysis Dat	e: 9/11/2 0)14	SeqNo: 335	867	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.0300									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	2.41		2.500		96.4	63.7	129				
Surr: Toluene-d8	2.67		2.500		107	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.40		2.500		95.9	63.1	141				

Sample ID: CCV-8663B	SampType: CCV			Units: µg/L		Prep Da	te: 9/11/20	14	RunNo: 166	592	
Client ID: CCV	Batch ID: 8663					Analysis Da	te: 9/11/20	14	SeqNo: 336	379	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	22.8	0.0300	20.00	0	114	80	120				
n-Propylbenzene	18.9	0.0200	20.00	0	94.6	80	120				
n-Butylbenzene	19.2	0.0200	20.00	0	95.8	80	120				
Surr: Dibromofluoromethane	46.2		50.00		92.5	63.7	129				
Surr: Toluene-d8	53.9		50.00		108	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	50.0		50.00		100	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

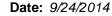
Volatile Organic Compounds by EPA Method 8260

Sample ID: CCV-8672B	SampType: CCV			Units: µg/L		Prep Date	e: 9/15/20	14	RunNo: 167	'10	
Client ID: CCV	Batch ID: 8672					Analysis Date	e: 9/15/20	14	SeqNo: 336	675	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Ethylbenzene	21.1	0.0300	20.00	0	106	80	120				
Isopropylbenzene	18.2	0.0800	20.00	0	91.0	80	120				
sec-Butylbenzene	19.1	0.0200	20.00	0	95.6	80	120				
n-Butylbenzene	18.6	0.0200	20.00	0	93.1	80	120				
Naphthalene	17.1	0.0300	20.00	0	85.4	80	120				
Surr: Dibromofluoromethane	52.3		50.00		105	63.7	129				
Surr: Toluene-d8	49.7		50.00		99.4	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	55.0		50.00		110	63.1	141				
Sample ID: LCS-8824	SampType: LCS			Units: mg/Kg		Prep Date	e: 9/23/20°	14	RunNo: 169)55	
Client ID: LCSS	Batch ID: 8824					Analysis Date	e: 9/24/20	14	SeqNo: 340	1419	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	0.655	0.0200	1.000	0	65.5	64.3	133				
Surr: Dibromofluoromethane	2.58		2.500		103	63.7	129				
Surr: Toluene-d8	2.62		2.500		105	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	2.61		2.500		105	63.1	141				
Sample ID: MB-8824	SampType: MBLK			Units: mg/Kg		Prep Date	e: 9/23/20	14	RunNo: 169)55	
Client ID: MBLKS	Batch ID: 8824					Analysis Date	e: 9/23/20	14	SeqNo: 340	1420	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200									
Surr: Dibromofluoromethane	2.34		2.500		93.6	63.7	129				
Surr: Toluene-d8	2.60		2.500		104	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	2.33		2.500		93.1	63.1	141				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-059BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Date: 9/23/2014			RunNo: 169		
Client ID: DP-8-25.0	Batch ID: 8824					Analysis Da	te: 9/24/20	14	SeqNo: 340)457	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.0591	0.0160						0.08638	37.5	30	RH
Surr: Dibromofluoromethane	2.00		1.994		100	63.7	129		0		Н
Surr: Toluene-d8	1.97		1.994		98.9	64.3	131		0		Н
Surr: 1-Bromo-4-fluorobenzene NOTES:	1.95		1.994		97.9	63.1	141		0		Н

Project:

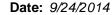
R - High RPD due to low analyte concentration. In this range, high RPD's may be expected.

Sample ID: 1409077-073BMS	SampType: MS			Units: mg/k	(g-dry	Prep Da	te: 9/23/20	14	RunNo: 169)55	
Client ID: DP-12-15.0	Batch ID: 8824					Analysis Da	te: 9/24/20	14	SeqNo: 340)553	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.855	0.0262	1.310	0	65.3	63.5	133				Н
Surr: Dibromofluoromethane	3.44		3.274		105	63.7	129				Н
Surr: Toluene-d8	3.41		3.274		104	64.3	131				Н
Surr: 1-Bromo-4-fluorobenzene	3.43		3.274		105	63.1	141				Н

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-R16668	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	668	
Client ID: LCSW	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 334	4995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	25.8	1.00	20.00	0	129	43	136				
Chloromethane	25.1	1.00	20.00	0	126	43.9	139				
Vinyl chloride	26.3	0.200	20.00	0	131	53.6	139				
Bromomethane	28.6	1.00	20.00	0	143	44.8	148				
Trichlorofluoromethane (CFC-11)	25.4	1.00	20.00	0	127	63.7	133				
Chloroethane	25.4	1.00	20.00	0	127	53	141				
1,1-Dichloroethene	25.5	1.00	20.00	0	128	65.6	136				
Methylene chloride	25.0	1.00	20.00	0	125	67.1	131				
trans-1,2-Dichloroethene	24.1	1.00	20.00	0	121	71.7	129				
Methyl tert-butyl ether (MTBE)	25.2	1.00	20.00	0	126	67.7	131				
1,1-Dichloroethane	24.7	1.00	20.00	0	124	67.9	134				
2,2-Dichloropropane	27.6	2.00	20.00	0	138	33.7	152				
cis-1,2-Dichloroethene	24.8	1.00	20.00	0	124	71.1	130				
Chloroform	24.6	1.00	20.00	0	123	76.7	124				
1,1,1-Trichloroethane (TCA)	25.5	1.00	20.00	0	127	71	131				
1,1-Dichloropropene	24.8	1.00	20.00	0	124	74.5	126				
Carbon tetrachloride	24.9	1.00	20.00	0	124	66.2	134				
1,2-Dichloroethane (EDC)	25.6	1.00	20.00	0	128	70	129				
Benzene	24.8	1.00	20.00	0	124	73.1	126				
Trichloroethene (TCE)	24.8	0.500	20.00	0	124	65.2	136				
1,2-Dichloropropane	24.8	1.00	20.00	0	124	70.5	130				
Bromodichloromethane	25.5	1.00	20.00	0	128	74.6	127				S
Dibromomethane	25.3	1.00	20.00	0	126	75.5	126				S
cis-1,3-Dichloropropene	25.2	1.00	20.00	0	126	62.6	137				
Toluene	24.8	1.00	20.00	0	124	61.3	145				
trans-1,3-Dichloropropene	26.1	1.00	20.00	0	131	58.5	142				
1,1,2-Trichloroethane	27.3	1.00	20.00	0	136	76	124				S
1,3-Dichloropropane	25.7	1.00	20.00	0	129	73.5	127				S
Tetrachloroethene (PCE)	24.6	1.00	20.00	0	123	47.5	147				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: LCS-R16668	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201 4	ļ	RunNo: 16 6	668	
Client ID: LCSW	Batch ID: R16668					Analysis Da	te: 9/9/201 4	ļ	SeqNo: 334	1995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	24.9	1.00	20.00	0	125	67.2	134				
1,2-Dibromoethane (EDB)	25.1	0.0600	20.00	0	126	73.6	125				S
Chlorobenzene	25.4	1.00	20.00	0	127	73.9	126				S
1,1,1,2-Tetrachloroethane	25.7	1.00	20.00	0	128	76.8	124				S
Ethylbenzene	25.0	1.00	20.00	0	125	72	130				
m,p-Xylene	49.8	1.00	40.00	0	125	73	131				
o-Xylene	25.9	1.00	20.00	0	130	72.1	131				
Styrene	25.4	1.00	20.00	0	127	64.3	140				
Isopropylbenzene	25.2	1.00	20.00	0	126	73.9	128				
Bromoform	25.1	1.00	20.00	0	125	63.8	135				
1,1,2,2-Tetrachloroethane	26.0	1.00	20.00	0	130	62.9	132				
n-Propylbenzene	23.9	1.00	20.00	0	119	74.5	127				
Bromobenzene	25.0	1.00	20.00	0	125	71	131				
1,3,5-Trimethylbenzene	24.8	1.00	20.00	0	124	73.1	128				
2-Chlorotoluene	25.4	1.00	20.00	0	127	70.8	130				
4-Chlorotoluene	25.2	1.00	20.00	0	126	70.1	131				
tert-Butylbenzene	24.6	1.00	20.00	0	123	68.2	131				
1,2,3-Trichloropropane	25.3	1.00	20.00	0	126	67.7	131				
1,2,4-Trichlorobenzene	20.8	2.00	20.00	0	104	72.4	127				
sec-Butylbenzene	23.9	1.00	20.00	0	119	72	129				
4-Isopropyltoluene	23.6	1.00	20.00	0	118	69.2	130				
1,3-Dichlorobenzene	26.9	1.00	20.00	0	134	72.4	129				S
1,4-Dichlorobenzene	25.4	1.00	20.00	0	127	70.6	128				
n-Butylbenzene	24.1	1.00	20.00	0	121	73.8	127				
1,2-Dichlorobenzene	25.4	1.00	20.00	0	127	74.2	129				
1,2-Dibromo-3-chloropropane	22.1	1.00	20.00	0	110	63.1	136				
1,2,4-Trimethylbenzene	25.1	1.00	20.00	0	125	73.4	127				
Hexachlorobutadiene	23.5	4.00	20.00	0	117	58.6	138				
Naphthalene	15.9	1.00	20.00	0	79.7	50.4	140				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	oject: SLU Marriott					voiatile	e Organi	c Compour	nas by EP	A Method	3 8260
Sample ID: LCS-R16668	SampType: LCS			Units: µg/L		Prep Da	te: 9/9/201 4	4	RunNo: 166	668	
Client ID: LCSW	Batch ID: R16668					Analysis Da	te: 9/9/201 4	4	SeqNo: 334	1995	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	14.5	4.00	20.00	0	72.4	50.2	139				
Surr: Dibromofluoromethane	47.5		50.00		95.0	61.7	130				
Surr: Toluene-d8	48.0		50.00		96.0	40.1	139				
Surr: 1-Bromo-4-fluorobenzene NOTES:	45.6		50.00		91.3	68.2	127				

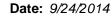
S - Outlying QC recoveries were observed (high bias). There were no detections of these analytes in the samples, no further action is required.

Sample ID: MB-R16668	SampType: MBLK			Units: µg/L		Prep Da	te: 9/9/20	14	RunNo: 166	68	
Client ID: MBLKW	Batch ID: R16668					Analysis Da	te: 9/9/20	14	SeqNo: 334	1996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00									
Chloromethane	ND	1.00									
Vinyl chloride	ND	0.200									
Bromomethane	ND	1.00									
Trichlorofluoromethane (CFC-11)	ND	1.00									
Chloroethane	ND	1.00									
1,1-Dichloroethene	ND	1.00									
Methylene chloride	ND	1.00									
trans-1,2-Dichloroethene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	1.00									
1,1-Dichloroethane	ND	1.00									
2,2-Dichloropropane	ND	2.00									
cis-1,2-Dichloroethene	ND	1.00									
Chloroform	ND	1.00									
1,1,1-Trichloroethane (TCA)	ND	1.00									
1,1-Dichloropropene	ND	1.00									
Carbon tetrachloride	ND	1.00									
1,2-Dichloroethane (EDC)	ND	1.00									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-R16668	SampType: MBLK			Units: µg/L		Prep Da	ite: 9/9/201	4	RunNo: 166	668	
Client ID: MBLKW	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 334	1996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	1.00									
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									
trans-1,3-Dichloropropene	ND	1.00									
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.0600									
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-R16668	SampType: MBLK			Units: µg/L		Prep Date:	9/9/201	4	RunNo: 166	668	
Client ID: MBLKW	Batch ID: R16668					Analysis Date:	9/9/201	4	SeqNo: 334	1996	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	2.00									
sec-Butylbenzene	ND	1.00									
4-Isopropyltoluene	ND	1.00									
1,3-Dichlorobenzene	ND	1.00									
1,4-Dichlorobenzene	ND	1.00									
n-Butylbenzene	ND	1.00									
1,2-Dichlorobenzene	ND	1.00									
1,2-Dibromo-3-chloropropane	ND	1.00									
1,2,4-Trimethylbenzene	ND	1.00									
Hexachlorobutadiene	ND	4.00									
Naphthalene	ND	1.00									
1,2,3-Trichlorobenzene	ND	4.00									
Surr: Dibromofluoromethane	46.0		50.00		91.9	61.7	130				
Surr: Toluene-d8	47.2		50.00		94.3	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	46.0		50.00		91.9	68.2	127				

Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/10/2 0	14	RunNo: 166	668	
Client ID: MW-1-140906	Batch ID: R16668					Analysis Da	te: 9/10/2 0	14	SeqNo: 33	5266	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

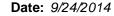
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/10/2 0	14	RunNo: 16 6	668	
Client ID: MW-1-140906	Batch ID: R16668					Analysis Da	te: 9/10/2 0	14	SeqNo: 33	5266	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409077-052ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 9/10/2 0	14	RunNo: 166	668	
Client ID: MW-1-140906	Batch ID: R16668					Analysis Date	e: 9/10/2 0	14	SeqNo: 335	266	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachlorobutadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	49.5		50.00		99.0	61.7	130		0		
Surr: Toluene-d8	48.3		50.00		96.6	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	49.8		50.00		99.7	68.2	127		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409082-005AMS	SampType: MS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 6	668	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	24.9	1.00	20.00	0	124	33.3	122				S
Chloromethane	25.6	1.00	20.00	0	128	48.2	145				
Vinyl chloride	26.1	0.200	20.00	0	131	58.1	158				
Bromomethane	25.2	1.00	20.00	0	126	31.5	135				
Trichlorofluoromethane (CFC-11)	27.6	1.00	20.00	0	138	54.7	138				S
Chloroethane	27.2	1.00	20.00	0	136	49.9	143				
1,1-Dichloroethene	28.8	1.00	20.00	0	144	63	141				S
Methylene chloride	24.4	1.00	20.00	0	122	61.6	135				
trans-1,2-Dichloroethene	26.5	1.00	20.00	0	132	63.5	138				
Methyl tert-butyl ether (MTBE)	25.3	1.00	20.00	0	126	60.9	132				
1,1-Dichloroethane	26.1	1.00	20.00	0	131	67.8	136				
2,2-Dichloropropane	25.2	2.00	20.00	0	126	31.5	121				S
cis-1,2-Dichloroethene	26.3	1.00	20.00	0	131	67.1	123				S
Chloroform	25.0	1.00	20.00	0	125	66.7	136				
1,1,1-Trichloroethane (TCA)	26.8	1.00	20.00	0.2200	133	64.2	146				
1,1-Dichloropropene	27.1	1.00	20.00	0	136	73.8	136				
Carbon tetrachloride	26.0	1.00	20.00	0	130	62.7	146				
1,2-Dichloroethane (EDC)	26.0	1.00	20.00	0	130	63.4	137				
Benzene	26.2	1.00	20.00	0	131	65.4	138				
Trichloroethene (TCE)	27.2	0.500	20.00	0	136	60.4	134				S
1,2-Dichloropropane	25.8	1.00	20.00	0	129	62.6	138				
Bromodichloromethane	25.0	1.00	20.00	0	125	59.4	139				
Dibromomethane	23.9	1.00	20.00	0	120	63.6	139				
cis-1,3-Dichloropropene	25.8	1.00	20.00	0	129	63.8	132				
Toluene	26.5	1.00	20.00	0	133	64	139				
trans-1,3-Dichloropropene	24.5	1.00	20.00	0	122	57.7	125				
1,1,2-Trichloroethane	26.8	1.00	20.00	0	134	59.4	127				S
1,3-Dichloropropane	25.4	1.00	20.00	0	127	64.3	135				
Tetrachloroethene (PCE)	25.9	1.00	20.00	0	130	50.3	133				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

d 8260

Project:	SLU Marriott					Volatile Organic Compour	nds by EPA Method
Sample ID:	1409082-005AMS	SampType: MS		Units: µg/L		Prep Date: 9/9/2014	RunNo: 16668
Client ID:	ВАТСН	Batch ID: R16668				Analysis Date: 9/9/2014	SeqNo: 335279
Analyte		Result	RL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit

Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	25.0	1.00	20.00	0	125	61.6	139				
1,2-Dibromoethane (EDB)	26.3	0.0600	20.00	0	132	63.2	134				
Chlorobenzene	26.1	1.00	20.00	0	131	65.8	134				
1,1,1,2-Tetrachloroethane	24.8	1.00	20.00	0	124	65.4	135				
Ethylbenzene	25.8	1.00	20.00	0	129	64.5	136				
m,p-Xylene	52.1	1.00	40.00	0	130	63.3	135				
o-Xylene	26.9	1.00	20.00	0	134	65.4	134				S
Styrene	25.7	1.00	20.00	0	129	59.1	134				
Isopropylbenzene	25.9	1.00	20.00	0.2100	128	56	147				
Bromoform	25.5	1.00	20.00	0	128	57.7	139				
1,1,2,2-Tetrachloroethane	27.2	1.00	20.00	0	136	59.8	146				
n-Propylbenzene	24.8	1.00	20.00	0.2500	123	57.6	142				
Bromobenzene	26.2	1.00	20.00	0	131	63.6	130				S
1,3,5-Trimethylbenzene	25.7	1.00	20.00	0	129	59.9	136				
2-Chlorotoluene	25.3	1.00	20.00	0	127	61.7	134				
4-Chlorotoluene	26.4	1.00	20.00	0.1500	131	58.4	134				
tert-Butylbenzene	25.4	1.00	20.00	0	127	66.8	141				
1,2,3-Trichloropropane	25.5	1.00	20.00	0	128	62.4	129				
1,2,4-Trichlorobenzene	22.0	2.00	20.00	0.6600	107	50.9	133				
sec-Butylbenzene	24.4	1.00	20.00	0.1900	121	56	146				
4-Isopropyltoluene	24.6	1.00	20.00	0.1600	122	56.4	136				
1,3-Dichlorobenzene	26.4	1.00	20.00	0	132	58.2	128				S
1,4-Dichlorobenzene	26.3	1.00	20.00	0	132	60.1	123				S
n-Butylbenzene	24.1	1.00	20.00	0.3700	118	54.6	135				
1,2-Dichlorobenzene	27.0	1.00	20.00	0	135	65.4	133				S
1,2-Dibromo-3-chloropropane	27.2	1.00	20.00	0	136	51.8	142				
1,2,4-Trimethylbenzene	25.0	1.00	20.00	0.1200	125	63.7	132				
Hexachlorobutadiene	22.6	4.00	20.00	0.9100	109	58.1	130				
Naphthalene	18.2	1.00	20.00	2.030	81.0	54.5	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Mar	riott					Volatile	e Organi	c Compour	ids by EP	A Method	3 8260
Sample ID: 1409082-005AMS	SampType: MS			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 166	68	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 335	5279	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichlorobenzene	15.8	4.00	20.00	1.990	69.0	57	131				
Surr: Dibromofluoromethane	46.8		50.00		93.6	61.7	130				
Surr: Toluene-d8	47.2		50.00		94.4	40.1	139				
Surr: 1-Bromo-4-fluorobenzen	e 47.1		50.00		94.2	68.2	127				
NOTES:											

S - Outlying spike recoveries were associated with this sample. The method is in control as indicated by the LCS.

Sample ID: 1409083-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 0	668	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1409077

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

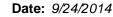
Volatile Organic Compounds by EPA Method 8260

Sample ID: 1409083-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 9/9/201	4	RunNo: 16 6	668	
Client ID: BATCH	Batch ID: R16668					Analysis Da	te: 9/9/201	4	SeqNo: 33	5281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Е Value above quantitation range

Not detected at the Reporting Limit

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marrior	t					Volatile O	rganio	c Compour	nds by EP	A Method	1 8260
Sample ID: 1409083-001ADUP	SampType: DUP			Units: µg/L		Prep Date:	9/9/2014	ļ	RunNo: 166	668	
Client ID: BATCH	Batch ID: R16668					Analysis Date:	9/9/2014	ļ	SeqNo: 335	5281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	hLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachlorobutadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	46.8		50.00		93.5	61.7	130		0		
Surr: Toluene-d8	46.6		50.00		93.2	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	47.5		50.00		94.9	68.2	127		0		

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range

Not detected at the Reporting Limit

Sample Log-In Check List

С	lient Name:	GEI1	Work Order Number:	1409077	
L	ogged by:	Clare Griggs	Date Received:	9/8/2014	12:00:00 PM
Cha	ain of Custo	<u>ody</u>			
1.	Is Chain of Cu	ustody complete?	Yes 🗹	No \square	Not Present
2.	How was the s	sample delivered?	Client		
Log	ı İn				
	Coolers are pr	resent?	Yes 🗸	No 🗌	NA 🗌
٠.	·				
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗸	No 🗌	
5.	Custody seals	intact on shipping container/cooler?	Yes	No 🗌	Not Required 🗹
6.	Was an attem	ppt made to cool the samples?	Yes 🗹	No 🗌	NA 🗆
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆
8.	Sample(s) in բ	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes 🗹	No \square	
10.	Are samples p	properly preserved?	Yes 🗹	No 🗌	
11.	Was preserva	tive added to bottles?	Yes	No 🗹	NA 🗆
12.	Is the headspa	ace in the VOA vials?	Yes	No 🗸	NA 🗆
		es containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14.	Does paperwo	ork match bottle labels?	Yes 🗹	No \square	
15	Are matrices of	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
		t analyses were requested?	Yes 🗸	No 🗌	
		ng times able to be met?	Yes 🗹	No \square	
Spe	ecial Handli	ing (if applicable)			
		tified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person N				
	By Whor		■ eMail Phone	Fax	In Person
	Regardir	,			
		structions:			
	Additional row	e			

19. Additional remarks:

Item Information

Item #	Temp ⁰C	Condition
Cooler 1	5.6	Good
Cooler 2	5.7	Good
Cooler 3	4.9	Good
Sample 1	2.3	Good
Sample 2	3.8	Good
Sample 3	0.9	Good

Afficiate coordinate with the lab in advance

Location: Email: Email: Collected by: Email: Collected by: C	200000	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
Collected by: Email: Email: Collected by: Email: Collected by: Collected by	5 7.00	De abolina Sizon
Collected by: Email: W = Waster, DW = Drinking Watter, GW = Ground Collected by: Good and	Disposal by Lab (A fee may be extense	nele Oscosat: Return to Client
Collected by: Email: W = Water, DW = Drinking Water, GW = Ground Collected by: Collected by: A Secretary Collected by: Collected by: A Secretary Collected by: Collected by: Collected by: Collected by: A Secretary Collected by: Collect	te Sulfate Bromide	Anlans (Circle): Nicrate States Chloride
Collected by: Email: W = Waster, DW = Drinking Watter, GW = Ground On the College of the Coll	Priority Pollutants TAL	Metals Analysis (Circle): MTCA-5 (RCRA-H)
Collected by: Email: W - Water, DW - Directing Water, GW - Ground A graph of the College of t	950 1 18	1-50 V
Collected by: Email: W = Water, DW = Drinking Water, GW = Ground College of the College of th	946	26-25
Collected by: Email: W = Water, DW = Drinking Water, GW = Ground Order of Good State of Good Stat	1106	3-150
Collected by: W = Water, DW = Directing Water, GW = Ground W = Ground W = Ground Ground Ground Ground Ground W = Ground Groun	1100	3-125
Collected by: W = Waster, DW = Drinking Water, GW = Ground W = Ground Ground Ground W = Ground Ground Ground W = Ground Ground Ground Ground W = Ground Ground Ground Ground W = Ground G	4501	-3- 10-0
Collected by: Email: W = Water, DW = Drinking Water, GW = Ground R = G = G = G = G = G = G = G = G = G =	1043	08-3-7-5
Collected by: W = Water, DW = Drinking Water, GW = Ground W = Ground Ground W = Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Ground Gr	1031	DP-3-50
Collected by: Email: W = Waster, DW = Drinking Water, GW = Ground G and G a	2801	DP-3-2.5
Collected by: ### ################################	1210	DP-2-15.0
Collected by: W = water, DW = Drinking Water, GW = Ground W = ground G g g g g g g g g g g g g g g g g g g	1305 80:1 8	P-2-12.5 9/4
Collected by: Email: W = Water, DW = Drinking Water, GW = Ground	Sample Type (Matria)*	mple Name Sample Date
Collected by:	Fax:	ports To (PM): (AVALL PM) PM IT CODES A = AIT, AQ = AQUIROUS, B = Builk, Ownther,
waston: 739 9th Avenue	Tel: 4258	W. State, Zip
THE WAY		1363
SILA MALVIOTE	, pens	attle, WA 98103 Fax: 200-352-7170
Alialist Page: 9 of: A	3774	2
chain of custody necord	2	Fremon

www.fremontanalytical.com

		-						
	9/8/1 /200	7	Received	1	30	The son	THE ST	Bullequisherd
		emple) are retained after 30 days.	Oisposal by Lab (A ice may be assented in	osal by Lab (D OHS	Return to Client		Serude Disposal;
Apexica revisa and	Mitrate e Nitrite	ginete Eluoride	Bromide O-Phosphele		ride Sulfate	te Cyloride	Allerance Nitrite	***Anions (Circle):
12	a Ed Co Er Eu Fe Hg K Mill Mn No No No	Ag Al As B Ba Be Ca	TAL Individual	-	Priority Pollutanta	FICRAS)	Circle): MTCA-S	**Metals Analysis (Circle): MTCA-5
		X X	8	-	1	10	7.5	DP-1-7.5
		2			1130		5.0	DP-5-5.0
					11.32		2)	DP-5-2.5
	•			4	1054	*	200	, DP-4-20.0
					1045		7.5	5.44-17.5
	8	8	8		1031		15.0	DP-4-15.0
	9 1			1	1		1	4
				-	Stol		12.5	DP-4-12.5
				-	1013	-	01.	DP-4-
				3	1005	2	+	-
Comments/Depth			Solito Color	£ _ &		Sample		Sample Name
WW = Waste Water	ing Walter, GW - Ground Water,	SL=Solid, W=Water, C	oil, 50 = Sediment,	Fax:	7	Thele	BRACE F	Reports TO (PM): ORALE TRUPY
3	Space Phyly /Alices	Collected by:		Tel:		Now !	nedywood	Address: City, State, Zip
	STM II MICHIET	Project Name:				230	6	Clienti
\$	Page: U	h1/9	Date: 9/6/14		28 0	Tel: 206-352-3790 Fax: 206-352-7178		3600 Fremont Ave N. Seattle, WA 98103
	Laboratory Project No (lateraul).					TIOIL	Analytical	
Chain of Custody Record	Chai							WAY SEE

