APPENDIX I LNAPL Baildown Field Procedures, Methodology, Analysis

Table of Contents

3.0	BAIL-DOWN TEST RESULTS	. I-2
2.2.	Analytical Methods	. I-1
2.1.	Field Methods	. I-1
2.0	BAIL-DOWN TEST METHODOLOGY	. -1
1.0	LNAPL BAIL-DOWN TESTING AND ANALYSIS	. I-1
APPE	ENDIX I. LNAPL BAIL-DOWN FIELD PROCEDURS, METHODOLOGY, ANALYSIS	

LIST OF FIGURES

Figure I-1. LNAPL Bail-Down Test Data TL-MW-2 Figure I-2. LNAPL Bail-Down Test at TL-MW-2 (Huntley Method) Figure I-3. LNAPL Bail-Down Test at TL-MW-2 (Kirkman Method)

APPENDIX I LNAPL BAIL-DOWN FIELD PROCEDURES, METHODOLOGY, ANALYSIS

1.0 LNAPL BAIL-DOWN TESTING AND ANALYSIS

Bail-down tests in unconfined aquifers are commonly evaluated using the Bouwer and Rice methodology for groundwater slug tests (Bouwer and Rice 1976 and 1989). The Bouwer and Rice slug test analytical solution has been modified to estimate LNAPL transmissivity following one or more slug withdrawals (Huntley 2000; Kirkman 2012).

Based on this methodology, the purpose of the testing was to:

- Empirically and quantitatively evaluate the transmissivity of LNAPL in the geologic formation, and
- Assess the potential recoverability of LNAPL.

LNAPL transmissivity is a measure of the potential flux of LNAPL per unit drawdown, or the volume of LNAPL that travelling through a unit width of an aquifer per unit time per unit drawdown (units of length squared per time).

2.0 BAIL-DOWN TEST METHODOLOGY

2.1. Field Methods

The bail-down test was conducted by removing LNAPL from the test wells and measuring and recording the LNAPL recovery and associated groundwater response in the monitoring well following removal of the LNAPL. LNAPL bail-down tests were performed in four monitoring wells that had approximately one foot or more of LNAPL (TL-MW-2, TL-MW-4, TL-MW-5A and TL-MW-6). Three of these wells had marginal LNAPL thicknesses to conduct bail-down tests (LNAPL thicknesses in TL-MW-4, TL-MW-5A and TL-MW-6 ranged from 0.99 to 1.08 feet). Both air-LNAPL and LNAPL-water interfaces were measured following LNAPL removal. The bail-down field procedures were presented in GeoEngineers' "Final Work Plan for Supplemental Investigation, R.G. Haley International Site, Bellingham, Washington" (GeoEngineers 2012) and are based on the methodology of Lundy (2000). Measurements continued periodically until at least 80 percent of the original recorded LNAPL thickness recovered or for a maximum of 165 hours following initial removal of the LNAPL.

2.2. Analytical Methods

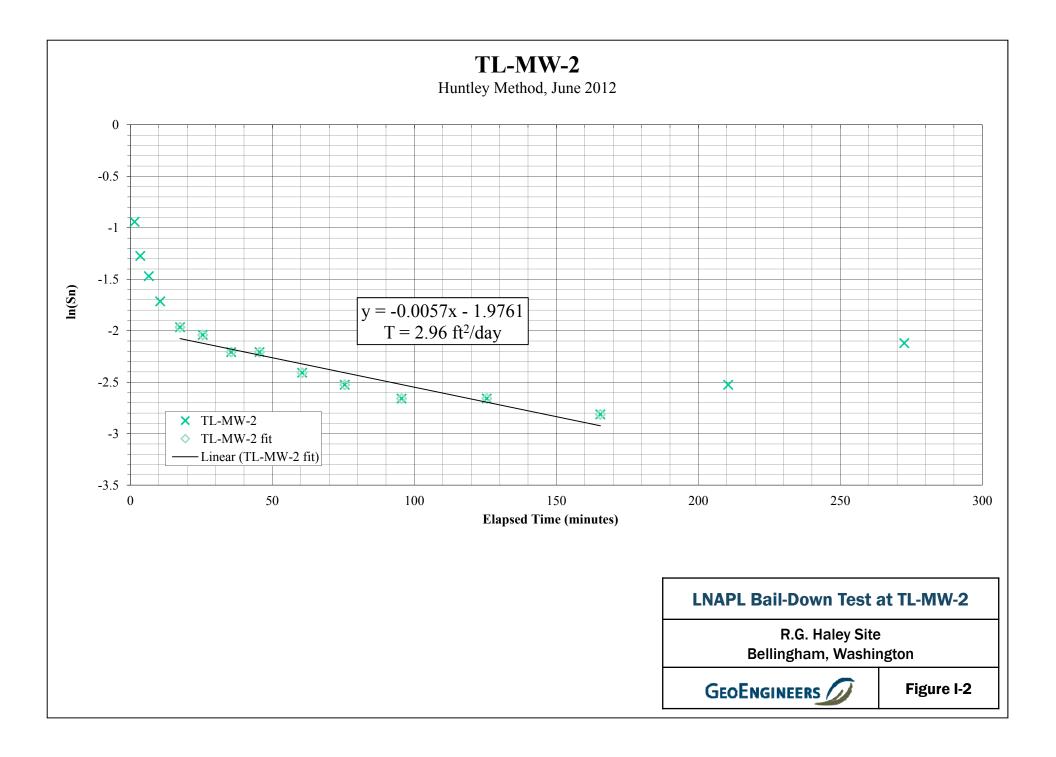
The Bouwer and Rice slug test method was developed to estimate hydraulic conductivity of aquifer materials from partially or fully-penetrating wells in unconfined aquifers (Bouwer and Rice 1976 and 1989). Huntley (2000) and Kirkman (2012) have derived LNAPL bail-down test analytical solutions by modifying the Bouwer and Rice method for estimating hydraulic conductivity. The Huntley method assumes the change in LNAPL thickness following slug withdrawal is due to a change in elevation of the air-LNAPL table, and that LNAPL withdrawal has a negligible effect on the groundwater potentiometric surface. The Kirkman method does not assume the groundwater potentiometric surface remains constant, and the ratio of the LNAPL drawdown to the LNAPL thickness is unique to each dataset and does not rely on pre-determined boundary conditions.

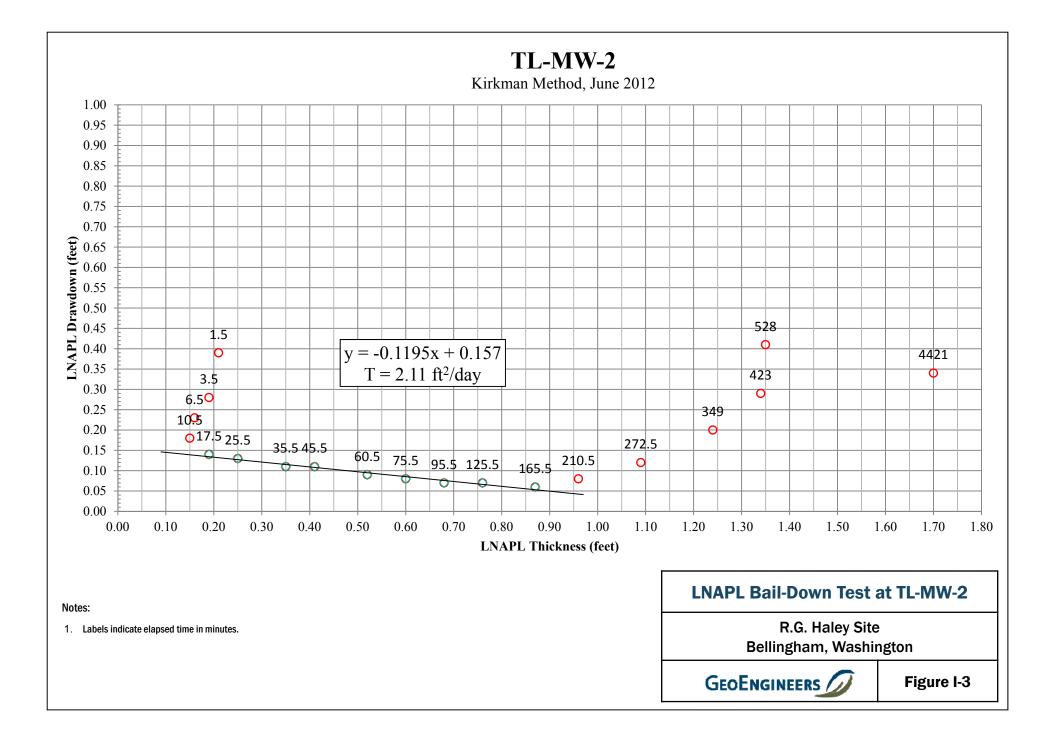
3.0 BAIL-DOWN TEST RESULTS

LNAPL bail-down tests were performed in monitoring wells TL-MW-2, TL-MW-4, TL-MW-5A, and TL-MW-6 to estimate the LNAPL transmissivity (T_n). Data from TL-MW-4, TL-MW-5A, and TL-MW-6 are not considered usable for transmissivity estimates because the LNAPL drawdown and LNAPL thickness changes were too small to allow the method of analysis to be used effectively for the purpose intended. For example, the LNAPL thickness recovered to less than 0.5 feet over the duration of the test which ranged from 14 hours to over six days.

Several factors could contribute to the LNAPL drawdown and thickness being inconsistent with theoretical response of LNAPL in a small diameter monitoring well after bail-down. Those factors include: fluctuating groundwater elevations due to tidal effects, insufficient early measurement data, insufficient LNAPL, and LNAPL transmissivities being too low to measure by the methods of analysis under tidally fluctuating conditions.

LNAPL bail down test data obtained from TL-MW-2 was evaluated using the methods derived by Huntley (2000) and Kirkman (2012). Air/LNAPL and LNAPL/groundwater interface measurements from the June 2012 bail-down test are shown in Figure I-1 which shows the observed LNAPL elevation drawdown data. This graph Indicates the potentiometric surface at 18 to 165 minutes elapsed time was stable and therefore the data for this well were deemed to be usable for the methods of analysis. A plot of LNAPL drawdown versus elapsed time is provided as Figure I-2 (used for the Huntley analysis). Figure I-3 is the plot of LNAPL drawdown versus thickness (used for the Kirkman analysis).


The estimated transmissivity values are presented below.


Monitoring Well TL-MW-2	Estimated LNAPL Transmissivity (Tn)
Huntley Method	2.96 ft ² per day
Kirkman Method	2.11 ft ² per day

Note: LNAPL specific gravity assumed 0.915 (Appendix J, 2012 laboratory report from PTS Laboratories).

Transmissivity estimates from TL-MW-2 appear to be reasonable considering conditions at the Site. Monitoring well TL-MW-2 is screened within a heterogeneous fill material consisting primarily of sand, silt, and non-native materials including wood, brick and coal. As a result, the estimated transmissivity may be limited to the immediate area surrounding monitoring well TL-MW-2. This conclusion is corroborated by the highly variable LNAPL thickness measurements between monitoring wells separated by small lateral distances.

APPENDIX J

LNAPL and Petrophysical Testing and UV Photograph of Core Samples

Table of Contents

APPENDIX J. LNAPL AND PETROPHYSICAL TESTING AND UV PHOTOGRAPH OF CORE SAMPLES LIST OF TABLES

Table J-1. Summary of Core UV Photography Interpretation and Free Product Mobility (FPM) Testing

LIST OF FIGURES

Figure J-1. Core UV Photograph TL-MW-14 Figure J-2. Core UV Photograph TL-MW-15 Figure J-3. PTS Corephoto Info Sheet

LIST OF EXHIBITS

Exhibit J-1. PTS Lab Report, June 2012 Exhibit J-2. Chromatograms and Chemical Analytical Data

APPENDIX J LNAPL AND PETROPHYSICAL TESTING

This appendix contains the following supporting information related to LNAPL testing and UV photography of core samples:

- 1. Data obtained during the 2012 Supplemental Investigation:
- Table J-1 Summary of Core UV Photography Interpretation and Free Product Mobility (FPM) Testing.
- Figure J-1: TL-MW-14 Core UV Photographs (June 2012) from 7.5 to 17.5 feet bgs interpreted with soil descriptions, porosity, and findings from FPM testing.
- Figure J-2: TL-MW-15 Core UV Photographs (June 2012) from 6.0 to 13.3 feet bgs interpreted with soil descriptions and findings from Free Product Mobility (FPM) testing.
- Figure J-3: PTS Corephoto information sheet.
- Exhibit J-1: PTS Laboratories analytical report for Stepped Free Product Mobility: Initial and Residual Saturations, TL-MW-14-7-7.5 and TL-MW-14-8-8.5; Initial and Residual Saturations, TL-MW-15-6-13.5 and TL-MW-14-10-10.5; Initial and Residual Saturations, TL-MW-14-11-11.5, and TL-MW-2 LNAPL sample obtained June 20, 2012 and analyzed for temperature, specific gravity, density and viscosity.
- 2. Oil and LNAPL Sample Chemical Analytical Data Reports and Chromatograms Obtained During Prior Studies:
- Exhibit J-2: LNAPL Chromatograms and Chemical Analytical Data
 - Petroleum hydrocarbon chromatograms for Haley UST oil samples obtained in 2000 and 2004 and chromatogram for carrier oil (P9 oi) standard.
 - Chemical analytical report (Manchester Laboratory) and chromatogram for UST oil sample obtained by Ecology in 2004. Ecology obtained this oil sample from the Haley UST in June 2004. The sample was analyzed for petroleum hydrocarbons/hydrocarbon identification. The laboratory reported that the "sample contains a highly aromatic #2 fuel oil range petroleum product along with what may be pentachlorophenol."
 - Chemical analytical report (Analytical Resources Inc.) for sample "Tank" of oil from Haley UST obtained February 10, 2000 by Douglas Management and analyzed for pentachlorophenol using GC/MS Methods.
 - Chemical analytical report (Pace Analytical) for sample "Oil" at beach oil seep obtained April, 2000 by Ecology and analyzed for dioxins/furans by EPA Method 8290 and chlorinated phenols by Draft EPA Method 8085. The water and the oil portions of the sample were separated before analysis.
 - Chemical analytical report (NCA) for UST oil Sample ID BWT-TS-01 and TL-MW-2 LNAPL Sample. GeoEngineers obtained oil sample BWT-TS-01 from the UST in the wood treating area of the Haley property on March 3, 2000. The samples were analyzed for SVOCs by EPA Method 8270.
 - Chemical analytical report (Spectra Laboratories) for TL-MW-4 LNAPL sample obtained in May 2000 analyzed for API gravity, specific gravity and kinematic viscosity.

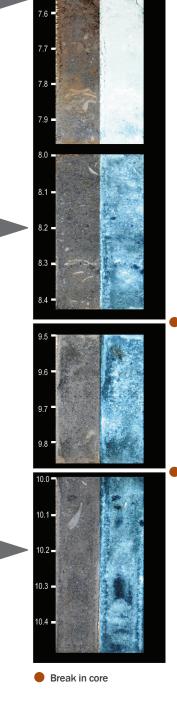
- Chemical analytical report (Sound Analytical Services Inc.) for TL-MW-4 LNAPL sample obtained May 3, 2000 and analyzed for HVOCs by EPA method 8260B, SVOCs by EPA Method 8270, Metals by EPA Method 6020 and TCLP Metals by EPA Method 6010, flash point by EPA Method 1010 and pH by EPA Method 9045.
- Chemical analytical report (Quanterra) May 15, 2000 for TL-MW-3 LNAPL sample obtained April 4, 2000 and analyzed for dioxins/furans by EPA Method 8290.
- Chemical analytical report (NCA) August 26, 2004 for UST-061504 oil sample from the Haley UST in June 2004 and analyzed by Frontier Analytical Laboratory for dioxins/furans by EPA Method 8290.
- Chemical analytical report (NCA) June 10, 2005 for TL-MW-2 LNAPL sample obtained on June 26, 2005 and analyzed for NWTPH-Dx, includes petroleum hydrocarbon chromatogram.

Table J-1

Summary of Core UV Photography Interpretation and Free Product Mobility (FPM) Testing

R.G. Haley Site

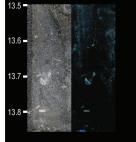
Bellingham, Washington

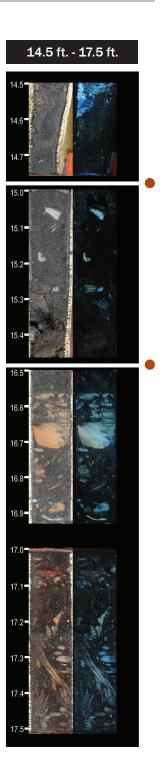

							FPM Res	sults as Report	ted by PTS (See La	b Report)
Exploration Identification	Sample Depth for Petrophysical Testing (feet bgs)	Soil Description	Visual Sheen Observations	Fluorescence Comments	Chemical Analytical Results	PTS Tested Depth	Total Porosity	Initial NAPL Saturation	Final NAPL Saturation at 1,000 rpm (revolutions per minute)	PTS Observation at End of Test (1,000 rpm)
TL-MW-14	7.75	Poorly graded gravel with sand and silt. Fine gravel, f-m sand. Dark brown.	MS, metallic to HS, rainbow.	Completely flaired white except for voids.	Not Tested	7.75 (spun in air)	38.7	8.9	8.1	Dark brown LNAPL produced. Produced water cloudy. (NAPL not produced at 250 or 500 RPM)
TL-MW-14	8.2	Poorly graded gravel with sand and silt. Fine gravel, f-m sand. Dark brown.	HS, rainbow.	Splotchy white fluorescence, fairly pervasive. Some rounder clasts do not fluoresce. Possible textural changes related to increased fluorescence but difficult to evaluate. Higher fluorescence seems to coincide with discolored (browner) areas on core suggesting preferential migration or sorption.	Not Tested	8.2 (spun in air)	41.3	3.1	2.9	Trace LNAPL produced. Produced water cloudy. [NAPL not produced at 250 or 500 RPM]
TL-MW-14	10.2	Silty sand with gravel. F-m Sand, f-c gravel, occ. Wood fragments.	HS, rainbow. Staining and petroleum-like odor.	Fluorescence more pervasive with higher intensity areas. Shell or wood fragment near 10.1 has less fluorescence. Possible discoloration coinciding with higher intensity	Not Tested	10.2 (spun under water)	37.8	9.0	9.0	No visible NAPL produced.
TL-MW-14	11.65	Poorly graded sand with gravel and silt. F-m sand, f-c gravel. Dark brown to black, occasional fresh brown wood fragments and white shell fragments.	HS, rainbow. Staining and petroleum-like odor.	Speckled fluorescence, more so on edge of core.	TPH-D = 17,770 mg/kg	11.6 (spun under water)	40.0	13.9	13.9	No visible NAPL produced.
TL-MW-15	7.72	Wood fragments	Stained, petroleum-like odor. HS, rainbow.	Fluorescence at top is suspected slough. At 7.5 - 7.7, fluorescence appears to be limited to wood fragments. Possible intergranular impacts starting at around 7.7.	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested
TL-MW-15	9.55	Wood fragments, dark brown.	Stained and petroleum- like odor. MS, metallic to HS, rainbow.	Fluorescence is pervsasive. Moderate from 9.03 to 9.24 and heavier from 9.25 to end. Clast at 9.38, no fluorescence. Overall less fluorescence associated with larger wood fragments. Higher fluorescence near edge of movement/smearing. Highest fluorescence between 9.34 and 9.8.	Not Tested	9.6 (spun under water)	48.2	15.9	15.9	No visible NAPL produced.
TL-MW-15	10.95	Wood fragments, dark brown.	Stained and petroleum- like odor. HS, rainbow.	Moderate to high fluorescence is pervasive. Perhaps less fluorescence in coarser fragments. Right side of core with less fluorescence may represent settling.	TPH-D = 6,100 mg/kg	10.95 (spun under water)	42.2	4.0	4.0	No visible NAPL produced.
TL-MW-15	11.55	Poorly graded sand with silt. m sand, occ shell and brown wood fragments.	Staining and petroleum- like odor. HS, rainbow to SS.	Pervasive but somewhat splotchy fluorescence except for coarser particles (no fluorescence).	Not Tested	11.6 (spun under water)	40	13.9	13.9	No visible NAPL produced.
TL-MW-15	12.1	Poorly graded sand. M sand. Occ shell and wood fragments.	SS	Only a few specs of fluorescence. Break in core or discontinuity at about 13.9.	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested

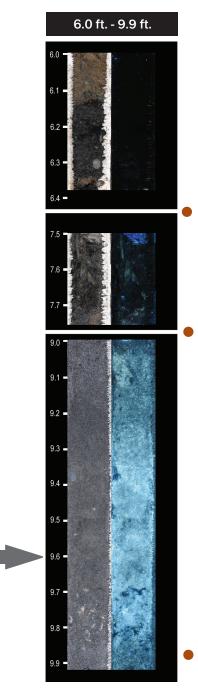
Description	Poorly graded gravel with sand and silt. Moderate to heavy sheen.
Total Porosity	38.7%
Initial NAPL Saturation	8.9%
Final NAPL Saturation at 1,000 RPM	8.1%
PTS Observation at	Dark brown LNAPL produced.
End of Test (1,000rpm)	Produced water cloudy. [NAPL not produced at 250
(_ , ••• , p ,)	or 500 RPM]

Description	Poorly graded gravel with sand and silt. Heavy sheen.	
Total Porosity	41.3%	
Initial NAPL Saturation	3.1%	
Final NAPL Saturation at 1,000 RPM	2.9%	
PTS Observation at End of Test (1,000rpm)	Trace LNAPL produced. Produced water cloudy. [NAPL not produced at 250 or 500 RPM]	

Description	Silty sand with gravel, oc- casional wood fragments. Heavy sheen.	
Total Porosity	37.8%	
Initial NAPL Saturation	9.0%	
Final NAPL Saturation at 1,000 RPM	9.0%	
PTS Observation at End of Test (1,000rpm)	No visible NAPL produced.	

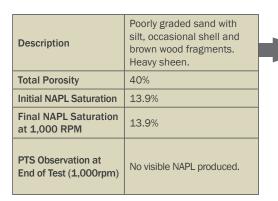



7.0 ft. - 10.5 ft.


Description	Poorly graded sand with gravel and silt, occasional fresh brown wood fragments and white shell fragments. Heavy sheen.
Total Porosity	40%
Initial NAPL Saturation	13.9%
Final NAPL Saturation at 1,000 RPM	13.9%
PTS Observation at End of Test (1,000rpm)	No visible NAPL produced.

ALLER IS

10.5 ft. - 13.9 ft.




	NH 16
Description	Wood fragments. Heavy sheen.
Total Porosity	42.2%
Initial NAPL Saturation	4.0%
Final NAPL Saturation at 1,000 RPM	4.0%
PTS Observation at End of Test (1,000rpm)	No visible NAPL produced.

Description	Wood fragments. Moderate to heavy sheen.	
Total Porosity	48.2%	
Initial NAPL Saturation	15.9%	
Final NAPL Saturation at 1,000 RPM	15.9%	
PTS Observation at End of Test (1,000rpm)	No visible NAPL produced.	

10.5 -		150
10.6 –		2
10.7 -		
10.8 –		•
10.9 -		
11.0 -		
11.1 -		
11.2 -		
11.3 -	- 8.*	1.
11.4 -		
11.5 -		

10.5 ft. - 11.5 ft.

Figure J-2

PTS Laboratories, Inc. • RBCA NOTE

Core Photography

October 2002

BORING: MW-1

5

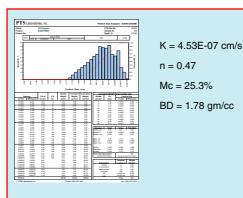
4

170.0

DESCRIPTION

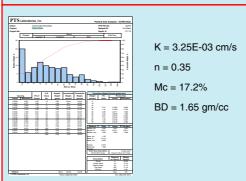
www.ptsgeolabs.com

Core photographs are high-detail engineering documents that provide ease of study and a permanent record of the subsurface. Optional ultraviolet (UV) photographs record free-product (NAPL) fluorescence. Frozen core is cut open using a horizontal bandsaw with a diamond-segmented blade. After cutting, the slabbed core is cleaned and prepared for photography. Most core is slabbed into 1/4-3/4 sections providing enough bulk rock for lithologic description and sufficient material for the analytical work.

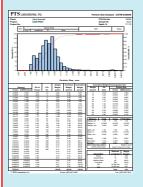

There are two common formats for displaying core. The first is a group setting with up to 15 feet of core photographed together and displayed on one 8"x10" sheet. Full-scale format is illustrated in foot-by-foot laminated strips. Custom formats are available.

Each photograph has a universal gray scale and color bar as color comparator. Ultraviolet light photos are colorcorrected using oil standards that are photographed with each project. All printing is performed onsite. Extreme care is made internally to color match the core with the prints. Onsite printing allows PTS Laboratories to meet quick turnaround times. PTS has been providing secure and confidential inhouse core photography and printing since 1984. Permanent archiving for all photographic negatives is included.

CORE PHOTOGRAPHY USES


- Visual correlation to index properties and field logs
- Site cross section correlation
- · Monitoring well installation
- Litigation support
- Future drilling investigations
- **Regulatory agency requirements**
- Ease of study
- Permanent records

Core images can also be presented electronically on CD-ROM that includes thumbnail, 1x, 2x, and 4x magnifications with lithologic description.




Silt, medium gray (N 5). Sand-6%, silt-76%, clay-18%. Subangular to rounded clay ripups (?) to 4cm in diameter throughout. Subangular to subrounded claystone or caliche clasts to 5mm in diameter, Very faint laminae present.

Contact between aquifer and aquatard at 170.9 ft BGS

Silty sandy cobble conglomerate, grayish brown (5 YR 3/2) and light brown (5 YR 5/6). Gravel-60%, sand-20%, silt-5%, clay-15%. Sand grains angular to subangular quartz, feldspar, and mafics. Subangular to subrounded rock cobbles to 50mm in diameter.

Moderately sorted, medium to coarse sand, moderate yellowish brown (10 YR 5/4). Sand grains angular to subrounded quartz with minor feldspar and mafics. Faint bedding and reddish brown staining.

PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Telephone: (562) 907-3607 • FAX: (562) 907-3610 PTS GeoLabs, Inc. • 4342 West 12th Street • Houston, Texas 77055 • Telephone: (713) 680-9467 • FAX: (713) 680-0763 Figure J-3

EXHIBIT J-1 PTS Lab Report, June 2012

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

October 19, 2012

Carla E. Brock GeoEngineers, Inc. 600 Stewart Street, Suite 1700 Seattle, WA 98101

Re: PTS File No: 42467 Physical Properties Data R.G. Haley International Site; 0356-114-06 T10

Dear Ms. Brock:

Please find enclosed report of Physical Properties data from analysis conducted on cores received from your R.G. Haley International Site; 0356-114-06 T10 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. Electronic versions of the core images and physical properties report have been uploaded to PTS Laboratories website, <u>www.ptslabs.com</u>. The cores remain in frozen storage and will be held indefinitely. Please note that core storage is currently being billed.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Rachel Spitz at (562) 347-2504.

Sincerely, PTS Laboratories

Michael Mark Brady, P.G. District Manager

Encl.

PTS Labc fories

Project	Name:
Project	Number:

R.G. Haley International Site 0356-114-06 T10

PTS File No: 42467

Client: GeoEngineers, Inc.

TEST PROGRAM - 20120912

CORE ID	Depth ft.	Core Recovery ft.	Slab and Core Photo	A/W Drng. Capillarity Pkg.	*Free Product Mobility	*Free Product Mobility Under Water	Viscosity/ Density at 70ºF	Water/NAPL Relative Permeability	
Method:		Plugs:	1/4:3/4	Hor. 1"	Hor. 1.5"	Hor. 1.5"	ASTM D1481, D445	Hor. 1.5"	Keep core frozen
Date Received: 20120621									240 mL LNAPL
TL-MW-2-062012	N/A	N/A					X		240 ML LINAPL
Date Received: 20120629 TL-MW-15_B-6-13.5	6.0-6.5	0.35	1	·					A
TL-MW-15_B-6-13.5	7.5-8.0	0.25	1						В
TL-MW-15_B-6-13.5	9.0-10.0	0.90	1			9.6			С
TL-MW-15_B-6-13.5	10.5-12.0	1.10	2			10.95			D
TL-MW-15_B-6-13.5	12-13.5	1.30	2						E
Date Received: 20120713									
TL-MW-14-7-7.5	7-7.5	0.25	1		7.75				
TL-MW-14-7.5-8	7.5-8	0.45	1						
TL-MW-14-8-8.5	8-8.5	0.40	1		8.2				
TL-MW-14-9.5-10	9.5-10	0.35	1						Labeled: TL-MW-14-9.5-11
TL-MW-14-10-10.5	10-10.5	0.50	1			10.2			
TL-MW-14-10.5-11	10.5-11	0.40	R						
TL-MW-14-11-11.5	11-11.5	0.10	1			11.6			
TL-MW-14-11.5-12	11.5-12	0.40							
TL-MW-14-12-12.5	12-12.5	0.45	1						
TL-MW-14-13.0-13.5	13-13.5	0.15	1						
TL-MW-14-13.5-14	13.5-14	0.35							
TL-MW-14-14.5-15	14.5-15	0.25	1						
TL-MW-14-15-15.5	15-15.5	0.45	1						
TL-MW-14-16.5-17	16.5-17	0.40	1						
TL-MW-14-17-17.5	17-17.5	0.50	1						

Page 1 of 2

PTS Lab tories

Project Name:	R.G. Haley International Site	
Project Number:	0356-114-06 T10	
-		TEST DDC

PTS File No: 42467 Client: GeoEngineers, Inc.

TEST PROGRAM - 20120912

CORE ID	Depth ft.	Core Recovery ft.	Slab and Core Photo	A/W Drng. Capillarity Pkg.	*Free Product Mobility	*Free Product Mobility Under Water	Viscosity/ Density at 70ºF	Water/NAPL Relative Permeability	Notes
Method:		Plugs:	1/4:3/4	Hor. 1"	Hor. 1.5"	Hor. 1.5"	ASTM D1481, D445	Hor. 1.5"	Keep core frozen
TOTALS:	6 bottles 20 cores	9.30	18	0	2	4	1	0	20

Laboratory Test Program Notes

Contaminant identification: diesel-range fuel (specifically, P-9 carrier oil), pentachlorophenol

Sample locations to be selected by GeoEngineers, Inc. personnel from core photography.

Modified Free Product Mobility: Apply centrifugal force at 1000xG for one hour. Submit centrifuged sample to analytical laboratory selected by GeoEngineers, Inc.

Typical TAT for Water/NAPL Relative Permeability 3-6 weeks.

Boring ID TL-MW-14: Top and bottom not identified. Photographed core assuming section filled with saran wrap is the top of the core.

*Free Product Mobility (Stepped): 250RPM, 500RPM, and 1000RPM.

PTS File : 42467 Client: GeoEngineers, Inc.

STEPPED FREE PRODUCT MOBILITY: INITIAL AND RESIDUAL SATURATIONS

(Centrifugal method: samples spun under air, stepped pressures.)

PROJECT NAME: R.G. Haley International Site PROJECT NO: 0356-114-06 T10

		METHODS:	API F	P 40	API RP 40			·······	DEAN-STARK	1
		SAMPLE	DEN	SITY	TOTAL	APPLIED	Initial Fluid	Saturations	URATIONS, % Pv After Cer	ntrifuging
SAMPLE	DEPTH,	ORIENTATION	DRY BULK,	GRAIN,	POROSITY,	FORCE,	WATER (Swi)	NAPL (Soi)	WATER (Srw)	NAPL (Sor)
ID.	ft.	(1)	g/cc	g/cc	%Vb	RPM or xG	SATURATION	SATURATION	SATURATION	SATURATION
TL-MW-14-7-7.5	7.75	Н	1.68	2.73	38.7	250 RPM	61.4	8.9	51.9	8.9
NOTE:	No visible NA	PL produced. Proc	luced water cle	oudy with mo	derate hydrocarbon	odor.				
						500 RPM	51.9	8.9	19.0	8.9
NOTE:	No visible NA	PL produced. Proc	luced water clo	oudy with mo	derate hydrocarbon	odor.				
						1000 RPM	19.0	8.9	13.2	8.1
NOTE:	Dark brown Ll	NAPL produced. P	roduced water	cloudy.						
TL-MW-14-8-8.5	8.2	Н	1.59	2.71	41.3	250 RPM	64.1	3.1	45.5	3.1
NOTE:	No visible NA	PL produced. Proc	uced water clo	oudy with fain	t hydrocarbon odor					
						500 RPM	45.5	3.1	20.1	3.1
NOTE:	No visible NA	PL produced. Proc	uced water clo	oudy with mo	derate hydrocarbon	odor.				
						1000 RPM	20.1	3.1	12.9	2.9
NOTE:	Trace LNAPL	produced. Produc	ed water cloud	у.						

N/A = Not Analyzed. Vb = Bulk Volume, Pv = Pore Volume. (1) H = horizontal, V = vertical Soi = Initial NAPL Saturation as received prior to centrifuging at 1000xG, Swi = Initial Water Saturation as received prior to centrifuging at 1000xG Sor = Residual NAPL Saturation after centrifuging at 1000xG, Srw = Residual Water Saturation after centrifuging at 1000xG Water =0.9996 g/cc, NAPL = 0.9133 g/cc.

FREE PRODUCT MOBILITY: INITIAL AND RESIDUAL SATURATIONS

(Samples spun under water, stepped pressures.)

PROJECT NAME:	R.G. Haley International Site
PROJECT NO:	0356-114-06 T10

		METHODS:	API R	P 40	API RP 40				DEAN-STARK	
			,						URATIONS, % Pv	
		SAMPLE	DENS	SITY	TOTAL	APPLIED	Initial Fluid	Saturations	After Cer	ntrifuging
SAMPLE	DEPTH,	ORIENTATION	DRY BULK,	GRAIN,	POROSITY,	FORCE,	WATER (Swi)	NAPL (Soi)	WATER (Srw)	NAPL (Sor)
ID.	ft.	(1)	g/cc	g/cc	%Vb	RPM	SATURATION	SATURATION	SATURATION	SATURATION
					•		······			
TL-MW-15_B-6-13.5	9.6	Н	1.39	2.69	48.2	250	23.4	15.9	31.3	15.9
NOTE:	No visible NAF	L produced.								
						500	31.3	15.9	41.1	15.9
NOTE:	No visible NAF	L produced.								
						1000	41.1	15.9	51.6	15.9
NOTE:	No visible NAF	L produced.								
TL-MW-15_B-6-13.5	10.95	Н	1.56	2.70	42.2	250	36.1	4.0	44.3	4.0
—	No visible NAF				12122	200	00.1	1.0	11.0	1.0
No.12.	No visible NA	L produced.				500	44.3	4.0	54.1	4.0
NOTE:	No visible NAF	a produced				500	44.0	4.0	54.1	4.0
NOTE.	NO VISIDIE NAP	L produced.				1000	F 4 - 4	4.0	05.0	4.0
						1000	54.1	4.0	65.2	4.0
NOTE:	No visible NAF	L produced.								
	40.0									
TL-MW-14-10-10.5	10.2	Н	1.68	2.70	37.8	250	37.0	9.0	41.6	9.0
NOTE:	No visible NAF	L produced.								
						500	41.6	9.0	47.1	9.0
NOTE:	No visible NAF	L produced.								
						1000	47.1	9.0	55.4	9.0
NOTE:	No visible NAF	L produced.								

N/A = Not Analyzed. Vb = Bulk Volume, Pv = Pore Volume. (1) H = horizontal, V = vertical, R = remold

Soi = Initial NAPL Saturation as received prior to centrifuging, Swi = Initial Water Saturation as received prior to centrifuging Sor = Residual NAPL Saturation after centrifuging, Srw = Residual Water Saturation after centrifuging Water =0.9996 g/cc, NAPL = 0.9133 g/cc.

FREE PRODUCT MOBILITY: INITIAL AND RESIDUAL SATURATIONS

(Samples spun under water, stepped pressures.)

PROJECT NAME:	R.G. Haley International Site
PROJECT NO:	0356-114-06 T10

		METHODS:	API R	P 40	API RP 40			ASTM D425M,	DEAN-STARK	
	2							PORE FLUID SAT	URATIONS, % Pv	
		SAMPLE	DENS	SITY	TOTAL	APPLIED	Initial Fluid	Saturations	After Cer	ntrifuging
SAMPLE	DEPTH,	ORIENTATION	DRY BULK,	GRAIN,	POROSITY,	FORCE,	WATER (Swi)	NAPL (Soi)	WATER (Srw)	NAPL (Sor)
ID.	ft.	(1)	g/cc	g/cc	%Vb	RPM	SATURATION	SATURATION	SATURATION	SATURATION
TL-MW-14-11-11.5	11.6	Н	1.63	2.72	40.0	250	43.7	13.9	52.2	13.9
NOTE:	No visible NA	PL produced.								
						500	52.2	13.9	61.9	13.9
NOTE:	No visible NA	PL produced.								
						1000	61.9	13.9	72.4	13.9
NOTE:	No visible NA	PL produced.								

N/A = Not Analyzed. Vb = Bulk Volume, Pv = Pore Volume. (1) H = horizontal, V = vertical, R = remold Soi = Initial NAPL Saturation as received prior to centrifuging, Swi = Initial Water Saturation as received prior to centrifuging Sor = Residual NAPL Saturation after centrifuging, Srw = Residual Water Saturation after centrifuging Water =0.9996 g/cc, NAPL = 0.9133 g/cc.

FREE PRODUCT (NAPL) MOBILITY STEPPED UNDER WATER- CENTRIFUGAL METHOD PROCEDURE

(Method: ASTM D425 Modified per GeoEngineers, Inc.)

Purpose

The purpose of this test is to demonstrate whether NAPL present in a soil is mobile under water and if so, what is the residual saturation after mobile NAPL is removed from the soil. Per client instruction the forces and/or speeds applied are 250RPM, 500RPM, and 1000RPM for one hour at each speed.

Method Summary

Free product (NAPL) mobility of soils under water is determined by inserting undisturbed (native-state) samples into Beckman Model J6B centrifuge (269 rotor, IEC) and standard rock (soil) core buckets (centrifuge imbibition cups), immersing under water, and centrifuging for 1 hour (each speed) at 250RPM, 500RPM and 1000RPM at a controlled temperature of $20 \pm 1^{\circ}$ C. NAPL produced and water displaced during each centrifugal speed is recorded. Residual fluid saturations are determined by Dean-Stark extraction and sample properties determined at completion of the final centrifuge run.

Sample Preparation

The core is maintained in frozen condition to preserve water and NAPL saturations.

A one inch (1") diameter sample is cut from core selected by GeoEngineers, Inc. personnel for free product mobility under water; residual, and initial saturation analyses. The sample is cut perpendicular to core axis (horizontal) and tested in native-state condition.

flexible Teflon jacket and stainless steel end screens are applied to maintain the integrity of the sample.

Free Product (NAPL) Mobility

Following cutting and packaging, the sample is allowed to thaw and is then loaded into a centrifuge imbibition cup and immersed under filtered laboratory fresh tap water for free product mobility under water evaluation. A centrifugal speed of 250RPM is applied to the sample for one hour. The sample is monitored for mobile NAPL (produced NAPL) and water displacement.

- a. Record volume of any NAPL produced.
- b. Record volume of any water displaced.
- c. Record all visual observations of sample behavior and produced NAPL.

This process is repeated at 500RPM and 1000RPM.

Sample Properties

Following the final spin, the sample is removed from the centrifuge imbibition cup and extracted with toluene (Dean-Stark method) for residual saturations (fluid saturation confirmation). Initial saturations are determined by material balance (fluid summation). Following Dean-Stark extraction, the sample is dried to stable weight and sample properties (porosity, dry bulk density, and grain density) determined.

Reporting

Data is reported in tabular format and can be presented in an EDD format.

Eff. 20121001

FREE PRODUCT (NAPL) MOBILITY - CENTRIFUGAL METHOD PROCEDURE

(Method: ASTM D425 Modified per GeoEngineers, Inc.)

Modifications to ASTM D425

1.1 Covers determination of residual saturation and NAPL mobility by centrifuge method.

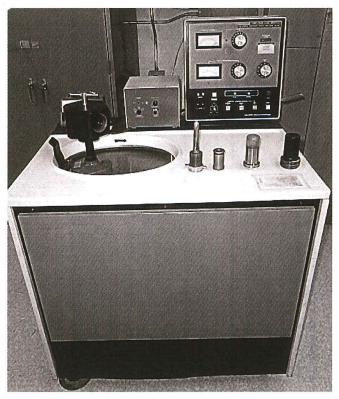
1.2 This test uses undisturbed specimens of rock or soil.

4.1 Residual saturation determination is conducted on a native-state (undisturbed) sample by centrifuging for times and speeds listed above at a controlled temperature of $20 \pm 1^{\circ}$ C. Fluids produced are monitored for mobility evaluation and material balance calculations.

5.2 When water and NAPL are present in a sample, the centrifuge moisture equivalent approximates conservative residual saturations for water and NAPL.

6.1-6.3 Beckman Model J6B centrifuge (269 rotor, IEC) and standard rock (soil) core buckets (centrifuge imbibition cups) are used for centrifuging samples.

6.6-6.10 The samples are tested in undisturbed condition and Dean-Stark extraction method (API RP40) is used to determine residual saturations.


7.1-7.2 The samples are tested in undisturbed condition. A 1"dia. x 1.25" long sample is used.

8.1 A native-state (undisturbed) sample is placed in the centrifuge cup for centrifuging.

8.4 Immediately after centrifuging, the volume or mass of fluids produced is recorded and the sample is weighed and placed in the Dean-Stark extraction vessel. Following Dean-Stark extraction, bulk density and porosity are determined.

9.1 The test may be performed on only one sample due to core or material availability constraints.

10.1.2 Post-centrifuging residual saturations and pre-centrifuging initial saturations are reported as pore fluid saturations, percent pore volume.

Iltracentrifuge with rotor and standard rock (soil) core buckets.

PTS Laboratories

PTS File No: Client: 42467 GeoEngineers, Inc.

VISCOSITY, DENSITY, and SPECIFIC GRAVITY DATA

(METHODOLOGY: ASTM D445, ASTM D1481, API RP40)

PROJECT NAME:R.G. Haley International SitePROJECT NO:0356-114-06 T10

SAMPLE	MATRIX	TEMPERATURE,	SPECIFIC	DENSITY,	VISCO	DSITY
ID		۴	GRAVITY	g/cc	centistokes	centipoise
TL-MW-2-062012	NAPL	70	0.9152	0.9133	5.12	4.68

PTS Laboratories,	lnc.		CHAI		FC	203	ST	OD	YF	RE		RD							F	PAC	λE	0	
COMPANY	******			el)					Δ	NAL	YSI	s RI	EQL	JES	T				2		PO# ≬"	356-11	(-06 TI
ADDRESS J Ste 1700 GOD Stewart St. PROJECT MANAGER Carla Brock PROJECT NAME	CITY			- Jun											5084				5		TURNAR		
GOD Stewart St.	Seat	Ele, WF	7 98101	12									72937		P40, D	464M		4	184 10 N 445		48 HOUR		5 DAYS C NORMAL Z
PROJECT MANAGER		·		Hed		н Н Н Н Н	Ш				2		STM I		APIR	0422/4		12		2	OTHER:		
PROJECT NAME	(1	P	HONE NUMBER	Voc		ACKAC ACKAC	ACKAC			02216		2	40 or 4		A9100,	STM	are	1	ets		SAMPLE	INTEGRI	TY (CHECK):
PROJECT NUMBER	C	725/4	FAX NUMBER	-3	AGE		IES P/		XAGB	STM C	RP40	M D85	PI RP.	RP40	TY, EP	ON, A		Ces.	£		INTACT_		
0356-114-06 1 10	> (206) -	128-273:		PACK	UCTIV	PERT	AGE	S PAC	NT, A	APIF	(, AST	A ,(۲۴	Υ, API	ICTIM			<u>N</u>				ってE NO. - へんんん	- - -
Bellingham, WA	<u> </u>			SAMF	ATIES	SATU	PRO	PAC		ONTE	OTAL	AVIT	IJ (DI	BILIT	Jano	DISTR		oint-			PTS FILE	<u> </u>	<u> </u>
Carla Brock PROJECT NAME Hally PROJECT NUMBER 0356-(14-06 T)C SITE LOCATION Bellingham, WP SAMPLEPSIGNATURE	Amand	la Ficht	ipens	ER OF	ROPE		INRCO	ARITY	PROP	URE O	ыт <u>у</u> : 1	IC GF	DENSI	RMEA	ULIC C	SIZE		le p					· .
SAMPLE ID NUMBER D	DATE	TIME	DEPTH, FT	NUMBER OF SAMPLES (6 VOG 15 HUS COLLEGED)	SOLPI	HYDRAULIC CONDUCTIVITY PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	MOISTURE CONTENT, ASTM D2216	POROSITY: TOTAL, API RP40	SPECIFIC	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	HYDRAULIC CONDUCTIVITY, EPA9100, API RP40, D5084	GRAIN SIZE DISTRIBUTION, ASTM D422/4464M	TOO, WALNEL PURSON	Single Points Viscosity G 70F			(COMMI	ENTS
-TL-MW-2-062012 6/	20/12	950	8 below Toc	6				Y										X			PT5	anote	£
										_					,								
																						-	
													-										
						- .				-												~	
										•													
										-								_					
											┼──┼											•	
																						······································	
								-			+											<u> </u>	
					-					_													
1. RELWQUISHED BY Amound	۹ <u> </u>	2. RECE	VED BY	·	<u> </u>			3. F	RELIN	QUIS	HED	<u></u>				<u> </u>		4. [I RECE	IVEC	D BY		
COMPANY	earn)		, abs. Me					co	MPAN	1Y									MPA	NY	,	· · · ·	
Geoknamers		DATE C21	, Cars. me	TIME 160-				DA						ME					TE			TIME	

PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 907-3610

562-907- 3607 PT'S Laboratornes 8100 Secura Way Santa Fe Springs; 562-907- 3607 TABULAL Developmental Inc. Analytical Developmental Inc. Analytical Developmental Inc. Analytical Developmental Inc. Analytical Developmental Inc. Analytical Developmental Inc. Company: GeoEngiAper/S. Inc.		শা পতা নগতে,	_	27											L	42	'H			
MIN OnSite Stor Secura Way Santa Fe Springs, (A 90670 Ghai	in of Gu	sti	od	y									Pa	ge	อา จะพวดเหนื่อ	of _	İ		
562-407- Analylical above using survices 3607 (14640) Street - Reclimond: WA 98052	Turnaround R (in working	equest days)	La	bora	ator	y Nı	ımt	er:												
Phone (425) 383-3884 - www.onsite.env.com Company: Celof Pacific Turc	(Check O	ne)																		
Plaza 600 Building, 600 Stewart St., 5k-176 Project Number: Seattle, WA 98101 Project Name:	0 ☐ Same Day ☐ 2 Days ☐ Standard (7 Days) (TI	🗌 1 Day 🗌 3 Days					30B	(Jer		s 8081A	des 8270D/SIM	les 8151A				4	testing	mg	•	
Haley Site Project Manager: Carla Brock Sampled by: Robert N-Miyahira	(oth		NWTPH-HCID	NWTPH-Gx/BTEX NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	anated Volatiles 826	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	8082	ochlorine Pesticide	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	{CRA Metals	ATCA Metals	TCLP Metals	HEM (oil and grease) 1664	Petrophysized	Digital imaging		isture
Lab ID. Sample Identification	Date Time Sampled Sampled	No. of Matrix Cont.	NWTPI	NWTPH-Gx/ NWTPH-Gx	NWTPI	Volatile	Haloge	Semivo (with Ic	PCBs	Organo	Organo	Chlorir	Total F	Total N	TCLP	HEM (Pet	0		% Moisture
	06/28/12 0945	50115															Χ	×		
		A through E	\mathbb{N}																	
			P																	
							-													
			$\left \right $							-				<u> </u>						
			$\left \right $			-				-										
								$\left - \right $		-				<u> </u>						
Signatugé	Company		Date		Ti	me		Gomr	l nents/S	pecia	l Instri	uctior	 1S	1		L			I.	I
Relinquished	GeoEngi	neers, Inc.	06/	28/1	2 1	101		Con	tac	f	arl	9	ßn	»ck	G"	+C	200	:)7:	2.9	2674
Received Adjunt Depg	PTS labs.			19/12	1	163		- irec	jard	mq	re	que	sle	d \$	est	m		- j (\$	ي الي مي	~0/4
Relinquished								1		لممر ـــ	,	*		,	ן שבקישי	- 1126]			
Received								1												
Relinquished								1												
Received								1												
Reviewed/Date	Reviewed/Date	3	1		1			Chrom	atograr	ns witl	n final r	report								

PTS Laboratories, Inc.

CHAIN OF CUSTODY RECORD

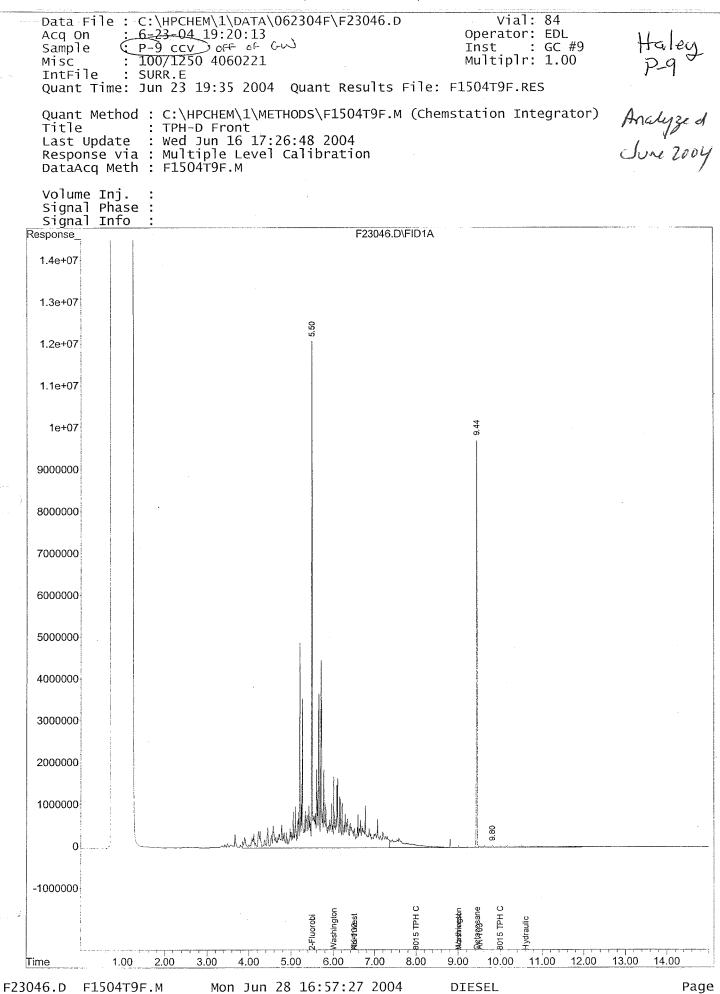
PAGE OF L

COMPANY				Τ							AN	AL	YSI	SR	EQ	UE	ST							PO#	
Geo Engineers	CITY Sport/1	Q	ZIP CODE CGCICI												2937		°40, D5084	164M						TURNAROUND TIME 24 HOURS 5 48 HOURS N 72 HOURS 1	DAYS
PROJECT MANAGER Carla Brock PROJECT NAME ROJECT NUMBER			PHONE NUMBER			PACKAGE	ACKAGE	ACKAGE		ш	АРНҮ	D2216	A DAPSM	54	BULK DENSITY (DRY), API RP40 or ASTM D2937	(HYDRAULIC CONDUCTIVITY, EPA9100, API RP40, D5084	GRAIN SIZE DISTRIBUTION, ASTM D422/4464M		14318				OTHER:	
PROJECT NUMBER 0356-114-00 SITE LOCATION	A		FAX NUMBER	SAMPLES	SOIL PROPERTIES PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CKAGE	FLUID PROPERTIES PACKAGE	PHOTOLOG: CORE PHOTOGRAPHY	MOISTURE CONTENT, ASTM D2216	POROSITY: TOTAL, API RP40 POPOSITY: FEFECTIVE ASTM D425M	SPECIFIC GRAVITY, ASTM D854	DRY), API RF	AIR PERMEABILITY, API RP40	ристіміту, Е	TRIBUTION,	BLACK	ATTERBERG LIMITS, ASTM D4318				INTACT ON PTS QUOTE NO.	
PROJECT NUMBER 0356-114-00 SITE LOCATION Belling ham; L SAMPLER SIGNATURE	1 1	r		NUMBER OF SAM	PROPERTIE	RAULIC CON	E FLUID SAT	D/TNRCC PF	CAPILLARITY PACKAGE	D PROPERT	TOLOG: COI	STURE CON	OSITY: TOT	CIFIC GRAVI	K DENSITY (PERMEABIL	RAULIC CON	VIN SIZE DIS	TOC: WALKLEY-BLACK	ERBERG LIN	hold			PTS FILE: 4251	
SAMPLE ID NUMBER	DATE	TIME	DEPTH, FT	MUM	solL	нур	POR	TCE	CAP	FLU	PHO	MON			BUL	AIR	дүн	GR/	100	ATT	4		_	COMMEN	ITS
-MW-14-7-7.5	7/11/2	1342			ļ																Å				
471-MW-14-7.5-8		(340	7.5-8				<u> </u>					_			_						X X				
TL-MW-14-8-85		1338	3-8.5	ľ			<u> </u>								_				-		4			<u>,</u>	
- TZ-MW-14-95-10		1351	9.5-10	١				ļ							_						X				
CTT - MW-14-10-10.5		1349	10-10.5	1																	X				
-TL-MW-14-10.5-11		1346	10.5-11	٩											_	<u> </u>					X		_	**************************************	
FTI-MUD-14-11-11.5		1406	11-11.5	1												ļ					X				
TL-MW-14-11-11.5 TL-MW-14-11.5-12 TL-MW-14-12-12-5	CB	1404	11.5-12	1												<u> </u>	 				Д		_		
- TY - MW-14-12-12.5		1401	12-12.5	١												<u> </u>					X				
-TL-MW-14-13.8-13E		iniI	13-13 5	۰ ۱												ļ					X			4	
TL-MW-14-13.5-14	V	1414	13.5-14 INED BY for A PTS Labs Inc	١									=D P								1 4. F	ECEIVE	D B	د المراجع	
		2. RECE	Aver A	. <u> </u>						MPA			-08	1								MPANY			
COMPANY		COMPA	PTS Labs Inc.	-											TI	ME					DAT	Ē		TIME	
DATE TIME		DATE	13/12	ме <u>9</u> :	: 19	1				. 1 2										(56)		7 2610	<u> </u>		-

PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 907-3610 PTS Laboratories, Inc. • 4342 W. 12th St. • Houston, TX 77055 • Phone (713) 316-1800 • Fax (713) 316-1882 PTS Laboratories, Inc.

