CSID 4775

NFA

WORKSHEET 1 SUMMARY SCORE SHEET

Note: This document currently has no provision for sediment route scoring.

Site Name/Location (City, County, Section/Township/Range):

Dunkin Diesel, 5303 Bickford, Snohomish, Snohomish County, 2/28N/5E

Site Description (Include management areas, compounds of concern, and quantities):

The building was constructed in 1967 and used as a truck repair business. A complaint was filed with the Department of Ecology in December of 1989. The company was alleged to be discharging oil onto the ground. A site visit by Ecology revealed heavy oil contamination around the waste oil tank filler neck and moderate contamination at the outlet at the oil/water separator to the ditch behind the property. The drainage ditch on the east side of the property empties into some wetlands north of the property. A letter was sent to Chuck Dunkin indicating that his property was being added to Ecology's list of known or suspected contaminated sites. The site was listed as confirmed for petroleum products in soil and surface water. Suspected for metals, petroleum products non-halogenated solvents in soil, groundwater, sediment and surface water. In August of 1994, AGI Technologies visited adjacent property owned by Bickford Ford Mercury and sampled ditch and found petroleum products in ditch that exceeded Model Toxics Control Act cleanup levels. A Site Hazard Assessment was conducted by the Snohomish Health District on November 6, 1997. One sample collected in ditch area exceeded cleanup levels for heavy oils and cadmium. Dunkin Diesel was given a six month extension to conduct a cleanup of the ditch area. Some cleanup was conducted of the ditch area. A followup site visit and sampling event revealed heavy oil contamination in all four samples collected in the ditch. One sample also showed diesel contamination. Two metals, lead and cadmium, were collected in two samples but did not exceed cleanup levels. Air Route was not scored because area adjacent to the site is not residential.

ROUTE SCORES:

Surface Water/Human Health:	<u>14.2</u>	Surface Water/Environ.:	<u>25.8</u>
Air/Human Health:	<u>NS</u>	Air/Environmental:	<u>NS</u>
Ground Water/Human Health:	<u>20.6</u>		

OVERALL RANK: 5

WORKSHEET 2 ROUTE DOCUMENTATION

1. SURFACE WATER ROUTE

List those substances to be <u>considered</u> for scoring:Source: <u>2,3,13</u>

WTPH Diesel

Explain basis for choice of substance(s) to be <u>used</u> in scoring.

WTPH Diesel will be used in scoring the surface water route, as it's measured concentration exceeded MTCA cleanup in the sediments and soils in the drainage ditch and is available due to less than perfect containment.

List those management units to be <u>considered</u> for scoring:Source: <u>2,3,13</u>

Contaminated surface soils

Explain basis for choice of unit to be <u>used</u> in scoring.Source: <u>2,3, 13</u>

Contaminated surface soils will be used as the measured concentration of diesel was from this management unit. No containment of this unit was observed allowing contaminants to be available to the surface water pathway...

2. AIR ROUTE

List those substances to be <u>considered</u> for scoring:Source:_

Not applicable to site/not scored.

Explain basis for choice of substance(s) to be <u>used</u> in scoring.

List those management units to be <u>considered</u> for scoring:Source:_

Explain basis for choice of unit to be <u>used</u> in scoring.Source:_

3. GROUND WATER ROUTE

List substances to be <u>considered</u> for scoring:

Source: 2,3

Benzene, xylenes, diesel, gasoline, lead, benzo(a)pyrenes, chrysene, and other carcinogenic polyaromatic hydrocarbons.

,

Explain basis for choice of substance(s) to be used in scoring.

The above listed substances will be used in scoring the ground water route, as their measured concentrations exceeded MTCA cleanup levels and are available due to less than perfect containment.

List management units to be <u>considered</u> in scoring: Source: <u>2.3</u>

Contaminated subsurface soil and ground water

Explain basis for choice of unit used in scoring.Source: 2.3

Contaminated subsurface soil will be used in scoring as the measured concentration of mercury was from this management unit. No containment was observed of this unit allowing contaminants to be available to the ground water pathway.