Presse coordinate with the lab in advance

Soft Personal Ave N. Tel. 200529 7179 Soft Personal Ave N. Tel. 200529 7179 Soft No. 200529 7179 Soft No. 200529 7179 Soft No. 200529 7179 Tel. 200520 7170 Tel. 200520		Separate Separate
Tel: Doste: Oute: Oute: Oute: Froject Name: Froject Name: Froject Name: Collected by Froject Name: Collected by Froject Name: Collected by Froject Name: Collected by Froject Name: Oute: Oute: Oute: Froject Name: Collected by Froject Name: Collected by Froject Name: Collected by Froject Name: Oute: 70	- Man	
Tel: Location: Tel: Location: Collected by France: Service Southment, St. Southment, St. South w. w. w. w. w. ov. Orband w. w. ov. Orband w. ov. Orband w. w. w. ov. Orband	1 300 C F 1/4 0 3000 1	Relinquished
Tel: Tel: Froject Name: Collected by Frac: Frac	Ĺ	Samule Disposat:
Tel: Tel: Froject Name: Location: Collected by Frac: Froject Name: Location: Collected by Frac: Froject Name: Location: Collected by Frac: Frac: Froject Name: Location: Collected by Frac: Nibrite Chiaride Sulfate Bromise	Anions (Circle): Nitraté	
Tel: Project Name: Ind: Collected by Front	NTCA-5 HCRA-8 Priority Pollutants TAL	tals Analysis (Circle):
Date: 9/6/14 Project Name: SUN MALE Project Name: SUN MALE Project Name: Collected by Enail: Globally Wash. GW-Ground Wash Fax: Email: GHA Wash. DW-Dhashy Wash. GW-Ground Wash Fax: Email: GHA GR	· 1330	0.26 -8-90 "
Tel: Fac:		DP-9-30.0
Tet: Collected by Fac:	5't1-6-da"	
Tel: Date: Project Name: Location: Collected by Fax: Fax: Fax: Fax: Fax: Fax: Collected by Email: Q DAWD A CLOCK SIN Ground Ward Fax: Fa		DP-9-125
Date: 96/14 Project Name: SUN MOLE Location: Collected by Fax: Email: 9 DALLOW Of Colors of the Sun of the S		DP-9-7.5
Date: 9/6/14 Project Name: SW Molt No Unternall Laboratory Project No Unternall Location: Collected by Email: 9 Phylogen Swife Swif	1	DP-9-5.0
Date: 96/14 Project Name: SW MOLE Location: Collected by Fax: Collec		DP-9-2.5
Tel: Fac: P+ Product, S=Soll, SD = Sediment, St = Solld, W = Wards, DW = Dhrawli, Wards, GW = Ground Wards, DW = Dhrawli, DW = Dhrawli, Wards, DW = Dhrawli, Wards, DW = Dhrawli, Wards, DW = Dhrawli, DW = Dhrawli, Wards, DW = Dhrawli, DW =		DP-5-15.0
Date: 96/14 Project Name: SW MOLE Collected by Fax: Collected by Email: 9 Phuby 6 George Ground Water Street Type (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix) Sample Type (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix) Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix (Matrix): 50 Sediment, 51 Solid, was water, DW of Matrix, 50 Sediment, 51 Solid, was water, 50 Sediment, 51 Solid, was water, 50 Sediment, 51 Solid, was water, 50 Sediment, 51 Sediment		DP-5-12 5
Date: 9/6/14 Project Name: SW Molt Collected by Email: G DW - Dhawle Ward, GW - Ground Ward, Fax: Fax: Collected by Email: G DW - Dhawle Ward, GW - Ground Ward, GW - GW	1 nls	DP-5-10.0
Date: 9/6/14 Project Name: SW MOLE Location: Collected by: Fax: Email: Q DMUNG Q Code Strong Water, 5% Sol, SD = Sediment, SL = Solid, W a Water, DW = Ofmakin Water, GW = Ground Water, GW = GW	Sample Sample Type (Matrix)*	Sample Name
Date: 9/6/14 Project Name: SW MON Collected by	Fax: P + Product, 5 = 5oil,	Reports To (PM): SPA
Tel: 206-352-3790 Fox: 206-352-7178 Oate: 9/6/14 Project Name: SW Mark Location:		City, State, Zip
Tel: 206-352-7178 GEF COEST	Zedmand	Address:
Tel: 206-352-3790 Fax: 206-352-7178 Date: 9/6/14 Paget Fax: 206-352-7178		Client
Laboratury Project No (Internal)	Date:	3600 Fremant Ave N.
	(-)	
Chain of Custody Becord	emont	

TAT -> SameDay^ NextDay^ Z Day 3 Day STD	Ladios Land	V
	1	17/14 3 3pm
	Citiposal by Lab (A ine may be assessed if samples ore retained ofter 50 days).	ample Disposal: Return to Clent Oisposal
Special Remarks:	Bramide O-Phosphate Fluoride Mitrate+Niltrite	"Anions (Circle): Nervice Natile Chloride Suitate
1 Pt	nts TAL Individual: Ag Al As 8 Ba Se Co Ct Co Cr Cu Fe Hg K Mg Min Mo Na Ni	"Metals Analysis (Circle): MTCA-5 (CIXA-8) Priority Pollutarits
	* ·	DP-12-15,0 V 083)
	8 8 8	DR-12-12-5 0830
	8	DR-12-7.5 9/6/140921
Communicities	Semple Selection of the	Sample Name Sample Sample Time
WW = Wasse Water	sect. 5 = 5cill. SD = Sediment, St = Splid, W = Wards, DW = Dhinkide Water GW = Ground Water, WW	*Matrix Codes: A = Air. AQ = Aqueous. B = Bulk. *O = gdher. P = Prod
20776-001-00		RAPORTS TO IDAY STREET STREET STREET
	1	Address: Feamond
‡	Project Name: SLU Marky oft	Client: 05X
9. &	Date: 9/6/14 Page: &	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178
		Analytical
criaill of custody kecord	*	
ALL AND THE AND THE ADDRESS OF THE A		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM

"Anions (Circle):

Marate

METER

Chloride

Subject

IAI Bromde

Return to Client

Disposal by Lab (A les reselve an

HATTER OF JAMES GRAVE

Flooride

Nitrate-Mitrate

NO 20:500 PIHIL

"Metals Analysis (Circle) MTCA-5

ROBA-B /

Prignety Pollutants

O-Phasphate

As B Ba Be Ca Cd Ca Ca Ca Fe

HE K

WE NO

Mo

20

明的的的名词

THUVE

4

38

+

D-2-10.0

七十七十七

Ui

145

DP-2-5.0

DP-

952

003

PP-

1-125

DP-

20

ال

2/2

= 35

: 83

8

8

4

010

TAT -> SameDay* NextDay* 2 Day 3 Day 5TD

amole Disposal

以、

Client

"Metals Analysis (Circle): NTCA-5

MCRA-8)

Priority Pollutants

ニュニ 1130

DP-1-7.5

DP-5-5.0

2 30.0 24

100 188

DP-4-

DP-4-15,0

103

240

DP-4-

***Anions (Circle):

435/601

Witte Return to Client

Chloride

Sulfate

emple Disposit

Sample Name

DP-4-7.5

2 Sample

Sample Time

2001 5001

Stol

P-4-12.5 DP-4-10

3600 Fremont Ave N. Seuttle, WA 98103

Tel: 206-352-3790 Fax: 206-352-7178

Amolysisol.

CEL

*** Anions (Circle):

Matratu

Mirrie

ample Disposal:

"Metals Analysis (Circle): MTCA-5

ACRON 8

B

1 00

13,0 200

DPI

DP-7-75

JP-7-35 Dp-6-

15.0

Sample Name

DP-6-2,5

9/6/14 Sample

P. DP

6-7.5 6- S.O

DR-6-12.5

DP-6-

10,0

Seattle, WA 98103

1600 Fremont Ave N.

Tel: 208-352-3790 FOX: 206-352-7178

139

Clients Address:

		1200	
Please condinate with the lab in advance	TAT -> SameDay NextDay* 2 Day 3 Day STD		

TAT -> SameDay* NextDay* 7 Day 3 Day STD	Distrible (100		alicatus		ľ	Time	a Dote	1	Schintinger
	9/8/14 1200	4	1	De Maria	SWC	14 9 3pm	H/4.	- Alt 9	S	Notinguished
		4-	mental an estima	Se competition	Lab (A temps	Disposal by Lab (A termy termined I temper we resent who thirds)	157	Between to Client	models	lescavio stames
Special Remarks	Mitrates+Withited	Fluoride Nibrite		D-Prosphate	Bromide	Suthite	Chiande	Netrate Minde	101	··· Anions (Circle):
P8 54 50 \$1 50 TI TI U V Zn	Fe Mg R Mg Min Me Ra W	Ba Be Ca Ca Ca Ca Ca	Ag Al As B Ba	Individual Ag Al	TAI I	Priority Pollutients	ACRA-B PA	MICAS	"Metals Analysis (Circle):	· Metals J
	4	9	(X)		× 8	1330	9	5.0	-8-35.0	DP OF
	8	8	8		163	256		D.0	P-9-3	P
						W.		17.5	11-6-da	P.
						200		3.5	1	, DP-9
						reet		u	DP-9-7.5	PP
	8	8	(S)		8	136		0	P-9-5,0	DP
						app		5	3.8-10-	7
	8	8	(X)		8	Soti		13.0	5-15	P
						1702		12.5	5	PP-
	×				SmI	= 200	2	10.0	S	DP-5
Comments/Depth			11/18	3. 10 mg	Sample Type (Matria)*	Sample Time (A	Sample		Varne	Sample Name
Waste Water	hands wand. 5W = Ground Water, WW = Waste Water	= Water, DW = D	Prios = 75	50 - Sedment,		r, P = Product, 5 = Sail.	uk, of deu	AC = Aqueosi, B + Suit	A . Air.	Natrix Codes
m-100-01100	Email aphilone devoca and another ac	an aphul	Em			Fax	ropy	Seace Phul	-	Reports To (PM):
- CAN	Sichono	Collected by:	Cell			Tel	Carpino	Kear	e. Zip	Address: City, State, Zip
7	SW Market	300	Pro				130	500	1	Client
\$ ≪	pales: Q		our 9/6/14	10	Det		Tel: 206-352-3790 Fax: 206-352-7178	Tet: 206	3600 Fremant Ave N. Seattle, WA 98703	3600 Fre Seattle,
	The state of the s					No.	tours tours	2477		5
in of castody necord	Cilgi					-	Š			Ø
Chain of Custody Record	Chai					•				1

Prisone conditions with the Go in advance		1	11					-			-
TAT-> SameDay* NextDay* 2 Day 3 Day STD	Care/Tirus	19 0	1	Transfer.	F		-	Time	Date		CAN-M
	1/8/14 1200	9	p	THE C	N 70		Som	8	200 PM 9/4/4 D 200	J.	Contraction of
		- Lynch DC rath	say over retained after 30 days	- Cantin	Contract for an	al by Lab (Chisposal by Lab (A lea new her	5 Cilero	Besum to Cliero		Samely Disposal.
Sarcial Remarks:	eMane	ide Signate-shitting	Elugride	O-Phirsphate	Bramide		de Sultite	Chiprode	te Nitrite	terrare	***Anions (Circle):
2	ET CLI FE HL K ME MIT MO NO NO NO	93 63 63 89 89	AI AS B 6	Individual: Ag J	TAL Ind	tanti	Priority Pollutants	REBA-3		(Circle).	"Metals Analysis (Circle). SITCA-5
	-				F	4	13,20	4	5,0	8-25-0	1 DP-
	8	8	8	8	Ø	-	1305	-	0,0	8-20.0	DP- 8
		>	1				1250	-	Ó	8-15.0	8-80
							1250		15	5-12-5	DP-9
						-	1243		0,0	8-10.0	DP- 9
	8	8	6	8	8		OHC	-		27-8	NP-8
		,				-	1228	-		5	DP-8-50
	8	8	1	8	8	3	133	41/9/14	109000	1-16	25(41) 19/20 00 11 -1 - MM
	×8	8	18	16	8	3	0	1/1/1	CAN HIR/6 0050H	Y	18-WW
	2	00	8	8	8	3	0940	7/6/14	0906	2-14	MW-2-140906
Comments/Desph			18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	San les	in land	Sample Type [Matris]*	Sample	Sample			Sample Name
-Waste Water	Water, GW - Grou		Solid W-	Siment, SL+1	oil, SD = Se	Juct. 5 = 5	Builds, On Other, P. Product. S. Soil, SD. Sediment, St. Solld, W. Water.	dk, 0=0	1.0	A = Alt, AQ=	Matrix Codes: A =
00-5-00-1/102 -NO	Entill: GPHILTYS GEOBYSING GETTION	Emulli GPHLLE	Email	6000	-1000-1000-1000	Fai: 42	MA 98857 Tol	THE P	16.	S E	Chy, Status, Zip REDMICE Reports To [PM]: APPC TO
Ses	JAKE T	100	Location						100	16	Address:
OC (SLU MARRAOTT	102-003-	Project Name:	Proje	Date: 9/6/14	Date: (6 0	Tel: 106-352-3790 Fax: 206-352-7178	Fox: 200		3600 Fremont Ave N Senttle, WA 98103
	Lobernitory Project No (internal):	2					1771	toots a feet and			E
Chain of Custody Record	Chai						3	5		Ţ	
	2										

***Anions (Circle):

Samely Disposal.

Pilease insurfical authority the bows selection		4	7		
TAT -> SameDay* NextDay* 2 Bay 3 Day STD	Supper Currier	1 11 1	Carrie		4
	8/8/14/200	200		17/14 @ 30m	11/16 - WAR
	()	un retarred after 30 days.]	Obspecial by Lati (A berinary be assessed if services	Client Disposal by	ameli Diseasal: Return to Clean Amognithed A Date / Time.
Special Remarks	Mitcile.	there sworlde Altrate-Minite	Bramide O-Phosphare	GNoride Sulfate	se): Nerate
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OF CAF FR HE K MS NO MO NO NO NO	AS AL AL B Ba Be Co Ed Co	TAL Individual Ag	ACRA-8) Priority Pollutionts	(Circle): MTCA-5
			4		
		9	¥	083)	D1-12-15.0
	3	8	8	0830	DP-12-12.5
				468	DP-12-10,0
Comment/Depan	S × 3	(X) (X) (X)	-	120M/9/6	D8-12-7.5
			Sample Sample Type (St. 1875)		Sample Name
Naste Water	rinking Water BW = Ground Water, WW = Waste Water	t SL-Sold, W. Water, DW-D	ct. 5 = Scill, SD = Sedimen	AG = Aqueous, B = Bulk, TO = Other, P = Propuet, S = Sold, SD = Sediment, St = Sold,	*Matrix Cades: A = Air, AQ = Aqueous, B =
20776-001-00	Email: aphylogopopopopopopopopopopopopopopopopopopo	Email: 90hul	Fakt	don .	PMI: C
		Coffected by:	Tel:	CONTRACTOR OF	City, State, 2ip
ĺ	SW Marcott	Project Name:			ap.
*	Page: &	M/9/6	Date: 9/	Tel: 206-352-3790 Fax: 206-352-7178	3600 Fremont Ave N. Tel: 20 Seattle, WA 98103 Fax: 2
				STORY STORY	
Chain of Custody Record	Ch.			remont	

	The SameDayn NextDayn 2 0ay 3 0ay STD	9 6	*(
		B) 1 Drieg 1/6/14 1200	C SCHOOL SCHOOL	14 9 7 14 0 3pm	1 7 14	V app	Service
		Tressing Squared	Objected by right (A free response) is sampled any own rest after 3 easys.	COlsposal by Lubr	Return to Client		Sangly Diseased
	Special Harvarks	Thistopic recent Milesto	Gramide U.Fhasphate	SUPPLE	Willie Chloride	STREET	Anima (Carle):
	N/ A 77 (2-1), N/S AS 20.5 4% 4 _{0.4}	AL B. HA HE CO CLE FOR CO CO FEE TO K AND MAIN MICE PAIN AN	TALL IN SECTION INT.	Printilly Publicants	NCR4-8 P	"Metals Analysis (Grole) MTCA-5	"Metals Anal
		8	8	1330 1	4	"DP-8- 35-0	DP-
		8	8	255		D-9-90.0	IDP-6
				姬		S. E. I - 6-dQ	DP-6
	- 14			200		DP-9-12.5	DP-
d	0 11 1/21/1			45		DP-9-7.5	DP-
T.	Adu Analust as	8 8	8	TS-E		DP-9-5.0	DP-6
		, (200		02-9-2.5	DP-6
		8	8	Sot		DP-5-150	DP-8
				702	-	DP-5-12 5	DP- 5
				148 Sul	2 0	-5-10:0	DP-C
	Comments/Depth			Sample Sample Type Time (Matris)*	Sample Date	200	Sample Name
	W- Washa Waster	O A PLOCK SHIPLER	5 - 5oli, 50 - Sediment, 51 - Solk	Fax:	Philos	REPORTS TO FOM LO SHALL PHULLY	Reports To
	Gm	Collected by:		Tel:	DIN AMO	Zip K	City, State, Zip
	7	SW Mara			730	7	Client:
	B	Page:	Date: 9/6/14	80 4	Tet: 206-352-3790 Fax: 206-352-7178	K	3500 Fremont Ave N. Septtle, WA 98103
				KOLD	NEW PROPERTY OF THE PARTY OF TH		
	Chain of Custody Record	Cha			remo	Fre	
		2					A STREET

*** Anions (Circle):

\$157.25E

987390

Seture to Chern

Disposal by cab (After very he asser

a) 3:00pm

**Metals Analysis (Circle): MTCA-5

ACRA-R P

PROPER POBLEME

instructional long Ad And 10 than the Case Case Case Case Case Fee Fee K Mag Man Man Man Man Ma Shi She Shi Shi Ti Ti U V Zin

Special Remarks

Sulfate

Bromide

O-Mogérate

Mirate-Minnie

Þ

002

08-H-30

08-3-7-5

18-3-125

4-250

946

1106

8

DP-3-

0.0

1031 1031

3

DP-3-25

アローユーボウ	DP-2-17.5	Sample Name	"Marts Codes: A - Air, ACL - Aqueeus, B - Bulk, Subbher,	Reports To (PM):	City, State, Elp	Address	Client	Seattle, WA 98108	E	
I	3.5		ACI - Arpendici, B -	Carline Philon	DAMMAN		199	*		remont
-	9/10 13.05 80:1	Sample Date	auto delos	il on	S			Tel: 306-352-3790 Fox: 206-352-7178	nosyron	5
0 15	1205	Sample Tame	her, Paren							7
	53:1	Sample Type (Matrix)*	duct, 5 - 50%	Fax:	14: 425 Sul 10000					
	8	300 Co	3D = Sedimen		s qui u			Date 1		
3	8		51 + Scild, 1	13		-	2	Melin		
	8	18 18 18 18 18 18 18 18 18 18 18 18 18 1	W . Water, Di	Email:	allected by:	ocations	roject Name:	1		
1	8	Sala Calaba	W = Drividing W:		1	36 £	3	Ng.	Laboratory Proje	
	×®		P. Product, S. Solf, SD - Sediment, St. Solid, W. Water, DW - Driving Water, SW - Ground Water, INW -	Project No:		munty up bet	SLA Maniet	9	ect No (Internal)	Chai
があるるとしているという		Commenta/Depth	INW - Waste Water	100-600- HELOY 000-00		Avenue North		\$	409077	Chain of Custody Record
STATE OF STA										ď

TAT -> Same Day" Next Day 2 Day 3 Day 5TD

which is the sea with the particular or manufacture.

Distribution: White-Lab. Yellow - Fist First - Originator

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1506126

September 01, 2015

Attention Jessica Smith:

Fremont Analytical, Inc. received 81 sample(s) on 6/10/2015 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Metals (SW6020) with TCLP Extraction (EPA 1311)

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Mel c. Rody

Sincerely,

Mike Ridgeway President

Date: 09/01/2015

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott
Lab Order: 1506126

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1506126-001	DP-16-2.5	06/08/2015 8:33 AM	06/10/2015 8:22 AM
1506126-002	DP-16-5.0	06/08/2015 8:37 AM	06/10/2015 8:22 AM
1506126-003	DP-16-7.5	06/08/2015 8:40 AM	06/10/2015 8:22 AM
1506126-004	DP-16-10.0	06/08/2015 8:45 AM	06/10/2015 8:22 AM
1506126-005	DP-16-15.0	06/08/2015 8:47 AM	06/10/2015 8:22 AM
1506126-006	DP-16-17.5	06/08/2015 8:57 AM	06/10/2015 8:22 AM
1506126-007	DP-16-20.0	06/08/2015 8:59 AM	06/10/2015 8:22 AM
1506126-008	DP-16-22.5	06/08/2015 9:10 AM	06/10/2015 8:22 AM
1506126-009	DP-16-25.0	06/08/2015 9:12 AM	06/10/2015 8:22 AM
1506126-010	DP-16-27.5	06/08/2015 9:20 AM	06/10/2015 8:22 AM
1506126-011	DP-16-30.0	06/08/2015 9:22 AM	06/10/2015 8:22 AM
1506126-012	DP-14-2.5	06/08/2015 10:05 AM	06/10/2015 8:22 AM
1506126-013	DP-14-5.0	06/08/2015 10:07 AM	06/10/2015 8:22 AM
1506126-014	DP-14-7.5	06/08/2015 10:15 AM	06/10/2015 8:22 AM
1506126-015	DP-14-10.0	06/08/2015 10:17 AM	06/10/2015 8:22 AM
1506126-016	DP-14-12.5	06/08/2015 10:21 AM	06/10/2015 8:22 AM
1506126-017	DP-14-15.0	06/08/2015 10:23 AM	06/10/2015 8:22 AM
1506126-018	DP-14-17.5	06/08/2015 10:27 AM	06/10/2015 8:22 AM
1506126-019	DP-14-20.0	06/08/2015 10:29 AM	06/10/2015 8:22 AM
1506126-020	DP-14-22.5	06/08/2015 10:35 AM	06/10/2015 8:22 AM
1506126-021	DP-14-25.0	06/08/2015 10:37 AM	06/10/2015 8:22 AM
1506126-022	DP-14-27.5	06/08/2015 10:42 AM	06/10/2015 8:22 AM
1506126-023	DP-14-30.0	06/08/2015 10:44 AM	06/10/2015 8:22 AM
1506126-024	MW-7-2.5	06/08/2015 2:10 PM	06/10/2015 8:22 AM
1506126-025	MW-7-5.0	06/08/2015 2:12 PM	06/10/2015 8:22 AM
1506126-026	MW-7-10.0	06/08/2015 2:21 PM	06/10/2015 8:22 AM
1506126-027	MW-7-11.0	06/08/2015 2:28 PM	06/10/2015 8:22 AM
1506126-028	MW-7-15.0	06/08/2015 2:30 PM	06/10/2015 8:22 AM
1506126-029	MW-7-17.5	06/08/2015 2:35 PM	06/10/2015 8:22 AM
1506126-030	MW-7-20.0	06/08/2015 2:37 PM	06/10/2015 8:22 AM
1506126-031	MW-7-22.5	06/08/2015 2:44 PM	06/10/2015 8:22 AM
1506126-032	MW-7-25.0	06/08/2015 2:46 PM	06/10/2015 8:22 AM
1506126-033	MW-7-27.5	06/08/2015 2:55 PM	06/10/2015 8:22 AM
1506126-034	MW-7-30.0	06/08/2015 2:57 PM	06/10/2015 8:22 AM
1506126-035	DP-15-2.5	06/08/2015 12:43 PM	06/10/2015 8:22 AM
1506126-036	DP-15-5.0	06/08/2015 12:45 PM	06/10/2015 8:22 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Work Order Sample Summary

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott
Lab Order: 1506126

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1506126-037	DP-15-12.5	06/08/2015 12:53 PM	06/10/2015 8:22 AM
1506126-038	DP-15-15.0	06/08/2015 12:57 PM	06/10/2015 8:22 AM
1506126-039	DP-15-17.5	06/08/2015 1:05 PM	06/10/2015 8:22 AM
1506126-040	DP-15-27.5	06/08/2015 1:16 PM	06/10/2015 8:22 AM
1506126-041	DP-15-30.0	06/08/2015 1:18 PM	06/10/2015 8:22 AM
1506126-042	DP-15-35.0	06/08/2015 1:35 PM	06/10/2015 8:22 AM
1506126-043	MW-6-2.0	06/08/2015 11:17 AM	06/10/2015 8:22 AM
1506126-044	MW-6-7.5	06/08/2015 11:24 AM	06/10/2015 8:22 AM
1506126-045	MW-6-10.0	06/08/2015 11:26 AM	06/10/2015 8:22 AM
1506126-046	MW-6-15.0	06/08/2015 11:32 AM	06/10/2015 8:22 AM
1506126-047	MW-6-17.5	06/08/2015 11:38 AM	06/10/2015 8:22 AM
1506126-048	MW-6-20.0	06/08/2015 11:40 AM	06/10/2015 8:22 AM
1506126-049	MW-6-22.5	06/08/2015 11:58 AM	06/10/2015 8:22 AM
1506126-050	MW-6-25.0	06/08/2015 12:00 PM	06/10/2015 8:22 AM
1506126-051	MW-6-27.5	06/08/2015 12:07 PM	06/10/2015 8:22 AM
1506126-052	MW-6-30.0	06/08/2015 12:09 PM	06/10/2015 8:22 AM
1506126-053	MW-4-2.5	06/09/2015 10:24 AM	06/10/2015 8:22 AM
1506126-054	MW-4-5.0	06/09/2015 10:26 AM	06/10/2015 8:22 AM
1506126-055	MW-4-10.0	06/09/2015 10:28 AM	06/10/2015 8:22 AM
1506126-056	MW-4-17.5	06/09/2015 10:47 AM	06/10/2015 8:22 AM
1506126-057	MW-4-20.0	06/09/2015 10:49 AM	06/10/2015 8:22 AM
1506126-058	MW-4-22.5	06/09/2015 10:57 AM	06/10/2015 8:22 AM
1506126-059	MW-4-25.0	06/09/2015 10:59 AM	06/10/2015 8:22 AM
1506126-060	MW-4-27.5	06/09/2015 11:13 AM	06/10/2015 8:22 AM
1506126-061	MW-4-30.0	06/09/2015 11:15 AM	06/10/2015 8:22 AM
1506126-062	DP-13-8.0	06/09/2015 9:36 AM	06/10/2015 8:22 AM
1506126-063	DP-13-12.5	06/09/2015 9:41 AM	06/10/2015 8:22 AM
1506126-064	DP-13-15.0	06/09/2015 9:43 AM	06/10/2015 8:22 AM
1506126-065	DP-13-17.5	06/09/2015 9:48 AM	06/10/2015 8:22 AM
1506126-066	DP-13-20.0	06/09/2015 9:50 AM	06/10/2015 8:22 AM
1506126-067	DP-13-22.0	06/09/2015 9:54 AM	06/10/2015 8:22 AM
1506126-068	DP-13-25.0	06/09/2015 9:56 AM	06/10/2015 8:22 AM
1506126-069	DP-13-27.5	06/09/2015 9:59 AM	06/10/2015 8:22 AM
1506126-070	DP-13-30.0	06/09/2015 10:01 AM	06/10/2015 8:22 AM
1506126-071	MW-5-4.0	06/09/2015 7:45 AM	06/10/2015 8:22 AM
1506126-072	MW-5-7.5	06/09/2015 7:48 AM	06/10/2015 8:22 AM
1506126-073	MW-5-10.0	06/09/2015 7:50 AM	06/10/2015 8:22 AM
1506126-074	MW-5-15.0	06/09/2015 7:55 AM	06/10/2015 8:22 AM
1506126-075	MW-5-17.5	06/09/2015 8:00 AM	06/10/2015 8:22 AM
1506126-076	MW-5-20.0	06/09/2015 8:02 AM	06/10/2015 8:22 AM
1506126-077	MW-5-22.5	06/09/2015 8:07 AM	06/10/2015 8:22 AM
1506126-078	MW-5-25.0	06/09/2015 8:09 AM	06/10/2015 8:22 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott
Lab Order: 1506126

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1506126-079	MW-5-27.5	06/09/2015 8:15 AM	06/10/2015 8:22 AM
1506126-080	MW-5-30.0	06/09/2015 8:17 AM	06/10/2015 8:22 AM
1506126-081	Trip Blank	06/05/2015 4:02 PM	06/10/2015 8:22 AM

Case Narrative

WO#: **1506126**Date: **9/1/2015**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1506126**

Date Reported: 9/1/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: 1506126

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 8:40:00 AM

Project: SLU Marriott

Lab ID: 1506126-003 Matrix: Soil

Client Sample ID: DP-16-7.5

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Batch	ı ID:	10993 Analyst: NG
Naphthalene	ND	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
2-Methylnaphthalene	ND	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
1-Methylnaphthalene	ND	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Acenaphthylene	ND	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Acenaphthene	ND	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Fluorene	ND	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Phenanthrene	503	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Anthracene	138	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Fluoranthene	1,170	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Pyrene	1,430	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Benz(a)anthracene	566	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Chrysene	667	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Benzo(b)fluoranthene	709	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Benzo(k)fluoranthene	199	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Benzo(a)pyrene	608	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Indeno(1,2,3-cd)pyrene	396	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Dibenz(a,h)anthracene	87.1	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Benzo(g,h,i)perylene	546	67.8		μg/Kg-dry	1	6/11/2015 4:07:00 PM
Surr: 2-Fluorobiphenyl	94.0	42.7-132		%REC	1	6/11/2015 4:07:00 PM
Surr: Terphenyl-d14 (surr)	95.3	48.8-157		%REC	1	6/11/2015 4:07:00 PM
Sample Moisture (Percent Moi	sture)			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	27.2			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 8:45:00 AM