CHAIN OF CUSTODY RECORD

PAGE 2 OF 7

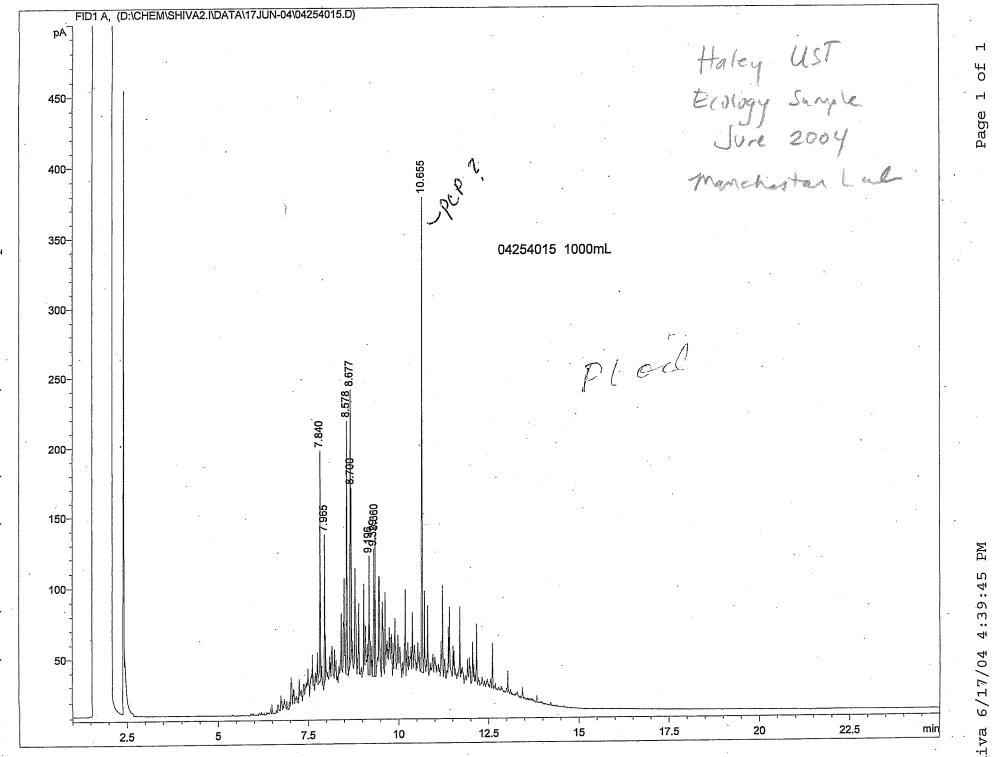

COMPANY				ANALYSIS REQUEST													PO#							
ADDRESS CITY ADDRESS CITY PROJECT, MANAGER	iffle	ZIP CODE													02937	240. D5084	464M							TURNAROUND TIME 24 HOURS
PROJECT MANAGER COLVA BOCK PROJECT NAME L-G-Halley PROJECT NUMBER O 3560-114-00 SITE LOCATION BELLINGVALW, WA SAMPLER SIGNATURE		PHONE NUMBER	AMPLES	SOIL PROPERTIES PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	ACKAGE	FLUID PROPERTIES PACKAGE	PHOTOLOG: CORE PHOTOGRAPHY	MOISTURE CONTENT, ASTM D2216	POROSITY: TOTAL, API RP40	POROSITY: EFFECTIVE, ASTM D425M	SPECIFIC GRAVITY, ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR FERMEABILITY, APT RP40 HYDRAILI IC GONDIJCTIVITY EPA9100. API BP40. D5084	GBAIN SIZE DISTRIBUTION ASTM D422/4464M	/-BLACK	ATTERBERG I (MITS ASTM D4318					OTHER: SAMPLE INTEGRITY (CHECK): INTACT ON ICE PTS QUOTE NO.
SAMPLE ID NUMBER DAT	TIME	DEPTH, FT	NUMBER OF SAMPLES	OIL PROPERT	YDRAULIC CC	ORE FLUID S/	CEQ/TNRCC F	CAPILLARITY PACKAGE	LUID PROPEF	HOTOLOG: C(IOISTURE CO	OROSITY: TO	OROSITY: EF	PECIFIC GRA	INLK DENSITY	INDRAULI IC CO	PRAIN SIZE DI	TOC: WALKLEY-BLACK	ATTERRERG I	CIT	who h			PTS FILE: 42467 42576 COMMENTS
		14.5-15	z	0	I	4	L	0	<u>ш</u>		2		<u>a</u>							\mathbf{b}	4			
-12-1411-14-14.5-15 7/1.11 472-MW-14-15-15-5 47-MW-16.5-17	1423	15-15.5											_			_					4			
H-MW-16.5-17	1450	16.5-17	<u> </u>		-								_		_					K	$\frac{1}{2}$	_		
972-MW-14-17-17.5 V	1507	17-17.5								_			+							ſ				
			 														_			_				
					-								_	_										
																			_		-			
						-																CEIVE		
1. RELINQUISHED BY	2. RECE	Tour fl									ISH	ED E	3Y 									PANY		21
1. RELINQUISHED BY 2. RECEIVED BY COMPANY COMPANY DATE TIME DATE TIME			ME 9:19					DATE TIME								D	DATE ТІМЕ							
	11	3/19		7.	14	,																		

PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 907-3610 PTS Laboratories, Inc. • 4342 W. 12th St. • Houston, TX 77055 • Phone (713) 316-1800 • Fax (713) 316-1882

EXHIBIT J-2 Chromatograms and Chemical Analytical Data

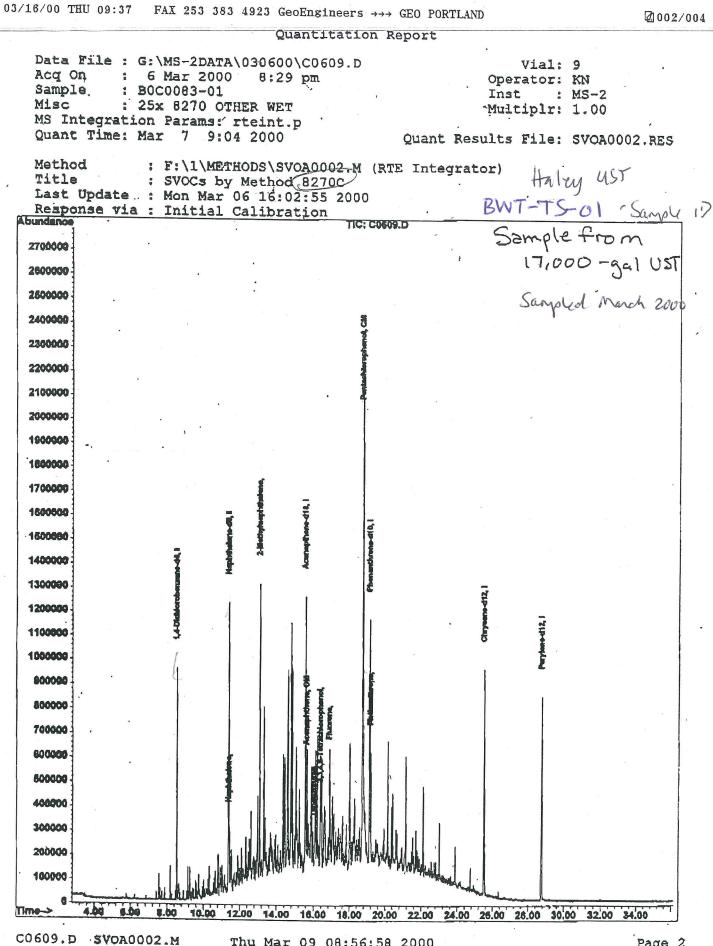
HALEY SITE OIL SAMPLES C-GRAMS

Quantitation Report



Mon Jun 28 16:57:22 2004

DIESEL


F1504T9F.M

F23044.D

04254015 1000mL Sample Name: D:\CHEM\SHIVA2.I\DATA\17JUN-04\04254015.D Data File

Shiva 6/17/04

Thu Mar 09 08:56:58 2000

Page 2

Washington State Department of Ecology Manchester Environmental Laboratory Analysis Report for

Hydrocarbon Identification

Project Name:	R.G. Haley			LIMS Project ID: 1482-04											
Project Officer Date Reported	r: Charles San Juan l: 07/14/04		Method: HYDRO-ID Analyte: Hydrocarbon identification												
Sample QC	Field ID	Matrix	Result	Qualifier	Units	Collected	Analyzed								
*04254015 *OBS4169HC	#1WOODTREAT Lab BLNK	Wil/Solvent Oil/Solvent		NC NC	ug/Kg ww ug/Kg ww	06/15/04	06/17/04 06/17/04								
Comments:															
04254015	This sample contains a highly aromatic #2 fuel oil range petroleum product along with what may be pentachlorophenol.														

OBS4169HC No detectable petroleum hydrocarbons or products found.

Analytical Resources, Incorporated

Analytical Chemists and Consultants

ORGANIC COMPOUND DATA REPORTING QUALIFIERS

- U Indicates the compound was undetected at the reported concentration. (Same as ND).
- Indicates an estimated concentration when the value is less than
 the calculated reporting limit.
- D Indicates the surrogate/spike(s) was not detected, due to dilution of extract.
- NR Indicates the surrogate recovery cannot be reported due to matrix interference.
- E Indicates a value above the linear range of the detector. Sample dilution required.
- S Indicates no value reported due to saturation of the detector. Sample dilution required.
- NA Indicates compound not analyzed for.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.
- B Indicates possible/probable blank contamination. Flagged when the analyte is detected in the blank as well as the sample,
- Y Indicates raised reporting limit due to background interference or to activity on the instrument. Compound is still not detected at or above the raised level.

333 Ninth Avenue North + Seattle WA 98109-5187 + 206-621-6490 + 206-621-7523 fax

• •

.

2004

ORGANICS ANALYSIS DATA AUGHT Samivolatilas by GC/MS		ANALYTICAL REPOURCES INCORPORAT
Page 1 of 1	Sample No:	Tank
Lab Sample ID: BH30A LIMS ID: 00-1620 Matrix:	QC Report No: Project:	BH30-Douglas Management
Data Release Authorized:	D <mark>ate Sampled:</mark> Date Received:	
Data extracted: 02/11/00 Date analysed: 02/11/00 Instrument: finn2		Sample Amount: 3.00 mL Final Extract Volume: 100 mL Dilution Factor: 1:1
	lyte lorophenol	<u>ug/L</u> 51,000,000 g

Samivolatiles Surrogata Recovery

3,4,6-Tribromophenol \$1,5%

.

FORM-1

¥.

•

۰.

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS				ANALYTICAL RESOURCES INCORPORATED
Page 1 of 1	Sample No:	Tank		
Lab Sample ID; BH30A-DL LIMS ID: 00-1620 Matrix:	QC Report No: Project:		Management	
Data Release Authorized:	Date Sampled: Date Received;	02/10/00 02/10/00		

Date extracted: 02/11/00 Date analyzed: 02/11/00 Instrument: finn2

Sample Amount: 3.00 mL Final Extract Volume: 100 mL Dilution Factor: 1:30

CAS Maber	Analyta	ug/L
87-86-5	Pentachlerophenol	62,000,000 / 5.11.00

Samivolatiles Surrogate Recovery

2,4,6-tribromophenol

.

60.8%

FORM-1

-

...

ORGANICS ANALYSIS DATA SHEET Somivolatiles by GC/NS Page 1 of 1

Lab Sample ID; BH308 LIMS ID: 00-1621 Matrix: Data Release Authorized: Reported: 02/14/00 Sample No: Beach

QC Report No: BH30-Douglas Management Project:

Date Sampled: 02/10/00 Date Received: 02/10/00

Date extracted: 02/11/00 Date analyzed: 02/11/00 Instrument: finn2 Sample Amount: 3.00 mL Final Extract Volume: 100 mL Dilution Factor: 1:1

CAS Mumber	Anslyte	ug/L
87-86-5	Pentachlorophenol	170,000 0
		170/millior

Semivolatiles Surrogate Recovery

2,4,6-Tribromophenol 77.18

PORM-1

,

•

.

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS			ANALYTICAL RESOURCES INCORPORATED
Page 1 of 1	Sample No;	Mathod Blank	
Lab Sample ID: BH30MB LIMS ID: 00-1520 Matrix:	QC Report No: Project:	BH30-Douglas Management	
Data Release Authorized: 🍠	Date Sampled:	NA	
Reported: 02/14/00	Date Received:	NA	
Date extracted: 02/11/00		Sample Amount: 3.00) m1.

DECS SXCISC(Sd)	02/11/00	Sample	Amount:	3.00 mL
Date analyzed;	02/11/00	Final Extract	Volumer	100 mL
Instrument:	f1nn2	Dilution	Factor:	1:1

CAS Number	Analyta	vg/L
97 - 96-5	Pentachlorophenol	170,000 U

Semivolatiles Surrogate Recovery

2,4,6-Tribromophenol 86,9%

FORM-1

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 1

Lab Sample ID: BH30SB LIMS ID: 00-1620 Matrix:

. .

· -

*

QC Report No: BH30-Douglas Management . Project:

Data Release Authorized:

LABORATORY CONTROL SAMPLE

Date extracted: 02/11/00 Date analyzed: 02/11/00

-	Spire	Spire	*
CONSTITUENT	VALUE	ADDED	RECOVERY
Pentachlorophenol	111000	833000	1334

Lab Control Surrogata Recovery

L.

2,4,6-Tribromophenol 93.34

Reported in Total ug/L

FORM-III

WATER BEMIVOLATILE SUPROGATE RECOVERY SUMMARY

Macrix.

ر . مو

. •

QC Report No: BH30-Douglas Management Project:

Client ID	PHL	27P	TBP	2028	TOT OUT
Method Blank			86.94		o
Lab Control			93.3 4		0
Tank			91.5¥		, – O
Tank-DL			60.8¥		0
Beach			77.18		~ 0

.

ARP FURNEL SW35]	L0B	LCS/MB LIMITS	QC LIMITS
	<pre>(PHL) = Phenol-d5 (2FP) = 2-Fluorophenol (TBP) = 2,4,6-Tribromophenol (2CP) = 2-Chlorophenol-d4</pre>	(25-100) (32-100) (27-120) (47-103)	(10-101) (10-111) (10-134) (10-129)
	 Column to be used to fl Values outside of requi 		
	D Surrogate Compound dilu	ted out	
Page 1 for SH30	PORM-II S	VOAL1	

.

FORM-II SVOA-1

.

Manchester Environmental Laboratory

7411 Beach Dr E, Port Orchard Washington 98366

CASE NARRATIVE

March 28, 2000

Subject: R.G.Haley Project

Sample(s): 00108020 and 00108025

Officer(s): Lucy Pebles

By: Bob Carrell Organics Analysis Unit

CHLORINATED PHENOLS ANALYSIS

ANALYTICAL METHOD(S): (Draft EPA Method 8085)

The water fraction was separated from the floating oil and each portion was given a sample number. Taking advantage of the fact that pentachlorophenol (PCP) is water soluble at high pH and that interferencing organic compounds can be removed without effecting the PCP, two grams of the sample 00108020 (oil) was added to 200 mL of water that had a pH of 13-14. This sample, the water sample and two water method blanks, similarly pH adjusted, were then extracted twice with methylene chloride and the solvent discarded. The pH was then adjusted to less than 2 and the water was extracted twice more with methylene chloride. This solvent was exchanged to hexane followed by derivatization. These extracts were then analyzed by capillary Gas Chromatography and Atomic Emission Detection (GC/AED). Confirmation of chlorinated phenols was performed by Gas Chromatography and Ion-Trap mass spectrometry (GC/ITD) or comparisons of elemental ratios of hetero-atoms to empirical formulas.

All analytes have a respective practical quantitation limit (PQL) that is higher than the corresponding method detection limit (MDL). If a target analyte is detected and its identification is unambiguously confirmed at a concentration below its PQL, the reported concentration is qualified as an estimate, 'J' qualifier.

HOLDING TIMES:

All samples were extracted and analyzed within the recommended method holding times.

BLANKS:

No target compounds were detected in the laboratory blanks at or above the reported value, the demonstrating that the system was free from contamination.

APR EIVE

SURROGATES:

The 2,4,6-tribromophenol surrogate recoveries were acceptable, ranging from \$3% to 103%.

MATRIX SPIKING:

N/A

COMMENTS:

In the manufacture of PCP, trichlorophenols and tetrachlorophenols are also produced, but to much smaller degrees. They tend to be found when high concentrations of PCP are detected, and as such we include them in our analysis for chlorinated phenols. The "J" qualifier for the PCP on the water sample is because of the distinct possibility that some of the oil associated with this sample was entrained in the water and caused an artificial elevation of the value.

A number of late eluting heavily chlorinated compounds were also observed in these samples. Subsequent GC/MS analysis tentatively identified some of these compounds to be chlorinated dibenzo-pdioxins and it is likely that others in this group are the dibenzofirans. It also is likely that some of these compounds are various chlorinated diphenylethers, which are precursors to dioxins. In any event, some of these compounds are about two orders of magnitude larger than the PCP that is in these samples. It is recommended that the oil sample be sent out for analysis of the dioxin and dibenzofuran concentrations.

The data is useable as qualified.

DATA QUALIFIER CODES

U	-	The analyte was not detected at or above the reported result.
l	-	The analyte was positively identified. The associated numerical result is an <u>estimate</u> .
ŬĴ	-	The analyte was not detected at or above the reported estimated result.
REJ	-	The data are <u>unusable</u> for all purposes.
NAF	-	Not analyzed for.
N	-	For organic analytes there is evidence the analyte is present in this sample.
IJ	-	There is evidence that the analyte is present. The associated numerical result is an estimate.
NC		Not Calculated
E	-	This qualifier is used when the concentration of the associated value exceeds the known calibration range.

Analysis Report for

Chlorophenoxy Herbicides

Project Name: RG Haley

LIMS Project ID: 1922-00

Lab ID: OBW0070A1 QC Type: Laboratory Method Blank Project Officer: Lucy Pebles	Date Prepared: Date Analyzed:	Method: Matrix: Units:	
•			-

Analyte	Result	Qualifier	 	•	 in an	
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,3,4,6-Tetrachlorophenol 2,3,4,5-Tetrachlorophenol Pentachlorophenol	0,75 0,75 0,69 0,69 0,63	ប ប ប ប ប				
Surrogate Recoveries				•		
2.4.6.Tribromophenol	95	70	I			

authorized By: Banel

Analysis Report for

Chlorophenoxy Herbicides

Project Name: RG Haley

LIMS Project ID: 1922-00

Lab ID: OBW0070A2 OC Type: Laboratory Method Blank Project Officer: Lucy Pebles	Date Prepared: 03/10 Date Analyzed: 03/15	Method: 0/00 Matrix: 5/00 Units:	
	The second s		

Analyte	Result	Qualifier	. Atoma	Birth Vitter Britis	 	
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,3,4,6-Tetrachlorophenol 2,3,4,5-Tetrachlorophenol Pentachlorophenol	0.75 0.75 0.69 0.69 0.63	บ บ บ บ บ				
Surrogate Recoveries						
2,4,6-Tribromophenol	83	70				

Authorized By: Baself

Release Date; <u>3-26-2000</u> Page;

Analysis Report for

Chlorophenoxy Herbicides

LIMS Project ID: 1922-00 Project Name: **RG Haley** Sample: 00108020 Date Collected: 03/07/00 Method: SW8085 Matrix: Oil/Solvent Field ID: 3ECY02 ug/Kg ww Date Analyzed: 03/15/00 Units: Project Officer: Lucy Pebles Result Qualifier Analyte U U 2,4,6-Trichlorophenol 380 380

%

2,4,5-Trichlorophenol 2,3,4,5-Tetrachlorophenol 2,3,4,5-Tetrachlorophenol Pentachlorophenol	200 340 2100	j U	
Surrogate Recoveries			

101

2,4,6-Tribromophenol

		and the second		
thorized By:	Canel	Release Date:	3-28-2000	Page:

Analysis Report for

Chlorophenoxy Herbicides

Project Name: RG Haley

LIMS Project ID: 1922-00

Sample:00108025DateField ID:3ECY02DateProject Officer:Lucy PeblesDate	te Prepared: 03/10/00 M te Analyzed: 03/15/00 U	
---	--	--

Analyte	Result	<u>Qualifier</u>		
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,3,4,6-Tetrachlorophenol 2,3,4,5-Tetrachlorophenol Pentachlorophenol	0.75 0.75 0.65 0.69 2.5	Մ Մ Մ Մ	· · · · · · · · · · · · · · · · · · ·	
Surrogate Recoveries				
2,4,6-Tribromophenol	103	70		

Release Date: 3-24-2000 ...uthorized By: Bauel Page:

-14-1	0 · 03:40PM	FROM-PACE	AKALYTICAL		6	12-517-6444	168 - 7		-720 et - Sulie 208 15, MN 55414
	Pace	Anal	<u>tical</u>			Project	4	Td: Fest	612-607-1700 612-697-8444
Survey of the second			N	lethod 8	290 Analy	sis Results			
				Cilent -	washing	ION DOE		AF	
1	client's Sam Lab Sample Filoname	ple ID ID	108020 195601 V00410 DGP					<u>20.04</u>	
	Injected By Total Amour	a Evicitie		mg		Matrix.	OIL NA		
	or Moistille		NA	-		Dilution	NA		
	Dry Welght	Extracted	NA 02/07/7	2000		Received	04/08/20	00	
	CCal Fliens	me(s)	V0041	oc & V004	HON ·	Extracted Analyzod	04/10/20	00 14:03	
	Method Bis	nk ID		5-040700	-	Internal		ng's	Percent
	Native		all and the second second		LOD ug/g	Standards		Added	Recovery
	somers		<u>ug/g</u>		0.29	2,3,7,8-TCDF-1	SC	1.00	91 100
	2,3,7,8-TCI Total TCDF	DF	ND		0.29	2.3,7,8-TCDD-1 1,2,3,7,8-PeCD	36	1.00	84
			ND		0.34	2347.8-PeCD	F-13C	1.00	86 83
	2,3,7,8-TC Total TCD		ND		0,34	1,2,3,7,8-PeCD 1,2,3,4,7,8-PaC		1_00	90
				0.68	0.20 E	1 2 2 8 7 8 Hz	INF-13C	1.00	98 99
	1,2,3,7,8-F 2,3,4,7,8-F	Pecdf	ND	-	0.13	234678-HX0 123786-HX0	-08-186	1.00	94
	Total PeC	DF	0.24		0.19	J G G J 7 B.UV(1.00	102
	1,2.3,7,8-1	PeCDD	ND		0.36	1,2,3,5,7,8-HX 1,2,3,4,6,7,8-H	INCOF-13C	1.00	89
	Total PeC	00	ND	an include the second	0.36	1234/846	10002-100	1.00	92 104
	1,2,3.4.7	8-HxCDF		0.44	0.20 E	1,2,3,4,6,7,8-H OCDD-18C	19000-130	2.00	. 89
	4 12 12 16 1		ND	میں <u>میں اور</u>	0.23 0.21			1.00.	NA
	2246.7.	8-HxCDF	ND		0.23 0,22	1,2,3,4-TCDD 1,2,3,7,8,9-Hx	-13C CDD-18C	1.00	NA
	Total Hod	DF	2.20					0.00	NC
	1,2,3,4,7	8-HXCDD	ND		0.50	2,3,7.8-TCDD	-3144	9 .27	
	47367	8-HxCDD 9-HxCDD	ND		0.38				
	Total Hx	ĊDD	1_60		0.44				
		,7,8-HpCD	r≓ <u>1.3</u> 0		0.11	Total 2,3,7,8- Equivalence;		RECE	VED
	1 2 9 4 7	.8,9-Hp-L	0F ND 6.10		0.24	(Using TTE F	actors)	RECE	
	Total Hp				۰.			APR 1	7 2000
	1,2,3,4,6	3,7,8-HpCE	D 19.00 32.00		0.27 0.27	•		144	FOOLDGY
	Total Hr	'Lluu'			0			DEPT. OF	ECOLOGY
	OCDF OCDD		6.30 200.00		0 .38 0,27		,		
			and the second data and the se	م ل ح خالف	•				

Results reported on a total weight basis

Concernization (Totals Include 2,3,7,8-substituted isomers) EMPC = Estimated Modmum Possible Concerningen

LOD = Umit of Detection

J a Concentration detected is below the calibration range

B = Less than 10 times higher litten method blank level

P = Recovery uniside of larger range No = value obtained from additional treatysis

i a interferenci E - PCDE Interference 5 = Saturated signal ND - Not Deleated NA = Not Applicable NG = Not Calculated

Report No.....00-1031447

REPORT OF LABORATORY ANALYSIS

(internet

 Seature
 18939 120tn Avenue NE, Suite 101, Botneli, WA 98011-9508

 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B. Spokane, WA 99206-4776

 509.924.9200 fax 509.924.9290

 Portland

 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200 fax 503.905.9210

 Bend

 20332 Embire Avenue, Suite F-1, Bend, OR 97701-5711, 541.383.9310 tax 541.382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200

Tacoma WA, 98402

Project: Bellingham Wood Treat Project Number: 0275-002-00 Project Manager: Sandra Smith

Reported: 03/14/00 13:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BWT-TS-01 45	B0C0083-01	Other wet	03/03/00 16:00	03/03/00 20:20
BWT-MW02-P01	B0C0083-02	Water	03/03/00 18:20	03/03/00 20:20

North Creek Analytical Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 1 of 13

SEattle (1995) 1200 Avenue NE Suite 101 Bothel (W4 98) 1-95/2 425 420,9200 tax 425 420,9210

Spokane East 11115 Montgomery, Suite & Spokane, WA 99205-477F 509.924.9200 tax 509.924.9290

Portland 9405 SW Nimbus Avenue, Boaverton OP 97008-7107 503.906 9200 tak 503 906.9216 Bend 20302 Emptre Avenue, Suite F-1, Beng, OP 97701-5711

Bend 20302 Empire Avenue, Suite F-1, Bend, OR 97703-5711 541.363.3310 tax 541.382 758F

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat

Project Number: 0275-002-00 Project Manager: Sandra Smith

Reported: 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BWT-TS-01 (B0C0083-01) Other wet	Sampled: 03	3/03/00 16:00	Received	: 03/03/00 2	20:20		<u></u>		
Acenaphthene	ND	375	mg/kg	25	0C06019	03/06/00	03/06/00	ED4 82200	
Acenaphthylene	ND	375	"		*	"	03/06/00	EPA 8270C	
Aniline	ND	375	10	**	11	,,	"		
Anthracene	2730	375	t	*7	"	*1			
Benzoic Acid	ND	1880	"	*2	71	**			
Benzo (a) anthracene	ND	375	**		п	•1		15	
Benzo (b) fluoranthene	ND	375	91		ħ	٣		**	
Benzo (k) fluoranthene	ND	375	H	w	н		"		
Benzo (ghi) perylene	ND	375	Ħ		н			H.	
Benzo (a) pyrene	ND	375	*				11	"	
Benzyl alcohol	ND	375	77			pt.	"	**	
Bis(2-chloroethoxy)methane	ND	375	Ħ			n N			•
Bis(2-chloroethyl)ether	ND	375		**			n	"	
Bis(2-chloroisopropyl)ether	ND	375	Ħ		**	n .	Ħ	н	
Bis(2-ethylhexyl)phthalate	ND	375	π		T I		**	н	
-Bromophenyl phenyl ether	ND	375		" "	"	"	n	n	
Butyl benzyl phthalate	ND	375	#			4		n	
Carbazole	ND	375	n		"	*		W	
-Chloroaniline	ND	1880	n		т -	n	n	**	
-Chloronaphthalene	ND	375	л н		"	π	11	*	
-Chloro-3-methylphenol	ND			. "			"	. 8e	
-Chlorophenol		375			н -	#	"	**	
-Chlorophenyl phenyl ether	ND	375	т 11	"	*		n	n	
hrysene	ND	· 375		17	- H	Ħ	, n	**	
ibenz (a,h) anthracene	ND	375		n		. 7	π		
ibenzofuran	ND	1880	"	Ħ	+	*	*	er	
i-n-butyl phthalate	390	375	25	п	n	स	"	**	
3-Dichlorobenzene	ND	375	n	53	Ħ	u	**	Ħ	
4-Dichlorobenzene	ND	375	*	n	H	-	n	"	
2-Dichlorobenzene	ND	375		и		**	Ħ		
3 -Dichlorobenzidine	ND	375	*7	-	π		"	, tr	
	ND	18800	"	¥t	N	π	*	41	
4-Dichlorophenol	ND	375	- 1 1	11	π	Ħ		"	
iethyl phthalate	ND	375	. •	**	B 1	Ħ	n	**	
4-Dimethylphenol	ND	750	"	m	*	н	*1	11	
methyl phthalate	ND	375		th.	*1	n	4 9		
5-Dinitro-2-methylphenol	ND	1880	11	77	.#		n	"	
4-Dinitrophenol	ND	1880	*1	۳	н	27	Ħ	Π	
4-Dinitrotoluene	ND	1880	**	**				π	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

 Speaking
 (550x, 1211)
 Avenue (i)
 Distance (i)
 Dotter (i)
 <thDotter (i)</th>
 Dotter (i)
 <thDotter(

and the second sec	Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	Project: Bellingham Wood Treat Project Number: 0275-002-00 Project Manager: Sandra Smith	per: 0275-002-00
		Semivolatile Organia Company 1 1 FID 1 15	

Reported: 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C

North Creek Analytical - Bothell

Analyte	7	Reporting				- · · · · · · · · · · · · · · · · · · ·	· · · · · ·	·····	
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
BWT-TS-01 (B0C0083-01) Other wet	Sampled:	03/03/00 16:00	Received	: 03/03/00 2	20-20				
2.6-Dinitrotoluene	ND		mg/kg	25	0C06019	0210(100			
Di-n-octyl phthalate	ND	375	"	" 11	"	03/06/00	03/06/00	EPA 8270C	
Fluoranthene	ND	375	**				**	4	
Fluorene	1100	375	"		*1		41	*	
Hexachlorobenzene	ND	375		*			**		
lexachlorobutadiene	ND	375	"	π	**		**	۳.	
Iexachlorocyclopentadiene	ND	1880	**	**		"	ŧ	ŧr	
lexachloroethane	ND	375	21		H H		••	**	
ndeno (1,2.3-cd) pyrene	ND	375	-		*	"	н		
sophorone	ND	375	Ħ			n	87		
-Methylnaphthalene	8530	375	*		*	*	п	•	
-Methylphenol	ND	375		1	'n	**	87	n	
& 4-Methylphenol	ND			*	н	H	M	n	
aphthalene	1490	375	"	*		Ħ	*	13	
Nitroaniline	1490 ND	375	"	*1	**		**	н	
Nitroaniline	ND ND	1880		••	n		Ħ		·
Nitroaniline		1880	*		"		n	۳	
itrobenzene	ND	1880		**	H	-		*	
Nitrophenol	ND	375	87			**	-		
Nitrophenol	ND	375		-		Ħ	-		
Nitrosodiphenylamine	ND	1880	м	"	n	-	"		
Nitrosodi-n-propylamine	ND	1880	Π	n	۳	-	n	*1	
ntachlorophenol	ND	375	'n	۳	*	-	Ħ	"	
lenanthrene	68500 <		**	61	*		-		A-
enol	2680	375	H .			•		."	A-
rene	ND	375	*7	*	*1				
.4-Trichlorobenzene	ND	375	n		et		n	*	
S Trichler-1	ND	375		H		. H	n	- 17	
5-Trichlorophenol	ND	375	п		Π	-	Ħ		
.6-Trichlorophenol	ND	375	H	**			71	11	
rogate: 2-FP	55.0%	19-141							
rogate: Phenol-d6	%	44-128				"	**	**	
rogate: 2,4,6-TBP	10.0 %	10-137			"		17	"	S-(
rogate: Nitrobenzene-d5	135 %	33-108			"		"	"	
rogate: 2-FBP	%	51-124				"	"	"	S-0
rogate: p-Terphenyl-d14	125 %	48-149		·.	**	"	"	"	S-0

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

 Seathe
 18955 120m
 Aver Jr. NE
 Suite 101
 Botnel.
 W4 98011-9503

 425
 420.9200
 tox 425
 420.9210
 Spokane
 East 11115
 Montonmery
 Suite 8
 Spokane.
 W4 98011-9503
 Spokane.
 W4 98011-9503
 Spokane.
 Spokane.
 W4 98011-9503
 Spokane.
 Spokane.
 W4 98011-9503
 Spokane.
 Spokane.
 W4 98011-9503
 Spokane.
 Spokane.
 Spokane.
 W4 98011-9503
 Spokane.
 541.382.9310 far 541.382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat Project Number: 0275-002-00

Project Manager: Sandra Smith

Reported: 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notor
BWT-MW02-P01 (B0C0083-02) Water	Sampied: 0	3/03/00 18:20	Possiv	ed: 03/03/00					Note:
2.3.4.6-Tetrachlorophenol	ND	1240				00.00.00	· · · · · · · · · · · · · · · · · · ·		
Acenaphthene	ND	1240	ug/l	100	0C08003	03/08/00	03/11/00	EPA 8270C	
Acenaphthylene	ND	1240	۳	*	n	н	11	81	
Aniline	ND	1240				r r	n	•1	
Anthracene	ND	1240	*	स		n 11	**	'n	
Benzoic Acid	ND	1240	ft.	n			TT TT	n	
Benzo (a) anthracene	ND	1240						n	
Benzo (b) fluoranthene	ND	1240	et			π	Ħ	n	
Benzo (k) fluoranthene	ND	1240	п	*	-	n 1	19	-	
Benzo (ghi) perylene	ND	1240			4 H	"	89	**	
Benzo (a) pyrene	ND	1240	"				**	*1	
Benzyl alcohol	ND	1240				"	W		
Bis(2-chloroethoxy)methane	ND						n	n	
Bis(2-chloroethyl)ether	ND	1240		•• ••	. *		*	н	
Bis(2-chloroisopropyl)ether	ND	1240		M 4		**	Ħ	**	
Bis(2-ethylhexyl)phthalate	ND	1240	11	n	"	"	n	n	
4-Bromophenyl phenyl ether		6220	н н		"	n	*	"	
Butyl benzyl phthalate	ND ND	1240			TI	m	n	Π	
Carbazole		1240		-			n		
4-Chloroaniline	ND	1240	•		**	-	"	"	
2-Chloronaphthalene	ND ND	1240	47 11		-	Ħ	n	n	
4-Chloro-3-methylphenol	ND ND	1240	11 12			H	n	n	
2-Chlorophenol	ND	1240	"	H		=	2 6	ir	
4-Chlorophenyl phenyl ether		1240		M	ri	н	ĸ	**	
Chrysene	ND	1240	Ħ	n.	1 7		17	-	
Dibenz (a,h) anthracene	ND	1240	"	ee		n	*1	Π	
Dibenzofuran	ND	1240		n		n	*	"	
Di-n-butyl phthalate	ND	1240	н	n		rt	n	47	
1,3-Dichlorobenzene	ND	1240	n	et.		Ħ	и	**	
1,4-Dichlorobenzene	ND	1240		п		*			
1,2-Dichlorobenzene	ND	1240	π	P	T	**	n	я	
3,3'-Dichlorobenzidine	ND	1240		n		**	H	**	
2.4-Dichlorophenol	ND	1240	"	п	"	•		"	
Diethyl phthalate	ND	1240	n	"	P	"	n	Ħ	
-	ND	1240	ŧ	Ħ	H	n	м	*1	
2,4-Dimethylphenol	ND	1240		. *	Ħ	*	n	π	
Dimethyl phthalate	ND	1240	Ħ	**	и	n	H	25	
4.6-Dinitro-2-methylphenol	ND	1240	*	84	н	۳	n	"	
2,4-Dinitrophenol	ND	2490	Η.		Ħ		•1	12	

North Creek Analytical - Bothen

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

Seattle (18935-110) - Section NE, Sont 101, Bother, WA Bruin 199 (F 425-420,9200, tax 425-420 9210 Spokane East 11115 Montgomety, Suite B. Spokane WA 99206-4776 509.924.920C tax 509 924 9290.
 D09.924.9200
 iax 509.924.9280

 Portland
 9405 SW Nimbus Avenue, Beaverion, OP 97006-7132

 503.906.9200
 Sas 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OP 97701-5711

 C11.202
 C11.202
 C11.202
 541.383.9310 tax 541.382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	Project: Bellingham Wood Tre Project Number: 0275-002-00 Project Manager: Sandra Smith	Reported:
	Semivolatile Organic Compounds by EPA M	03/14/00 13:42

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Y Tanàna	Dilut	n .				
			Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BWT-MW02-P01 (B0C0083-02) Water	Sampled	: 03/03/00 18:20	Receiv	ed: 03/03/00	20:20				
2.4-Dinitrotoluene	ND	1240	ug/l	100	0C08003	03/08/00	03/11/000		
2.6-Dinitrotoluene	ND	1240	"		"	. 03/06/00	03/11/00	EPA 8270C	
Di-n-octyl phthalate	ND	1240	ħ	-	н	-	т. т		
Fluoranthene	ND	1240	n	•	*	-	ĸ	**	
Fluorene	1450	1240	**	-		-		n	
Hexachlorobenzene	ND	1240	**	м				n .	
Hexachlorobutadiene	ND	1240	11 ·		*		н	n	
Hexachlorocyclopentadiene	ND	1240	*				"	**	
lexachloroethane	ND	1240	n	-	=	-	"		
ndeno (1,2,3-cd) pyrene	ND	1240			м			и .	
sophorone	ND	1240	•1	*7	te		T	"	
-Methylnaphthalene	1790	1240					n	w	
-Methylphenol	ND	1240	н		**	-	"		
& 4-Methylphenol	ND	1240	н				*1	17	
laphthalene	ND	1240				_	et	*	
-Nitroaniline	ND	1240				~	w	Π	
-Nitroaniline	ND	1240		P		-	**	e7	
Nitroaniline	ND	1240	77	7			**	Ŧ	
itrobenzene	ND	1240			n		n		
Nitrophenol	ND	1240	11			•		-	
Nitrophenol	ND	1240				TT I	n	'n	
-Nitrosodiphenylamine	ND	1240		_		-	n	"	
-Nitrosodi-n-propylamine	ND	1240		m		*	"	м	
ntachlorophenol	ND	1240	+		rr Fr	•	×	n	
nenanthrene	2260	1240	-		n		**	2	
ienol	ND	1240		-	-	•	*		
rene	ND	1240		-	•	•	-	n	
2,4-Trichlorobenzene	ND	1240	. "			h	1997 (S. S. J.		
4,5-Trichlorophenol	ND				-		"	u	
4.6-Trichlorophenol	ND	1240 1240			n	**	tt		
rrogate: 2-FP	%	40-115		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	н	-	"	**	
rrogate: Phenol-d6					**		"	"	
rrogate: 2,4,6-TBP	4.00 %	18-145			**	"	"	"	S-01
rogate: 2,4,6-1BF rogate: Nitrobenzene-d5	%	24-130			"	"	n	"	S-0.
rogate: 2-FBP	76.0%	42-110			"	"	<i>n</i> .	"	5-0.
rogate: p-Terphenyl-d14	19.9 %	46-116			"	"	n	"	S-01
vogute. p-1erpnenyl-a14	12.0 %	63-117			**	"	"	"	S-01 S-01

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

Seattle 12635 (2017 Avenue NE) Soite (01, Bothen, WA 98311-9505 425 426,3200 tax 425 420,9210 Spokane East 11115 Montgomery Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, DR 97008-7102 S03.906.9200 tax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 tax 541.382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat Project Number: 0275-002-00 Project Manager: Sandra Smith

Reported: 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike	Source		%REC		RPD	
-			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C06019: Prepared 03/06/00	Using EI	PA 3580A								
Blank (0C06019-BLK1)										
Acenaphthene	ND	15.0	mg/kg							
Acenaphthylene	ND	15.0	*							
Aniline	ND	15.0	n							
Anthracene	ND	15.0								
Benzoic Acid	ND	75.0	Ħ							
Benzo (a) anthracene	ND	15.0	Ħ							
enzo (b) fluoranthene	ND	15.0	P							
enzo (k) fluoranthene	ND	15.0	n						•	
enzo (ghi) perylene	ND	15.0	n							-
enzo (a) pyrene	ND	15.0	H							
enzyl alcohol	ND	15.0	n							
is(2-chloroethoxy)methane	ND	15.0	π							
is(2-chloroethyl)ether	ND	15.0	Ħ							
is(2-chloroisopropyl)ether	ND	15.0	**							
is(2-ethylhexyl)phthalate	ND	15.0	"							
Bromophenyl phenyl ether	ND	15.0								
utyl benzyl phthalate	ND	15.0	-							
arbazole	ND	15.0	'n				*			
Chloroaniline	ND	75.0								
Chloronaphthalene	ND	15.0								
Chloro-3-methylphenol	ND	15.0	н							
Chlorophenol	ND	15.0	"							
Chlorophenyl phenyl ether	ND	15.0	n							
Irysene	ND	15.0	н							
benz (a,h) anthracene	ND	75.0								
benzofuran	ND	15.0	"							
-n-butyl phthalate	ND	15.0	**					·		
-Dichlorobenzene	ND	15.0								
-Dichlorobenzene	ND	15.0								
-Dichlorobenzene	ND	15.0								
'-Dichlorobenzidine	ND		11							
-Dichlorophenol	ND ND	750 15.0								
thyl phthalate	ND ND									
-Dimethylphenol	ND ND	15.0 30.0	ri Ir							

North Creek Analysical - Bothelt

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

Seattle 18939 120th -venue NE Sune 101, Botnel, WA 98011-9505 425 426,9206 tax 425 420,9216 East 11115 Montgomery, Suite B Spokane, WA 99206-4776 Spokane 509.924.9200 tax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97006-7132 9405 SW Himdus Avenue, Beavenon, On S7006-7132 503.906.9200 tax 502.906.9210 20332 Empire Avenue, Suite F-1, Benc, OR 97701-571; 541.383.9316 tax 541.382.7588 Bend

Geo Engineers - Tacoma	Project: Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	Project Number: 0275-002-00	Reported:
Tacoma WA, 96402	Project Manager: Sandra Smith	03/14/00 13:42
Semivalatile Openai C		

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch 0C06019: Prepared 03/06/00	Using E	PA 3580A								Notes
Blank (0C06019-BLK1)				· <u>·</u>						
Dimethyl phthalate	ND	15.0	mg/kg							
4,6-Dinitro-2-methylphenol	ND	75.0	mg/Kg							······
2,4-Dinitrophenol	ND	75.0			*					
2,4-Dinitrotoluene	ND	75.0	п .							
2,6-Dinitrotoluene	ND	75.0								
Di-n-octyl phthalate	ND	15.0	31							
Fluoranthene	ND	15.0								
luorene	ND	15.0	77							
Iexachlorobenzene	ND	15.0								
lexachlorobutadiene	ND	15.0	4							
Iexachlorocyclopentadiene	ND	75.0								
lexachloroethane	ND	15.0								
ndeno (1,2,3-cd) pyrene	ND	15.0								
sophorone	ND	15.0								
-Methylnaphthalene	ND	15.0	н							
Methylphenol	ND	15.0								
& 4-Methylphenol	ND	15.0								
aphthalene	ND									
Nitroaniline	ND	15.0								
Nitroaniline	ND	75.0								
Nitroaniline	ND	75.0								
trobenzene	ND	75.0	**							
Nitrophenol	ND	15.0	*1							
Nitrophenol	ND	15.0								
Nitrosodiphenylamine		75.0	т 							
Nitrosodi-n-propylamine	ND ND	75.0								
ntachlorophenol		15.0	π					_		
enanthrene	ND	75.0	"					_		
enol	ND	15.0	11							
ene	ND	15.0	*1							
,4-Trichlorobenzene	ND	15.0	n							
5-Trichlorophenol	ND	15.0	Ħ							
.6-Trichlorophenol	ND ND	15.0 15.0								
rogate: 2-FP	48.6	15.0	"							

North Creek Analytical - Bothell

> The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

 Seattle
 12011. Avenue. NE. Suite 101. Botneli, WA 38011-9508.

 425.420.9200. tax.425.420.9210.
 Spokane

 Spokane
 East 11115. Montgomery, Suite 8. Spokane. WA 99206-4776.

 509.924.9200. fax.509.924.9290.
 Difference 100.000

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97006-7132 503 906.9200 tax 503.906.9210 20332 Empire Avenue, Suite F-1, Benc, OR 97701-5711 Bend

541.383.9310 tax 541.382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat

Project Number: 0275-002-00 Project Manager: Sandra Smith

Reported: 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

North Creek Analytical - Bothell

Analyte		Reporting	1	Spike	Source		%REC		RPD	
Analyle	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C06019: Prepared 03/06/00	Using EI	PA 3580A								
Blank (0C06019-BLK1)			and the second							
Surrogale: Phenol-d6	47.3		mg/kg	50.0		94.6	44-128			
Surrogate: 2,4,6-TBP	41.9		"	50.0		83.8	44-128 10-137			
Surrogate: Nitrobenzene-d5	49.3		"	50.0		98.6 ·	33-108			
Surrogate: 2-FBP	54,4		"	50.0		109	51-124			
Surrogate: p-Terphenyl-d]4	52.7		"	50.0		105	48-149			
_CS (0C06019-BS1)										
Acenaphthene	114	15.0	mg/kg	100		114	48-110			
-Chloro-3-methylphenol	236	15:0		200		114				Q-
-Chlorophenol	208	15.0	**	200		118	34-115			Q-1
.4-Dichlorobenzene	111	15.0	π	100			57-110			
.4-Dinitrotoluene	110	75.0	n	100		111	39-110			Q-1
-Nitrophenol	211	75.0	"	200		110	50-110			
-Nitrosodi-n-propylamine	124	15.0				106	26-116			
entachlorophenol	193	75.0	7	100		124	28-147			
henol	195	15.0	7	200		96.5	46-120			
vrene	106			200		94.0	35-110			
2,4-Trichlorobenzene	108	15.0		100		106	35-143			
rrogale: 2-FP		15.0		100		112	39-110			Q-(
rrogate: Phenol-d6	47.3		n –	50.0		94.6	19-141			
rrogate: 2,4,6-TBP	48.8		"	50.0		97.6	44-128			
rrogate: Nitrobenzene-d5	44.6		"	50.0		89.2	10-137			
rrogate: 2-FBP	52.8 50.4		"	50.0		106	33-108		*	
rrogaie: p-Terphenyl-d]4	50.4 53.2		,,	50.0		101	51-124			
CS Dup (0C06019-BSD1)	22.2			50.0		106	48-149			
enaphthene										
Chloro-3-methylphenol	114	15.0	mg/kg	100		114	48-110	0	19	Q-0
Chlorophenol	235	15.0	π	200		118	34-115	0.425-	21	Q-0
	203	15.0	*7	200		102	57-110	2.43	25	
-Dichlorobenzene	106	15.0		100		106	39-110	4.61	34	
-Dinitrotoluene	97.9	75.0	-	100		97.9	50-110	11.6	22	
vitrophenol	201	75.0	"	200		101	26-116	4.85	31	
Nitrosodi-n-propylamine	115	15.0		100		115	28-147	7.53	17	
nachlorophenol	195	75.0	n	200		97.5	46-120	1.03		
nol	189	15.0	-	200		94.5	35-110	0.531	29 27	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

 Seattre
 15535-120m
 Avenue NE, Suite 101
 Bothell, WA 98011-9505

 425-420.520C
 tax 425-420-9210
 Sookane
 KA 99206-4776

 Spokane
 East 11115 Montgomeny: Suite B
 Spokane, WA 99206-4776

 Spokane
 East 11115 Montgomeny, Suite B. Spokane, WA 99200-509.924,9200 tax 509.924,9290

 Portland
 9405 SW Nimbus Avenue, Beavenon, OR 97008-7132

 503.906.9200 tax 503.906.9210
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310 tax 541.382.7586

1101 Fawcett Ave., Ste 200 Tacoma WA, 98402		Project N		andra Smith					Repor 03/14/00	
Semivolatile O	rganic (Compoun	ds by El	PA Meth	od 827	0C - Qı	ality C	ontrol		
	N	iorth Cre	ek Anal		Bothell					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0C06019: Prepared 03/06/00	Using E	PA 3580A								
LCS Dup (0C06019-BSD1)						- <u> </u>				
1.2.4-Trichlorobenzene	111	15.0	mg/kg	100		111	20.110			
Surrogate: 2-FP	+3.6						39-110	0.897	22	Q-
Surrogate: Phenol-d6	48.4		**	50.0		87.2	19-1-11			
Surrogate: 2.4,6-TBP	45.0			50.0 50.0		96.8	44-128			
Surrogate: Nitrobenzene-d5	52.3		"	50.0 50.0		90.0	10-137			
Surrogate: 2-FBP	51.2		"	50.0		105 102	33-108			
Surrogaie: p-Terphenyl-d14	54.8		"	50.0		102	51-124 48-149			
Batch 0C08003: Prepared 03/08/00	lising Fl	PA 3520C/					40-149			
Blank (0C08003-BLK1)			Jou Series							
2.3,4.6-Tetrachlorophenol			······							
Acenaphthene	ND	10.0	ug/l					·		
Acenaphthylene	ND	10.0	*							
Aniline	ND	10.0	**							
Anthracene	ND	10.0	'n							
Benzoic Acid	ND	10.0								
Benzo (a) anthracene	ND	10.0	*							
Benzo (b) fluoranthene	ND	10.0								
Benzo (k) fluoranthene	ND	10.0	•							
Benzo (ghi) perylene	ND	10.0	n				••			
Benzo (a) pyrene	ND	10.0	**							
Benzyl alcohol	ND	10.0	π							
Bis(2-chloroethoxy)methane	ND	10.0	n							
Bis(2-chloroethyl)ether	ND	10.0	**							
	ND	10.0	17							
lis(2-chloroisopropyl)ether	ND	10.0								
is(2-ethylhexyl)phthalate	ND	50.0	n							
-Bromophenyl phenyl ether	ND	10.0								
utyl benzyl phthalate	ND	10.0								
arbazole	ND	10.0	*							
Chloroaniline	ND	10.0	u							
Chloronaphthalene	ND	10.0	U							
Chloro-3-methylphenol	ND	10.0	'n							
Chlorophenol	ND	10.0	п							
Chlorophenyl phenyl ether	ND	10.0	π							
iryséne	ND	10.0	H							
orth Creek Analytical - Bothell										

Steve Davis, Project Manager

Seattle (18939-1201) Avenue NE, Suite 101, Sotheli, W4 98011-9508 425 420,9200 tax 425,420,9210 Spokane East 11115 Montgomery, Suite B. Spokane, WA 09205-4776 509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97006-7132 503.906.9200 tax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541 382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat

Project Number: 0275-002-00 Project Manager: Sandra Smith

Reported: 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	8/050	%REC		RPD	
Batch 0C08003:	Prepared 03/08/00		PA 3520C/			Result	%REC	Limits	RPD	Limit	Notes
Blank (0C08003-BL		- Using E		oou Series							
Dibenz (a.h) anthracene	,										
Dibenzofuran		ND	10.0	ug/l							
Di-n-butyl phthalate		ND	10.0								
1.3-Dichlorobenzene		ND	10.0	**							
1.4-Dichlorobenzene		ND	10.0	Ħ							
12-Dichlorobenzene		ND	10.0	*							
3.3'-Dichlorobenzidine		ND	10.0	Ħ							
2.4-Dichlorophenol		ND	10.0	n							
Diethyl phthalate		ND	10.0	rt							
2.4-Dimethylphenol		ND	10.0	न							
Dimethyl phthalate		ND	10.0	h							
4.6-Dinitro-2-methylpher		ND	10.0	#							
2.4-Dinitrophenol	101	ND	10.0								
2,4-Dinitrotoluene		ND	20.0	π							
2.6-Dinitrotoluene		ND	10.0	Π							
Di-n-octyl phthalate		ND	10.0	n							
Fluoranthene		ND	10.0								
luorene		ND	10.0	π							
lexachlorobenzene		ND	10.0	H,							
Hexachlorobutadiene		ND	10.0	17							
lexachlorocyclopentadier		ND	10.0	n							
lexachloroethane	le le	ND	10.0	n							
ndeno (1,2,3-cd) pyrene		ND	10.0	n							
sophorone		ND	10.0								
Methylnaphthalene		ND	10.0								
Methylphenol		ND	10.0	97						4	
& 4-Methylphenol		ND	10.0								
aphthalene		ND	10.0	77							
Nitroaniline		ND	10.0	Ħ							
Nitroaniline		ND	10.0	**							
Nitroaniline		ND	10.0	"							
uobenzene		ND	10.0	Ħ							
		ND	10.0	п				·			
Nitrophenol		ND	10.0	*							
Nitrophenol		ND	10.0	ы							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

Seattle 18935 120tr. Avenue NE, Sune 101, Botnell, WA 98011-9505 425 426,9200 fax 425 420,9210 Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509.924.9200 fax 509.924 9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.905.9200 tax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 Bend 541.383.9310 tax 541.382.7588

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat Project Number: 0275-002-00

Project Manager: Sandra Smith

Reported:

03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0C08003:	Prepared 03/08/00	Using E	PA 3520C/	600 Series							inotes
Blank (0C08003-BLI	K1)						. <u>.</u>				
N-Nitrosodiphenylamine		ND	10.0	ug/l							
N-Nitrosodi-n-propylami	ine	ND	10.0	" "							
Pentachlorophenol		ND	10.0								
Phenanthrene		ND	10.0	π							
Phenol		ND									
Pyrene	•	ND	10.0								
1.2,4-Trichlorobenzene			10.0	n							
2.4,5-Trichlorophenol		ND	10.0	61							
2,4.6-Trichlorophenol		ND	10.0	R					•		
		ND	10.0	17							
Surrogate: 2-FP		25,1		17	50.0		50.2	40-115	·····	· · · · · · · · · · · · · · · · · · ·	
urrogate: Phenol-d6 urrogate: 2,4,6-TBP		31.3		**	50.0		62.6	40-115 18-145			
urrogate: 2,4,0-1BP urrogate: Nitrobenzene+t	-	38.8			50.0		77.6	24-130			
urrogaie: 2-FBP	d5	37.5		**	50.0		75.0	42-110			
	• .	31.1		"	50.0		62.2	42-110 46-116			
urrogate: p-Terphenyl-d.	14	43.9		"	50.0		87.8	40-110 63-117		÷	
CS (0C08003-BS1)								05-117			
cenaphthene		84.7	10.0								
Chloro-3-methylphenol		212		ug/l	100		84.7	42-110			
Chlorophenol			10.0		200		106	35-110			*
4-Dichlorobenzene		147	10.0	FT.	200		73.5	45-110			
4-Dinitrotoluene		65.2	10.0	**	100		65.2	23-110			
Nitrophenol		103	10.0	17	100		103	51-110			
		149	10.0	n	200		74.5	16-110			
Nitrosodi-n-propylamine		112	10.0		100		112	34-115			
ntachlorophenol		170	10.0	**	200		85.0				
enol		152	10.0		200			30-124			
rene		95.4	10.0				76.0	39-110			
,4-Trichlorobenzene		70.8	10.0		100		95.4	49-113	-		
Togate: 2-FP	· · · · · · · · · · · · · · · · · · ·		10.0		100		70.8	17-110			
rogate: Phenol-d6		25.2		**	50.0		50.4	40-115			
rogate: 2,4,6-TBP		36.6		"	50.0		73.2	18-145			
rogate: Nitrobenzene-d5	r	40.8		"	50.0		81.6	24-130			
rogate: 2-FBP		37.9		"	50.0		75.8	42-110			
rogate: p-Terphenyl-d14	,	33.8		n	50.0		67.6	46-116			
-o p-icipnenyi-a[4		40.9		**	50.0		81.8	<i>63-117</i>			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 11 of 13

Seattle 18935 12011 Avenue NE, Suite 101, Botnell, WA 98011-9505 425 420.9200 tax 425 420.9210 Spokane East 11115 Montdomery, Suite B, Spokane, WA 99206-4776 505 001 5000 tax 500 001 porce 509.924.920C tax 509.924.9290 Portland 9405 SW Nimpus Avenue, Beaverton, OR 97008-7132 503.906.920C 1ax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, DR 97701-5711 541.383.9310 tax 541.382 7588

Geo Engineers - Tacoma Project: Bellingham Wood Treat 1101 Fawcett Ave., Ste 200 Project Number: 0275-002-00 Reported: Tacoma WA, 98402 Project Manager: Sandra Smith 03/14/00 13:42

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

North Creek Analytical - Bothell

		·	Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C08003:	Prepared 03/08/00	Using E	PA 3520C/	600 Series		and the second secon					
LCS Dup (0C08003-E	SD1)										
Acenaphthene		81.3	10.0	ug/l	100		81.3	42-110	4.10	23	
4-Chloro-3-methylphenol		194	10.0		200		97.0	35-110	8.87	25	
2-Chlorophenol		138	10.0	17	200		69.0	45-110	6.32	26	
1,4-Dichlorobenzene		65.1	10.0	**	100		65.1	23-110	0.153	35	
2,4-Dinitrotoluene		99.8	10.0	H	100		99.8	51-110	3.16	17	н.
4-Nitrophenol		219	10.0	tt	200		110	16-110	38.0	20	0
N-Nitrosodi-n-propylamir	ne	106	10.0	Ħ	100		106	34-115	5.50		Q-07
Pentachlorophenol		171	10.0	н	200		85.5	30-124	0.587	26	
Phenol		138	10.0		200		69.0	39-110	9.66	31 27	
Pyrene		90.2	10.0		100		90.2	49-113	5.60		
1,2,4-Trichlorobenzene		69.3	10.0		100		69.3	17-110	2.14	21 36	
Surrogate: 2-FP		22.7		"	50.0		45.4	40-115			
Surrogate: Phenol-d6		33.0		84	50.0		66.0	40-115 18-145			
Surrogate: 2,4,6-TBP		37.5		97	50.0		75.0	24-130			
Surrogate: Nitrobenzene-o	15	36.9		"	50.0		73.8	42-110			
Surrogate: 2-FBP		31.5		"	50.0		63.0	46-116			
Surrogate: p-Terphenyl-di	14	39.2		**	50.0		78.4	63-117			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

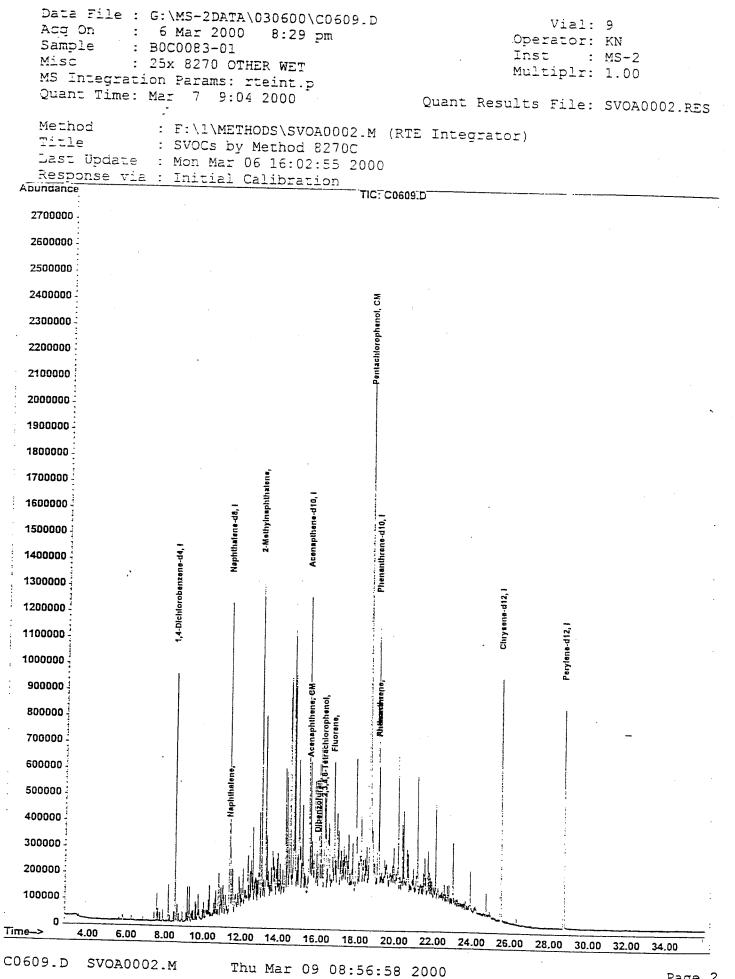
 Seattle
 18939
 120tn
 Avenue NE.
 Suite 101.
 Botnell.
 WA 98011-9508

 425.420.9200
 tax 425.420.9210
 East 11115
 Montgomery.
 Suite B.
 Spokane.
 WA 99206-4776
 509.924.9200
 tax 509.924.9290

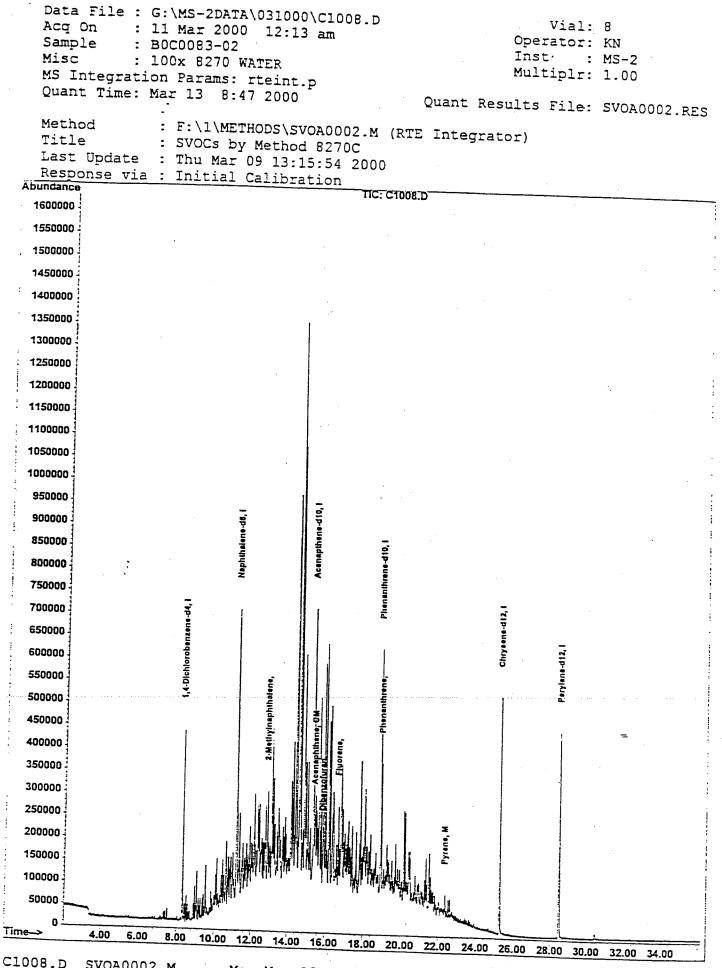
 Portland
 9405
 SW Nimpus Avenue.
 Beaverton.
 OR 97008-7132
 503.906.9200
 fax 503.906.9210

 Bend
 20332
 Empire Avenue.
 Suite F-1.
 Bend.
 OR 97701-5711

 541.383.9310
 tax 541.382.7588
 Suite F-1.
 Suite F-1.
 Suite F-1.