WORKSHEET 4 SURFACE WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

	Drinking Water Standard		Acute Toxicity		Chronic Toxicity		Carcinog	genicity	
Substance	(ug/l)	Val.	(mg/kg-bw)	_Val	(mg/kg/day	Val.	WOE	PF	Va
Diesel	20	6	490	5	0.004	3	Х	х	NC
-									• .
						Lliabo	Source:		
							est Value: _. s Points?		
		4					-		6
1.2 Environmental	Toxicity	۰ 					I Toxicity		6
1.2 Environmental	Toxicity (X) Freshwat () Marine Acute Criteria	er	Non-human I Acute Toxicit		lian	Fina	I Toxicity	/alue	
	(X) Freshwat () Marine Acute	er Val.			lian	Fina	-	/alue	
1.2 Environmental Substance Diesel	(X) Freshwat () Marine Acute Criteria		Acute Toxicit	у	lian	Fina	I Toxicity	/alue	
Substance	(X) Freshwat () Marine Acute Criteria (ug/l)	Val.	Acute Toxicit (mg/kg)	y Val.	lian	Fina	I Toxicity	/alue	
Substance	(X) Freshwat () Marine Acute Criteria (ug/l)	Val.	Acute Toxicit (mg/kg)	y Val.	lian	Fina	I Toxicity	/alue	

1.3 Substance quantity Explain basis:

Unknown quantity

Source: <u>2,3,4</u> Value: <u>1</u>

WORKSHEET 4 (CONTINUED) SURFACE WATER ROUTE

2.0 MIGRATION POTENTIAL

	Containment Explain basis:	Spill and co	ntaminated soil	I	Source: <u>2,3,4</u>	Value: _	10
2.2 S	Surface Soil Permeabi	ility:	Sandy gravels		Source: 2,3,4,10	Value:	1
2.3 T	otal Annual Precipitat	tion	46 inches		Source: <u>4,6</u>	Value:	3
2.4 N	/lax. 2-Yr/24-hour Pre	cipitation	1.5 inches		Source: 4	Value:	2
2.5 F	lood Plain:	Not in flood	plain		Source: 2,3,4	Value:	0
2.6 T	errain Slope:	3.00%			Source: <u>3,4,7</u>	Value:	1
3.0 TA	ARGETS						
3.1 D	istance to Surface W	ater:	200 feet to dra	linage area	Source: 2,3,4,7	Value:	10
3.2 P	opulation Served with	nin 2 miles:	0		Source: 8	Value:	0
3.3 A	rea Irrigated within 2	miles:	0		Source: 8	Value:	0
3.4 D	vistance to Nearest Fig	shery Resou	rce: 700) feet to Creek	Source: 2,4,12	Value:	12
	vistance to, and Name nment (s)	• •	est Sensitive feet to wetland	S	Source: <u>2,4,7</u>	Value: _	12

4.0 RELEASE

 Explain basis for scoring a release to surface
 Source: 2,3,4 Value: 5

 water:
 Visible signs of petroleum products on drainage and sediment

 testing demonstrating presence of hydrocarbons
 Source: 2,3,4 Value: 5

WORKSHEET 6 GROUND WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

ι,

		Drinking Water Standard		Acute Toxicity		Chronic Toxicity	Ca	rcinogeni	city	
Sub	stance	(ug/l)	Val.	(mg/kg-bw)	Val.	(mg/kg/day	Val.	WOE	PF	Val.
Dies	sel	20	6	490	5	0.004	3	х	х	ND
	- <u> </u>						2 Bonus	Source: st Value: s Points?	6	
1.2	Mobility (Use numbe Cations/Anions	rs to refer to al	oove liste	d substances)				2,3,4,5	-	<u> 6 </u>
	OR Solubility (mg/l)	30 mg/l=1		·						
1.3	Substance Quantity Explain basis:	Unknown qu	antity - d	efault value			Source:	2,3,4	Value:	1
2.0	MIGRATION POTEN	ΓIAL								
2.1	Containment Explain basis:	Discharge a	nd contar	ninated soil			Source:	1,2,3,4	Value:	10
2.2	Net Precipitation:	21 inches					Source:	4,6	Value:	3
2.3	Subsurface Hydraulic	Conductivity:	Silty Clay	/			Source:	2,3,4	Value:	2
2.4	Vertical Depth to Gro	und Water:	9 feet				Source:	2,4	Value:	8

WORKSHEET 6 GROUND WATER ROUTE

3.0 TARGETS

3.1	Ground Water Usage: Private with public available for hookup.	Source: <u>4,8,9,11</u> Value: <u>4</u>
3.2	Distance to Nearest Drinking Water Well: about 1400 feet	Source: 4,11 Value: 3
3.3	Population Served within 2 Miles: sq root of $215 = 14.7$	Source: <u>4,8,9,11</u> Value: <u>15</u>
3.4	Area Irrigated by (Groundwater) Wells none within 2 miles:	Source: 4,8 Value: 0
4.0	RELEASE	