Project: SLU Marriott

Lab ID: 1506126-004 **Matrix:** Soil

Client Sample ID: DP-16-10.0

nalyses	Result	RL	Qual	Units	DF	Date Analyzed	
Polyaromatic Hydrocarbons by	/ EPA Method 8	EPA Method 8270 (SIM)		Batch ID: 11		1142 Analyst: NG	
Naphthalene	243	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
2-Methylnaphthalene	177	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
1-Methylnaphthalene	114	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Acenaphthylene	112	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Acenaphthene	ND	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Fluorene	ND	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Phenanthrene	851	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Anthracene	243	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Fluoranthene	501	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Pyrene	459	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Benz(a)anthracene	202	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AN	
Chrysene	223	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Benzo(b)fluoranthene	367	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Benzo(k)fluoranthene	ND	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Benzo(a)pyrene	ND	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Indeno(1,2,3-cd)pyrene	ND	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Dibenz(a,h)anthracene	ND	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Benzo(g,h,i)perylene	597	91.2	Н	μg/Kg-dry	1	6/26/2015 2:19:00 AM	
Surr: 2-Fluorobiphenyl	69.3	40.6-139	Н	%REC	1	6/26/2015 2:19:00 AM	
Surr: Terphenyl-d14 (surr)	75.2	48.8-157	Н	%REC	1	6/26/2015 2:19:00 AM	

Percent Moisture 45.8 wt% 1 6/25/2015 1:09:09 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 8:47:00 AM

Project: SLU Marriott

Lab ID: 1506126-005 **Matrix:** Soil

Client Sample ID: DP-16-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	/ EPA Method 8	Method 8270 (SIM)		Batch ID:		11240 Analyst: NG
Naphthalene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
2-Methylnaphthalene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
1-Methylnaphthalene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Acenaphthylene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Acenaphthene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Fluorene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Phenanthrene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Anthracene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Fluoranthene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Pyrene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Benz(a)anthracene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Chrysene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Benzo(b)fluoranthene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Benzo(k)fluoranthene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Benzo(a)pyrene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Indeno(1,2,3-cd)pyrene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Dibenz(a,h)anthracene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Benzo(g,h,i)perylene	ND	65.0	Н	μg/Kg-dry	1	7/10/2015 6:46:00 PM
Surr: 2-Fluorobiphenyl	54.3	40.6-139	Н	%REC	1	7/10/2015 6:46:00 PM
Surr: Terphenyl-d14 (surr)	85.7	48.8-157	Н	%REC	1	7/10/2015 6:46:00 PM
Total Metals by EPA Method 60	<u>)20</u>			Batch	ı ID:	11003 Analyst: TN
Lead	10.3	0.194		mg/Kg-dry	1	6/10/2015 5:34:51 PM
Sample Moisture (Percent Mois	sture)			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	23.2			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 8:57:00 AM

Project: SLU Marriott

Lab ID: 1506126-006 **Matrix:** Soil

Client Sample ID: DP-16-17.5

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Total Metals by EPA Method 6020				Batc	h ID: 110	003 Analyst: TN
Lead	5.07	0.205		mg/Kg-dry	1	6/10/2015 5:55:59 PM
Sample Moisture (Percent Moisture)			Batc	h ID: R2	2903 Analyst: CG
Percent Moisture	22.4			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 10:07:00 AM

Project: SLU Marriott

Lab ID: 1506126-013 **Matrix:** Soil

Client Sample ID: DP-14-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by EPA Method 7471				Batc	h ID: 11	737 Analyst: TN
Mercury	ND	0.233	Н	mg/Kg-dry	1	9/1/2015 3:42:33 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batc	h ID: R2	4621 Analyst: CG
Percent Moisture	4.33	0.500		wt%	1	9/1/2015 9:23:30 AM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 10:15:00 AM

Project: SLU Marriott

Lab ID: 1506126-014 **Matrix:** Soil

Client Sample ID: DP-14-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batch	n ID: 1	0999 Analyst: EC
Diesel (Fuel Oil)	ND	29.5		mg/Kg-dry	1	6/10/2015 8:34:00 PM
Heavy Oil	258	73.7		mg/Kg-dry	1	6/10/2015 8:34:00 PM
Surr: 2-Fluorobiphenyl	107	50-150		%REC	1	6/10/2015 8:34:00 PM
Surr: o-Terphenyl	107	50-150		%REC	1	6/10/2015 8:34:00 PM
Gasoline by NWTPH-Gx				Batch	n ID: 1	1026 Analyst: EM
Gasoline	1,250	114	D	mg/Kg-dry	20	6/15/2015 3:33:00 PM
Surr: Toluene-d8	92.3	65-135		%REC	1	6/13/2015 6:43:00 PM
Surr: 4-Bromofluorobenzene	105	65-135	D	%REC	20	6/15/2015 3:33:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 1	1026 Analyst: EM
Benzene	1.52	0.455	D	mg/Kg-dry	20	6/15/2015 3:33:00 PM
Toluene	2.08	0.455	D	mg/Kg-dry	20	6/15/2015 3:33:00 PM
Ethylbenzene	7.04	0.682	D	mg/Kg-dry	20	6/15/2015 3:33:00 PM
m,p-Xylene	4.81	0.455	D	mg/Kg-dry	20	6/15/2015 3:33:00 PM
o-Xylene	0.978	0.0227		mg/Kg-dry	1	6/13/2015 6:43:00 PM
Surr: Dibromofluoromethane	79.5	63.7-129		%REC	1	6/13/2015 6:43:00 PM
Surr: Toluene-d8	98.0	64.3-131		%REC	1	6/13/2015 6:43:00 PM
Surr: 1-Bromo-4-fluorobenzene	140	63.1-141		%REC	1	6/13/2015 6:43:00 PM
Sample Moisture (Percent Moist	ture)			Batch	ı ID: R	222903 Analyst: CG
Percent Moisture	35.3			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 10:27:00 AM

Project: SLU Marriott

Lab ID: 1506126-018 **Matrix:** Soil

Client Sample ID: DP-14-17.5

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Batch ID: 10999 Analyst: EC Diesel (Fuel Oil) ND 24.4 mg/Kg-dny 1 6/10/2015 9:39:00 PM Surr: 2-Fluorobiphenyl 104 50-150 %REC 1 6/10/2015 9:39:00 PM Surr: 2-Fluorobiphenyl 96.6 50-150 %REC 1 6/10/2015 9:39:00 PM Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Batch ID: 10993 Analyst: NG Naphthalene ND 60.9 μg/Kg-dny 1 6/11/2015 4:32:00 PM 2-Methylnaphthalene ND 60.9 μg/Kg-dny 1 6/11/2015 4:32:00 PM 1-Methylnaphthalene ND 60.9 μg/Kg-dny 1 6/11/2015 4:32:00 PM<	Analyses	Result	RL	Qual	Units DF		Date Analyzed
Heavy Oil	Diesel and Heavy Oil by NWTP	I-Dx/Dx Ext.			Batch	ı ID:	10999 Analyst: EC
Surr: 2-Fluorobiphenyl 104 50-150 %REC 1 6/10/2015 9:39:00 PM	Diesel (Fuel Oil)	ND	24.4		mg/Kg-dry	1	6/10/2015 9:39:00 PM
Surr. o-Terphenyl 96.6 50-150 %REC 1 6/10/2015 9:39:00 PM	Heavy Oil	ND	60.9		mg/Kg-dry	1	6/10/2015 9:39:00 PM
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Batch ID: 10993 Analyst: NG Naphthalene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM 2-Methylnaphthalene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM 1-Methylnaphthalene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Acenaphthylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Fluorene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Phenanthrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Phenanthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Phrena ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Pytene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benz(a)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Chrysene ND 60.9 μg/Kg-dry 1 6/	Surr: 2-Fluorobiphenyl	104	50-150		%REC	1	6/10/2015 9:39:00 PM
Naphthalene	Surr: o-Terphenyl	96.6	50-150		%REC	1	6/10/2015 9:39:00 PM
2-Methylnaphthalene ND 60.9	Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)			Batch ID		10993 Analyst: NG	
1-Methylnaphthalene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Acenaphthylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Acenaphthylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Acenaphthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Fluorene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Phenanthrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11	Naphthalene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Acenaphthylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Acenaphthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Fluorene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Phenanthrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Phenanthrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:	2-Methylnaphthalene	ND	60.9			1	6/11/2015 4:32:00 PM
Acenaphthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Fluorene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Phenanthrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benz(a)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Chrysene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(k)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: Terphenyl-d14 (surr) Gasoline 1.90 1.48 mg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 06/13/2015 3:14:00 PM	1-Methylnaphthalene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Fluorene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM	Acenaphthylene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Phenanthrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benz(a)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Chrysene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(k)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9	Acenaphthene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benz(a)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Chrysene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(k)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a,h)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline by NWTPH-Gx Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Fluorene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Fluoranthene ND 60.9	Phenanthrene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benz(a)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Chrysene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)filuoranthene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 3:14:00 PM Surr: 4-Bromofluorobenzene	Anthracene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Benz(a)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Chrysene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(k)fluoranthene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 µg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Gasoline by NWTPH-Gx Batch ID: 11026 Analyst: EM Gasoline surr: 4-Bromofluorobenzene 99.4 65-	Fluoranthene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Chrysene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(b)fluoranthene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(k)fluoranthene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(2,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/13/2015 3:14:00 PM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenz	Pyrene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Benzo(b)fluoranthene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(k)fluoranthene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Benz(a)anthracene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Benzo(k)fluoranthene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(a)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Chrysene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Benzo(a)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Indeno(1,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Benzo(b)fluoranthene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Indeno(1,2,3-cd)pyrene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline by NWTPH-Gx Batch ID: 11026 Analyst: EM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Benzo(k)fluoranthene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Dibenz(a,h)anthracene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline by NWTPH-Gx Batch ID: 11026 Analyst: EM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Benzo(a)pyrene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Benzo(g,h,i)perylene ND 60.9 μg/Kg-dry 1 6/11/2015 4:32:00 PM Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Batch ID: 11026 Analyst: EM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Indeno(1,2,3-cd)pyrene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Surr: 2-Fluorobiphenyl 96.0 42.7-132 %REC 1 6/11/2015 4:32:00 PM Surr: Terphenyl-d14 (surr) 101 48.8-157 %REC 1 6/11/2015 4:32:00 PM Gasoline by NWTPH-Gx Batch ID: 11026 Analyst: EM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Dibenz(a,h)anthracene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Gasoline by NWTPH-Gx Batch ID: 11026 Analyst: EM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Benzo(g,h,i)perylene	ND	60.9		μg/Kg-dry	1	6/11/2015 4:32:00 PM
Gasoline by NWTPH-Gx Batch ID: 11026 Analyst: EM Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Surr: 2-Fluorobiphenyl	96.0	42.7-132		%REC	1	6/11/2015 4:32:00 PM
Gasoline 1.90 1.48 mg/Kg-dry 1 6/13/2015 3:14:00 PM Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Surr: Terphenyl-d14 (surr)	101	48.8-157		%REC	1	6/11/2015 4:32:00 PM
Surr: 4-Bromofluorobenzene 99.4 65-135 %REC 1 6/13/2015 3:14:00 PM Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Gasoline by NWTPH-Gx				Batch	ı ID:	11026 Analyst: EM
Surr: Toluene-d8 102 65-135 %REC 1 6/13/2015 3:14:00 PM	Gasoline	1.90	1.48		mg/Kg-dry	1	6/13/2015 3:14:00 PM
	Surr: 4-Bromofluorobenzene	99.4	65-135		%REC	1	6/13/2015 3:14:00 PM
Volatile Organic Compounds by EPA Method 8260 Batch ID: 11026 Analyst: EM	Surr: Toluene-d8	102	65-135		%REC	1	6/13/2015 3:14:00 PM
	Volatile Organic Compounds by EPA Method 8260		<u>8260</u>		Batch	n ID:	11026 Analyst: EM
Benzene 0.0330 0.00591 mg/Kg-dry 1 6/13/2015 3:14:00 PM	Benzene	0.0330	0.00591		mg/Kg-dry	1	6/13/2015 3:14:00 PM
Toluene ND 0.00591 mg/Kg-dry 1 6/13/2015 3:14:00 PM	Toluene						
Ethylbenzene ND 0.00887 mg/Kg-dry 1 6/13/2015 3:14:00 PM	Ethylbenzene	ND					

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 10:27:00 AM

Project: SLU Marriott

Lab ID: 1506126-018 **Matrix:** Soil

Client Sample ID: DP-14-17.5

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	11026 Analyst: EM
m,p-Xylene	0.0105	0.00591		mg/Kg-dry	1	6/13/2015 3:14:00 PM
o-Xylene	ND	0.00591		mg/Kg-dry	1	6/13/2015 3:14:00 PM
Surr: Dibromofluoromethane	92.6	63.7-129		%REC	1	6/13/2015 3:14:00 PM
Surr: Toluene-d8	100	64.3-131		%REC	1	6/13/2015 3:14:00 PM
Surr: 1-Bromo-4-fluorobenzene	99.2	63.1-141		%REC	1	6/13/2015 3:14:00 PM
Total Metals by EPA Method 602	<u>20</u>			Batch	ı ID:	11003 Analyst: TN
Lead	3.39	0.178		mg/Kg-dry	1	6/10/2015 5:59:30 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	19.1			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 10:44:00 AM

Project: SLU Marriott

Lab ID: 1506126-023 **Matrix:** Soil

Client Sample ID: DP-14-30.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 11	173 Analyst: BC
Benzene	0.0493	0.00801	Н	mg/Kg-dry	1	6/27/2015 6:08:00 AM
Surr: Dibromofluoromethane	98.8	63.7-129	Н	%REC	1	6/27/2015 6:08:00 AM
Surr: Toluene-d8	97.4	64.3-131	Н	%REC	1	6/27/2015 6:08:00 AM
Surr: 1-Bromo-4-fluorobenzene	102	63.1-141	Н	%REC	1	6/27/2015 6:08:00 AM
Sample Moisture (Percent Moist	ture)			Batch	n ID: R2	23199 Analyst: CG
Percent Moisture	14 7			wt%	1	6/25/2015 1:09:09 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 2:21:00 PM

Project: SLU Marriott

Lab ID: 1506126-026 **Matrix:** Soil

Client Sample ID: MW-7-10.0

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batch	1D: 1	0999 Analyst: EC
Diesel (Fuel Oil)	ND	29.3		mg/Kg-dry	1	6/10/2015 10:11:00 PM
Heavy Oil	ND	73.3		mg/Kg-dry	1	6/10/2015 10:11:00 PM
Heavy Fuel Oil	836	73.3		mg/Kg-dry	1	6/10/2015 10:11:00 PM
Surr: 2-Fluorobiphenyl	120	50-150		%REC	1	6/10/2015 10:11:00 PM
Surr: o-Terphenyl	124	50-150		%REC	1	6/10/2015 10:11:00 PM
Polyaromatic Hydrocarbons by I	EPA Method 8	270 (SIM)		Batch	1D: 1	0993 Analyst: NG
Naphthalene	158	76.6		μg/Kg-dry	1	6/11/2015 5:23:00 PM
2-Methylnaphthalene	143	76.6		μg/Kg-dry	1	6/11/2015 5:23:00 PM
1-Methylnaphthalene	145	76.6		μg/Kg-dry	1	6/11/2015 5:23:00 PM
Surr: 2-Fluorobiphenyl	88.9	42.7-132		%REC	1	6/11/2015 5:23:00 PM
Surr: Terphenyl-d14 (surr)	99.4	48.8-157		%REC	1	6/11/2015 5:23:00 PM
Gasoline by NWTPH-Gx				Batch	1D: 1	1026 Analyst: EM
Gasoline	3.47	2.67		mg/Kg-dry	1	6/13/2015 3:43:00 PM
Surr: 4-Bromofluorobenzene	99.8	65-135		%REC	1	6/13/2015 3:43:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	6/13/2015 3:43:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	1D: 1	1026 Analyst: EM
Benzene	0.0484	0.0107		mg/Kg-dry	1	6/13/2015 3:43:00 PM
Toluene	0.0144	0.0107		mg/Kg-dry	1	6/13/2015 3:43:00 PM
Ethylbenzene	ND	0.0160		mg/Kg-dry	1	6/13/2015 3:43:00 PM
m,p-Xylene	0.0548	0.0107		mg/Kg-dry	1	6/13/2015 3:43:00 PM
o-Xylene	ND	0.0107		mg/Kg-dry	1	6/13/2015 3:43:00 PM
Surr: Dibromofluoromethane	91.2	63.7-129		%REC	1	6/13/2015 3:43:00 PM
Surr: Toluene-d8	101	64.3-131		%REC	1	6/13/2015 3:43:00 PM
Surr: 1-Bromo-4-fluorobenzene	99.4	63.1-141		%REC	1	6/13/2015 3:43:00 PM
Total Metals by EPA Method 602	<u>20</u>			Batch	1D: 1	1003 Analyst: TN
Lead	670	0.232		mg/Kg-dry	1	6/10/2015 6:10:06 PM
Metals (SW6020) with TCLP Extr	action (EPA 1	<u>311)</u>		Batch	1D: 1	1129 Analyst: TN
Lead	ND	0.200		mg/L	1	6/25/2015 4:22:18 PM

WO#: **1506126**

Date Reported: 9/1/2015

6/11/2015 1:53:12 PM

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 2:21:00 PM

Project: SLU Marriott

Percent Moisture

Lab ID: 1506126-026 **Matrix:** Soil

35.1

Client Sample ID: MW-7-10.0

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R22903 Analyst: CG

wt%

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 2:30:00 PM

Project: SLU Marriott

Lab ID: 1506126-028 **Matrix:** Soil

Client Sample ID: MW-7-15.0

Analyses	Result	RL	Qual	Units	DF	- Da	te Analyzed	
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.	Ox/Dx Ext.		Batch ID:		10999	Analyst: EC	
Diesel (Fuel Oil)	ND	22.1		mg/Kg-dry	1	6/10/	2015 10:43:00 PM	
Heavy Oil	ND	55.4		mg/Kg-dry	1	6/10/	2015 10:43:00 PM	
Surr: 2-Fluorobiphenyl	118	50-150		%REC	1	6/10/	2015 10:43:00 PM	
Surr: o-Terphenyl	109	50-150		%REC	1	6/10/	2015 10:43:00 PM	
Gasoline by NWTPH-Gx				Batch	ı ID:	11026	Analyst: EM	
Gasoline	14.5	1.12		mg/Kg-dry	1	6/13/	2015 6:13:00 PM	
Surr: 4-Bromofluorobenzene	100	65-135		%REC	1	6/13/	2015 6:13:00 PM	
Surr: Toluene-d8	99.2	65-135		%REC	1	6/13/	2015 6:13:00 PM	
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	11026	Analyst: EM	
Benzene	ND	0.00450		mg/Kg-dry	1	6/13/	2015 6:13:00 PM	
Toluene	ND	0.00450		mg/Kg-dry	1	6/13/	2015 6:13:00 PM	
Ethylbenzene	0.0139	0.00675		mg/Kg-dry	1	6/13/	2015 6:13:00 PM	
m,p-Xylene	0.00495	0.00450		mg/Kg-dry	1	6/13/	2015 6:13:00 PM	
o-Xylene	ND	0.00450		mg/Kg-dry	1	6/13/	2015 6:13:00 PM	
Surr: Dibromofluoromethane	85.4	63.7-129		%REC	1	6/13/	2015 6:13:00 PM	
Surr: Toluene-d8	101	64.3-131		%REC	1	6/13/	2015 6:13:00 PM	
Surr: 1-Bromo-4-fluorobenzene	99.6	63.1-141		%REC	1	6/13/	2015 6:13:00 PM	
Sample Moisture (Percent Moist	ture)			Batch	ı ID:	R22903	Analyst: CG	
Percent Moisture	14.9			wt%	1	6/11/	2015 1:53:12 PM	

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 2:37:00 PM

Project: SLU Marriott

Lab ID: 1506126-030 **Matrix:** Soil

Client Sample ID: MW-7-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID:	10993 Analyst: NG
Naphthalene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
2-Methylnaphthalene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
1-Methylnaphthalene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Acenaphthylene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Acenaphthene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Fluorene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Phenanthrene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Anthracene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Fluoranthene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Pyrene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Benz(a)anthracene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Chrysene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Benzo(b)fluoranthene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Benzo(k)fluoranthene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Benzo(a)pyrene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Indeno(1,2,3-cd)pyrene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Dibenz(a,h)anthracene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Benzo(g,h,i)perylene	ND	52.2		μg/Kg-dry	1	6/11/2015 5:48:00 PM
Surr: 2-Fluorobiphenyl	61.7	42.7-132		%REC	1	6/11/2015 5:48:00 PM
Surr: Terphenyl-d14 (surr)	77.2	48.8-157		%REC	1	6/11/2015 5:48:00 PM
Sasoline by NWTPH-Gx				Batch	n ID:	11026 Analyst: EM
Gasoline	ND	1.24		mg/Kg-dry	1	6/13/2015 4:13:00 PM
Surr: 4-Bromofluorobenzene	95.8	65-135		%REC	1	6/13/2015 4:13:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	6/13/2015 4:13:00 PM
olatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID:	11026 Analyst: EM
Benzene	0.0265	0.00495		mg/Kg-dry	1	6/13/2015 4:13:00 PM
Toluene	ND	0.00495		mg/Kg-dry	1	6/13/2015 4:13:00 PM
Ethylbenzene	ND	0.00742		mg/Kg-dry	1	6/13/2015 4:13:00 PM
m,p-Xylene	ND	0.00495		mg/Kg-dry	1	6/13/2015 4:13:00 PM
o-Xylene	ND	0.00495		mg/Kg-dry	1	6/13/2015 4:13:00 PM
Surr: Dibromofluoromethane	89.3	63.7-129		%REC	1	6/13/2015 4:13:00 PM
Surr: Toluene-d8	100	64.3-131		%REC	1	6/13/2015 4:13:00 PM
Surr: 1-Bromo-4-fluorobenzene	95.6	63.1-141		%REC	1	6/13/2015 4:13:00 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 2:37:00 PM

Project: SLU Marriott

Lab ID: 1506126-030 **Matrix:** Soil

Client Sample ID: MW-7-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batcl	h ID: 11	153 Analyst: TN
Lead	2.10	0.158		mg/Kg-dry	1	6/25/2015 6:27:12 PM
Sample Moisture (Percent Moisture)			Batcl	h ID: R2	22903 Analyst: CG
Percent Moisture	9.14			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 2:57:00 PM

Project: SLU Marriott

Lab ID: 1506126-034 **Matrix:** Soil

Client Sample ID: MW-7-30.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 1	1173 Analyst: BC
Benzene	0.0806	0.00632	Н	mg/Kg-dry	1	6/27/2015 6:36:00 AM
Surr: Dibromofluoromethane	103	63.7-129	Н	%REC	1	6/27/2015 6:36:00 AM
Surr: Toluene-d8	101	64.3-131	Н	%REC	1	6/27/2015 6:36:00 AM
Surr: 1-Bromo-4-fluorobenzene	102	63.1-141	Н	%REC	1	6/27/2015 6:36:00 AM
Sample Moisture (Percent Moist	ture)			Batch	ı ID: F	R23260 Analyst: CG
Percent Moisture	22.4			wt%	1	6/29/2015 9:04:18 AM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 12:45:00 PM

Project: SLU Marriott

Lab ID: 1506126-036 **Matrix:** Soil

Client Sample ID: DP-15-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	ı ID:	10999 Analyst: EC
Diesel (Fuel Oil)	ND	22.1		mg/Kg-dry	1	6/10/2015 11:16:00 PM
Heavy Oil	ND	55.4		mg/Kg-dry	1	6/10/2015 11:16:00 PM
Heavy Fuel Oil	89.9	55.4		mg/Kg-dry	1	6/10/2015 11:16:00 PM
Surr: 2-Fluorobiphenyl	120	50-150		%REC	1	6/10/2015 11:16:00 PM
Surr: o-Terphenyl	110	50-150		%REC	1	6/10/2015 11:16:00 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	11026 Analyst: EM
Gasoline	ND	3.73		mg/Kg-dry	1	6/13/2015 4:43:00 PM
Surr: 4-Bromofluorobenzene	97.9	65-135		%REC	1	6/13/2015 4:43:00 PM
Surr: Toluene-d8	101	65-135		%REC	1	6/13/2015 4:43:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	11026 Analyst: EM
Benzene	0.0160	0.0149		mg/Kg-dry	1	6/13/2015 4:43:00 PM
Toluene	ND	0.0149		mg/Kg-dry	1	6/13/2015 4:43:00 PM
Ethylbenzene	ND	0.0224		mg/Kg-dry	1	6/13/2015 4:43:00 PM
m,p-Xylene	0.0354	0.0149		mg/Kg-dry	1	6/13/2015 4:43:00 PM
o-Xylene	ND	0.0149		mg/Kg-dry	1	6/13/2015 4:43:00 PM
Surr: Dibromofluoromethane	81.5	63.7-129		%REC	1	6/13/2015 4:43:00 PM
Surr: Toluene-d8	100	64.3-131		%REC	1	6/13/2015 4:43:00 PM
Surr: 1-Bromo-4-fluorobenzene	97.7	63.1-141		%REC	1	6/13/2015 4:43:00 PM
Mercury by EPA Method 7471				Batch	ı ID:	10992 Analyst: TN
Mercury	0.638	0.266		mg/Kg-dry	1	6/10/2015 5:59:16 PM
Total Metals by EPA Method 602	<u>0</u>			Batch	ı ID:	11003 Analyst: TN
Lead	5,370	0.187		mg/Kg-dry	1	6/10/2015 6:13:38 PM
Metals (SW6020) with TCLP Extra	action (EPA 1	<u>311)</u>		Batch	ı ID:	11129 Analyst: TN
Lead	6.28	0.200		mg/L	1	6/25/2015 4:25:50 PM
Sample Moisture (Percent Moistu	ure)			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	13.0			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 12:53:00 PM

Project: SLU Marriott

Lab ID: 1506126-037 **Matrix:** Soil

Client Sample ID: DP-15-12.5

Analyses	Result	RL	Qual	Units	DF	= D	ate Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batch	ı ID:	10999	Analyst: EC
Diesel (Fuel Oil)	ND	23.5		mg/Kg-dry	1	6/10	0/2015 11:48:00 PM
Heavy Oil	ND	58.6		mg/Kg-dry	1	6/10	0/2015 11:48:00 PM
Surr: 2-Fluorobiphenyl	115	50-150		%REC	1	6/10	0/2015 11:48:00 PM
Surr: o-Terphenyl	104	50-150		%REC	1	6/10	0/2015 11:48:00 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	11026	Analyst: EM
Gasoline	6.95	1.27		mg/Kg-dry	1	6/13	3/2015 5:13:00 PM
Surr: 4-Bromofluorobenzene	99.7	65-135		%REC	1	6/13	3/2015 5:13:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	6/13	3/2015 5:13:00 PM
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Batch	ı ID:	11026	Analyst: EM
Benzene	ND	0.00508		mg/Kg-dry	1	6/13	3/2015 5:13:00 PM
Toluene	ND	0.00508		mg/Kg-dry	1	6/13	3/2015 5:13:00 PM
Ethylbenzene	0.00877	0.00763		mg/Kg-dry	1	6/13	3/2015 5:13:00 PM
m,p-Xylene	0.00648	0.00508		mg/Kg-dry	1	6/13	3/2015 5:13:00 PM
o-Xylene	ND	0.00508		mg/Kg-dry	1	6/13	3/2015 5:13:00 PM
Surr: Dibromofluoromethane	83.6	63.7-129		%REC	1	6/13	3/2015 5:13:00 PM
Surr: Toluene-d8	101	64.3-131		%REC	1	6/13	3/2015 5:13:00 PM
Surr: 1-Bromo-4-fluorobenzene	99.4	63.1-141		%REC	1	6/13	3/2015 5:13:00 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	ı ID:	11153	Analyst: TN
Lead	3.17	0.189		mg/Kg-dry	1	6/25	5/2015 6:30:43 PM
Sample Moisture (Percent Mois	ture)			Batch	ı ID:	R22903	Analyst: CG
Percent Moisture	15.4			wt%	1	6/11	I/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 1:16:00 PM