Geo Engineers - Tacoma	Project: Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200	Project Number: 0275-002-00	Reported:
Tacoma WA, 98402	Project Manager: Sandra Smith	03/14/00 13:42

Notes and Definitions


- A-01 Value should be taken as estimated. Sample matrix interferes with column and re-analysis is not possible.
- Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
- Q-07 The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
- S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

Page 2

SVOA0002.M

Mon Mar 13 08:47:45 2000

	CHAIN OF CUSTODY RECORD	BOCOO83
GEOENGINEERS, INC. 1101 FAWCETT, SUITE 200 TACOMA, WASHINGTON 98402 (206) 383-4940		DATE ZALOO
PROJECT NAME/LOCATION Bellingham Wood PROJECT NUMBER 0275-002-00 PROJECT MANAGER Sondy Smith SAMPLED BY Sondy Smith SAMPLE IDENTIFICATION SAMPLE COLLECT	4. VL2 TION # OF 2	ED NOTES/COMMENTS (Preserved, filtered, etc.) BOR 2 day THT
CON3-01 BUT- TS-01 3/3/00 16:00 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	With Chrometogram Hold for Analy ses
NATURE <u>Andre D'Smith</u> sig NITED NAME <u>Sandre D'Smith</u> PRI <u>IE 8 300 'TIME 20:20 DA</u> EIVED BY		RE
NATURE MA. Elever Chilsen sig NTED NAME PRIME IE 3.3.00 TIME 20120 DA	INATURESIGNATUL NTED NAMEPRINTED	RE

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850

05/11/2000

North Creek Analytical 18939 120th Avenue NE Bothell, WA 98011 Attn: Steve Davis Project:B0D0387Client ID:B0D0387-01Sample Matrix:Water/OilDate Sampled:05/12/2000Date Received:05/10/2000Spectra Project:2000050093Spectra Number:1Rush

Analyte	Result	Units	Method
Gravity, API at 60. Deg F	23.4		ASTM D-287
Gravity, Specific at 60 Deg. F	0.9135		ASTM D287
Kinematic Viscosity at 40 Deg.	2.46	cSt	ASTM D-445

SPECTRA LABORATORIES

Steven G. Hibbs, Laboratory Manager

North Creek Analytical, Inc. Environmental Laboratory Network www.ncalabs.com

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(425) 420-9200 FAX 420-9210 (509) 924-9200 FAX 924-9290 FAX 906-9210 (503) 906-9200 (541) 383-9310 FAX 382-7588

CHAIN OF	CUSTODY	REPORT
----------	---------	--------

Work Order #: RAN Т

1	uci	Ħ.	r = r

CLIENT: GEOFINGIA REPORT TO: SANDY	VÉÉNS SMITH		INVO	ICE TO:		₩ añlas i			49 <u>1 - 1</u> 2		TURNAROUND REQUEST in Business Days*			
ADDRESS: GEI TR	tomA										10 STD.	7 5	um Hydrocarbon Analysi	
PHONE: 425 861-610-	7 FAX:		P.O. N	UMBER:					·····		1 r	5 4		< 1
PHONE: 415 861-610 PROJECT NAME: DOLLIAS I PROJECT NUMBER: 07-75-0 SAMPLED BY: D BAVM	MANAGEMENT				ESTED AI	NALYSES	; ;				57	┉╢╵╍╍╍╢		
PROJECT NUMBER: ALTO	r sije			Ì	1			<u> </u>	T		-	ОТН	Please Specify	
SAMPLED BY: D BAUMG	100-00								1			L. Balances		
											*Turnar	ound Requests	less than standard may incu	Rush Charges.
CLIENT SAMPLE	SAMPLING										MATRIX	# OF		NCA WO
IDENTIFICATION	DATE/TIME										(W, S, O)	CONT.	COMMENTS	
1.7L-MW-4-PO2 4	020/20 1430										0	1	HOLD	FOT
2.												b		
3.									-	+				
4.														
5.														
	······								_					
6.														
7.														
8.														
9.														
10.					_				-					
11.					-									
12.						+								
13.						+								
14.			-			++								
15.														
RELINQUISHED BY:		ll	DATE L	1/20/2	PECE		Joan			$ \leq $				
PRINT NAME: DRALMEMT;	FIRM: G	FI	TIME:)		PRINT	NAME	Jours	YV	1012	5	CIDAL	Ara A		DATE: 4/2000
RELINQUISHED BY:			DATE:			WED BY:					FIRM:	NCO		TIME: 1728
PRINT NAME:	FIRM:		TIME:			NAME:					FIRM:			DATE:
AUDITIONAL REMARKS:	ULT SAMPL	F 11										·		IME:
COCREVISION PICOP		EL.							-				0 <u>16</u>	Act 1

Sound Analytical Services, Inc.

, Inc.
01

8010 Halogenated Volatile Organics by USEPA Method 5030/8260B Modified

-			Recove	ery Limits
Surrogate Dibromofluoromethane Fluorobenzene Toluene-d8 Ethylbenzene-d10	% Recovery 97.1 91.4 94.5 94.9	Flags	Low 85 86 85 75	High 120 115 113 113
Bromofluorobenzene	97.5		79	120

Sample results are on a dry weight basis.

	Result			
Analyte	(ug/kg)	PQL	MDL Flags	
Chloromethane	ND	2300	220	
Bromomethane	ND	2300	140	
Vinyl Chloride	ND	2300	130	
Chloroethane	ND	2300	100	
Trichlorofluoromethane	ND	2300	140	
1,1-Dichloroethene	ND	2300	250	
Methylene Chloride	ND	2300	280	
trans-1,2-Dichloroethene	ND	2300	250	
1,1-Dichloroethane	ND	2300	290	
cis-1,2-Dichloroethene	ND	2300	260	
Chloroform	ND	2300	250	
1,1,1-Trichloroethane	ND	2300	240	
Carbon Tetrachloride	ND	2300	230	
1,2-Dichloroethane	ND	2300	280	
Trichloroethene	ND	2300	220	
1,2-Dichloropropane	ND	2300	210	
Bromodichloromethane	ND	2300	230	
cis-1,3-Dichloropropene	ND	2300	240	
trans-1,3-Dichloropropene	ND	2300	250	
1,1,2-Trichloroethane	ND	2300	260	
Tetrachloroethene	ND	2300	170	
Dibromochloromethane	ND	2300	270	
Chlorobenzene	ND	2300	220	
Bromoform	ND	2300	300	
1,1,2,2-Tetrachloroethane	ND	2300	390	
1,3-Dichlorobenzene	ND	2300	240	
			5	

5 016

Sound Analytical Services, Inc.

8010 Halogenated Volatile Organics by USEPA Method 5030/8260B Modified data for 89402-01 continued...

Analyte 1,4-Dichlorobenzene 1,2-Dichlorobenzene	Result (ug/kg) ND ND	PQL 2300 2300	MDL 260 250
--	-------------------------------	----------------------------	-------------------

Muroro

, and the second

6 017

Sound Analytical Services, Inc.

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor GeoEngineers, Inc. HS-SSP-S01 5/3/00 5/10/00 5/11/00 83.4 5

ntatively Identified 8010 Halogenated Volatile Organics by USEPA Method 5030/8260B Modifi

Sample results are on a dry weight basis.

TIC Name	Result (ug/kg)	Ret. Time (Min.)	Flags
1-Ethyl-3-methylcyclohexane (c,t)	1400	15.31	J
Benzene, 1-ethyl-2-methyl	3200	17.12	J
Benzene, 1-ethyl-3-methyl	3700	18.78	J
Benzene, 2-propenyl-	2000	19.13	J
Benzene, 1-methyl-3-propyl-	3900	19.25	J
Benzene, 1-methyl-2-propyl-	1800	19.73	J
Benzene, 1-methyl-3-(1-methylethyl)	6900	19.95	J
Benzene, 1-ethyl-2,3-dimethyl-	5800	20.13	J
2,3-Dihydro-1-methylindene	1700	20.28	J
2-Ethyl-2-methyl-1,3-dithiolane	2200	20.42	J
Benzene, 1,2,4,5-tetramethyl-	3200	20.66	J
Benzene, 1,2,3,5-tetramethyl-	4600	20.88	J
Benzene, 1,2,3,4-tetramethyl-	4600	20.95	J
Benzene, (1,1-dimethylpropyl)-	1800	21.13	J
Indan, 1-methyl-	5100	21.39	J
1H-Indene, 2,3-dihydro-5-methyl-	7500	21.66	J
2-tert-Butyltoluene	1900	21.77	J
Benzene, 4-ethyl-1,2-dimethyl-	3100	21.92	J
1H-Indene, 2,3-dihydro-1,6-dimethyl	6300	22.23	J
Benzene, ethyl-1,2,4-trimethyl-	2900	22.34	J

Yny or

SOUND ANALYTICAL SERVICES, INC.

Client Name	GeoEngineers, Inc.
Client ID:	TL-MW-4-P01
Lab ID:	89402-02
Date Received:	5/3/00
Date Prepared:	5/8/00
Date Analyzed:	5/9/00
% Solids	
Dilution Factor	20

8010 Halogenated Volatile Organics by USEPA Method 5030/8260B Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	82.9	Х9	85	120
Fluorobenzene	85.9	X9	86	115
Toluene-d8	114	X9	85	113
Ethylbenzene-d10	102		75	113
Bromofluorobenzene	156	Х9	79	120

Sample results are on an as received basis.

			Result			
Analyte			(ug/kg)	PQL /	MDL Flags	
Chlorometha	ine		ND	8000 🚺 🍃	770	
Bromometha	ine		ND	8000	470	
Vinyl Chloric	е		ND	8000	430	
Chloroethan			ND	8000	350	
Trichlorofluo	romethane		ND	8000	480	
1,1-Dichloro	ethene		ND	8000	850	
Methylene C			ND	8000	940	
trans-1,2-Did	chloroethene		ND	8000	850	
1,1-Dichloro	ethane		ND	8000	980	
cis-1,2-Dich	oroethene		ND	8000	880	
Chloroform			ND	8000	850	
1,1,1-Trichlo	oroethane		ND	8000	830	
Carbon Tetr	achloride		ND	8000	800	
1,2-Dichloro	ethane		ND	8000	970	
Trichloroeth	ene		ND	8000	760	
1,2-Dichloro	propane		ND	8000	730	
Bromodichlo	promethane		ND	8000	780	
cis-1,3-Dich	oropropene		ND	8000	810	
trans-1,3-Di	chloropropene		ND	8000	860	
1,1,2-Trichlo	proethane		ND	8000	900	
Tetrachloroe	ethene		ND	8000	600	
Dibromochle	promethane		ND	8000	930	
Chlorobenze	ene		ND	8000	750	
Bromoform		1	ND	8000	1000	
1,1,2,2-Tetr	achloroethane		ND	8000	1300	
1,3-Dichloro		P	ND	8000 🤳	830	
		AIN		1		

8010 Halogenated Volatile Organics by USEPA Method 5030/8260B Modified data for 89402-02 continued...

Analyte 1,4-Dichlorobenzene 1,2-Dichlorobenzene Result (ug/kg) ND ND

PQL 05 8000 4

MDL 890 870

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor GeoEngineers, Inc. TL-MW-4-P01 89402-02 5/3/00 5/8/00 5/9/00 20

ntatively Identified 8010 Halogenated Volatile Organics by USEPA Method 5030/8260B Modifi

Sample results are on an as received basis.

TIC Name	Result (ug/kg)	Ret. Time (Min.)	Flags
Cyclopentane, 1,2-dimethyl, cis-	15000	8.46	J
Cyclohexane, methyl-	46000	9.67	J
Unknown Aldehyde	13000	11.02	J
Unkown	13000	11.27	J
Cyclohexane, 1,2-dimethyl, trans-	12000	12.11	J
Cyclohexane, ethyl-	25000	13.19	J
Unknown	12000	13.96	J
cis-1-Ethyl-3-methyl-cyclohexane	16000	15.33	J
Benzene, (1-methylpropyl)-	13000	18.34	J
Benzene, 1-methyl-2-(1-methylethyl)	40000	18.65	J
Benzene, 1,2,3-trimethyl	25000	18.82	J
Indane	21000	19.14	J
Benzene, 1-methyl-3-propyl	17000	19.27	J
Benzene, 1-methyl-3-(1-methylethyl)	32000	19.97	J
Benzene, 4-ethyl-1,2-dimethyl-	23000	20.15	J
Benzene, 1-ethyl-2,3-dimethyl-	13000	20.70	J
Benzene, 1,2,3,4-tetramethyl-	17000	20.90	J
Benzene, 1,2,4,5-tetramethyl-	17000	20.99	J
1H-Indene, 2,3-dihydro-4-methyl-	30000	21.43	J
1H-Indene, 2,3-dihydro-5-methyl-	32000	21.68	J

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor GeoEngineers, Inc. TL-MVV-4-P01 89402-02 5/3/00 5/5/00 5/5/00

100

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	74		44	153
2 - Fluorobiphenyl	44	Х9	50	129
p - Terphenyl - d14	58	(A)	37	135
Phenol - d5	9	Х9	48	130
2 - Fluoropheno!	73		53	141
2,4,6 - Tribromophenol	20	Х9	55	137

Sample results are on an as received basis.

Analyte		esult g/kg)	PQL	MDL	Flags
Phenol	ND		4300	1600	$\langle $
bis(2-Chloroethyl)ether	ND		4300	920	The second secon
2-Chlorophenol	ND		4300	990	_
1,3-Dichlorobenzene	ND		4300	1200	
1,4-Dichlorobenzene	ND		4300	1000	
Benzyl Alcohol	ND		4300	1300	2
1,2-Dichlorobenzene	ND		4300	870	
2-Methylphenol	ND		4300	650	•
bis(2-Chloroisopropyl)ether	ND		4300	1200 💋	
3- & 4-Methylphenol	- ND		4300	1100	P
N-nitroso-di-n-propylamine	ND		4300-	-1000	N .
Hexachloroethane	ND		4300	1300	
Nitrobenzene	ND		4300	710	0
Isophorone	ND		4300	1200	1
2-Nitrophenol	ND		4300	780-	0
2,4-Dimethylphenol	ND	and the second	4300	1100 <	Q
Benzoic Acid	ND		4300	490 /	
bis(2-Chloroethoxy)methane	ND		4300	800	$\mathbf{\overline{\mathbf{v}}}$
2,4-Dichlorophenol	ND		4300	320	
1,2,4-Trichlorobenzene	ND		4300	580	
Naphthalene		2800000	870	860	D10
4-Chloroaniline	ND		4300	680	
Hexachlorobutadiene	ND		4300	940 🧹	0
4-Chloro-3-methylphenol	ND		4300	1300 👗	N
2-Methylnaphthalene		25000000 🕤	870	620	D100
Hexachlorocyclopentadiene	ND		4300	670	
		1		~	13
	Que	S. S			ſ

emivolatile Organics by USEPA Method 8270 data for 89402-02 continued...

		Result		0
Analyte		(ug/kg)	PQL	MDL
2,4,6-Trichlorophenol	ND		4300	750
2,4,5-Trichlorophenol	ND		4300	850
2-Chloronaphthalene		130000	1700	990
2-Nitroaniline	ND		4300	980
Dimethylphthalate	ND		4300	550
Acenaphthylene	ND		870	690
2,6-Dinitrotoluene	ND		4300	1400
3-Nitroaniline	ND		4300	1200
Acenaphthene		950000	870	830 🥖 D10
2,4-Dinitrophenol	ND	and the second	4300	
4-Nitrophenol	ND		4300	1700
Dibenzofuran	ND		4300	600
2,4-Dinitrotoluene	ND		4300	790
	ND		4300	1300
Diethylphthalate	ND		4300	760
4-Chlorophenylphenylether		870000	870	720 D10
Fluorene 4-Nitroaniline	ND	0,0000	4300	500 🥖
4,6-Dinitro-2-methylphenol	ND		4300	760
	ND		4300	490
N-Nitrosodiphenylamine 4-Bromophenylphenylether	ND		4300	860
Hexachlorobenzene	ND		4300	1600
Pentachlorophenol	NĐ-		4300	1000
Phenanthrene	NU	2500000	870	660 D100
Anthracene		140000	870	850 D10
Fluoranthene		130000	870	600
Pyrene		100000	870	480
Butylbenzylphthalate	ND		4300	650
3,3'-Dichlorobenzidine	ne.	71000 🖌	4300	1300
Benzo(a)anthracene		56000	870	870
Chrysene	ND	00000	870	870
bis(2-Ethylhexyl)phthalate	ND	/	8700	8000
Di-n-octylphthalate	NU	41000	4300	900
		41000	870	860
Benzo(b)flouranthene		21000	870	600
Benzo(k)fluoranthene		49000	870	810
Benzo(a)pyrene		24000	870	850
Indeno(1,2,3-cd)pyrene		5600	870	810
Dibenz(a,h)anthracene		24000	870	770
Benzo(g,h,i)perylene	ND	24000	. 870	870
Dibenzo(a,j)acridine		12000	870	870
Dibenzo(a,e)pyrene		15000	870	870
Dibenzo(a,h)pyrene		7000	870	870
Dibenzo(a,i)pyrene		1000	870	870
Dibenzo(a,l)pyrene	ND		010	070

Im ing di-n-bruty/phthalate result & NON DEFELT BASED ON KAW W 900 DATA. - Eller 6.30.00

023

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor GeoEngineers, Inc. TL-MW-4-P01 89402-02 5/3/00 5/5/00 5/5/00 100

Tentatively Identified Compounds - USEPA Method 8270C

Sample results are on an as received basis.

	Result	Ret.	
TIC Name	(ug/kg)	Time (Min.)	Flags
Benzene, 1,3,5-trimethyl-	1000000	4.26	J
Benzene, 1,3,5-trimethyl-	2700000	4.65	J
Benzene, 1,2-diethyl-	1700000	5.01	J
Benzene, 1,2,3,5-tetramethyl-	2000000	5.09	J
Indane	610000	5.16	J
Benzene, 1,2,3,5-tetramethyl-	2300000	5.51	J
Benzene, 1,2,3,5-tetramethyl-	2300000	5.71	J
1,3,8-p-Menthatriene	1100000	5.75	J
Benzofuran, 2,3-dihydro-2-methyl-	3200000	5.82	ل ا
Benzene, diethylmethyl-	710000	6	J
Benzofuran, 2,3-dihydro-2-methyl-	1200000	6.16	J
Benzofuran, 2,3-dihydro-2-methyl-	1000000	6.2	J
Benzene, 1-ethenyl-3,5-dimethyl-	560000	6.38	J
4a,8a-Ethenonaphthalene, 1,2,3,4,5,8-hexahydro-	1500000	6.47	J
6-Methyl-4-indanol	1700000	6.94	J
Benzene, 2-ethenyl-1,3,5-trimethyl-	940000	7.53	J
Naphthalene, 1,8-dimethyl-	1600000	8.62	J
Phenanthrene, 1-methyl-	1100000	11.67	J
9H-Fluorene, 9-ethylidene-	1200000	11.71	J
Phenanthrene, 2,3,5-trimethyl-	720000	12.91	J

Jun 1900

15

.**-** ·

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor GeoEngineers, Inc. HS-SSP-S01 89402-01 5/3/00 5/5/00 83.4 20

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	229	Х9	44	153
2 - Fluorobiphenyl	51.2		50	129
p - Terphenyl - d14	84.8		37	135
Phenol - d5	60.6		48	130
2 - Fluorophenol	92.4		53	141
2,4,6 - Tribromophenol	14.8	Х9	55	137

Sample results are on a dry weight basis.

	5.000	esult g/kg)	PQL	MDL	Flags
Analyte	ND	y/ry)	99	14	
Phenol	ND		99	35	
bis(2-Chloroethyl)ether	ND		99	18	
2-Chlorophenol	ND		99	12	
1,3-Dichlorobenzene	ND		99	28	
1,4-Dichlorobenzene	ND		99	19	
Benzyl Alcohol	ND		99	25	
1,2-Dichlorobenzene	ND		99	23	
2-Methylphenol	ND		99	41	
bis(2-Chloroisopropyl)ether			99	21	D
3- & 4-Methylphenol	ND			16	Å
N-nitroso-di-n-propylamine	ND		99	26	
Hexachloroethane	ND		99	18	
Nitrobenzene	ND		99	26	
Isophorone	ND		99	22	
2-Nitrophenol	ND		99	14	
2,4-Dimethylphenol	ND		200	150	
Benzoic Acid	ND		99	31	
bis(2-Chloroethoxy)methane	ND		99	21	
2,4-Dichlorophenol	ND		99	10	
1,2,4-Trichlorobenzene	ND	47000	20	9.9	D10
Naphthalene		17000	99	8.6	
4-Chloroaniline	ND		99	17	
Hexachlorobutadiene	ND			10	A
4-Chloro-3-methylphenol	ND		99	16	D100
2-Methylnaphthalene		200000	20	26	Digo
Hexachlorocyclopentadiene	ND		99	20	
	91	u) gev			- Q.

Semivolatile Organics by USEPA Method 8270 data for 89402-01 continued...

Amaluta		esult g/kg)	PQL	MDL	
Analyte 2,4,6-Trichlorophenol	ND	3/11/3/	99	17	
	ND		99	19	
2,4,5-Trichlorophenol	ND		40	22	
2-Chloronaphthalene 2-Nitroaniline	ND		99	22	
	ND		99	12	
Dimethylphthalate	ND		20	16	
Acenaphthylene	ND		99	32	
2,6-Dinitrotoluene 3-Nitroaniline	ND		99	27	
	ND	7000	20	19	D10
Acenaphthene	ND	1000	99	20	0
2,4-Dinitrophenol	ND		99	39	-
4-Nitrophenol	ND		99	14	
Dibenzofuran	ND		99	18	
2,4-Dinitrotoluene	ND		99	29	
Diethylphthalate	ND		99	17	
4-Chlorophenylphenylether	ND	9600	20	16	D10
Fluorene		9000	99	11	
4-Nitroaniline	ND		99	17	
4,6-Dinitro-2-methylphenol	ND		99	11	
N-Nitrosodiphenylamine	ND		99	20	
4-Bromophenylphenylether	ND		99	36	
Hexachlorobenzene	ND		99	23	
Pentachlorophenol	ND	00000	20	15	D10
Phenanthrene		22000	20	19	Die
Anthracene		4100	99	31	
Di-n-butylphthalate	ND	11000	20	14	D10
Fluoranthene		11000		11	D10
Pyrene		12000	20	15	Die
Butylbenzylphthalate	ND		99	29	
3,3'-Dichlorobenzidine	ND	5000	99	29	D10
Benzo(a)anthracene		5600	20	20	D10
Chrysene		5300	20	180	
bis(2-Ethylhexyl)phthalate	ND		200	20	
Di-n-octylphthalate	ND		99	20	
Benzo(k)fluoranthene		2400	20	14	D10
Benzo(a)pyrene		6000	20	18	DIU
Indeno(1,2,3-cd)pyrene		2600	20	18	
Dibenz(a,h)anthracene		350	20	18	
Benzo(g,h,i)perylene		2700	20		
Dibenzo(a,j)acridine		99	20	20	
Dibenzo(a,e)pyrene		2000	20	20	
Dibenzo(a,h)pyrene	ND		20	20	
Dibenzo(a,i)pyrene		1400	20	20	
Dibenzo(a,l)pyrene		450	20	20	

Client Name	GeoEngineers, Inc.
Client ID:	HS-SSP-S01
Lab ID:	89402-01
Date Received:	5/3/00
Date Prepared:	5/5/00
Date Analyzed:	5/5/00
% Solids	83.4
Dilution Factor	20

Tentatively Identified Compounds - USEPA Method 8270C

Sample results are on a dry weight basis.

TIC Name	Result (ug/kg)	Ret. Time (Min.)	Flags
Benzene, 1,2,3-trimethyl-	12000	4.25	J
Benzene, 1,2-diethyl-	19000	4.99	J
Benzene, 1,2,3,4-tetramethyl-	19000	5.07	J
Benzene, 1-methyl-2-propyl-	15000	5,4	J
Benzene, 1,2,3,5-tetramethyl-	33000	5.49	J
Benzene, 1,2,3,5-tetramethyl-	22000	5.69	J
1,3,8-p-Menthatriene	18000		J
Benzene, 1,3-diethyl-5-methyl-	5900	5.99	J
Benzofuran, 2,3-dihydro-2-methyl-	8500	6.13	-
Benzene, 1,2,3,5-tetramethyl-	9600	6.18	J
1H-Indene, 2,3-dihydro-5-methyl-	6100	6.36	J
Benzene, 1,4-diethyl-2-methyl-	2300	6.4	J
1H-Indene, 2,3-dihydro-5-methyl-	9900	6.45	J
1H-Indene, 2,3-dihydro-1,2-dimethyl-	15000	6.91	J
Naphthalene, 2,3-dimethyl-	43000	8.9	J
Naphthalene, 1,4,6-trimethyl-	32000	9.32	J
Anthracene, 9-methyl-	11000	11.66	J
5H-Dibenzo[a,d]cyclohepten-5-ol, 10,11-dihydro-	7300	11.78	J
Benzo[c]phenanthrene	1700	14.37	J
Triphenylene, 2-methyl-	400	14.77	J

Jun 900

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor GeoEngineers, Inc. HS-SSP-S01 89402-01 5/3/00 5/4/00 5/4/00 83.4 20

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits	
Surrogate o-terphenyl	% Recovery 76.7	Flags	Low 50	High 150	

Sample results are on a dry weight basis.

	Result			
Analyte	(mg/kg)	PQL	MDL Flag	js
#2 Diesel	6300	120	74	X1
Motor Oil	710	240	120	

X1 - Chromatogram suggests this might be jet fuel, kerosene or similar product

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor

GeoEngineers, Inc. TL-MW-4-P01 89402-02 5/3/00 5/10/00 5/10/00 5

Metals by ICP-MS - USEPA Method 6020

Sample results are on an as received basis.

	Result				
Analyte	(mg/kg)	PQL	MDL	Flags	
Arsenic	0.22	1.1	0.083	X	54
Barium	0.77	1.1	0.055	L	
Cadmium	ND	0.55	0.029		
Chromium	5.1	1.1	0.02		2410
Lead	0.94	0.55	0.0039		PRA
Selenium	0.65	3.3	0.38	JB1	TUI
Silver	0.061	0.55	0.0078	J-B1	ŨĨ

ABU 6/20/00

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor % Solids GeoEngineers, Inc. TL-MW-4-P01 89402-02 5/3/00 5/8/00 5/9/00 1 100

Mercury by CVAA - USEPA Method 7471

Sample results are on a dry weight basis.

Analyte Mercury Result (mg/kg) ND

PQL 0.065 MDL Flags 0.056 R

MB&

60

Client Name Project Name Date Received

GeoEngineers, Inc. FORMER HALEY SITE 05-03-00

Sample Preparation Information for Toxicity Characteristic Leaching Procedure (TCLP) EPA Method 1311

> Client Sample ID Lab ID

HS-SSP-S01 89402-01

% Solids:		100
No. of Extractions:		1
Type of Extraction(s):		Rotary
Extraction Fluid:		#1
Date Filtered:		05-12-00
Bate Filtered.	•	00-12-00

8/20/00

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor

GeoEngineers, Inc. HS-SSP-S01 89402-01 5/3/00 5/12/00 5/12/00 1

TCLP Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/L)	PQL	Flags
Arsenic	0.012	0.01	- J-
Barium	0.54	0.005	
Cadmium	ND	0.005	
Chromium	ND	0.01	
Lead	0.013	0.01	
Selenium	ND	0.05	
Silver	ND	0.01	

MB10 6/20/60

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor GeoEngineers, Inc. HS-SSP-S01 89402-01 5/3/00 5/12/00 5/12/00 1

TCLP Mercury by CVAA - USEPA Method 7470

Analyte Mercury Result (mg/L) ND

PQL 0.002 MDL Flags 0.0017

15# 6/20/00

Client Name Project Name Date Received GeoEngineers, Inc. FORMER HALEY SITE 05-03-00

General Chemistry Parameters

	Client Sample ID Lab ID				
Parameter	Method	Date Analyzed	Units	Result	PQL
Flash Point pH	EPA 1020 EPA 9045	05-09-00 05-08-00	°F N/A	> 200 7.86	N/A N/A

	Client Sample ID Lab ID	TL-MW-4-P01 89402-02				
Parameter	Method	Date Analyzed	Units	Result	PQL	
Flash Point pH	EPA 1010 EPA 9045	05-09-00 05-08-00	°F N/A	158 5.51	N/A N/A	

Ppp

6/28/00

uanterra

Quanterra 880 Riverside Parkway West Sacramento, California 95605-1500

916 373-5600 Telephone 916 372-1059 Fax

May 15, 2000

QUANTERRA INCORPORATED PROJECT NUMBER: G0D260236 PO/CONTRACT: 0275-002-00

Sandy Smith GeoEngineers Inc 1101 Fawcett Suite 200 Tocoma, WA 98402

Dear Ms. Smith,

This report contains the analytical results for the samples received under chain of custody by Quanterra Incorporated on 4/22/00. These samples are associated with your Former Haley Site/Bellingham project.

All applicable quality control procedures met method-specified acceptance criteria, except as noted on the following page.

If you have any questions, please feel free to call me at (916)374-4358.

Sincerely,

1 wilson

Terry A. Wilson Project Manager

anterra

CASE NARRATIVE

QUANTERRA INCORPORATED PROJECT NUMBER G0D260236

SOLID, 8290, Dioxins/Furans, HRGC/HRMS

Your soil samples have some analytes reported from the analysis of diluted sample extracts due to saturation. The analytes reported from the analysis of dilutions are as follows:

Sample "HS-MW-3-6.5": 20X dilution for OCDD.

Sample "HS-MW-4-7": 50X dilution for HpCDD, OCDF and OCDD.

Sample "TL-MW-2-9": 100X dilution for HxCDF Totals, HpCDF, HpCDD, OCDF and OCDD.

Sample "TL-MW-5-9": 50X dilution for OCDD. Sample "HS-SSP-S01": 50X dilution for HpCDF, HpCDD, OCDF and OCDD.

Samples "TL-MW-2-9" and "HS-SSP-S01" are still saturated with OCDD in the dilution analyses. These analytes are flagged with an "E" qualifier and should be considiered as estimated.

WASTE, 8290, Dioxins/Furans, HRGC/HRMS

The data for your oil sample is reported from the analysis of 50X dilution, of the sample extract, due to saturation in the undiluted analysis. The diluted data is still saturated with OCDD. This analyte is flagged with an "E" qualifier and the result may have a low bias.

There were no other anomalies associated with this project.

Quanterra - Western Region Quality Control Definitions

OC Parameter	Definition
QC Batch	A set of up to 20 field samples plus associated laboratory QC samples that are similar in composition (matrix) and that are processed within the same time period with the same reagent and standard lots.
Duplicate Control Sample (DCS)	Consist of a pair of LCSs analyzed within the same QC batch to monitor precision and accuracy independent of sample matrix effects. This QC is performed only if required by client or when insufficient sample is available to perform MS/MSD.
Duplicate Sample (DU)	A second aliquot of an environmental sample, taken from the same sample container when possible, that is processed independently with the first sample aliquot. The results are used to assess the effect of the sample matrix on the precision of the analytical process. The precision estimated using this sample is not necessarily representative of the precision for other samples in the batch.
Laboratory Control Sample (LCS)	A volume of reagent water for aqueous samples or a contaminant-free solid matrix (Ottawa sand) for soil and sediment samples which is spiked with known amounts of representative target analytes and required surrogates. An LCS is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects.
Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A field sample fortified with known quantities of target analytes that are also added to the LCS. Matrix spike duplicate is a second matrix spike sample. MSs/MSDs are carried through the entire analytical process and are used to determine sample matrix effect on accuracy of the measurement system. The accuracy and precision estimated using MS/MSD is only representative of the precision of the sample that was spiked.
Method Blank (MB)	A sample composed of all the reagents (in the same quantities) in reagent water carried through the entire analytical process. The method blank is used to monitor the level of contamination introduced during sample preparation steps.
Surrogate Spike	Organic constituents not expected to be detected in environmental media and are added to every sample and QC at a known concentration. Surrogates are used to determine the efficiency of the sample preparation and the analytical process.

Source: Quanterra® Quality Control Program, Policy QA-003, Rev. 0, 8/19/96.

uanterra

SAMPLE SUMMARY

G0D260236

₩C #	SAMPLE#	CLIENT SAMPLE ID	DATE	TIM
DCF6G	001	HS-MW-3-6.5'	04/04/00	16:1
DCF6J	002	HS-MW-4-7'	04/04/00	12:4
DCF6K	003	TL-MW-2-9'	04/04/00	09:
DCF6M	004	TL-MW-5-9'	04/03/00	14:_
DCF6N	005	HS-SSP-S01	04/18/00	12:4
DCF6P	006	TL-MW-3-PO1	04/18/00	.12

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

GEOENGINEERS, INC. 1101 FAWCETT, SUITE 200 TACOMA, WASHINGTON 98402 GEO FEIDINEERS DATE 4 21 co PAGE 1 OF 1 LAB STL COO FEIDINEERS DATE 4 21 co PAGE 1 OF 1 LAB STL COO FEIDINEERS PROJECT NAMELOCATION FORMA Hales Sile / Bellingham OPROJECT NAMELOCATION FORMA Hales Sile / Bellingham OPROJECT MAMELOCATION FORMA Hales Sile / Bellingham SAMPLE DEN TOTO COMMENTS PROJECT MAMELOCATION SAMPLE COLLECTION # OF B SAMPLE IDENTIFICATION SAMPLE COLLECTION # OF B SAMPLE IDENTIFICATION SAMPLE COLLECTION # OF B SAMPLE IDENTIFICATION SAMPLE COLLECTION # OF B INFO SCOLLECTION # OF B HIGENDINIES DATE HIGENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE OPROTOFICIATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICA		CHAIN OF	CUS.	TOD	Y F	EC	OR	D				
PROJECT NUMBER OCTS-COC-CO PROJECT NUMBER OCTS-COC-CO PROJECT NUMBER OCTS-COC-CO PROJECT NUMBER OCTS-COC-CO PROJECT NUMBER OCTS-COC-CO PROJECT NUMBER OCTS-COC-CO PROJECT NUMBER OCTS-COC-CO SAMPLE DENTIFICATION SAMPLE COLLECTION # OF 8 SAMPLE DENTIFICATION & SAMPLE SA	1101 FAWCETT, SUITE 200 TACOMA, WASHINGTON 984 (206) 383-4940)		18								PAGE OF / LAB STL
SAMPLE IDENTIFICATION SAMPLE COLLECTION # OF B LAB GEOENGINEERS DATE TIME MATRIX JARS B HS-MU-3-6-5' Hylloo ILo:10 Soil 1 X ILO ILO:10 HS-MU-3-6-5' Hylloo ILo:10 Soil 1 X ILO:10 ILO:10 ILO:10 ILO:10 Soil I X ILO:10 ILO:10 ILO:10 ILO:10 Soil I X ILO:10	PROJECT NUMBER 0215-002-0 PROJECT MANAGER Sondy Sr	nith	Ducying		ANA	LYSIS	REC	UIRI	ED			1
HS-MW-4-7' 41400 12:45 Soil 1 X TL-MW-2-9' 41400 02:00 Soil 1 X TL-MW-5-9' 41300 14:55 Soil 1 X HS-SSP-SOI 411000 12:40 Soil 1 X HS-SSP-SOI 411000 Soil 1 X HS-SSP-SSP-SOI 411000 Soil 1 X HS-SSP-SSP-SSP-SSP-SSP-SSP-SSP-SSP-SSP-S	SAMPLE IDENTIFICATION SAMPLE COL	LECTION # OF	8290-									
TI-MW-5-9' HISTOD 14:35 SOIL I X REFERENCE PIEAGE BINELIZE UTFFRACTION HS-SSP-SOL HIBLOD 12100 OIL I X PIEAGE BINELIZE UTFFRACTION TL-MW-3-POL HIBLOD 12100 OIL I X PIEAGE BINELIZE UTFFRACTION TL-MW-3-POL HIBLOD 12100 OIL I X PIEAGE BINELIZE UTFFRACTION ELINQUISHED BY FIEM BEOEnginus RELINQUISHED BY FIEM BEOEnginus RELINQUISHED BY FIEM MOLE IGNATURE Anne SIGNATURE SIGNATURE FIEM STATURE FIEM STATURE PRINTED NAME SIGNATURE PRINTED NAME PRINTED NAME FIEM GRATURE SIGNATURE SIGNATURE FIEM FIEM IGNATURE EIRM ST RECEIVED BY FIEM FIEM IGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE IGNATURE C/Hytrice PRINTED NAME PRINTED NAME FIEM ATE Y-22-00 TIME TIME PRINTED NAME FIEM ATE Y-22-00 TIME PRINTED NAME PRINT	HS-MW-4-7' 414100 12145	Soil 1	the second s									
TI-MW-3-POI 411000112100 011 1 X Please anslutze on thraction on W. Interview Interview APR 2.2 2000 Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview <td>TL-MW-5-9' 413/00 14:55</td> <td>Soll 1</td> <td></td> <td></td> <td></td> <td>CEIVE</td> <td>) IN</td> <td>3000</td> <td>CON</td> <td>πιο</td> <td>N</td> <td></td>	TL-MW-5-9' 413/00 14:55	Soll 1				CEIVE) IN	3000	CON	πιο	N	
ELINQUISHED BY ELINQUISHED BY IGNATURE ATE 4/21/00 IMI IGNATURE IGNATU			And the second s			-]		Please Enslyze uit Fractio,
ELINQUISHED BY IGNATURE Andre B Smith RINTED NAME Sondra B Smith ATE 4/22/00 TIME 1300 DATE 4/21/00 TIME 11:05 DATE TIME RECEIVED BY RECEIVED B												
IGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE RINTED NAME SONDTO B Smith PRINTED NAME COLETTE WEAVER PRINTED NAME ATE Y 21/00 TIME 12:00 DATE 4/21/00 TIME ISDS ATE Y 21/00 TIME 12:00 DATE 4/21/00 TIME ISDS DATE TIME ATE Y 21/00 TIME SIGNATURE PRINTED NAME PRINTED NAME TIME ECEIVED BY FIRM SIGNATURE PRINTED NAME PRINTED NAME PRINTED NAME SIGNATURE IGNATURE PRINTED NAME PRINTED NAME PRINTED NAME PRINTED NAME PRINTED NAME ATE Y - 22 - 00 TIME U300 DATE TIME DATE TIME ADDITIONAL COMMENTS: QUICK TAT - 14-DUY Request-ecd TIME TIME	ELINQUISHED BY			EIBMA	ITA C		REI					EID M
ECEIVED BY FIRM STL RECEIVED BY FIRM RECEIVED BY FIRM IGNATURE SIGNATURE SIGNATURE SIGNATURE RINTED NAME CL HYHVEF PRINTED NAME PRINTED NAME ATE Y-22-00 TIME UICK TAT	IGNATURE <u>Sandra B Smith</u>	NATURE Sandra B Smith SIGNATURE COLETTE WEAVER PRINTED NAME										
ATE <u>Y-22-00 TIME 1300 DATE TIME</u> DATE TIME ADDITIONAL COMMENTS: QUICK TAT - 14-DUY Requested	ECEIVED BY	RECEIVED BY SIGNATURE	IVED BY FIRM			RECEIVED BY FIRM SIGNATURE						
STL Project Managu: Jill Kellman	DATE Y-22-00 TIME 1300 DATE TIME DATE TIME											
	STL Project Manaqui Jill	Kellinan				·····					· · · · · · · · · · · · · · · · · · ·	

(*Wuanterra*

Client Sample ID: HS-MW-3-6.5'

Trace Level Organic Compounds

		DETECTION	•	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	1.8		pg/g	SW846 8290
Total TCDD	190		pg/g	SW846 8290
1,2,3,7,8-PeCDD	7.4		pg/g	SW846 8290
Total PeCDD	260		pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	20		ba\a	SW846 8290
1,2,3,6,7,8-HxCDD	590		ba\a	SW846 8290
1,2,3,7,8,9-HxCDD	55		pa/a	SW846 8290
Total HxCDD	2100		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	12000 E		pg/g	SW846 8290
Total HpCDD	21000		pg/g	SW846 8290
OCDD	110000 D,E		pg/g	SW846 8290
2,3,7,8-TCDF	23 CON		pg/g	SW846 8290
Total TCDF	140		ba\a	SW846 8290
1,2,3,7,8-PeCDF	43		pg/g	SW846 8290
2,3,4,7,8-PeCDF	52		pg/g	SW846 8290
Total PeCDF	720		pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	180		pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	40		pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	41		pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	6.0		pg/g	SW846 8290 ·
Total HxCDF	3400		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDF	1400		pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	96		pg/g	SW846 8290
Total HpCDF	7100		pg/g	SW846-8290
OCDF	6600 E		ba\a	SW846 8290

19,7 / / 1979/ - 19,9,00,00 - 19,7 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9 / 19,9	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	68	(40 - 135)
13C-1,2,3,7,8-PeCDD	80	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	68	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	70	(40 - 135)
13C-OCDD	54	(40 - 135)
13C-2,3,7,8-TCDF	62	(40 - 135)
13C-1,2,3,7,8-PeCDF	76	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	72	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	57	(40 - 135)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

D Result was obtained from the analysis of a dilution.

wuanterra

Client Sample ID: HS-MW-4-7*

Trace Level Organic Compounds

Lot-Sample #...: G0D260236-002 Work Order #...: DCF6J102 Matrix..... SOLID Date Received..: 04/22/00 Date Sampled...: 04/04/00 Analysis Date..: 05/04/00 Prep Date....: 04/28/00 Prep Batch #...: 0119326

Dilution Factor: 1 DETECTION PARAMETER RESULT LIMIT UNITS METHOD

2,3,7,8-TCDD	ND	0.36	pg/g	SW846 8290
Total TCDD	4_6		pg/g	SW846 8290
1,2,3,7,8-PeCDD	4.5 J		pg/g	SW846 8290
Total PeCDD	11		pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	15		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	1600		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	74		pg/g	SW846 8290
Total HxCDD	3800		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDD	23000 D		pg/g	SW846 8290
Total HpCDD	39000 D		pg/g	SW846 8290
OCDD	190000 D		pg/g	SW846 8290
2,3,7,8-TCDF	29 CON	*	ba\a	SW846 8290
Total TCDF	65		ba\a	SW846 8290
1,2,3,7,8-PeCDF	84		ba\a	SW846 8290
2,3,4,7,8-PeCDF	83		ba\a	SW846 8290
Total PeCDF	1300		ba\a	SW846 8290
1,2,3,4,7,8-HxCDF	260		ba\a	SW846 8290
1,2,3,6,7,8-HxCDF	66		pa/a	SW846 8290
2,3,4,6,7,8-HxCDF	94		ba\a	SW846 8290
1,2,3,7,8,9-HxCDF	14		ba\a	SW846 8290
Total HxCDF	6000		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	2500 E		pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	130		ba/a	SW846 8290
Total HpCDF	9500		ba\a	SW846-8290
OCDF	4500 D		pg/g	SW846 8290
	PERCENT	RECOVERY		

		100000010101
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	69	(40 - 135)
13C-1,2,3,7,8-PeCDD	86	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	72	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	56	(40 - 135)
13C-OCDD	48	(40 - 135)
13C-2,3,7,8-TCDF	66	(40 - 135)
13C-1,2,3,7,8-PeCDF	80	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	84	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	54	(40 - 135)

(Continued on next page)

uanterra

Client Sample ID: HS-MW-4-7'

Trace Level Organic Compounds

Lot-Sample #...: G0D260236-002 Work Order #...: DCF6J102

Matrix: SOLID

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

D Result was obtained from the analysis of a dilution.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

Client Sample ID: TL-MW-2-9'

Trace Level Organic Compounds

		DETECTION		
PARAMETER .	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	3.3		pg/g	SW846 8290
Total TCDD	210		ba\a	SW846 8290
1,2,3,7,8-PeCDD	26		pa/a	SW846 8290
Total PeCDD	460		ba\a	SW846 8290
1,2,3,4,7,8-HxCDD	150		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	9900 E		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	700		pg/g	SW846 8290
Total HxCDD	26000		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	270000 D,E		ba\a	SW846 8290
Total HpCDD	440000 D		pg/g	SW846 8290
OCDD	1100000 D,E		pg/g	SW846 8290
2,3,7,8-TCDF	120 CON		pg/g	SW846 8290
Total TCDF	270		pg/g	SW846 8290
1,2,3,7,8-PeCDF	500		pg/g	SW846 8290
2,3,4,7,8-PeCDF	720		pg/g	SW846 8290
Total PeCDF	8700		ba\a	SW846 8290
1,2,3,4,7,8-HxCDF	4500		.pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	720		ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	420		pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	110		ba\a	SW846 8290
Total HxCDF	90000 D		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	76000 D		pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	4200 D		ba\a	SW846 <u>8</u> 290
Total HpCDF	510000 D		pg/g	SW846 8290
OCDF	400000 D		ba\a	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	64	(40 - 135)
13C-1,2,3,7,8-PeCDD	90	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	69	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	110	(40 - 135)
13C-OCDD	168 *	(40 - 135)
13C-2,3,7,8-TCDF	60	(40 - 135)
13C-1,2,3,7,8-PeCDF	71	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	92	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	88	(40 - 135)

(Continued on next page)

Client Sample ID: TL-MW-2-9'

Trace Level Organic Compounds

Lot-Sample #...: GOD260236-003 Work Order #...: DCF6K102

Matrix SOLID

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

D Result was obtained from the analysis of a dilution.

CON Confirmation analysis.

* Surrogate recovery is outside stated control limits.

Wuanterra

Client Sample ID: TL-MW-5-9'

Trace Level Organic Compounds

 Lot-Sample #...: G0D260236-004
 Work Order #...: DCF6M102
 Matrix.....: SOLID

 Date Sampled...: 04/03/00
 Date Received..: 04/22/00
 Matrix.....: SOLID

 Prep Date.....: 04/28/00
 Analysis Date..: 05/04/00
 Prep Batch #...: 0119326

 Dilution Factor: 1
 1

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	0.93 J		pg/g	SW846 8290
Total TCDD	160		pg/g	SW846 8290
1,2,3,7,8-PeCDD	4.7 J		pg/g	SW846 8290
Total PeCDD	160		pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	11		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	380		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	41		pg/g	SW846 8290
Total HxCDD	1200		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	11000 E		pg/g	SW846 8290
Total HpCDD	17000		ba\a	SW846 8290
OCDD	110000 D		pg/g	SW846 8290
2,3,7,8-TCDF	14 CON		pg/g	SW846 8290
Total TCDF	110		pg/g	SW846 8290
1,2,3,7,8-PeCDF	28		ba\a	SW846 8290
2,3,4,7,8-PeCDF	35		ba\a	SW846 8290
Total PeCDF	520		pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	180		pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	32		pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	22		pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	4.8 J		pg/g	SW846 8290
Total HxCDF	3300		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDF	2300		pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	150		pg/g	SW846 8290
Total HpCDF	13000		pg/g	SW846 8290
OCDF	14000 E		pg/g	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	74	(40 - 135)
13C-1,2,3,7,8-PeCDD	88	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	71	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	77	(40 - 135)
13C-OCDD	79	(40 - 135)
13C-2,3,7,8-TCDF	64	(40 - 135)
13C-1,2,3,7,8-PeCDF	85	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	83	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	60	(40 - 135)

(Continued on next page)

(*wuanterra*

Client Sample ID: TL-MW-5-9'

Trace Level Organic Compounds

Lot-Sample #...: GCD260236-004 Work Order #...: DCF6M102

Matrix..... SOLID

.

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result, Result is less than the reporting limit.

E Estimated result. Result concentration exceeds the calibration range.

D Result was obtained from the analysis of a dilution.

Juanterra

Client Sample ID: HS-SSP-S01

Trace Level Organic Compounds

 Lot-Sample #...: G0D260236-005
 Work Order #...: DCF6N102
 Matrix.....: SOLID

 Date Sampled...: 04/18/00
 Date Received..: 04/22/00
 Matrix.....: SOLID

 Prep Date....: 04/28/00
 Analysis Date..: 05/04/00
 Prep Batch #...: 0119326

 Dilution Factor: 1
 Image: Solid state

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	1.4		pg/g	SW846 8290
Total TCDD	72		pg/g	SW846 8290
1,2,3,7,8-PeCDD	19		pa/a	SW846 8290
Total PeCDD	160		ba\a	SW846 8290
1,2,3,4,7,8-HxCDD	53		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	1900		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	210		pg/g	SW846 8290
Total HxCDD	5200		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	52000 D		ba\a	SW846 8290
Total HpCDD	87000 D		ba\a	SW846 8290
OCDD	390000 D,E		pg/g	SW846 8290
2,3,7,8-TCDF	51 CON		pg/g	SW846 8290
Total TCDF	150		pg/g	SW846 8290
1,2,3,7,8-PeCDF	140		pg/g	SW846 8290
2,3,4,7,8-PeCDF	160		.pg/g	SW846 8290
Total PeCDF	2500		pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	790		pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	150		ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	140		pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	19		pg/g	SW846 8290
Total HxCDF	15000		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	8700 D		pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	490 D		pg/g	SW846 8290
Total HpCDF	42000 D		pg/g	SW846 8290
OCDF	42000 D		pg/g	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	72	(40 - 135)
13C-1,2,3,7,8-PeCDD	77	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	75	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	80	(40 - 135)
13C-OCDD	112	(40 - 135)
13C-2,3,7,8-TCDF	70	(40 - 135)
13C-1,2,3,7,8-PeCDF	73	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	77	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	72	(40 - 135)

NOTE(S) :

Results and reporting limits have been adjusted for dry weight.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

(*Wuanterra*

Matrix WASTE

GEOENGINEERS INC

Client Sample ID: TL-MW-3-PO1

Trace Level Organic Compounds

Lot-Sample #...: G0D260236-006 Date Sampled...: 04/18/00 Prep Date....: 05/01/00 Prep Batch #...: 0122425 Dilution Factor: 1 Work Order #...: DCF6P101 Date Received..: 04/22/00 Analysis Date..: 05/04/00

= 04/22/00

	,	DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	140	**	pg/g	SW846 8290
Total TCDD	7000	**	pa/a	SW846 8290
1,2,3,7,8-PeCDD	700 -	**	pg/g	SW846 8290
Total PeCDD	9600	**	pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	2900 🗸	**	pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	310000 B	**	pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	18000	× T	pg/g	SW846 8290
Total HxCDD	710000	**	pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	8100000 D	**	pg/g	SW846 8290
Total HpCDD	13000000 D	**	pg/g	SW846 8290
OCDD	40000000 D,E	**	pg/g	SW846 8290
2,3,7,8-TCDF	7500 CON	**	pg/g	SW846 8290
Total TCDF	19000	**	pg/g	SW846 8290
1,2,3,7,8-PeCDF	26000	**	pg/g	SW846 8290
2,3,4,7,8-PeCDF	28000	**	pg/g	SW846 8290
Total PeCDF	370000	**	pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	140000	**	pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	25000	**	pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	22000	**	pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	4500	**	pg/g	SW846 8290
Total HxCDF	2800000	**	pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDF	1400000 D	**	pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	82000 D	**	pg/g	SW846 8290
Total HpCDF	6900000 D ,	**	pg/g	SW846 8290
OCDF	7500000 D 🗸	**	pa/a	SW846 8290

· · · · · · · · · · · · · · · · · · ·	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	90	(40 - 135)
13C-1,2,3,7,8-PeCDD	99	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	88	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	130	(40 - 135)
13C-OCDD	118	(40 - 135)
13C-2,3,7,8-TCDF	94	(40 - 135)
13C-1,2,3,7,8-PeCDF	91	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	92	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	131	(40 - 135)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

D Result was obtained from the analysis of a dilution.

QC DATA ASSOCIATION SUMMARY

G0D260236

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
100	SOLID SOLID	SW846 8290 ASTM D 2216-90		0119326 0128107	
002	SOLID SOLID	SW846 8290 ASTM D 2216-90		0119326 0128107	
003	SOLID	SW846 8290 ASTM D 2216-90		0119326 0128107	
004	SOLID SOLID	SW846 8290 ASTM D 2216-90		0119326 0126274	
005	SOLID SOLID	SW846 8290 ASTM D 2216-90		0119326 0126274	
006	WASTE	SW846 8290		0122425	

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #: G0D260236 MB Lot-Sample #: G0D280000-326	Work Order #: DCJ7M101	Matrix SOLID
Analysis Date: 05/04/00	Prep Date: 04/28/00 Prep Batch #: 0119326	

Analysis Date..: 05/04/00 Dilution Factor: 1

		DETECTIO)N	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.44	pg/g	SW846 8290
Total TCDD	1.7		pg/g	SW846 8290
1,2,3,7,8-PeCDD	ND	0.74	pg/g	SW846 8290
Total PeCDD	ND	0.74	pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	ND	0.58	pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	ND	0.72	pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	ND	0.48	pg/g	SW846 8290
Total HxCDD	ND	0.72	pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	14		pg/g	SW846 8290
Total HpCDD	22		ba\a	SW846 8290
OCDD	140	-	pg/g	SW846 8290
2,3,7,8-TCDF	ND	0.32	pg/g	SW846 8290
Total TCDF	ND	0.43	pg/g	SW846 8290
1,2,3,7,8-PeCDF	ND	0.51	pg/g	SW846 8290
2,3,4,7,8-PeCDF	ND	0.50	pg/g	SW846 8290
Total PeCDF	ND	0.51	pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	ND	0.42	ba/a	SW846 8290
1,2,3,6,7,8-HxCDF	ND	0.42	ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	ND	0.42	pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	ND	0.48	pg/g	SW846 8290
Total HxCDF	3.1		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDF	4.8 J		ba/a	SW846 8290
1,2,3,4,7,8,9-HpCDF	ND	0.52	pg/g	SW846 829 <u>0</u>
Total HpCDF	24		pg/g	SW846 8290
OCDF	26		ba\a	SW846 8290
	PERCENT	RECOVERY		····· · · ·
INTERNAL STANDARDS	RECOVERY	LIMITS		
13C-2,3,7,8-TCDD	67	(40 - 13)	(5)	
13C-1,2,3,7,8-PeCDD	81	(40 - 13		
13C-1,2,3,6,7,8-HxCDD	69	(40 - 13	•	
13C-1,2,3,4,6,7,8-HpCDD	70	(40 - 13)		
13C-OCDD	68	(40 - 13	5)	
13C-2,3,7,8-TCDF	72	(40 - 13		· · ·
13C-1,2,3,7,8-PeCDF	77	(40 - 13		
13C-1,2,3,4,7,8-HxCDF	73	(40 - 13		· .
13C-1,2,3,4,6,7,8-HpCDF	63	(40 - 13	5)	
-				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than the reporting limit.