Explain basis for scoring a release to ground water: No confirmed release documented Source: 1,2,3,4 Value: 0

Sources Used in Scoring

- 1. Washington Department of Ecology, Initial Investigation, Dunkin Diesel, Snohomish, WA, January, 1991.
- 2. Snohomish Health District, Site Hazard Assessment, Dunkin Diesel, Snohomish, WA, November 6, 1997.
- 3. Snohomish Health District, Site Sampling, Dunkin Diesel, Snohomish, WA, June 2, 1998.
- 4. Washington Department of Ecology, WARM Scoring Manual, April, 1992.
- 5. Washington Department of Ecology, Toxicology Database for Use in Washington Ranking Method Scoring, January, 1992.
- 6. National Weather Service, Washington Climate Data, Snohomish County.
- 7. U.S.G.S. Topo. Map, East Edmonds Quad., 7.5 Min. Series, Photorev. 1981.
- 8. Washington Department of Ecology, Water Rights Information System (WRIS), November 4, 1992.
- 9. Washington Department of Health, Public Water System List, April 26, 1993.
- 10. Soil Conservation Service, Soil Survey of Snohomish County Area, July 1983.
- 11. Washington Department of Ecology, Well Logs, 1998.
- 12. Phone conversation with Tony Opperman of Dept of Fish and Wildlife
- 13. AGI Technologies, Environmental Assessment Results Snohomish Buildings, Inc. Parcel, Sept., 1994.

.

PATHWAY SCORING FORMULAE WITH WEIGHTING AND NORMALIZATION FACTORS

Air Route - Human Health Pathway

AIR = (SUB X 60/329) X {REL + (TAR X 35/85} / 24 = 0.00

where AIR = Pathway score for Air-Human Health = SUB = (Human Toxicity Value + 5) X (Containment +1) + Substance Quantity = 5REL = Release to Air = 0 TAR = Nearest population + Population within 1/2 mile = 0

0.00

Air Route - Environmental Pathway

(
where	AIR =	Pathway score for Air-Environmental =	
	SUB =	(Env. Toxicity Value + 5) X (Containment +1)	+ Substance Quantity =
		<u>5</u>	
	REL =	Release to Air = <u>0</u>	
	TAR =	Nearest Sensitive Environment =	<u>0</u>

Surface Water Route - Human Health Pathway

AIR = (SUB X 60/329) X {REL + (TAR X 35/85) / 24 =

SW = (SUB X 40/175) X {(MIG X 25/24)) + REL + (TAR X 30/115)} / 24 = 14.19

where

SW = Pathway Score for Surface Water-Human Health = SUB = (Human Toxicity + 3) X (Containment + 1) + Substance Quantity = 100 Soil Permability + Annual Precip. + Rainfall Frequency + MIG = Floodplain + Slope = 7 Release to the Surface Water = REL = 5 TAR = Distance to Surface Water + Population Served by Surface Water + Area Irrigated = 10

Dunkin Score Pathway copy

Table 2 (Continued)

Surface Water Route - Environmental Pathway

SW = (SUB X 40/175) X {(MIG X 25/24)) + REL + (TAR X 30/115)} / 24 = 25.80						
where	SW =	Pathway Score for Surface Water-Environmental =				
	SUB =	(Env. Toxicity + 3) X (Containment + 1) + Substance Quantity = 56				
	MIG =	Soil Permability + Annual Precip. + Rainfall Frequency + Floodplain + Slope = <u>7</u>				
	REL =	Release to the Surface Water = 5				
-	TAR =	Distance to Nearest Surface Water + Distance to Fisheries Resource + Distance to Sensitive Environment = <u>34</u>	4			

Ground Water Route - Human Health Pathway

GW = (SUB X 40/208) X {(MIG X 25/17) + REL + (TAR X 30/165)} / 24 = 20.56

GW =	Pathway Score For Ground Water-Human H	-lealth =			
SUB =	(Human Toxicity + Mobility + 3) X (Containment + 1) +				
	Substance Quantity = <u>111</u>				
MIG =	Depth to Aquifer + Net Precipitation + Hydra	aulic Conductivity =			
	<u>13</u>				
REL =	Release to the Ground Water =	<u>0</u>			
TAR =	Aquifer Use + Well Distance + Population S	Served +			
	Area Irrigated = 22				