Project: SLU Marriott

Lab ID: 1506126-040 **Matrix:** Soil

Client Sample ID: DP-15-27.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	n ID:	10993 Analyst: NG
Naphthalene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
2-Methylnaphthalene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
1-Methylnaphthalene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Acenaphthylene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Acenaphthene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Fluorene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Phenanthrene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Anthracene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Fluoranthene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Pyrene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Benz(a)anthracene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Chrysene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Benzo(b)fluoranthene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Benzo(k)fluoranthene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Benzo(a)pyrene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Indeno(1,2,3-cd)pyrene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Dibenz(a,h)anthracene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Benzo(g,h,i)perylene	ND	61.4		μg/Kg-dry	1	6/11/2015 6:13:00 PM
Surr: 2-Fluorobiphenyl	99.1	42.7-132		%REC	1	6/11/2015 6:13:00 PM
Surr: Terphenyl-d14 (surr)	103	48.8-157		%REC	1	6/11/2015 6:13:00 PM
Sasoline by NWTPH-Gx				Batch	n ID:	11026 Analyst: EM
Gasoline	ND	1.34		mg/Kg-dry	1	6/13/2015 5:43:00 PM
Surr: 4-Bromofluorobenzene	97.3	65-135		%REC	1	6/13/2015 5:43:00 PM
Surr: Toluene-d8	100	65-135		%REC	1	6/13/2015 5:43:00 PM
olatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID:	11026 Analyst: EM
Benzene	ND	0.00534		mg/Kg-dry	1	6/13/2015 5:43:00 PM
Toluene	ND	0.00534		mg/Kg-dry	1	6/13/2015 5:43:00 PM
Ethylbenzene	ND	0.00801		mg/Kg-dry	1	6/13/2015 5:43:00 PM
m,p-Xylene	0.0123	0.00534		mg/Kg-dry	1	6/13/2015 5:43:00 PM
o-Xylene	ND	0.00534		mg/Kg-dry	1	6/13/2015 5:43:00 PM
Surr: Dibromofluoromethane	84.5	63.7-129		%REC	1	6/13/2015 5:43:00 PM
Surr: Toluene-d8	99.3	64.3-131		%REC	1	6/13/2015 5:43:00 PM
Surr: 1-Bromo-4-fluorobenzene	97.1	63.1-141		%REC	1	6/13/2015 5:43:00 PM

Batch ID: R22903

WO#: **1506126**

Analyst: CG

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 1:16:00 PM

Project: SLU Marriott

Lab ID: 1506126-040 **Matrix:** Soil

Client Sample ID: DP-15-27.5

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Percent Moisture 19.4 wt% 1 6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 1:35:00 PM

Project: SLU Marriott

Lab ID: 1506126-042 **Matrix:** Soil

Client Sample ID: DP-15-35.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Batch	n ID: 10	993 Analyst: NG
Naphthalene	ND	60.1		μg/Kg-dry	1	6/11/2015 6:39:00 PM
2-Methylnaphthalene	ND	60.1		μg/Kg-dry	1	6/11/2015 6:39:00 PM
1-Methylnaphthalene	ND	60.1		μg/Kg-dry	1	6/11/2015 6:39:00 PM
Surr: 2-Fluorobiphenyl	87.4	42.7-132		%REC	1	6/11/2015 6:39:00 PM
Surr: Terphenyl-d14 (surr)	105	48.8-157		%REC	1	6/11/2015 6:39:00 PM
Sample Moisture (Percent Moi	sture)			Batch	n ID: R2	2903 Analyst: CG
Percent Moisture	19.0			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 11:24:00 AM

Project: SLU Marriott

Lab ID: 1506126-044 **Matrix:** Soil

Client Sample ID: MW-6-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ı ID:	10999 Analyst: EC
Diesel (Fuel Oil)	ND	21.5		mg/Kg-dry	1	6/11/2015 12:20:00 AM
Heavy Oil	147	53.6		mg/Kg-dry	1	6/11/2015 12:20:00 AM
Surr: 2-Fluorobiphenyl	120	50-150		%REC	1	6/11/2015 12:20:00 AM
Surr: o-Terphenyl	118	50-150		%REC	1	6/11/2015 12:20:00 AM
Gasoline by NWTPH-Gx				Batch	ı ID:	11039 Analyst: BC
Gasoline	362	61.7	D	mg/Kg-dry	20	6/16/2015 10:23:00 AM
Surr: 4-Bromofluorobenzene	112	65-135		%REC	1	6/16/2015 6:06:00 AM
Surr: Toluene-d8	96.5	65-135		%REC	1	6/16/2015 6:06:00 AM
Volatile Organic Compounds by EPA Method 8260				Batch	ı ID:	11039 Analyst: BC
Benzene	0.0617	0.0123		mg/Kg-dry	1	6/16/2015 6:06:00 AM
Toluene	0.0475	0.0123		mg/Kg-dry	1	6/16/2015 6:06:00 AM
Ethylbenzene	2.74	0.370	D	mg/Kg-dry	20	6/16/2015 10:23:00 AM
m,p-Xylene	0.235	0.0123		mg/Kg-dry	1	6/16/2015 6:06:00 AM
o-Xylene	0.0595	0.0123		mg/Kg-dry	1	6/16/2015 6:06:00 AM
Surr: Dibromofluoromethane	79.0	63.7-129		%REC	1	6/16/2015 6:06:00 AM
Surr: Toluene-d8	99.0	64.3-131		%REC	1	6/16/2015 6:06:00 AM
Surr: 1-Bromo-4-fluorobenzene	112	63.1-141		%REC	1	6/16/2015 6:06:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	10992 Analyst: TN
Mercury	ND	0.248		mg/Kg-dry	1	6/10/2015 6:00:54 PM
Total Metals by EPA Method 6020				Batch	ı ID:	11003 Analyst: TN
Lead	33.5	0.180		mg/Kg-dry	1	6/10/2015 6:17:09 PM
Sample Moisture (Percent Moisture	2)			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	13.0			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 11:32:00 AM

Project: SLU Marriott

Lab ID: 1506126-046 **Matrix:** Soil

Client Sample ID: MW-6-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ı ID:	10999 Analyst: EC
Diesel (Fuel Oil)	ND	22.5		mg/Kg-dry	1	6/11/2015 12:52:00 AM
Heavy Oil	ND	56.2		mg/Kg-dry	1	6/11/2015 12:52:00 AM
Surr: 2-Fluorobiphenyl	109	50-150		%REC	1	6/11/2015 12:52:00 AM
Surr: o-Terphenyl	101	50-150		%REC	1	6/11/2015 12:52:00 AM
Gasoline by NWTPH-Gx				Batch	ı ID:	11039 Analyst: BC
Gasoline	912	49.5	D	mg/Kg-dry	20	6/16/2015 10:54:00 AM
Surr: 4-Bromofluorobenzene	104	65-135	D	%REC	20	6/16/2015 10:54:00 AM
Surr: Toluene-d8	92.0	65-135		%REC	1	6/16/2015 7:06:00 AM
Volatile Organic Compounds by EP	A Method	<u>8260</u>		Batch	ı ID:	11039 Analyst: BC
Benzene	0.0265	0.00990		mg/Kg-dry	1	6/16/2015 7:06:00 AM
Toluene	0.0230	0.00990		mg/Kg-dry	1	6/16/2015 7:06:00 AM
Ethylbenzene	22.2	0.297	D	mg/Kg-dry	20	6/16/2015 10:54:00 AM
m,p-Xylene	1.88	0.00990		mg/Kg-dry	1	6/16/2015 7:06:00 AM
o-Xylene	0.0463	0.00990		mg/Kg-dry	1	6/16/2015 7:06:00 AM
Surr: Dibromofluoromethane	79.0	63.7-129		%REC	1	6/16/2015 7:06:00 AM
Surr: Toluene-d8	89.4	64.3-131		%REC	1	6/16/2015 7:06:00 AM
Surr: 1-Bromo-4-fluorobenzene	104	63.1-141	D	%REC	20	6/16/2015 10:54:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	10992 Analyst: TN
Mercury	ND	0.292		mg/Kg-dry	1	6/10/2015 6:02:31 PM
Total Metals by EPA Method 6020				Batch	ı ID:	11003 Analyst: TN
Lead	4.81	0.197		mg/Kg-dry	1	6/10/2015 6:20:40 PM
Sample Moisture (Percent Moisture))			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	15.9			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 11:40:00 AM

Project: SLU Marriott

Lab ID: 1506126-048 **Matrix:** Soil

Client Sample ID: MW-6-20.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	t L
Gasoline by NWTPH-Gx				Batch	ı ID:	11039 Analyst: Bo	С
Gasoline	ND	3.95		mg/Kg-dry	1	6/16/2015 3:37:00 A	М
Surr: 4-Bromofluorobenzene	95.9	65-135		%REC	1	6/16/2015 3:37:00 A	M
Surr: Toluene-d8	101	65-135		%REC	1	6/16/2015 3:37:00 A	M
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	11039 Analyst: Bo	С
Benzene	0.145	0.0158		mg/Kg-dry	1	6/16/2015 3:37:00 A	м
Toluene	0.0174	0.0158		mg/Kg-dry	1	6/16/2015 3:37:00 A	M
Ethylbenzene	0.0253	0.0237		mg/Kg-dry	1	6/16/2015 3:37:00 A	M
m,p-Xylene	0.0538	0.0158		mg/Kg-dry	1	6/16/2015 3:37:00 A	M
o-Xylene	ND	0.0158		mg/Kg-dry	1	6/16/2015 3:37:00 A	M
Surr: Dibromofluoromethane	84.4	63.7-129		%REC	1	6/16/2015 3:37:00 A	M
Surr: Toluene-d8	96.3	64.3-131		%REC	1	6/16/2015 3:37:00 A	M
Surr: 1-Bromo-4-fluorobenzene	95.6	63.1-141		%REC	1	6/16/2015 3:37:00 A	M
Sample Moisture (Percent Moist	:ure)			Batch	ı ID:	R22903 Analyst: C	G
Percent Moisture	14.8			wt%	1	6/11/2015 1:53:12 P	M

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/8/2015 12:00:00 PM

Project: SLU Marriott

Lab ID: 1506126-050 **Matrix:** Soil

Client Sample ID: MW-6-25.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 11	1173 Analyst: BC
Benzene	0.0253	0.00778	Н	mg/Kg-dry	1	6/27/2015 7:04:00 AM
Surr: Dibromofluoromethane	101	63.7-129	Н	%REC	1	6/27/2015 7:04:00 AM
Surr: Toluene-d8	102	64.3-131	Н	%REC	1	6/27/2015 7:04:00 AM
Surr: 1-Bromo-4-fluorobenzene	98.4	63.1-141	Н	%REC	1	6/27/2015 7:04:00 AM
Sample Moisture (Percent Moist	ure)			Batch	ı ID: R	23199 Analyst: CG
Percent Moisture	26.5			wt%	1	6/25/2015 1:09:09 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/9/2015 10:26:00 AM

Project: SLU Marriott

Lab ID: 1506126-054 **Matrix:** Soil

Client Sample ID: MW-4-5.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch ID: 10999 Analyst: EC			
Diesel (Fuel Oil)	ND	22.1		mg/Kg-dry	1	6/11/2015 1:24:00 AM	
Heavy Oil	ND	55.3		mg/Kg-dry	1	6/11/2015 1:24:00 AM	
Surr: 2-Fluorobiphenyl	110	50-150		%REC	1	6/11/2015 1:24:00 AM	
Surr: o-Terphenyl	105	50-150		%REC	1	6/11/2015 1:24:00 AM	
Gasoline by NWTPH-Gx				Batch	ID:	11039 Analyst: BC	
Gasoline	ND	1.88		mg/Kg-dry	1	6/16/2015 4:07:00 AM	
Surr: 4-Bromofluorobenzene	96.5	65-135		%REC	1	6/16/2015 4:07:00 AM	
Surr: Toluene-d8	99.7	65-135		%REC	1	6/16/2015 4:07:00 AM	
Volatile Organic Compounds by EP		Batch	ID:	11039 Analyst: BC			
Benzene	ND	0.00750		mg/Kg-dry	1	6/16/2015 4:07:00 AM	
Toluene	ND	0.00750		mg/Kg-dry	1	6/16/2015 4:07:00 AM	
Ethylbenzene	ND	0.0113		mg/Kg-dry	1	6/16/2015 4:07:00 AM	
m,p-Xylene	ND	0.00750		mg/Kg-dry	1	6/16/2015 4:07:00 AM	
o-Xylene	ND	0.00750		mg/Kg-dry	1	6/16/2015 4:07:00 AM	
Surr: Dibromofluoromethane	84.7	63.7-129		%REC	1	6/16/2015 4:07:00 AM	
Surr: Toluene-d8	97.7	64.3-131		%REC	1	6/16/2015 4:07:00 AM	
Surr: 1-Bromo-4-fluorobenzene	96.4	63.1-141		%REC	1	6/16/2015 4:07:00 AM	
Mercury by EPA Method 7471				Batch	ID:	10992 Analyst: TN	
Mercury	ND	0.271		mg/Kg-dry	1	6/10/2015 6:04:07 PM	
Total Metals by EPA Method 6020				Batch	ID:	11003 Analyst: TN	
Lead	3.61	0.191		mg/Kg-dry	1	6/10/2015 6:24:11 PM	
Sample Moisture (Percent Moisture))			Batch	ID:	R22903 Analyst: CG	
Percent Moisture	17.5			wt%	1	6/11/2015 1:53:12 PM	

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/9/2015 10:47:00 AM

Project: SLU Marriott

Lab ID: 1506126-056 **Matrix:** Soil

Client Sample ID: MW-4-17.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	ı ID:	10999 Analyst: E0	2
Diesel (Fuel Oil)	ND	21.5		mg/Kg-dry	1	6/11/2015 1:55:00 Al	М
Heavy Oil	ND	53.7		mg/Kg-dry	1	6/11/2015 1:55:00 Al	M
Surr: 2-Fluorobiphenyl	109	50-150		%REC	1	6/11/2015 1:55:00 Al	M
Surr: o-Terphenyl	101	50-150		%REC 1		6/11/2015 1:55:00 Al	М
Gasoline by NWTPH-Gx				Batch	ı ID:	11039 Analyst: B0	3
Gasoline	ND	1.53		mg/Kg-dry	1	6/16/2015 4:37:00 A	М
Surr: 4-Bromofluorobenzene	97.4	65-135		%REC	1	6/16/2015 4:37:00 Al	М
Surr: Toluene-d8	99.8	65-135		%REC	1	6/16/2015 4:37:00 Al	М
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	11039 Analyst: B0	2
Benzene	ND	0.00610		mg/Kg-dry	1	6/16/2015 4:37:00 A	М
Toluene	ND	0.00610		mg/Kg-dry	1	6/16/2015 4:37:00 Al	M
Ethylbenzene	ND	0.00916		mg/Kg-dry	1	6/16/2015 4:37:00 Al	М
m,p-Xylene	ND	0.00610		mg/Kg-dry	1	6/16/2015 4:37:00 Al	М
o-Xylene	ND	0.00610		mg/Kg-dry	1	6/16/2015 4:37:00 Al	М
Surr: Dibromofluoromethane	85.2	63.7-129		%REC	1	6/16/2015 4:37:00 Al	М
Surr: Toluene-d8	98.0	64.3-131		%REC	1	6/16/2015 4:37:00 Al	М
Surr: 1-Bromo-4-fluorobenzene	97.2	63.1-141		%REC	1	6/16/2015 4:37:00 Al	M
Sample Moisture (Percent Moistu	ıre)			Batch	ı ID:	R22903 Analyst: C0	Э
Percent Moisture	14.3			wt%	1	6/11/2015 1:53:12 Pl	M

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/9/2015 9:36:00 AM

Project: SLU Marriott

Lab ID: 1506126-062 **Matrix:** Soil

Client Sample ID: DP-13-8.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batch	ı ID:	11039 Analyst: BC
Gasoline	4.88	2.20		mg/Kg-dry	1	6/16/2015 5:07:00 AM
Surr: 4-Bromofluorobenzene	99.2	65-135		%REC	1	6/16/2015 5:07:00 AM
Surr: Toluene-d8	100	65-135		%REC	1	6/16/2015 5:07:00 AM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	11039 Analyst: BC
Benzene	0.0549	0.00882		mg/Kg-dry	1	6/16/2015 5:07:00 AM
Toluene	0.0194	0.00882		mg/Kg-dry	1	6/16/2015 5:07:00 AM
Ethylbenzene	0.0540	0.0132		mg/Kg-dry	1	6/16/2015 5:07:00 AM
m,p-Xylene	0.202	0.00882		mg/Kg-dry	1	6/16/2015 5:07:00 AM
o-Xylene	0.0205	0.00882		mg/Kg-dry	1	6/16/2015 5:07:00 AM
Surr: Dibromofluoromethane	80.7	63.7-129		%REC	1	6/16/2015 5:07:00 AM
Surr: Toluene-d8	99.2	64.3-131		%REC	1	6/16/2015 5:07:00 AM
Surr: 1-Bromo-4-fluorobenzene	98.9	63.1-141		%REC	1	6/16/2015 5:07:00 AM
Mercury by EPA Method 7471				Batch	ı ID:	10992 Analyst: TN
Mercury	0.378	0.296		mg/Kg-dry	1	6/10/2015 6:05:44 PM
Total Metals by EPA Method 602	<u>20</u>			Batch	ı ID:	11003 Analyst: TN
Lead	43.5	0.202		mg/Kg-dry	1	6/10/2015 6:27:43 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID:	R22903 Analyst: CG
Percent Moisture	23.1			wt%	1	6/11/2015 1:53:12 PM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/9/2015 9:43:00 AM

Project: SLU Marriott

Lab ID: 1506126-064 **Matrix:** Soil

Client Sample ID: DP-13-15.0

Analyses	Result	RL	Qual	Units	DF	- Da	ite Analyzed
Gasoline by NWTPH-Gx				Batch	ID:	11039	Analyst: BC
Gasoline	8.27	2.14		mg/Kg-dry	1	6/16/	/2015 5:37:00 AM
Surr: 4-Bromofluorobenzene	100	65-135		%REC	1	6/16/	2015 5:37:00 AM
Surr: Toluene-d8	100	65-135		%REC	1	6/16/	2015 5:37:00 AM
Volatile Organic Compounds by EP	A Method 8	<u>8260</u>		Batch	ID:	11039	Analyst: BC
Benzene	ND	0.00856		mg/Kg-dry	1	6/16/	2015 5:37:00 AM
Toluene	ND	0.00856		mg/Kg-dry	1	6/16/	2015 5:37:00 AM
Ethylbenzene	ND	0.0128		mg/Kg-dry	1	6/16/	2015 5:37:00 AM
m,p-Xylene	ND	0.00856		mg/Kg-dry	1	6/16/	2015 5:37:00 AM
o-Xylene	ND	0.00856		mg/Kg-dry	1	6/16/	2015 5:37:00 AM
Surr: Dibromofluoromethane	85.3	63.7-129		%REC	1	6/16/	2015 5:37:00 AM
Surr: Toluene-d8	96.9	64.3-131		%REC	1	6/16/	2015 5:37:00 AM
Surr: 1-Bromo-4-fluorobenzene	99.9	63.1-141		%REC	1	6/16/	2015 5:37:00 AM
Mercury by EPA Method 7471				Batch	ID:	10992	Analyst: TN
Mercury	ND	0.315		mg/Kg-dry	1	6/10/	/2015 6:07:20 PM
Total Metals by EPA Method 6020				Batch	ID:	11003	Analyst: TN
Lead	2.28	0.219		mg/Kg-dry	1	6/10/	/2015 6:31:14 PM
Sample Moisture (Percent Moisture)	<u>)</u>			Batch	ID:	R22903	Analyst: CG
Percent Moisture	23.8			wt%	1	6/11/	/2015 1:53:12 PM

Client: GeoEngineers, Inc. - Redmond

Analytical Report

Collection Date: 6/9/2015 7:48:00 AM

WO#: **1506126**

Date Reported: 9/1/2015

Project: SLU Marriott

Lab ID: 1506126-072 **Matrix:** Soil

Client Sample ID: MW-5-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.			Batch	ı ID:	10999 Analyst: EC
Diesel (Fuel Oil)	ND	21.2		mg/Kg-dry	1	6/11/2015 2:27:00 AM
Heavy Oil	ND	52.9		mg/Kg-dry	1	6/11/2015 2:27:00 AM
Surr: 2-Fluorobiphenyl	121	50-150		%REC	1	6/11/2015 2:27:00 AM
Surr: o-Terphenyl	109	50-150		%REC	1	6/11/2015 2:27:00 AM
Polyaromatic Hydrocarbons by	EPA Method 8	270 (SIM)		Batch	ı ID:	10993 Analyst: NG
Naphthalene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
2-Methylnaphthalene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
1-Methylnaphthalene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Acenaphthylene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Acenaphthene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Fluorene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Phenanthrene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Anthracene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Fluoranthene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Pyrene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Benz(a)anthracene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Chrysene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Benzo(b)fluoranthene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Benzo(k)fluoranthene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Benzo(a)pyrene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Indeno(1,2,3-cd)pyrene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Dibenz(a,h)anthracene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Benzo(g,h,i)perylene	ND	54.0		μg/Kg-dry	1	6/11/2015 7:05:00 PM
Surr: 2-Fluorobiphenyl	74.0	42.7-132		%REC	1	6/11/2015 7:05:00 PM
Surr: Terphenyl-d14 (surr)	91.3	48.8-157		%REC	1	6/11/2015 7:05:00 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	11034 Analyst: BC
Gasoline	ND	1.92		mg/Kg-dry	1	6/16/2015 12:53:00 AM
Surr: 4-Bromofluorobenzene	93.9	65-135		%REC	1	6/16/2015 12:53:00 AM
Surr: Toluene-d8	98.1	65-135		%REC	1	6/16/2015 12:53:00 AM
Volatile Organic Compounds b	y EPA Method 8	<u>3260</u>		Batch	ı ID:	11034 Analyst: AK
Benzene	ND	0.00770		mg/Kg-dry	1	6/16/2015 12:53:00 AM
Toluene	ND	0.00770		mg/Kg-dry	1	6/16/2015 12:53:00 AM
Ethylbenzene	ND	0.0115		mg/Kg-dry	1	6/16/2015 12:53:00 AM

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/9/2015 7:48:00 AM

Project: SLU Marriott

Lab ID: 1506126-072 **Matrix:** Soil

Client Sample ID: MW-5-7.5

Analyses	Result	RL	Qual	Units	DF	- Da	Date Analyzed		
Volatile Organic Compounds by EPA	A Method	<u>8260</u>		Batch	n ID:	11034	Analyst: AK		
m,p-Xylene	ND	0.00770		mg/Kg-dry	1	6/16	/2015 12:53:00 AM		
o-Xylene	ND	0.00770		mg/Kg-dry	1	6/16	/2015 12:53:00 AM		
Surr: Dibromofluoromethane	92.8	63.7-129		%REC	1	6/16	/2015 12:53:00 AM		
Surr: Toluene-d8	92.2	64.3-131		%REC	1	6/16	/2015 12:53:00 AM		
Surr: 1-Bromo-4-fluorobenzene	93.7	63.1-141		%REC	1	6/16	/2015 12:53:00 AM		
Total Metals by EPA Method 6020				Batch	n ID:	11003	Analyst: TN		
Cadmium	ND	0.173		mg/Kg-dry	1	6/10	/2015 6:34:45 PM		
Lead	2.07	0.173		mg/Kg-dry	1	6/10	/2015 6:34:45 PM		
Sample Moisture (Percent Moisture)				Batch	n ID:	R22903	Analyst: CG		
Percent Moisture	10.2			wt%	1	6/11	/2015 1:53:12 PM		

WO#: **1506126**

Date Reported: 9/1/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/9/2015 7:55:00 AM

Project: SLU Marriott

Lab ID: 1506126-074 **Matrix:** Soil

Client Sample ID: MW-5-15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batch	n ID:	11034 Analyst: BC
Gasoline	ND	1.41		mg/Kg-dry	1	6/16/2015 1:22:00 AM
Surr: 4-Bromofluorobenzene	99.6	65-135		%REC	1	6/16/2015 1:22:00 AM
Surr: Toluene-d8	95.4	65-135		%REC	1	6/16/2015 1:22:00 AM
Volatile Organic Compounds by	EPA Method	<u>3260</u>		Batch	n ID:	11034 Analyst: AK
Benzene	ND	0.00566		mg/Kg-dry	1	6/16/2015 1:22:00 AM
Toluene	ND	0.00566		mg/Kg-dry	1	6/16/2015 1:22:00 AM
Ethylbenzene	ND	0.00849		mg/Kg-dry	1	6/16/2015 1:22:00 AM
m,p-Xylene	ND	0.00566		mg/Kg-dry	1	6/16/2015 1:22:00 AM
o-Xylene	ND	0.00566		mg/Kg-dry	1	6/16/2015 1:22:00 AM
Surr: Dibromofluoromethane	93.9	63.7-129		%REC	1	6/16/2015 1:22:00 AM
Surr: Toluene-d8	89.8	64.3-131		%REC	1	6/16/2015 1:22:00 AM
Surr: 1-Bromo-4-fluorobenzene	99.5	63.1-141		%REC	1	6/16/2015 1:22:00 AM
Sample Moisture (Percent Moist	ure)			Batch	n ID:	R22903 Analyst: CG
Percent Moisture	13.3			wt%	1	6/11/2015 1:53:12 PM

Work Order: 1506126

Project:

NOTES:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Total Metals by EPA Method 6020

Sample ID: MB-11003	SampType: MBLK	Units: mg/Kg	Prep Date: 6/10/2015	RunNo: 22890

Client ID: **MBLKS** Batch ID: 11003 Analysis Date: 6/10/2015 SeqNo: 433741

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

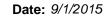
Cadmium ND 0.200 ND 0.200 Lead

Sample ID: LCS-11003	SampType: LCS			Units: mg/Kg		Prep Da	te: 6/10/20	15	RunNo: 228	390	
Client ID: LCSS	Batch ID: 11003					Analysis Da	te: 6/10/20	15	SeqNo: 433	3742	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	182	0.200	171.0	0	107	73.7	126.9				
Lead	227	0.200	237.0	0	95.9	75.1	124.9				

Sample ID: 1506126-005ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 6/10/20	15	RunNo: 228	90	
Client ID: DP-16-15.0	Batch ID: 11003					Analysis Da	te: 6/10/20	15	SeqNo: 433	744	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	ND	0.196						0		20	
Lead	8.09	0.196						10.28	23.7	20	R

R - High RPD observed. The method is in control as indicated by the laboratory control sample (LCS).