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #: G0D260236 MB Lot-Sample #: G0D010000-4	Work Order #: DCLJE101	Matrix WASTE
	Prep Date: 05/01/00	
Analysis Date: 05/04/00 Dilution Factor: 1	Prep Batch #: 0122425	

		DETECTION	r	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	130	pg/g	SWB46 8290
Total TCDD	ND	130	pg/g	SW846 8290
1,2,3,7,8-PeCDD	ND	180	pg/g	SW846 8290
Total PeCDD	ND	180	pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	ND	180	pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	ND	170	pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	ND	160	pg/g	SW846 8290
Total HxCDD	ND	180	pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	ND	150	pg/g	SW846 8290
Total HpCDD	ND	150	pg/g	SW846 8290
OCDD	ND	150	pg/g	SW846 8290
2,3,7,8-TCDF	ND	98	pg/g	SW846 8290
Total TCDF	ND	98	pg/g	SW846 8290
1,2,3,7,8-PeCDF	ND	110	ba\a	SW846 8290
2,3,4,7,8-PeCDF	ND	110	pg/g	SW846 8290
Total PeCDF	ND	130	pa/a	SW846 8290
1,2,3,4,7,8-HxCDF	ND	200	pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	ND	180	pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	ND	200	pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	ND	210	pg/g	SW846 8290
Total HxCDF	ND	210	pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDF	ND	81	pg/g	SW846 8290
1,2,3,4,7,8,9-HpCDF	ND	95	pa/a	SW846 8290
Total HpCDF	ND	95	pg/g	SW846 8290
OCDF	ND	230	pg/g	SW846 8290

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	86	(40 - 135)
13C-1,2,3,7,8-PeCDD	89	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	94	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	94	(40 - 135)
13C-OCDD	83	(40 - 135)
13C-2,3,7,8-TCDF	74	(40 - 135)
13C-1,2,3,7,8-PeCDF	87	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	93	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	107	(40 - 135)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #:	G0D260236	Work Order #: DCJ7M102	Matrix SOLID
LCS Lot-Sample#:	G0D280000-326		
Prep Date	04/28/00	Analysis Date: 05/04/00	
Prep Batch #:	0119326		
Dilution Factor:	1		

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
2,3,7,8-TCDD	20.0	20.6	pg/g	103	SW846 8290
1,2,3,7,8-PeCDD	100	92.4	pa/a	92	SW846 8290
1,2,3,4,7,8-HxCDD	100	110	pa/a	110	SW846 8290
1,2,3,6,7,8-HxCDD	100	97.1	pg/g	97	SW846 8290
1,2,3,7,8,9-HxCDD	100	104	pg/g	104	SW846 8290
1,2,3,4,6,7,8-HpCDD	100	90.0	pg/g	90	SW846 8290
OCDD	200	174	pg/g	87	SW846 8290
2,3,7,8-TCDF	20.0	17.8	pg/g	89	SW846 8290
1,2,3,7,8-PeCDF	100	93.8	pg/g	94	SW846 8290
2,3,4,7,8-PeCDF	100	92.9	pg/g	93	SW846 8290
1,2,3,4,7,8-HxCDF	100	92.9	ba\a	93	SW846 8290
1,2,3,6,7,8-HxCDF	100	84.7	pg/g	85	SW846 8290
2,3,4,6,7,8-HxCDF	100	96.0	pg/g	96	SW846 8290
1,2,3,7,8,9-HxCDF	100	84.6	ba\a	85	SW846 8290
1,2,3,4,6,7,8-HpCDF	100	89.1	pg/g	89	SW846 8290
1,2,3,4,7,8,9-HpCDF	100	84.5	pg/g	85	SW846 8290
OCDF	200	166	ba\a	83	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	67	(40 - 135)
13C-1,2,3,7,8-PeCDD	72	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	62	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	65	(40 - 135)
13C-OCDD	62	(40 - 135)
13C-2,3,7,8-TCDF	68	(40 - 135)
13C-1,2,3,7,8-PeCDF	. 70	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	64	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	64	(40 - 135)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Trace Level Organic Compounds

Client Lot #:	G0D260236	Work Order #: DCJ7M102	Matrix SOLID
LCS Lot-Sample#:	G0D280000-326		
Prep Date:	04/28/00	Analysis Date: 05/04/00	
Prep Batch #:	0119326		
Dilution Factor:	1		

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD
2,3,7,8-TCDD	103	(50 - 150)	SW846 8290
1,2,3,7,8-PeCDD	92	(50 - 150)	SW846 8290
1,2,3,4,7,8-HxCDD	110	(50 - 150)	SW846 8290
1,2,3,6,7,8-HxCDD	97	(50 - 150)	SW846 8290
1,2,3,7,8,9-HxCDD	104	(50 - 150)	SW846 8290
1,2,3,4,6,7,8-HpCDD	90	(50 - 150)	SW846 8290
OCDD	87	(50 - 150)	SW846 8290
2,3,7,8-TCDF	89	(50 - 150)	SW846 8290
1,2,3,7,8-PeCDF	94	(50 - 150)	SW846 8290
2,3,4,7,8-PeCDF	93	(50 - 150)	SW846 8290
1,2,3,4,7,8-HxCDF	93	(50 - 150)	SW846 8290
1,2,3,6,7,8-HxCDF	85	(50 - 150)	SW846 8290
2,3,4,6,7,8-HxCDF	96	(50 - 150)	SW846 8290
1,2,3,7,8,9-HxCDF	85	(50 - 150)	SW846 8290
1,2,3,4,6,7,8-HpCDF	89	(50 - 150)	SW846 8290
1,2,3,4,7,8,9-HpCDF	85	(50 - 150)	SW846 8290
OCDF	83	(50 - 150)	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	67	(40 - 135)
13C-1,2,3,7,8-PeCDD	72	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	62	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	65	(40 - 135)
13C-OCDD	62	(40 - 135)
13C-2,3,7,8-TCDF	68	(40 - 135)
13C-1,2,3,7,8-PeCDF	70	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	64	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	64	(40 - 135)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #	G0D260236	Work Order #:	DCLJE102	Matrix	WASTE
LCS Lot-Sample#:	G0E010000-425				
Prep Date	05/01/00	Analysis Date:	05/04/00		
Prep Batch #:	0122425	,			
Dilution Factor:	1				

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
2,3,7,8-TCDD	2000	1920	pg/g	96	SW846 8290
1,2,3,7,8-PeCDD	10000	8890	pg/g	89	SW846 8290
1,2,3,4,7,8-HxCDD	10000	8650	pg/g	86	SW846 8290
1,2,3,6,7,8-HxCDD	10000	9260	pg/g	93	SW846 829(
1,2,3,7,8,9-HxCDD	10000	8740	ba\a	87	SW846 829L
1,2,3,4,6,7,8-HpCDD	10000	10100	pg/g	101	SW846 8290
OCDD	20000	19200	pg/g	96	SW846 829{
2,3,7,8-TCDF	2000	1740	pg/g	87	SW846 8291
1,2,3,7,8-PeCDF	10000	10200	ba\a	102	SW846 8290
2,3,4,7,8-PeCDF	10000	8660	ba\a	87	SW846 8290
1,2,3,4,7,8-HxCDF	10000	10700	pg/g	107	SW846 829(
1,2,3,6,7,8-HxCDF	10000	10900	ba\a	109	SW846 829L
2,3,4,6,7,8-HxCDF	10000	9420	pg/g	.94	SW846 8290
1,2,3,7,8,9-HxCDF	10000	9430	pg/g	94	SW846 829(
1,2,3,4,6,7,8-HpCDF	10000	10100	pg/g	101	SW846 8291
1,2,3,4,7,8,9-HpCDF	10000	9740	pg/g	97	SW846 8290
OCDF	20000	20900	ba\a	105	SW846 829(

INTERNAL STANDARD	PERCENT RECOVERY	RECOVERY
13C-2,3,7,8-TCDD	91	(40 - 135)
13C-1,2,3,7,8-PeCDD	90	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	94	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	105	(40 - 135)
13C-OCDD	95	(40 - 135)
13C-2,3,7,8-TCDF	.88	(40 - <u>1</u> 35)
13C-1,2,3,7,8-PeCDF	89	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	99	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	116	(40 - 135)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Trace Level Organic Compounds

Client Lot #:	002000000	Work Order #: DCLJE102	Matrix WASTE
LCS Lot-Sample#:	G0E010000-425		
Prep Date:		Analysis Date: 05/04/00	
Prep Batch #:	0122425		
Dilution Factor:			

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD
2,3,7,8-TCDD	96	(50 - 150)	SW846 8290
1,2,3,7,8-PeCDD	89	(50 - 150)	SW846 8290
1,2,3,4,7,8-HxCDD	86	(50 - 150)	SW846 8290
1,2,3,6,7,8-HxCDD	93	(50 - 150)	SW846 8290
1,2,3,7,8,9-HxCDD	87	(50 - 150)	SW846 8290
1,2,3,4,6,7,8-HpCDD	101	(50 - 150)	SW846 8290
OCDD	96	(50 - 150)	SW846 8290
2,3,7,8-TCDF	87	(50 - 150)	SW846 8290
1,2,3,7,8-PeCDF	102	(50 - 150)	SW846 8290
2,3,4,7,8-PeCDF	87	(50 - 150)	SW846 8290
1,2,3,4,7,8-HxCDF	107	(50 - 150)	SW846 8290
1,2,3,6,7,8-HxCDF	109	(50 - 150)	SW846 8290
2,3,4,6,7,8-HxCDF	94	(50 - 150)	SW846 8290
1,2,3,7,8,9-HxCDF	94	(50 - 150)	SW846 8290
1,2,3,4,6,7,8-HpCDF	101	(50 - 150)	SW846 8290
1,2,3,4,7,8,9-HpCDF	97	(50 - 150)	SW846 8290
OCDF	105	(50 - 150)	SW846 8290

INTERNAL STANDARD	PERCENT RE <u>COVERY</u>	RECOVERY LIMITS
13C-2,3,7,8-TCDD	91	(40 - 135)
13C-1,2,3,7,8-PeCDD	90	(40 – 135)
13C-1,2,3,6,7,8-HxCDD	94	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	105	(40 - 135)
13C-OCDD	95	(40 - 135)
13C-2,3,7,8-TCDF	88	(40 - 135)
13C-1,2,3,7,8-PeCDF	89	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	99	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	116	(40 - 135)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 507.505.9200
 fax 597.505.9210

Geo Engineers - Seattle 600 Stewart St, Suite 1420 Seattle, WA/USA 98101 Project: R.G. Haley International Corporation Site Project Number: 0275-002-01 Project Manager: Jay Lucas

Amended Report

Issued: 08/26/04 13:05

EPA 8290

]	Frontier A	Analytic	al Labor	atory				
Analyta	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Kesuit	Linnit	Units		Batti	riepaieu	Analyzeu	Methou	INDICS
UST-061504 (B4F0621-55) Other wet	Sampled: 06	/15/04 12:53	Received	l: 06/16/04 1	7:10				
1,2,3,4,6,7,8-HpCDD	2890000	25.0	pg/g	1	X298	07/14/04	07/15/04	EPA 8290	
1,2,3,4,6,7,8-HpCDF	167000	25.0		н	**	н	9	11	
1,2,3,4,7,8,9-HpCDF	6630	25.0	"	u	n	**	11	н	
1,2,3,4,7,8-HxCDD	4530	25.0	**	Ħ	н	"	**	n	
1,2,3,4,7,8-HxCDF	12900	25.0	11	11	11	"	**	11	
1,2,3,6,7,8-HxCDD	183000	25.0	11	"	"	11	"	"	
1,2,3,6,7,8-HxCDF	6850	25.0	11	U II	н	Ħ	' 11	"	
1,2,3,7,8,9-HxCDD	20500	25.0	"	"	'n	11	**	n	
1,2,3,7,8,9-HxCDF	14700	25.0	"	n	"	n	11	H	
1,2,3,7,8-PeCDD	764	25.0	"	н	"	"	11	n	
1,2,3,7,8-PeCDF	7150	25.0	**		u	Ħ	"	n	
2,3,4,6,7,8-HxCDF	17200	25.0	"	11	n	n	"	"	
2,3,4,7,8-PeCDF	5170	25.0	"	"	"	**	u	"	
2,3,7,8-TCDD	ND	5.00	u.	"	**	"	8	n	
2,3,7,8-TCDF	1810	5.00	**	н	u.	н	n	"	F
OCDD	10800000	50	TŤ	н	н	"	11	Ħ	В
OCDF	93000	50	"	н	н	н	**	11	
Total Hepta-Dioxins	4980000		11	"	н	п	n	11	
Total Hepta-Furans	593000		"	n	"	u	**	н	
Total Hexa-Dioxins	489000		#		н	11	**	"	
Total Hexa-Furans	458000		11	11	"	11	11	n	
Total Penta-Dioxins	3390		11	11	11		"	"	
Total Penta-Furans	52500		"	"	"	U	**	n	
Total Tetra-Dioxins	95.1		**	"	"		"	**	
Total Tetra-Furans	6020		11	u		**	"	u	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	86.5 %	40-135		-	"	"	"	"	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	59.3 %	40-135			"	"	"	"	
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	74.0 %	40-135			"	"	"	"	
Surrogate: 13C-1,2,3,4,7,8-HxCDD	81.3 %	40-135			"	"	"	"	
Surrogate: 13C-1,2,3,4,7,8-HxCDF	61.0 %	40-135			"	"	"	"	
Surrogate: 13C-1,2,3,6,7,8-HxCDD	80.0 %	40-135				"	"	17	
Surrogate: 13C-1,2,3,6,7,8-HxCDF	60.6 %	40-135			"	"	"	"	
Surrogate: 13C-1,2,3,7,8,9-HxCDF	67.7 %	40-135			"	"	"	"	
Surrogate: 13C-1,2,3,7,8-PeCDD	76.6 %	40-135			"	"	"	11	
Surrogate: 13C-1,2,3,7,8-PeCDF	83.9 %	40-135			"	"	"	17	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Account Manager

 Seattle
 11720 North Creek Pkwy N, Suile 400, Bothell, WA 98011-8244

 425,420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portiand
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Geo Engineers - Seattle 600 Stewart St, Suite 1420 Seattle, WA/USA 98101 907.503.9200 Tax 907.503.9210 Project: R.G. Haley International Corporation Site Project Number: 0275-002-01

Amended Report

Project Manager: Jay Lucas

a*

Issued: 08/26/04 13:05

EPA 8290

Frontier	[.] Analytical	Laboratory
----------	-------------------------	------------

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
UST-061504 (B4F0621-55) Other wet	Sampled: 06	/15/04 12:53	Received	: 06/16/04 1	7:10	×			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	60.1 %	40-135			X298	07/14/04	07/15/04	"	
Surrogate: 13C-2,3,4,7,8-PeCDF	82.4 %	40-135			"	"	"	"	
Surrogate: 13C-2,3,7,8-TCDD	61.8 %	40-135			"	"	"	"	
Surrogate: 13C-2,3,7,8-TCDF	56.3 %	40-135			"	"	"	"	
Surrogate: 37Cl-2,3,7,8-TCDD	63.4 %	50-150			"	"	"	"	
Surrogate: 13C-QCDD	156 %	40-135			"	"	"	"	A
Surrogate: 13C-OCDF	81.3 %	40-135			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

J. War

Scott A. Woerman, Account Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Geo Engineers - Seattle 600 Stewart St, Suite 1420 Seattle, WA/USA 98101

907.563.9200 Tax 907.563.9210 Project: R.G. Haley International Corporation Site

Project Number: 0275-002-01 Project Manager: Jay Lucas

Amended Report

Issued: 08/26/04 13:05

EPA 8290 - Quality Control Frontier Analytical Laboratory

		Percenting	J		Source		%REC		RPD	
Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	Limits	RPD	Limit	Notes
Batch X298: Prepared 07/14/04	4 Using Gene	ral Prep		-						
Blank (0298-001-MB)										
1,2,3,4,6,7,8-HpCDD	ND	25.0	pg/g		ND			NA	50	
1,2,3,4,6,7,8-HpCDF	ND	25.0	"		ND			NA	50	
1,2,3,4,7,8,9-HpCDF	ND	25.0	11		ND			NA	50	
1,2,3,4,7,8-HxCDD	ND	25.0	"		ND			NA	50	
1,2,3,4,7,8-HxCDF	ND	25.0	11		ND			NA	50	
1,2,3,6,7,8-HxCDD	ND	25.0	n		ND			NA	50	
1,2,3,6,7,8-HxCDF	ND	25.0	Ħ		ND			NA	50	
1,2,3,7,8,9-HxCDD	ND	25.0	"		ND			NA	50	· .
1,2,3,7,8,9-HxCDF	ND	25.0			ND			NA	50	
1,2,3,7,8-PeCDD	ND	25.0	"		ND			NA	50	
1,2,3,7,8-PeCDF	ND	25.0	"		ND			NA	50	
2,3,4,6,7,8-HxCDF	ND	25.0	u		ND			NA	50	
2,3,4,7,8-PeCDF	ND	25.0	"		ND			NA	50	
2,3,7,8-TCDD	ND	5.00	"		ND			NA	50	
2,3,7,8-TCDF	ND	5.00	u		ND			NA	50	
OCDD	48.4	50.0	n		ND				50	
OCDF	ND	50.0	"		ND			NA	50	
Total Hepta-Dioxins	ND		11		ND			NA	50	
Total Hepta-Furans	ND		11		ND			NA	50	
Total Hexa-Dioxins	ND		"		ND			NA	50	
Total Hexa-Furans	ND		n		ND			NA	50	
Total Penta-Dioxins	ND		Ħ		ND			NA	50	
Total Penta-Furans	ND		"		ND			NA	50	
Total Tetra-Dioxins	ND		н		ND			NA	50	
Total Tetra-Furans	ND		n		ND			NA	50	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	1620		"	2000	ND	81.0	40-135			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	1350		"	2000	ND	67.3	40-135			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	1570		"	2000	ND	78.4	40-135			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	1790		"	2000	ND	89.4	40-135			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	1570		"	2000	ND	78.3	40-135			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	1840		"	2000	ND	91.9 70 5	40-135			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	1590		"	2000	ND	79.5 76.6	40-135			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	1530		"	2000	ND	76.6	40-135			
Surrogate: 13C-1,2,3,7,8-PeCDD	1690			2000	ND	84.3	40-135			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Account Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Botheil, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 MonIgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

 907.505.9200
 fax 507.305.9210

Geo Engineers - Seattle 600 Stewart St, Suite 1420 Seattle, WA/USA 98101 Project: R.G. Haley International Corporation Site Project Number: 0275-002-01 Project Manager: Jay Lucas

Amended Report Issued: 08/26/04 13:05

EPA 8290 - Quality Control Frontier Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch X298: Prepared 07/14/04	Using Gener	al Prep								
Blank (0298-001-MB)										
Surrogate: 13C-1,2,3,7,8-PeCDF	1890		pg/g	2000	ND	94.5	40-135	•••••••••••••••••		
Surrogate: 13C-2,3,4,6,7,8-HxCDF	1460		"	2000	ND	73.1	40-135			
Surrogate: 13C-2,3,4,7,8-PeCDF	1940		"	2000	ND	97.1	40-135			
Surrogate: 13C-2,3,7,8-TCDD	1880		"	2000	ND	94.2	40-135			
Surrogate: 13C-2,3,7,8-TCDF	2050		"	2000	ND	102	40-135			
Surrogate: 37Cl-2,3,7,8-TCDD	675		"	800.0	$N\!D$	84.4	50-150			
Surrogate: 13C-OCDD	2420		"	4000	ND	60.6	40-135			
Surrogate: 13C-OCDF	2400		"	4000	ND	60.1	40-135			
LCS (0298-001-OPR)										
1,2,3,4,6,7,8-HpCDD	47.8	25.0	pg/g	50.0	ND	95.6	70-140		50	
1,2,3,4,6,7,8-HpCDF	51.1	25.0	**	50.0	ND	102	70-140		50	
1,2,3,4,7,8,9-HpCDF	51.2	25.0	n	50.0	ND	102	70-140		50	
1,2,3,4,7,8-HxCDD	48.9	25.0	n	50.0	ND	97.8	70-140		50	
1,2,3,4,7,8-HxCDF	50.1	25.0	n	50.0	ND	100.0	70-140		50	
1,2,3,6,7,8-HxCDD	48.7	25.0	н	50.0	ND	97.4	70-140		50	
1,2,3,6,7,8-HxCDF	48.7	25.0	*	50.0	ND	97.4	70-140		50	
1,2,3,7,8,9-HxCDD	44.0	25.0	n	50.0	ND	88.0	70-140		50	
1,2,3,7,8,9-HxCDF	49.1	25.0	11	50.0	ND	98.2	70-140		50	
1,2,3,7,8-PeCDD	46.6	25.0		50.0	ND	93.2	70-140		50	
1,2,3,7,8-PeCDF	47.4	25.0	11	50.0	ND	94.8	70-140		50	
2,3,4,6,7,8-HxCDF	49.1	25.0	11	50.0	ND	98.2	70-140		50	
2,3,4,7,8-PeCDF	47.0	25.0	11	50.0	ND	94.0	70-140		50	
2,3,7,8-TCDD	7.83	5.00	π	10.0	ND	78.3	70-140		50	
2,3,7,8-TCDF	9.12	5.00	11	10.0	ND	91.2	70-140		50	
0CDD	98.5	50.0	"	100.0	ND	98.5	70-140		50	
OCDF	96.9	50.0	11	100.0	ND	96.9	70-140		50	
	53.3	50.0	"	100.0	ND	30.7	/0-140		50 50	
Fotal Hepta-Dioxins			"							
Fotal Hepta-Furans	106		11		ND				50	
Total Hexa-Dioxins	144		n		ND				50	
Total Hexa-Furans	199				ND				50	
Total Penta-Dioxins	47.4		n		ND				50	
Total Penta-Furans	99.3		n		ND				50	
Total Tetra-Dioxins	9.31		11		ND				50	
Total Tetra-Furans	10.9		11		ND				50	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Account Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spol:ane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.82900

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Geo Engineers - Seattle 600 Stewart St, Suite 1420 Seattle, WA/USA 98101 907.563.9200 1ax 907.563.9210 Project: R.G. Haley International Corporation Site Project Number: 0275-002-01 Project Manager: Jay Lucas

Amended Report Issued: 08/26/04 13:05

EPA 8290 - Quality Control Frontier Analytical Laboratory

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch X298: Pr	epared 07/14/04	Using Gener	al Prep								
LCS (0298-001-OPI	R)										
Surrogate: 13C-1,2,3,4	4,6,7,8-HpCDD	73.7		pg/g	100.0	ND	73.7	40-135			
Surrogate: 13C-1,2,3,4	4,6,7,8 - HpCDF	62.4		"	100.0	ND	62.4	40-135			
Surrogate: 13C-1,2,3,4	4,7,8,9-HpCDF	72.8		"	100.0	ND	72.8	40-135			
Surrogate: 13C-1,2,3,4	4,7,8-HxCDD	<i>88.3</i>		"	100.0	ND	<i>88.3</i>	40-135			
Surrogate: 13C-1,2,3,4	4,7,8-HxCDF	78.0		"	100.0	ND	78.0	40-135			
Surrogate: 13C-1,2,3,6	6,7,8-HxCDD	93.8		n	100.0	ND	93.8	40-135			
Surrogate: 13C-1,2,3,0	6,7,8-HxCDF	78.0		"	100.0	ND	78.0	40-135			
Surrogate: 13C-1,2,3,2	7,8,9-HxCDF	69.9		"	100.0	ND	69.9	40-135			
Surrogate: 13C-1,2,3,2	7,8-PeCDD	78.6		"	100.0	ND	78.6	40-135			
Surrogate: 13C-1,2,3,3	7,8-PeCDF	90.9		"	100.0	ND	90.9	40-135			
Surrogate: 13C-2,3,4,6	6,7,8-HxCDF	64.8		"	100.0	ND	64.8	40-135			
Surrogate: 13C-2,3,4,1	7,8-PeCDF	86.3		п	100.0	ND	86.3	40-135			
Surrogate: 13C-2,3,7,8	8-TCDD	86.9		n	100.0	ND	86.9	40-135			
Surrogate: 13C-2,3,7,3	8-TCDF	97.6		"	100.0	ND	97.6	40-135			
Surrogate: 37Cl-2,3,7,	,8-TCDD	32.6		11	40.0	ND	81.5	50-150			
Surrogate: 13C-OCDL)	103		"	200.0	ND	51.3	40-135			
Surrogate: 13C-OCDF	,	104		"	200.0	ND	51.9	40-135			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Account Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Geo Engineers - Seattle	Project: R.G. Haley International Corporation	
600 Stewart St, Suite 1420	Project Number: 0275-002-01	Amended Report
Seattle, WA/USA 98101	Project Manager: Jay Lucas	Issued: 08/26/04 13:05

Notes and Definitions

А	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
A-01	The percent recovery for this analyte falls outside the project's control limits but are within the recovery limits established by the laboratory.
A-02	An AK103 standard was used instead of a Lube Oil Range standard for the closing CCV.
В	Analyte is present in Method Blank
D-09	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
E	Estimated value. The reported value exceeds the calibration range of the analysis.
F	Analyte confirmation on secondary column
I-02	This sample was analyzed outside of the recommended holding time.
J	Analyte concentration is below calibration range
Q-02	The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
Q-16	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to interference from coeluting organic compounds present in the sample.
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
S-03	The surrogate recovery for this sample is outside of established control limits. Review of associated QC indicates the recovery for this surrogate does not represent an out-of-control condition.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
Х	See case narrative.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Account Manager

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

10 June 2005

Jay Lucas Geo Engineers - Seattle 600 Stewart St, Suite 1700 Seattle, WA/USA 98101

RE: R.G. Haley International Corporation Site

Enclosed are the results of analyses for samples received by the laboratory on 05/27/05 09:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

No

Scott A. Woerman For Jeff Gerdes Project Manager

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 Seattle 425.420.9200 fax 425.420.9210 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210 Spokane Portland Bend Anchorage Project: R.G. Haley International Corporation Site

Geo Engineers - Seattle 600 Stewart St, Suite 1700 Seattle, WA/USA 98101

Project Number: 0275-002-01 Project Manager: Jay Lucas

Reported: 06/10/05 14:25

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TL-MW-2	B5E0844-01	Other wet	05/26/05 16:30	05/27/05 09:30

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman For Jeff Gerdes, Project Manager

Geo Engineers - Seattle 600 Stewart St, Suite 1700 Seattle, WA/USA 98101

Project: R.G. Haley International Corporation Site Project Number: 0275-002-01

Reported: 06/10/05 14:25

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Jay Lucas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TL-MW-2 (B5E0844-01) Other wet	Sampled: 05/2	6/05 16:30	Received:	05/27/05 09:	:30				
Diesel Range Hydrocarbons	654000	20000	mg/kg	40	5F02056	06/02/05	06/06/05	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	ND	60000	"	"		"	"	"	
Surrogate: 2-FBP	ND	50-150			"	"	"	"	S-01
Surrogate: Octacosane	ND	50-150			"	"	"	"	S-01

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman For Jeff Gerdes, Project Manager

Geo Engineers - Seattle

600 Stewart St, Suite 1700

Seattle, WA/USA 98101

06/10/05 14:25

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Jay Lucas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5F02056: Prepared 06/	/02/05 Using E	PA 3580A								
Blank (5F02056-BLK1)										
Diesel Range Hydrocarbons	ND	500	mg/kg							
Lube Oil Range Hydrocarbons	ND	1500	"							
Surrogate: 2-FBP	641		"	625		103	50-150			
Surrogate: Octacosane	653		"	625		104	50-150			
LCS (5F02056-BS1)										
Diesel Range Hydrocarbons	4840	500	mg/kg	5000		96.8	61-120			
Surrogate: 2-FBP	701		"	625		112	50-150			
LCS (5F02056-BS2)										
Lube Oil Range Hydrocarbons	5070	1500	mg/kg	5000		101	50-150			
Surrogate: Octacosane	739		"	625		118	50-150			
LCS Dup (5F02056-BSD1)										
Diesel Range Hydrocarbons	4850	500	mg/kg	5000		97.0	61-120	0.206	40	
Surrogate: 2-FBP	703		"	625		112	50-150			
LCS Dup (5F02056-BSD2)										
Lube Oil Range Hydrocarbons	5290	1500	mg/kg	5000		106	50-150	4.25	50	
Surrogate: Octacosane	728		"	625		116	50-150			
Duplicate (5F02056-DUP1)					Source: E	B5E0844-0	01			
Diesel Range Hydrocarbons	581000	20000	mg/kg		654000			11.8	50	
Lube Oil Range Hydrocarbons	14100	60000	"		15900			12.0	50	
Surrogate: 2-FBP	ND		"	625		ND	50-150			S-0
Surrogate: Octacosane	ND		"	625		ND	50-150			S-0

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman For Jeff Gerdes, Project Manager

	Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
	Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	Portland	509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	rortiana	503.906.9200 fax 503.906.9210
	Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	Anchovago	541.383.9310 fax 541.382.7588
	Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210
Project:	R.G. Haley	International Corporation Site
Project Number:	0275-002-0	1 Reported:

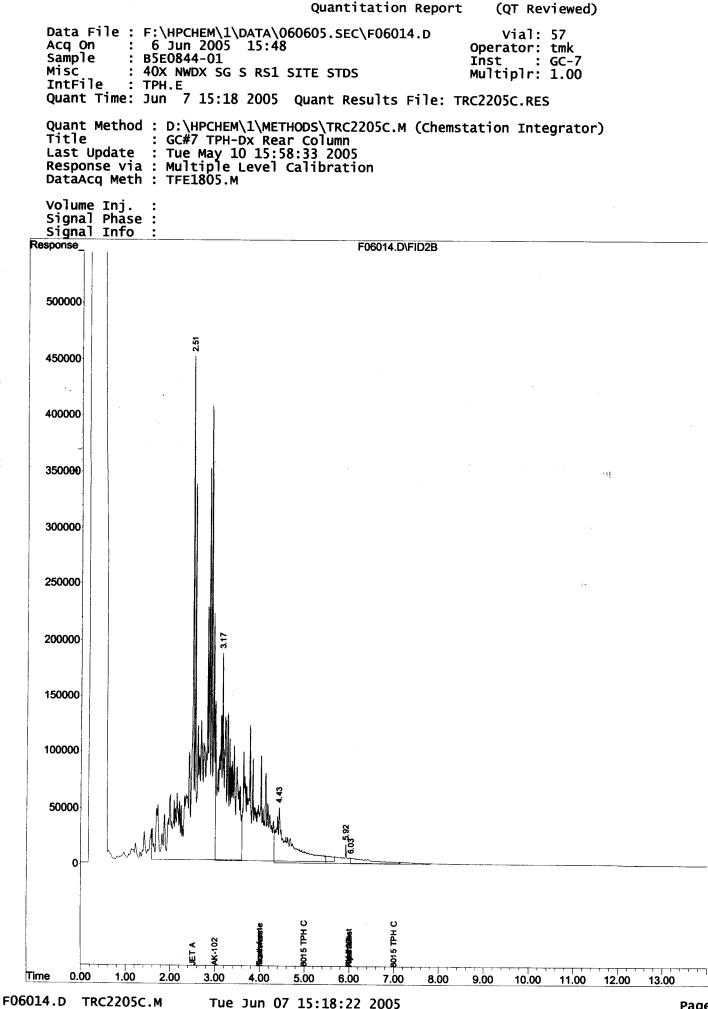
06/10/05 14:25

Notes and Definitions

Project Manager: Jay Lucas

- A-01 Chromatogram closely resembles the P9 site standard.
- S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported

Geo Engineers - Seattle 600 Stewart St, Suite 1700


Seattle, WA/USA 98101

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman For Jeff Gerdes, Project Manager

CHAIN OF CUSTODY REPORT

NCA CLIENT: Geo Engineer REPORT TO: Jay LUCG	<u>ऽ</u> <		INVO	ICE TO												
REPORT TO: Jay LUCA	<u> </u>			INVOICE TO:									k Order #: 65E0844 TURNAROUND REQUEST			
ADDRESS: GEI SEATTLE	SAME									in Business Days • Organic & Inorganic Analyses						
PHONE: 206 778 2674 FAX:	2067797732		P.O. N	P.O. NUMBER: 0275-002-01 T11								10 7 5770.		4 3 2 Hydrocarbon Analyses		
PHONE: 206 7282674 FAX: PROJECT NAME: Haley			PRESERVATIVE											3 2 1		
PROJECT NUMBER		ice								570.						
PROJECT NUMBER: 0275-0 SAMPLED BY: Ron Bel	02-01			REQUESTED AN								OTHER Specify:				
CLIENT SAMPLE	SAMPLING	-Halmn				3						MATRIX	#OF	LOCATION /	NCA	
IDENTIFICATION	DATE/TIME	32										(W, S, O)	CONT.	COMMENTS	WOID	
1TL-MW-2 5/2	6/05/1630	Х										\mathcal{W}	2		01	
2		/														
3																
4																
5																
6																
7																
8																
9																
10											1	1				
RELEASED BY: Kon Bek			DATE:	5/20	\$105	RE	ECEIVED	BY:	Tom	JS	Tan	€∕?)	ر ف DATE:	727/05	
PRINT NAME: Rough	Mr FIRM: G	EI	TIME:	14	20	PR	INT NA	ME:	Blan	King	ship	FIR	м: ∕∕		727/05 0930	
RELEASED BY:			DATE:				ECEIVED				Ţ			DATE:		
PRINT NAME:	FIRM:		TIME			PR	UNT NAI	ME:				FIR	M:	TIME:		
ADDITIONAL REMARKS: COC REV 09/04	DUCT	51	7 N	P	LE	5								темр: 7,9 м/с Рас	E OF	

APPENDIX K Groundwater Chemistry

Table K-1

Groundwater General Chemistry R.G. Haley Site

Bellingham, Washington

Monitoring Well	Screen Interval (feet bgs)	Date Measured	рН	Conductivity (µS∕cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temperature (degrees C)	ReDox Potential (millivolts) ²	Salinity (%)	Salinity (g/kg)	Ferrous Iron (mg/l) ²	Soluble Manganese (mg/l)	Nitrate-Nitrogen (mg/I as N)	Sulfate (mg/l)	Total Dissolved Solids (g/L)	Dissolved Inorganic Carbon (mg/l)	Total Organic Carbon (mg∕l)
CL-MW-1	3-11	06/24/04	6.3	51,000		1.4	12.4	-85	0		1.68	0	<0.01	ND		53.3	48.4
CL-MW-1	3-11	05/09/12	6.34	404	25.00	1.12	10.8	-52							0.26		
CL-MW-1D	12-15	06/22/04	7.1	24,000		2.2	12.8	-139	0		1.41	0.7	<0.01	0.758		27	16.1
CL-MW-1H	8.7-11.7	06/24/04	6.4	35,000		2	14.6	-74	0		1.31	0.2	0.0138	5.84		28.8	9.24
CL-MW-1H	8.7-11.7	05/09/12	6.55	422	2.00	0.98	11.6	-69							0.27		
CL-MW-1S	7-10	06/22/04	7.2	50,000		2.1	13.9	-167	0		Too Turbid for M	leasurements	<0.01	ND		56.6	32.2
CL-MW-6	4.6-14.6	06/24/04	6.2	37,000		1.70	13.6	-72	0		1.27	0	<0.01	0.867		31.3	12.1
CL-MW-6	4.6-14.6	05/09/12	6.49	460	9.00	1.01	10.8	-70							0.29		
CL-MW-7	5-15	06/24/04	5.8	72,000		1.80	13.5	-85	0		1.95	0	<0.01	ND		107	31.8
CL-MW-9	1.5-10	05/09/12	5.95	276	8.30	1.09	10.6	-70							0.18		
CL-MW-101	4.4-9.4	07/18/12	6.14	587	7.20	7.13	16.3	-116	0				-		0.38		
CL-MW-102	4-8	07/18/12	5.81	468	8.20	7.61	14.4	-64	0						0.3		
CL-MW-103	3-14.9	07/18/12	6.16	771	23.20	7.87	13.3	-119	0						0.5		
HS-MW-2	8.5-13.5	06/24/04	6.0	24,000		1.9	13.8	-94	0		2.3	0	<0.01	ND		31.8	16.5
HS-MW-4	3-13	06/23/04	6.6	130		2.3	14	-73	0.1		Too Turbid for M	leasurements	<0.01	0.658		140	72.6
HS-MW-4	3-13	05/09/12	6.41	1,010	430*	0.8	12.6	-69	0						0.6		
HS-MW-5	3-13	06/23/04	7.5	62,000		2.1	13.5	-110	0		0.1	0	<0.01	18.7		63.6	9.76
HS-MW-5	3-13	05/09/12	6.52	631	13.60	0.9	11.6	-150	0						0.4		
HS-MW-6	4-19	06/24/04	5.7	50,000		2.1	12.1	-32	0		2.16	0.2	<0.01	1.3		52.2	25.2
HS-MW-6	4-19	05/08/12	6.31	796	8.00	1.12	11	-36							0.5		
HS-MW-6	4-19	07/18/12		697			11.62										
HS-MW-7	4-19	05/09/12	6.45	828	10.00	1.01	11.4	-84							0.53		
HS-MW-7	4-19	07/18/12		657			12.81										
HS-MW-9	3-13	06/23/04	6.3	100		1.8	13.6	-31	0		2.05	0.2	<0.01	0.44		144	75.9
HS-MW-9	3-13	05/09/12	5.83	814	12.20	0.7	11.3	-104	0						0.52		
HS-MW-9	3-13	07/18/12		14			13.11										
HS-MW-10	10-13	06/23/04	6.6	18,000		4.2	12.9	-99	0	0.100	0.59	0.2	<0.01	ND		22.9	10.8
HS-MW-11	8-11	06/23/04	6	70,000		1.6	15.4	-88	0	0.300	1.08	0.3	<0.01	1.31		105	80.6
HS-MW-13	8-11.5	06/23/04	6.1	140		1.9	12	-89	0.1	0.500	1.11	0	<0.01	1.24		150	94.2
HS-MW-13D	8-11.5	05/09/12	6.12	351	57.70	0.7	10.1	-70	0						0.22		
HS-MW-15	8-11	06/22/04	6.5	2,800		2.1	14.3	-243	1.7		1.74	Note 1	<0.01	1350		53	20.5
HS-MW-15	8-11	05/09/12	6.39	5,270	87.30	0.8	11.1	-304	0.3						3.3	-	
HS-MW-16	8-11	06/22/04	6.6	3,600		1.9	13.6	-170	2.3		3.4	0.5	0.0194	1980		41.3	14
HS-MW-16	8-11	05/09/12	6.11	290	18.50	0.9	11.4	-247	0.1						1.9	-	
HS-MW-17	3.2-13	07/18/12	6.3	4,000	8.31	7.54	15	-161	0.2						2.6		
HS-MW-19	2.7-12.7	07/17/12	6.12	673	8.20	8.12	14.9	-110	0						0.43		
IZ-MW-1	2-5	06/22/04	6	2,100		1.5	16.6	-317	1.3		0.12	0	<0.01	625		173	57.2
IZ-MW-2	2-5	06/22/04	6.7	2,300		1.8	14.9	-351	1.4		0.2	0	<0.01	668	-	166	57
IZ-MW-3	2-5	06/22/04	7.1	2,700		1.7	16.7	-333	1.7		0.2	0	<0.01	934	-	120	46.6
IZ-MW-4	2-5	06/22/04	6	470		3.2	13.3	-275	0.2		0.07	0	<0.01	71.5		127	65.4
TL-MW-1	4-19	05/08/12	6.1	2,400	101.00	0.8	11	-161	0.1						1.5	-	
TL-MW-1	4-19	07/18/12		3,292			11.25									-	
TL-MW-7	3-19	05/09/12	6.51	1,080	27.00	0.98	10.7	-76							0.7	-	
TL-MW-9	3-14	06/23/04	6.1	1,500		1.7	13.3	-107	0.9		1.69	0	<0.01	455		87.1	41.9
TL-MW-9	3-14	05/08/12	6.4	16,700	21.50	0.5	9.9	-82	0.9		-		-		10		

Monitoring Well	Screen Interval (feet bgs)	Date Measured	pН	Conductivity (μS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temperature (degrees C)	ReDox Potential (millivolts) ²	Salinity (%)	Salinity (g∕kg)	Ferrous Iron (mg/l) ²	Soluble Manganese (mg/l)	Nitrate-Nitrogen (mg/l as N)	Sulfate (mg∕l)	Total Dissolved Solids (g/L)	Dissolved Inorganic Carbon (mg/I)	Total Organic Carbon) (mg/l)
TL-MW-10	10-13	06/23/04	5.9	2,300		2	11.3	-243	1.3		1.56	0.3	<0.01	326		238	98.5
TL-MW-11	17-20	06/22/04	6.6	110		5.3	15.8	-121	0		2.87	0	<0.01	2.65		130	37
TL-MW-11	17-20	05/08/12	6.28	1,050	12.70	1.06	11.3	-62							0.7		
TL-MW-12	2.7-12.7	07/11/12															
TL-MW-12	2.7-12.7	07/18/12	5.98	2,900	8.20	7.93	12.1	-138	0.1						1.8		
TL-MW-13	43.1-46.1	07/12/12															
TL-MW-13	43.1-46.1	07/17/12	6.37	2,800	14.30	7.33	14.7	-149	0.1						1.7		
TL-MW-14	27.3-30.1	07/12/12															
TL-MW-14	27.3-30.1	07/17/12	6.08	12,100	128.20	8.13	14.4	-58	0.7						8		
TL-MW-15	27.3-30.1	07/12/12															
TL-MW-15	27.3-30.1	07/18/12	5.87	550	9.80	7.51	13.3	-65	0.3						3.6		
TL-MW-16	29.7-32.5	07/12/12															
TL-MW-16	29.7-32.5	07/17/12	6.12	320	4.30	7.62	13.5	-179	0.2						2		

Notes:

¹Obvious color change during test but instrument read a negative value.

-- Not measured. Typically not measured if LNAPL present.

* Light non-aqueous phase liquid in sample.

pH, conductivity, dissolved oxygen, temperature, Redox, salinity, ferrous iron and soluble maganese field measurements with HoribaU-22

Salinity by Method SM 2520, analyzed by North Creek Analytical, Inc or field tested with HoribaU-22.

Nitrate-Nitrogen by EPA Method 353.2, analyzed by North Creek Analytical, Inc.

Sulfate by EPA Method 300.0, analyzed by North Creek Analytical, Inc.

Dissolved inorganic carbon and total organic carbon by EPA Method 415.1, analyzed by North Creek Analytical, Inc.

Table K-2

2012 Groundwater Analytical Data for Dioxins/Furans

R.G. Haley Site

Bellingham, Washington

				Monitoring	Well and Sar	nple Date (Un	its in pg/L)			
	CL-MW-101	_07182012	HS-MW-13	-05092012	HS-MW-15	-05092012	TL-MW-11	05082012	TL-MW-16	07172012
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,2,3,4,6,7,8-HpCDD	120		1600		303		10600		196	
1,2,3,4,6,7,8-HpCDF	8.26	J	311		63.6		1380		24.2	J
1,2,3,4,7,8,9-HpCDF	0.930	J	21.6	J	3.34	U	84.7		2.31	U
1,2,3,4,7,8-HxCDD	0.808	J	0.580	U	4.29	U	5.88	J	1.62	J
1,2,3,4,7,8-HxCDF	0.756	U	23.0	J	3.78	J	109		0.782	J
1,2,3,6,7,8-HxCDD	2.16	U	55.0		10.4	J	527		4.12	J
1,2,3,6,7,8-HxCDF	0.382	U	5.12	J	8.00	U	30.5	J	0.272	U
1,2,3,7,8,9-HxCDD	1.94	J	3.58	U	1.48	U	23.8	U	1.76	U
1,2,3,7,8,9-HxCDF	0.336	U	9.10	J	10.9	U	58.9		2.75	U
1,2,3,7,8-PeCDD	0.370	U	2.00	U	0.560	U	2.56	U	2.65	U
1,2,3,7,8-PeCDF	0.338	U	5.20	J	2.61	U	28.5	J	0.514	J
2,3,4,6,7,8-HxCDF	0.446	U	11.1	J	2.18	U	70.1		0.222	U
2,3,4,7,8-PeCDF	0.396	U	4.96	J	1.98	U	25.0	J	0.635	U
2,3,7,8-TCDD	2.43	U	3.25	U	2.92	U	3.56	U	2.42	U
2,3,7,8-TCDF	0.198	U	1.30	U	0.861	U	10.1		1.32	U
OCDD	2450		16500		2550		90700		2910	
OCDF	61.9	J	1700		347		5350		222	
Total HpCDD	289		2790		515		17800		440	
Total HpCDF	31.7		1610		303		6370		134	
Total HxCDD	4.94		159		27.6		1360		43.9	
Total HxCDF	8.06		556		96.5		3080		20.8	
Total PeCDD	50	U	2	U	50	U	5.84		2.24	
Total PeCDF	2.14		88.7	1	2.61	U	572		0.52	
Total TCDD	0.302		0.5	1	2.92	U	4.52		2.42	U
Total TCDF	10	U	10	U	0.861	U	37.8		1.32	U
Approximate Concentration of Total Dioxins and Furans ¹ (pg/L)	2,848		23,404		3,839		125,280		3,773	

Notes

1. Sum of 8 total homolog groups, OCDD and OCDF. Non detects are treated as zero (0) in this sum.

pg/L = picograms per liter

U = Not Detected

J = Estimated

APPENDIX L Chemical Data Validation Reports

Table of Contents

APPENDIX L. CHEMICAL DATA VALIDATION REPORTS

1.0	DATA QUALITY ASSESSMENT SUMMARY	L-1
1.1.	Chain-of-Custody Documentation	L-2
1.2.	Holding Times	L-2
1.3.	Surrogate Recoveries	L-2
1.4.	Method Blanks and Equipment Rinsate Blanks	L-3
1.5.	Matrix Spikes/Matrix Spike Duplicates	L-4
1.6.	Laboratory Control Samples/Ongoing Precision and Recovery Samples (OPR)	L-5
1.7.	Laboratory Duplicates (Metals and Fuels only)	L-5
1.8.	Field Replicates/Duplicates	L-5
	Reporting Limits	
1.10	Additional Data Quality Issues	L-6
2.0	OVERALL ASSESSMENT	L-8

LIST OF FIGURES

Exhibit L-1. Draft Pre-2012 Data Quality Assessment Exhibit L-2. NCA Labs Analytical Report Sample BWT-BS-01 Exhibit L-3. ENSR Air Toxics Specialty Laboratory Analytical Report

APPENDIX L CHEMICAL DATA VALIDATION REPORTS

This report presents the results of a United States Environmental Protection Agency (USEPA) defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of soil and groundwater samples obtained from the Supplemental Upland Investigation at the RG Haley Site. The sample delivery groups (SDGs) were validated in accordance with the stated Data Quality Objectives (DQOs) in the Final Quality Assurance Project Plan (QAPP) (GeoEngineers 2012a). Samples obtained were submitted to OnSite Environmental, Inc. (OnSite) of Redmond, Washington for chemical analysis of BTEX compounds, diesel- and heavy oil-range petroleum hydrocarbons (NWTPH-Dx), semi-volatile compounds, polycyclic aromatic hydrocarbons (PAHs), chlorophenols, dissolved metals (copper) and/or dioxins/furans. Samples obtained specifically for the analysis of dioxin/furans were submitted to Analytical Resources, Incorporated (ARI) of Tukwila, Washington under chain of custody protocol.

The objective of the data quality assessment was to review laboratory analytical procedures and laboratory and field quality control (QC) results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

OnSite SDGs (noted above) were reviewed relative to the following QC elements:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method and Equipment Rinsate Blanks
- Laboratory Control Samples/Ongoing Precision and Recovery Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

1.0 DATA QUALITY ASSESSMENT SUMMARY – 2012 SUPPLEMENTAL INVESTIGATION

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 2010), USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008), and USEPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (USEPA 2011).

1.1. Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius.

1.2. Holding Times

The holding time is defined as the time that elapses between sample collection and sample extraction. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

1.3. Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis.

In the Dioxin/Furan analyses, the surrogates (labeled compounds) serve as an isotopic dilution quantitation mechanism for the calculation of all target analytes in the method. Like all other surrogates, the labeled compounds have method control limits based on percent recovery that the laboratory is obligated to accommodate. However, the exact amount of a recovered labeled compound can directly affect the measurement of the target analyte that it represents.

All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

SDG 1206-168 (NWTPH-Dx): There was no recovery of surrogates in Samples CL-SB-102-9-10 and CL-SB-103-8-9 because the laboratory diluted the samples at least 10 times. In each case, the surrogates were diluted outside of the linear calibration range of the instrument. No action is necessary.

(Semivolatiles): The percent recovery (%R) value for the surrogate 2-fluorobiphenyl in Sample CL-SB-103-8-9 exceeded the control limit. No qualification for this outlier is necessary because the base-neutral fraction target analytes were represented by at least 2 other surrogates that demonstrated %R values within their respective control limits. No action is necessary.

(Chlorophenols): There was no recovery of surrogates in Samples CL-SB-101-4-5, CL-SB-101-6-7, CL-SB-102-4-5, CL-SB-102-9-10, CL-SB-103-4-5, and CL-SB-103-8-9, because the laboratory diluted the samples at least 10 times. In each case, the surrogates were diluted outside of the linear calibration range of the instrument. No action is necessary.

(Dioxins/Furans): The %R values for the labeled compounds 13C-1,2,3,6,7,8-HxCDD, 13C-1,2,3,6,7,8-HxCDF, and 13C-1,2,3,4,6,7,8-HpCDD in Sample HS-SB-102-0-1 were greater than their respective control limits. The positive results for the associated target analytes were qualified as estimated (J) in this sample.

- SDG 1207-021 (NWTPH-Dx, Chlorophenols, and Semivolatiles): There was no recovery of surrogates in Sample TL-MW-13-11-12 because the laboratory diluted the sample at least 10 times. In this case, the surrogate was diluted outside of the linear calibration range of the instrument. No action is necessary.
- SDG 1207-026 (NWTPH-Dx, and Semivolatiles): There was no recovery of surrogates in Sample TL-MW-14-11-12 because the laboratory diluted the sample at least 10 times. In this case, the surrogate was diluted outside of the linear calibration range of the instrument. No action is necessary.
- SDG 1207-097 (NWTPH-Dx): There was no was no recovery of surrogates in Sample CL-MW-103-10-11.5 because the laboratory diluted the sample at least 10 times. In this case, the surrogate was diluted outside of the linear calibration range of the instrument. No action is necessary.

(Chlorophenols): There was no was no recovery of surrogates in Sample CL-MW-103-5-6.5 because the laboratory diluted the sample at least 10 times. In this case, the surrogate was diluted outside of the linear calibration range of the instrument. No action is necessary.

(Semivolatiles): The %R values for the surrogate 2,4,6-tribromophenol in Samples CL-MW-103-10-11.5, HS-MW-19-10-11.5, and HS-MW-18-7.5-9 exceeded the control limits. No qualification for this outlier is necessary because the base-neutral fraction target analytes were represented by at least 2 other surrogates that demonstrated %R values within their respective control limits.

(Dioxins/Furans): The %R values for the labeled compounds 13C-1,2,3,4,6,7,8-HpCDD and OCDD in Sample HS-MW-19-1.5-2.5 were greater than their respective control limits. The positive results for the associated target analytes were qualified as estimated (J) in this sample.

1.4. Method Blanks and Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and re-agents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the contract required quantitation limits (CRQL), or 3 times these limits for OCDD or OCDF, in any of the method blanks, with the exceptions below:

- SDG 1207-097 (Dioxins/Furans): There were positive results for 1,2,3,4,6,7,8-HpCDD and OCDD (3 times the CRQL) in the method blank extracted on July 25, 2012. The positive result for OCDD was exceedingly high, and judged to be considered gross contamination. The associated field sample HS-MW-19-1.5-2.5 reported positive results for these compounds at levels greater than the CRQL. The positive result for 1,2,3,4,6,7,8-HpCDD was qualified as estimated (J) in this sample. The positive result for OCDD was rejected (R) because of the gross contamination in the method blank.
- SDG 1207-143 (Dioxins/Furans): There were positive results for 1,2,3,4,6,7,8-HpCDD and OCDD (3 times the CRQL) in the method blank extracted on July 24, 2012. The associated field samples CL-MW-101 and TL-MW-16 reported positive results for these compounds at levels

greater than the CRQL The positive results for these congeners were qualified as estimated (J) in this sample.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Two equipment rinsate blanks were collected for the upland sampling efforts, RINSE-05082012 and RINSE-05092012.

SDG 1205-090 (Semivolatiles): There were positive results for acenaphthene, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene in the equipment blank RINSE-05082012 at concentrations greater than the contract required quantitation limit. The associated field samples HS-MW-6-05082012, TL-MW-1-05082012, TL-MW-11-05082012, and TL-MW-9-05082012 reported positive results for these compounds at levels greater than the CRQL. However, all the field sample concentrations were greater than 10 times the concentrations in the field blank. No further action was required.

There were positive results for naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene in the equipment blank RINSE-05092012 at concentrations greater than the contract required quantitation limit. The associated field samples CL-MW-1-05092012, CL-MW-9-05092012, HS-MW-9-05092012, HS-MW-15-05092012, and HS-MW-16-05092012, TL-MW-7-05092012, and DUP-05092012 reported positive results for these compounds at levels greater than the CRQL. In these cases, the positive results were transformed into reporting limits at elevated levels and reported as Not Detected.

1.5. Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample."

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits, with the exceptions below:

SDG 1207-097 (Metals): The laboratory performed an MS/MSD set on Sample HS-MW-19-10-11.5. The MSD %R value for copper exceeded the control limit. However, the corresponding MS %R value for copper was within the respective control limit. For this reason, no qualifiers due to accuracy were required.

The RPD value for copper exceeded the control limit in the same QC sample set. For this reason, the positive result for copper was qualified as estimated (J) in the parent sample due to a lack of precision.

1.6. Laboratory Control Samples/Ongoing Precision and Recovery Samples (OPR)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the exceptions below:

- SDG 1207-097 (Dioxins/Furans): The %R value for OCDD exceeded the control limit in the OPR sample extracted on July 25, 2012. The positive result for OCDD was qualified as estimated (J) in the associated field Sample HS-MW-19-1.5-2.5.
- SDG 1207-143 (Dioxins/Furans): The %R value for OCDD exceeded the control limit in the OPR sample extracted on July 24, 2012. The positive result for OCDD was qualified as estimated (J) in the associated field Samples CL-MW-101 and TL-MW-16.

1.7. Laboratory Duplicates (Metals and Fuels only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

1.8. Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates, the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample in which case the absolute difference is used instead of the RPD.

The following field duplicate sample sets were analyzed for diesel-range and lube oil-range hydrocarbons and semivolatiles:

CL-MW-9-05092012/DUP-05092012 and CL-MW-102-07182012/DUP-07182012

The RPD/absolute difference value for the field duplicate sample sets were within their respective control limits, with the following exceptions:

 SDG 1205-090: Because the RPD/absolute difference value for pentachlorophenol exceeded the control limits in sample set CL-MW-9-05092012/DUP-05092012, the results should be qualified as estimated ("J" flag) in both samples.

1.9. Reporting Limits

The laboratory indicated that several samples had evidence of matrix interference; in these cases the laboratory had to raise the reporting limits for various compounds in order to avoid reporting false positive results. Specifically, there were several instances where diesel-range or lube oil-range patterns could not be distinguished because of chromatographic interference and in these cases the laboratory raised the reporting limits, and indicated this with a "UI" qualifier. These data points were appropriately taken through the validation process, and these reporting limits were qualified (UI) in the GeoEngineers database.

In all sample analyses, the positive results for all target analytes were quantitated using instrument responses that were appropriately within the calibration curve used for that instrument. All data met the established criteria for this QC element with one exception below:

SDG (Dioxins/Furans): The congeners 1,2,3,4,6,7,8-HpCDD and OCDD were reported to exceed the linear calibration range of the instrument in Sample HS-MW-19-1.5-2.5. The positive results for these congeners were qualified as estimated (J) in this sample.

1.10. Additional Data Quality Issues

OnSite SDG 1205-090, 1207-026, 1207-097, 1207-143: Several congeners were flagged by the testing laboratory with an EMPC* because the ion abundance ratios were outside of the established criteria. In each of these cases the positive results were qualified (U) as not detected and the reporting limits were raised to the indicated level by the U qualifier.

A summary of congeners affected by these qualifiers are listed in the following table.

Sample ID	Congeners
HS-MW-13-05092012	2,3,7,8-TCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,7,8,9-HxCDD
HS-MW-15-05092012	1,2,3,7,8-PeCDD, 1,2,3,7,8,9-HxCDD, 2,3,4,6,7,8-HxCDF, 1,2,3,4,7,8,9-HpCDF
TL-MW-11-05082012	1,2,3,7,8-PeCDD, 1,2,3,7,8,9-HxCDD
RINSE-05082012	2,3,7,8-TCDD
HS-SB-104-0-1	2,3,7,8-TCDD
TL-MW-14-15-16	2,3,7,8-TCDD
TL-MW-14-28-29	2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDF
TL-MW-16-31-32	2,3,7,8-TCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,4,7,8,9-HpCDF
CL-MW-101_07182012	2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,6,7,8-HxCDD
TL-MW-16_07172012	1,2,3,6,7,8-HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDD, 1,2,3,4,7,8,9-HpCDF

- SDG 1206-189: The chromatographic patterns in Samples CL-SB-102-9-10, CL-SB-103-8-9, HS-SB-102-9-10, and HS-SB-103-8-9 did not match that of the calibration standards for lube oil. The positive results for lube oil in these samples would be biased high, and were qualified as estimated (J) for this reason.
- SDG 1206-190: The chromatographic patterns in Samples TL-SB-101-9-10 and TL-SB-101-19-20 did not match that of the calibration standards for diesel range hydrocarbons. The positive results for diesel range hydrocarbons in these samples would be biased high, and were qualified as estimated (J) for this reason.
- SDG 1206-230: The chromatographic pattern in Sample TL-MW-15-10-11 did not match that of the calibration standards for lube oil. The positive result for lube oil in this sample would be biased high, and was qualified as estimated (J) for this reason.
- SDG 1206-231: The chromatographic pattern in Sample TL-MW-16-20-21 did not match that of the calibration standards for diesel range hydrocarbons. The positive result for diesel range hydrocarbons in this sample would be biased high, and was qualified as estimated (J) for this reason.
- SDG 1206-231: The chromatographic pattern in Sample TL-MW-16-8-9 did not match that of the calibration standards for lube oil. The positive result for lube oil in this sample would be biased high, and was qualified as estimated (J) for this reason.
- SDG 1206-232: The chromatographic pattern in Sample CL-MW-101-6-7 did not match that of the calibration standards for diesel range hydrocarbons. The positive result for diesel range hydrocarbons in this sample would be biased high, and was qualified as estimated (J) for this reason.

- SDG 1207-097: The chromatographic patterns in Samples CL-MW-103-10-11.5, CL-MW-103-12.5-14, and HS-MW-19-12.5-14 did not match that of the calibration standards for diesel range hydrocarbons. The positive result for diesel range hydrocarbons in these samples would be biased high, and were qualified as estimated (J) for this reason.
- SDG 1207-097: The chromatographic pattern in Sample CL-MW-103-5-6.5 did not match that of the calibration standards for lube oil. The positive result for lube oil in this sample would be biased high, and was qualified as estimated (J) for this reason.
- SDG 1207-097: The column-confirmation RPD value for 2,4,6-trichlorophenol in Sample HS-MW-18-10-11.5 was reported by the laboratory to be greater than 40 percent, indicating a lack of acceptable precision within the analysis for this sample. For this reason, the positive result for 2,4,6-trichlorophenol was qualified as estimated (J) in this sample.
- SDG 1207-143: The chromatographic patterns in all the samples in this SDG did not match that of the calibration standards for diesel range hydrocarbons. The positive results for diesel range hydrocarbons in these samples would be biased high, and were qualified as estimated (J) for this reason.

2.0 OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, labeled compounds, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values, with the exceptions noted above.

Data should be qualified as estimated because of field duplicate precision, surrogate/labeled compound accuracy, method blank contamination, matrix spike precision outliers, ongoing precision and recovery outliers, chromatography mismatches, and column confirmation outliers. Data should also be qualified as not detected because of equipment blank contamination and HR/MS ion ratios outside of the appropriate control limits.

One data point was rejected because of exceedingly high contamination in the method blank.

The data collected in this supplemental investigation was validated using the Data Quality Objectives outlined in the QAPP. Based on the data quality review, it is our opinion that the analytical data, including data qualified as noted above, are of acceptable quality for their intended use.

EXHIBIT L-1 Draft Pre-2012 Data Quality Assessment

DRAFT

DRAFT DATA QUALITY ASSESSMENT AND CHEMICAL ANALYTICAL DATA VOLUME II OF II R. G. HALEY INTERNATIONAL CORPORATION SITE BELLINGHAM, WASHINGTON AGREED ORDER NO. DE 2186

MARCH 13, 2006

FOR DOUGLAS MANAGEMENT COMPANY

TABLE OF CONTENTS

Page No.