Sample ID: 1506126-005AMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 6/10/20	15	RunNo: 228	90	
Client ID: DP-16-15.0	Batch ID: 11003					Analysis Da	te: 6/10/20	15	SeqNo: 433	746	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	2.69	0.194	2.428	0.1303	105	75	125				
Lead	31.3	0.194	24.28	10.28	86.6	75	125				


Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Total Metals by EPA Method 6020

Project: SLU	Marriott							Total Me	tals by EP	A Metho	d 6020
Sample ID: 1506126-005A	MSD SampType: MSD			Units: mg/Kg	-dry	Prep Date:	6/10/20	15	RunNo: 228	90	
Client ID: DP-16-15.0	Batch ID: 11003					Analysis Date	6/10/20	15	SeqNo: 433	747	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	2.74	0.194	2.428	0.1303	107	75 	125	2.685	1.91	20	
Lead	28.9	0.194	24.28	10.28	76.6	75	125	31.31	8.06	20	
Sample ID: MB-11153	SampType: MBLK			Units: mg/Kg		Prep Date:	6/25/20	15	RunNo: 232	17	
Client ID: MBLKS	Batch ID: 11153					Analysis Date	6/25/20	15	SeqNo: 439	824	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	ND	0.200									
Sample ID: LCS-11153	SampType: LCS			Units: mg/Kg		Prep Date:	6/25/20	15	RunNo: 232	17	
Client ID: LCSS	Batch ID: 11153					Analysis Date	6/25/20	15	SeqNo: 439	825	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	233	0.200	237.0	0	98.2	75.1	124.9				
Sample ID: 1506275-001A	DUP SampType: DUP			Units: mg/Kg	-dry	Prep Date:	6/25/20	15	RunNo: 232	17	
Client ID: BATCH	Batch ID: 11153					Analysis Date	6/25/20	15	SeqNo: 439	827	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	15.2	0.167						20.14	28.0	20	R
NOTES: R - High RPD observed.	The method is in control as indica	ated by the la	aboratory cont	rol sample (LCS).							
Sample ID: 1506275-001A	MS SampType: MS			Units: mg/Kg	-dry	Prep Date:	6/25/20	15	RunNo: 232	17	
Client ID: BATCH	Batch ID: 11153					Analysis Date	6/25/20	15	SeqNo: 439	831	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	36.8	0.170	21.22	20.14	78.4	75	125				

Lead

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

40.2

0.167

20.90

Total Metals by EPA Method 6020

8.81

20

Project:	SLU Marriott									i otal ivie	tals by EP	A Metho	d 6020
Sample ID: 150	6275-001AMSD	SampType:	MSD			Units: mg/Kg-	dry	Prep Dat	e: 6/25/20	15	RunNo: 232	17	
Client ID: BAT	СН	Batch ID:	11153					Analysis Dat	e: 6/25/20	15	SeqNo: 439	832	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

20.14

95.8

75

125

36.77

Work Order: 1506126

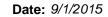
QC SUMMARY REPORT

CLIENT: Project:	GeoEngineers SLU Marriott	s, Inc Redmond							-	cury by EPA Me	
Sample ID: MB-1	0992	SampType: MBLK			Units: mg/Kg	I	Prep Date	6/10/201	5	RunNo: 22888	
Client ID: MBL	KS	Batch ID: 10992					Analysis Date	6/10/201	5	SeqNo: 433629	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD RPD	Limit Qual
Mercury		ND	0.250								
Sample ID: LCS-	10992	SampType: LCS			Units: mg/Kg		Prep Date	6/10/201	5	RunNo: 22888	
Client ID: LCS	3	Batch ID: 10992					Analysis Date	6/10/201	5	SeqNo: 433630	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPD	Limit Qual
Mercury		0.497	0.250	0.5000	0	99.4	80	120			
Sample ID: 1506	105-002ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date	: 6/10/201	5	RunNo: 22888	
Client ID: BATO	СН	Batch ID: 10992					Analysis Date	6/10/201	5	SeqNo: 433632	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD RPD	Limit Qual
Mercury		ND	0.231						0		20
Sample ID: 1506	105-002AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date	: 6/10/201	5	RunNo: 22888	
Client ID: BATO	СН	Batch ID: 10992					Analysis Date	6/10/201	5	SeqNo: 433633	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPD	Limit Qual
Mercury		0.531	0.235	0.4696	0	113	70	130			
Sample ID: 1506	105-002AMSD	SampType: MSD			Units: mg/Kg	-dry	Prep Date	: 6/10/201	5	RunNo: 22888	
Client ID: BATO	СН	Batch ID: 10992					Analysis Date	6/10/201	5	SeqNo: 433634	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD RPD	Limit Qual
Mercury		0.532	0.227	0.4532	0	117	70	130	0.5307	0.248	20

Work Order: 1506126

CLIENT: GeoEngineers, Inc. - Redmond **QC SUMMARY REPORT**

Project: SI	_U Marriott							Merc	cury by EF	PA Metho	d 7471
Sample ID: MB-11737	SampType: M	IBLK		Units: mg/Kg		Prep Dat	e: 9/1/201	5	RunNo: 24	644	
Client ID: MBLKS	Batch ID: 1	1737				Analysis Dat	e: 9/1/201	5	SeqNo: 46	4363	
Analyte	Res	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	١	ND 0.250									
Sample ID: LCS-11737	7 SampType: Lo	cs		Units: mg/Kg		Prep Dat	e: 9/1/201	5	RunNo: 24	644	
Client ID: LCSS	Batch ID: 1	1737				Analysis Dat	e: 9/1/201	5	SeqNo: 46	4364	
Analyte	Res	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.4	71 0.250	0.5000	0	94.3	80	120				
Sample ID: 1508345-0	02ADUP SampType: D	UP		Units: mg/Kg-	-dry	Prep Dat	e: 9/1/201	5	RunNo: 24	644	
Client ID: BATCH	Batch ID: 1	1737				Analysis Dat	e: 9/1/201	5	SeqNo: 464	4366	
Analyte	Res	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	1	ND 0.252						0		20	
Sample ID: 1508345-0	02AMS SampType: M	IS		Units: mg/Kg-	-dry	Prep Dat	e: 9/1/201	5	RunNo: 24 0	644	
Client ID: BATCH	Batch ID: 1	1737				Analysis Dat	e: 9/1/201	5	SeqNo: 46	4367	
Analyte	Res	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.4	51 0.234	0.4687	0.01914	92.2	70	130				
Sample ID: 1508345-0	02AMSD SampType: M	ISD		Units: mg/Kg-	-dry	Prep Dat	e: 9/1/201	5	RunNo: 24	644	
Client ID: BATCH	Batch ID: 1	1737				Analysis Dat	e: 9/1/201	5	SeqNo: 46	4368	
Analyte	Res	ult RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.5	06 0.262	0.5239	0.01914	92.9	70	130	0.4514	11.4	20	

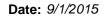


Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

CLIENT:	GeoEngineers	s, Inc Re	edmond					Metals	(SW602	0) with TC	LP Extrac	tion (EPA	(1311)
Project:	SLU Marriott											•	,
Sample ID: MB-111		SampType				Units: mg/L		·	e: 6/24/20		RunNo: 23 2	211	
Client ID: MBLKS	•	Batch ID:	11129					Analysis Date	e: 6/25/20	15	SeqNo: 439	9695	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.200									
Sample ID: MB-111	29	SampType	: MBLK			Units: mg/L		Prep Date	e: 6/24/20	15	RunNo: 232	211	
Client ID: MBLKS	;	Batch ID:	11129					Analysis Date	e: 6/25/20	15	SeqNo: 439	9696	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.200									
Sample ID: LCS-11	129	SampType	: LCS			Units: mg/L		Prep Date	e: 6/24/20	15	RunNo: 232	211	
Client ID: LCSS		Batch ID:	11129					Analysis Date	e: 6/25/20	15	SeqNo: 439	9697	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			2.37	0.200	2.500	0	94.8	65	135				
Sample ID: 150610	4-001ADUP	SampType	: DUP			Units: mg/L		Prep Date	e: 6/24/20	15	RunNo: 232	211	
Client ID: BATCH		Batch ID:	11129					Analysis Date	e: 6/25/20	15	SeqNo: 439	9701	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.200						0		30	
Sample ID: 150610	4-001AMS	SampType	: MS			Units: mg/L		Prep Date	e: 6/24/20	15	RunNo: 232	211	
Client ID: BATCH		Batch ID:	11129					Analysis Date	e: 6/25/20	15	SeqNo: 439	9702	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			2.49	0.200	2.500	0.1092	95.1	65	135				

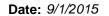

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Metals (SW6020) with TCLP Extraction (EPA 1311)

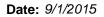
Sample ID: 1506104-001AMSD	SampType: MSD			Units: mg/L		Prep Da	te: 6/24/20	15	RunNo: 232	211	
Client ID: BATCH	Batch ID: 11129					Analysis Da	te: 6/25/20	15	SeqNo: 439	703	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	2.33	0.200	2.500	0.1092	88.7	65	135	2.486	6.56	30	



QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	tt					[Diesel a	nd Heavy	Oil by NW	TPH-Dx/I	Ox Ext
Sample ID: MB-10999	SampType: MBLK			Units: mg/K	g	Prep Date	6/10/20	15	RunNo: 228	392	
Client ID: MBLKS	Batch ID: 10999					Analysis Date	6/10/20	15	SeqNo: 433	859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	26.7		20.00		133	50	150				
Surr: o-Terphenyl	23.7		20.00		118	50	150				
Sample ID: LCS-10999	SampType: LCS			Units: mg/K	 g	Prep Date	: 6/10/20°	15	RunNo: 228	392	
Client ID: LCSS	Batch ID: 10999					Analysis Date	6/10/20	15	SeqNo: 433	8858	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	545	20.0	500.0	0	109	65	135				
Surr: 2-Fluorobiphenyl	27.4		20.00		137	50	150				
Surr: o-Terphenyl	28.9		20.00		144	50	150				
Sample ID: 1506126-014ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date	: 6/10/20°	15	RunNo: 228		
Client ID: DP-14-7.5	Batch ID: 10999					Analysis Date	6/10/20	15	SeqNo: 433	8840	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	29.2						0		30	
Heavy Oil	268	73.1						257.9	3.80	30	
Surr: 2-Fluorobiphenyl	30.5		29.23		104	50	150		0		
Surr: o-Terphenyl	30.4		29.23		104	50	150		0		



QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Project: SLU N	Marriott			Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)								
Sample ID: MB-10993	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 6/10/2 0	015	RunNo: 229	925		
Client ID: MBLKS	Batch ID: 10993					Analysis Dat	te: 6/11/2 0	015	SeqNo: 434	1458		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	ND	50.0										
2-Methylnaphthalene	ND	50.0										
1-Methylnaphthalene	ND	50.0										
Acenaphthylene	ND	50.0										
Acenaphthene	ND	50.0										
Fluorene	ND	50.0										
Phenanthrene	ND	50.0										
Anthracene	ND	50.0										
Fluoranthene	ND	50.0										
Pyrene	ND	50.0										
Benz(a)anthracene	ND	50.0										
Chrysene	ND	50.0										
Benzo(b)fluoranthene	ND	50.0										
Benzo(k)fluoranthene	ND	50.0										
Benzo(a)pyrene	ND	50.0										
Indeno(1,2,3-cd)pyrene	ND	50.0										
Dibenz(a,h)anthracene	ND	50.0										
Benzo(g,h,i)perylene	ND	50.0										
Surr: 2-Fluorobiphenyl	557		500.0		111	42.7	132					
Surr: Terphenyl-d14 (surr) 470		500.0		94.0	48.8	157					

Sample ID: LCS-10993	SampType: LCS			Units: µg/Kg	•			RunNo: 229		
Client ID: LCSS	Batch ID: 10993				Analysis Date: 6/11/2015			SeqNo: 434	457	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	846	50.0	1,000	0	84.6	61.6	125			
2-Methylnaphthalene	790	50.0	1,000	0	79.0	58.2	129			
1-Methylnaphthalene	842	50.0	1,000	0	84.2	56.4	132			
Acenaphthylene	794	50.0	1,000	0	79.4	52.2	133			
Acenaphthene	783	50.0	1,000	0	78.3	54	131			
Fluorene	834	50.0	1,000	0	83.4	53.4	131			

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Sample ID: LCS-10993 Client ID: LCSS	SampType: LCS Batch ID: 10993			Units: µg/Kg		Prep Dat Analysis Dat	te: 6/10/20		RunNo: 22925 SeqNo: 43445		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	797	50.0	1,000	0	79.7	55.6	128				
Anthracene	829	50.0	1,000	0	82.9	51	132				
Fluoranthene	864	50.0	1,000	0	86.4	48.4	134				
Pyrene	854	50.0	1,000	0	85.4	48.6	135				
Benz(a)anthracene	811	50.0	1,000	0	81.1	41.9	136				
Chrysene	871	50.0	1,000	0	87.1	51.4	135				
Benzo(b)fluoranthene	842	50.0	1,000	0	84.2	39.7	137				
Benzo(k)fluoranthene	892	50.0	1,000	0	89.2	45.7	138				
Benzo(a)pyrene	855	50.0	1,000	0	85.5	40.9	141				
Indeno(1,2,3-cd)pyrene	687	50.0	1,000	0	68.7	41	140				
Dibenz(a,h)anthracene	673	50.0	1,000	0	67.3	37.6	140				
Benzo(g,h,i)perylene	641	50.0	1,000	0	64.1	45	134				
Surr: 2-Fluorobiphenyl	538		500.0		108	42.7	132				
Surr: Terphenyl-d14 (surr)	436		500.0		87.3	48.8	157				

Sample ID: 1506105-002ADUP	SampType: DUP			Units: µg/k	(g-dry	Prep Da	te: 6/10/2 0)15	RunNo: 229	925	
Client ID: BATCH	Batch ID: 10993					Analysis Da	ite: 6/11/2 0)15	SeqNo: 434	1435	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	51.3						0		30	
2-Methylnaphthalene	ND	51.3						0		30	
1-Methylnaphthalene	ND	51.3						0		30	
Acenaphthylene	ND	51.3						0		30	
Acenaphthene	ND	51.3						0		30	
Fluorene	ND	51.3						0		30	
Phenanthrene	ND	51.3						0		30	
Anthracene	ND	51.3						0		30	
Fluoranthene	ND	51.3						0		30	
Pyrene	ND	51.3						0		30	
Benz(a)anthracene	ND	51.3						0		30	
Chrysene	ND	51.3						0		30	

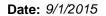
Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Project: SLU Marriott Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)											
Sample ID: 1506105-002ADU	P SampType: DUP			Units: µg/K	g-dry	Prep Da	te: 6/10/2 0	15	RunNo: 229	925	
Client ID: BATCH	Batch ID: 10993					Analysis Da	te: 6/11/2 0	15	SeqNo: 434	1435	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	ND	51.3						0		30	
Benzo(k)fluoranthene	ND	51.3						0		30	
Benzo(a)pyrene	ND	51.3						0		30	
Indeno(1,2,3-cd)pyrene	ND	51.3						0		30	
Dibenz(a,h)anthracene	ND	51.3						0		30	
Benzo(g,h,i)perylene	ND	51.3						0		30	
Surr: 2-Fluorobiphenyl	444		512.8		86.6	42.7	132		0		
Surr: Terphenyl-d14 (surr)	431		512.8		84.0	48.8	157		0		

Sample ID: 1506105-011AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 6/10/20	15	RunNo: 229)25	
Client ID: BATCH	Batch ID: 10993					Analysis Da	te: 6/11/20	15	SeqNo: 434	437	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	835	55.0	1,099	0	75.9	42.9	138				
2-Methylnaphthalene	845	55.0	1,099	0	76.9	42.8	151				
1-Methylnaphthalene	897	55.0	1,099	0	81.6	41.6	148				
Acenaphthylene	865	55.0	1,099	0	78.7	32.6	160				
Acenaphthene	819	55.0	1,099	0	74.5	46.3	142				
Fluorene	894	55.0	1,099	0	81.3	43.4	153				
Phenanthrene	900	55.0	1,099	49.62	77.4	45.5	140				
Anthracene	993	55.0	1,099	0	90.3	32.6	160				
Fluoranthene	1,090	55.0	1,099	205.1	80.2	44.6	161				
Pyrene	1,100	55.0	1,099	215.0	80.5	48.3	158				
Benz(a)anthracene	927	55.0	1,099	91.92	75.9	57.5	169				
Chrysene	1,030	55.0	1,099	110.4	83.4	45.2	146				
Benzo(b)fluoranthene	1,010	55.0	1,099	93.87	83.3	42.2	168				
Benzo(k)fluoranthene	930	55.0	1,099	24.18	82.4	48	161				
Benzo(a)pyrene	957	55.0	1,099	63.28	81.3	34.4	179				
Indeno(1,2,3-cd)pyrene	907	55.0	1,099	36.29	79.2	41.1	165				
Dibenz(a,h)anthracene	909	55.0	1,099	21.18	80.8	38.1	166				
Benzo(g,h,i)perylene	834	55.0	1,099	53.45	71.0	45.6	157				


Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project:	SLU Marrio	tt				Ро	lyaromat	ic Hydro	ocarbons by	y EPA Met	hod 8270) (SIM)
Sample ID: 150	6105-011AMS	SampType: MS			Units: µg/	Kg-dry	Prep Da	te: 6/10/2 0	15	RunNo: 22 9)25	
Client ID: BAT	гсн	Batch ID: 10993					Analysis Da	te: 6/11/2 0	15	SeqNo: 434	1437	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluoro	biphenyl	558		549.7		101	42.7	132				
Surr: Terphen	nyl-d14 (surr)	478		549.7		87.0	48.8	157				

Sample ID: MB-11142	SampType: MBLK			Units: µg/Kg		Prep Date:	6/24/20	15	RunNo: 232	221	
Client ID: MBLKS	Batch ID: 11142					Analysis Date:	6/25/20	15	SeqNo: 439	957	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	368		500.0		73.7	40.6	139				
Surr: Terphenyl-d14 (surr)	324		500.0		64.9	48.8	157				

Project:

Fluorene

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

ND

53.8

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

0

Sample ID: LCS-11142	SampType: LCS		Units: µg/Kg Prep Date: 6/24/2015					15	RunNo: 23221			
Client ID: LCSS	Batch ID: 11142					Analysis Date:	6/26/20	15	SeqNo: 439	956		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	849	50.0	1,000	0	84.9	61.6	125					
2-Methylnaphthalene	813	50.0	1,000	0	81.3	58.2	129					
1-Methylnaphthalene	805	50.0	1,000	0	80.5	56.4	132					
Acenaphthylene	778	50.0	1,000	0	77.8	52.2	133					
Acenaphthene	856	50.0	1,000	0	85.6	54	131					
Fluorene	825	50.0	1,000	0	82.5	53.4	131					
Phenanthrene	826	50.0	1,000	0	82.6	55.6	128					
Anthracene	856	50.0	1,000	0	85.6	51	132					
Fluoranthene	841	50.0	1,000	0	84.1	48.4	134					
Pyrene	822	50.0	1,000	0	82.2	48.6	135					
Benz(a)anthracene	954	50.0	1,000	0	95.4	41.9	136					
Chrysene	824	50.0	1,000	0	82.4	51.4	135					
Benzo(b)fluoranthene	989	50.0	1,000	0	98.9	39.7	137					
Benzo(k)fluoranthene	779	50.0	1,000	0	77.9	45.7	138					
Benzo(a)pyrene	914	50.0	1,000	0	91.4	40.9	141					
Indeno(1,2,3-cd)pyrene	973	50.0	1,000	0	97.3	41	140					
Dibenz(a,h)anthracene	945	50.0	1,000	0	94.5	37.6	140					
Benzo(g,h,i)perylene	924	50.0	1,000	0	92.4	45	134					
Surr: 2-Fluorobiphenyl	497		500.0		99.4	40.6	139					
Surr: Terphenyl-d14 (surr)	441		500.0		88.2	48.8	157					
Sample ID: 1506275-001ADUP	SampType: DUP			Units: µg/Kg-	dry	Prep Date:	6/25/20	15	RunNo: 232	221		
Client ID: BATCH	Batch ID: 11142					Analysis Date:	6/26/20	15	SeqNo: 439	952		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	57.7	53.8						44.93	24.8	30		
2-Methylnaphthalene	ND	53.8						0		30		
1-Methylnaphthalene	ND	53.8						0		30		
Acenaphthylene	ND	53.8						0		30		
Acenaphthene	ND	53.8						0		30		

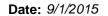
30

Work Order: 1506126

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

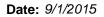

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1506275-001ADUP	SampType: DUP			Units: µg/k	Kg-dry Prep Date: 6/25/2015)15	RunNo: 232	221	
Client ID: BATCH	Batch ID: 11142					Analysis Da	te: 6/26/2 0)15	SeqNo: 439	952	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	121	53.8						72.43	49.9	30	
Anthracene	ND	53.8						0		30	
Fluoranthene	159	53.8						108.8	37.8	30	
Pyrene	181	53.8						115.2	44.3	30	R
Benz(a)anthracene	69.6	53.8						40.17	53.6	30	
Chrysene	74.2	53.8						46.35	46.3	30	
Benzo(b)fluoranthene	83.4	53.8						51.13	48.0	30	
Benzo(k)fluoranthene	ND	53.8						0		30	
Benzo(a)pyrene	56.8	53.8						34.17	49.7	30	
Indeno(1,2,3-cd)pyrene	ND	53.8						0		30	
Dibenz(a,h)anthracene	ND	53.8						0		30	
Benzo(g,h,i)perylene	59.3	53.8						36.79	46.9	30	
Surr: 2-Fluorobiphenyl	510		537.8		94.9	40.6	139		0		
Surr: Terphenyl-d14 (surr)	477		537.8		88.7	48.8	157		0		

NOTES:

R - High RPD observed. The method is in control as indicated by the LCS.

Sample ID: 1506275-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Dat	te: 6/25/20	15	RunNo: 232	21	
Client ID: BATCH	Batch ID: 11142					Analysis Da	te: 6/26/20	15	SeqNo: 439	954	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	837	54.9	1,098	0	76.2	42.9	138				
2-Methylnaphthalene	834	54.9	1,098	0	76.0	42.8	151				
1-Methylnaphthalene	805	54.9	1,098	0	73.3	41.6	148				
Acenaphthylene	775	54.9	1,098	0	70.6	32.6	160				
Acenaphthene	866	54.9	1,098	0	78.9	46.3	142				
Fluorene	800	54.9	1,098	0	72.9	43.4	153				
Phenanthrene	881	54.9	1,098	0	80.2	45.5	140				
Anthracene	851	54.9	1,098	0	77.5	32.6	160				
Fluoranthene	947	54.9	1,098	27.15	83.8	44.6	161				
Pyrene	936	54.9	1,098	28.53	82.6	48.3	158				
Benz(a)anthracene	1,010	54.9	1,098	0	91.8	57.5	169				



QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	ott				Ро	lyaromati	ic Hydro	carbons by	y EPA Met	hod 8270) (SIM)
Sample ID: 1506275-002AMS	SampType: MS			Units: µg/Kg-	dry	Prep Date	e: 6/25/20	15	RunNo: 232	221	
Client ID: BATCH	Batch ID: 11142					Analysis Date	e: 6/26/20	15	SeqNo: 439	954	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	864	54.9	1,098	0	78.7	45.2	146				
Benzo(b)fluoranthene	1,140	54.9	1,098	0	104	42.2	168				
Benzo(k)fluoranthene	766	54.9	1,098	0	69.7	48	161				
Benzo(a)pyrene	958	54.9	1,098	0	87.3	34.4	179				
Indeno(1,2,3-cd)pyrene	1,210	54.9	1,098	0	110	41.1	165				
Dibenz(a,h)anthracene	1,150	54.9	1,098	0	105	38.1	166				
Benzo(g,h,i)perylene	1,140	54.9	1,098	0	104	45.6	157				
Surr: 2-Fluorobiphenyl	507		548.9		92.4	40.6	139				
Surr: Terphenyl-d14 (surr)	450		548.9		82.0	48.8	157				
Sample ID: MB-11240	SampType: MBLK			Units: µg/Kg		Prep Date	e: 7/7/201 :	5	RunNo: 23 4	98	
Client ID: MBLKS	Batch ID: 11240					Analysis Date	e: 7/10/20	15	SeqNo: 445	369	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									

Project:

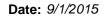
QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Sample ID: MB-11240	SampType: MBLK	SampType: MBLK		Units: µg/Kg		Prep Date: 7/7/2015			RunNo: 23 4	3498		
Client ID: MBLKS	Batch ID: 11240					Analysis Da	te: 7/10/20	15	SeqNo: 445	369		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzo(g,h,i)perylene	ND	50.0										
Surr: 2-Fluorobiphenyl	371		500.0		74.1	40.6	139					
Surr: Terphenyl-d14 (surr)	406		500.0		81.1	48.8	157					

Sample ID: LCS-11240	SampType: LCS			Units: µg/Kg		Prep Da	te: 7/7/201	5	RunNo: 234	198	
Client ID: LCSS	Batch ID: 11240					Analysis Da	te: 7/10/20	15	SeqNo: 445	368	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	780	50.0	1,000	0	78.0	61.6	125				
2-Methylnaphthalene	848	50.0	1,000	0	84.8	58.2	129				
1-Methylnaphthalene	816	50.0	1,000	0	81.6	56.4	132				
Acenaphthylene	668	50.0	1,000	0	66.8	52.2	133				
Acenaphthene	804	50.0	1,000	0	80.4	54	131				
Fluorene	829	50.0	1,000	0	82.9	53.4	131				
Phenanthrene	826	50.0	1,000	0	82.6	55.6	128				
Anthracene	912	50.0	1,000	0	91.2	51	132				
Fluoranthene	767	50.0	1,000	0	76.7	48.4	134				
Pyrene	757	50.0	1,000	0	75.7	48.6	135				
Benz(a)anthracene	780	50.0	1,000	0	78.0	41.9	136				
Chrysene	993	50.0	1,000	0	99.3	51.4	135				
Benzo(b)fluoranthene	890	50.0	1,000	0	89.0	39.7	137				
Benzo(k)fluoranthene	1,130	50.0	1,000	0	113	45.7	138				
Benzo(a)pyrene	1,020	50.0	1,000	0	102	40.9	141				
Indeno(1,2,3-cd)pyrene	899	50.0	1,000	0	89.9	41	140				
Dibenz(a,h)anthracene	1,010	50.0	1,000	0	101	37.6	140				
Benzo(g,h,i)perylene	1,010	50.0	1,000	0	101	45	134				
Surr: 2-Fluorobiphenyl	344		500.0		68.8	40.6	139				
Surr: Terphenyl-d14 (surr)	356		500.0		71.1	48.8	157				

Work Order: 1506126


Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Sample ID: 1507033-001ADUP	SampType	: DUP			Units: µg/K	(g-dry	Prep Dat	e: 7/7/20 1	5	RunNo: 234	98	
Client ID: BATCH	Batch ID:	11240					Analysis Dat	e: 7/10/2 0	15	SeqNo: 445	5553	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene		ND	53.2						0		30	
2-Methylnaphthalene		ND	53.2						0		30	
1-Methylnaphthalene		ND	53.2						0		30	
Acenaphthylene		ND	53.2						0		30	
Acenaphthene		ND	53.2						0		30	
Fluorene		ND	53.2						0		30	
Phenanthrene		ND	53.2						0		30	
Anthracene		ND	53.2						0		30	
Fluoranthene		64.4	53.2						70.45	9.02	30	
Pyrene		103	53.2						102.0	1.16	30	
Benz(a)anthracene		72.2	53.2						73.39	1.65	30	
Chrysene		88.7	53.2						112.6	23.7	30	
Benzo(b)fluoranthene		250	53.2						256.0	2.57	30	
Benzo(k)fluoranthene		95.1	53.2						86.28	9.68	30	
Benzo(a)pyrene		134	53.2						112.6	17.1	30	
Indeno(1,2,3-cd)pyrene		192	53.2						191.1	0.689	30	
Dibenz(a,h)anthracene		79.3	53.2						81.80	3.10	30	
Benzo(g,h,i)perylene		152	53.2						154.8	1.87	30	
Surr: 2-Fluorobiphenyl		313		532.4		58.8	40.6	139		0		
Surr: Terphenyl-d14 (surr)		437		532.4		82.2	48.8	157		0		

Sample ID: 1507033-002AMS	SampType: MS			Units: µg/Kg-dry			Prep Date: 7/7/2015			RunNo: 23498		
Client ID: BATCH	Batch ID: 11240					Analysis Da	te: 7/10/2 0	15	SeqNo: 445	5555		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	754	53.5	1,070	0	70.4	42.9	138					
2-Methylnaphthalene	880	53.5	1,070	0	82.3	42.8	151					
1-Methylnaphthalene	874	53.5	1,070	0	81.7	41.6	148					
Acenaphthylene	607	53.5	1,070	0	56.8	32.6	160					
Acenaphthene	833	53.5	1,070	0	77.8	46.3	142					
Fluorene	874	53.5	1,070	0	81.7	43.4	153					

Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: SLU Marrio	ott				Ро	lyaroma	tic Hydrocarbons	by EPA Met	hod 8270	0 (SIM)
Sample ID: 1507033-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 7/7/2015	RunNo: 23 4	198	
Client ID: BATCH	Batch ID: 11240					Analysis Da	te: 7/10/2015	SeqNo: 44	5555	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	l %RPD	RPDLimit	Qual
Phenanthrene	866	53.5	1,070	0	80.9	45.5	140			
Anthracene	873	53.5	1,070	0	81.6	32.6	160			
Fluoranthene	817	53.5	1,070	0	76.4	44.6	161			
Pyrene	806	53.5	1,070	0	75.3	48.3	158			
Benz(a)anthracene	817	53.5	1,070	0	76.3	57.5	169			
Chrysene	960	53.5	1,070	0	89.7	45.2	146			
Benzo(b)fluoranthene	940	53.5	1,070	0	87.9	42.2	168			
Benzo(k)fluoranthene	1,270	53.5	1,070	0	119	48	161			
Benzo(a)pyrene	1,100	53.5	1,070	0	103	34.4	179			
Indeno(1,2,3-cd)pyrene	1,080	53.5	1,070	0	101	41.1	165			
Dibenz(a,h)anthracene	1,340	53.5	1,070	0	125	38.1	166			
Benzo(g,h,i)perylene	1,150	53.5	1,070	0	107	45.6	157			
Surr: 2-Fluorobiphenyl	307		535.0		57.3	40.6	139			
Surr: Terphenyl-d14 (surr)	407		535.0		76.2	48.8	157			

Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	tt								Gasoline	by NWT	PH-G
Sample ID: LCS-11026	SampType: LCS			Units: mg/K	(g	Prep Dat	e: 6/12/20	15	RunNo: 229	52	
Client ID: LCSS	Batch ID: 11026					Analysis Dat	e: 6/13/20	15	SeqNo: 434	900	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	24.6	5.00	25.00	0	98.4	65	135				
Surr: Toluene-d8	1.26		1.250		100	65	135				
Surr: 4-Bromofluorobenzene	1.26		1.250		101	65	135				
Sample ID: MB-11026	SampType: MBLK			Units: mg/K	ζg	Prep Dat	e: 6/12/20	15	RunNo: 22 9	52	
Client ID: MBLKS	Batch ID: 11026					Analysis Dat	e: 6/13/20	15	SeqNo: 434	901	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.26		1.250		101	65	135				
Surr: 4-Bromofluorobenzene	1.23		1.250		98.7	65	135				
Sample ID: 1506113-002BDUP	SampType: DUP			Units: mg/K	(g-dry	Prep Dat	e: 6/12/20	15	RunNo: 22 9	52	
Client ID: BATCH	Batch ID: 11026					Analysis Dat	e: 6/13/20	15	SeqNo: 434	876	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	3.41						0		30	
Surr: Toluene-d8	0.876		0.8526		103	65	135		0		
Surr: 4-Bromofluorobenzene	0.811		0.8526		95.1	65	135		0		
Sample ID: 1506126-014BDUP	SampType: DUP			Units: mg/K	(g-dry	Prep Dat	e: 6/12/20	15	RunNo: 22 9	52	
Client ID: DP-14-7.5	Batch ID: 11026					Analysis Dat	e: 6/13/20	15	SeqNo: 434	889	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	1,040	5.69						1,103	6.00	30	Е
Surr: Toluene-d8	1.35		1.422		95.0	65	135		0		
Surr: 4-Bromofluorobenzene	1.98		1.422		139	65	135		0		S
NOTES:											

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Work Order: 1506126

CLIENT:

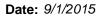
GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: SLU Marriot	·π									,	
Sample ID: CCV-D-11026	SampType: CCV			Units: mg/Kg		Prep Dat	e: 6/15/20	15	RunNo: 22 9	952	
Client ID: CCV	Batch ID: 11026					Analysis Dat	e: 6/15/20	15	SeqNo: 435	5179	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	435	5.00	500.0	0	87.1	80	120				
Surr: Toluene-d8	24.6		25.00		98.3	65	135				
Surr: 4-Bromofluorobenzene	25.3		25.00		101	65	135				
Sample ID: LCS-11039	SampType: LCS			Units: mg/Kg		Prep Dat	e: 6/15/20	15	RunNo: 22 9	979	
Client ID: LCSS	Batch ID: 11039					Analysis Dat	e: 6/15/20	15	SeqNo: 435	5495	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	25.2	5.00	25.00	0	101	65	135				
Surr: Toluene-d8	1.23		1.250		98.6	65	135				
Surr: 4-Bromofluorobenzene	1.27		1.250		102	65	135				
Sample ID: MB-11039	SampType: MBLK	·		Units: mg/Kg		Prep Dat	e: 6/15/20	15	RunNo: 22 9	979	
Client ID: MBLKS	Batch ID: 11039					Analysis Dat	e: 6/15/20	15	SeqNo: 435	5496	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.24		1.250		99.4	65	135				
Surr: 4-Bromofluorobenzene	1.20		1.250		96.2	65	135				
Sample ID: LCS-11034	SampType: LCS			Units: mg/Kg		Prep Dat	e: 6/15/20	15	RunNo: 229	977	
Sample ID: LCS-11034 Client ID: LCSS	SampType: LCS Batch ID: 11034			Units: mg/Kg		Prep Date			RunNo: 229 SeqNo: 435		
•		RL	SPK value	Units: mg/Kg SPK Ref Val	%REC	Analysis Dat	e: 6/15/20				Qual
Client ID: LCSS	Batch ID: 11034	RL 5.00	SPK value		%REC 96.1	Analysis Dat	e: 6/15/20	15	SeqNo: 435	5536	Qual
Client ID: LCSS Analyte	Batch ID: 11034 Result			SPK Ref Val		Analysis Dat	e: 6/15/20 HighLimit	15	SeqNo: 435	5536	Qual

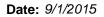


Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	ers, mc Neamona ett								Gasoline	by NWT	PH-Gx
Sample ID: MB-11034	SampType: MBLK			Units: mg/l	Kg	Prep Dat	te: 6/15/201	 5	RunNo: 22 9	77	
Client ID: MBLKS	Batch ID: 11034					Analysis Dat	te: 6/15/201	5	SeqNo: 435	5537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.17		1.250		93.9	65	135				
Surr: 4-Bromofluorobenzene	1.22		1.250		97.5	65	135				
Sample ID: 1506113-026BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	te: 6/15/201	5	RunNo: 22 9	977	
Client ID: BATCH	Batch ID: 11034					Analysis Dat	te: 6/16/201	5	SeqNo: 435	5530	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	3.37						0		30	
Surr: Toluene-d8	0.823		0.8430		97.7	65	135		0		
Surr: 4-Bromofluorobenzene	0.822		0.8430		97.5	65	135		0		
Sample ID: 1506157-011BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	te: 6/15/201	5	RunNo: 22 9	79	
Client ID: BATCH	Batch ID: 11039					Analysis Dat	te: 6/16/201	5	SeqNo: 435	5489	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	3.67						0		30	
Surr: Toluene-d8	0.919		0.9179		100	65	135		0		
Surr: 4-Bromofluorobenzene	0.894		0.9179		97.4	65	135		0		


Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott						voiatile	: Organi	ic Compoui	nas by EP	A Metho	a 826
Sample ID: LCS-11026	SampType: LCS			Units: mg/Kg		Prep Date	e: 6/12/20	15	RunNo: 229)55	
Client ID: LCSS	Batch ID: 11026					Analysis Date	e: 6/13/20	15	SeqNo: 43 4	l961	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.978	0.0200	1.000	0	97.9	64.3	133				
Toluene	1.01	0.0200	1.000	0	101	67.3	138				
Ethylbenzene	1.06	0.0300	1.000	0	106	74	129				
m,p-Xylene	2.17	0.0200	2.000	0	109	79.8	128				
o-Xylene	1.12	0.0200	1.000	0	112	72.7	124				
Surr: Dibromofluoromethane	1.42		1.250		114	63.7	129				
Surr: Toluene-d8	1.27		1.250		101	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.30		1.250		104	63.1	141				
Sample ID: MB-11026	SampType: MBLK			Units: mg/Kg		Prep Date	e: 6/12/20	15	RunNo: 22 9		
Client ID: MBLKS	Batch ID: 11026					Analysis Date	e: 6/13/20	15	SeqNo: 434	1960	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0200									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Surr: Dibromofluoromethane	1.13		1.250		90.3	63.7	129				
Surr: Toluene-d8	1.28		1.250		102	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.23		1.250		98.5	63.1	141				
Sample ID: 1506113-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 6/12/20	15	RunNo: 22 9		
Client ID: BATCH	Batch ID: 11026					Analysis Date	e: 6/13/20	15	SeqNo: 434	1934	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0136						0		30	
Toluene	ND	0.0136						0		30	
Ethylbenzene	ND	0.0205						0		30	
m,p-Xylene	ND	0.0136						0		30	

Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriot	t					Volatil	e Organ	ic Compou	nds by EP	A Metho	d 8260
Sample ID: 1506113-002BDUP	SampType: DUP			Units: mg/k	(g-dry	Prep Da	te: 6/12/20	15	RunNo: 229	55	
Client ID: BATCH	Batch ID: 11026					Analysis Da	te: 6/13/20	15	SeqNo: 434	934	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	ND	0.0136						0		30	
Surr: Dibromofluoromethane	0.705		0.8526		82.6	63.7	129		0		
Surr: Toluene-d8	0.857		0.8526		101	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene	0.809		0.8526		94.9	63.1	141		0		
Sample ID: 1506113-005BMS	SampType: MS			Units: mg/F	(g-dry	Prep Da	te: 6/12/20)15	RunNo: 229	55	
Client ID: BATCH	Batch ID: 11026					Analysis Da	te: 6/13/20	15	SeqNo: 434	936	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.808	0.0150	0.7475	0	108	63.5	133				
Toluene	0.802	0.0150	0.7475	0.002616	107	63.4	132				
Ethylbenzene	0.856	0.0224	0.7475	0	115	54.5	134				
m,p-Xylene	1.74	0.0150	1.495	0	117	53.1	132				
o-Xylene	0.896	0.0150	0.7475	0	120	53.3	139				
Surr: Dibromofluoromethane	1.01		0.9344		108	63.7	129				
Surr: Toluene-d8	0.930		0.9344		99.5	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	0.966		0.9344		103	63.1	141				
Sample ID: CCV-D-11026	SampType: CCV			Units: μg/L		Prep Da	te: 6/15/20)15	RunNo: 229	55	
Client ID: CCV	Batch ID: 11026					Analysis Da	te: 6/15/20	15	SeqNo: 440	695	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	16.7	0.0200	20.00	0	83.4	80	120				
Toluene	17.0	0.0200	20.00	0	84.9	80	120				
Ethylbenzene	19.2	0.0300	20.00	0	96.2	80	120				
m,p-Xylene	39.4	0.0200	40.00	0	98.5	80	120				
o-Xylene	20.3	0.0200	20.00	0	101	80	120				
Surr: Dibromofluoromethane	26.5		25.00		106	63.7	129				
Surr: Toluene-d8	22.6		25.00		90.5	62.4	141				
Surr: 1-Bromo-4-fluorobenzene	25.5		25.00		102	63.1	141				

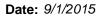
Work Order: 1506126

Sample ID: CCV-D-11026

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

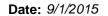

Project: SLU Marriott

SampType: CCV Units: µg/L Prep Date: 6/15/2015 RunNo: 22955

Client ID: **CCV** Batch ID: **11026** Analysis Date: **6/15/2015** SeqNo: **440695**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: LCS-11039	SampType: LCS			Units: mg/Kg		Prep Date	e: 6/15/20	15	RunNo: 229	78	
Client ID: LCSS	Batch ID: 11039					Analysis Date	e: 6/15/20	15	SeqNo: 435	426	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.924	0.0200	1.000	0	92.4	64.3	133				
Toluene	0.924	0.0200	1.000	0	92.4	67.3	138				
Ethylbenzene	1.05	0.0300	1.000	0	105	74	129				
m,p-Xylene	2.15	0.0200	2.000	0	108	79.8	128				
o-Xylene	1.10	0.0200	1.000	0	110	72.7	124				
Surr: Dibromofluoromethane	1.35		1.250		108	63.7	129				
Surr: Toluene-d8	1.15		1.250		92.4	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.29		1.250		103	63.1	141				
Sample ID: LCS-11034	SampType: LCS			Units: mg/Kg		Prep Date	e: 6/15/20	15	RunNo: 229	166	
Sample ID: LCS-11034 Client ID: LCSS	SampType: LCS Batch ID: 11034			Units: mg/Kg		Prep Date Analysis Date			RunNo: 229 SeqNo: 435		
		RL	SPK value	Units: mg/Kg	%REC	Analysis Date	e: 6/15/20				Qual
Client ID: LCSS	Batch ID: 11034	RL 0.0200	SPK value			Analysis Date	e: 6/15/20	15	SeqNo: 435	5251	Qual
Client ID: LCSS Analyte	Batch ID: 11034 Result			SPK Ref Val	%REC	Analysis Date	e: 6/15/20 HighLimit	15	SeqNo: 435	5251	Qual
Client ID: LCSS Analyte Benzene	Batch ID: 11034 Result 0.880	0.0200	1.000	SPK Ref Val	%REC 88.0	Analysis Date LowLimit 64.3	e: 6/15/20 HighLimit	15	SeqNo: 435	5251	Qual
Client ID: LCSS Analyte Benzene Toluene	Batch ID: 11034 Result 0.880 0.865	0.0200 0.0200	1.000 1.000	SPK Ref Val 0 0	%REC 88.0 86.5	Analysis Date LowLimit 64.3 67.3	e: 6/15/20 HighLimit 133 138	15	SeqNo: 435	5251	Qual
Client ID: LCSS Analyte Benzene Toluene Ethylbenzene	Batch ID: 11034 Result 0.880 0.865 0.912	0.0200 0.0200 0.0300	1.000 1.000 1.000	SPK Ref Val 0 0 0	%REC 88.0 86.5 91.2	Analysis Date LowLimit 64.3 67.3 74	e: 6/15/20 HighLimit 133 138 129	15	SeqNo: 435	5251	Qual
Client ID: LCSS Analyte Benzene Toluene Ethylbenzene m,p-Xylene	Batch ID: 11034 Result 0.880 0.865 0.912 1.98	0.0200 0.0200 0.0300 0.0200	1.000 1.000 1.000 2.000	SPK Ref Val 0 0 0 0 0	%REC 88.0 86.5 91.2 98.8	Analysis Date LowLimit 64.3 67.3 74 79.8	HighLimit 133 138 129 128	15	SeqNo: 435	5251	Qual
Client ID: LCSS Analyte Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	Batch ID: 11034 Result 0.880 0.865 0.912 1.98 1.02	0.0200 0.0200 0.0300 0.0200	1.000 1.000 1.000 2.000 1.000	SPK Ref Val 0 0 0 0 0	%REC 88.0 86.5 91.2 98.8 102	Analysis Date LowLimit 64.3 67.3 74 79.8 72.7	HighLimit 133 138 129 128 124	15	SeqNo: 435	5251	Qual


Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 826

Commission ID: MD 44000	Community on the Samuel Community			Linite: 85		D=== D :	. 0451001	-	DumNie 655	70	
Sample ID: MB-11039	SampType: MBLK			Units: mg/Kg		·	e: 6/15/201		RunNo: 229		
Client ID: MBLKS	Batch ID: 11039					Analysis Date	e: 6/15/201	15	SeqNo: 435	5427	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200									
Toluene	ND	0.0200									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Surr: Dibromofluoromethane	1.04		1.250		83.0	63.7	129				
Surr: Toluene-d8	1.16		1.250		93.0	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.20		1.250		96.1	63.1	141				
Sample ID: 1506161-002BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 6/15/201	15	RunNo: 229	966	
Client ID: BATCH	Batch ID: 11034					Analysis Date	e: 6/15/201	15	SeqNo: 435	5345	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	1.17	0.0229	1.145	0	102	63.5	133				
Toluene	1.15	0.0229	1.145	0	100	63.4	132				
Ethylbenzene	1.24	0.0344	1.145	0	108	54.5	134				
m,p-Xylene	2.72	0.0229	2.291	0	119	53.1	132				
o-Xylene	1.34	0.0229	1.145	0	117	53.3	139				
Surr: Dibromofluoromethane	1.34		1.432		93.8	63.7	129				
Surr: Toluene-d8	1.34		1.432		93.6	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.39		1.432		97.3	63.1	141				
Sample ID: MB-11034	SampType: MBLK			Units: mg/Kg		Prep Date	e: 6/15/201	15	RunNo: 22 9	966	
Client ID: MBLKS	Batch ID: 11034					Analysis Date	e: 6/15/201	15	SeqNo: 435	5348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200									
Toluene	ND	0.0200									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									

Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

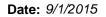
Project: SLU Marriott	t					Volatil	le Organ	ic Compou	nds by EP	A Metho	d 826
Sample ID: MB-11034	SampType: MBLK			Units: mg	ı/Kg	Prep Da	ite: 6/15/20)15	RunNo: 22 9	166	
Client ID: MBLKS	Batch ID: 11034					Analysis Da	ite: 6/15/2 0)15	SeqNo: 435	348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	ND	0.0200									
Surr: Dibromofluoromethane	1.15		1.250		92.3	63.7	129				
Surr: Toluene-d8	1.10		1.250		88.3	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.22		1.250		97.4	63.1	141				
Sample ID: 1506161-001BDUP	SampType: DUP			Units: mg	ı/Kg-dry	Prep Da	ite: 6/15/20)15	RunNo: 22 9)66	
Client ID: BATCH	Batch ID: 11034					Analysis Da	nte: 6/15/2 0)15	SeqNo: 435	344	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0222						0		30	
Toluene	ND	0.0222						0		30	
Ethylbenzene	ND	0.0333						0		30	
m,p-Xylene	ND	0.0222						0		30	
o-Xylene	ND	0.0222						0		30	
Surr: Dibromofluoromethane	1.34		1.387		96.5	63.7	129		0		
Surr: Toluene-d8	1.20		1.387		86.8	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene	1.30		1.387		93.6	63.1	141		0		
Sample ID: 1506157-002BMS	SampType: MS			Units: mg	ı/Kg-dry	Prep Da	ite: 6/15/20)15	RunNo: 22 9	78	
Client ID: BATCH	Batch ID: 11039					Analysis Da	ite: 6/15/20)15	SeqNo: 435	3410	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.661	0.0133	0.6634	0	99.6	63.5	133				
Toluene	0.714	0.0133	0.6634	0.05042	100	63.4	132				
Ethylbenzene	0.756	0.0199	0.6634	0.01360	112	54.5	134				
m,p-Xylene	1.60	0.0133	1.327	0.07563	115	53.1	132				
o-Xylene	0.819	0.0133	0.6634	0.03881	118	53.3	139				
Surr: Dibromofluoromethane	0.890		0.8293		107	63.7	129				
Surr: Toluene-d8	0.783		0.8293		94.4	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	0.845		0.8293		102	63.1	141				

Work Order: 1506126

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**


Volatile Organic Compounds by EPA Method 8260

		SampType: MS	3 3 7		RunNo: 22978
--	--	--------------	-------	--	---------------------

Analysis Date: 6/15/2015 SeqNo: 435410 Client ID: BATCH Batch ID: 11039

%REC LowLimit HighLimit RPD Ref Val Analyte Result SPK value SPK Ref Val %RPD RPDLimit Qual

Sample ID: 1506157-011BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	6/15/20	15	RunNo: 229	978	
Client ID: BATCH	Batch ID: 11039					Analysis Date	6/16/20	15	SeqNo: 43	5420	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0147						0		30	
Toluene	ND	0.0147						0		30	
Ethylbenzene	ND	0.0220						0		30	
m,p-Xylene	ND	0.0147						0		30	
o-Xylene	ND	0.0147						0		30	
Surr: Dibromofluoromethane	0.777		0.9179		84.7	63.7	129		0		
Surr: Toluene-d8	0.890		0.9179		96.9	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene	0.893		0.9179		97.3	63.1	141		0		
Sample ID: LCS-11173	SampType: LCS			Units: mg/Kg		Prep Date	: 6/26/20	15	RunNo: 232	280	
Client ID: LCSS	Batch ID: 11173					Analysis Date	6/26/20	15	SeqNo: 440	0970	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.884	0.0200	1.000	0	88.4	64.3	133				
Surr: Dibromofluoromethane	1.20		1.250		95.6	63.7	129				
Surr: Toluene-d8	1.17		1.250		93.4	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.32		1.250		106	63.1	141				
Sample ID: MB-11173	SampType: MBLK			Units: mg/Kg		Prep Date	: 6/26/20	15	RunNo: 232	280	
Client ID: MBLKS	Batch ID: 11173					Analysis Date	: 6/26/20	15	SeqNo: 440	0969	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Surr: Dibromofluoromethane	1.21		1.250		96.7	63.7	129				
Surr: Toluene-d8	1.18		1.250		94.8	64.3	131				

Work Order: 1506126

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	tt					Volatile	Organi	c Compou	nds by EP	A Metho	d 8260
Sample ID: MB-11173	SampType: MBLK			Units: mg/K	g	Prep Dat	e: 6/26/20	15	RunNo: 232	280	
Client ID: MBLKS	Batch ID: 11173					Analysis Dat	e: 6/26/20	15	SeqNo: 440	969	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1-Bromo-4-fluorobenzene	1.29		1.250		103	63.1	141				
Sample ID: 1506247-006BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 6/26/20	15	RunNo: 232	280	
Client ID: BATCH	Batch ID: 11173					Analysis Dat	e: 6/26/20	15	SeqNo: 440	947	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0236						0		30	
Surr: Dibromofluoromethane	1.47		1.476		99.9	63.7	129		0		
Surr: Toluene-d8	1.42		1.476		96.5	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene	1.50		1.476		102	63.1	141		0		
Sample ID: 1506247-007BMS	SampType: MS			Units: mg/K	g-dry	Prep Dat	e: 6/26/20	15	RunNo: 232	280	
Client ID: BATCH	Batch ID: 11173					Analysis Dat	e: 6/27/20	15	SeqNo: 440	949	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.62	0.0315	1.574	0	103	63.5	133				
Surr: Dibromofluoromethane	1.86		1.968		94.4	63.7	129				
Surr: Toluene-d8	1.93		1.968		97.9	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.99		1.968		101	63.1	141				

Work Order: 1506126

Project:

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Sample Moisture (Percent Moisture)

Sample ID: 1508343	-001ADUP SampType: DUP	Units: wt%	Prep Date:	9/1/2015	RunNo: 24621
Client ID: BATCH	Batch ID: R24	21	Analysis Date:	9/1/2015	SeqNo: 46410

%REC LowLimit HighLimit RPD Ref Val Analyte Result RL SPK value SPK Ref Val %RPD RPDLimit Qual Percent Moisture 15.5 0.500 16.70 7.58 20

Sample ID: 1509004-001ADUP	SampType: DUP		Units: wt%		Prep Date: 9/1/2019	5	RunNo: 246	621	
Client ID: BATCH	Batch ID: R24621			An	nalysis Date: 9/1/201	5	SeqNo: 464	139	
Analyte	Result	RL	SPK value SPK Ref Val	%REC L	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture	12.7	0.500				12.22	3.85	20	

Sample ID: 1509004-012ADUP	SampType: DUP		Units	s: wt%	Prep Date	e: 9/1/201	5	RunNo: 246	521	
Client ID: BATCH	Batch ID: R24621				Analysis Date	e: 9/1/201	5	SeqNo: 464	1151	
Analyte	Result	RL	SPK value SPK Ref	Val %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture	15.4	0.500		_			13.98	9.83	20	

Sample Log-In Check List

С	lient Name:	GEI1	Work Order Numb	oer: 1506126	
Lo	ogged by:	Clare Griggs	Date Received:	6/10/2015	5 8:22:00 AM
Cha	nin of Cust	<u>ody</u>			
1.	Is Chain of C	ustody complete?	Yes 🗸	No 🗆	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	ı In				
	Coolers are p	present?	Yes 🗸	No 🗌	NA \square
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗆
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	No 🗹	NA \square
_			se refer to item info		
8.		proper container(s)?	Yes 🗹	No 🗆	
9.		nple volume for indicated test(s)?	Yes 🗹	No 🗀	
10.	Are samples	properly preserved?	Yes 🗹	No 🗀	
11.	Was preserva	ative added to bottles?	Yes L	No 🗹	NA 📙
12.	Is there head	space in the VOA vials?	Yes	No \square	NA 🔽
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗹	No 🗌	
Spe	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date	:		
	By Who	m: Via:	eMail Pho	one Fax	☐ In Person
	Regardi	ng:			
		estructions:			
19.	Additional rer	marks:			

Item Information

Item #	Temp ^o C
Cooler 1	10.1
Cooler 2	15.1
Sample 1 Sample 2	4.8
Sample 2	14.2

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

www.fremontanalytical.com

Please coordinate with the lab in advance

www.fremontanalytical.com

APlease coordinate with the lab in advance

www.fremontanalytical.com

*Please coordinate with the lab in advance

250

Chain of Custody Record

analanican

Laboratory Project No (internal)

•	-
	a. ±
	Q
	iai
	3.
	0
	÷
	0
	Sn
	#
	0
	0
	φ
	dy R
	dy Re
	dy Reco
	dy Record

Laboratory Project No (Internal):

9

City, State, Zip

Client: Address:

01

Location: Project No: Project Name:

202-502-5-50

Collected by:

Mark.

Comments/Depth

Seattle, WA 98103 3600 Fremont Ave N.

Fax: 206-352-7178 Tel: 206-352-3790

Date:

mahuhican

www.fremontanalytical.com

TAT -> SameDay^ NextDay^ 2 Day 3 Day STD

Special Remarks:

=

= V 20

Whatse cogramate with the lab in advance

*Please coordinate with the lab in advance

Chain of Custody Record South From No. 7c. 206-323-7702 Carett. South From No. 7c. 206-323-7702 Carett. Ca	TAT -> SameDavA NewtOwA 2 Day 3 Day STD		Date/Time		Received V	-		Date/Time	Date	Relinquished
Fremont Ave N. Tel: 206-322-7178 Date: Project Name: Project No: Location:		22%2	-		y yearsons		7.2	Vime Y	lin	cipquisido
Page: 266-352-3990 Fax: 206-352-3990 Fax: 206-352-3990 Fax: 206-352-3990 Fax: 206-352-3990 Fax: 206-352-3990 Fax: 206-352-7178 Project Name: Other project Na		on the following business day.	ys.)	retained other 30 day	assessed if semples ere	ab (A fee may be	Disposal by I		- Return	ample Disposal:
Page: 206-352-3790 Tel: 206-352-3790 Fax: 206-352-3790 Fax: 206-352-3798 Project Name: Officer Project Name: Second W=Water, DW=Uniter: DW=Unite	Special Remarks:	Turn-around times for samples	Nitrate+Nitrite	Fluoride	O-Phosphate	Bromide	Sulfate	Chloride		13
Fremont Ave N. Tel: 206-352-3796 Scottle, WA 92133 Fac: 206-352-3798 Scottle, WA 92133 Fac: 206-352-3798 Client: Client:	ST SO TI TI U V	FR HE K MR MIN MO Na NI	Cd Ca Cr Cu	8 8a 6e	Ag Al		nority Pollutants		MTCA-5	*Metals Analysis (Circle
206-352-3790 Date: Project Name: Project Ne (internal): Laboratory Project Ne (internal): Project Name: Project Ne: Project No: Location: Reports To (PM): Fea: Frank: Sample Sample Time Date: Time		50				4	76	4	101	0 17 2
206-352-3790 Cate: Project No Internal: Page: Other, P= Product, S = Soil, SD = Sedment, St = Soild, W = Water, DW = Christing Water, OW = Ground Water, V Date: Time phatring St St Soil St				(45.0		1	20 + 1 - 41
206-352-3790 Date: Project Name:	bila co				< 3		4		100	11-51-50
206-352-7790 Date: Project Name: Project No: Location: Project No (internal): Location: Reports To (PM): Fax: Email: B=Bulk, O=Other, P=Product, S=Soil, SD=Sedment, St=Soild, W=Water, DW=Drinking Water, GW=Ground Water, V District Type Date: Project No: Location: Reports To (PM): Fax: Email: Reports To (PM): Fax: Final: Sample	TCLP			Z	(%)	S		1	5:0	DP-15-8
206-352-3790 206-352-3790 Date: Project Name: Project Name: Project No: Location: Page: of: Complet No: Location: Reports To (PPM): Email: S=SUR, O=Other, P=Product, S=Soil, SD=Sedment, St=Soild, W=Water, DW=Drinking Water, GW=Ground Water, V Email: Sample S							1793			
206-352-7790 206-352-7778 Date: Project Name: Project Name: Project No: Location: Reports To [PM]; Fax: Email: Sample Sample Sample Time (Matria)* SO							14.5.7		200	May 7-
206-352-3790 Date: Project Name: Project No: Location: Reports To (PM); Fac: Email: Sample Sample Type (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, CW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, GW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, GW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, GW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, V (Matrix)* 25 Soil, SD = Sedment, St = Soild, W = Water, DW = Drinking Water, DW = Ground Water, DW							100		14 N	MW-7-
206-352-3790 Date: Project Name: Project No: Location: Reports To (PM): Email: S=Bulk, O=Other, P=Product, S=Soll, SD=Sedment, SL=Solid, W=Water, DW=Drinking Water, GW=Ground Water, V Email: Sample Type Sample Sample Sample (Matrix)* Sed Sol							WH.1.	F	25,0	一年一十二年
206-352-3790 Date: Project Name: Project Name: Project No: Location: Reports To [PM]; Fac: Email: Fac: Email: Sample Sample Type (Matrix)* St. = Solid, W = Water, DW = Drinking Water, DW = Ground Water, V Date: Time (Matrix)* St. = Solid, St. = Solid, W = Water, DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Drinking Water, DW = Ground Water, V DW = Ground Wate							1814		1	NAM- FI
206-352-3790 Date: Project Name: Project Name: Project No: Location: Reports To [PM]: Email: B= Bulk, O= Other, P= Product, S= Soil, SD= Sediment, St= Soild, W = Water, DW = Drinking Water, OB Ground Water, V Sample S				2		20	11.11	1000	0.00	シーサー
206-352-3790 206-352-7178 Date: Project Name: Page: of: Location: Reports To (PM); Email: E=Bulk, O=Other, P=Product, S=Soil, SD=Sedment, SL=Soild, W=Water, DW=Drinking Water, GW=Ground Water, V	Comments/Depth	\$4.0 600 \$4.0 600 \$4.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6///	mple trays	Sample S	Semple Date		Sample Name
Fremont Ave N. Tel: 206-352-3790 c, WA 98103 fax: 206-352-7178 Date: Project Name: Project No: Location: Reports To (PM); Reports To (PM);	Waste Water, SW = Strom Water	GW = Ground Water,		ild, W=Water,	Sediment, SL = 50	5 = Soil,	er, P = Product,			*Matrix Codes: A = Alr, A
Fremont Ave N. Tel: 206-352-3790 E, WA 98103 Fax: 206-352-7178 Project No: Location: Reports To (PM):			- Address							
Fremont Ave N. Tel: 206-352-3790 c, WA 98103 Fax: 206-352-7178 Date: Project Name: Project No:			PMI	Location:						City, State, Zip
remont Laboratory Project No (internal): N. Tel: 206-352-3790 Page: Onto: Onto: Other Page: Other Page	lected by:	6	R	Project Nan Project No:					000	Client
	9 9	(internal):	Laborato Page:	1	10/97	Date		06-352-3790 06-352-7178	900	3600 Fremont Ave N Seattle, WA 58103
	ain of Custody Recor	C					7	5		

Page 78 of 89

"Please coordinate with the lab in advance

www.fremontanalytical.com

something and other attributed builds.