ABBREVIATIONS	II
1.0 INTRODUCTION 1.1 PURPOSE AND OBJECTIVES	2
2.0 TECHNICAL ASSESSMENT 2.1 HOLDING TIMES 2.1 HOLDING TIMES 2.2 METHOD BLANKS 2.3 PRECISION AND ACCURACY 2.3.1 Surrogate Recoveries 2.3.1 Surrogate Recoveries 2.3.2 Matrix Spikes/Matrix Spike Duplicates 2.3.3 Laboratory Control Spikes/Blank Spikes 2.3.4 Laboratory Replicates 2.4 CALIBRATIONS 2.5 INTERNAL STANDARDS	33455666
 3.0 FIELD QA/QC SAMPLES 3.1 FIELD DUPLICATE SAMPLES 3.2 EQUIPMENT RINSATES 	7
4.0 LIMITATIONS. - 4.1 SAMPLE INTEGRITY	7 8 8 8 9
5.0 SUMMARY AND CONCLUSIONS. 10 5.1 SIGNIFICANT QUALIFICATION. 10 5.2 MINOR QUALIFICATION. 10	0

List of Tables

- Table 1. Sample Analysis Summary Information
- Table 2. Sample Qualification Summary
- Table 3. Samples/Analyses Exceeding Holding Times
- Table 4. Method blank Detections
- Table 5. Surrogate Recoveries Outside QC Criteria
- Table 6. Matrix Spike Recoveries Outside QC Criteria
- Table 7. Lab Control Spike Exceedances
- Table 8. Relative Percent Difference
- Table 9. Calibration Verification
- Table 10. Initial Calibrations
- Table 11. Continuing Calibration
- Table 12. Internal Standard Summary
- Table 13. Groundwater Field Parameters

TABLE OF CONTENTS (CONTINUED)

APPENDICES

APPENDIX A – ECOCHEM, INC., DATA VALIDATION REPORT (DECEMBER 2004 AND MARCH/APRIL/2005 GROUNDWATER SAMPLING EVENT)

APPENDIX B – ECOCHEM, INC., DATA VALIDATION REPORT (SEPTEMBER 2005 GROUNDWATER SAMPLING EVENT)

ABBREVIATIONS

AET	Apparent Effect Threshold
ASB	Aerated Stabilization Basin
APH	Air-Phase Petroleum Hydrocarbons
AST	Aboveground Storage Tank
BBCC	Bellingham Bay Coal Company
BEP	Bis (2-ethylhexyl) phthalate
BETX	Benzene, Ethylbenzene, Toluene, and Xylenes
BGS	Below Ground Surface
CCA	Chromated Copper Arsenate
CLARC	Cleanup Levels and Risk Calculations Volume 3.1
COCs	Constituents of Concern
CORNWALL	Cornwall Avenue Landfill
cPAH	Carcinogenic Polycyclic Aromatic Hydrocarbons
CSL	Cleanup Screening Levels
CSM	Conceptual Site Model
CUL	Cleanup Level
DNR	Department of Natural Resources
DOUGLAS	Douglas Management Company
DQOs	Data Quality Objectives
Ecology	Washington State Department of Ecology
EDD	Electronic Data Deliverables
EPH	Extractable petroleum Hydrocarbon
FS	Feasibility Study
GP	Georgia Pacific
GPM	Gallons per Minute
HALEY	R.G. Haley International Corporation
HASP	Health and Safety Plan
HPLC	High Purity Liquid Chromatography
HVOC	Halogenated Volatile Organic Compound
IDL	Instrument Detection Limit
LCS/LCSD	Laboratory Control Spikes/Spike Duplicates
LNAPL	Light Non-Aqueous Petroleum Liquid
MADEP	Massachusetts Department of Environmental Protection
MDL	Method Detection Limit
MHHW	Mean Higher High Water
MLLW	Mean Lower Low Water
MS/MSD	Matrix Spike/Matrix Spike Duplicates
MTCA	Model Toxics Control Act

NPL	Superfund National Priorities List
РАН	Polycyclic Aromatic Hydrocarbon
PARCC	Precision, Accuracy, Representativeness, Completeness and Comparability
PCB	Polychlorinated Biphenyl
PCP	Pentachlorophenol
PLP	Potentially Liable Person
PORT	Port of Bellingham
PQL	Practical Quantiation Limit
PSDDA	Puget Sound Dredge Disposal Analysis
PSEP	Puget Sound Estuary Program
PSS	Preliminary Sediment Screening
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
RI	Remedial Investigation
RPD	Relative Percent Difference
SAP	Sampling and Analysis Plan
SAPA	Sampling and Analysis Plan Addendum
SHA	Site Hazard Assessment
SITE	R. G. Haley International Company Site
SMS	Sediment Management Standards
SOPs	Standard Operating Procedures
STATE	State of Washington
SQS	Sediment Quality Standards
SVOCs	Semi-Volatile Organic Compounds
TEQ	Toxicity Equivalent
TOC	Total Organic Carbon
USCG	United States Coast Guard
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UST	Underground Storage Tank
VOC	Volatile Organic Compound
WAC	Washington Administrative Code
WARM	Washington Ranking Method

DRAFT DATA QUALITY ASSESSMENT (VOLUME II) R.G. HALEY INTERNATIONAL CORPORATION SITE BELLINGHAM, WASHINGTON

For

DOUGLAS MANAGEMENT COMPANY

1.0 INTRODUCTION

This document presents the findings of a comprehensive analytical data quality review for the Haley project. This review addresses soil, sediment, product, and groundwater samples collected by GeoEngineers, Inc. for field activities occurring in June and July of 2004. Soil and groundwater samples were submitted to North Creek Analytical, Inc (NCA). in Redmond, Washington for analysis. Dioxin analyses for soils and groundwater were sub-contracted by NCA to Frontier Analytical Laboratory of El Dorado Hills, California. Sediment samples were analyzed by Columbia Analytical Services, Inc. in Kelso, Washington. Samples were analyzed for the following matrices and analytical methods:

<u>Soil</u>

- Volatile organics compounds (VOCs) by SW-846 8260B
- Organic carbon by SW-846 9060
- Carcinogenic polynuclear aromatic hydrocarbons (CPAHs) by GC/MS-SIM and SW-846 8270C
- Semi-volatile organic compounds (SVOCs) by SW-846 8270C
- Metals by SW-846 6020 and SW-846 7196A
- Dioxins by SW-846 8290
- Petroleum hydrocarbons by NWTPH-Dx, NWTPH-HCID, and Extractable Petroleum Hydrocarbons (EPH)

<u>Sediment</u>

- Grain size, sulfide, and organic carbon by Puget Sound Estuary Program protocols
- Ammonia by EPA 350.3-modified
- Semi-volatile organic compounds (SVOCs) by SW-846 8270C
- Mercury by SW-846 7471A
- Dioxins by SW-846 8290

Groundwater

- Volatile organics compounds (VOCs) by SW-846 8260B
- Sulfate by EPA 300.0
- Nitrate by EPA 353.2
- Organic carbon by EPA 415.1 and SW-846 9060
- Petroleum hydrocarbons by NWTPH-Dx and Extractable Petroleum Hydrocarbons (EPH)
- Metals by SW-846 6020 and SW-846 7196A
- Selenium by N2520
- Carcinogenic polynuclear aromatic hydrocarbons (CPAHs) SW-846 8270C
- Semi-volatile organic compounds (SVOCs) by SW-846 8270C
- Dioxins by SW-846 8290

Product

• Dioxins by SW-846 8290

The number of samples collected by matrix (including field duplicates) is presented below:

- Soil 50 samples
- Sediment 8 samples
- Groundwater 25 samples
- Product 1 sample

Details on the precise number and types of analyses, as well as detailed sample information is available within the main body of the of the Remedial Investigation (RI) report. This document focuses primarily on data quality issues. Table 1 provides an index of sample identification, matrix, methods, sample delivery groups, and batch identifiers. The laboratory supplied case narrative is supplied as Attachment A to this document and additional details and clarification to quality control issues identified in this report.

1.1 PURPOSE AND OBJECTIVES

The objective of this data quality assessment is to review laboratory analytical procedures and quality control results to verify or refute the usability of data toward meeting project data quality objectives (DQOs) established in the project Work Plan (GeoEngineers, 2004). Data quality objectives were established to specify the quality of data regard to support decisions during remedial response activities. DQOs define the methods to be used in the RI and were developed to ensure the following:

- Applicable or relevant and appropriate requirements (ARARs), risk-based criteria, and data needs for the risk assessment and engineering requirements are met.
- Samples are analyzed using well-defined and acceptable methods that will provide confident detection limits sufficiently below the ARARs that are accurate enough for risk assessment.
- The precision and accuracy of data are well defined and adequate to provide defensible data.
- Samples are collected using approved techniques and are representative of existing environmental conditions.
- QA/QC procedures for both field and laboratory procedures meet acceptable industry practices and standards.

The main quality assurance objective of an investigation is to collect environmental monitoring data of known, acceptable, and documentable quality. An evaluation of quality assurance procedures against established criteria is followed by a quality control evaluation. If quality assurance/quality control (QA/QC) procedures are followed correctly, then an investigation would produce data that are of an acceptable level of confidence, scientifically valid, of known and documented quality, and legally defensible for the stated purpose.

1.2 DATA EVALUATION CRITERIA

Data review was performed using guidance from Upland Remedial Investigation Work Plan Former R.G Haley Wood Treatment and DNR Properties, Bellingham, Washington by GeoEngineers, Inc. (March of 2004), NCA laboratory control limit criteria, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2002), and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999). Additional references include Methods for Chemical Analysis of Water and Wastes (EPA 1983) and Test Methods for Evaluating Solid *Waste*, SW-846, 3rd Edition (EPA 1986). The review included but was not limited to evaluation of holding times, method blanks, blank spike and matrix spike recoveries, surrogate recoveries (system monitoring compounds), laboratory and field duplicate/replicate data, calibrations, and internal standards. Additionally, a review and comparison between the electronic database and hard copy was performed to verify correctness of reported results.

Data qualification was based on recommended actions in the guidance documents and professional judgement. A conservative approach was taken, favoring false positive or elevated results over false negative or low biased results.

Laboratory hardcopy results and associated worksheets are stored with project files and can be provided upon request. Associated quality assurance worksheets are stored with project files and can be provided upon request. A summary of laboratory data is included in the main body of the RI report.

2.0 TECHNICAL ASSESSMENT

Data were evaluated against referenced criteria identified in Section 1.2. Samples received by the laboratory were grouped into sample delivery groups (SDG) and assigned an identification number. Requalification of results based on each specific criteria was not performed until the end of this section unless specific qualification was required. Table 2 details samples requiring qualification and reasons for the action. A summary of issues and conclusions appears at the end of this document.

In some instances, QC results were reported outside of Work Plan criteria but within the laboratory's criteria. This discrepancy existed because a laboratory other than NCA was originally intended to perform the work and provided QC criteria during plan development. The plans were finalized and approved, after which NCA was contracted to conduct the work. During this review all exceptions to either the Work Plan or laboratory criteria were noted in tables referenced below. However, it was our professional judgement to ultimately use NCA's criteria, not another laboratory's criteria, to qualify results.

2.1 HOLDING TIMES

All samples were submitted with the appropriate preservatives. If a sample exceeds a holding time (extraction and/or analysis) for a specified method, then the results may be biased low. If holding times are grossly exceeded, then results may be qualified as unusable. Samples slightly missing holding can still produce useable data, but may be biased low. Table 3 identifies samples that exceeded holding times. Results for samples that slightly exceeded holding times were qualified as "J" or estimated.

Nine samples, all re-analyses, grossly exceeded holding times for groundwater EPH analysis. The reanalyses were conducted due to poor batch QC during the original analyses. All non-detect results for the re-analyses were rejected ("R" flagged) and detected results were qualified as estimated. Because of the QC issues with the original analyses, some of the detected (and qualified) results from the re-analyses were reported as final results.

2.2 METHOD BLANKS

Method blanks are laboratory quality control (QC) samples that consist of either a soil like material having undergone a contaminant destruction process or HPLC water. Method blanks are extracted and analyzed with each batch of environmental samples undergoing analysis. Method blanks are particularly useful during volatile analysis since volatile compounds can be transported in the laboratory through the vapor phase. If a substance is found in the method blank then one (or all) of the following occurred:

- Measurement apparatus or containers were not properly cleaned and contained contaminants.
- Reagents used in the process were contaminated with a substance(s) of interest.
- Analytical equipment were not properly cleaned and contained contaminants.
- Volatile substances in the air with high solubility or affinities toward the sample matrix contaminated the samples during preparation or analysis.

If blank contamination occurs it is difficult to determine which of the scenarios above took place and is assumed that whatever affected the blanks probably affected the samples. Given method blank results, validation rules assist in determining which substances in samples are considered "real" and those detections attributed to the analytical process. Furthermore, guidelines state, "... there may be instances where little or no contamination was present in the associated blank, but qualification of the sample is deemed necessary... Contamination introduced through dilution water is one example." In the opinion of the reviewer, no further review was required.

Validation procedures concerning blanks were followed according to guidelines provided in documents referenced in Section 1. The guidelines state, "Positive results [detections in samples] should be reported unless the concentration of the compound in the sample is less than or equal to 10 times (10x) the amount in any [associated] blank for the common laboratory contaminants . . . or 5 times (5x) the amount for other target compounds." Method blanks were reviewed first against all samples, including trip blanks. Then trip blanks were reviewed against samples.

Method blank detections are presented in Table 4. These detections did not adversely affect sample results nor did they indicate any kind of pervasive laboratory quality control issues. No results were qualified as a result of blank contamination.

2.3 PRECISION AND ACCURACY

Data quality is also assessed by precision and accuracy that measure the reproducibility of analytical results and the consistency in the performance of the analytical methods. Precision is the measure of mutual agreement among replicate or duplicate measurements of the same analyte. The closer the numerical values of the measurements are to each other, the more precise the measurement. This allows immediate comparison of the precision of different results under the same method. Matrix spike/matrix spike duplicate (MS/MSD) and duplicate analyses assist in measuring precision of a compound being analyzed. Precision for a single analyte is expressed as a relative percent difference (RPD) between results of matrix spikes and matrix spike duplicates where:

$$RPD = \frac{(D1 - D2)}{(D1xD2)/2} X 100$$
$$D1 = Sample \quad Result$$

D2 = Duplicate Sample Result

Accuracy is a measure of bias in the analyses process. The closer the value of the measurement agrees with the true value, the more accurate the measurement. Accuracy is expressed as the percent recovery of an analyte from a surrogate or matrix spike sample or from a standard reference material where:

Surrogate Percent Recovery =
$$\frac{(Sample Result)}{(Spike Amount)} X 100$$

Spike Percent Recovery = $\frac{(Spike Result - Sample Result)}{(Spike Amount)} X 100$

When accuracy and precision goals are not achieved, the sample(s) in question should be re-analyzed, if feasible. If the problem is due to matrix interferences with a particular sample or group of samples, this information should be noted in the report of results. The analysis of MS/MSDs determine if matrix interference problems are present. The recovery of surrogate compounds from environmental samples and the results of standard additions in environmental samples also verify the presence of matrix interferences.

2.3.1 Surrogate Recoveries

Surrogate analytes are also known as system monitoring compounds. The purpose of using a surrogate is to verify the accuracy of the instrument being used. Surrogates of known concentration are added to the sample and passed through the instrument, noting the amount recovered. Each surrogate used has an acceptable range of percent recovery. If a surrogate recovery is low, sample results may be biased low and depending on the recovery value, a possibility of false negatives may exist. Conversely, when recoveries are above the specified range of acceptance a possibility of false positives exist, although non-detected results are considered accurate. Surrogates are only evaluated on organic analyses. Table 5 identifies those surrogates outside of accepted criteria and actions taken. The bulk of surrogate issues were limited to the SVOCs analysis of soils.

Volatile organics by SW-846 8260B – Three surrogates per sample were used to monitor this method. No surrogate recoveries were outside QC limits

CPAHs by GC/MS-SIM – Three surrogates per sample were used to monitor this method. No recoveries were outside QC limits.

Semivolatile organics by SW-846 8270C – Six surrogates per sample were used to monitor this method. In several instances one or more of the acid fraction surrogates were low, indicating potential system wide problems. After discussing the matter with NCA, the laboratory confirmed that they had noticed system wide problems with the acid fraction QC and results. This factor was taken into consideration when qualifying results. The acid fraction analytes include all of the phenolics, specifically pentachlorophenol, 2,3,4,5-tetrachlorophenol, 2,3,5,6-tetrachlorophenol, 2,4,5-trichlorophenol, and 2,4,6-trichlorophenol. See Table 2 for details regarding specific qualifications.

Petroleum hydrocarbons by NWTPH-Dx and EPH – Two surrogates each are used when quantifying diesel and EPH. Exceptions were noted on three samples for EPH analysis and qualification was performed. See Table 2 for details regarding specific qualifications.

Dioxins/Furans by SW-846 8290 – There were 17 surrogates per sample used to monitor this method. Only one surrogate was above QC criteria, requiring no further action.

2.3.2 Matrix Spikes/Matrix Spike Duplicates

Matrix spikes and matrix spike duplicates (MS/MSDs) are used to evaluate accuracy by determining if matrix conditions, rather than instrument error, influences results. MS/MSDs are also used in evaluating precision. Table 6 details matrix spikes and spike duplicate recoveries that were reported outside QC criteria. Qualification was limited to sample HS-MW-15A-8-10 for SW-846 8270 and CL-MW-7-062404 for EPA 353.2. The remainder of results were not qualified due to one of the following explanations:

- No action taken on MS/MSD recoveries when sample amounts are significantly greater than spike amount. EPA guidelines suggest that when the sample result is four times or greater than the spike amount, the recovery cannot be accurately quantified.
- No action taken because the percent recovery was outside project QC criteria but within laboratory control limits.
- No action taken when the source sample is not from the project site. In several instances a non-Haley related sample was used for batch control and was not considered representative of the site. In these instances no MS/MSD evaluation could be made. This does not indicate a lower level of quality, rather, it introduces a small amount of uncertainty.

Furthermore, no action is required when spike recoveries are elevated. One item in particular to note was the extremely low recoveries for hexavalent chromium. After several re-analyses the laboratory measured the redox potential and determined that the matrix was in a reduced environment, thus any hexavalent chromium exposed to this media would automatically be converted to a lower charged ion of chromium (chromium 3 or 4).

2.3.3 Laboratory Control Spikes/Blank Spikes

Laboratory/blank spikes are performed to check system performance and overall quality of analytical procedures. These are samples originating from a contaminant free source (e.g. HPLC water) and spiked with target compounds to evaluate recoveries. Exceptions were noted and detailed in Table 7. Generally speaking, blank spike exceptions are uncommon. The primary reason for the exceptions in Table 7 was due to the difference in the Work Plan QC criteria and the laboratory criteria.

The EPH analysis for batch 4F25014 experienced particularly low recoveries, indicating a batch QC problem for C10-C12 Aliphatics, C8-C10 Aliphatics, and C12-C16 Aliphatics. Sample results for these analytes were qualified as unusable ("R" flagged). As per the method, subsequent re-analyses were performed. Unfortunately, the extractions for the re-analyses took place long after the acceptable holding time (see Section 2.1). Detected results from the re-analyses were considered useable but biased low.

2.3.4 Laboratory Replicates

Matrix spike duplicates, laboratory control spike duplicates, and laboratory replicate samples are used to assess overall precision. Precision is the measure of mutual agreement among replicate or duplicate measurements of a given analyte. The closer the values of the measurements are to each other, the more precise the measurement. Precision is expressed by the relative percent difference (RPD). Typically, sample results are not qualified based on precision goals alone but rather are evaluated in conjunction with other QC criteria. RPD values above QC criteria are detailed in Table 8. Data are not qualified on RPD exceedances alone, rather, this information is taken into consideration with other QC results. In general, duplicate results indicated good consistency in laboratory processes.

2.4 CALIBRATIONS

Satisfactory calibrations ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Initial calibrations demonstrate that the instrument is performing correctly at the beginning of a run. Continuing calibrations verify system performance throughout the remainder of the run. Tables 9 through 11 identify areas where QC limits were noted. Actions taken based on calibrations appear in Table 2.

2.5 INTERNAL STANDARDS

Internal standards ensure that instruments are maintaining the correct sensitivity and the response is stable for each analytical run. Table 12 identifies those standards outside QC limits.

3.0 FIELD QA/QC SAMPLES

3.1 FIELD DUPLICATE SAMPLES

Field duplicate samples are used to assess overall precision. One groundwater field duplicate sample was collected. Sample HS-D-062304 was a field duplicate of HS-MW-13-062304. RPD is one method used for determining variability. Based on an RPD analysis, the petroleum results were very consistent with RPDs less than 20 percent. The RPD values for SVOCs ranged from 16 to 200 percent. This would indicate variability within the analytical process, which contradicts the earlier statement of good reproducibility. Laboratory analysts suggested the variability may be due to some heterogeneity within the samples themselves. In some samples they noted small oily globules clinging to the sides of the glass. This could cause variability, especially with results near detection limits.

3.2 EQUIPMENT RINSATES

Equipment rinsate samples indicate possible cross-contamination from sampling equipment or sample containers. One rinsate was collected during soil sampling. The sample RINSATE 062104 was collected after exploration TL-DP-1 and before exploration TL-DP-2. Trace amounts of SVOCs were detected in the rinsate. Although no sample was submitted for TL-DP-1, field notes indicated visual confirmation of heavy contamination including heavy sheen, heavy odor, and the soil appeared to be saturated with oil. The presence of substances in the rinsate indicates that decontamination procedures were able to remove the bulk of contaminants from equipment but in cases of heavy contamination, the possibility for cross-contamination from one sample to the next existed. Samples with trace results taken after samples with relatively high detections may be biased high.

4.0 LIMITATIONS

Limitations are conditions that interfere or limit analytical performance qualitatively or quantitatively. Every analytical method has quantitative limitations at a given statistical level of confidence that are often expressed as method detection limits. Individual instruments often can detect but not accurately quantify compounds at lower concentrations. This is expressed as the instrument detection limit. Under ideal conditions these limits can be achieved, but certain factors affect an instrument's ability to reach these limits. This section describes important limitations and the affects on this project.

4.1 SAMPLE INTEGRITY

Sample integrity refers to the sample temperature, sample preservation, and physical condition of the sample container upon arrival at the laboratory. Sample log-in sheets and cooler receipt forms from the laboratory record sample integrity.

The laboratory required samples to be preserved within specific pH ranges for selected analyses. All samples preserved with acids were labeled, indicating the type of preservative used and pH of the sample. The sample log-in sheets were reviewed to insure preservation requirements were met. All samples were preserved properly.

Regulating sample temperature is an important part of the sample collection and analysis process, especially for organic compounds. Heat causes volatilization of many organic compounds and may

increase degradation of a compound's structure. Heat can also increase the solubility of metals and chemical activity. For these reasons standard sample protocol (EPA 1983; 1986) call for samples to be cooled to 4 degrees Celsius after sampling and during transport to the laboratory. The laboratory case narratives indicate all coolers were received with acceptable temperatures except for soil samples associated with SDG B4F0746. These samples arrived at 6.1 degrees celcius, 0.1 degree above the recommended range. This batch of samples were delivered quickly from the time of collection and may not have had time to cool down and equilibrate.

If a sample container is cracked or broken, the possibility of cross contamination from other samples exists. A review of laboratory cooler receipt forms indicated no sample containers were cracked or broken. Several discrepancies were noted between the chain-of-custodies and what was received (e.g. too many containers, not enough containers, no sample time noted), however, all issues were resolved quickly with the laboratory. All chain of custody forms were signed and dated. With two exceptions, all samples requiring field preservation were preserved properly. The exceptions were for samples, TL-MW-10-062304 and HS-MW-9-062304. These samples arrived with a pH above 2. Samples were extracted and analyzed within unpreserved holding times and thus would have no impact.

The laboratory did add HCL but noted little change in pH. The laboratory continued to add HCL until the proper pH was attained. The laboratory noted more HCL than usual was required to attain proper pH, indicating the groundwater probably had high buffer capacity.

4.2 MATRIX INTERFERENCES

Matrix interferences are conditions unique to a sample or sample matrix that hinder the analysis process and may increase the error in quantifying an analyte. Interferences may include a high clay fractions, extreme pH, or the overwhelming presence of a contaminant.

4.2.1 Extreme pH

The pH of a sample can affect analytical processes and cause biased results. The effect of pH varies between analytical methods and sample matrix. There were no known instances of extreme pH. Table 13 contains a summary of groundwater sampling parameters including temperature, conductivity, pH, and turbidity.

4.2.2 Turbidity

Turbidity is an indirect means of measuring solids suspended in solution. Turbidity is measured by the amount of light transmitted through a liquid sample and is expressed in nephelometric turbidity units (NTU). Turbidity is inversely related to light transmission, the less light transmitted, the higher the turbidity. Since some compounds tend to adsorb to sediments and suspended media, results for turbid water samples can be biased high. In addition, total metals samples are not filtered and since metals samples are preserved at a pH < 2, many inorganic salts and materials tend to dissolve into solution. Therefore, any inorganic solids in a groundwater sample requiring acidified preservation can bias metals results higher than actual concentrations. However, non-detect results are not affected. For this review, the analytical methods affected by increased turbidity were for metals; SW-846 6020 and SW-846 7196A. There is no generally accepted value at which pH affects sample results, however, the samples with a turbidity over the drinking water standard maximum of 5.0 NTU can be considered potentially biased high.

4.2.3 Compound Interference

Determination of compound concentrations using a GC/MS can be influenced by interference from other compounds or the chemistry of the matrix. Interference may be caused by high concentrations that "mask" similar compounds, creating difficulties in distinguishing and quantifying, between compounds.

Hexavalent chromium analyses in sediment were impacted by the reducing environment of the samples, although the impact was considered minimal since hexavalent chromium does not persist in such conditions in the environment. Several other analyses indicated possible matrix interference with no specific cause. In particular the well MW-01 (also referred to as HS-MW-1) had several different analyses experience matrix problems. Results from MW-01 are considered useable but should not be solely relied upon for decision-making.

Several diesel detections were suspect either because their chromatographic pattern did not match a typical Diesel No. 2 pattern or there was overlap from heavy oil range products. Both instances would heavily bias high the diesel results. Data users are cautioned against making critical decisions against the following diesel results:

- HS-HA-5-0-1
- HS-HA-4-0-1
- HS-HA-3-0-1
- TL-HA-2-0-1
- HS-DP-9-8-9
- TL-MW-11-17-18

Similarly, the results for samples HS-HA-4-0-1 and TL-HA-2-0-1 indicate the presence of diesel based on carbon ranges, however the chromatogram does not match a typical diesel No. 2 pattern.

4.2.4 Dilutions

Samples with analyte concentrations greater than a method's upper quantitation limits require instrument adjustment or dilutions to obtain proper results. Dilutions affect samples in many ways. Use of diluting solvents or additional measuring equipment reduces accuracy by increasing measurement error. Unless laboratory contamination is identified when diluting, contaminant compounds may be reported at artificially high concentrations. Dilution also effectively raises the detection limit for all compounds of interest, including those not requiring dilutions. For example, a dilution factor of 100 would raise the detection limit for an analyte from 10 parts per billion (ppb) to 1000 ppb. Spike compounds used for QC control can also be diluted below detection limits. Samples can be diluted by any of the following procedures:

- Use of smaller sample aliquots for analysis.
- Use of greater amounts of solvent for analyte extraction.
- Dilution of the extracted sample.
- Use of a medium level analysis versus low level analysis (the procedure for medium level analysis implies dilution).

Dilutions were required for several analyses and impacts appear to be limited to spike recoveries and elevated detection limits. It was not uncommon for surrogate spikes to be diluted beyond their detection range and thus could not be properly evaluated. Several references to dilutions are found throughout the

case narrative. Dilutions due not indicate lower the quality of data, rather, the confidence of the quality is slightly less than would be otherwise.

5.0 SUMMARY AND CONCLUSIONS

Overall, the analytical data generated by GeoEngineers, Inc. during the investigation of the Former R.G Haley Wood Treatment site is useable for defining the nature and extent of contamination, conducting human health and ecological risk assessments, and conducting a feasibility study, and other data needs for decision making processes. When applicable, analytical results were compared against criteria for holding times, method blanks, and precision and accuracy, calibrations, and internal standards.

In several cases QC results exceeding criteria were reviewed after comparison to other QC criteria. The biggest issues revolved around EPH, SVOC, and CPAH analyses. Several EPH analytes experienced QC issues and thus many of the EPH samples were reanalyzed. However, these analyses occurred past holding times, creating a low bias. Non-detect results for EPH re-analyses were rejected while detected results are estimated. Ultimately, the valid results from the original EPH analyses were used in conjunction with the valid results of the re-analyses to create a complete set of results.

Several issues were also noted with the SVOC and CPAH analyses, however, due to the overlap in the target compounds list (e.g. chrysene, phenanthrene, etc.) a complete set of final results were readily obtained. In the case were no QC issues existed, the larger value between the two sets of results were used. For example, if a sample had two chrysene results (one from the SVOC analysis and one from the GC/MS-SIM analysis) the larger of two detected results were reported. Similarly, if one result was reported as a non-detect and the other detect, the detected result was considered as the reported result.

The approach used in this assessment tended to be conservative, including eliminating data when uncertainty of results was unacceptably high. Also, detected compounds are more likely to experience a Type I error over a Type II error. A Type I error occurs when the false positive results are selected over false negatives; a Type II error is the reverse. A Type I error would also tend to bias detected result upward.

This data evaluation was performed by GeoEngineers, Inc. using best professional judgement. Data users may review and re-interpret data quality for specific uses.

5.1 SIGNIFICANT QUALIFICATION

Significant qualification refers to result changes that can significantly impact data uses or interpretations. These impacts include detected results qualified as undetected or rejected results. Significant qualification did occur resulting in rejected results.

5.2 MINOR QUALIFICATION

Minor qualifications usually resulted in data qualified as estimated (J). These qualifications reflect exceedance of specific QC criteria or a combination of QC criteria. Although results are useable, some bias may be present.

TABLE 1 SAMPLE ANALYSIS SUMMARY INFORMATION FORMER HALEY WOOD TREATING SITE/DNR PROPERTY

				Sample					
		Sample	Laboratory	Delivery	Analysis	Analysis	Analysis	Batch	Dilution
Matrix	Sample Identifier	Date	Sample ID	Group	Method	Date	Time	Identifier	Factor
Product	UST-061504	6/15/04	B4F0621-55	B4F0621	SW8290	7/15/04	0:00	X298	1
Sediment	RI-1-0-0.33	7/29/04	K2405633-001	K2405633	PLUMB	8/4/04	13:50	KA0403920	1
Sediment	RI-1-0-0.33	7/29/04	K2405633-001	K2405633	PSEP	8/2/04	16:00	KA0403446	1
Sediment	RI-1-0-0.33	7/29/04	K2405633-001TRP	K2405633	PSEP	8/4/04	12:00	KA0403446	100
Sediment	RI-1-0-0.33	7/29/04	K2405633-001	K2405633	SW7471	8/10/04	10:30	KP0400654	2
Sediment	RI-1-0-0.33	7/29/04	E2400712-001	K2405633	SW8290	8/13/04	18:06	EB18073	1
Sediment	RI-1-0-0.33	7/29/04	E2400712-001DL	K2405633	SW8290	8/16/04	16:51	EB18073	20
Sediment	RI-2-0-0.33	7/29/04	K2405633-002	K2405633	PLUMB	8/4/04	13:50	KA0403920	1
Sediment	RI-2-0-0.33	7/29/04	K2405633-002	K2405633	PSEP	8/4/04	12:00	KA0403446	2
Sediment	RI-2-0-0.33	7/29/04	K2405633-002	K2405633	PSEP	8/2/04	16:00	K2405633	1
Sediment	RI-3-0-0.33	7/29/04	K2405633-003	K2405633	PLUMB	8/4/04	13:50	KA0403920	1
Sediment	RI-3-0-0.33	7/29/04	K2405633-003	K2405633	PSEP	8/4/04	12:00	KA0403446	100
Sediment	RI-3-0-0.33	7/29/04	K2405633-003	K2405633	PSEP	8/2/04	0:00	K2405633	1
Sediment	RI-4-0-0.33	7/29/04	K2405633-006	K2405633	PLUMB	8/4/04	13:50	KA0403920	1
Sediment	RI-4-0-0.33	7/29/04	K2405633-006	K2405633	PSEP	8/4/04	12:00	KA0403446	500
Sediment	RI-4-0-0.33	7/29/04	K2405633-006	K2405633	PSEP	8/2/04	0:00	K2405633	1
Sediment	RI-4-0-0.33	7/29/04	K2405633-006	K2405633	SW7471	8/10/04	10:09	KP0400654	1
Sediment	RI-4-0-0.33	7/29/04	E2400712-002DL	K2405633	SW8290	8/16/04	17:42	EB18073	20
Sediment	RI-4-0-0.33	7/29/04	E2400712-002	K2405633	SW8290	8/13/04	18:57	EB18073	1
Sediment	RI-5-0-0.33	7/30/04	K2405633-007	K2405633	PLUMB	8/4/04	13:50	KA0403920	1
Sediment	RI-5-0-0.33	7/30/04	K2405633-007	K2405633	PSEP	8/4/04	12:00	KA0403446	500
Sediment	RI-5-0-0.33	7/30/04	K2405633-007	K2405633	PSEP	8/2/04	16:00	K2405633	1
Sediment	RI-5-0-0.33	7/30/04	K2405633-007	K2405633	SW7471	8/10/04	10:10	KP0400654	1
Sediment	RI-5-0-0.33	7/30/04	E2400712-003	K2405633	SW8290	8/13/04	19:47	EB18073	1
Sediment	RI-5-0-0.33	7/30/04	E2400712-003DL	K2405633	SW8290	8/16/04	18:32	EB18073	20
Sediment	RI-6-3.5-4.5	7/30/04	K2405633-008	K2405633	PSEP	8/13/04	14:00	KA0403659	1
Sediment	RI-6-3.5-4.5	7/30/04	K2405633-008	K2405633	SW8270	8/13/04	22:58	KWG0411384	5
Sediment	RI-6-3.5-4.5	7/30/04	K2405633-008	K2405633	SW8270	8/16/04	20:01	KWG0411384	10
Sediment	RI-7-3-4	7/29/04	K2405633-004	K2405633	PSEP	8/13/04	14:00	KA0403659	1
Sediment	RI-7-3-4	7/29/04	K2405633-004	K2405633	SW8270	8/13/04	20:20	KWG0411384	5
Sediment	RI-8-4.5-5.5	7/29/04	K2405633-005	K2405633	PSEP	8/13/04	14:00	KA0403659	1
Sediment	RI-8-4.5-5.5	7/29/04	K2405633-005	K2405633	SW8270	8/13/04	22:18	KWG0411384	5
Sediment	RI-8-4.5-5.5	7/29/04	K2405633-005	K2405633	SW8270	8/16/04	19:21	KWG0411384	10
Soil	CL-MW-1D-12-13	6/17/04	B4F0627-34	B4F0627	NWTPH-DxSG	6/29/04	22:21	4F28032	10
Soil	CL-MW-1D-12-13	6/17/04	B4F0627-34	B4F0627	NWTPH-DxSG	6/30/04	14:09	4F28032	10
0.1					Solids, Dry				
Soil	CL-MW-1D-12-13	6/17/04	B4F0627-34	B4F0627	Weight	6/30/04	9:30	4F29011	1
Soil	CL-MW-1D-8-10	6/17/04	B4F0627-32	B4F0627	Solids, Dry	6/22/04	0.20	4500044	I
Soil	CL-MW-1D-8-10	6/17/04	B4F0627-32 B4F0627-32	B4F0627 B4F0627	Weight	6/23/04	9:30	4F22041	1
Soil	CL-MW-1D-8-10	6/17/04	B4F0627-32 B4F0627-32	B4F0627 B4F0627	SW8270	6/30/04	1:09	4F28028	100
Soil	CL-MW-1D-8-10	6/17/04	B4F0627-32 B4F0627-32	B4F0627 B4F0627	SW8270	6/30/04	2:37	4F28028	10
Soil	HS-DP-10-7-8	6/21/04	B4F0746-44		SW8270	6/29/04	20:44	4F28028	1
001	10-01-10-7-0	0/21/04	D4F0740-44	B4F0746	NWTPH-DxSG	6/28/04	9:58	4F25034	2
Soil	HS-DP-10-7-8	6/21/04	D450746 44	D (507 (0	Solids, Dry				
Soil	HS-DP-1-12-14	6/15/04	B4F0746-44	B4F0746	Weight	6/26/04	12:20	4F25024	1
501	10-01-1-12-14	0/15/04	B4F0621-07	B4F0621	NWTPH-DxSG	6/24/04	14:03	4F22042	1
Soil	HS-DP-1-12-14	6/15/04	B4F0621-07	B4F0621	Solids, Dry	6/22/04	0.00	1500011	
Soil	HS-DP-1-12-14	6/15/04	B4F0621-07	B4F0621 B4F0621	Weight SW6020	6/23/04 6/22/04	0:00	4F22044	1
Soil	HS-DP-1-12-14	6/15/04	B4F0621-07	B4F0621 B4F0621	SW6020 SW7196	6/22/04	17:03	4F22015	1
Soil	HS-DP-1-12-14	6/15/04	B4F0621-07	B4F0621	SW8270	6/23/04	15:00	4F23014	1
Soil	HS-DP-1-12-14	6/15/04	B4F0621-07	B4F0621 B4F0621	SW8270 SW8270	6/25/04	17:22 22:11	4F22048	1
Soil	HS-DP-1-12-14	6/15/04	B4F0621-07	B4F0621	SW8270 SW8270	6/30/04	15:31	4F22048	100
				041 0021	000270	0/30/04	10.01	4F22048	1

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis Time	Batch Identifier	Dilution Factor
				1	GC/MS SIM				
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	PAH	7/12/04	18:21	4F30040	1
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	NWTPH-DxSG	6/24/04	1:13	4F22037	1
				10	Solids, Dry				
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	SW8270	7/6/04	22:27	4F30040	1
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	SW8270	7/7/04	0:25	4F30040	1
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	SW8270	7/7/04	10:11	4F30040	10
Soil	HS-DP-12-8-9	6/16/04	B4F0626-45	B4F0626	SW8290	7/17/04	0:00	X299	1
Soil	HS-DP-13-8-9	6/16/04	B4F0626-35	B4F0626	NWTPH-HCID	6/23/04	9:16	4F22056	1
					Solids, Dry				
Soil	HS-DP-13-8-9	6/16/04	B4F0626-35	B4F0626	Weight	6/23/04	9:30	4F22041	1
					Solids, Dry				
Soil	HS-DP-1-4-6	6/15/04	B4F0621-03	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-1-4-6	6/15/04	B4F0621-03	B4F0621	SW6020	6/22/04	16:12	4F22015	1
Soil	HS-DP-1-4-6	6/15/04	B4F0621-03	B4F0621	SW7196	6/23/04	15:00	4F23014	1
					Solids, Dry				
Soil	HS-DP-14A-4-8	6/18/04	B4F0701-09	B4F0701	Weight	6/26/04	12:20	4F25024	1
Soil	HS-DP-14A-4-8	6/18/04	B4F0701-09	B4F0701	SW8260B	6/26/04	4:56	4F25046	1
Soil	HS-DP-15-4.5-8.5	6/21/04	B4F0746-38	B4F0746	NWTPH-HCID	6/25/04	19:24	4F25036	1
					Solids, Dry				
Soil	HS-DP-15-4.5-8.5	6/21/04	B4F0746-38	B4F0746	Weight	6/26/04	12:20	4F25024	1
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	NWTPH-DxSG	6/24/04	13:40	4F22042	1
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	NWTPH-DxSG	6/24/04	19:08	4F22042	20
		100000000000			Solids, Dry	0/24/04	10.00	71 22072	20
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW6020	6/23/04	10:21	4F22015	5
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW6020	6/22/04	16:52	4F22015	1
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW7196	6/23/04	15:00	4F22015 4F23014	
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW8270	6/25/04	16:53	4F22048	
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW8270	6/29/04	21:41	4F22048	100
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW8270	6/30/04	1:00	4F22048	100
Soil	HS-DP-1-8-10	6/15/04	B4F0621-05	B4F0621	SW8270	7/1/04	12:25	4F22048	10
Soil	HS-DP-4-12-14	6/15/04	B4F0621-17	B4F0621	NWTPH-DxSG	6/24/04	14:26	4F22048	
Soil	HS-DP-4-12-14	6/15/04	B4F0621-17	B4F0621	NWTPH-DxSG	6/24/04	19:31		10
1.000		0/10/04	541 0021-11	D41 0021		0/24/04	19.51	4F22042	10
Soil	HS-DP-4-12-14	6/15/04	B4F0621-17	B4F0621	Solids, Dry Weight	6/23/04	0:00	4500044	
Soil	HS-DP-4-12-14	6/15/04	B4F0621-17	B4F0621	SW8270	6/25/04	18:20	4F22044	
Soil	HS-DP-4-12-14	6/15/04	B4F0621-17	B4F0621	SW8270 SW8270	6/29/04		4F22048	
Soil	HS-DP-4-12-14	6/15/04	B4F0621-17	B4F0621			23:10	4F22048	100
Soil	HS-DP-4-8-11	6/15/04	B4F0621-17 B4F0621-15	B4F0621 B4F0621	SW8270 EPH	6/30/04 7/10/04	16:26	4F22048	1
Soil	HS-DP-4-8-11	6/15/04	B4F0621-15	B4F0621			0:38	[CALC]	10
Soil	HS-DP-4-8-11	6/15/04	B4F0621-15 B4F0621-15		EPH	7/10/04	0:38	4F28030	5
Soil	HS-DP-4-8-11			B4F0621	NWTPH-DxSG	6/24/04	14:03	4F22042	1
3011	N3-DF-4-0-11	6/15/04	B4F0621-15	B4F0621	NWTPH-DxSG	6/24/04	19:31	4F22042	20
Soil	HS-DP-4-8-11	6/15/04	D4E0001 45	DAEOCOA	Solids, Dry	0.000.00.4			
Soil	HS-DP-4-8-11 HS-DP-4-8-11	6/15/04 6/15/04	B4F0621-15 B4F0621-15	B4F0621	Weight	6/23/04	0:00	4F22044	
Soil	HS-DP-4-8-11	6/15/04		B4F0621	SW8270	7/1/04	12:52	4F22048	
Soil	HS-DP-4-8-11 HS-DP-4-8-11	6/15/04	B4F0621-15	B4F0621	SW8270	6/25/04	17:51	4F22048	1
Soil	CHECK SIGNED ADD IN CONTRACTOR STATES		B4F0621-15	B4F0621	SW8270	6/29/04	22:41	4F22048	100
3011	HS-DP-4-8-11	6/15/04	B4F0621-15	B4F0621	SW8270	6/30/04	1:28	4F22048	10
Soil		GIAFICA	DAE0004 00	DIFACAL	Solids, Dry	0.000			55
Soil	HS-DP-5B-0-2	6/15/04	B4F0621-26	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-5B-0-2	6/15/04	B4F0621-26	B4F0621	SW6020	6/22/04	17:15	4F22015	1
Soil	HS-DP-5B-0-2	6/15/04	B4F0621-26	B4F0621	SW7196	6/23/04	15:00	4F23014	1
Soil	HS-DP-5B-12-16	6/15/04	B4F0621-32	B4F0621	NWTPH-DxSG	6/24/04	16:20	4F22042	1

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis	Batch	Dilution
Soil	HS-DP-5B-12-16	6/15/04	B4F0621-32	B4F0621	NWTPH-DxSG		Time	Identifier	Factor
001	10 01 -00-12-10	0/13/04	B4F0021-32	D4F0021	1	6/24/04	21:26	4F22042	5
Soil	HS-DP-5B-12-16	6/15/04	B4F0621-32	B4F0621	Solids, Dry Weight	6/23/04	0:00	4500044	
Soil	HS-DP-5B-12-16	6/15/04	B4F0621-32	B4F0621	SW6020	6/22/04	17:49	4F22044	
Soil	HS-DP-5B-12-16	6/15/04	B4F0621-32	B4F0621	SW7196	6/23/04	17:49	4F22015 4F23014	
			011 0021 02	D41 0021	GC/MS SIM	0/23/04	15.00	4F23014	1
Soil	HS-DP-5B-16-19	6/15/04	B4F0621-33	B4F0621	PAH	7/3/04	21:36	4F22048	1
Soil	HS-DP-5B-16-19	6/15/04	B4F0621-33	B4F0621	NWTPH-DxSG	6/24/04	16:20	4F22048 4F22042	1
				D II OOL I	Solids, Dry	0/24/04	10.20	4122042	1 2
Soil	HS-DP-5B-16-19	6/15/04	B4F0621-33	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-5B-16-19	6/15/04	B4F0621-33	B4F0621	SW8270	6/30/04	16:53	4F22044	
Soil	HS-DP-5B-16-19	6/15/04	B4F0621-33	B4F0621	SW8270	6/25/04	19:18	4F22048	
Soil	HS-DP-5B-16-19	6/15/04	B4F0621-33	B4F0621	SW8270	6/30/04	0:10	4F22048	100
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	NWTPH-DxSG	6/24/04	15:57	4F22042	1
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	NWTPH-DxSG	6/24/04	19:54	4F22042	40
					Solids, Dry	0.2	10.04	1 22042	40
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	SW6020	6/22/04	17:37	4F22015	1
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	SW7196	6/23/04	15:00	4F23014	1
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	SW8270	6/29/04	23:40	4F22048	100
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	SW8270	6/30/04	1:54	4F22048	100
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	SW8270	7/1/04	13:19	4F22048	1
Soil	HS-DP-5B-8-10	6/15/04	B4F0621-30	B4F0621	SW8270	6/25/04	18:49	4F22048	
Soil	HS-DP-6-8-10	6/15/04	B4F0621-38	B4F0621	NWTPH-DxSG	6/24/04	21:49	4F22042	5
					Solids, Dry		21.10	41 22042	
Soil	HS-DP-6-8-10	6/15/04	B4F0621-38	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-6-8-10	6/15/04	B4F0621-38	B4F0621	SW8260B	6/30/04	23:07	4F30034	
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	EPH	7/9/04	16:28	4F28030	4
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	EPH	7/12/04	16:50	[CALC]	8
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	EPH	7/12/04	16:50	4F28030	8
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	NWTPH-DxSG	6/24/04	16:43	4F22042	1
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	NWTPH-DxSG	6/24/04	21:49	4F22042	20
					Solids, Dry				
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	SW8270	6/30/04	4:09	4F22048	10
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	SW8270	6/30/04	4:36	4F22048	1
Soil	HS-DP-8-8-11	6/15/04	B4F0621-47	B4F0621	SW8270	6/30/04	0:40	4F22048	100
					GC/MS SIM				
Soil	HS-DP-9-8-9	6/15/04	B4F0621-53	B4F0621	PAH	7/3/04	22:07	4F22048	1
Soil	HS-DP-9-8-9	6/15/04	B4F0621-53	B4F0621	NWTPH-DxSG	6/24/04	17:06	4F22042	1
					Solids, Dry				
Soil	HS-DP-9-8-9	6/15/04	B4F0621-53	B4F0621	Weight	6/23/04	0:00	4F22044	1
Soil	HS-DP-9-8-9	6/15/04	B4F0621-53	B4F0621	SW8270	6/30/04	17:20	4F22048	1
Soil	HS-DP-9-8-9	6/15/04	B4F0621-53	B4F0621	SW8270	7/3/04	22:07	4F22048	1
Soil	HS-HA-1-0-1	6/14/04	B4F0617-05	B4F0617	NWTPH-DxSG	6/24/04	12:31	4F22042	1
					Solids, Dry				
Soil	HS-HA-1-0-1	6/14/04	B4F0617-05	B4F0617	Weight	6/23/04	0:00	4F22044	1
Soil	HS-HA-2-0-1	6/14/04	B4F0617-04	B4F0617	NWTPH-DxSG	6/24/04	12:07	4F22042	1
					Solids, Dry				
Soil	HS-HA-2-0-1	6/14/04	B4F0617-04	B4F0617	Weight	6/23/04	0:00	4F22044	1
Soil	HS-HA-3-0-1	6/14/04	B4F0617-03	B4F0617	NWTPH-DxSG	6/24/04	11:44	4F22042	1
					Solids, Dry				20
Soil	HS-HA-3-0-1	6/14/04	B4F0617-03	B4F0617	Weight	6/23/04	0:00	4F22044	1
					GC/MS SIM				1023
Soil	HS-HA-4-0-1	6/14/04	B4F0617-02	B4F0617	PAH	7/3/04	20:33	4F22048	1

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis	Batch	Diluti
Soil	HS-HA-4-0-1	6/14/04	B4F0617-02				Time	Identifier	Fact
001	113-114-4-0-1	0/14/04	D4FU017-U2	B4F0617	NWTPH-DxSG	6/24/04	11:21	4F22042	1
Soil	HS-HA-4-0-1	6/14/04	B4F0617-02	B4F0617	Solids, Dry	0/00/04			
Soil	HS-HA-4-0-1	6/14/04	B4F0617-02 B4F0617-02		Weight	6/23/04	10:10	4F22045	1
Soil	HS-HA-4-0-1	6/14/04	B4F0617-02 B4F0617-02	B4F0617	SW8270	6/25/04	13:32	4F22048	1
Soil	HS-HA-4-0-1	6/14/04		B4F0617	SW8270	6/30/04	12:48	4F22048	1
Soil	HS-HA-5-0-1	6/14/04	B4F0617-02	B4F0617	SW8270	7/3/04	20:33	4F22048	1
3011	H3-HA-5-0-1	0/14/04	B4F0617-01	B4F0617	NWTPH-DxSG	6/24/04	10:57	4F22042	1
Soil	HS-HA-5-0-1	6/14/04	D450047.04	DIFOCIA	Solids, Dry				
Soil	HS-MW-10-12-13	6/16/04	B4F0617-01	B4F0617	Weight	6/23/04	10:10	4F22045	1
Soil			B4F0626-07	B4F0626	EPH	7/9/04	19:52	[CALC]	20
2011	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	EPH	7/9/04	19:52	4F28030	20
Call		04004	D./D0000.07		GC/MS SIM	10000			1
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	PAH	6/23/04	21:26	4F22047	5
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	NWTPH-DxSG	6/29/04	20:38	4F28032	5
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	NWTPH-DxSG	6/30/04	12:37	4F28032	20
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	NWTPH-HCID	6/25/04	18:54	4F25036	1
0.6307-0311					Solids, Dry				
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	Weight	6/23/04	0:00	4F22044	1
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	SW8260B	6/30/04	20:47	4F30034	1
Soil	HS-MW-10-12-13	6/16/04	B4F0626-07	B4F0626	SW8270	6/30/04	2:21	4F22047	5
				1	GC/MS SIM				
Soil	HS-MW-11DA-12-16	6/16/04	B4F0626-15	B4F0626	PAH	7/3/04	22:38	4F22047	1
Soil	HS-MW-11DA-12-16	6/16/04	B4F0626-15	B4F0626	NWTPH-DxSG	6/24/04	0:10	4F22037	1
					Solids, Dry				
Soil	HS-MW-11DA-12-16	6/16/04	B4F0626-15	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	HS-MW-11DA-12-16	6/16/04	B4F0626-15	B4F0626	SW8270	6/30/04	0:06	4F22047	1
Soil	HS-MW-11DA-12-16	6/16/04	B4F0626-15	B4F0626	SW8270	7/3/04	22:38	4F22047	1
Soil	HS-MW-11DA-4-8	6/16/04	B4F0626-13	B4F0626	NWTPH-DxSG	6/23/04	23:06	4F22037	5
					Solids, Dry			iii LLCC/	Ŭ
Soil	HS-MW-11DA-4-8	6/16/04	B4F0626-13	B4F0626	Weight	6/23/04	0:00	4F22044	1
Soil	HS-MW-11DA-4-8	6/16/04	B4F0626-13	B4F0626	SW8270	6/30/04	16:48	4F22047	10
Soil	HS-MW-11DA-4-8	6/16/04	B4F0626-13	B4F0626	SW8270	6/30/04	17:48	4F22047	
Soil	HS-MW-11DA-4-8	6/16/04	B4F0626-13	B4F0626	SW8270	6/30/04	18:18	4F22047	50
Soil	HS-MW-11DA-4-8	6/16/04	B4F0626-13	B4F0626	SW8270	6/26/04	6:07	4F22047	1
Soil	HS-MW-11DA-8-12	6/16/04	B4F0626-14	B4F0626	NWTPH-DxSG	6/23/04		4F22047 4F22037	1
Soil	HS-MW-11DA-8-12	6/16/04	B4F0626-14	B4F0626	NWTPH-DxSG	6/23/04	23:39		
0011	110-110/1-0-12	0/10/04	D41 0020-14	B4F0020	and a second second	0/24/04	12:13	4F22037	2
Soil	HS-MW-11DA-8-12	6/16/04	B4F0626-14	BAEOGOG	Solids, Dry	0/00/04	0.00	15000.14	
Soil	HS-MW-11DA-8-12	6/16/04	B4F0626-14 B4F0626-14	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	HS-MW-11DA-8-12	6/16/04		B4F0626	SW8270	6/30/04	18:42	4F22047	1
Soil	HS-MW-11DA-8-12		B4F0626-14	B4F0626	SW8270	6/26/04	6:33	4F22047	1
	C. Statistic contraction and with a provident of the contraction	6/16/04	B4F0626-14	B4F0626	SW8270	6/30/04	17:18	4F22047	10
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	EPH	7/12/04	18:53	4F28030	2
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	EPH	7/9/04	20:33	4F28030	1
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	EPH	7/12/04	18:53	[CALC]	2
0		0/10/10			GC/MS SIM		COLUMN TOWNER		
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	PAH	6/23/04	20:24	4F22047	1
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	NWTPH-DxSG	6/24/04	0:42	4F22037	5
					Solids, Dry				
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	SW8270	6/26/04	7:27	4F22047	1
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	SW8270	6/30/04	19:09	4F22047	1
Soil	HS-MW-13D-8-10	6/16/04	B4F0626-24	B4F0626	SW8270	6/30/04	2:48	4F22047	10
					Solids, Dry		10071000007		
Soil	HS-MW-15A-8-10	6/18/04	B4F0701-04	B4F0701	Weight	6/26/04	12:20	4F25024	1
Soil	HS-MW-15A-8-10	6/18/04	B4F0701-04	B4F0701	SW8270	7/12/04	16:54	4F25028	10

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis Time	Batch	Dilutio
Soil	HS-MW-15A-8-10	6/18/04	B4F0701-04	B4F0701				Identifier	Facto
Soil	HS-MW-16-9-10	6/17/04	B4F0627-04	B4F0/01 B4F0627	SW8270	7/7/04	14:29	4F25028	1
Soil	HS-MW-16-9-10	6/17/04	B4F0627-04 B4F0627-04		NWTPH-DxSG	6/29/04	21:13	4F28032	1
001	110-1010-10-3-10	0/17/04	D4FU027-04	B4F0627	NWTPH-HCID	6/23/04	9:51	4F22056	1
Soil	HS-MW-16-9-10	6/17/04	B4F0627-04	B4F0627	Solids, Dry	0/00/04	0.00	15000.00	
Soil	IZ-DP-1-3-4	6/17/04	B4F0627-23		Weight	6/23/04	9:30	4F22041	1
Soil	IZ-DP-1-3-4	6/17/04	B4F0627-23 B4F0627-23	B4F0627	NWTPH-DxSG	6/24/04	12:46	4F22037	5
001	12-01-1-3-4	0/17/04	D4FU021-23	B4F0627	NWTPH-DxSG	6/24/04	5:28	4F22037	1
Soil	IZ-DP-1-3-4	6/17/04	B4F0627-23	B4F0627	Solids, Dry	0/00/04			
Soil	IZ-DP-1-3-4	6/17/04			Weight	6/23/04	9:30	4F22041	1
Soil	IZ-DP-1-3-4		B4F0627-23	B4F0627	SW8270	6/30/04	21:23	4F22047	1
		6/17/04	B4F0627-23	B4F0627	SW8270	6/26/04	10:09	4F22047	1
Soil	IZ-DP-1-3-4	6/17/04	B4F0627-23	B4F0627	SW9060	6/23/04	0:00	4F24005	1
0.1			2020000000000000		GC/MS SIM				
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	PAH	7/6/04	16:58	4F22047	1
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	NWTPH-DxSG	6/24/04	4:57	4F22037	1
		9732030000			Solids, Dry				
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	Weight	6/23/04	9:30	4F22041	1
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	SW8270	6/26/04	9:42	4F22047	1
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	SW8270	6/30/04	20:57	4F22047	1
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	SW8270	7/6/04	16:58	4F22047	1
Soil	IZ-MW-1-4-5	6/17/04	B4F0627-19	B4F0627	SW9060	6/23/04	0:00	4F24005	1
					GC/MS SIM				
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	PAH	7/6/04	16:28	4F22047	1
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	NWTPH-DxSG	6/24/04	12:46	4F22037	5
					Solids, Dry				
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	Weight	6/23/04	9:30	4F22041	1
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	SW8270	6/26/04	9:15	4F22047	1
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	SW8270	6/30/04	20:30	4F22047	
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	SW8270	7/6/04	16:28	4F22047	
Soil	IZ-MW-2-2-4	6/17/04	B4F0627-15	B4F0627	SW9060	6/23/04	0:00	4F24005	
Soil	IZ-MW-3-2-4	6/17/04	B4F0627-08	B4F0627	NWTPH-DxSG	6/24/04	11:41	4F22037	10
					Solids, Dry				
Soil	IZ-MW-3-2-4	6/17/04	B4F0627-08	B4F0627	Weight	6/23/04	9:30	4F22041	1
Soil	IZ-MW-3-2-4	6/17/04	B4F0627-08	B4F0627	SW8270	6/30/04	19:36	4F22047	1
Soil	IZ-MW-3-2-4	6/17/04	B4F0627-08	B4F0627	SW8270	6/26/04	8:21	4F22047	1
Soil	IZ-MW-3-2-4	6/17/04	B4F0627-08	B4F0627	SW8290	7/16/04	0:00	X299	
Soil	IZ-MW-3-2-4	6/17/04	B4F0627-08	B4F0627	SW9060	6/23/04	0:00	4F24005	
			D II COLL CO	Diroczi	GC/MS SIM	0/20/04	0.00	41 24005	
Soil	IZ-MW-4-1-4	6/17/04	B4F0627-12	B4F0627	PAH	7/6/04	15:59	4F22047	1
Soil	IZ-MW-4-1-4	6/17/04	B4F0627-12	B4F0627	NWTPH-DxSG	6/24/04	12:13	4F22037	5
		di inte i	DITOOLT IL	541 0027	Constanting and Constanting	0/24/04	12.15	4122037	5
Soil	IZ-MW-4-1-4	6/17/04	B4F0627-12	B4F0627	Solids, Dry Weight	6/23/04	9:30	4F22041	
Soil	IZ-MW-4-1-4	6/17/04	B4F0627-12	B4F0627 B4F0627	SW8270	7/6/04	15:59		
Soil	IZ-MW-4-1-4	6/17/04	B4F0627-12	B4F0627 B4F0627	SW8270 SW8270	6/30/04	20:03	4F22047	1
Soil	IZ-MW-4-1-4	6/17/04	B4F0627-12	B4F0627 B4F0627	SW8270 SW8270	6/30/04	8:48	4F22047	1
Soil	IZ-MW-4-1-4	6/17/04	a many second second second	10000000000000000000000000000000000000	a management and the second			4F22047	1
001	12-11/1 1-4	0/17/04	B4F0627-12	B4F0627	SW9060	6/23/04	0:00	4F24005	1
Soil	TI DD 2 12 15	6/24/04	D4E0740 40	D450740	GC/MS SIM	7/0/04	40.54	100000	
	TL-DP-2-12-15	6/21/04	B4F0746-16	B4F0746	PAH	7/6/04	18:54	4F28028	1
Soil	TL-DP-2-12-15	6/21/04	B4F0746-16	B4F0746	NWTPH-DxSG	6/28/04	9:58	4F25034	1
0		0/04/201			Solids, Dry	20220000			22
Soil	TL-DP-2-12-15	6/21/04	B4F0746-16	B4F0746	Weight	6/26/04	12:20	4F25024	1
Soil	TL-DP-2-12-15	6/21/04	B4F0746-16	B4F0746	SW8270	7/6/04	18:54	4F28028	1
Soil	TL-DP-2-12-15	6/21/04	B4F0746-16	B4F0746	SW8270	6/29/04	22:52	4F28028	1
				10.0000.000.000.000.000.000.000	Solids, Dry	1		8	
Soil	TL-DP-2-2-4	6/21/04	B4F0746-11	B4F0746	Weight	6/28/04	10:20	4F27008	1

Matrix	Sample Identifier	Sample	Laboratory	Sample Delivery	Analysis	Analysis	Analysis	Batch	Dilutio
		Date	Sample ID	Group	Method	Date	Time	Identifier	Facto
Soil	TL-DP-2-2-4	6/21/04	B4F0746-11	B4F0746	SW8270	6/29/04	21:31	4F28028	1
Soil	TL-DP-2-2-4	6/21/04	B4F0746-11	B4F0746	SW8270	6/30/04	18:15	4F28028	10
Soil	TL-DP-2-6-8	6/21/04	B4F0746-13	B4F0746	NWTPH-DxSG	6/30/04	0:04	4F28032	1
Soil	TL-DP-2-6-8	6/21/04	B4F0746-13	B4F0746	NWTPH-DxSG	6/30/04	13:11	4F28032	10
					Solids, Dry				
Soil	TL-DP-2-6-8	6/21/04	B4F0746-13	B4F0746	Weight	6/28/04	10:20	4F27008	1
Soil	TL-DP-2-6-8	6/21/04	B4F0746-13	B4F0746	SW8270	6/29/04	21:58	4F28028	1
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	EPH	7/12/04	18:12	4F28030	40
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	EPH	7/12/04	18:12	[CALC]	40
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	EPH	7/9/04	22:36	4F28030	20
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	NWTPH-DxSG	6/30/04	12:02	4F28032	100
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	NWTPH-DxSG	6/30/04	0:39	4F28032	20
					Solids, Dry				
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	Weight	6/28/04	10:20	4F27008	1
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	SW8260B	7/7/04	3:08	4G07044	20
Soil	TL-DP-2-6-8	6/21/04	B4F0746-13	B4F0746	SW8270	6/29/04	21:58	4F28028	1
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	EPH	7/12/04	18:12	4F28020	40
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	EPH	7/12/04	18:12	[CALC]	40
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	EPH	7/9/04	22:36	4F28030	20
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	NWTPH-DxSG	6/30/04	12:02	4F28030 4F28032	
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	NWTPH-DxSG	6/30/04	0:39		100
	12012010	0/21/04	D41 0740-14	D41 0740		0/30/04	0.59	4F28032	20
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	Solids, Dry	0/00/04	10.00		
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14 B4F0746-14	Contraction of the second s	Weight	6/28/04	10:20	4F27008	1
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14 B4F0746-14	B4F0746	SW8260B	7/7/04	3:08	4G07044	20
Soil	TL-DP-2-8-10			B4F0746	SW8260B	7/7/04	20:45	4G07044	5
		6/21/04	B4F0746-14	B4F0746	SW8270	6/30/04	2:08	4F28028	10
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	SW8270	6/30/04	13:15	4F28028	200
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	SW8270	6/30/04	12:19	4F28028	10
Soil	TL-DP-2-8-10	6/21/04	B4F0746-14	B4F0746	SW8270	6/29/04	22:25	4F28028	1
121 12			- 221 192		GC/MS SIM				
Soil	TL-DP-4-10-12	6/21/04	B4F0746-35	B4F0746	PAH	7/6/04	19:23	4F28028	1
Soil	TL-DP-4-10-12	6/21/04	B4F0746-35	B4F0746	NWTPH-DxSG	6/30/04	0:39	4F28032	1
		tomporturpresed -			Solids, Dry				
Soil	TL-DP-4-10-12	6/21/04	B4F0746-35	B4F0746	Weight	6/28/04	10:20	4F27008	1
Soil	TL-DP-4-10-12	6/21/04	B4F0746-35	B4F0746	SW8270	7/6/04	19:23	4F28028	1
Soil	TL-DP-4-10-12	6/21/04	B4F0746-35	B4F0746	SW8270	6/29/04	23:19	4F28028	1
					GC/MS SIM				
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	PAH	7/12/04	17:52	4F22048	1
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	NWTPH-DxSG	6/24/04	13:40	4F22042	1
					Solids, Dry				
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	Weight	6/23/04	0:00	4F22044	1
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	SW8270	7/12/04	17:52	4F22048	1
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	SW8270	6/25/04	15:37	4F22048	1
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	SW8270	6/30/04	14:36	4F22048	1
Soil	TL-HA-1-0-1	6/14/04	B4F0617-08	B4F0617	SW8290	7/16/04	0:00	X299	1
					GC/MS SIM				
Soil	TL-HA-2-0-1	6/14/04	B4F0617-07	B4F0617	PAH	7/12/04	17:23	4F22048	1
Soil	TL-HA-2-0-1	6/14/04	B4F0617-07	B4F0617	NWTPH-DxSG	6/24/04	13:17	4F22042	1
8772008770					Solids, Dry	U 1/ UT	10.17	1 22042	
Soil	TL-HA-2-0-1	6/14/04	B4F0617-07	B4F0617	Weight	6/23/04	0:00	4F22044	1
Soil	TL-HA-2-0-1	6/14/04	B4F0617-07	B4F0617	SW8270	7/12/04	17:23	4F22044 4F22048	
Soil	TL-HA-2-0-1	6/14/04	B4F0617-07	B4F0617	SW8270	6/30/04	and the second		1
001		0,14,04		D-1F0017		0/30/04	14:09	4F22048	1
Soil	TL-HA-3-0-1	6/14/04	B4F0617-06	RAE0647	GC/MS SIM	7/2/04	21.05	45000.40	
				B4F0617	PAH	7/3/04	21:05	4F22048	1
Soil	TL-HA-3-0-1	6/14/04	B4F0617-06	B4F0617	NWTPH-DxSG	6/24/04	12:54	4F22042	1

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis Time	Batch Identifier	Dilution Factor
					Solids, Dry				
Soil	TL-HA-3-0-1	6/14/04	B4F0617-06	B4F0617	Weight	6/23/04	0:00	4F22044	1
Soil	TL-HA-3-0-1	6/14/04	B4F0617-06	B4F0617	SW8270	6/25/04	14:02	4F22048	1
Soil	TL-HA-3-0-1	6/14/04	B4F0617-06	B4F0617	SW8270	6/30/04	13:42	4F22048	1
Soil	TL-HA-3-0-1	6/14/04	B4F0617-06	B4F0617	SW8270	7/3/04	21:05	4F22048	1
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	EPH	7/9/04	21:14	[CALC]	10
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	EPH	7/9/04	21:14	4F28030	10
					GC/MS SIM				
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	PAH	6/23/04	20:55	4F22047	1
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	NWTPH-DxSG	6/24/04	3:53	4F22037	40
					Solids, Dry				
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	SW8260B	6/30/04	22:35	4F30034	1
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	SW8270	6/30/04	3:15	4F22047	10
Soil	TL-MW-10-12-13	6/16/04	B4F0626-54	B4F0626	SW8270	6/26/04	7:54	4F22047	1
Soil	TL-MW-10-16-18	6/16/04	B4F0626-56	B4F0626	NWTPH-DxSG	6/24/04	3:53	4F22037	1
Soil	TL-MW-10-16-18	6/16/04	B4F0626-56	B4F0626	Solids, Dry Weight	6/23/04	9:30	4F22041	1
					Solids, Dry				
Soil	TL-MW-10-20-22	6/16/04	B4F0626-58	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	TL-MW-10-20-22	6/16/04	B4F0626-58	B4F0626	SW9060	6/23/04	0:00	4F24005	1
Soil	TL-MW-10-5.5-8	6/16/04	B4F0626-52	B4F0626	NWTPH-DxSG Solids, Dry	6/24/04	2:49	4F22037	5
Soil	TL-MW-10-5.5-8	6/16/04	B4F0626-52	B4F0626	Weight	6/23/04	9:30	4F22041	1
Soil	TL-MW-10-8-12	6/16/04	B4F0626-53	B4F0626	NWTPH-DxSG	6/24/04	3:21	4F22037	10
Soil	TL-MW-10-8-12	6/16/04	B4F0626-53	B4F0626	Solids, Dry Weight GC/MS SIM	6/23/04	9:30	4F22041	1
Soil	TL-MW-11-17-18	6/18/04	B4F0701-21	B4F0701	PAH	7/12/04	18:50	4F30040	1
Soil	TL-MW-11-17-18	6/18/04	B4F0701-21	B4F0701	NWTPH-DxSG	6/29/04	22:55	4F28032	1
					Solids, Dry				
Soil	TL-MW-11-17-18	6/18/04	B4F0701-21	B4F0701	Weight	6/30/04	9:30	4F29011	1
Soil	TL-MW-11-17-18	6/18/04	B4F0701-21	B4F0701	SW8270	7/12/04	18:50	4F30040	1
Soil	TL-MW-11-17-18	6/18/04	B4F0701-21	B4F0701	SW8270	7/6/04	22:57	4F30040	1
Soil	TL-MW-11-17-18	6/18/04	B4F0701-21	B4F0701	SW8270	7/7/04	0:53	4F30040	1
Groundwater	CL-MW-1-062404	6/24/04	B4F0789-02	B4F0789	E300	7/1/04	0:00	4G01048	1
Groundwater	CL-MW-1-062404	6/24/04	B4F0789-02	B4F0789	E353.2	6/25/04	0:00	4F28023	1
Groundwater	CL-MW-1-062404	6/24/04	B4F0789-02	B4F0789	E415.1	7/7/04	10:36	4G08021	5
Groundwater	CL-MW-1-062404	6/24/04	B4F0789-02	B4F0789	NWTPH-DxSG	7/1/04	1:08	4F29019	1
Groundwater	CL-MW-1-062404	6/24/04	B4F0789-02	B4F0789	SW9060	6/30/04	10:29	4F30026	3
Groundwater	CL-MW-1D-062204	6/22/04	B4F0745-04	B4F0745	E300	6/26/04	0:00	4F27001	1
Groundwater	CL-MW-1D-062204	6/22/04	B4F0745-04	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	CL-MW-1D-062204	6/22/04	B4F0745-04	B4F0745	E415.1	6/26/04	0:00	4F27003	2
Groundwater	CL-MW-1D-062204	6/22/04	B4F0745-04	B4F0745	NWTPH-DxSG	6/28/04	21:29	4F26002	1
Groundwater	CL-MW-1D-062204	6/22/04	B4F0745-04	B4F0745	SW9060	6/25/04	0:00	4F26007	1
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	E300	7/1/04	0:00	4G01048	1
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	E353.2	6/25/04	0:00	4F28023	1
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	E415.1	7/7/04	10:36	4G08021	2
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	NWTPH-DxSG	7/1/04	1:43	4F29019	1
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	SW8270	7/9/04	2:10	4G01015	10
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	SW8270	7/7/04	6:53	4G01015	1
Groundwater	CL-MW-1H-062404	6/24/04	B4F0789-05	B4F0789	SW9060	6/30/04	10:29	4F30026	1
Groundwater	CL-MW-1S-062204	6/22/04	B4F0745-03	B4F0745	E300	6/26/04	0:00	4F27001	1
Groundwater	CL-MW-1S-062204	6/22/04	B4F0745-03	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	CL-MW-1S-062204	6/22/04	B4F0745-03	B4F0745	E415.1	6/26/04	0:00	4F27003	4

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery	Analysis	Analysis	Analysis	Batch	Dilution
Groundwater	CL-MW-1S-062204	440000000000		Group	Method	Date	Time	Identifier	Factor
Groundwater	CL-MW-1S-062204	6/22/04	B4F0745-03	B4F0745	NWTPH-DxSG		21:06	4F26002	1
Groundwater		6/22/04	B4F0745-03	B4F0745	SW8270	7/9/04	0:22	4G01015	10
Groundwater	CL-MW-1S-062204	6/22/04	B4F0745-03	B4F0745	SW8270	7/14/04	18:59	4G01015	500
	CL-MW-1S-062204	6/22/04	B4F0745-03	B4F0745	SW8270	7/14/04	18:01	4G01015	100
Groundwater Groundwater	CL-MW-1S-062204 CL-MW-6-062404	6/22/04	B4F0745-03	B4F0745	SW9060	6/25/04	0:00	4F26007	2
Groundwater		6/24/04	B4F0789-03	B4F0789	E300	7/1/04	0:00	4G01048	1
Groundwater	CL-MW-6-062404	6/24/04	B4F0789-03	B4F0789	E353.2	6/25/04	0:00	4F28023	1
Groundwater	CL-MW-6-062404	6/24/04	B4F0789-03	B4F0789	E415.1	7/7/04	10:36	4G08021	1
Groundwater	CL-MW-6-062404 CL-MW-6-062404	6/24/04	B4F0789-03	B4F0789	NWTPH-DxSG	7/1/04	1:08	4F29019	1
	CL-MW-6-062404	6/24/04	B4F0789-03	B4F0789	SW8270	7/7/04	6:23	4G01015	1
Groundwater		6/24/04	B4F0789-03	B4F0789	SW8270	7/9/04	1:43	4G01015	10
Groundwater	CL-MW-6-062404	6/24/04	B4F0789-03	B4F0789	SW8270	7/12/04	21:40	4G01015	100
Groundwater	CL-MW-6-062404	6/24/04	B4F0789-03	B4F0789	SW9060	6/30/04	10:29	4F30026	1
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	E300	7/1/04	0:00	4G01048	1
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	E353.2	6/25/04	0:00	4F28023	1
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	E415.1	7/7/04	10:36	4G08021	10
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	NWTPH-DxSG	6/30/04	21:41	4F29019	1
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	SW8270	7/7/04	5:53	4G01015	1
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	SW8270	7/12/04	21:12	4G01015	100
Groundwater	CL-MW-7-062404	6/24/04	B4F0789-01	B4F0789	SW9060	6/30/04	10:29	4F30026	5
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04	B4F0789	E300	7/1/04	0:00	4G01048	1
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04	B4F0789	E353.2	6/25/04	0:00	4F28023	1
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04	B4F0789	E415.1	7/7/04	10:36	4G08021	2
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04RE1	B4F0789	NWTPH-DxSG	7/6/04	19:10	4G02017	1
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04	B4F0789	SW8270	7/7/04	3:24	4F30017	1
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04	B4F0789	SW8270	7/9/04	17:11	4F30017	100
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04RE2	B4F0789	SW8270	7/14/04	18:31	4G10016	100
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04RE2	B4F0789	SW8270	7/14/04	20:51	4G10016	10
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04RE2	B4F0789	SW8270	7/15/04	12:57	4G10016	1
Groundwater	H-MW-2-062404	6/24/04	B4F0789-04	B4F0789	SW9060	6/30/04	10:29	4F30026	1
Groundwater	HS-D-062304	6/23/04	B4F0745-13	B4F0745	NWTPH-DxSG	6/28/04	23:23	4F26002	1
Groundwater	HS-D-062304	6/23/04	B4F0745-13	B4F0745	SW8270	7/8/04	23:02	4F26008	1
Groundwater	HS-D-062304	6/23/04	B4F0745-13	B4F0745	SW8270	7/9/04	4:24	4F26008	10
Groundwater	HS-D-062304	6/23/04	B4F0745-13	B4F0745	SW8270	7/14/04	14:45	4F26008	1000
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	E300	6/26/04	0:00	4F27001	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	E415.1	6/26/04	0:00	4F27003	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10RE1	B4F0745	EPH	8/7/04	7:59	4G25014	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10RE1	B4F0745	EPH	8/7/04	7:59	[CALC]	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	EPH	7/16/04	2:27	[CALC]	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	EPH	7/16/04	2:27	4F25014	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	N2520	6/28/04	0:00	4F28042	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	NWTPH-DxSG	6/28/04	23:01	4F26002	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW6020	7/1/04	11:24	4061240	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW6020	6/28/04	10:00	4F25018	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW6020	7/1/04	10:33	4061242	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW6020	6/28/04	11:21	4F25042	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW7196	6/23/04	16:00	4F25017	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW8260B	6/29/04	12:58	4F25043	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW8270	7/8/04	21:41	4F26008	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW8270	7/9/04	3:04	4F26008	10
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW8270	7/12/04	23:04	4F26008	100
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW8290	7/24/04	0:00	X303	1
Groundwater	HS-MW-10-062304	6/23/04	B4F0745-10	B4F0745	SW9060	6/25/04	0:00	4F26007	1

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis Time	Batch Identifier	Dilution Factor
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	E300	6/25/04	10:00	4F26006	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	E415.1	6/26/04	0:00	4F27003	10
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11RE1	B4F0745	EPH	8/7/04	8:39	4G25014	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11RE1	B4F0745	EPH	8/7/04	8:39	[CALC]	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	EPH	7/16/04	3:07	4F25014	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	EPH	7/16/04	3:07	[CALC]	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	N2520	6/28/04	0:00	4F28042	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	NWTPH-DxSG	6/28/04	23:01	4F26002	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	NWTPH-DxSG	6/29/04	9:17	4F26002	5
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW6020	7/1/04	11:38	4061240	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW6020	7/1/04	10:47	4061242	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW6020	6/28/04	11:26	4F25042	1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW6020	6/28/04	10:06	4F25018	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW7196	6/23/04	16:00	4F25017	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW8260B	6/29/04	13:30	4F25043	
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW8260B	6/29/04	14:33	4F25043	5
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW8270	7/9/04	3:30	4F26008	10
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW8270	7/12/04	23:32	4F26008	1000
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW8270	7/8/04	22:08	4F26008	1 1
Groundwater	HS-MW-11-062304	6/23/04	B4F0745-11	B4F0745	SW9060	6/25/04	0:00	4F26008	5
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	E300	6/25/04	10:00	4F26007	1
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	E353.2	6/23/04	17:30	4F25005	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	E415.1	6/26/04	0:00	4F27003	10
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	EPH	7/16/04	3:47		1
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	EPH	7/16/04	3:47	[CALC] 4F25014	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12RE1	B4F0745	EPH	8/7/04	9:19		
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12RE1	B4F0745	EPH	8/7/04	9:19	[CALC] 4G25014	1
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	N2520	6/28/04	0:00	4G25014 4F28042	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	NWTPH-DxSG	6/28/04	23:23	4F26042 4F26002	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW6020	6/28/04	11:32	4F25042	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW6020	6/28/04	10:12	4F25042	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW6020	7/1/04	11:43	4061240	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW6020	7/1/04	11:01	4061240	1
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW7196	6/23/04	16:00	4F25017	
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW8260B	6/29/04	14:01	4F25043	1
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW8270	7/12/04	23:59	4F26008	1000
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW8270	7/8/04	22:34	4F26008	1
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW8270	7/9/04	3:58	4F26008	10
Groundwater	HS-MW-13-062304	6/23/04	B4F0745-12	B4F0745	SW9060	6/25/04	0:00	4F26007	5
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	E300	6/26/04	0:00	4F27001	200
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	E415.1	6/26/04	0:00	4F27003	
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	NWTPH-DxSG	6/28/04	20:43	4F26002	4
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	SW8270	7/14/04	20.43	4F26002 4F26008	1 10
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	SW8270	7/7/04	19:07	4F26008	
Groundwater	HS-MW-15-062204	6/22/04	B4F0745-02	B4F0745	SW9060	6/25/04	0:00	4F26008 4F26007	1 2

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis Time	Batch Identifier	Dilution Factor
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	E300	6/26/04	0:00	4F27001	500
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	E415.1	6/26/04	0:00	4F27003	4
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	NWTPH-DxSG	6/28/04	20:20	4F26002	1
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	SW8270	7/14/04	22:20	4F26008	10
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	SW8270	7/7/04	17:39	4F26008	1
Groundwater	HS-MW-16-062204	6/22/04	B4F0745-01	B4F0745	SW9060	6/25/04	0:00	4F26007	2
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	E300	7/1/04	0:00	4G01048	
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	E353.2	6/24/04	0:00	4F24058	
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	E415.1	7/3/04	0:00	4G04001	10
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	NWTPH-DxSG	6/29/04	17:21	4F28015	1
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	SW8270	7/7/04	17:09	4F26008	
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	SW8270	7/9/04	16:26	4F26008	100
Groundwater	HS-MW-4-062304	6/23/04	B4F0725-05	B4F0725	SW9060	6/25/04	0:00	4F26007	5
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	E300	7/1/04	0:00	4G01048	5
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	E353.2	6/24/04	0:00	4G01048 4F24058	
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	E415.1	7/3/04	0:00	4G04001	2
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	NWTPH-DxSG	6/29/04	16:58	4G04001 4F28015	
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	SW8270	7/14/04	20:23	4F26015	10
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	SW8270	7/7/04	16:40	4F26008	1
Groundwater	HS-MW-5-062304	6/23/04	B4F0725-04	B4F0725	SW9060	6/25/04	0:00	4F26008 4F26007	2
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0725	E300	7/1/04			
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789	E353.2	6/25/04	0:00	4G01048	1
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789	E355.2 E415.1	7/7/04	0:00	4F28023	1
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789	NWTPH-DxSG		10:36	4G08021	2
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789		7/1/04	2:17	4F29019	1
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789	SW8270 SW8270	7/9/04	1:16	4F30017	10
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06RE2	B4F0789	SW8270 SW8270	7/10/04	21:51	4F30017	500
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06RE2	B4F0789	SW8270 SW8270	7/15/04	1:34	4G10016	10
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789	SW8270 SW8270	7/15/04	13:25	4G10016	1
Groundwater	HS-MW-6-062404	6/24/04	B4F0789-06	B4F0789	SW8270 SW9060	7/7/04	3:54	4F30017	1
Groundwater	HS-MW-9-062304	6/23/04	B4F0725-03	B4F0789 B4F0725	E300	6/30/04 7/1/04	10:18	4F30026	2
Groundwater	HS-MW-9-062304	6/23/04	B4F0725-03	B4F0725	E353.2		0:00	4G01048	1
Groundwater	HS-MW-9-062304	6/23/04	B4F0725-03	B4F0725	E355.2 E415.1	6/24/04	0:00	4F24058	
Groundwater	HS-MW-9-062304	6/23/04				7/3/04	0:00	4G04001	10
Groundwater	HS-MW-9-062304	6/23/04	B4F0725-03	B4F0725	NWTPH-DxSG	6/29/04	16:35	4F28015	
Groundwater	HS-MW-9-062304	6/23/04	B4F0725-03 B4F0725-03	B4F0725 B4F0725	SW8270	7/7/04	16:11	4F26008	
Groundwater	HS-MW-9-062304	6/23/04	B4F0725-03		SW8270	7/14/04	19:55	4F26008	10
Groundwater	IZ-MW-1-062204			B4F0725	SW9060	6/25/04	0:00	4F26007	5
Groundwater	IZ-MW-1-062204	6/22/04 6/22/04	B4F0745-08	B4F0745	E300	6/26/04	0:00	4F27001	200
Groundwater	IZ-MW-1-062204		B4F0745-08	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	E415.1	6/26/04	0:00	4F27003	10
		6/22/04	B4F0745-08RE1	B4F0745	EPH	8/7/04	4:38	4G25014	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08RE1	B4F0745	EPH	8/7/04	4:38	[CALC]	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	EPH	7/15/04	22:26	4F25014	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	EPH	7/15/04	22:26	[CALC]	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	NWTPH-DxSG	6/28/04	22:38	4F26002	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	SW8260B	6/29/04	11:54	4F25043	1

		Sample	Laboratory	Sample Delivery	Analysis	Analysis	Analysis	Batch	Dilution
Matrix	Sample Identifier	Date	Sample ID	Group	Method	Date	Time	Identifier	Factor
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	SW8270	7/8/04	20:48	4F26008	1
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	SW8270	7/15/04	0:11	4F26008	10
Groundwater	IZ-MW-1-062204	6/22/04	B4F0745-08	B4F0745	SW9060	6/25/04	0:00	4F26007	5
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	E300	6/26/04	0:00	4F27001	100
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	E415.1	6/26/04	0:00	4F27003	10
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06RE1	B4F0745	EPH	8/7/04	3:18	4G25014	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06RE1	B4F0745	EPH	8/7/04	3:18	[CALC]	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	EPH	7/15/04	21:06	4F25014	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	EPH	7/15/04	21:06	[CALC]	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	NWTPH-DxSG	6/28/04	22:15	4F26002	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	SW8260B	6/29/04	10:50	4F25043	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	SW8270	7/8/04	19:18	4F26008	1
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	SW8270	7/14/04	23:15	4F26008	10
Groundwater	IZ-MW-2-062204	6/22/04	B4F0745-06	B4F0745	SW9060	6/25/04	0:00	4F26007	5
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	E300	6/26/04	0:00	4F27001	200
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	E415.1	6/26/04	0:00	4F27003	10
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	EPH	7/15/04	20:26	[CALC]	1
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	EPH	7/15/04	20:26	4F25014	
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05RE1	B4F0745	EPH	8/7/04	2:37		
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05RE1	B4F0745	EPH	8/7/04	2:37	[CALC] 4G25014	
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	NWTPH-DxSG	6/28/04	21:51	4G25014 4F26002	1
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	SW8260B	6/29/04	10:19	4F25043	1
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	SW8270	7/15/04	1:06	4F25043 4F26008	10
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	SW8270	7/8/04	17:50	4F26008	1
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	SW8290	7/24/04	0:00	4F20008 X303	1
Groundwater	IZ-MW-3-062204	6/22/04	B4F0745-05	B4F0745	SW9060	6/25/04	0:00	4F26007	5
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	E300	6/26/04	0:00	4F20007 4F27001	20
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	E353.2	6/23/04	17:30		20
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	E415.1	6/26/04	0:00	4F25001	10
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07RE1	B4F0745	EPH	8/7/04	3:58	4F27003	1
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07RE1	B4F0745	EPH	8/7/04	3:58	[CALC] 4G25014	
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	EPH	7/15/04	21:46		
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	EPH	7/15/04		4F25014	1
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	NWTPH-DxSG	6/28/04	21:46	[CALC]	1
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	SW8260B		22:15	4F26002	1
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745	SW8270	6/29/04	11:22	4F25043	1
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745		7/8/04	19:54	4F26008	1
Groundwater	IZ-MW-4-062204	6/22/04	B4F0745-07	B4F0745 B4F0745	SW8270 SW9060	7/14/04	23:43	4F26008	10
Groundwater	RINSATE 062104	6/21/04	B4F0746-09	B4F0745 B4F0746	NWTPH-DxSG	6/25/04	0:00	4F26007	5
Groundwater	RINSATE 062104	6/21/04	B4F0746-09	B4F0746	SW8270	6/28/04	23:47	4F26002	1
Groundwater	RINSATE 062104	6/21/04	B4F0746-09	B4F0746	SW8270	7/14/04	15:13	4F26008	10
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0746 B4F0725	E300	7/7/04	13:54	4F26008	1
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725 B4F0725	E300	6/30/04	0:00	4G01004	50
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725		6/24/04	0:00	4F24058	1
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	and a second state of the	E415.1	7/3/04	0:00	4G04001	10
Groundwater	12-10-002304	0/20/04	B4F0725-01	B4F0725	EPH	7/15/04	19:45	4F25014	1

Matrix	Sample Identifier	Sample Date	Laboratory Sample ID	Sample Delivery Group	Analysis Method	Analysis Date	Analysis Time	Batch Identifier	Dilution
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725	EPH	7/15/04	19:45	[CALC]	1
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01RE1	B4F0725	EPH	8/7/04	1:57	4G25014	5
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01RE1	B4F0725	EPH	8/7/04	1:57	[CALC]	5
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725	NWTPH-DxSG	6/29/04	15:48	4F28015	1
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725	SW8270	7/8/04	20:21	4F26008	100
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725	SW8270	7/7/04	15:12	4F26008	1
Groundwater	TL-MW-10-062304	6/23/04	B4F0725-01	B4F0725	SW9060	6/25/04	0:00	4F26007	10
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	E300	6/26/04	0:00	4F27001	1
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	E353.2	6/23/04	17:30	4F25001	1
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	E415.1	6/27/04	0:00	4F27013	5
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	EPH	7/15/04	23:07	[CALC]	
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	EPH	7/15/04	23:07	4F25014	
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09RE1	B4F0745	EPH	8/7/04	7:19	[CALC]	1
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09RE1	B4F0745	EPH	8/7/04	7:19	4G25014	
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	NWTPH-DxSG	6/28/04	22:38	4F26002	
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	SW8260B	6/29/04	12:26	4F25043	1
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	SW8270	7/12/04	22:36	4F26008	100
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	SW8270	7/8/04	21:14	4F26008	1
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	SW8270	7/9/04	2:37	4F26008	10
Groundwater	TL-MW-11-062204	6/22/04	B4F0745-09	B4F0745	SW9060	6/25/04	0:00	4F26007	10
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	E300	6/30/04	0:00	4G01004	50
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	E353.2	6/24/04	0:00	4F24058	1
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	E415.1	7/7/04	10:36	4G08021	5
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	NWTPH-DxSG	6/29/04	16:12	4F28015	1
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	SW8270	7/7/04	15:42	4F26008	1
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	SW8270	7/8/04	23:55	4F26008	10
Groundwater	TL-MW-9-062304	6/23/04	B4F0725-02	B4F0725	SW9060	6/25/04	0:00	4F26007	5

TABLE 2 SAMPLE QUALIFICATION SUMMARY FORMER HALEY WOOD TREATING SITE/DNR PROPERTY BELLINGHAM, WASHINGTON

SDG	Method	Action	Affected Samples
B4F0745	Ecology EPH	Qualify results as estimated (J or UJ) due to low blank spike recoveries for the following analytes:	HS-MW-10-062304
		ALIPHATICS EC8-EC10	HS-MW-11-062304
		ALIPHATICS EC10-EC12	HS-MW-13-062304
		ALIPHATICS EC12-EC16	IZ-MW-2-062204
		AROMATICS EC8-EC10	IZ-MW-2-062204
		AROMATICS EC10-EC12	IZ-MW-3-062204
		AROMATICS EC12-EC16	IZ-MW-4-062204
		EXCTACTABLE PETROLIUM HYDROCARBONS	TL-MW-11-062204
B4F0725	Ecology EPH	Batch QC control for the original results were out and the reextracted results were utilized. Qualify all detected results as estimated (J) due to missed holding times ALIPHATICS EC8-EC10 ALIPHATICS EC10-EC12 ALIPHATICS EC12-EC16	TL-MW-10-062304
		AROMATICS EC10-EC12 AROMATICS EC12-EC16	
D450705	Easter EBU	EXCTACTABLE PETROLIUM HYDROCARBONS	
B4F0725	Ecology EPH	Result for AROMATICS EC8-EC10 rejected due to missed batch QC for the original sample and missed holding times for the reextract.	TL-MW-10-062304
B4F0789	SW-846 8270C	Due to holding time exceedance of reextract, qualify results as estimated (J or UJ)	H-MW-2-02062404-F
B4F0789	SW-846 8270C	Due to holding time exceedance of reextract, qualify results as estimated (J or UJ)	HS-MW-6-062404-R
B4F0626	GC/MS SIM PAH	Qualify detected results as estimated (J) and reject nondetect values (R) due to low internal standards for the following compounds BENZ(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(GHI)PERYLENE BENZO(K)FLUORANTHENE CHRYSENE DIBENZ(A,H)ANTHRACENE INDENO(1,2,3-CD)PYRENE	TL-MW-10-12-13
B4F0621	SW8260B	Qualify results as estimated (J or UJ) due to slightly missed holding time	HS-DP-6-8-10
B4F0745	Ecology EPH	Qualify non-detect results as rejected (R) and detected results estimated (J) due to grossly exceeded holding times	IZ-MW-3-062204-RE IZ-MW-2-062204-RE IZ-MW-4-062204-RE
			IZ-MW-1-062204-RE
			TL-MW-11-062204-R
			HS-MW-10-062304-F
			HS-MW-11-062304-R
			HS-MW-13-062304-R
			TL-MW-11-062204-R

SDG	Method	Action	Affected Samples
B4F0745	SW-846 8270C	Qualify results as estimated (J or UJ) due to slightly missed holding time	CL-MW-1S-062204
			HS-MW-6-062404
			H-MW-2-062404-RE
B4F0621	NWTPH-Dx	Qualify diesel as estimated (J) due to high surrogate recovery	HS-DP-5B-12-16
B4F0621	NWTPH-Dx	Qualify lube oil as estimated (J) due to high surrogate recovery	HS-DP-8-8-11
B4F0627	NWTPH-Dx	Qualify results as estimated (J) due to reported elevated surrogate recoveries. Recoveries cannot be completely	CL-MW-1D-12-13
B4F0745	Ecology EPH	Qualify results as estimated (J or UJ) due to low surrogate recoveries.	HS-MW-13-062304
B4F0745	Ecology EPH	Qualify results as estimated (J or UJ) due to low surrogate recoveries.	TL-MW-11-062204
B4F0745	SW-846 8270C	Qualify base/neutral and acid fractions as estimated (J or UJ) due to low surrogate recoveries	CL-MW-1S-062204
B4F0725	SW-846 8270C	Qualify detected results as estimated (J) and reject nondetect values (R) in the acid fraction due to extremely low	HS-MW-4-062304
B4F0789	SW-846 8270C	Low recoveries in the acid fraction of the LCS/LCSD surrogates, related target compounds, and low sample surrogate	HS-MW-6-062404
			H-MW-2-062404
B4F0745	SW-846 8270C	Qualify acid fraction as estimated (J or UJ) due to low matrix spike recoveries	HS-MW-13-062304
B4F0789	E353.2	Qualify all results as estimated (J or UJ) due to low matrix spike recoveries.	CL-MW-7-062404
			CL-MW-1-062404
			CL-MW-6-062404
			H-MW-2-062404
			CL-MW-1H-062404
			HS-MW-6-062404
B4F0745	Ecology EPH	Qualify results as estimated (J/UJ) for reanalysis samples for the following compounds:	TL-MW-10-062304-R
		ALIPHATICS EC8-EC10	IZ-MW-3-062204-RE
		AROMATICS EC8-EC10	IZ-MW-2-062204-RE
			IZ-MW-4-062204-RE
			IZ-MW-1-062204-RE
			TL-MW-11-062204-R
			HS-MW-10-062304-R
			HS-MW-11-062304-R
B4F0626	GC/MS SIM PAH	Qualify detects as estimated for pentachlorophenol due to low RRF in initial calibration	HS-MW-10-12-13
			TL-MW-10-12-13
			HS-MW-13D-8-10
Various	SW-846 8270	Qualify detected pentachlorophenol results as estimated due to a high %D in the CCV	HS-MW-4-062304
			TL-MW-11-062204
			HS-MW-10-062304
			HS-D-062304
			CL-MW-6-062404
			CL-MW-1H-062404
B4F0626	GC/MS SIM PAH	Qualify detected pyrene results as estimated to a high %D in the CCV	HS-MW-10-12-13
			HS-MW-13D-8-10
	1		TL-MW-10-12-13

TABLE 3 SAMPLES/ANALYSES EXCEEDING HOLDING TIMES FORMER HALEY WOOD TREATING SITE/DNR PROPERTY BELLINGHAM, WASHINGTON

Sample Delivery Group	Batch	Sample Identification	Sample Collection to Extraction (Days)	Sample Collection to Analysis (Days)	Holding Time (Days)	Method	Matrix	Actions
B4F0621	4F30034	HS-DP-6-8-10	15	15	14	SW-846 8260B	Soil	None
B4F0725	4G25014	TL-MW-10-062304-RE	32	44	7	Ecology EPH	Water	Yes
B4F0745	4G25014	IZ-MW-3-062204-RE	33	45	7	Ecology EPH	Water	Yes
B4F0745	4G25014	IZ-MW-2-062204-RE	33	45	7	Ecology EPH	Water	Yes
B4F0745	4G25014	IZ-MW-4-062204-RE	33	45	7	Ecology EPH	Water	Yes
B4F0745	4G25014	IZ-MW-1-062204-RE	33	45	7	Ecology EPH	Water	Yes
B4F0745	4G25014	TL-MW-11-062204-RE	33	45	7	Ecology EPH	Water	Yes
B4F0745	4G25014	HS-MW-10-062304-RE	32	44	7	Ecology EPH	Water	Yes
B4F0745	4G25014	HS-MW-11-062304-RE	32	44	7	Ecology EPH	Water	Yes
B4F0745	4G25014	HS-MW-13-062304-RE	32	44	7	Ecology EPH	Water	Yes
B4F0745	4G01015	CL-MW-1S-062204	9	17, 22	7	SW-846 8270C	Water	Yes
B4F0789	4G10016	H-MW-2-062404-RE	16	20, 21	7	SW-846 8270C	Water	Yes
B4F0789	4G10016	HS-MW-6-062404	16	21	7	SW-846 8270C	Water	Yes

TABLE 4METHOD BLANK DETECTIONSFORMER HALEY WOOD TREATING SITE/DNR PROPERTYBELLINGHAM, WASHINGTON

Sample Delivery Group	Batch	Sample Identification (Lab ID)	Analyte	Result	Analytical Method	Matrix
B4F0621	X298	Blank (0298-001-MB)	OCDD	48.4	SW-846 8290	Soil
K2405633	KWG0411384-5	Method Blank	Phenol	3.6 J	EPA 3541 (8270)	Sediment
K2405633	KWG0411384-5	Method Blank	Bis (2-ethylhexyl) Phthalate	2.6 J	EPA 3541 (8270)	Sediment

TABLE 5 SURROGATE RECOVERIES OUTSIDE QC CRITERIA

FORMER HALEY WOOD TREATING SITE/DNR PROPERTY

BELLINGHAM, WASHINGTON

Sample Delivery Group	Batch	Surrogate Compound	Percent Recovery (%)	Recovery Limit (%)	Analytical Method	Matraix
NA	4F22047	Nitrobenzene-d5	105	46-103	SW-846 8270 C-SIM	Soil
NA	4F22048	Nitrobenzene-d5	111	46-103	SW-846 8270 C-SIM	Soil
NA	4F25028	2-fluorophenol	102	38-89	SW-846 8270 C	Soil
NA	4F28028	2,4,6-tribromophenol	46.2	48-111	SW-846 8270 C-SIM	Soil
NA	4F30040	2-fluorophenol	105	38-89	SW-846 8270 C	Soil
NA	4F22048	Nitrobenzene-d5	111	46-103	SW-846 8270 C-SIM	Soil
B4F0627	4F28032	2-fluorobiphenyl	546	50-150	NWTPH-Dx	Soil
B4F0627	4F28032	Octoacosane	834	50-150	NWTPH-Dx	Soil
B4F0627	4F28028	Nitrobenzene-d5	116	46-103	SW-846 8270 C	Soil
B4F0745	4G01015	2-fluorobiphenyl	32.8	56-104	SW-846 8270 C	Water
B4F0745	4G01015	2-fluorophenol	19.9	37-101	SW-846 8270 C	Water
B4F0745	4G01015	Nitrobenzene-d5	47.9	49-108	SW-846 8270 C	Water
B4F0745	4G01015	Phenol-d6	25	40-109	SW-846 8270 C	Water
B4F0789	4G01015	Phenol-d6	38.3	40-109	SW-846 8270 C	Water
B4F0789	4F30017	Phenol-d6	38.1	40-109	SW-846 8270 C	Water
B4F0789	4F30017	p-Terphenyl-d14	20.4	22-140	SW-846 8270 C	Water
B4F0789	4G10016	Phenol-d6	37.1	40-109	SW-846 8270 C	Water
B4F0626	4F30040	2,4,6-tribromophenol	112	48-111	SW-846 8270 C	Soil
B4F0626	4F30040	2-fluorophenol	105	38-89	SW-846 8270 C	Soil
B4F0626	4F30040	Phenol-d6	112	29-111	SW-846 8270 C	Soil
B4F0626	4F30040	2-fluorophenol	98	38-89	SW-846 8270 C-SIM	Soil
B4F0621	4F22048	2-fluorophenol	91.4	38-89	SW-846 8270 C	Soil
B4F0621	4F22048	Nitrobenzene-d5	141	46-103	SW-846 8270 C	Soil
B4F0621	4F22042	2-fluorophenol	166	50-150	NW-TPH-Dx	Soil
B4F0621	4F22048	Nitrobenzene-d5	32.2	46-103	SW-846 8270 C	Soil
B4F0621	4F22042	Octacosane	172	50-150	NW-TPH-Dx	Soil
B4F0621	4F22048	2,4,6-tribromophenol	115	48-111	SW-846 8270 C	Soil
B4F0621	4F22048	Nitrobenzene-d5	159	46-103	SW-846 8270 C	Soil
B4F0725	4F26008	2-fluorophenol	35.8	37-101	SW-846 8270 C	Water
B4F0725	4F26008	2-fluorophenol	34.8	37-101	SW-846 8270 C	Water
B4F0745	4G25014	o-Terphenyl	53	60-140	Ecology EPH	Water
B4F0626	4F22047	2-fluorophenol	91.3	38-89	SW-846 8270 C	Soil
B4F0626	4F22047	Nitrobenzene-d5	106	46-103	SW-846 8270 C	Soil
20020					als\2006 RI Report (Draft)\02	

TABLE 6 MATRIX SPIKE RECOVERIES OUTSIDE QC CRITERIA FORMER HALEY WOOD TREATING SITE/DNR PROPERTY BELLINGHAM, WASHINGTON

Sample Batch	Sample Identification	Spike Compound	Recovery (%)	Recovery Limit (%)	Analytical Method	Actions
4F22037	Matrix Spike (4F22037-MS1)	Diesel range hydrocarbons	252	50-150	NWTPH-Dx	None ¹
4F22037	Matrix Spike (4F22037-MS2)	Diesel-range hydorcarbons	754	50-150	NWTPH-Dx	None ¹
4F22037	Matrix Spike Dup (4F22037-MSD1)	Diesel-range hydorcarbons	199	50-150	NWTPH-Dx	None ¹
4F22037	Matrix Spike Dup (4F22037-MSD2)	Diesel-range hydorcarbons	1790	50-150	NWTPH-Dx	None ¹
4F22047	Matrix Spike (4F22047-MS1)	2,4,5-Trichlorophenol	113	56-96	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	2,4,5-Trichlorophenol	119	56-96	SW-846 8270 C	None ²
4F22047	Matrix Spike (4F22047-MS1)	2,4,6-Trichlorophenol	136	56-96	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	2,4,6-Trichlorophenol	122	56-96	SW-846 8270 C	None ²
4F22047	Matrix Spike (4F22047-MS1)	2-Methylnaphthalene	-7020	41-93	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	2-Methylnaphthalene	-7500	41-93	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	Acenaphthene	154	49-100	SW-846 8270 C	None ¹
4F22047	Matrix Spike (4F22047-MS1)	Acenapthylene	107	49-100	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	Acenapthylene	111	57-105	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	Anthracene	124	49-118	SW-846 8270 C	None ²
4F22047	Matrix Spike (4F22047-MS1)	Benzo (a) anthracene	117	53-106	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	Benzo (a) anthracene	120	53-106	SW-846 8270 C	None ²
4F22047	Matrix Spike (4F22047-MS1)	Chrysene	118	44-114	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	Chrysene	126	44-114	SW-846 8270 C	None ²
4F22047	Matrix Spike (4F22047-MS1)	Dibenzofuran	41.9	45-103	SW-846 8270 C	None ²
4F22047	Matrix Spike Dup (4F22047-MSD1)	Dibenzofuran	127	45-103	SW-846 8270 C	None ²
4F22047	Matrix Spike (4F22047-MS1)	Fluorene	118	43-111	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	Fluorene	195	43-111	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	Naphthalene	219	33-110	SW-846 8270 C	None ¹
4F22047	Matrix Spike (4F22047-MS1)	N-Nitrosodiphenylamine	47	70-130	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	N-Nitrosodiphenylamine	57.3	70-130	SW-846 8270 C	None ¹
4F22047	Matrix Spike (4F22047-MS1)	Phenanthrene	185	44-106	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	Phenanthrene	352	44-106	SW-846 8270 C	None ¹
4F22047	Matrix Spike Dup (4F22047-MSD1)	Pyrene	141	21-136	SW-846 8270 C	None ²
4F23014	Matrix Spike Dup (4F23014-MSD1)	Hexavalent Chromium	19	50-150	SW-846 7196	None ⁴
4F23014	Matrix Spike (4F23014-MS1)	Hexavalent Chromium	27	50-150	SW-846 7196	None ⁴

Sample			Recovery	Recovery	Analytical	
Batch	Sample Identification	Spike Compound	(%)	Limit (%)	Method	Actions
4F25017	Matrix Spike (4F25017-MS1)	Hexavalent Chromium	3.3	50-150	SW-846 7196	None ⁴
4F25028	Matrix Spike (4F25028-MS1)	2,3,4,5-Tetrachlorophenol	31.2	50-150	SW-846 8270 C	Yes
4F25028	Matrix Spike (4F25028-MS1)	2,3,5,6-Tetrachlorophenol	29.9	30-129	SW-846 8270 C	Yes
4F25028	Matrix Spike Dup (4F25028-MSD1)	2,4,5-Trichlorophenol	98.3	56-96	SW-846 8270 C	Yes
4F25028	Matrix Spike Dup (4F25028-MSD1)	2-Methylnaphthalene	98.1	41-93	SW-846 8270 C	None ²
4F25028	Matrix Spike (4F25028-MS1)	Pentachlorophenol	17.4	30-129	SW-846 8270 C	Yes
4F28023	Matrix Spike Dup (4F28023-MSD1)	Nitrate-Nitrogen	15.6	36-150	E353.2	Yes
4F28023	Matrix Spike (4F28023-MS1)	Nitrate-Nitrogen	14.4	36-150	E353.2	Yes
4F28028	Matrix Spike (4F28028-MS1)	2,4,5-Trichlorophenol	99.3	56-96	SW-846 8270 C	None ²
4F28028	Matrix Spike Dup (4F28028-MSD1)	2,4,5-Trichlorophenol	130	56-96	SW-846 8270 C	None
4F28028	Matrix Spike Dup (4F28028-MSD1)	2,4,6-Trichlorophenol	150	56-96	SW-846 8270 C	None
4F28028	Matrix Spike (4F28028-MS1)	2-Methylnaphthalene	-17100	41-93	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	2-Methylnaphthalene	-21200	41-93	SW-846 8270 C	None ¹
4F28028	Matrix Spike (4F28028-MS1)	Acenaphthene	162	49-100	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	Acenaphthene	0	49-100	SW-846 8270 C	None ¹
4F28028	Matrix Spike (4F28028-MS1)	Acenaphthylene	108	57-105	SW-846 8270 C	None ²
4F28028	Matrix Spike (4F28028-MS1)	Anthracene	1.41	49-118	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	Benzo (k) fluoranthene	123	45-117	SW-846 8270 C	None ²
4F28028	Matrix Spike (4F28028-MS1)	Dibenzofuran	121	45-103	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	Dibenzofuran	34.2	45-103	SW-846 8270 C	None ¹
4F28028	Matrix Spike (4F28028-MS1)	Fluorene	268	43-111	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	Fluorene	0	43-111	SW-846 8270 C	None ¹
4F28028	Matrix Spike (4F28028-MS1)	Naphthalene	415	33-110	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	Naphthalene	295	33-110	SW-846 8270 C	None ¹
4F28028	Matrix Spike (4F28028-MS1)	N-Nitrosodiphenylamine	35.2	70-130	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	N-Nitrosodiphenylamine	-288	70-130	SW-846 8270 C	None ¹
4F28028	Matrix Spike (4F28028-MS1)	Phenanthrene	704	44-106	SW-846 8270 C	None ¹
4F28028	Matrix Spike Dup (4F28028-MSD1)	Phenanthrene	164	44-106	SW-846 8270 C	None ¹
4F28030	Matrix Spike (4F28030-MS1)	C10-C12 Aliphatics	53.6	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C10-C12 Aromatics	144	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C12-C16 Aliphatics	-63.7	70-130	Ecology EPH	None ³
4F28030	Matrix Spike Dup (4F28030-MSD1)	C12-C16 Aliphatics	-93.4	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C12-C16 Aromatics	157	70-130	Ecology EPH	None ³

Sample			Recovery	Recovery	Analytical	
Batch	Sample Identification	Spike Compound	(%)	Limit (%)	Method	Actions
4F28030	Matrix Spike (4F28030-MS1)	C16-C21 Aliphatics	-584	70-130	Ecology EPH	None ³
4F28030	Matrix Spike Dup (4F28030-MSD1)	C16-C21 Aliphatics	0	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C21-C34 Aliphatics	-417	70-130	Ecology EPH	None ³
4F28030	Matrix Spike Dup (4F28030-MSD1)	C21-C34 Aliphatics	-116	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C21-C34 Aromatics	-39.7	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C8-C10 Aliphatics	32.9	70-130	Ecology EPH	None ³
4F28030	Matrix Spike Dup (4F28030-MSD1)	C8-C10 Aliphatics	47	70-130	Ecology EPH	None ³
4F28030	Matrix Spike (4F28030-MS1)	C8-C10 Aromatics	237	70-130	Ecology EPH	None ³
4F28030	Matrix Spike Dup (4F28030-MSD1)	C8-C10 Aromatics	441	70-130	Ecology EPH	None ³
4F22048	Matrix Spike (4F22048-MS1)	Multiple aliphatics and aromatics	elevated	70-130	Ecology EPH	None ³
4F22048	Matrix Spike Dup (4F22048-MSD1)	Multiple aliphatics and aromatics	elevated	70-130	Ecology EPH	None ³
4F22048	Matrix Spike Dup (4F22048-MSD1)	Benzo (a) anthracene	108	53-106	SW-846 8270 C	None ²
4F28032	Matrix Spike Dup (4F28032-MSD1)	Diesel range hydrocarbons	-99.1	50-150	NWTPH-Dx	None ¹
4F30040	Matrix Spike (4F30040-MS1)	2,4,5-Trichlorophenol	112	56-96	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	2,4,5-Trichlorophenol	120	56-96	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	2,4,6-Trichlorophenol	108	56-96	SW-846 8270 C	None ²
4F30040	Matrix Spike (4F30040-MS1)	2-Methylnaphthalene	109	41-93	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	2-Methylnaphthalene	110	41-93	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Acenapthylene	111	57-105	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Anthracene	135	49-118	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Benzo (a) anthracene	120	53-106	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Benzo (a) pyrene	138	47-122	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Benzo (ghi) perylene	129	39-124	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Benzo (k) fluoranthene	163	45-117	SW-846 8270 C	None
4F30040	Matrix Spike (4F30040-MS1)	Chrysene	150	44-114	SW-846 8270 C	None
4F30040	Matrix Spike Dup (4F30040-MSD1)	Chrysene	217	44-114	SW-846 8270 C	None
4F30040	Matrix Spike (4F30040-MS1)	Dibenzofuran	112	45-103	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Dibenzofuran	118	45-103	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Fluoranthene	205	45-110	SW-846 8270 C	None
4F30040	Matrix Spike Dup (4F30040-MSD1)	Fluorene	112	43-111	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Indeno (1,2,3-cd) pyrene	129	50-112	SW-846 8270 C	None ²
4F30040	Matrix Spike (4F30040-MS1)	Naphthalene	123	33-110	SW-846 8270 C	None ²
4F30040	Matrix Spike (4F30040-MS1)	Pentachlorophenol	139	30-129	SW-846 8270 C	None ²

Sample Batch	Sample Identification	Spike Compound	Recovery (%)	Recovery Limit (%)	Analytical Method	Actions
4F30040	Matrix Spike Dup (4F30040-MSD1)	Pentachlorophenol	155	30-129	SW-846 8270 C	None ²
4F30040	Matrix Spike (4F30040-MS1)	Phenanthrene	35.8	44-106	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Phenanthrene	151	44-106	SW-846 8270 C	None ²
4F30040	Matrix Spike Dup (4F30040-MSD1)	Pyrene	162	21-136	SW-846 8270 C	None ²
4G25014	Matrix Spike (4G25014-MS1)	C10-C12 Aliphatics	55	70-130	Ecology EPH	None ³
4G25014	Matrix Spike Dup (4G25014-MSD1)	C10-C12 Aliphatics	55.9	70-130	Ecology EPH	None ³
4G25014	Matrix Spike (4G25014-MS1)	C10-C12 Aromatics	44.3	70-130	Ecology EPH	None ³
4G25014	Matrix Spike Dup (4G25014-MSD1)	C10-C12 Aromatics	43.3	70-130	Ecology EPH	None ³
4G25014	Matrix Spike (4G25014-MS1)	C12-C16 Aliphatics	65.5	70-130	Ecology EPH	None ³
4G25014	Matrix Spike (4G25014-MS1)	C12-C16 Aromatics	49	70-130	Ecology EPH	None ³
4G25014	Matrix Spike Dup (4G25014-MSD1)	C12-C16 Aromatics	51.7	70-130	Ecology EPH	None ³
4G25014	Matrix Spike (4G25014-MS1)	C8-C10 Aliphatics	44	70-130	Ecology EPH	None ³
4G25014	Matrix Spike Dup (4G25014-MSD1)	C8-C10 Aliphatics	42.5	70-130	Ecology EPH	None ³
4G25014	Matrix Spike (4G25014-MS1)	C8-C10 Aromatics	32.9	70-130	Ecology EPH	None ³
4G25014	Matrix Spike Dup (4G25014-MSD1)	C8-C10 Aromatics	30.5	70-130	Ecology EPH	None ³
X299	Matrix Spike Dup (2689-001-MSD)	OCDD	218	50-150	SW 846 8290	None ⁴
K2405633	RI-1-0-4s	Mercury	142	55-137	7471A	None ⁴

Notes:

¹No action taken on MS/MSD recoveries when sample amounts are significantly greater than spike amount.

²No action taken. The percent recovery was outside project QC criteria but within laboratory control limits.

³No action taken when the source sample is not from the project site.

⁴No action taken. See data quality report for details.