TAT-> SameDay NextDay 2 Day 3 Day 510

Phone man with the last advance			*					5
	4	۲	Second		1	TE/Time	100	linguisped
	Desertions 622	Sire Desertions	(* Mary		STAN SINGLE	Dala Lane	10/10/	Description of
	on the following business day.	(Way on such provide and survey)	100	San sport by Lab (A he washe our	A Salpon	In Cent	☐ Roturn to Clent	ample Disposal:
Special Remarks:	Turn-around times for samples	Sucride Notate-Marts	de O-Phosphace	ite Bramide	de Sullete	Charles	Nitrate Nitrate	"Anions (Circle):
22 人のほほのおおおりの	US AS AS AS AS IN EN OWN WAY SAY X THIS AS	TO DO DO DO BENT	Individual Ag Al	TAT cheese	Priority Pollutarity	409A-8	Circle): NTCA-S	"Metals Analysis (Circle):
	((1435		1-175	MW-7-175
		8	3)		1430		4-5.0	F-MH
	_	((1428		-11.0	F-MN
	× ×	8	8		142		D.01-4	F-MM
				1	1412		-5.0	MW-7-5.0
					1410		N : K	MW-7-
NO TELE POTENTIAL CLY	9				V644		14-30-0	DP-14
				+	1042		14-27.5	ヤーヤー
					1037		25.0	DP-14-
	×				1035	68	中からい	1-det
The and discontinued in the second			\$ 10 mg 10 m	Sample Type (Matru)*	Sample	Sample		Sample Name
- Waste Wates, SW = Strom Wates	tater, GW = Ground Weber, WW = Waste Water,	St. = Solid, W = Water, OW = Drinking Water,	SD = Sediment,	raduct, \$ 6 Soil,	O = Other, P = Fraduct,	Ballulk O=	AQ " Aqueous.	Warra Codes: A = Air.
		£mail:			Fast			Tale
		Reports To (FM):						City, State, Zip
Collected by:	00-800-METOR	Project Name:				120	0	Client: Address:
2	(N)	S Page	S1 10 0 0		1790	Tel: 206-352-3790 Fax: 206-352-7178	* 77	Scortle, WA 98103
1506126B	Labaratary Phylect No (laternal):	tanan.					rremo	3
Chain of Custody Porord	2)		MANANCE

1	A Share appearance a loss one lists in concession				w					×
34	TAT - Sarrie Day Must Day 7 Day 3 Day 570		Dake/Time	1	Conglored "			Dete/Time	. 040	Belinginged
		22%	100	6	(V		22.80	80 SI	10/10/	Ser.
_		on the following business duy.		PURCHURSON NUMBER	Table 1	Disposal by tab (afectors to	Thispood.	to Client	Return to Clent	Sample Disposal:
_	Special Remarks:	Turn-eround birtes for samples reserved after 4-COpm will begin	ME-play-Majorite That	Fluoride No	O-Phosphate	Bromide	ke Salfata	Chipride	Minite Minite	幕
	स्रत्य प्रस्थ	FO (HE) K NE MA MO NO MI (FE	40000	W 8 89 50 CP	individual: Ag Al	TAL IN	Priority Policians	RCRA-S	# CE	"Metals Analysis (Circle): ATRIN
		4				4	1305	4	17.5	10 DP-15.
				(1357		15,0	OP-15-15.0
TS No	Le 101 parkenting 1012+		(8	8		1385		CA	\$ DP-15-185
			8	E	8		1345		5.0	, DP-15-5.0
							びな		3.5	DP-15-
STO	ALTERNESTED 10/25 on	8					15+	-	-30.0	- F- NW =
						_	155		7-27.5	- F- MY "
							1440	F	35.0	- F-NNE
							子子	-	1-28.5	-t-MME
777	イノスからもだら かけんかかくして	9		8	8	CA	-	8 0	0.00	- F-MM:
	Community Depth				\$ (0.00 m)	Sample Type Mazznot	Sample Tene	Sample		Sample Name
	With - Waste Water. SW & Strom Water	GW - Ground Water, WW = 1	DW = Detriting Wates,	W = Water.	SD + Sediment, St = Solid	20.00	G . Other, P . Fraduct.	8-84K 0-0	AG = Aguspun, B	"Matrie Codes: A.= Air,
				Emalk		1:	Fatt			Tal:
			F	Reports To (PM):						City, State, Zip
				Location						Address
	Collected by:	10 00-220-netoc	248	Project Name:					20	Client
	2	4	Page	S.	S1/6/11 2000	9	78	Tel: 206-352-3790 Fax: 206-352-7178	*	3600 Fremont Ave N. Seattle, WA 58103
	150161270B	Laboratory Project Na Ducomelj:	Laboratory				distri	analysisal	Analy	3
d	Chain of Custody Record	5					-	5		金属

www.fremontanalytical.com

Chain of Custody Record

www.fremontanalytical.com

Chain of Custody Record

Seattle, WA 98103

Fort 206-352-3790

Laboratory Project Na (Internal):

9

0

506 210B

Project Name

analytical

Distribution: White - Late, Yellow - File, Pint - Originator

www.fremontanalytical.com

Chain of Custody Record

3600 Fremont Ave M. Seattle, WA 98103

C 131(21) VI (1 10 1)
Tel: 204-352-3790
Fax: 206-352-7178

Project Name:

Leborotery Project No Sistemodi

Ŗ,

0

ひのららる

Distribution: White-Lab, Yellow - Fla, Flat - Originator

TAT-> SameDay* NextDay 2 Day 3 Day STD		1	, Dated		8	- Marie			Come.	. Deta	Salar
,	1	2790 3	17 Bush	6/10	2	0		lo -	15 08 22	allolo	Const
	de tempo	On the	-	Act aller after Afterprise	NE SAGATE P IN	tea analyte to tea	pend by Lab (a lee	Bisper	e Citers	- Repair to Client	PROPERTY.
Special formerks	rapping the water, 5 years permanently a		Birth-steam	Slethree	Ch.Phonghate	Stratide Or		in Sulfate	Catoride	North Minte	*Anion (Circle): 4
WAN 12 4 M 7 4 45 46 48 18	Mg Ma Me Ne	Cu fe ffg 4	2 0 0	AS N So So Ca	2 2	TEL INGRIGANI		Priority Palkulants	ROSA-S	WICK-S	Metals Armiysis (Grda):
	*		_				4	1029	4	130	DP-14
	~		8	8	***	8		ttol		-17.5	DP-14-
							-	535		15.0	DP - 14-
			_				-	200	-	13.5	DP-14-
				(-		_	410	-	000	DP-14-
S DI TOTO BUTCHER LA				8	X		_	1015	_	7.5	
SILL BARRY: 74 JOHN SILLIS	×							4001		5.0	DP-14-
								1005	-	2.5	DP-14-
								arm	-	30.0	DO-16-
	7						5	0920	618	27.5	
8///					100	800	Sample Tigge Matter	ī Į	Sample		Sample Name
Waster Winter. SNV = Service UNIONE	W-MM WHEN DUNGS - MB		WITH BEHALF	Manna M. M.	BIS-15 June	tod, SII - Sedim	potent \$=504,	With Particular	B=Bulk, U=Other	water by branching and a sprawn of the spraw	Cadde
				fmalt	ŀ			Fac			Tet
			CPMC:	Reports to (PM);	1		П				City, State, Zip
Collected by:	M DO-EDD-OFFER	3740-		Project Name	1				711	081	
2	*	\$	8	4	Colonis	Dates		28	Fest 2004-0531-0790 Fest 2004-0531-7178	22	Seattle, WA 56103
15061248	er Als (intermed):	altay futher	\$							remo	جر ا
Chain of Custody Record	0										Rent Dien

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1506168

June 22, 2015

Attention Jessica Smith:

Fremont Analytical, Inc. received 7 sample(s) on 6/15/2015 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

Date: 06/22/2015

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott Lab Order: 1506168

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1506168-001	MW-4	06/15/2015 7:50 AM	06/15/2015 2:48 PM
1506168-002	MW-5	06/15/2015 8:33 AM	06/15/2015 2:48 PM
1506168-003	MW-6	06/15/2015 9:02 AM	06/15/2015 2:48 PM
1506168-004	MW-7	06/15/2015 9:50 AM	06/15/2015 2:48 PM
1506168-005	MW-101	06/15/2015 11:56 AM	06/15/2015 2:48 PM
1506168-006	MW-105	06/15/2015 1:50 PM	06/15/2015 2:48 PM
1506168-007	Trip Blank	06/11/2015 12:45 PM	06/15/2015 2:48 PM

Case Narrative

WO#: **1506168**Date: **6/22/2015**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1506168**

Date Reported: 6/22/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1506168**

Date Reported: 6/22/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/15/2015 7:50:00 AM

Project: SLU Marriott

Lab ID: 1506168-001 Matrix: Groundwater

Client Sample ID: MW-4

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Bato	h ID:	11037	Analyst: EC
Diesel (Fuel Oil)	ND	50.1		μg/L	1	6/16	/2015 11:13:00 PM
Heavy Oil	ND	100		μg/L	1	6/16	2015 11:13:00 PM
Surr: 2-Fluorobiphenyl	50.1	50-150		%REC	1	6/16	2015 11:13:00 PM
Surr: o-Terphenyl	61.6	50-150		%REC	1	6/16	2015 11:13:00 PM
Gasoline by NWTPH-Gx				Bato	h ID:	R23098	Analyst: BC
Gasoline	ND	50.0		μg/L	1	6/19/	/2015 11:38:00 PM
Surr: 4-Bromofluorobenzene	100	65-135		%REC	1	6/19/	2015 11:38:00 PM
Surr: Toluene-d8	109	65-135		%REC	1	6/19	2015 11:38:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Bato	h ID:	R23095	Analyst: BC
Benzene	ND	1.00		μg/L	1	6/19	2015 11:38:00 PM
Toluene	ND	1.00		μg/L	1	6/19/	2015 11:38:00 PM
Ethylbenzene	ND	1.00		μg/L	1	6/19/	2015 11:38:00 PM
m,p-Xylene	ND	1.00		μg/L	1	6/19/	2015 11:38:00 PM
o-Xylene	ND	1.00		μg/L	1	6/19/	2015 11:38:00 PM
Surr: Dibromofluoromethane	109	77.4-147		%REC	1	6/19/	2015 11:38:00 PM
Surr: Toluene-d8	112	40.1-139		%REC	1	6/19/	2015 11:38:00 PM
Surr: 1-Bromo-4-fluorobenzene	100	64.2-128		%REC	1	6/19	2015 11:38:00 PM

WO#: **1506168**

Date Reported: 6/22/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/15/2015 8:33:00 AM

Project: SLU Marriott

m,p-Xylene

Surr: Dibromofluoromethane

Surr: 1-Bromo-4-fluorobenzene

Surr: Toluene-d8

o-Xylene

Lab ID: 1506168-002 Matrix: Groundwater

ND

ND

112

112

99.8

Client Sample ID: MW-5

. •							
Analyses	Result	RL	Qual	Units	DF	Date An	aiyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batc	h ID: ´	11037 Ana	llyst: EC
Diesel (Fuel Oil)	ND	49.9		μg/L	1	6/16/2015 1	1:45:00 PM
Diesel Range Organics (C12-C24)	897	49.9		μg/L	1	6/16/2015 1	1:45:00 PM
Heavy Oil	1,180	99.8		μg/L	1	6/16/2015 1	1:45:00 PM
Surr: 2-Fluorobiphenyl	79.6	50-150		%REC	1	6/16/2015 1	1:45:00 PM
Surr: o-Terphenyl	80.8	50-150		%REC	1	6/16/2015 1	1:45:00 PM
Cocoline by NWTDU Cy							
Gasoline by NW1PH-GX				Batc	h ID: I	R23098 Ana	llyst: BC
Gasoline by NW1Ph-GX Gasoline	99.3	50.0		Batc µg/L	h ID: I	R23098 Ana 6/20/2015 1:	•
	99.3 101	50.0 65-135					2:07:00 AM
Gasoline				μg/L	1	6/20/2015 1:	2:07:00 AM 2:07:00 AM
Surr: 4-Bromofluorobenzene	101 107	65-135 65-135		μg/L %REC %REC	1 1 1	6/20/2015 1: 6/20/2015 1: 6/20/2015 1:	2:07:00 AM 2:07:00 AM
Gasoline Surr: 4-Bromofluorobenzene Surr: Toluene-d8	101 107	65-135 65-135		μg/L %REC %REC	1 1 1	6/20/2015 1: 6/20/2015 1: 6/20/2015 1:	2:07:00 AM 2:07:00 AM 2:07:00 AM allyst: BC
Gasoline Surr: 4-Bromofluorobenzene Surr: Toluene-d8 Volatile Organic Compounds by	101 107 EPA Method 8	65-135 65-135		μg/L %REC %REC Batc	1 1 1 h ID: F	6/20/2015 1: 6/20/2015 1: 6/20/2015 1: R23095 Ana	2:07:00 AM 2:07:00 AM 2:07:00 AM allyst: BC 2:07:00 AM

1.00

1.00

77.4-147

40.1-139

64.2-128

μg/L

μg/L

%REC

%REC

%REC

1

1

1

1

1

6/20/2015 12:07:00 AM

WO#: 1506168

Date Reported: 6/22/2015

Collection Date: 6/15/2015 9:02:00 AM Client: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

Toluene

Ethylbenzene

Surr: Dibromofluoromethane

Surr: 1-Bromo-4-fluorobenzene

Surr: Toluene-d8

m,p-Xylene

o-Xylene

Lab ID: 1506168-003 Matrix: Groundwater

9.39

1,010

91.8

5.24

109

119

111

Client Sample ID: MW-6						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batc	h ID: 11	037 Analyst: EC
Diesel (Fuel Oil)	ND	49.9		μg/L	1	6/17/2015 12:16:00 Al
Diesel Range Organics (C12-C24)	1,580	49.9		μg/L	1	6/17/2015 12:16:00 Al
Heavy Oil	408	99.9		μg/L	1	6/17/2015 12:16:00 Al
Surr: 2-Fluorobiphenyl	90.4	50-150		%REC	1	6/17/2015 12:16:00 Al
Surr: o-Terphenyl	89.6	50-150		%REC	1	6/17/2015 12:16:00 Al
NOTES: DRO - Indicates the presence of unresol Gasoline by NWTPH-Gx	ved compounds elu	uting from dod	ecane throu	·	ne (C12-0	,
· · · · · · · · · · · · · · · · · · ·			_			
Gasoline	10,700	1,000	D	μg/L	20	6/22/2015 12:17:00 Pl
Surr: 4-Bromofluorobenzene	114	65-135		%REC	1	6/20/2015 12:35:00 Al
Surr: Toluene-d8	110	65-135		%REC	1	6/20/2015 12:35:00 Al
Volatile Organic Compounds by	EPA Method 8	<u> 260</u>		Batc	h ID: R2	3095 Analyst: BC
Benzene	187	20.0	D	μg/L	20	6/22/2015 12:53:00 Pl

1.00

20.0

1.00

1.00

77.4-147

40.1-139

64.2-128

μg/L

μg/L

μg/L

μg/L

%REC

%REC

%REC

1

20

1

1

1

1

1

6/20/2015 12:35:00 AM

6/22/2015 12:53:00 PM

6/20/2015 12:35:00 AM

WO#: **1506168**

Date Reported: 6/22/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/15/2015 9:50:00 AM

Project: SLU Marriott

Lab ID: 1506168-004 Matrix: Groundwater

Client Sample ID: MW-7

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batc	h ID: 1	1037 Analyst: EC
Diesel (Fuel Oil)	ND	50.1		μg/L	1	6/17/2015 12:48:00 AM
Diesel Range Organics (C12-C24)	1,100	50.1		μg/L	1	6/17/2015 12:48:00 AN
Heavy Oil	653	100		μg/L	1	6/17/2015 12:48:00 AN
Surr: 2-Fluorobiphenyl	85.1	50-150		%REC	1	6/17/2015 12:48:00 AN
Surr: o-Terphenyl	90.7	50-150		%REC	1	6/17/2015 12:48:00 AN
NOTES:						
NOTES: DRO - Indicates the presence of unreso Gasoline by NWTPH-Gx	lved compounds elu	uting from dod	ecane throu		ane (C12 h ID: R	,
DRO - Indicates the presence of unreso	lved compounds elu 1,520	uting from dod 50.0	ecane throu		•	•
DRO - Indicates the presence of unreso	·	Ü	ecane throu	Batc	h ID: R	23098 Analyst: BC

Benzene	16.7	1.00	μg/L	1	6/20/2015 1:04:00 AM
Toluene	1.23	1.00	μg/L	1	6/20/2015 1:04:00 AM
Ethylbenzene	4.76	1.00	μg/L	1	6/20/2015 1:04:00 AM
m,p-Xylene	2.98	1.00	μg/L	1	6/20/2015 1:04:00 AM
o-Xylene	ND	1.00	μg/L	1	6/20/2015 1:04:00 AM
Surr: Dibromofluoromethane	113	77.4-147	%REC	1	6/20/2015 1:04:00 AM
Surr: Toluene-d8	113	40.1-139	%REC	1	6/20/2015 1:04:00 AM
Surr: 1-Bromo-4-fluorobenzene	106	64.2-128	%REC	1	6/20/2015 1:04:00 AM

WO#: **1506168**

Date Reported: 6/22/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/15/2015 11:56:00 AM

Project: SLU Marriott

Lab ID: 1506168-005 Matrix: Groundwater

Client Sample ID: MW-101

Analyses	Result	RL	Qual	Units	Units DF Date Analyzed				
Diesel and Heavy Oil by NWT	PH-Dx/Dx Ext.			Batc	h ID: 11	037 Analyst: EC			
Diesel (Fuel Oil)	ND	49.8		μg/L	1	6/17/2015 1:20:00 AM			
Heavy Oil	ND	99.6		μg/L	1	6/17/2015 1:20:00 AM			
Surr: 2-Fluorobiphenyl	76.8	50-150		%REC	1	6/17/2015 1:20:00 AM			
Surr: o-Terphenyl	84.0	50-150		%REC	1	6/17/2015 1:20:00 AM			

WO#: **1506168**

Date Reported: 6/22/2015

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/15/2015 1:50:00 PM

Project: SLU Marriott

Surr: Toluene-d8

Surr: 1-Bromo-4-fluorobenzene

Lab ID: 1506168-006 Matrix: Groundwater

Client Sample ID: MW-105

Client Sample ID: MW-105 Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batc	h ID: 11	037 Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	6/17/2015 1:51:00 AM
Diesel Range Organics (C12-C24)	708	50.0		μg/L	1	6/17/2015 1:51:00 AM
Heavy Oil	255	100		μg/L	1	6/17/2015 1:51:00 AM
Surr: 2-Fluorobiphenyl	83.7	50-150		%REC	1	6/17/2015 1:51:00 AM
Surr: o-Terphenyl	76.1	50-150		%REC	1	6/17/2015 1:51:00 AM
Gasoline by NWTPH-Gx Gasoline Surr: 4-Bromofluorobenzene	7,290 106	500 65-135	D	μg/L %REC	10 1	6/22/2015 12:45:00 PM 6/20/2015 1:33:00 AM
Surr: Toluene-d8	109	65-135		%REC	1	6/20/2015 1:33:00 AM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batc	h ID: R2	3095 Analyst: BC
Benzene	600	20.0	D	μg/L	20	6/22/2015 1:24:00 PM
Toluene	23.6	1.00		μg/L	1	6/20/2015 1:33:00 AM
Ethylbenzene	337	20.0	D	μg/L	20	6/22/2015 1:24:00 PM
m,p-Xylene	216	20.0	D	μg/L	20	6/22/2015 1:24:00 PM
o-Xylene	3.77	1.00		μg/L	1	6/20/2015 1:33:00 AM
Surr: Dibromofluoromethane	101	77.4-147		%REC	1	6/20/2015 1:33:00 AM

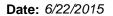
40.1-139

64.2-128

%REC

%REC

1

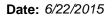

1

6/20/2015 1:33:00 AM

6/20/2015 1:33:00 AM

108

105

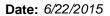


QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marrio	ott						Diesel a	and Heavy	Oil by NW	TPH-Dx/[Ox Ext.
Sample ID: 1506169-001ADUP	SampType: DUP			Units: µg/L		Prep Dat	te: 6/15/20	15	RunNo: 230	002	
Client ID: BATCH	Batch ID: 11037					Analysis Dat	te: 6/17/20	15	SeqNo: 435	850	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	49.9						0		30	
Heavy Oil	ND	99.9						0		30	
Surr: 2-Fluorobiphenyl	59.1		79.88		74.0	50	150		0		
Surr: o-Terphenyl	64.9		79.88		81.2	50	150		0		
Sample ID: LCS-11037	SampType: LCS			Units: µg/L		Prep Dat	te: 6/15/20	15	RunNo: 230	002	
Client ID: LCSW	Batch ID: 11037					Analysis Dat	te: 6/16/20	15	SeqNo: 435	857	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	710	50.0	1,000	0	71.0	65	135				
Surr: 2-Fluorobiphenyl	50.2		80.00		62.8	50	150				
Surr: o-Terphenyl	61.4		80.00		76.8	50	150				
Sample ID: MB-11037	SampType: MBLK			Units: µg/L		Prep Dat	te: 6/15/20	15	RunNo: 230	002	
Client ID: MBLKW	Batch ID: 11037					Analysis Dat	te: 6/16/20	15	SeqNo: 435	858	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Surr: 2-Fluorobiphenyl	41.5		80.00		51.9	50	150				
Surr: o-Terphenyl	46.1		80.00		57.6	50	150				

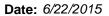

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: SLU Marrio	ιτ									,	
Sample ID: 1506168-006ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 6/20/2 0)15	RunNo: 230)98	
Client ID: MW-105	Batch ID: R23098					Analysis Dat	e: 6/20/2 0	015	SeqNo: 437	7586	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	9,300	50.0						9,586	2.98	30	Е
Surr: Toluene-d8	26.8		25.00		107	65	135		0	0	
Surr: 4-Bromofluorobenzene	26.7		25.00		107	65	135		0	0	
Sample ID: LCS-R23098	SampType: LCS			Units: µg/L		Prep Dat	e: 6/19/2 0	015	RunNo: 230	98	
Client ID: LCSW	Batch ID: R23098					Analysis Dat	e: 6/19/2 0	015	SeqNo: 437	7598	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	568	50.0	500.0	0	114	65	135				
Surr: Toluene-d8	26.9		25.00		108	65	135				
Surr: 4-Bromofluorobenzene	25.9		25.00		104	65	135				
Sample ID: MB-R23098	SampType: MBLK			Units: µg/L		Prep Dat	e: 6/19/2 0	015	RunNo: 230	98	
Client ID: MBLKW	Batch ID: R23098					Analysis Dat	e: 6/19/2 0	015	SeqNo: 437	7599	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	50.0									
Surr: Toluene-d8	27.3		25.00		109	65	135				
Surr: 4-Bromofluorobenzene	25.3		25.00		101	65	135				
Sample ID: CCV-D-R23098	SampType: CCV			Units: µg/L		Prep Dat	e: 6/22/2 0	015	RunNo: 230)98	
Client ID: CCV	Batch ID: R23098					Analysis Dat	e: 6/22/2 0	015	SeqNo: 437	7907	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	492	50.0	500.0	0	98.3	80	120				
Surr: Toluene-d8	26.4		25.00		105	65	135				

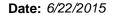


QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott						Volatil	e Organ	ic Compou	nds by EP	A Metho	d 826
Sample ID: 1506168-006ADUP	SampType: DUP	_		Units: µg/L		Prep Dat	e: 6/20/20	15	RunNo: 230	95	
Client ID: MW-105	Batch ID: R23095					Analysis Dat	e: 6/20/20	15	SeqNo: 437	496	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	362	1.00						350.6	3.06	30	Е
Toluene	25.8	1.00						23.55	8.92	30	
Ethylbenzene	184	1.00						184.4	0.0610	30	Е
m,p-Xylene	115	1.00						117.2	1.58	30	Е
o-Xylene	3.79	1.00						3.765	0.593	30	
Surr: Dibromofluoromethane	26.8		25.00		107	77.4	147		0		
Surr: Toluene-d8	29.3		25.00		117	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	26.3		25.00		105	64.2	128		0		
Sample ID: 1506169-001BMS	SampType: MS			Units: µg/L		Prep Dat	e: 6/20/20	15	RunNo: 230	95	
Client ID: BATCH	Batch ID: R23095					Analysis Dat	e: 6/20/20	15	SeqNo: 437	498	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	22.6	1.00	20.00	0	113	65.4	138				
Toluene	23.2	1.00	20.00	0	116	64	139				
Ethylbenzene	23.8	1.00	20.00	0	119	64.5	136				
m,p-Xylene	46.9	1.00	40.00	0	117	63.3	135				
o-Xylene	23.1	1.00	20.00	0	115	65.4	134				
Surr: Dibromofluoromethane	27.9		25.00		111	77.4	147				
Surr: Toluene-d8	26.9		25.00		108	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.9		25.00		104	64.2	128				
Sample ID: LCS-R23095	SampType: LCS			Units: µg/L		Prep Dat	e: 6/19/20	15	RunNo: 230	95	
Client ID: LCSW	Batch ID: R23095					Analysis Dat	e: 6/19/20	15	SeqNo: 437	517	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	21.0	1.00	20.00	0	105	69.3	132				
Toluene	20.1	1.00	20.00	0	101	61.3	145				
Ethylbenzene	20.4	1.00	20.00	0	102	72	130				
m,p-Xylene	39.7	1.00	40.00	0	99.2	70.3	134				



QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott	t					voiatii	e Organ	ic Compou	nas by EP	A Metho	a 826
Sample ID: LCS-R23095	SampType: LCS			Units: µg/L		Prep Da	ite: 6/19/20	15	RunNo: 230	95	
Client ID: LCSW	Batch ID: R23095					Analysis Da	ite: 6/19/20	15	SeqNo: 437	7 517	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	20.0	1.00	20.00	0	99.8	72.1	131				
Surr: Dibromofluoromethane	27.9		25.00		111	77.4	147				
Surr: Toluene-d8	26.5		25.00		106	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.5		25.00		102	64.2	128				
Sample ID: MB-R23095	SampType: MBLK			Units: µg/L		Prep Da	ite: 6/19/20	15	RunNo: 230	95	
Client ID: MBLKW	Batch ID: R23095					Analysis Da	ite: 6/19/20	15	SeqNo: 437	7 518	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Surr: Dibromofluoromethane	26.1		25.00		105	77.4	147				
Surr: Toluene-d8	26.9		25.00		108	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.2		25.00		101	64.2	128				
Sample ID: CCV-D-R23095	SampType: CCV			Units: µg/L		Prep Da	ite: 6/22/20	15	RunNo: 230	95	
Client ID: CCV	Batch ID: R23095					Analysis Da	ite: 6/22/20	15	SeqNo: 437	' 819	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	20.8	1.00	20.00	0	104	80	120				
Toluene	21.1	1.00	20.00	0	106	80	120				
Ethylbenzene	21.3	1.00	20.00	0	106	80	120				
m,p-Xylene	43.2	1.00	40.00	0	108	80	120				
o-Xylene	22.2	1.00	20.00	0	111	80	120				
Surr: Dibromofluoromethane	25.8		25.00		103	72.1	122				
Surr: Toluene-d8	27.1		25.00		108	62.1	129				
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		102	63.3	132				

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Sample ID: CCV-D-R23095

SampType: CCV

Units: µg/L

Prep Date: 6/22/2015

RunNo: 23095

Client ID: CCV

Batch ID: R23095

Analysis Date: 6/22/2015

SeqNo: 437819

Analyte

Project:

Result

RL SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Sample Log-In Check List

		er: 1506168	
Logged by: Clare Griggs	Date Received:	6/15/201	5 2:48:00 PM
ain of Custody			
Is Chain of Custody complete?	Yes 🗸	No \square	Not Present
How was the sample delivered?	Client		
g In			
Coolers are present?	Yes 🗸	No 🗌	NA 🗌
	_		
Shipping container/cooler in good condition?	Yes 🗸	No \square	
Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No 🗌	Not Required ✓
Was an attempt made to cool the samples?	Yes	No 🗸	NA 🗌
ļ	Unknown prior to re	ceipt.	
. Were all items received at a temperature of >0°C to 10.0°C*	Yes	No 🗸	NA 🗌
<u>Plea</u>	ase refer to item info	rmation.	
Sample(s) in proper container(s)?	Yes 🗹	No 📙	
Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗌	
). Are samples properly preserved?	Yes 🗸	No 🗌	
. Was preservative added to bottles?	Yes	No 🗸	NA 🗌
2. Is there headspace in the VOA vials?	Yes	No 🗸	NA 🗆
3. Did all samples containers arrive in good condition(unbroken)?	Yes 🔽	No 🗌	
1. Does paperwork match bottle labels?	Yes 🗹	No \square	
5. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
S Is it clear what analyses were requested?	Yes 🗹	No 🗌	
7. Were all holding times able to be met?	Yes 🗸	No 🗌	
ecial Handling (if applicable)			
3. Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗹
Person Notified: Date	e:		
By Whom: Via:		one Fax	☐ In Person
Regarding:			
Client Instructions:			
) Additional remarks:			

Item Information

Item #	Temp ^o C
Cooler	21.1
Sample	17.5
Temp Blank	17.0

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

3600 Frem		
remont Ave N.		Ţ
Tel: 206-352-3	Analy	
3790	A TENEDO	ļ

Chain of Custody Record

	10/15/15/1448 ~	Simple Disposal: Return to Client Odisposal by Lab (A hemay be	***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide	Circle): MTCA-5 RCNA-5 Priority Pollutants TAL			M-102 7 1350 7	MW-101 1150	4-MM+	MM-60 0962		MD (050 SI) 1 + MM =	Sample Name Sample Sample Sample (Matrix)* (Carrix)*	Matrix Codes: A = Air, AQ = Aqueoux, B = Bulli, O = Other, P = Product, 3 = Soil, SD	Fax:	CIV, State, Tip Redimend	961	3600 Fremant Ave N. Tel: 206-352-3790 Date: Seattle, WA 98103 Fax: 206-352-7178
Chicklens		Officposed by Lab (A to may be assessed if samples on virgound (that an early).	O-Phosphate Flugride Nitrate+Nitrite Turn	Individual Ag Al As B Ba Be Ca Cd Co Cr Cu Fe He			×	*	×	×	×	×		cw But	Email: X SYNCHA	Reports To (PM): 255	Project No: 2074	: 6/15/15 Page:
TAT -> SameDay* NextDay* 2 Day 3 Day STD	1448	on the fallowing business day.	Turn-around times for samples Special Remarks:	4¢ K Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti 71 U V Zn								and the second second		- Ww Ground water WW =	See Manager of	The Air M. Years	Marriott	of:

ABRIDGE CONSISTS WITH THE TABLE AND AREA			*			8
TAT - SameDay" NextDay" 2 Day 3 Day STD		awi Chang	DOMENSMEN		Printer Contract	A second
	1448	STOTE OF	N	844	10/15/15	(oxe
	on the following business day.	Ophyrosal by Lab (A be may be assessed & samples are retained after 15 tops.)	e may be assessed if sample	Disposal by Lab (A 5	Return to Client	Sample Disposal:
Special Remarks:	Turn-around times for samples 3 received after 4.00pm will begin	te Euoride Nitrate+Nitrite	Bromide G-Phosphate	Sulface		"Anions (Circle): Nitrate
2 55 Se Sr Sn Ti Ti U V Zn	FE PE K ME MIT ME NA NI PE	individual: Ag Al Al B Ba Be Ca CO Co Co Co	TAL Individual: Ag	Priority Pollutants Ti	MTCA-5 SCRA-8	"Metals Analysis (Circle):
						10
						40
						an and an
1 1						7
8/15 3		×	×	1250	4	SO1-MM =
Hold per A. Cochrane		×	*	1150		101-MM-
		×	×	2550		L-MM"
		×	×	202		MW-B
		7	×	6833		SIMMO
				NO (350	6/15	H-MM:
Comments/Depth			SO CO. SO	Sample Sample Sample Type (Matrix):	Sample Date	Sample Name
		W . Water	= Product, 5 = Sail, 50 = Sediment, 51 = Saild,	70	AQ = Aqueous, B = Bulk, Q = Other,	*Matrix Codes A = Air, AQ
week cons	-	Email: NSWHA		Fauc		Tet
	Sie Smat	(IMA)			Redward	E. 210
collected by the lemmane	C	Project No: 40+			101	Address:
	1 Marnott	Project Name: SLL			an .	
	of:	STIS PAGE	Date: (0 15	28.0	Tel: 206-352-3790 Fax: 206-352-7178	3600 Fremant Ave N. Seattle, WA 98103
Salload 1	Laboratory Project No (Internal):	laborett		Haris	Analytical	3 -
Chain of Custody Record	Ch:			-		多道

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond. WA 98052

RE: SLU Marriott Lab ID: 1506203

June 25, 2015

Attention Jessica Smith:

Fremont Analytical, Inc. received 2 sample(s) on 6/18/2015 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

Date: 06/25/2015

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott Lab Order: 1506203

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1506203-001
 MW-101
 06/18/2015 10:55 AM
 06/18/2015 1:30 PM

 1506203-002
 Trip Blank
 06/17/2015 10:15 AM
 06/18/2015 1:30 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1506203**Date: **6/25/2015**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1506203**

Date Reported: 6/25/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: 1506203

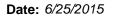
Date Reported: 6/25/2015

6/23/2015 11:18:00 PM

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/18/2015 10:55:00 AM

Project: SLU Marriott

Lab ID: 1506203-001 Matrix: Groundwater


102

Surr: 1-Bromo-4-fluorobenzene

Client Sample ID: MW-101							
Analyses	Result	RL	Qual	Units	DF	Da	ite Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Bato	h ID: 11	080	Analyst: EC
Diesel (Fuel Oil)	ND	50.0		μg/L	1	6/19/	/2015 5:28:00 PM
Diesel Range Organics (C12-C24)	157	50.0		μg/L	1	6/19/	2015 5:28:00 PM
Heavy Oil	ND	99.9		μg/L	1	6/19/	2015 5:28:00 PM
Surr: 2-Fluorobiphenyl	85.1	50-150		%REC	1	6/19/	2015 5:28:00 PM
Surr: o-Terphenyl	62.3	50-150		%REC	1	6/19/	2015 5:28:00 PM
NOTES:							
DRO - Indicates the presence of unreso	olved compounds el	luting from dod	ecane throu	ugh tetracosa	ane (C12-0	C24).	
Gasoline by NWTPH-Gx				Bato	h ID: R2	3135	Analyst: BC
Gasoline	3,900	500	D	μg/L	10	6/24/	/2015 5:15:00 PM
Surr: 4-Bromofluorobenzene	104	65-135		%REC	1	6/23/	2015 11:18:00 PM
Surr: Toluene-d8	97.8	65-135		%REC	1	6/23/	2015 11:18:00 PM
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Bato	h ID: R2	3136	Analyst: BC
Benzene	30.7	1.00		μg/L	1	6/23/	/2015 11:18:00 PM
Toluene	2.13	1.00		μg/L	1	6/23/	2015 11:18:00 PM
Ethylbenzene	27.6	1.00		μg/L	1	6/23/	2015 11:18:00 PM
m,p-Xylene	5.14	1.00		μg/L	1	6/23/	2015 11:18:00 PM
o-Xylene	1.14	1.00		μg/L	1	6/23/	2015 11:18:00 PM
Surr: Dibromofluoromethane	93.9	77.4-147		%REC	1	6/23/	2015 11:18:00 PM
Surr: Toluene-d8	95.4	40.1-139		%REC	1	6/23/	2015 11:18:00 PM

64.2-128

%REC

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: SLU Marrio	tt						Diesel a	nd Heavy	Oil by NW	TPH-Dx/I	Ox Ext
Sample ID: 1506194-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 6/18/20 1	15	RunNo: 23 ()92	
Client ID: BATCH	Batch ID: 11080					Analysis Date	e: 6/19/20	15	SeqNo: 437	7448	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	2,490	50.0						2,250	10.3	30	
Heavy Oil	ND	100						0		30	
Surr: 2-Fluorobiphenyl	75.6		79.97		94.5	50	150		0		
Surr: o-Terphenyl	42.6		79.97		53.3	50	150		0		
Sample ID: LCS-11080	SampType: LCS			Units: µg/L		Prep Date	e: 6/18/20 ′	15	RunNo: 23 0	092	
Client ID: LCSW	Batch ID: 11080					Analysis Date	e: 6/19/20	15	SeqNo: 437	7456	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	835	50.0	999.8	0	83.5	65	135				
Surr: 2-Fluorobiphenyl	68.1		79.98		85.1	50	150				
Surr: o-Terphenyl	60.7		79.98		75.9	50	150				
Sample ID: MB-11080	SampType: MBLK			Units: µg/L		Prep Date	e: 6/18/20 °	15	RunNo: 23 ()92	
Client ID: MBLKW	Batch ID: 11080					Analysis Date	e: 6/19/20	15	SeqNo: 437	7457	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	99.9									
Surr: 2-Fluorobiphenyl	46.5		79.93		58.2	50	150				
Surr: o-Terphenyl	52.7		79.93		66.0	50	150				

Date: 6/25/2015

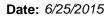
Work Order: 1506203

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marrio	ott								Gasoline	by NWT	PH-G
Sample ID: 1506209-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 6/23/201	5	RunNo: 231	35	
Client ID: BATCH	Batch ID: R23135					Analysis Date	e: 6/23/201	5	SeqNo: 438	3707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	24.0		25.00		96.0	65	135		0	0	
Surr: 4-Bromofluorobenzene	25.6		25.00		103	65	135		0	0	
Sample ID: LCS-R23135	SampType: LCS			Units: µg/L		Prep Date	e: 6/23/201	5	RunNo: 23 1	35	
Client ID: LCSW	Batch ID: R23135					Analysis Date	e: 6/23/201	5	SeqNo: 438	3717	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	407	50.0	500.0	0	81.3	65	135				
Surr: Toluene-d8	24.0		25.00		95.9	65	135				
Surr: 4-Bromofluorobenzene	25.6		25.00		102	65	135				
Sample ID: MB-R23135	SampType: MBLK			Units: µg/L		Prep Date	e: 6/23/201	5	RunNo: 23 1	35	
Client ID: MBLKW	Batch ID: R23135					Analysis Date	e: 6/23/201	5	SeqNo: 438	3718	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0									
Surr: Toluene-d8	24.2		25.00		96.6	65	135				
Surr: 4-Bromofluorobenzene	26.4		25.00		105	65	135				

Date: 6/25/2015


Work Order: 1506203

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott						Volatile	e Organi	c Compou	nds by EP	'A Metho	a 826
Sample ID: 1506209-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 6/23/20	15	RunNo: 231	36	
Client ID: BATCH	Batch ID: R2313	6				Analysis Date	e: 6/23/20	15	SeqNo: 438	8679	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	24.1		25.00		96.5	77.4	147		0		
Surr: Toluene-d8	23.5		25.00		93.9	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		102	64.2	128		0		
Sample ID: LCS-R23136	SampType: LCS			Units: µg/L		Prep Date	e: 6/23/20	15	RunNo: 23 1	36	
Client ID: LCSW	Batch ID: R2313	6				Analysis Date	e: 6/23/20	15	SeqNo: 438	8687	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.2	1.00	20.00	0	96.0	69.3	132				
Toluene	19.8	1.00	20.00	0	99.2	61.3	145				
Ethylbenzene	19.9	1.00	20.00	0	99.4	72	130				
m,p-Xylene	41.1	1.00	40.00	0	103	70.3	134				
o-Xylene	20.2	1.00	20.00	0	101	72.1	131				
Surr: Dibromofluoromethane	24.6		25.00		98.4	77.4	147				
Surr: Toluene-d8	24.3		25.00		97.2	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.6		25.00		103	64.2	128				
Sample ID: MB-R23136	SampType: MBLK			Units: μg/L		Prep Date	e: 6/23/20	15	RunNo: 23 1	36	
Client ID: MBLKW	Batch ID: R2313	6		_		Analysis Date	e: 6/23/20	15	SeqNo: 438	8688	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott	t					Volatil	e Organ	ic Compou	nds by EP	A Metho	d 8260
Sample ID: MB-R23136	SampType: MBLK			Units: µg/L		Prep Da	te: 6/23/2 0	15	RunNo: 231	136	
Client ID: MBLKW	Batch ID: R23136					Analysis Da	te: 6/23/20	15	SeqNo: 438	3688	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	ND	1.00									
Surr: Dibromofluoromethane	24.1		25.00		96.2	77.4	147				
Surr: Toluene-d8	23.8		25.00		95.2	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	26.0		25.00		104	64.2	128				

Sample ID: 1506234-002BMS	SampType: MS			Units: µg/L		Prep Dat	te: 6/24/20	15	RunNo: 23 1	136	
Client ID: BATCH	Batch ID: R23136					Analysis Da	te: 6/24/20	15	SeqNo: 438	3740	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	18.6	1.00	20.00	0	93.0	65.4	138				
Toluene	18.8	1.00	20.00	0	94.1	64	139				
Ethylbenzene	20.9	1.00	20.00	0	105	64.5	136				
m,p-Xylene	41.7	1.00	40.00	0	104	63.3	135				
o-Xylene	19.9	1.00	20.00	0	99.4	65.4	134				
Surr: Dibromofluoromethane	24.2		25.00		96.9	77.4	147				
Surr: Toluene-d8	23.9		25.00		95.4	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.7		25.00		103	64.2	128				

Sample Log-In Check List

С	lient Name:	GEI1	Work Order Numb	oer: 1506203	
Lo	ogged by:	Erica Silva	Date Received:	6/18/2015	5 1:30:00 PM
Cha	in of Cust	<u>ody</u>			
1.	Is Chain of C	sustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	Client		
Log	ln .				
	Coolers are p	present?	Yes 🗸	No 🗌	NA \square
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌	
5.		Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No \square	Not Required ✓
6.	Was an atter	mpt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌
7.	Were all item	ns received at a temperature of >0°C to 10.0°C*	Yes	No 🗹	na 🗆
_	C		ole received straight		
_		proper container(s)?	Yes ✔ Yes ✔	No □ No □	
9.		mple volume for indicated test(s)?			
		properly preserved?		No ∟ No ✓	NA 🗆
11.	was preserv	ative added to bottles?	Yes 📙	INO 💌	NA 🗀
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗸	NA \square
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🗸	No 🗌	
Spe	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date	e:		
	By Who	om: Via:	eMail Pho	one 🗌 Fax	☐ In Person
	Regardi	ing:			
	Client Ir	nstructions:			
19.	Additional rer	marks:			
	Information				

Item #	Temp °C
Cooler	14.3
Sample	17.6
Temp Blank	19.1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

-
<
5
5
<
>
=
en.
100
-
-
0
-
=
Di
=
-
DJ.
-
~
-
-
0
21
_
-
-
0
3
-

Tata Complete Nowthern Street Street		Dote/Time		Received			Annual Contract	Section .		/
			4	1	1	(1	Date/Time	1	Relibrationed
	8/5 120	Date/Time	6	Pecelyed		0	ると	なっ	中	Man .
	on the following beginess day.	on days.)	used if samples are repaired when the days.	1	3b (A fee may be	Disposal by Lab (also	力の	Neturn b	(0)	Sample Disposal
Special Remarks:	Turn-around times for samples received after 4 Ditom will brein	Nitrate+Nitrite	Flagade	O-Phosphate	Bramide	Sulfate	Chloride	e Mitrite	Nitrate	***Anions (Circle):
Pb Sb Se Sr Sn Ti Ti U V Zn	High Mig Min Mo No No	Be Ca Cd Cd Cd Cd Fe	AX B Ba	Individual: As Al	TAL	Priority Pollutants	RCRA-8 Prio	MTCA-5 R	(Circle):	"Metals Analysis (Circle):
										10
										9
										OR-
										,
										A
										9
										2
			>		CW	10556	1811		101	NW-
				Service	Sample Type [Marrid]*	Sample Time (Me	Sample			Sample Name
- Waste Waster, SW - Strom When	ter, Six Ground Water, WW = Watte Water,	4.44	S 3	SO = Sediment, SL = Solid,	S = Soil,	ver, P+Product,	B = Bulk, D = Other,	AQ « Aqueous, B = I	A=Air, AQ+	c Codes:
78	F	Reports To (PM): JESS	Reports				anna	same.	t	City, State, Zip
	6	739	toration:				0	0	1	Address
collected by: Qui Cicking	A NOCKOOT	No. 307	Project No:			3	ende	Sectoremen	0	Client
	of.	Page	5	Date: (0/18/15	Date		Tel: 206-352-3790 Fax: 206-352-7178	Tel: 20 Fax: 20	98103	3600 Fremont Ave N. Seattle, WA 98103
1506203	Laboratury Praject No (internal):	Laboratus				770	Annius and	447	ı.	
Chain of Custody Record	2					+	5		T	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

GeoEngineers, Inc. - RedmondJessica Smith
8410 154th Ave. NE
Redmond, WA 98052

RE: SLU Marriott Lab ID: 1506304

June 30, 2015

Attention Jessica Smith:

Fremont Analytical, Inc. received 2 sample(s) on 6/26/2015 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

Date: 06/30/2015

CLIENT: GeoEngineers, Inc. - Redmond Work Order Sample Summary

Project: SLU Marriott Lab Order: 1506304

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1506304-001
 MW-2-150626
 06/26/2015 12:56 PM
 06/26/2015 2:41 PM

 1506304-002
 Trip Blank
 06/26/2015 9:34 AM
 06/26/2015 2:41 PM

Case Narrative

WO#: **1506304**Date: **6/30/2015**

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Marriott

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1506304**

Date Reported: 6/30/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

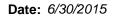
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1506304**

Date Reported: 6/30/2015

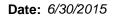

Client: GeoEngineers, Inc. - Redmond Collection Date: 6/26/2015 12:56:00 PM

Project: SLU Marriott

Lab ID: 1506304-001 Matrix: Groundwater

Client Sample ID: MW-2-150626

Analyses	Result	RL	Qual	Units	DF	- Da	te Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batc	h ID:	11169	Analyst: EC
Diesel (Fuel Oil)	280	49.9		μg/L	1	6/29	/2015 8:39:00 PM
Heavy Oil	ND	99.8		μg/L	1	6/29	/2015 8:39:00 PM
Surr: 2-Fluorobiphenyl	66.1	50-150		%REC	1	6/29	/2015 8:39:00 PM
Surr: o-Terphenyl	66.8	50-150		%REC	1	6/29	/2015 8:39:00 PM
Gasoline by NWTPH-Gx				Batc	h ID:	R23276	Analyst: BC
Gasoline	ND	50.0		μg/L	1	6/28	/2015 1:40:00 AM
Surr: 4-Bromofluorobenzene	89.8	65-135		%REC	1	6/28/2015 1:40:00 AM	
Surr: Toluene-d8	94.0	65-135		%REC	1	6/28	/2015 1:40:00 AM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batc	h ID:	R23274	Analyst: BC
Benzene	ND	1.00		μg/L	1	6/28	/2015 1:40:00 AM
Toluene	ND	1.00		μg/L	1	6/28	/2015 1:40:00 AM
Ethylbenzene	ND	1.00		μg/L	1	6/28	/2015 1:40:00 AM
m,p-Xylene	ND	1.00		μg/L	1	6/28	/2015 1:40:00 AM
o-Xylene	ND	1.00		μg/L	1	6/28	/2015 1:40:00 AM
Surr: Dibromofluoromethane	101	77.4-147		%REC	1	6/28	/2015 1:40:00 AM
Surr: Toluene-d8	96.6	40.1-139		%REC	1	6/28	/2015 1:40:00 AM
Surr: 1-Bromo-4-fluorobenzene	92.4	64.2-128		%REC	1	6/28	/2015 1:40:00 AM

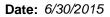


QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

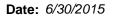
Project: SLU Marrio	ott						Diesel a	and Heavy	Oil by NW	TPH-Dx/[Ox Ext
Sample ID 1506304-001BDUP	SampType: DUP			Units: µg/L		Prep Date	6/26/20)15	RunNo: 232	292	
Client ID: MW-2-150626	Batch ID: 11169					Analysis Date	: 6/29/20	15	SeqNo: 44	1185	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	307	49.7						279.5	9.27	30	
Heavy Oil	ND	99.5						0		30	
Surr: 2-Fluorobiphenyl	55.5		79.58		69.7	50	150		0		
Surr: o-Terphenyl	55.8		79.58		70.1	50	150		0		
Sample ID LCS-11169	SampType: LCS			Units: µg/L		Prep Date	: 6/26/20)15	RunNo: 232	292	
Client ID: LCSW	Batch ID: 11169					Analysis Date	6/29/20)15	SeqNo: 44	1190	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	768	49.7	994.6	0	77.2	65	135				
Surr: 2-Fluorobiphenyl	63.7		79.57		80.1	50	150				
Surr: o-Terphenyl	57.9		79.57		72.7	50	150				
Sample ID MB-11169	SampType: MBLK			Units: µg/L		Prep Date	: 6/26/20)15	RunNo: 232	292	
Client ID: MBLKW	Batch ID: 11169					Analysis Date	6/29/20)15	SeqNo: 44	1191	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Surr: 2-Fluorobiphenyl	55.2		80.00		69.0	50	150				
Surr: o-Terphenyl	56.4		80.00		70.5	50	150				



QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Project: SLU Ma	rriott								Gasoline	by NWT	PH-G
Sample ID LCS-R23276	SampType: LCS			Units: μg/L		Prep Dat	e: 6/27/2 0)15	RunNo: 23 2	 276	
Client ID: LCSW	Batch ID: R23276					Analysis Dat			SeqNo: 440	0921	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	479	50.0	500.0	0	95.7	65	135				
Surr: Toluene-d8	27.0		25.00		108	65	135				
Surr: 4-Bromofluorobenzene	24.7		25.00		99.0	65	135				
Sample ID 1506307-001ADU	P SampType: DUP			Units: μg/L		Prep Dat	e: 6/28/2 0)15	RunNo: 232	276	
Client ID: BATCH	Batch ID: R23276					Analysis Dat	e: 6/28/2 0)15	SeqNo: 440	0923	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	25.4		25.00		102	65	135		0	0	
Surr: 4-Bromofluorobenzene	25.5		25.00		102	65	135		0	0	
Sample ID MB-R23276	SampType: MBLK			Units: µg/L		Prep Dat	e: 6/27/20)15	RunNo: 232	276	
Client ID: MBLKW	Batch ID: R23276					Analysis Dat	e: 6/27/2 0)15	SeqNo: 440	0925	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0									
Surr: Toluene-d8	28.5		25.00		114	65	135				
Surr: 4-Bromofluorobenzene	23.4		25.00		93.7	65	135				



QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond

Volatile Organic Compounds by EPA Method 8260

Project: SLU Marriott						Volatile	Organi		nds by EP	A Mictilo	u 020
Sample ID 1506293-003AMS	SampType: MS			Units: µg/L		Prep Date	6/28/20	15	RunNo: 232	274	
Client ID: BATCH	Batch ID: R23274					Analysis Date	6/28/20	15	SeqNo: 440	888	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	21.2	1.00	20.00	0	106	65.4	138				
Toluene	18.0	1.00	20.00	0.05210	89.6	64	139				
Ethylbenzene	21.1	1.00	20.00	0	105	64.5	136				
m,p-Xylene	40.6	1.00	40.00	0	102	63.3	135				
o-Xylene	21.1	1.00	20.00	0.9915	101	65.4	134				
Surr: Dibromofluoromethane	26.4		25.00		106	77.4	147				
Surr: Toluene-d8	22.8		25.00		91.1	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		101	64.2	128				
Sample ID LCS-R23274	SampType: LCS			Units: µg/L		Prep Date	: 6/27/20	15	RunNo: 232	274	
Client ID: LCSW	Batch ID: R23274					Analysis Date	6/27/20	15	SeqNo: 440	901	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	20.5	1.00	20.00	0	102	69.3	132				
Toluene	19.7	1.00	20.00	0	98.7	61.3	145				
Ethylbenzene	20.2	1.00	20.00	0	101	72	130				
m,p-Xylene	37.2	1.00	40.00	0	93.0	70.3	134				
o-Xylene	18.6	1.00	20.00	0	93.0	72.1	131				
Surr: Dibromofluoromethane	26.7		25.00		107	77.4	147				
Surr: Toluene-d8	25.0		25.00		100	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	24.6		25.00		98.5	64.2	128				
Sample ID MB-R23274	SampType: MBLK			Units: µg/L		Prep Date	: 6/27/20	15	RunNo: 232	274	
Client ID: MBLKW	Batch ID: R23274					Analysis Date	6/27/20	15	SeqNo: 440	902	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									

QC SUMMARY REPORT

CLIENT: GeoEngineers, Inc. - Redmond **SLU Marriott**

Volatile Organic Compounds by EPA Method 8260

Project: SLU	J Marriott						Volatil	e Organ	ic Compoui	nds by EP	A Metho	d 8260
Sample ID MB-R23274	S	ampType: MBLK			Units: µg/L		Prep Dat	e: 6/27/2 0	15	RunNo: 232	 274	
Client ID: MBLKW	В	atch ID: R23274					Analysis Da	te: 6/27/2 0	15	SeqNo: 440)902	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene		ND	1.00									
Surr: Dibromofluorome	thane	25.6		25.00		102	77.4	147				
Surr: Toluene-d8		27.4		25.00		110	40.1	139				
Surr: 1-Bromo-4-fluoro	benzene	24.2		25.00		96.8	64.2	128				

Sample ID 1506307-001ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 6/28/2 0	15	RunNo: 232	274	
Client ID: BATCH	Batch ID: R23274				,	Analysis Dat	e: 6/28/2 0	15	SeqNo: 440	0904	
Analyte	Result	RL	SPK value SF	PK Ref Val %	REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	25.3		25.00		101	77.4	147		0		
Surr: Toluene-d8	23.9		25.00	9	95.6	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	26.3		25.00		105	64.2	128		0		

Sample Log-In Check List

С	lient Name:	GEI1	Work Order Numb	er: 1506304	
Lo	ogged by:	Clare Griggs	Date Received:	6/26/2015	5 2:41:00 PM
Cha	nin of Custo	<u>ody</u>			
1.	Is Chain of C	ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	Client		
Log	ı İn				
	Coolers are p	present?	Yes 🗹	No 🗌	na \square
4.	Shipping cont	tainer/cooler in good condition?	Yes 🗹	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes 🗹	No 🗌	na 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗹	No \square	
9.	Sufficient san	mple volume for indicated test(s)?	Yes 🗹	No 🗌	
10.	Are samples	properly preserved?	Yes 🗹	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗌
12.	Is there head	space in the VOA vials?	Yes	No 🗹	na 🗆
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗆	
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No \square	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🗹	No \square	
Spe	cial Handli	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person	Notified: Date			
	By Who	m: Via:	eMail Pho	one 🗌 Fax	☐ In Person
	Regardi	ng:			
		nstructions:			
19.	Additional ren	narks:			

Item Information

Item #	Temp ⁰C
Cooler	1.6
Sample	8.6
Temp Blank	7.9

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

www.fremontanalytical.com

Semple Disposal:

Client