TABLE 7LAB CONTROL SPIKE EXCEEDANCESFORMER HALEY WOOD TREATING SITE/DNR PROPERTYBELLINGHAM, WASHINGTON

	Sample Identification		Recovery	Recovery	Analytical		
Batch	(Lab ID)	Analyte	(%)	Limit (%)	Method	Matrix	Actions
4F22047	LCS (4F22047-BS2)	Pentachlorophenol	105	52-104	GC/MS SIM	Soil	None ¹
4F22047	LCS Dup (4F22047-BSD2)	Pentachlorophenol	121	52-104	GC/MS SIM	Soil	None ¹
4F22047	LCS (4F22047-BS1)	N-Nitrosodiphenylamine	68.8	70-130	SW-846 8270 C	Soil	None ¹
4F22047	LCS Dup (4F22047-BSD1)	N-Nitrosodiphenylamine	68.8	70-130	SW-846 8270 C	Soil	None ¹
4F22048	LCS (4F22048-BS2)	Pentachlorophenol	124	52-104	GC/MS SIM	Soil	None ¹
4F22048	LCS Dup (4F22048-BSD2)	Pentachlorophenol	118	52-104	GC/MS SIM	Soil	None ¹
4F24005	LCS Dup (4F24005-BSD1)	Total Organic Carbon	131	70-130	EPA 415.1	Soil	None
4F25014	LCS Dup (4F25014-BSD1)	C10-C12 Aliphatics	67.4	70-130	Ecology EPH	Water	Yes
4F25014	LCS (4F25014-BS1)	C10-C12 Aromatics	52.9	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C10-C12 Aromatics	48.5	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C12-C16 Aliphatics	63	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C12-C16 Aromatics	65	70-130	Ecology EPH	Water	Yes
4F25014	LCS (4F25014-BS1)	C8-C10 Aliphatics	46.8	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C8-C10 Aliphatics	54.7	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4G25014-BDS1)	C8-C10 Aliphatics	38.5	70-130	Ecology EPH	Water	Yes
4F25014	LCS (4F25014-BS1)	C8-C10 Aromatics	26	70-130	Ecology EPH	Water	Yes
4F25014	LCS (4G25014-BS1)	C8-C10 Aromatics	63.9	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C8-C10 Aromatics	22.6	70-130	Ecology EPH	Water	Yes
4F25014	LCS Dup (4G25014-BDS1)	C8-C10 Aromatics	54.8	70-130	Ecology EPH	Water	Yes
4F25028	LCS Dup (4F25028-BSD2)	2,3,5,6-Tetrachlorophenol	112	52-104	SW-846 8270 C	Soil	None ¹
4F25028	LCS (4F25028-BS2)	2,3,5,6-Tetrachlorophenol	111	52-104	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	2,4,5-Trichlorophenol	106	58-100	SW-846 8270 C	Soil	None ¹
4F25028	LCS (4F25028-BS2)	2,4,5-Trichlorophenol	107	58-100	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	2-Methylnaphthalene	95.4	53-91	SW-846 8270 C	Soil	None ¹
4F25028	LCS (4F25028-BS2)	2-Methylnaphthalene	100	53-91	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	Benzo (b) fluoranthene	123	66-110	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	Dibenzofuran	99.1	60-96	SW-846 8270 C	Soil	None ¹
4F25028	LCS (4F25028-BS2)	Dibenzofuran	99.6	60-96	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	Fluorene	103	61-99	SW-846 8270 C	Soil	None ¹
4F25028	LCS (4F25028-BS2)	Fluorene	102	61-99	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	Pentachlorophenol	124	52-104	SW-846 8270 C	Soil	None ¹
4F25028	LCS (4F25028-BS2)	Pentachlorophenol	122	52-104 52-104	SW-846 8270 C	Soil	None ¹
4F25028	LCS Dup (4F25028-BSD2)	Phenanthrene	107	57-102	SW-846 8270 C	Soil	None ¹
	• •						None ¹
4F25028	LCS Dup (4F25028-BSD2)	Pyrene	110	56-108	SW-846 8270 C	Soil	none

	Sample Identification		Recovery	Recovery	Analytical		
Batch	(Lab ID)	Analyte	(%)	Limit (%)	Method	Matrix	Actions
4F26008	LCS Dup (4F26008-BSD1)	Anthracene	106	45-104	SW-846 8270 C	Soil	None ¹
4F26008	LCS Dup (4F26008-BSD1)	Phenanthrene	102	47-101	SW-846 8270 C	Water	None ¹
4F28028	LCS (4F28028-BS1)	2,3,5,6-Tetrachlorophenol	121	52-104	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	2,3,5,6-Tetrachlorophenol	118	52-104	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	2,4,5-Trichlorophenol	107	58-100	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	2,4,5-Trichlorophenol	103	58-100	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	2,4,6-Trichlorophenol	107	58-100	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	2,4,6-Trichlorophenol	103	58-100	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	2-Methylnaphthalene	97.9	53-91	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	2-Methylnaphthalene	100	53-91	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Acenaphthalene	99.4	58-98	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Acenaphthalene	98.5	58-98	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Acenaphthene	99.4	58-98	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Acenaphthene	98.5	58-98	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Benzo (k) fluoranthene	120	65-110	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Benzo (k) fluoranthene	114	65-110	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Chrysene	109	62-107	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Dibenzofuran	100	60-96	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Dibenzofuran	96.7	60-96	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Fluorene	105	61-99	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Fluorene	102	61-99	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Naphthalene	99.1	58-97	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Naphthalene	101	58-97	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Pentachlorophenol	121	52-104	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Pentachlorophenol	122	52-104	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Phenanthrene	104	57-102	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Phenanthrene	105	57-102	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS1)	Pyrene	116	56-108	SW-846 8270 C	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD1)	Pyrene	110	56-108	SW-846 8270 C	Soil	None ¹
4F28028	LCS (4F28028-BS2)	Benzo (a) anthracene	109	64-108	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD2)	Benzo (a) anthracene	111	64-108	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS (4F28028-BS2)	Benzo (a) pyrene	131	71-111	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS Dup (4F28028-BSD2)	Benzo (a) pyrene	131	71-111	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS (4F28028-BS2)	Benzo (b) fluoranthene	119	66-110	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD2)	Benzo (b) fluoranthene	127	66-110	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS (4F28028-BS2)	Benzo (ghi) perylene	130	56-118	SW-846 8270 C-SIM	Soil	None ²

	Sample Identification		Recovery	Recovery	Analytical		
Batch	(Lab ID)	Analyte	(%)	Limit (%)	Method	Matrix	Actions
4F28028	LCS Dup (4F28028-BSD2)	Benzo (ghi) perylene	130	56-118	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS (4F28028-BS2)	Benzo (k) fluoranthene	121	65-110	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD2)	Benzo (k) fluoranthene	122	65-110	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS (4F28028-BS2)	Chrysene	111	62-107	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD2)	Chrysene	112	62-107	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS (4F28028-BS2)	Dibenz (a,h) anthracene	154	52-120	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS Dup (4F28028-BSD2)	Dibenz (a,h) anthracene	153	52-120	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS (4F28028-BS2)	Fluorene	112	61-99	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD2)	Fluorene	115	61-99	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS (4F28028-BS2)	Indeno (1,2,3-cd) pyrene	145	54-121	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS Dup (4F28028-BSD2)	Indeno (1,2,3-cd) pyrene	144	54-121	SW-846 8270 C-SIM	Soil	None ²
4F28028	LCS (4F28028-BS2)	Phenanthrene	106	57-102	SW-846 8270 C-SIM	Soil	None ¹
4F28028	LCS Dup (4F28028-BSD2)	Phenanthrene	110	57-102	SW-846 8270 C-SIM	Soil	None ¹
4F30017	LCS (4F30017-BS2)	2,3,4,5 and 2,3,5,6-Tetrachlorophenols	32.3	50-150	SW-846 8270 C	Water	Yes
4F30017	LCS (4F30017-BS2)	2,4,5-Trichlorophenol	28.1	53-113	SW-846 8270 C	Water	Yes
4F30017	LCS (4F30017-BS2)	2,4,6-Trichlorophenol	18.6	53-113	SW-846 8270 C	Water	Yes
4F30040	LCS Dup (4F30040-BSD2)	2,3,5,6-Tetrachlorophenol	106	52-104	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	2,4,6-Trichlorophenol	110	58-100	SW-846 8270 C	Soil	None ¹
4F30040	LCS (4F30040-BS2)	2-Methylnaphthalene	99.3	53-91	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	2-Methylnaphthalene	102	53-91	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Acenaphthalene	98.7	58-98	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Anthracene	114	56-112	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Benzo (a) pyrene	113	71-111	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Chrysene	113	62-107	SW-846 8270 C	Soil	None ¹
4F30040	LCS (4F30040-BS2)	Dibenzofuran	96.9	60-96	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Dibenzofuran	105	60-96	SW-846 8270 C	Soil	None ¹
4F30040	LCS (4F30040-BS2)	Fluorene	99.7	61-99	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Fluorene	108	61-99	SW-846 8270 C	Soil	None ¹
4F30040	LCS (4F30040-BS2)	Pentachlorophenol	120	52-104	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Pentachlorophenol	122	52-104	SW-846 8270 C	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Phenanthrene	105	57-102	SW-846 8270 C	Soil	None ¹
4F30040	LCS (4F30040-BS2)	Benzo (a) anthracene	112	64-108	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Benzo (a) anthracene	114	64-108	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Benzo (a) pyrene	114	71-111	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS (4F30040-BS2)	Benzo (k) fluoranthene	121	65-110	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Benzo (k) fluoranthene	127	65-110	SW-846 8270 C-SIM	Soil	None ¹

Batch	Sample Identification (Lab ID) Analyte		Recovery (%)	Recovery Limit (%)	Analytical Method	Matrix	Actions
4F30040	LCS Dup (4F30040-BSD2)	Fluroanthene	116	57-114	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS (4F30040-BS2)	Pentachlorophenol	116	52-104	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Pentachlorophenol	118	52-104	SW-846 8270 C-SIM	Soil	None ¹
4F30040	LCS Dup (4F30040-BSD2)	Pyrene	109	56-108	SW-846 8270 C-SIM	Soil	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Acenaphthalene	106	41-97	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Acenaphthylene	112	44-103	SW-846 8270 C	Water	None ¹
4G01015	LCS (4G01015-BS2)	Anthracene	107	45-104	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Anthracene	135	45-104	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Benzo (a) anthracene	118	50-111	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Benzo (a) pyrene	130	51-119	SW-846 8270 C	Water	None ¹
4G01015	LCS (4G01015-BS2)	Benzo (b) fluoranthene	118	54-114	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Benzo (b) fluoranthene	135	54-114	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Benzo (ghi) perylene	122	44-115	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Chrysene	124	51-108	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Fluoranthene	129	51-112	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Fluorene	126	46-102	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Napthalene	98.5	37-95	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Phenanthrene	126	47-101	SW-846 8270 C	Water	None ¹
4G01015	LCS Dup (4G01015-BSD2)	Pyrene	126	45-111	SW-846 8270 C	Water	None ¹
4G10016	LCS (4G10016-BS2)	Fluorene	104	46-102	SW-846 8270 C	Water	None ¹
4G10016	LCS Dup (4G10016-BSD2)	Pentachlorophenol	130	26-123	SW-846 8270 C	Water	None ¹
4G10016	LCS Dup (4G10016-BSD2)	Phenanthrene	103	47-101	SW-846 8270 C	Water	None ¹
4G25014	LCS Dup (4G25014-BSD1)	C8-C10 Aliphatics	38.5	70-130	Ecology EPH	Water	Yes
4G25014	LCS Dup (4G25014-BSD1)	C8-C10 Aromatics	54.8	70-130	Ecology EPH	Water	Yes

Notes:

¹No action taken. The percent recovery was outside project QC criteria but within laboratory control limits.

¹No action taken. Results not qualified on non-detect data for elevated recoveries.

TABLE 8RELATIVE PERCENT DIFFERENCEFORMER HALEY WOOD TREATING SITE/DNR PROPERTYBELLINGHAM, WASHINGTON

Batch	Sample Identification	Analyte	RPD	RPD Limit	Analytical Method	Matrix	Actions
4F23014	Matrix Spike Dup (4F23014-MSD1) Hexavalent Chromium		37	30	SW-846 7196	Soil	None1
4F25014	LCS Dup (4F25014-BSD1)	C8-C10 Aliphatics	40.1	25	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C10-C12 Aliphatics	30.2	25	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C8-C10 Aliphatics	40.1	25	Ecology EPH	Water	Yes
4F25014	LCS Dup (4F25014-BSD1)	C10-C12 Aliphatics	30.2	25	Ecology EPH	Water	Yes
4F25028	Matrix Spike Dup (4F25028-MSD1)	2,3,4,5 and 2,3,5,6-Tetrachlorophenols	50.2	40	SW-846 8270 C	Soil	Yes
4F25028	Matrix Spike Dup (4F25028-MSD1)	2,3,5,6-Tetrachlorophenol	57.4	40	SW-846 8270 C	Soil	Yes
4F25028	Matrix Spike Dup (4F25028-MSD1)	Pentachlorophenol	75.6	40	SW-846 8270 C	Soil	Yes
4F28028	Matrix Spike Dup (4F28028-MSD1)	2,4,6-Trichlorophenol	49.6	40	SW-846 8270 C	Soil	Yes
4F28028	Matrix Spike Dup (4F28028-MSD1)	2,4,6-Trichlorophenol	49.6	40	SW-846 8270 C	Soil	Yes
4F28030	Matrix Spike Dup (4F28030-MSD1)	C8-C10 Aromatics	58.4	25	Ecology EPH	Soil	None2
4F28030	Matrix Spike Dup (4F28030-MSD1)	C10-C12 Aromatics	42.6	25	Ecology EPH	Soil	None2
4F30017	LCS Dup (4F30017-BSD2)	Pentachlorophenol	44.3	40	SW-846 8270 C	Water	None1
4F30017	LCS Dup (4F30017-BSD2)	2,3,4,5 and 2,3,5,6-Tetrachlorophenols	84.4	40	SW-846 8270 C	Water	None1
4F30017	LCS Dup (4F30017-BSD2)	2,3,5,6-Tetrachlorophenol	87.5	40	SW-846 8270 C	Water	None1
4F30017	LCS Dup (4F30017-BSD2)	2,4,5-Trichlorophenol	104	40	SW-846 8270 C	Water	None1
4F30017	LCS Dup (4F30017-BSD2)	2,4,6-Trichlorophenol	126	40	SW-846 8270 C	Water	None1
4F30040	Matrix Spike Dup (4F30040-MSD1)	Benzo (k) fluoranthene	65.7	40	SW-846 8270 C	Soil	None1
4F30040	Matrix Spike Dup (4F30040-MSD1)	Fluoranthene	41.2	40	SW-846 8270 C	Soil	None3
4F30040	Matrix Spike Dup (4F30040-MSD1)	Pyrene	48.1	40	SW-846 8270 C	Soil	None3
4F30040	Matrix Spike Dup (4F30040-MSD1)	Benzo (k) fluoranthene	65.7	40	SW-846 8270 C	Soil	None1
4F30040	Matrix Spike Dup (4F30040-MSD1)	Fluoranthene	41.2	40	SW-846 8270 C	Soil	None1
4F30040	Matrix Spike Dup (4F30040-MSD1)	Pyrene	48.1	40	SW-846 8270 C	Soil	None1
X299	Matrix Spike (2689-001-MS)	OCDD	65.7	50	SW 846 8290	Soil	None2
X299	Matrix Spike Dup (2689-001-MSD)	OCDD	65.7	50	SW 846 8290	Soil	None2

Notes:

¹No action taken on RPD data alone.

²No action taken when the source sample is not from the project site.

³No action taken on percent RPD when sample amounts are significantly greater than spike amount.

TABLE 9CALIBRATION VERIFICATIONFORMER HALEY WOOD TREATING SITE/DNR PROPERTYBELLINGHAM, WASHINGTON

					Window		
Method	Target Compound	Date/Time	True Value (ng)	Found Value (ng)	Lower	Upper	Action
MTCA EPA Calibration Verification	C16-C21 Aliphatics	8-6-04/21:12	600	760.85	480	720	Yes
MTCA EPA Calibration Verification	C16-C21 Aliphatics	8-7-04/5:58	600	763.62	480	720	Yes
MTCA EPA Calibration Verification	C16-C21 Aliphatics	8-7-04/19:52	600	763.13	480	720	Yes
MTCA EPA Calibration Verification	C16-C21 Aliphatics	8-7-07/22:32	600	769.94	480	720	Yes
EPA 8260B Calibration Verification	Chloromethane	6-25-04/23:02	20	25.06	15	25	None required

TABLE 10INITIAL CALIBRATIONSFORMER HALEY WOOD TREATING SITE/DNR PROPERTY
BELLINGHAM, WASHINGTON

				Avg	RRF		%RSD		
Date	Time	Method File	Compound	(RRF)	Limit	%RSD	Limit	Method	Actions
06/23/04	18:31	VODF1604.M	Chloroethane	0.112	>=0.05	31.18	<=30	SW-846 8260	Yes
06/23/04	18:31	VODF1604.M	tert-Butyl methyl	1.476	>=0.05	82.06	<=30	SW-846 8260	None ¹
06/23/04	18:31	VODF1604.M	Methylene chloride	2.506	>=0.05	71.47	<=30	SW-846 8260	None ¹
06/23/04	18:31	VODF1604.M	2,2-Dichloropropane	0.467	>=0.05	30.84	<=30	SW-846 8260	Yes
06/23/04	18:31	VODF1604.M	cis-1,3 Dichloropropene	0.504	>=0.05	36.02	<=30	SW-846 8260	None ¹
06/23/04	18:31	VODF1604.M	trans-1,3-Dichloropropene	0.45	>=0.05	38.58	<=30	SW-846 8260	Yes
06/23/04	18:31	VODF1604.M	1,2-Dibromo-3-chloropropane	0.12	>=0.05	41.7	<=30	SW-846 8260	Yes
06/29/04	10:14	FL9F2504.M	Benzoic Acid	0.108	>=0.05	39.924	<=30	SW-846 8270C	None ²
06/29/04	10:14	FL9F2504.M	2,4-Dinitrophenol	0.127	>=0.05	48.342	<=30	SW-846 8270C	None ²
06/29/04	7:28	FL9F2804.M	Benzoic Acid	0.032	>=0.05	40.39	<=30	SW-846 8270C	None ²
06/29/04	7:28	FL9F2804.M	2,4-Dinitrophenol	0.154	>=0.05	31.94	<=30	SW-846 8270C	None ²
06/23/04	12:49	FL92204.M	Benzoic Acid	0.224	>=0.05	38.26	<=30	SW-846 8270C	None ²
06/29/04	10:31	FL9F2804.M	Benzoic Acid	0.153	>=0.05	32.71	<=30	SW-846 8270C	None ²
07/06/04	17:21	FL9G0604.M	1,4-Dichlorobenzene-d4	0	>=0.05	-1	<=30	SW-846 8270C	None ³
07/06/04	17:21	FL9G0604.M	N-Nitrosodimethylamine	0	>=0.05	-1	<=30	SW-846 8270C	None ³
07/06/04	17:21	FL9G0604.M	Benzoic Acid	0.132	>=0.05	43.64	<=30	SW-846 8270C	None ²
07/06/04	17:21	FL9G0604.M	4-Nitrophenol	0.225	>=0.05	31.759	<=30	SW-846 8270C	None ³
07/06/04	17:21	FL9G0604.M	2,4-Dinitrophenol	0.067	>=0.05	49.46	<=30	SW-846 8270C	None ²
07/06/04	17:21	FL9G0604.M	4,6-Dintro-2-methylph	0.072	>=0.05	45.78	<=30	SW-846 8270C	None ³
07/06/04	17:21	FL9G0604.M	1,3,5-Trinitrobenzene	0.03	>=0.05	38.63	<=30	SW-846 8270C	None ³
07/06/04	17:21	FL9G0604.M	Dinoseb	0.072	>=0.05	33.14	<=30	SW-846 8270C	None ²
06/22/04	7:13	SIMF2104.M	Pentachlorophenol	0.031	>=0.05	57.74	<=30	8270C-SIM	Yes
06/22/04	7:13	SIMF2104.M	Pentachlorophenol	0.025	>=0.05	52.467	<=30	8270C-SIM	Yes
07/14/04	8:34	SIMG1304.M	Pentachlorophenol	0.056	>=0.05	53.45	<=30	8270C-SIM	Yes
07/15/04	11:46	SIMF1504.M	2,4,6-TBP	0.095	>=0.05	31.902	<=30	8270C-SIM	Yes
07/15/04	11:46	SIMF1504.M	Pentachlorophenol	0.072	>=0.05	35.589	<=30	8270C-SIM	Yes

Notes:

¹No action taken because results were non-detects

²Not a target analyte

³Initial calibrations were re-run and within limits for this batch

TABLE 11CONTINUING CALIBRATIONFORMER HALEY WOOD TREATING SITE/DNR PROPERTYBELLINGHAM, WASHINGTON

Date	Time	Compound	% Recovery (%D)	Acceptance Criteria	Method	Action
06/29/04	7:48	Benzo (k) fluoroanthene	126%	75% to 125%	SW-846 8270C	None ¹
06/29/04	17:35	4-Nitrophenol	68%	75% to 125%	SW-846 8270C	Yes
06/29/04	21:12	Hexachlorocyclopentadiene	42%	75% to 125%	SW-846 8270C	None ²
07/09/04	15:24	Pentachlorophenol	133%	75% to 125%	SW-846 8270C	Yes
07/06/04	16:56	Benzo (k) fluoroanthene	72	75% to 125%	SW-846 8270C	None ³
07/05/04	10:52	Pentachlorophenol	200	75% to 125%	GC/MS PAH SIM	None ¹
06/23/04	16:48	Pyrene	73	75% to 125%	GC/MS PAH SIM	Yes
07/15/04		13C-OCDD	156	40-135	SW-846 8290	Yes

Notes:

¹Injection logs indicate no project samples were analyzed in this sequence.

²Not a target analyte

³Results from a different instrument also running this analysis were reported instead.

TABLE 12INTERNAL STANDARD SUMMARYFORMER HALEY WOOD TREATING SITE/DNR PROPERTYBELLINGHAM, WASHINGTON

Sample ID	Internal Standard # or Compound	Response	Response Upper Limit	Response Lower Limit	Method
B4F0487-14RE1	Acenaphthalene	723073	362434	90609	GC/MS PAH SIM
B4F0626-54	IS5 (Chrysene-d12)	46447	281280	70320	GC/MS PAH SIM
B4F0626-54	IS6 (Perylene-d12)	31770	146720	36680	GC/MS PAH SIN
B4F0757-02	Chrysene	78402	315736	78934	GC/MS PAH SIN
B4F0757-02	Perylene-d	50061	206500	51625	GC/MS PAH SIN
4F28028-MS1	Chrysene	1952444	1839902	459976	SW-846 8270
4F28028-MS1	IS5(Chrysene-d12)	1952444	1839902	459976	SW-846 8270
4F28028-MS1	IS6(Perylene-d12)	2160193	1690618	422655	SW-846 8270
4F28028-MS1	Perylene-d	2160193	1690618	422655	SW-846 8270
4F28028-MSD1	Chrysene	1857887	1839902	459976	SW-846 8270
4F28028-MSD1	IS5(Chrysene-d12)	1857887	1839902	459976	SW-846 8270
4F28028-MSD1	IS6(Perylene-d12)	2062619	1690618	422655	SW-846 8270
4F28028-MSD1	Perylene-d	2062619	1690618	422655	SW-846 8270
4G08008-BS2	Naphthalene	269755	1097018	274255	SW-846 8270
4G08008-BSD2	1,4-Dichloro	58578	235218	58805	SW-846 8270
4G08008-BSD2	Naphthalene	270399	1097018	274255	SW-846 8270
B4F0627-32	IS6 (Perylene-d12)	2050120	1690618	422655	SW-846 8270
B4F0627-32	Perylene-d	2050120	1881372	470343	SW-846 8270
B4F0634-04REI	1,4-Dichloro	96241	755058	188765	SW-846 8270
B4F0634-04REI	Phenanthrene	518060	2553246	638312	SW-846 8270
B4F0701-21	IS5 (Dichlorobenzene-d4)	2477109	1116808	279202	SW-846 8270
B4F0725-01	IS3 (Acenapthalene-d10)	911996	602500	150625	SW-846 8270
B4F0725-01	IS4 (Phenanthrene-d10)	1086422	1018648	254662	SW-846 8270
B4F0725-05	IS5 (Chrysene-d12)	1225209	971602	242901	SW-846 8270
B4F0725-05	IS6 (Perylene-d12)	891180	884982	221246	SW-846 8270
B4F0745-03	1,4-Dichloro	359048	167134	41784	SW-846 8270
B4F0745-03	Acenaphthalene	1954614	602500	150625	SW-846 8270
B4F0745-03	Chrysene	3801000	971602	242901	SW-846 8270

TABLE 12 (Continued)

Sample ID	Internal Standard # or Compound	Response	Response Upper Limit	Response Lower Limit	Method
B4F0745-03	Naphthalene	1244571	889358	222340	SW-846 8270
B4F0745-03	Perylene-d	3016249	884982	221246	SW-846 8270
B4F0745-03	Phenanthrene	2450834	1018648	254662	SW-846 8270
B4F0745-12	IS3 (Acenapthalene-d10)	709604	431028	107757	SW-846 8270
B4F0745-13	IS2 (Napthalene-d8)	768269	673716	168429	SW-846 8270
B4F0745-13	IS3 (Acenapthalene-d10)	999164	431028	107757	SW-846 8270
B4F0746-14	Acenaphthalene	1897003	1131106	282777	SW-846 8270
B4F0746-14	Acenaphthalene	1897003	1354512	338628	SW-846 8270
B4F0746-14	IS2 (Napthalene-d8)	2004196	1943490	485873	SW-846 8270
B4F0746-14	IS3 (Acenapthalene-d10)	1897003	1131106	282777	SW-846 8270
B4F0746-14	IS4 (Phenanthrene-d10)	2037173	1915662	478916	SW-846 8270
B4F0746-14	IS6 (Perylene-d12)	1710161	1690618	422655	SW-846 8270
B4F0746-14	Naphthalene	2004196	1943490	485873	SW-846 8270
B4F0746-14	Perylene-d	1710161	1690618	422655	SW-846 8270
B4F0746-14	Phenanthrene	2037173	1915662	478916	SW-846 8270
B4F0789-04RE2	IS2 (Napthalene-d8)	739859	675384	168846	SW-846 8270
B4F0789-04REI	1,4-Dichloro	51966	235218	58805	SW-846 8270
B4F0789-04REI	Naphthalene	251114	1097018	274255	SW-846 8270
B4F0789-06RE2	IS3(Acenapthalene-d10)	587789	416280	104070	SW-846 8270

SEAT:\02\027500201\Finals\2006 RI Report (Draft)\027500201T9-12.xls

TABLE 13 GROUND WATER FIELD PARAMETERS GROUND WATER MONITORING

	Parameter				
Monitoring Well	рН	Temperature (degrees C)	Electrical Conductivity (µmho/cm)	Turbidity (NTU)	
CL-MW-1D	7.1	14.2	24	5.6	
CL-MW-6	7.3	12.2	52	125.2	
CL-MW-7	6.7	14.3	0.12	24.4	
CL-MW-14	7.3	12.0	76	7.8	
CL-MW-15	6.7	12.0	34	657.0	
HS-MW-4	6.9	13.9	0.10	7.2	
HS-MW-5	8.2	13.6	60	10.2	
HS-MW-6	6.9	13.5	55	0.0	
HS-MW-9	7.0	13.3	0.09	6.3	
HS-MW-10	7.1	14.0	21	782.0	
HS-MW-11	6.6	13.9	54	10.8	
HS-MW-13	6.7	13.3	0.11	109.0	
HS-MW-15	6.8	11.5	2.1	329.0	
IZ-MW-1	6.7	10.5	1.7	58.2	
IZ-MW-2	7.0	11.1	2.1	25.4	
IZ-MW-3	7.7	9.0	2.7	720.0	
TL-MW-4	7.0	11.0	0.18	85.7	
TL-MW-9	7.0	11.6	0.78	16.5	
TL-MW-10	6.8	13.1	2.1	2.0	
TL-MW-11	6.6	12.8	73	152.4	

Notes:

Samples collected June 2004

SEAT:\02\027500201\Finals\2006 RI Report (Draft)\027500201T13.xls

APPENDIX A ECOCHEM, INC., DATA VALIDATION REPORT (DECEMBER 2004 AND MARCH/APRIL/2005 GROUNDWATER SAMPLING EVENT

DRAFT

Environmental Science and Chemistry

TRANSMITTAL

DATE: August 19, 2005

PROJECT NO.: 2206-1

RECEIVED

AUG 2 2 2005

TO: Jay Lucas Geo Engineers - Seattle 600 Stewart St. Suite 1420 Seattle, Washington 98101 206-728-2674 FROM: Chris Ransom EcoChem, Inc. 100 South King Street Suite 405 Seattle, WA 98104

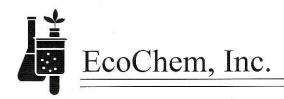
VIA: U.S. Mail

WE ARE SENDING THE FOLLOWING MATERIALS:

• Data validation report for R.G. Haley Site, SDGs B410235 and B5D0048.

REMARKS:

Please call me if you have any questions.


Sincerely,

Chris Ransom Project Manager **EcoChem, Inc.**

Copies: Chron Project File

8/19/2005 12:22 PM cjw 1:\022-geoeng\c02206001\trans.doc

405 Westland Building · 100 South King Street · Seattle, WA 98104-2885 · (206) 233-9332 · Fax (206) 233-0114

Environmental Science and Chemistry

DATA VALIDATION REPORT

R.G. HALEY SITE SDGs: B4I0235 and B5D0048

Prepared for:

Geo Engineers – Seattle 600 Stewart St. Suite 1420- 1700 Seattle, Washington 98101

Prepared by:

EcoChem, Inc. 405 Westland Building 100 South King Street Seattle, Washington 98104-2885

EcoChem Project: C2206-1

August 18, 2005

Approved for Release:

Christine Ransom Project Manager EcoChem, Inc.

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of the validation performed on forty-two water samples. The **SAMPLE INDEX** lists all samples reviewed.

North Creek Analytical Laboratories, Bothell, Washington analyzed the samples for semivolatile compounds and diesel range organic compounds (including lube oils). Frontier Analytical Laboratory, El Dorado Hills, California analyzed the samples for dioxin/furan compounds. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review
Semivolatile Organic Compounds (SVOC)	SW8270	Eric Strout	Christine Ransom
Dioxin/Furan Compounds	SW 8290	Craig Hutchings	Eric Strout
Diesel Range Organic Compounds & Lube Oil	NWTPH Dx	Craig Hutchings	Christine Ransom

ANALYSIS METHODS AND ECOCHEM CHEMISTS

The data were reviewed using guidance and quality control criteria documented in the analytical methods, the quality assurance project plan (QAPP) and the *National Functional Guidelines for Organic Data Review* (USEPA 1999).

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A APPENDIX B** contains the Qualified Data Summary Table. Data validation worksheets will be kept on file at EcoChem.

SAMPLE INDEX R.G. Haley Site March 2005 Sampling Event

Client ID	Laboratory ID	SVOC	Dioxins	NWTPH-Dx
HS-MW-4-040105	B5D0048-01	Х		X
HS-MW-5-033105	B5D0048-02	Х		Х
HS-MW-6-033105	B5D0048-03	X		Х
HS-MW-9-033105	B5D0048-04	X		Х
HS-MW-10-033105	B5D0048-05	Х		Х
HS-MW-11-040105	B5D0048-06	X		Х
HS-MW-13-040105	B5D0048-07	Х		Χ
HS-MW-15-033105	B5D0048-08	X		X
D033105	B5D0048-09	Х		Х
TL-MW-9-033105	B5D0048-10	Х		Х
TL-MW-10-040105	B5D0048-11	Х	·	Х
TL-MW-11-033105	B5D0048-12	X		Х
1Z-MW-1-033005	B5D0048-13	Х		X
1Z-MW-2-033005	B5D0048-14	X		Х
1Z-MW-3-033005	B5D0048-15	Х	Х	Х
1Z-MW-4-033005	B5D0048-16	Х		Х
CL-MW-1S-033105	B5D0048-17	Х		Х
CL-MW-1D-033105	B5D0048-18	X		X
CL-MW-1H-033105	B5D0048-19	Х		Х
CL-MW-6-033105	B5D0048-20	Х		X
CL-MW-7-033105	B5D0048-21	X		Х

SAMPLE INDEX R.G. Haley Site December 2004 Sampling Event

Client ID	Laboratory ID	SVOC	Dioxins	NWTPH-Dx
CL-MW-1D-120904	B4L0235-01	X		X
CL-MW-1H-120904	B4L0235-02	X		X
CL-MW-1S-120904	B4L0235-03	X		<u>X</u>
CL-MW-6-120904	B4L0235-04	X		X
CL-MW-7-120904	B4L0235-05	X		<u>X</u>
D120904	B4L0235-06	X		X
HS-MW-10-120904	B4L0235-07	X		Χ
HS-MW-11-120904	B4L0235-08	X		Х
HS-MW-13-120904	B4L0235-09			Х
HS-MW-15-120804	B4L0235-10	X		<u> </u>
HS-MW-4-120904	B4L0235-11	X		X
HS-MW-5-120904	B4L0235-12	X		Χ
HS-MW-6-121004	B4L0235-13	Х		Χ
HS-MW-9-120904	B4L0235-14	X		X
IZ-MW-1-120904	B4L0235-15	X		X
IZ-MW-2-120904	B4L0235-16	X		Х
IZ-MW-3-120904	B4L0235-17	X	Х	X
IZ-MW-4-120904	B4L0235-18	X		X
TL-MW-10-120904	B4L0235-19	X		Х
TL-MW-11-120804	B4L0235-20	X		X
TL-MW-9-120904	B4L0235-21	Х		Х

2206-1

DATA VALIDATION REPORT R.G. Haley Site Semivolatile Organic Compounds EPA Method SW8270C SDGs: B4L0235 and B5D0048

This report documents the review of analytical data from the analyses of water samples and the associated laboratory quality control samples. North Creek Analytical, Bothell, Washington, analyzed the samples. Refer to the **SAMPLE INDEX** for a list of the individual samples.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG B4L0235: The laboratory appended the date sampled to all sample identifications. For example, the chain of custody (COC) lists Sample CL-MW-1S and the laboratory reported this sample as CL-MW-1S-120904. No action was taken other than to note this discrepancy.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements that were reviewed are listed below.

	Holding Times and Sample Receipt		Laboratory Control Samples (LCS/LCSD)
	GC/MS Instrument Performance Check	2	Field Duplicates
	Initial Calibration (ICAL)	2	Internal Standards
2	Continuing Calibration (CCAL)		Compound Identification
	Laboratory Blanks	1	Calculation Verification
2	Surrogate Compounds		Reporting Limits
1	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	1	Target Analyte List

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Continuing Calibration (CCAL)

The relative response factor (RRF) values were greater than the 0.05 minimum control limit, with the exception noted below. The percent difference (%D) values were within the $\pm 25\%$ control limit for all continuing calibrations (CCAL), with the exceptions noted below. If the %D outlier indicates a potential high bias, associated positive results were estimated (J-5B). If the %D value indicates a potential low bias, associated positive results and reporting limits were estimated (J/UJ-5B). Positive results associated with an RRF value outlier are estimated (J-5B). Due to the potential significant low bias, reporting limits associated with an RRF value outlier are rejected (R-5B). Outliers are detailed in the validation worksheets.

SDG B4L0235:

- 12/14/04 00:57: n-nitrosodiphenylamine (low response)
- 12/14/04 13:07: pentachlorophenol (high response)
- 12/21/04: pentachlorophenol (low response and RRF value outlier)
- 12/22/04: n-nitrosodiphenylamine (low response) and pentachlorophenol (low response and RRF value outlier)
- 1/05/05: pentachlorophenol (high response)

SDG B5D0048:

- 4/11/05: 2,4,6-trichlorophenol (low response)
- 4/13/05: 2,3,5,6-tetrachlorophenol (high response)
- 4/14/05: pentachlorophenol (high response)
- 4/18/05: pentachlorophenol (low response and RRF value outlier)
- 4/19/05: n-nitrosodiphenylamine (low response) and pentachlorophenol (high response)
- 4/20/05: n-nitrosodiphenylamine (low response) and pentachlorophenol (high response)

Surrogate Compounds

SDG B4L0235: Although most samples were analyzed multiple times (due to the need for dilutions or to verify QC outliers), only surrogates from one analysis per sample were summarized. For all other analyses, only the on-column concentration in the raw data were reported. In some cases, all target analytes were reported from one analysis and all surrogates were reported from a second analysis.

Surrogate recovery values were reviewed/recalculated from the raw data. For many of the samples, multiple surrogate outliers were associated with the reported target analyte results. Almost all surrogate outliers indicated a potential high bias. For analyses with more than one surrogate recovery value outlier in a fraction (acid or base-neutral), the associated positive results were estimated (J-13).

SDG B5D0048: One or more surrogate percent recovery (%R) values were outside the control limits in eleven of the twenty samples. Most of the samples in this batch were reanalyzed as dilutions. For all of the samples, either the surrogates were acceptable in one of the analyses, or only one surrogate in a fraction (acid or base-neutral) was outside the control limits. No action was taken based on surrogate recovery outliers.

Matrix Spike/Matrix Spike Duplicate Analyses (MS/MSD)

SDG B5D0048: Two MS/MSD sets were submitted, one using Sample HS-MW-5-003105 and one using a 1:10 dilution of the same sample.

In the MSD analysis from the undiluted sample, the %R values for n-nitrosodiphenylamine (69.8%) and 2,4,6-tri-chlorophenol (54.5%) were less than the lower control limits of 70% and 57%, respectively. As the %R values were acceptable in the MS and LCS/LCSD, no action was taken.

For the MS/MSD set performed using the 1:10 dilution of Sample HS-MW-5-033105, five %R values were less than the lower control limits in the MS analysis, and most relative percent difference (RPD) values were greater than the control limit. A note on the raw data and in the case narrative states that the MS extract was spilled during the solvent-reduction stage of the preparation process. As the %R values were acceptable in the MSD and in the other MS/MSD set, no action was taken.

Field Duplicates

RPD values were calculated for all compounds with concentrations greater than four times the reporting limit. For compounds with concentrations less than four times the reporting limit, the difference between the reported concentrations was calculated. The results were compared to control limits of 30% for the RPD values, or difference values less than twice the reporting limit.

SDG B4L0235: Samples TL-MW-9-120904 and D120904 were submitted as field duplicates. All RPD values were less than the control limit of 30%.

SDG B5D0048: Samples HW-MW-6-033105 and D033105 were submitted as field duplicates. The RPD values and/or difference values were outside the control limits for fourteen of the twenty-four compounds. Since the majority of the precision results were outside the control limits, all results in these samples were estimated (J/UJ-9).

Internal Standards

SDG B4L0235: For many of the samples (including reanalyses), the internal standard areas were outside the control limits (-50%/+100% of the area of the internal standard in the associated CCAL). Most of the outliers were less than the lower control limit, indicating a potential low bias.

For internal standard outliers, the associated target compounds were estimated (J/UJ-19). If the target compound was reported from a reanalysis with acceptable internal standard areas, no qualifiers were issued.

Compound Quantitation and Reporting Limits

SDG B4L0235: Although most samples were analyzed multiple times (due to the need for dilutions or to verify QC outliers), only the 'best' result for each analyte was reported on the sample result summary forms. No action was necessary.

SDG B5D0048: Due to the presence of high levels of target analytes and/or surrogate outliers, most of the samples were analyzed more than once, usually at a higher dilution level. The laboratory reported multiple sets of results for most of the samples.

Target analytes that were present at concentrations greater than the upper calibration range of the instrument were qualified as do-not-report (DNR-20), and should be reported from the appropriate dilution. All of the results from the dilutions, except the target analytes of interest, were qualified as do-not-report (DNR-11) and should be reported from the analysis with the lowest possible dilution.

After the DNR qualifiers were issued, only one result is reported for each compound in a sample. The compounds are reported from the most appropriate analysis.

Calculation Verification

Several results were verified by recalculation from the raw data. The following errors were noted:

The laboratory incorrectly reported the %D values for all CCAL. The reported %D values were calculated using the concentrations, rather than the RRF values. The correct %D values were reported in the raw data, and were used to evaluate the sample results. No further action was taken, other than to note this discrepancy.

Target Analyte List

The reported target analyte list includes three compounds that were not part of the target analyte list specified in the quality assurance program plan (QAPP): dibenz(a,h)anthracene, 2,3,4,5/2,3,4,6-tetrachlorophenol, and 2,4,5-trichlorophenol. No action was taken, other than to note the discrepancy.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Precision was acceptable, as demonstrated by the field duplicate, LCS/LCSD, and MS/MSD RPD values, with the exceptions noted above. Accuracy was also acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recovery values, with the previously noted exceptions.

Data were estimated due to surrogate recovery outliers, field duplicate precision outliers, internal standard area outliers, and continuing calibration %D outliers. Data were rejected due to a continuing calibration RRF value less than 0.05. Data were qualified as do-not-report in order to indicate which values should be used when multiple results were reported for a sample.

Data that have been rejected or qualified as do-not-report should not be used for any purpose.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT R.G. Haley Site Dioxin/Furan Compounds EPA Method SW 8290 SDGs: B4L0235 and B5D0048

This report documents the review of analytical data from the analyses of water samples and the associated laboratory quality control samples. Frontier Analytical Laboratory, El Dorado Hills, California, analyzed the samples. Refer to the **SAMPLE INDEX** for a list of the individual samples.

I. DATA PACKAGE COMPLETENESS

The laboratory narrative indicated no problems with sample receipt. The laboratory submitted all of the necessary deliverables. Adequate corrective action processes were followed and anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Holding Times and Sample Receipt GC/MS Instrument Performance Check Initial Calibration (ICAL) Continuing Verification (CVER) Isomer Specificity
- Laboratory Blanks Labeled Compound Recovery Ongoing Precision Recovery (OPR) Compound Identification
- 2 Compound Quantitation and Reporting Limits

¹ Quality control results are discussed below, but no data were qualified.

 \widetilde{Q} uality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Holding Times and Sample Receipt

SDG B5D0048: The sample cooler was received outside the control limits of $4^{\circ}C \pm 2^{\circ}$, at $0^{\circ}C$. This temperature outlier was judged to have no impact on the data and no action was taken.

Compound Quantitation and Reporting Limits

SDG B4L0235: The laboratory observed diphenyl ether interference in the determination of the total tetrafurans and total pentafurans. As this interference may result in false positive results, the values for these homologue groups were qualified as not detected (U-21).

SDG B5D0048: The laboratory observed diphenyl ether interference in the determination of 1,2,3,4,6,7,8-HpCDF, total tetrafurans, total pentafurans, total hexafurans, and total heptafurans. As

this interference may result in false positive results, the values for these homologue groups or target analytes were qualified as not detected (U-21).

Overall Assessment

As determined by this evaluation, the laboratory followed the specified method. Laboratory accuracy was acceptable as demonstrated by the recovery values for the ongoing precision and recovery (OPR) samples and labeled compounds. Laboratory precision could not be evaluated.

Data were qualified as not detected due to diphenyl ether interferences.

All data, as qualified, are acceptable for use.

.

DATA VALIDATION REPORT R.G. Haley Site Diesel Range Organic Compounds & Lube Oil Method NWTPH-Dx SDGs: B4L0235 and B5D0048

This report documents the review of analytical data from the analyses of water samples and the associated laboratory quality control samples. North Creek Analytical, Bothell, Washington, analyzed the samples. Refer to the **SAMPLE INDEX** for a list of the individual samples.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG B4L0235: The laboratory appended the date sampled to all sample identifications. For example, the chain of custody (COC) lists Sample CL-MW-1S and the laboratory reported this sample as CL-MW-1S-120904. No action was taken other than to note this discrepancy.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements that were reviewed are listed below.

Technical Holding Times and Sample Receipt	
Initial Calibration (ICAL)	
Continuing Calibration (CCAL)	

Blanks (Method & Field)

1

1 Surrogate Compounds

- 1 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
- 2 Laboratory Control Samples (LCS)
- 1 Field Duplicates
- 2 Compound Quantitation and Reporting Limits
- 1 Calculation Verification

Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Continuing Calibration (CCAL)

SDG B5D0048: The percent difference (%D) value for the diesel range hydrocarbons CCAL analyzed April 13, 2005 on Instrument GC-1F was outside the $\pm 15\%$ control limit, at -51.6%. The data from the sample associated with this CCAL was not reported and no action was taken.

Surrogate Compounds

SDG B5D0048: Due to the dilution factors, the surrogates were not recovered in Samples TL-MW-10-040105 (100X) and CL-MW-15-033105 (40X). No action was taken. The percent recovery (%R) value for the 2-FBP surrogate was less than the 50% lower control limit in the method

blank associated with batch 5D09003. Qualifiers are not assigned to QC samples and therefore no action was taken.

Matrix Spike/Matrix Spike Duplicate Analyses

SDG B4L0235: No matrix spike/matrix spike duplicate (MS/MSD) was analyzed for the lube oil range. As the diesel range MS/MSD were acceptable, no action was taken.

Laboratory Control Samples

SDG B4L0235: No laboratory control samples (LCS) were analyzed for the lube oil range with the initial extractions. As the diesel range LCS were acceptable no action was taken on this basis. Both lube oil and diesel range LCS were analyzed with the re-extractions and all %R and relative percent difference (RPD) values were acceptable.

SDG B5D0048: The %R value for diesel in the LCS associated with batch 5D04065 was less than the lower control limit of 50%, at 18.7%. The RPD value for diesel was greater than the control limit of 50%, at 125%, for this LCS/LCSD pair. The laboratory noted that these outliers were the result of an error that occurred during the extraction process. The %R value in the LCSD was acceptable. Only Sample CL-MW-7-033105 was associated with this batch; and this sample was re-extracted and re-analyzed with an acceptable LCS/LCSD.

Field Duplicates

SDG B4L0235: Samples TL-MW-9-120904 and D120904 were submitted as field duplicates. All RPD values were less than the control limit of 30%.

SDG B5D0048: Samples HW-MW-6-033105 and D033105 were submitted as field duplicates. All RPD values were less than the control limit of 30%.

Compound Quantitation and Reporting Limits

The target reporting limit of 0.25 mg/L for the lube oil range was not met; the laboratory reporting limit was 0.50 mg/L. No action was taken on this basis.

SDG B4L0235: No lube oil range QC was extracted with the samples. At the clients request, the laboratory re-extracted two of the samples, one of which had no positive values (IZ-MW-1-120904) and one with positive values (CL-MW-1S-120904). The re-extraction results for Sample IZ-MW-1-120904 were comparable, however those for Sample CL-MW-1S-120904 were not.

Sample CL-MW-1S-120904 was extracted a third time. Both extractions of Sample IZ-MW-1-120904 were reported, and the first and third extraction of Sample CL-MW-1S-120904 were reported. In order that only one set of values for each sample be reported the initial results should be used for these samples. The re-extraction results for these samples were qualified do-not-report (DNR-11) in

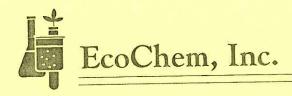
order to indicate that these results should not be used.

SDG B5D0048: The %R value for the diesel range hydrocarbons LCS associated with Sample CL-MW-7-033105 was less than the lower control limit due to a laboratory error. This sample was re-extracted (with diesel range hydrocarbons QC only) and re-analyzed. The LCS/LCSD values for the re-extraction were acceptable.

One of the CCAL for diesel range hydrocarbons associated with the re-analysis did not meet the acceptance criteria, indicating a low bias. The laboratory reported both the initial and the re-analysis. The majority of the QC associated with the initial extraction was acceptable, and the LCS outlier does not indicate any systemic bias. However, the CCAL associated with the re-analysis data indicates a low bias. For these reasons the data from the initial extraction should be used. The data from the re-analysis was qualified as do-not-report (DNR-11) to indicate this.

Calculation Verification

SDG B5D0048: The laboratory incorrectly reported the %D value and the concentration for the lube oil range hydrocarbons CCAL analyzed April 8, 2005 on Instrument GC-7R, indicating the CCAL did not meet the acceptance criteria. The raw data indicated the correct concentration and the CCAL did meet the acceptance criteria. No action was taken, other than to note this discrepancy.


III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Precision was acceptable, as demonstrated by the field duplicate, LCS/LCSD, and MS/MSD RPD values, with the exception noted above. Accuracy was also acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recovery values, with the exceptions noted above.

Data were estimated due to an LCS %R outlier. Data were qualified as do-not-report in order to indicate which values should be used when multiple results were reported for a sample.

Data that have been qualified as do-not-report should not be used for any purpose.

All other data, as qualified, are acceptable for use.

Environmental Science and Chemistry

APPENDIX A DATA QUALIFIER DEFINITIONS AND VALIDATION CRITERIA

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives

EcoChem Validation Guidelines (Based on Organic NFG 1999) Semivolatile Analysis by GC/MS

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1	
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\label{eq:starting} \begin{array}{l} \hline Water: \\ J(+)/UJ(-) \mbox{ if ext. } > 7 \mbox{ and } < 21 \mbox{ days} \\ J(+)/R(-) \mbox{ if ext. } > 21 \mbox{ days} \mbox{ (EcoChem PJ)} \\ \hline Solids/Wastes: \\ J(+)/UJ(-) \mbox{ if ext. } > 14 \mbox{ and } < 42 \mbox{ days} \\ J(+)/R(-) \mbox{ if ext. } > 42 \mbox{ days} \mbox{ (EcoChem PJ)} \end{array}$	1	
		J(+)/UJ(-) if analysis >40 days		
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A	
	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL≕ reporting limit: J(+)/R(-) if RRF < 0.05	5A	
Initial Calibration (Minimum 5 stds.)		If reporting limit > MDL: note in worksheet if RRF <0.05		
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A	
	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05	5B	
Continuing Calibration (Prior to each 12 hr. shift)		If reporting limit > MDL: note in worksheet if RRF <0.05		
	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B	
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7	
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7	
	No TICs present	R(+) TICs using 10X rule	7	
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6	

EcoChem Validation Guidelines (Based on Organic NFG 1999) Semivolatile Analysis by GC/MS

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) If both %R > UCL J(+)/UJ(-) If both %R < LCL J(+)/R(-) If both %R < 10% PJ If only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) if RPD > CL	9
LCS low conc. H2O SVOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL J(+)/UJ(-) if %R <lcl J(+)/R(-) if %R < 10% (EcoChem PJ)</lcl 	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	IS area within -50% to 100% of CC RT within 30 seconds of CC RT	J(+) if IS > 100% J(+)/UJ(-) if IS < 50% J(+)/R(-) if IS is < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits if no QAPP: Use RPD < 35% (water) or < 50% (soil)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	R(+) common laboratory contaminants R(+) target compouds from other fractions See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

EcoChem Validation Guidelines (Based on EPA Reg. 10 and Method Criteria) Dioxin/Furan Analysis by HRMS (Methods 1613B or SW846 - 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	Waters/Solids <4°C Tissues <10°C	EcoChem PJ, see TM-05	1
Holding Time	Water: 30 days from collection Soil: 30 days from collection Analysis: 40 days from extraction Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days	J(+)/UJ(-) if ext > 30days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790). Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) x = ht. of TCDD y = baseline to bottom of valley For all isomers eluting near 2378-TCDD/TCDF isomers (TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	ICAL: Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

EcoChem Validation Guidelines (Based on EPA Reg. 10 and Method Criteria) Dioxin/Furan Analysis by HRMS (Methods 1613B or SW846 - 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6 for 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the 2 CCAL may be used to calculate samples per Section 8.3.2.4 of 8290)	J(+)/UJ(-) natives if %D = 30% - 75% R(+/-) if %D > 75%	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet table 2 of 1613B.	EcoChem PJ, see TM-05	
	lon Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	EcoChem PJ, see ICAL section of TM-05	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6 of method		10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8

EcoChem Validation Guidelines (Based on EPA Reg. 10 and Method Criteria) Dioxin/Furan Analysis by HRMS (Methods 1613B or SW846 - 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) if RPD > CL	9
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method</i> 8290: %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% - LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B</i> : %R must meet limits specified inTable 7	J(+)/R(-) if %R < 10%	
Quantitation/ Identification	SIM ions for analyte, Istd, rec. std. Max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Water: RPD < 35% Soil: RPD < 50%	Note in Narrative and use Professional Judgement to qualify	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used	11

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE		
Cooler Temperature	4°C±2°C	J(+)/UJ(-) using Professional Judgement	2		
Holding Time	Water: 14 days from collection (if acidified); 7 days (if unacidified) Soil: 14 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (Prof. Judgement)	1		
Retention Time Standards (RTS)	RTS run every 24 hours or at the beginning of each analytical shift (C10 and C24)	Narrate (Use Professional Judgement to qualify)	5B		
Initial Calibration	Calibration points (All within 15%) $J(+)/UJ(-)$ Linear Regression: $R^2 \ge 0.990$ If $R^2 < 0.990$				
Continuing Calibration	" I MUSERAVE OREDINO AND CLUSHIG CAPAS I GUY - ULTICULE I I 700 Y 1070				
Method Blank	One per matrix per batch No results ≥CRQL	U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL) UJ(+) if sample result is ≥CRQL and < 5X rule (at reported sample value)	7		
Field Blanks	No results <u>></u> CRQL	Apply 5X rule; U(+) < action level	6		
MS (Optional)	Lab control limits	Qualify parent only, unless other QC indicates systematic problems. J(+) If both %R > UCL J(+)/UJ(-) If both %R < LCL PJ if only one %R outlier	8		
Precision: MS/MSD or LCS/LCSD or sample/dup	Two lab dups per analytical batch RPD ≤ laboratory limits	J(+) if RPD >laboratory limits	9		
LCS (Optional)	Lab control limits	J(+) If %R >UCL J(+)/R(-) If %R <lcl< td=""><td>10</td></lcl<>	10		
Surrogates	Suggested Surrogates: 2-fluorobiphenyl, o, or p-terphenyl or pentacosane %R = 50-150%	If %R < LCL, J(+)/UJ(-) If > UCL, J(+) if any %R <10%, J(+)/R(-)	13		
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	14		
Field Duplicates	Use RPD < 35% (water) or < 50% (soil)	Narrate (Use Professional Judgement to qualify)	9		

State of Washington (and Oregon) Total Petroleum Hydrocarbons-Diesel (and Residual) Range

Environmental Science and Chemistry

APPENDIX B QUALIFIED DATA SUMMARY TABLE

jc 06/14/95 10:12 AM H \TEMPLATE\APPENDIX.DOC

Laboratory ID	Method	Chemical Name	Value	Units	Laboratory Qualifiers	Validator Qualifiers	Reason Code
CL-MW-1H-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	5B
CL-MW-1H-120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
CL-MW-1S-120904	NWTPH-DxSG	DIESEL RANGE HYDROCARBONS	14.6	mg/l	D	DNR	11
CL-MW-1S-120904	NWTPH-DxSG	Lube Oil Range Hydrocarbons	24.0	mg/l	D	DNR	11
CL-MW-1S-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	5B
CL-MW-1S-120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
CL-MW-6-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	5B
CL-MW-6-120904	SW8270	Pentachlorophenol	0.500	ug/l	DŲ	R	5B
CL-MW-7-120904	SW8270	N-Nitrosodiphenylamine	0.410	ug/l	D	J	5B
CL-MW-7-120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
D120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	5B
D120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
HS-MW-10-120904	SW8270	Anthracene	0.100	ug/l	[1]	UJ	19
HS-MW-10-120904	SW8270	Pyrene	0.100	ug/l	[6]	ÚĴ	19
HS-MW-10-120904	SW8270	Fluoranthene	0.100	ug/l	[4]	UJ	19
HS-MW-10-120904	SW8270	Chrysene	0.100	ug/l	[3]	UJ	19
HS-MW-10-120904	SW8270	Benzo(a)anthracene	0.100	ug/l	[2]	UJ	19
HS-MW-10-120904	SW8270	Acenaphthene	5.41	ug/l	D	J	19
HS-MW-10-120904	SW8270	Phenanthrene	5.19	ug/l	Q-39 D	J	19
HS-MW-10-120904	SW8270	Pentachlorophenol	0.500	ug/l	[5]	R	5B
HS-MW-11-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	ÛĴ	5B
HS-MW-11-120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
HS-MW-13-120904	SW8270	Dibenzofuran	0.100	ug/l	DU	UJ	19
HS-MW-13-120904	SW8270	Acenaphtylene	0.100	ug/l	DU	UJ	19
HS-MW-13-120904	SW8270	2,3,4,5-Tetrachlorophenol	5.00	ug/l	DU	UJ	19
HS-MW-13-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	19
HS-MW-13-120904	SW8270	Pentachlorophenoi	0.500	ug/l		R	5B
HS-MW-13-120904	SW8270	2,4,6-Trichlorophenol	0.500	ug/l	DU	UJ	19
HS-MW-13-120904	SW8270	2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	UJ	10
HS-MW-13-120904	SW8270	2,4,5-Trichlorophenol	0.500	ug/l	DU	UJ	19
HS-MW-4-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	5B
HS-MW-4-120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
HS-MW-5-120904	SW8270	Dibenzofuran	0.109	ug/l		J	13
HS-MW-5-120904	SW8270	Acenaphthene	0.639	ug/l		1	13
HS-MW-5-120904	SW8270	Phenanthrene	0.000	ug/l		J	13
HS-MW-5-120904	SW8270	Fluorene	0.319	ug/l		J	13
HS-MW-5-120904	SW8270	Pentachlorophenol	0.010	ug/l	U	R	5B
HS-MW-6-121004	SW8270	N-Nitrosodiphenylamine	1.21	ug/l	0	J	5B 5B
HS-MW-6-121004	SW8270	Pentachlorophenol	0.500	ug/l	ט ט	R	5B
HS-MW-9-120904	SW8270	Indeno(1,2,3-cd)pyrene	0.0503	ug/l	50	J	13
HS-MW-9-120904	SW8270 SW8270	Benzo(b)fluoranthene	0.0303	ug/i ug/i		J	13
HS-MW-9-120904	SW8270	Benzo(k)fluoranthene	0.0251	ug/l		J	13
HS-MW-9-120904	SW8270 SW8270		0.0254			J J	13
		Benzo(a)pyrene		ug/l		1	13
HS-MW-9-120904	SW8270	Dibenz(a,h)anthracene	0.0446	ug/l		J	
HS-MW-9-120904	SW8270	Pentachlorophenol	0.0500	ug/l	U	R	5B
HS-MW-9-120904	SW8270		0.0145	ug/l			13
IZ-MW-1-120904	NWTPH-DxSG	DIESEL RANGE HYDROCARBONS	0.250	mg/l	U	DNR	11
IZ-MW-1-120904	NWTPH-DxSG	Lube Oil Range Hydrocarbons	0.500	mg/l	U	DNR	11

					Laboratory	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifiers	Qualifiers	Code
IZ-MW-1-120904	SW8270	Indeno(1,2,3-cd)pyrene	0.0242	ug/l		ſ	13
IZ-MW-1-120904	SW8270	Benzo(a)pyrene	0.0146	ug/l		J	13
IZ-MW-1-120904	SW8270	Dibenz(a,h)anthracene	0.0222	ug/l		J	13
IZ-MW-1-120904	SW8270	Phenanthrene	0.0152	ug/l		J	13
IZ-MW-1-120904	SW8270	Pentachlorophenol	0.0500	ug/l	U	R	5B
IZ-MW-1-120904	SW8270	Naphthalene	0.0402	ug/l		J	13
IZ-MW-2-120904	SW8270	Indeno(1,2,3-cd)pyrene	0.0382	ug/l		J	13
IZ-MW-2-120904	SW8270	Dibenz(a,h)anthracene	0.0334	ug/l		J	13
IZ-MW-2-120904	SW8270	Pentachiorophenol	0.0500	ug/l	U	R	5B
IZ-MW-3-120904	SW8270	Pyrene	0.0327	ug/l		J	13
IZ-MW-3-120904	SW8270	Indeno(1,2,3-cd)pyrene	0.0281	ug/l		J	13
IZ-MW-3-120904	SW8270	Acenaphtylene	0.122	ug/l		J	13
IZ-MW-3-120904	SW8270	Dibenz(a,h)anthracene	0.0295	ug/i		J	13
IZ-MW-3-120904	SW8270	Acenaphthene	0.451	ug/l		J.	13
IZ-MW-3-120904	SW8270	Pentachlorophenol	0.0500	ug/l	U	R	5B
IZ-MW-3-120904	SW8270	2-Methylnaphthalene	0.189	ug/i		J	13
IZ-MW-3-120904	SW8290	Total Penta-Furans	42.9	pg/L	M	U	21
IZ-MW-3-120904	SW8290	Total Tetra-Furans	24.1	pg/L	М	U	21
IZ-MW-4-120904	SW8270	Pentachlorophenol	0.0500	ug/l	U	R	5B
TL-MW-10-120904	SW8270	N-Nitrosodiphenylamine	2.00	ug/l	DU	UJ	5B
TL-MW-10-120904	SW8270	Pentachlorophenol	5.00	ug/l	DU	R	5B
TL-MW-11-120804	SW8270	N-Nitrosodiphenylamine	2.40	ug/l	D	J	5B
TL-MW-11-120804	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B
TL-MW-9-120904	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	5B
TL-MW-9-120904	SW8270	Pentachlorophenol	0.500	ug/l	DU	R	5B

8/17/2005

			····		Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
1Z-MW-1-033005	SW8270	2,4,6-Trichlorophenol	0.0500	ug/l	Q-40 U	UJ	5B
1Z-MW-2-033005	SW8270	Pentachlorophenol	0.411	ug/l		J	5B
1Z-MW-3-033005	SW8290	1,2,3,4,6,7,8-HPCDF	209	pg/L	M	U	21
1Z-MW-3-033005	SW8270	N-Nitrosodiphenylamine	0.0200	ug/l	U	UJ	5B
1Z-MW-3-033005	SW8270	Pentachiorophenol	1.40	ug/l	Q-41	J	5B
1Z-MW-3-033005	SW8290	Total Hepta-Furans	1070	pg/L_	М	U	21
1Z-MW-3-033005	SW8290	Total Hexa-Furans	424	pg/L	М	U	21
1Z-MW-3-033005	SW8290	Total Penta-Furans	96.0	pg/L	М	U	21
1Z-MW-3-033005	SW8290	Total Tetra-Furans	55.9	pg/L	М	U	21
1Z-MW-4-033005	SW8270	Pentachlorophenol	0.436	ug/l		J	5B
CL-MW-1H-033105	SW8270	2,3,4,5-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	2,4,5-Trichlorophenol	0.500	ug/l	DŲ	DNR	11
CL-MW-1H-033105	SW8270	2,4,6-Trichlorophenol	0.500	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	2-Methylnaphthalene	1.34	ug/l	D	DNR	11
CL-MW-1H-033105	SW8270	Acenaphthene	6.35	ug/l	E	DNR	20
CL-MW-1H-033105	SW8270	Acenaphtylene	0.895	ug/l	D	DNR	11
CL-MW-1H-033105		Anthracene	0.100	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	Benzo(a)anthracene	0.100	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	Benzo(a)pyrene	0.100	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	Benzo(b)fluoranthene	0.100	ug/1	DU	DNR	- 11
CL-MW-1H-033105	SW8270	Benzo(g,h,i)perylene	1.00	ug/l	ÐU	DNR	11
CL-MW-1H-033105	SW8270	Benzo(k)fluoranthene	0.100	ug/l	DU	DNR	11
CL-MW-1H-033105			0.100	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	Dibenz(a,h)anthracene	0.100	ug/l	DU	DNR	11
CL-MW-1H-033105	SW8270	Dibenzofuran	1.81	ug/l	D	DNR	11
CL-MW-1H-033105			0.248	ug/l	D	DNR	11
CL-MW-1H-033105	SW8270	Fluorene	3.89	ug/l	D	DNR	11
CL-MW-1H-033105	SW8270	Indeno(1,2,3-cd)pyrene	0.100	ug/l	DU	DNR	11
CL-MW-1H-033105		Naphthalene	0.949	ug/l	D	DNR	11
CL-MW-1H-033105		N-Nitrosodiphenylamine	2.56	ug/l	D	DNR	11
CL-MW-1H-033105		Pentachlorophenol	1.67	ug/l		J	5B
CL-MW-1H-033105	SW8270	Pentachlorophenol	0.500	ug/l	[11]	DNR	11
CL-MW-1H-033105		Phenanthrene	0.635	ug/l	D	DNR	11
CL-MW-1H-033105	SW8270	Pyrene	0.598	ug/l	D	DNR	11
CL-MW-1S-033105		2,3,4,5-Tetrachiorophenol	50.0	ug/l	DU	DNR	11
CL-MW-1S-033105		2,3,5,6-Tetrachlorophenol	50.0	ug/l	DU	DNR	11
CL-MW-1S-033105		2,4,5-Trichlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1S-033105		2,4,6-Trichlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1S-033105		2-Methylnaphthalene	371	ug/l	E-01 D	DNR	20
CL-MW-1S-033105		Acenaphthene	13.4	ug/l	D	DNR	11
CL-MW-1S-033105	SW8270		1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270		1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270		1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270	- · · · · · · · · · · · · · · · · · · ·	1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270		1.00	ug/l	DU	DNR	11

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
CL-MW-1S-033105	SW8270	Benzo(g,h,i)perylene	10.0	ug/l	DU	DNR	11
CL-MW-1S-033105		Benzo(k)fluoranthene	1.00	ug/l	DU	DNR	11
CL-MW-1S-033105		Chrysene	2.09	ug/l	D	DNR	11
CL-MW-1S-033105		Dibenz(a,h)anthracene	1.00	ug/l	DU	DNR	11
CL-MW-1S-033105		Dibenzofuran	1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270	Fluoranthene	1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270	Fluorene	12.8	ug/l	D	DNR	11
CL-MW-1S-033105	SW8270	Indeno(1,2,3-cd)pyrene	1.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270	Naphthalene	3.55	ug/l	D	DNR	11
CL-MW-1S-033105	SW8270	N-Nitrosodiphenylamine	2.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270	N-Nitrosodiphenylamine	4.17	ug/l	D	J	5B
CL-MW-1S-033105	SW8270	Pentachlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1S-033105	SW8270	Phenanthrene	18.9	ug/l	D	DNR	11
CL-MW-1S-033105	SW8270	Pyrene	1.92	ug/l	D	DNR	11
CL-MW-6-033105	SW8270	2,3,4,5-Tetrachlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-6-033105		2,3,5,6-Tetrachlorophenol	5.08	ug/l	E	J	20
CL-MW-6-033105		2,3,5,6-Tetrachlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-6-033105	SW8270	2,4,5-Trichlorophenol	1.24	ug/l	D	DNR	11
CL-MW-6-033105		2,4,6-Trichlorophenol	1.00	ug/l	DU	DNR	11
CL-MW-6-033105		2-Methylnaphthalene	37.4	ug/l	E-01	DNR	20
CL-MW-6-033105		Acenaphthene	5.23	ug/l	E	DNR	20
CL-MW-6-033105		Acenaphtylene	1.16	ug/l	D	DNR	11
CL-MW-6-033105	SW8270		0.200	ug/l	DU	DNR	11
CL-MW-6-033105	SW8270	Benzo(a)anthracene	0.200	ug/l	DU	DNR	11
CL-MW-6-033105	SW8270	Benzo(a)pyrene	0.200	uğ/l	DU	DNR	11
CL-MW-6-033105	SW8270	Benzo(b)fluoranthene	0.200	uğ/l	DU	DNR	11
CL-MW-6-033105	SW8270	Benzo(g,h,i)perylene	2.00	ug/l	DU	DNR	11
CL-MW-6-033105		Benzo(k)fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-6-033105	SW8270	Chrysene	0.200	ug/l	DU	DNR	11
CL-MW-6-033105		Dibenz(a,h)anthracene	0.200	ug/l	DU	DNR	11
CL-MW-6-033105	SW8270	Dibenzofuran	2.13	ug/l	D	DNR	11
CL-MW-6-033105	SW8270	Fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-6-033105	SW8270	Fluorene	4,79	ug/l	E	DNR	20
CL-MW-6-033105		Indeno(1,2,3-cd)pyrene	0.200	ug/l	DU	DNR	11
CL-MW-6-033105		Naphthalene	11.3	ug/l	E-01	DNR	20
CL-MW-6-033105		N-Nitrosodiphenylamine	0.616	ug/l	D	DNR	11
CL-MW-6-033105		N-Nitrosodiphenylamine	1.06	ug/l		J	5B
CL-MW-6-033105		Pentachlorophenoi	5.99	ug/l	Q-41 D	J	5B
CL-MW-6-033105		Pentachlorophenol	7.37	ug/l	E Q-41	DNR	20
CL-MW-6-033105		Phenanthrene	5.73	ug/l	E	DNR	20
CL-MW-6-033105	SW8270	Pyrene	0.219	ug/l	D	DNR	11
CL-MW-7-033105		2,3,4,5-Tetrachlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-7-033105	SW8270	2,3,5,6-Tetrachlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-7-033105		2,4,5-Trichlorophenol	1.00	ug/l	DU	DNR	11
CL-MW-7-033105		2,4,6-Trichlorophenol	1.00	ug/l	DU	DNR	11
CL-MW-7-033105	SW8270	2-Methylnaphthalene	37.2	ug/l	E-01	DNR	20

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
CL-MW-7-033105		Acenaphthene	0.884	ug/l	D	DNR	11
CL-MW-7-033105	SW8270	Acenaphtylene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Anthracene	0.200	ug/t	DU	DNR	11
CL-MW-7-033105	SW8270	Benzo(a)anthracene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Benzo(a)pyrene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Benzo(b)fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Benzo(g,h,i)perylene	2.00	ug/l	DU	DNR	11
CL-MW-7-033105		Benzo(k)fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Chrysene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105	SW8270	Dibenz(a,h)anthracene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Dibenzofuran	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		DIESEL RANGE HYDROCARBONS	0.250	mg/l	XU	UJ	10
CL-MW-7-033105	WTPH-Dx	DIESEL RANGE HYDROCARBONS	0.250	mg/l	U	DNR	11
CL-MW-7-033105	SW8270	Fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Fluorene	0.583	ug/l	D	DNR	11
CL-MW-7-033105		Indeno(1,2,3-cd)pyrene	0.200	ug/l	DU	DNR	11
CL-MW-7-033105		Lube Oil Range Hydrocarbons	0.500	mg/l	U	DNR	11
CL-MW-7-033105	SW8270	Naphthalene	0.551	ug/l	D	DNR	11
CL-MW-7-033105		N-Nitrosodiphenylamine	0.400	ug/l	.DU	DNR	11
CL-MW-7-033105	SW8270	N-Nitrosodiphenylamine	0.457	ug/l		J	5B
CL-MW-7-033105	SW8270	Pentachlorophenol	0.590	ug/l	Q-41	J	5B
CL-MW-7-033105		Pentachlorophenol	6.27	ug/l	Q-41 D	DNR	11
CL-MW-7-033105	SW8270	Phenanthrene	0.435	ug/l	D	DNR	11
CL-MW-7-033105	SW8270		0.200	ug/l	DU	DNR	11
D033105	SW8270	2,3,4,5-Tetrachlorophenol	250	ug/l	DU	DNR	11
D033105		2,3,4,5-Tetrachlorophenol	5.00	ug/l	DU	ປມ	9
D033105		2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	UJ	9
D033105		2,3,5,6-Tetrachlorophenol	250	ug/l	DU	DNR	11
D033105		2,4,5-Trichlorophenol	25.0	ug/l	DU	DNR	11
D033105		2,4,5-Trichlorophenol	0.500	ug/l	DU	UJ	9
D033105		2,4,6-Trichlorophenol	0.500	ug/l	[8]	UJ	5B, 9
D033105		2,4,6-Trichlorophenol	25.0	ug/l	DU	DNR	11
D033105		2-Methylnaphthalene	598	ug/l	E-01 D	DNR	20
D033105		2-Methylnaphthalene	436	ug/l	D	J	9
D033105		Acenaphthene	8.62	ug/l	D	DNR	11
D033105		Acenaphthene	8.58	ug/l_	D	J	9
D033105		Acenaphtylene	5.00	ug/l	DU	DNR	11
D033105		Acenaphtylene	0. <u>100</u>	ug/l	DU_	UJ	9
D033105	SW8270		0.479	ug/l	D	J	9
D033105	SW8270		5.00	ug/l	DU	DNR	11
D033105	SW8270	Benzo(a)anthracene	0.280	ug/l	D	J	9
D033105	SW8270	Benzo(a)anthracene	5.00	ug/l	DU	DNR	11
D033105	SW8270		5.00	ug/l	DU	DNR	11
D033105	SW8270		0.225	ug/l	D	J	9
D033105	SW8270		0.233	ug/l	D	J	9
D033105	SW8270	Benzo(b)fluoranthene	5.00	ug/l	DU	DNR	11

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
D033105	SW8270	Benzo(g,h,i)perylene	50.0	ug/l	DU	DNR	11
D033105	SW8270	Benzo(g,h,i)perylene	1.00	ug/l	DU	UJ	9
D033105	SW8270	Benzo(k)fluoranthene	5.00	ug/l	DŲ	DNR	11
D033105	SW8270	Benzo(k)fluoranthene	0.234	ug/l	D	J	9
D033105	SW8270	Chrysene	5.00	ug/l	DU	DNR	11
D033105	SW8270	Chrysene	0.275	ug/l	D	J	9
D033105	SW8270	Dibenz(a,h)anthracene	0.220	ug/l	D	J	9
D033105	SW8270	Dibenz(a,h)anthracene	5.00	ug/l	DU	DNR	11
D033105	SW8270	Dibenzofuran	5.00	ug/l	DU	DNR	11
D033105	SW8270	Dibenzofuran	0.546	ug/l	D	J	9
D033105	SW8270	Fluoranthene	5.00	ug/l	DU	DNR	11
D033105	SW8270	Fluoranthene	0.334	ug/l	D	J	9
D033105	SW8270	Fluorene	5.39	ug/l	D	DNR	11
D033105	SW8270	Fluorene	6.01	ug/l	D	J	9
D033105	SW8270	Indeno(1,2,3-cd)pyrene	5.00	ug/l	DU	DNR	11
D033105		Indeno(1,2,3-cd)pyrene	0.211	ug/l	D	J	9
D033105	SW8270	Naphthalene	1.48	ug/l	D	J	9
D033105		Naphthalene	5.00	ug/l	DU	DNR	11
D033105		N-Nitrosodiphenylamine	10.0	ug/l	DU	DNR	11
D033105		N-Nitrosodiphenylamine	0.200	ug/l	DU	UJ	9
D033105	- · · ·	Pentachlorophenol	25.0	ug/l	[9]	DNR	11
D033105		Pentachlorophenol	0.500	ug/l	DU	UJ	9
D033105		Phenanthrene	5.00	ug/l	DU	DNR	11
D033105		Phenanthrene	3.29	ug/l	D	J	9
D033105		Pyrene	0.323	ug/l	D	J	9
D033105		Pyrene	5.00	ug/l	DU	DNR	11
HS-MW-10-033105		2,4,6-Trichlorophenol	1.00	ug/l	[5]	UJ	5B
HS-MW-11-040105		2,3,4,5-Tetrachlorophenol	1000	ug/l	DU	DNR	11
HS-MW-11-040105		2,3,5,6-Tetrachlorophenol	1000	ug/l	DŲ	DNR	11
HS-MW-11-040105		2,4,5-Trichlorophenol	100	ug/l	DU	DNR	11
HS-MW-11-040105		2,4,6-Trichlorophenol	0.500	ug/l	[6]	UJ	5B
HS-MW-11-040105		2,4,6-Trichlorophenol	100	ug/l	<u>DU</u>	DNR	11
HS-MW-11-040105		2-Methylnaphthalene	1060	ug/l	E-01 D	DNR	20
HS-MW-11-040105	2	Acenaphthene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Acenaphtylene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Anthracene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Benzo(a)anthracene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Benzo(a)pyrene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Benzo(b)fluoranthene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Benzo(g,h,i)perylene	200	ug/l	DU	DNR	11
HS-MW-11-040105		Benzo(k)fluoranthene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Chrysene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Dibenz(a,h)anthracene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105		Dibenzofuran	20.0	ug/l	DU	DNR	11
HS-MW-11-040105	*	Fluoranthene	20.0	ug/i	DU	DNR	11
HS-MW-11-040105		Fluorene	20.0	ug/l	DU	DNR	11

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
HS-MW-11-040105	SW8270	indeno(1,2,3-cd)pyrene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105	SW8270	Naphthalene	20.0	ug/l	DU	DNR	11
HS-MW-11-040105	SW8270	N-Nitrosodiphenylamine	40.0	ug/l	DU	DNR	11
HS-MW-11-040105	SW8270	Pentachlorophenol	100	ug/ì	[7]	DNR	11
HS-MW-11-040105	SW8270	Phenanthrene	20.0	ug/l	טם	DNR	11
HS-MW-11-040105	SW8270	Pyrene	20.0	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	2,3,4,5-Tetrachlorophenol	50.0	ug/l	DŲ	DNR	11
HS-MW-13-040105	SW8270	2,3,4,5-Tetrachlorophenol	250	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	2,3,5,6-Tetrachlorophenol	50.0	ug/l	DÜ	DNR	11
HS-MW-13-040105	SW8270	2,3,5,6-Tetrachlorophenol	250	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	2,4,5-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	2,4,5-Trichlorophenol	25.0	ug/l	DŲ	DNR	11
HS-MW-13-040105	SW8270	2,4,6-Trichlorophenol	25.0	ug/i	DU	DNR	11
HS-MW-13-040105	SW8270	2,4,6-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		2-Methylnaphthalene	848	ug/l	ED	DNR	20
HS-MW-13-040105		2-Methylnaphthalene	830	ug/l	E-01 D	DNR	20
HS-MW-13-040105		Acenaphthene	22.8	ug/l	D	DNR	11
HS-MW-13-040105		Acenaphthene	22.9	ug/l	D	DNR	11
HS-MW-13-040105		Acenaphtylene	6.40	ug/l	D	DNR	11
HS-MW-13-040105		Acenaphtylene	5.72	ug/l	D	DNR	11
HS-MW-13-040105	SW8270	Anthracene	1.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	Anthracene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	Benzo(a)anthracene	1.00	ug/l	DÜ	DNR	11
HS-MW-13-040105		Benzo(a)anthracene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		Benzo(a)pyrene	1.00	ug/l	DŲ	DNR	11
HS-MW-13-040105		Benzo(a)pyrene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		Benzo(b)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	Benzo(b)fluoranthene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270	Benzo(g,h,i)perylene	10.0	ug/l	ÐU	DNR	11
HS-MW-13-040105	SW8270	Benzo(g,h,i)perylene	50.0	ug/l	DU	DNR	11
HS-MW-13-040105		Benzo(k)fluoranthene	1.00	ug/l	DŲ	DNR	11
HS-MW-13-040105		Benzo(k)fluoranthene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		Chrysene	1.15	ug/l	D	DNR	11
HS-MW-13-040105	1	Chrysene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		Dibenz(a,h)anthracene	1.00	ug/l	DŲ	DNR	11
HS-MW-13-040105		Dibenz(a,h)anthracene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270		5.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270		3.73	ug/l	D	DNR	11
HS-MW-13-040105	SW8270	Fluoranthene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105	SW8270		2.76	ug/l	D	DNR	11
HS-MW-13-040105	SW8270		20.9	ug/l	D	DNR	11
HS-MW-13-040105	SW8270		22.0	ug/l	D	DNR	11
HS-MW-13-040105		Indeno(1,2,3-cd)pyrene	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		Indeno(1,2,3-cd)pyrene	1.00	ug/l	DU	DNR	11
HS-MW-13-040105		Naphthalene	49.8	ug/l	ED	DNR	20
HS-MW-13-040105		Naphthaiene	58.2	ug/l	D	DNR	11

ľ		· · · · ·			Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
		l					
HS-MW-13-040105		N-Nitrosodiphenylamine	15.2	ug/l	D	DNR	11
HS-MW-13-040105		N-Nitrosodiphenylamine	15.7	ug/l	D	J	5B
HS-MW-13-040105		N-Nitrosodiphenylamine	2.00	ug/l	DU	DNR	11
HS-MW-13-040105		Pentachlorophenol	4.04	ug/l	Q-41 D	J	5B
HS-MW-13-040105		Pentachlorophenol	25.0	ug/l	DU	DNR	11
HS-MW-13-040105		Pentachlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-13-040105		Phenanthrene	38.9	ug/l	ED	DNR	20
HS-MW-13-040105		Phenanthrene	36.5	ug/ł	D	DNR	11
HS-MW-13-040105	SW8270		3.65	ug/l	D	DNR	11
HS-MW-13-040105	SW8270		5.00	ug/l	DU	DNR	11
HS-MW-15-033105	SW8270	Pentachlorophenol	0.0500	ug/l	Q-40 U	R	5B
HS-MW-4-040105	SW8270	2,3,4,5-Tetrachlorophenol	50.0	ug/l	DŲ	DNR	11
HS-MW-4-040105	SW8270	2,3,5,6-Tetrachlorophenol	50.0	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	2,4,5-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	2,4,6-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	2-Methylnaphthalene	370	ug/l	E-01 D	DNR	20
HS-MW-4-040105	SW8270	Acenaphthene	10.8	ug/l	D	DNR	11
HS-MW-4-040105		Acenaphtylene	2.56	ug/l	D	DNR	11
HS-MW-4-040105		Anthracene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105		Benzo(a)anthracene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105		Benzo(a)pyrene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105		Benzo(b)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	Benzo(g,h,i)perylene	10.0	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	Benzo(k)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	Chrysene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	Dibenz(a,h)anthracene	1.00	ug/l	DU	DNR	11
HS-MW-4-040105	SW8270	Dibenzofuran	1.54	ug/l	D	DNR	11
HS-MW-4-040105		Fluoranthene	1.00	ug/i	DU	DNR	11
HS-MW-4-040105	SW8270	Fluorene	8.85	ug/l	D	DNR	11
HS-MW-4-040105		Indeno(1,2,3-cd)pyrene	1.00	ug/l	υa	DNR	11
HS-MW-4-040105			129	ug/l	E-01 D	DNR	20
HS-MW-4-040105		N-Nitrosodiphenylamine	2.00	ug/l		DNR	11
HS-MW-4-040105		N-Nitrosodiphenylamine	2.51	ug/l	D		5B
			5.01		Q-41 D	J	5B
HS-MW-4-040105		Pentachlorophenol	35.9	ug/l	Q-41 D	DNR	11
HS-MW-4-040105		Pentachlorophenol	8.50	ug/l			1 1
HS-MW-4-040105		Phenanthrene		ug/l		DNR	11
HS-MW-4-040105	SW8270		1.00	ug/l			
HS-MW-5-033105		2,3,4,5-Tetrachlorophenol	5.00	ug/l		DNR	11
HS-MW-5-033105		2,3,5,6-Tetrachlorophenol	5.00	ug/l		DNR	11
HS-MW-5-033105		2,4,5-Trichlorophenol	0.500	ug/l	DU	DNR	11
HS-MW-5-033105		2,4,6-Trichlorophenol	0.500	ug/l	DU	DNR	11
HS-MW-5-033105		2-Methylnaphthalene	29.9	ug/l	E-01	DNR	20
HS-MW-5-033105		Acenaphthene	1.09	ug/i	D	DNR	11
HS-MW-5-033105		Acenaphtylene	0.161	ug/l	D	DNR	11
HS-MW-5-033105		Anthracene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105	SW8270	Benzo(a)anthracene	0.100	ug/i	_ DU	DNR	11

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
HS-MW-5-033105	SW8270	Benzo(a)pyrene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105		Benzo(b)fluoranthene	0,100	ug/i	DU	DNR	11
HS-MW-5-033105	SW8270	Benzo(g,h,i)perylene	1.00	ug/l	DU.	DNR	11
HS-MW-5-033105		Benzo(k)fluoranthene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105	SW8270	Chrysene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105	SW8270	Dibenz(a,h)anthracene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105		Dibenzofuran	0.105	ug/l	D	DNR	11
HS-MW-5-033105	SW8270	Fluoranthene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105	SW8270	Fluorene	0.572	ug/l	D	DNR	11
HS-MW-5-033105	SW8270	Indeno(1,2,3-cd)pyrene	0.100	ug/l	DU	DNR	11
HS-MW-5-033105		Naphthalene	7.18	ug/l	E-01	DNR	20
HS-MW-5-033105	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	DNR	11
HS-MW-5-033105	SW8270	N-Nitrosodiphenylamine	0.0200	ug/l	U	UJ	5B
HS-MW-5-033105	SW8270	Pentachlorophenol	0.336	ug/l	Q-41	J	5B
HS-MW-5-033105	SW8270	Pentachlorophenol	0.500	ug/l	DU	DNR	11
HS-MW-5-033105	SW8270	Phenanthrene	0.187	ug/l	D	DNR	11
HS-MW-5-033105	SW8270	Pyrene	0.100	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,3,4,5-Tetrachlorophenol	500	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,3,4,5-Tetrachlorophenol	0.500	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	2,3,4,5-Tetrachlorophenol	50.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,3,5,6-Tetrachlorophenol	0.500	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	2,3,5,6-Tetrachlorophenol	500	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,3,5,6-Tetrachiorophenol	50.0	ug/l	DŲ	DNR	11
HS-MW-6-033105	SW8270	2,4,5-Trichlorophenol	5.00	ug/l	DÜ	DNR	11
HS-MW-6-033105	SW8270	2,4,5-Trichlorophenol	50.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,4,5-Trichlorophenol	0.0500	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	2,4,6-Trichlorophenol	50.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,4,6-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	2,4,6-Trichlorophenol	0.0500	ug/l	Ų	UJ	9
HS-MW-6-033105	SW8270	2-Methylnaphthalene	574	ug/l	D	J	9
HS-MW-6-033105	SW8270	2-Methylnaphthaiene	624	ug/l	ΕD	DNR	20
HS-MW-6-033105	SW8270	2-Methylnaphthalene	384	ug/l	E-01	DNR	20
HS-MW-6-033105	SW8270	Acenaphthene	12.1	ug/l	D	DNR	11
HS-MW-6-033105		Acenaphthene	11.7	ug/l	E	DNR	20
HS-MW-6-033105	SW8270	Acenaphthene	11.7	ug/l	D	DNR	11
HS-MW-6-033105	SW8270	Acenaphtylene	10.0	ug/i	DU	DNR	11
HS-MW-6-033105		Acenaphtylene	1.99	ug/l		J	9
HS-MW-6-033105		Acenaphtylene	1.00	ug/l	DU	DNR	11
HS-MW-6-033105		Anthracene	1.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Anthracene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Anthracene	0.0100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Benzo(a)anthracene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105		Benzo(a)anthracene	0.0100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Benzo(a)anthracene	1.00	ug/l	DU	DNR	11
HS-MW-6-033105		Benzo(a)pyrene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Benzo(a)pyrene	0.0100	ug/l	U	UJ	9

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
HS-MW-6-033105		Benzo(a)pyrene	1.00	ug/l	UQ	DNR	11
HS-MW-6-033105	SW8270	Benzo(b)fluoranthene	0.0100	ug/l	U	ŲJ	9
HS-MW-6-033105	SW8270	Benzo(b)fluoranthene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Benzo(b)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Benzo(g,h,i)perylene	0.100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Benzo(g,h,i)perylene	10.0	ug/i	DU	DNR	11
HS-MW-6-033105	SW8270	Benzo(g,h,i)perylene	100	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Benzo(k)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Benzo(k)fluoranthene	0.0100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Benzo(k)fluoranthene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Chrysene	0.0100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Chrysene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Chrysene	1.00	ug/I	DU	DNR	11
HS-MW-6-033105	SW8270	Dibenz(a,h)anthracene	1.00	ug/l	DŲ	DNR	11
HS-MW-6-033105	SW8270	Dibenz(a,h)anthracene	0.0100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Dibenz(a,h)anthracene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Dibenzofuran	2.98	ug/l	D	DNR	11
HS-MW-6-033105	SW8270	Dibenzofuran	3.04	ug/l		J	9
HS-MW-6-033105	SW8270	Dibenzofuran	10.0	ug/l	DŲ	DNR	11
HS-MW-6-033105	SW8270	Fluoranthene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Fluoranthene	0.0663	ug/l		J	9
HS-MW-6-033105	SW8270	Fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Fluorene	7.63	ug/l	E	DNR	20
HS-MW-6-033105	SW8270	Fluorene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Fluorene	7.91	ug/l	D	J	9
HS-MW-6-033105	SW8270	Indeno(1,2,3-cd)pyrene	1.00	ug/l	DŲ	DNR	11
HS-MW-6-033105	SW8270	Indeno(1,2,3-cd)pyrene	0.0100	ug/l	U	UJ	9
HS-MW-6-033105	SW8270	Indeno(1,2,3-cd)pyrene	10.0	ug/l	ÐU	DNR	11
HS-MW-6-033105	SW8270	Naphthalene	3.34	ug/l	D	DNR	11
HS-MW-6-033105	SW8270	Naphthalene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Naphthalene	1.41	ug/l		J	9
HS-MW-6-033105	SW8270	N-Nitrosodiphenylamine	2.00	ug/l	[4]	DNR	11
HS-MW-6-033105	SW8270	N-Nitrosodiphenylamine	0.0200	ug/i	U	UJ	5B, 9
HS-MW-6-033105		N-Nitrosodiphenylamine	20.0	ug/l	[3]	DNR	11
HS-MW-6-033105	SW8270	Pentachlorophenol	0.678	ug/l	Q-41	J	5B, 9
HS-MW-6-033105	SW8270	Pentachlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Pentachlorophenol	50.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	Phenanthrene	4.81	ug/l	D	J	9
HS-MW-6-033105		Phenanthrene	10.0	ug/l	DU	DNR	11
HS-MW-6-033105		Phenanthrene	4.39	ug/l	E	DNR	20
HS-MW-6-033105	SW8270		1.00	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270		10.0	ug/l	DU	DNR	11
HS-MW-6-033105	SW8270	· ·	0.0720	ug/l		J	9
HS-MW-9-033105		Pentachlorophenol	0.313	ug/l		J	5B
TL-MW-10-040105	-	2,3,4,5-Tetrachlorophenol	250	ug/l	DU	DNR	11
TL-MW-10-040105	SW8270	2,3,5,6-Tetrachlorophenol	250	ug/I	DU	DNR	11

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
TL-MW-10-040105			25.0		DU	DNR	11
		2,4,5-Trichlorophenol	25.0	ug/l		DNR	11
TL-MW-10-040105		2,4,6-Trichlorophenol	141	ug/l	0	DNR	11
TL-MW-10-040105		2-Methylnaphthalene	336	ug/i	 	DNR	11
TL-MW-10-040105		Acenaphthene		ug/l	 		11
TL-MW-10-040105		Acenaphtylene	87.4	ug/l		DNR	
TL-MW-10-040105		Anthracene	179	ug/l	D	DNR	11
TL-MW-10-040105		Benzo(a)anthracene	36.3	ug/l	D	DNR	11
TL-MW-10-040105		Benzo(a)pyrene	10.3	ug/l	D	DNR	11
TL-MW-10-040105		Benzo(b)fluoranthene	5.00	ug/l	DU	DNR	11
TL-MW-10-040105			50.0	ug/l	DU	DNR	11
TL-MW-10-040105	SW8270	Benzo(k)fluoranthene	5.00	ug/l	DU	DNR	11
TL-MW-10-040105	SW8270	Chrysene	53.1	ug/l	D	DNR	11
TL-MW-10-040105	SW8270		5.00	ug/l	DU	DNR	11
TL-MW-10-040105			5.00	ug/l	DU	DNR	11
TL-MW-10-040105		Fluoranthene	63.2	ug/l	D	DNR	11
TL-MW-10-040105			426	ug/l	ED	DNR	20
TL-MW-10-040105		Indeno(1,2,3-cd)pyrene	5.00	ug/l	DU	DNR	11
TL-MW-10-040105		Naphthalene	41.2	ug/l	D	DNR	11
TL-MW-10-040105		N-Nitrosodiphenylamine	790	ug/l	E-01 D	DNR	20
TL-MW-10-040105	SW8270	N-Nitrosodiphenylamine	824	ug/l	D	J	5B
TL-MW-10-040105	SW8270	Pentachlorophenol	25.0	ug/l	DU	DNR	11
TL-MW-10-040105	SW8270	Phenanthrene	1130	ug/l	ΕD	DNR	20
TL-MW-10-040105	SW8270		186	ug/l	D	DNR	11
TL-MW-11-033105	SW8270	2,3,4,5-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
TL-MW-11-033105	SW8270	2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
TL-MW-11-033105	SW8270	2,4,5-Trichlorophenol	0.500	ug/l	DU	DNR	11
TL-MW-11-033105	SW8270	2,4,6-Trichlorophenol	0.500	ug/l	[10]	DNR	11
TL-MW-11-033105	SW8270	2-Methylnaphthalene	8.17	ug/l	E	DNR	20
TL-MW-11-033105	SW8270	Acenaphthene	0.595	ug/l	D	DNR	. 11
TL-MW-11-033105	SW8270	Acenaphtylene	0.151	ug/l	D	DNR	11
TL-MW-11-033105	SW8270	Anthracene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105	SW8270	Benzo(a)anthracene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105		Benzo(a)pyrene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105		Benzo(b)fluoranthene	0.100	ug/l	DÜ	DNR	11
TL-MW-11-033105		Benzo(g,h,i)perylene	1.00	ug/l	D۷	DNR	11
TL-MW-11-033105		Benzo(k)fluoranthene	0.100	ug/l	 DU	DNR	11
TL-MW-11-033105		Chrysene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105		Dibenz(a,h)anthracene	0.100	ug/l	DŲ	DNR	11
TL-MW-11-033105			0.100	ug/l	DU	DNR	11
TL-MW-11-033105		Fluoranthene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105		Fluorene	0.611	ug/l	D	DNR	11
TL-MW-11-033105		Indeno(1,2,3-cd)pyrene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105		Naphthalene	0.100	ug/l	DU	DNR	11
TL-MW-11-033105		N-Nitrosodiphenylamine	0.128	ug/l		J	5B
TL-MW-11-033105		N-Nitrosodiphenylamine	0.200	ug/l	DŬ	DNR	11
TL-MW-11-033105		Pentachlorophenol	0.348				
11-10100-11-033100	3002/0	Гентасногорненог	10.340	ug/l	Q-41	J	5B

					Lab	Validator	Reason
Laboratory ID	Method	Chemical Name	Value	Units	Qualifier	Qualifier	Code
TL-MW-11-033105	SW8270	Pentachlorophenol	0.500	ug/l	DU	DNR	11
TL-MW-11-033105	SW8270	Phenanthrene	0.842	ug/l	D	DNR	11
TL-MW-11-033105	SW8270	Pyrene	0.100	ug/l	DU	DNR	11
TL-MW-9-033105	SW8270	2,3,4,5-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
TL-MW-9-033105		2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
TL-MW-9-033105	SW8270	2,4,5-Trichlorophenol	0.500	ug/l	DŲ	DNR	11
TL-MW-9-033105	SW8270	2,4,6-Trichlorophenol	0.500	ug/l	DU	DNR	11
TL-MW-9-033105	SW8270	2-Methylnaphthalene	1.00	ug/l	DU	DNR	11
TL-MW-9-033105	SW8270	Acenaphthene	2.95	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Acenaphtylene	0.492	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Anthracene	0.814	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Benzo(a)anthracene	0.345	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Benzo(a)pyrene	0.298	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Benzo(b)fluoranthene	0.278	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Benzo(g,h,i)perylene	1.00	ug/l	DU	DNR	11
TL-MW-9-033105	SW8270	Benzo(k)fluoranthene	0.313	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Chrysene	0.363	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Dibenz(a,h)anthracene	0.268	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Dibenzofuran	0.523	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Fluoranthene	0.429	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Fluorene	1.43	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Indeno(1,2,3-cd)pyrene	0.273	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Naphthalene	0.100	ug/l	DU	DNR	. 11
TL-MW-9-033105	SW8270	N-Nitrosodiphenylamine	2.75	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	N-Nitrosodiphenylamine	1.80	ug/l		J	5B
TL-MW-9-033105	SW8270	Pentachlorophenol	1.46	ug/l	Q-41	J	5B
TL-MW-9-033105	SW8270	Pentachlorophenol	1.85	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Phenanthrene	1.61	ug/l	D	DNR	11
TL-MW-9-033105	SW8270	Pyrene	0.575	ug/l	D	DNR	11

APPENDIX B ECOCHEM, INC., DATA VALIDATION REPORT (SEPTEMBER 2005 GROUNDWATER SAMPLING EVENT

DRAFT

Environmental Science and Chemistry

DATA VALIDATION REPORT

R.G. HALEY SITE SDG: B510364

Prepared for:

Geo Engineers – Seattle 600 Stewart St. Suite 1420 Seattle, Washington 98101

Prepared by:

EcoChem, Inc. 405 Westland Building 100 South King Street Seattle, Washington 98104-2885

EcoChem Project: C2206-2

November 28, 2005

Approved for Release:

Christine Ransom Project Manager **EcoChem, Inc.**

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of the full validation (Level IV) performed on twenty-one water samples collected for the R.G. Haley site. See the **SAMPLE INDEX** for a complete list of all samples for which data were reviewed.

North Creek Analytical Laboratories, Bothell, Washington analyzed the samples for semivolatile compounds and diesel range organic compounds (including lube oils). Frontier Analytical Laboratory, El Dorado Hills, California performed the dioxin/furan analysis. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review
Semivolatile Organic Compounds (SVOC)	SW8270	Mark Brindle	John Mitchell
Dioxin/Furan Compounds	SW8290	Mark Brindle	John Mitchell
Diesel Range Organic Compounds & Lube Oil	NWTPHDx	Mark Brindle	John Mitchell

ANALYSIS METHODS AND ECOCHEM CHEMISTS

The data were reviewed using guidance and quality control criteria documented in the analytical methods, the quality assurance project plan (QAPP) and the *National Functional Guidelines for Organic Data Review* (USEPA 1999).

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. **APPENDIX B** contains the Qualified Data Summary Table. Communication records are included as **APPENDIX C**. Data validation worksheets will be kept on file at EcoChem.

SAMPLE INDEX R.G. Haley Site September 2005 Sampling Event

Client ID	Laboratory ID	SVOC	Dioxins	NWTPH-Dx
HS-MW-4-090105	B5I0364-01	Х		Х
HS-MW-5-091505	B5I0364-02	Х		Х
HS-MW-6-091405	B5I0364-03	Х		Х
HS-MW-9-091505	B5I0364-04	Х		Х
HS-MW-10-091505	B5I0364-05	Х		Х
HS-MW-11-091505	B5I0364-06	Х		Х
HS-MW-13-091505	B5I0364-07	Х		Х
HS-MW-15-091605	B5I0364-08	Х		Х
D091405	B5I0364-09	Х		Х
TL-MW-9-091405	B5I0364-10	Х		Х
TL-MW-10-091405	B5I0364-11	Х		Х
TL-MW-11-091405	B5I0364-12	Х		Х
1Z-MW-1-091505	B5I0364-13	Х		Х
1Z-MW-2-091505	B5I0364-14	Х		Х
1Z-MW-3-091505	B5I0364-15	Х	Х	Х
1Z-MW-4-091505	B5I0364-16	Х		Х
CL-MW-1S-091405	B5I0364-17	Х		Х
CL-MW-1D-091405	B5I0364-18			Х
CL-MW-1H-091505	B5I0364-19	Х		Х
CL-MW-6-091405	B5I0364-20	Х		Х
CL-MW-7-091405	B5I0364-21	Х		Х

DATA VALIDATION REPORT R.G. Haley Site Semivolatile Organic Compounds EPA Method SW8270C SDG: B510364

This report documents the review of analytical data from the analyses of water samples and the associated laboratory quality control samples. North Creek Analytical, Bothell, Washington, analyzed the samples. Full validation (Level IV) was performed on all data. Refer to the **SAMPLE INDEX** for a list of the individual samples.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements that were reviewed are listed below.

- 1 Holding Times and Sample Receipt GC/MS Instrument Performance Check
- 2 Initial Calibration (ICAL)
- 2 Continuing Calibration (CCAL) Laboratory Blanks
- 1 Surrogate Compounds
- 2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

- Laboratory Control Samples (LCS/LCSD)
- 2 Field Duplicates
- 1 Internal Standards
- Compound Identification
- 1 Calculation Verification
- 2 Compound Quantification and Reporting Limits
- 1 Target Analyte List

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Holding Times and Sample Receipt

The sample cooler temperature was less than the lower control limit of 2.0°C, at 1.2°C. Sample results were judged to be unaffected, therefore no action was taken on this basis.

Initial Calibration (ICAL)

The relative response factor (RRF) values were all acceptable. The relative standard deviation (%RSD) values were within the 30% control limit for all initial calibrations, with the following exceptions: For the ICAL analyzed 10/4/05, the %RSD values for benzo(b)fluoranthene (31.1%), benzo(k)fluoranthene (50.5%), and benzo(a)pyrene (36.9%) were greater than the 30% control limit. Positive results for these analytes were estimated (J-5A) in Samples HS-MW-13 and TL-MW-10.

Continuing Calibration (CCAL)

The relative response factor (RRF) values were greater than the 0.05 minimum control limit, with the exception noted below. The percent difference (%D) values were within the $\pm 25\%$ control limit for all continuing calibrations (CCAL), with the exceptions noted below:

- 9/26/05: pentachlorophenol (high response). The blank spike/blank spike duplicate (BS/BSD) were the only associated analyses. Qualifiers are not issued to QC samples.
- 10/3/05: pentachlorophenol and 2,3,4,6-tetrachlorophenol (high responses). These compounds were not detected in the associated samples. The reporting limits were not affected by the potential high bias, thus no qualifiers were applied.
- 10/17/05: pentachlorophenol (low response and RRF value outlier); 2,3,5,6-tetrachloro-phenol (low response). HS-MW-6 MS/MSD were the only associated analyses. Qualifiers are not issued to QC samples.

Surrogate Compounds

One or more surrogate percent recovery (%R) values were outside the control limits in eight of the twenty-one samples. Most of the samples in this batch were reanalyzed at dilutions. For all of the samples, either the surrogates were acceptable in one of the analyses, or only one surrogate in a fraction (acid or base-neutral) was outside the control limits. The samples with single surrogate outliers are summarized in the data validation worksheets. For Samples TL-MW-10 (500x & 100x) and CL-MW-6 (5,000x & 500x), the extracts were analyzed at very high dilution factors. Surrogate compounds would not be recovered in such cases. No action was taken based on surrogate recovery outliers.

Matrix Spike/Matrix Spike Duplicate Analyses (MS/MSD)

For the MS/MSD set performed using Sample HS-MW-5, the %R values for N-nitrosodiphenylamine and pentachlorophenol were less than the lower control limits and the relative percent difference (RPD) value for pentachlorophenol exceeded the control limit. These analytes were not detected in the parent sample. The reporting limits for N-nitrosodiphenylamine and pentachlorophenol were estimated (UJ-8) in the parent sample due to the potential low bias. Because pentachlorophenol was not detected in the parent sample, no action was taken for the RPD outlier.

Field Duplicates

RPD values were calculated for all compounds with concentrations greater than four times the reporting limit. For compounds with concentrations less than four times the reporting limit, the difference between the reported concentrations was evaluated. The results were compared to control limits of 30% for the RPD values, or difference values less than the reporting limit.

Samples HS-MW-5 and D091405 were submitted as field duplicates. The RPD values and/or difference values were outside of the control limits for acenaphthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and dibenzofuran. The reported results for these

analytes were qualified as estimated (J-9) in both samples.

Internal Standards

For many of the samples (including reanalyses), there were internal standard areas which were outside the control limits (-50%/+100%) of the area of the internal standard in the associated CCAL). Most of the outliers were less than the lower control limit, indicating a potential low bias.

For each sample, the target compounds associated with the internal standard outliers were reported from a reanalysis with acceptable internal standard areas; therefore no qualifiers were issued.

Compound Quantitation and Reporting Limits

Due to the presence of high levels of target analytes and/or surrogate outliers, most of the samples were analyzed more than once, usually at a higher dilution level. The laboratory reported multiple sets of results for most of the samples.

Target analytes that were present at concentrations greater than the upper calibration range of the instrument were qualified as do-not-report (DNR-20), and should be reported from the appropriate dilution. All of the results from the dilutions, except the target analytes of interest, were qualified as do-not-report (DNR-11) and should be reported from the analysis with the lowest possible dilution. After the DNR qualifiers were issued, only one reported result remains for each compound in each sample.

Calculation Verification

Several results were verified by recalculation from the raw data. The following errors were noted:

The laboratory incorrectly reported the %D values for all CCAL. The reported %D values were calculated using the concentrations, rather than the RRF values. The correct %D values were reported in the raw data, and were used to evaluate the sample results. No further action was taken, other than to note this discrepancy.

Target Analyte List

The reported target analyte list includes three compounds that were not part of the target analyte list specified in the quality assurance program plan (QAPP): dibenz(a,h)anthracene, 2,3,4,5/2,3,4,6-tetrachlorophenol, and 2,4,5-trichlorophenol. No action was taken, other than to note the discrepancy.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Precision was acceptable, as demonstrated by the field duplicate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and MS/MSD RPD values, with the exceptions noted above. Accuracy was also acceptable, as demonstrated by the surrogate,

LCS/LCSD, and MS/MSD recovery values, with the previously noted exceptions.

Data were estimated due to field duplicate precision outliers, MS/MSD recovery outliers, and initial calibration %RSD outliers. Data were qualified as do-not-report (DNR) in order to indicate which values should be used when multiple results were reported for a sample.

Data that have been qualified as do-not-report should not be used for any purpose.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT R.G. Haley Site Diesel Range Organic Compounds & Lube Oil Method NWTPH-Dx SDG: B5I0364

This report documents the review of analytical data from the analyses of water samples and the associated laboratory quality control samples. North Creek Analytical, Bothell, Washington, analyzed the samples. Full validation (Level IV) was performed on all data. Refer to the **SAMPLE INDEX** for a list of the individual samples.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements that were reviewed are listed below.

1	Holding Times and Sample Receipt	1	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
	Initial Calibration (ICAL)		Laboratory Control Samples (LCS)
	Continuing Calibration (CCAL)	2	Field Duplicates
	Blanks (Method & Field)	1	Compound Quantitation and Reporting Limits
1	Surrogate Compounds	1	Calculation Verification

¹ Quality control results are discussed below, but no data were qualified.

 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Holding Times and Sample Receipt

The sample cooler temperature was less than the lower control limit of 2.0°C, at 1.2°C. Sample results were judged to be unaffected, therefore no action was taken on this basis.

Surrogate Compounds

Due to the dilution factors, the surrogates were not recovered in Samples TL-MW-10-090145 (100x) and CL-MW-6-091405 (100x). No action was taken.

Matrix Spike/Matrix Spike Duplicate Analyses

No matrix spike/matrix spike duplicates (MS/MSD) were analyzed for the lube oil range. As the diesel range MS/MSD analyses were acceptable, no action was taken.

Field Duplicates

Samples HW-MW-5-091505 and D091405 were submitted as field duplicates. Diesel range hydrocarbons were reported in the duplicate, but not in the sample. The difference between results was greater than the reporting limit. The diesel results for these two samples were estimated (UJ/J-9).

Compound Quantitation and Reporting Limits

The target reporting limit of 0.25 mg/L for the lube oil range was not met; the laboratory reporting limit was 0.50 mg/L. No action was taken.

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Precision was acceptable, as demonstrated by the field duplicate, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and MS/MSD RPD values, with the exception noted above. Accuracy was also acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recovery values.

Data were estimated based on a field duplicate precision outlier.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT R.G. Haley Site Dioxin/Furan Compounds EPA Method SW 8290 SDG: B5I0364

This report documents the review of analytical data from the analysis of one water sample and the associated laboratory quality control samples. Frontier Analytical Laboratory, El Dorado Hills, California, analyzed the sample. Full validation (Level IV) was performed on all data.

I. DATA PACKAGE COMPLETENESS

The laboratory narrative indicated no problems with sample receipt. The laboratory submitted all of the necessary deliverables. Adequate corrective action processes were followed and anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- Holding Times and Sample Receipt GC/MS Instrument Performance Check Initial Calibration (ICAL) Continuing Verification (CVER) Isomer Specificity Laboratory Blank
- Matrix Spike/Matrix Spike Duplicates (MS/MSD) Labeled Compound Recovery Ongoing Precision and Recovery (OPR) Compound Identification
 Compound Quantitation and Reporting Limits

Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Holding Times and Sample Receipt

The sample cooler was received outside the control limits of $4^{\circ}C \pm 2^{\circ}$, at $1.2^{\circ}C$. This temperature outlier was judged to have no impact on the data and no action was taken.

Matrix Spike/Matrix Spike Duplicates

Matrix Spike/Matrix Spike Duplicate samples were not analyzed. Laboratory accuracy was evaluated using the labeled compound and ongoing precision and recovery (OPR) standard values. Laboratory precision could not be evaluated.

Compound Quantitation and Reporting Limits

Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

Overall Assessment

As determined by this evaluation, the laboratory followed the specified method. Laboratory accuracy was acceptable as demonstrated by the recovery values for the OPR samples and labeled compounds. Laboratory precision could not be evaluated.

No data were qualified for any reason. All data, as reported, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES

CJW 06/14/95 10:12 AM L:\GeoEngineers 22\C02206002\APPENDIX.docm

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives

EcoChem Validation Guidelines (Based on EPA Reg. 10 and Method Criteria) Dioxin/Furan Analysis by HRMS (Methods 1613B or SW846 - 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
10 Sc	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6 for 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the 2 CCAL may be used to calculate samples per Section 8.3.2.4 of 8290)	J(+)/UJ(-) natives if %D = 30% - 75% R(+/-) if %D > 75%	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet table 2 of 1613B.	EcoChem PJ, see TM-05	-
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	EcoChem PJ, see ICAL section of TM-05	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6 of method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8

EcoChem Validation Guidelines (Based on EPA Reg. 10 and Method Criteria) Dioxin/Furan Analysis by HRMS (Methods 1613B or SW846 - 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	Waters/Solids <4°C Tissues <10°C	EcoChem PJ, see TM-05	1
Holding Time	Water: 30 days from collection Soil: 30 days from collection Analysis: 40 days from extraction Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days	J(+)/UJ(-) if ext > 30days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) x = ht. of TCDD y = baseline to bottom of valley For all isomers eluting near 2378-TCDD/TCDF isomers (TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	ICAL: Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	lon Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

Page: 2 of 2

EcoChem Validation Guidelines (Based on Organic NFG 1999) Semivolatile Analysis by GC/MS

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) if RPD > CL	9
LCS low conc. H2O SVOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL J(+)/UJ(-) if %R <lcl J(+)/R(-) if %R < 10% (EcoChem PJ)</lcl 	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% R T>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits If no QAPP: Use RPD < 35% (water) or < 50% (soil)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	R(+) common laboratory contaminants R(+) target compouds from other fractions See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

Page: 1 of 2

EcoChem Validation Guidelines (Based on Organic NFG 1999) Semivolatile Analysis by GC/MS

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\label{eq:Water:} \begin{array}{l} \hline Water: \\ J(+)/UJ(-) \mbox{ if ext. } 7 \mbox{ and } < 21 \mbox{ days} \\ J(+)/R(-) \mbox{ if ext. } 21 \mbox{ days} \mbox{ (EcoChem PJ)} \\ \hline Solids/Wastes: \\ J(+)/UJ(-) \mbox{ if ext. } > 14 \mbox{ and } < 42 \mbox{ days} \\ J(+)/R(-) \mbox{ if ext. } > 42 \mbox{ days} \mbox{ (EcoChem PJ)} \\ J(+)/UJ(-) \mbox{ if ext. } > 40 \mbox{ days} \end{array}$	1
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5A
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
Continuing Calibration Prior to each 12 hr. shift)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5B
	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

State of Washington (and Oregon) Total Petroleum Hydrocarbons-Diesel (and Residual) Range

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C±2°C	J(+)/UJ(-) using Professional Judgement	2
Holding Time	Water: 14 days from collection (if acidified); 7 days (if unacidified) Soil: 14 days from collection Analysis; 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (Prof. Judgement)	1
Retention Time Standards (RTS)	RTS run every 24 hours or at the beginning of each analytical shift (C10 and C24)	Narrate (Use Professional Judgement to qualify)	58
Initial Calibration	5 calibration points (All within 15%) Linear Regression: R ² ≧0.990	J(+)/UJ(·) If R ² <0.990	5A
Continuing Calibration	Recovery Range is 85% to 115% Must have opening and closing CCVs (no more than 20 samples)	CCV - J(+)/UJ(-) If %D > 15%	5B
Method Blank One per matrix per batch No results <u>></u> CRQL		U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL) UJ(+) if sample result is ≥CRQL and < 5X rule (at reported sample value)	7
Field Blanks	No results <u>></u> CRQL	Apply 5X rule; U(+) < action level	6
MS (Optional)	Lab control limits	Qualify parent only, unless other QC indicates systematic problems. J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL PJ if only one %R outlier	8
Precision: MS/MSD or LCS/LCSD or sample/dup	Two lab dups per analytical batch RPD ≤ laboratory limits	J(+) if RPD ≫laboratory limits	9
LCS Lab control limits (Optional)		J(+) If %R >UCL J(+)/R(-) If %R <lcl< td=""><td>10</td></lcl<>	10
Suggested Surrogates: 2-fluorobiphenyl, o, or p-terphenyl or pentacosane %R = 50-150%		If %R < LCL, J(+)/UJ(-) If > UCL, J(+) If any %R <10%, J(+)/R(-)	13
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	14
Field Duplicates	Use RPD < 35% (water) or < 50% (soil)	Narrate (Use Professional Judgement to qualify)	9

EcoChem Validation Guidelines (Based on EPA Reg. 10 and Method Criteria) Dioxin/Furan Analysis by HRMS (Methods 1613B or SW846 - 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD May not analyze MS/MSD (RPD) RPD < 20%		J(+) if RPD > CL	9
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	Method 8290: %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% - LCL	10
Internal Standards	Method 1613B: %R must meet limits specified inTable 7	J(+) if %R > UCL J(+)/R(-) if %R < 10%	13
Quantitation/ Identification	SIM ions for analyte, Istd, rec. std. Max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Water: RPD < 35% Soil: RPD < 50%	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used	11

APPENDIX B QUALIFIED DATA SUMMARY TABLE

CJW 06/14/95 10:12 AM L:\GeoEngineers 22\C02206002\APPENDIX.docm

Client ID	Laboratory ID	Method	Chemical Name	Value	Units	Lab Qualifier	Validator Qualifier	Validator Reason Code
CL-MW-1H-091505	B5I0364-19RE1	SW8270	2,3,4,5-Tetrachlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	2,3,5,6-Tetrachlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	2,4,5-Trichlorophenol	1.00	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	2,4,6-Trichlorophenol	1.00	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19	SW8270	2-Methylnaphthalene	10.5	ug/l	E	DNR	20
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Acenaphthene	11.1	ug/l	D	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Acenaphtylene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Anthracene	0.963	ug/l	D	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Benzo(a)anthracene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Benzo(a)pyrene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Benzo(b)fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Benzo(g,h,i)perylene	2.00	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Benzo(k)fluoranthene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Chrysene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Dibenz(a,h)anthracene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Dibenzofuran	3.31	ug/l	D	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Fluoranthene	0.282	ug/l	D	DNR	11
CL-MW-1H-091505	B5I0364-19	SW8270	Fluorene	4.03	ug/l	E	DNR	20
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Indeno(1,2,3-cd)pyrene	0.200	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Naphthalene	2.51	ug/l	D	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	N-Nitrosodiphenylamine	0.400	ug/l	DU	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Phenanthrene	1.15	ug/l	D	DNR	11
CL-MW-1H-091505	B5I0364-19RE1	SW8270	Pyrene	0.532	ug/l	D	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	2,3,4,5-Tetrachlorophenol	50.0	ug/l	[15]	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	2,3,4,5-Tetrachlorophenol	100	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	2,3,5,6-Tetrachlorophenol	50.0	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	2,3,5,6-Tetrachlorophenol	100	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	2,4,5-Trichlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	2,4,5-Trichlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	2,4,6-Trichlorophenol	5.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	2,4,6-Trichlorophenol	10.0	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	2-Methylnaphthalene	516	ug/l	E D	DNR	11
CL-MW-1S-091405	B5I0364-17 B5I0364-17RE2	SW8270	2-Methylnaphthalene	466	ug/l	ED	DNR	20
CL-MW-1S-091405	B5I0364-17	SW8270	Acenaphthene	43.0	ug/l	D	DNR	11
CL-MW-1S-091405	B510364-17	SW8270	Acenaphtylene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17 B5I0364-17RE1	SW8270	Acenaphtylene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Anthracene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17 B5I0364-17RE1	SW8270	Anthracene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Benzo(a)anthracene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17 B5I0364-17RE1	SW8270	Benzo(a)anthracene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Benzo(a)pyrene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17 B5I0364-17RE1	SW8270	Benzo(a)pyrene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B510364-17	SW8270	Benzo(b)fluoranthene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B510364-17 B510364-17RE1	SW8270	Benzo(b)fluoranthene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B510364-171	SW8270	Benzo(g,h,i)perylene	10.0	ug/l	DU	DNR	11
CL-MW-1S-091405	B510364-17 B510364-17RE1	SW8270	Benzo(g,h,i)perylene	20.0	ug/l	DU	DNR	11
CL-MW-1S-091405	B510364-171	SW8270	Benzo(k)fluoranthene	1.00	ug/l	DU	DNR	11

Client ID	Laboratory ID	Method	Chemical Name	Value	Units	Lab Qualifier	Validator Qualifier	Validator Reason Code
CL-MW-1S-091405	B5I0364-17RE1	SW8270	Benzo(k)fluoranthene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Chrysene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	Chrysene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Dibenz(a,h)anthracene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Dibenz(a,h)anthracene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Dibenzofuran	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	Dibenzofuran	13.1	ug/l	D	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Fluoranthene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	Fluoranthene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Fluorene	2.00	ug/l	D	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	Fluorene	31.1	ug/l	D	DNR	11
CL-MW-1S-091405	B510364-17	SW8270	Indeno(1,2,3-cd)pyrene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Indeno(1,2,3-cd)pyrene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Naphthalene	1.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Naphthalene	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	N-Nitrosodiphenylamine	2.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	N-Nitrosodiphenylamine	4.00	ug/l	DU	DNR	11
CL-MW-1S-091405	B5I0364-17	SW8270	Phenanthrene	58.7	ug/l	D	DNR	11
CL-MW-1S-091405	B510364-17RE1	SW8270	Phenanthrene	58.9	ug/l	D	DNR	11
CL-MW-1S-091405	B510364-17	SW8270	Pyrene	6.39	ug/l	D	DNR	11
CL-MW-1S-091405	B5I0364-17RE1	SW8270	Pyrene	2.00	ug/l	DU	DNR	11
CL-MW-6-091405	B510364-20	SW8270	2,3,4,5-Tetrachlorophenol	2500	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	2,3,5,6-Tetrachlorophenol	2500	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	2,4,5-Trichlorophenol	250	ug/l	DU	DNR	11
CL-MW-6-091405	B510364-20	SW8270	2,4,6-Trichlorophenol	250	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20RE1	SW8270	2-Methylnaphthalene	10600	ug/l	E D	DNR	20
CL-MW-6-091405	B510364-2010	SW8270	Acenaphthene	1580	ug/l	D	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Acenaphtylene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B510364-20	SW8270	Anthracene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Benzo(a)anthracene	68.1	ug/l	D	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Benzo(a)pyrene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B510364-20	SW8270	Benzo(b)fluoranthene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B510364-20	SW8270	Benzo(g,h,i)perylene	500	ug/l	DU	DNR	11
CL-MW-6-091405	B510364-20	SW8270	Benzo(k)fluoranthene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Chrysene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Dibenz(a,h)anthracene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Dibenzofuran	455	ug/l	D	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Fluoranthene	94.1	ug/l	D	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Fluorene	1130	ug/l	D	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Indeno(1,2,3-cd)pyrene	50.0	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20	SW8270	Naphthalene	1120	ug/l	D	DNR	11
CL-MW-6-091405	B510364-20	SW8270	N-Nitrosodiphenylamine	100	ug/l	DU	DNR	11
CL-MW-6-091405	B5I0364-20RE1	SW8270	Phenanthrene	2000	ug/l	E D	DNR	20
CL-MW-6-091405	B5I0364-20	SW8270	Pyrene	301	ug/l	D	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	2,3,4,5-Tetrachlorophenol	0.500	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	2,3,5,6-Tetrachlorophenol	0.500	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	2,4,5-Trichlorophenol	0.0500	ug/l	U	DNR	11

Client ID	Laboratory ID	Method	Chemical Name	Value	Units	Lab Qualifier	Validator Qualifier	Validator Reason Code
CL-MW-7-091405	B5I0364-21RE1	SW8270	2,4,6-Trichlorophenol	0.0500	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Acenaphthene	0.537	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Acenaphtylene	0.0100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Anthracene	0.0441	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Benzo(a)anthracene	0.0100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Benzo(a)pyrene	0.0100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Benzo(b)fluoranthene	0.0228	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Benzo(g,h,i)perylene	0.100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Benzo(k)fluoranthene	0.0561	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Chrysene	0.0100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Dibenz(a,h)anthracene	0.0100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Dibenzofuran	0.0100	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Naphthalene	0.783	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	N-Nitrosodiphenylamine	0.356	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Pentachlorophenol	0.0500	ug/l	U	DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Phenanthrene	0.202	ug/l		DNR	11
CL-MW-7-091405	B5I0364-21RE1	SW8270	Pyrene	0.0575	ug/l		DNR	11
D091405	B5I0364-09	SW8270	2-Methylnaphthalene	10.4	ug/l	D	J	9
D091405	B5I0364-09	SW8270	Acenaphthene	7.55	ug/l	D	J	9
D091405	B5I0364-09	SW8270	Dibenzofuran	1.86	ug/l	D	J	9
D091405	B5I0364-09	SW8270	Fluorene	4.73	ug/l	D	J	9
D091405	B5I0364-09	SW8270	Naphthalene	2.28	ug/l	D	J	9
D091405	B5I0364-09	SW8270	Phenanthrene	2.32	ug/l	D	J	9
HS-MW-11-091505	B5I0364-06	SW8270	2,3,4,5-Tetrachlorophenol	1000	ug/l	[10]	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	2,3,5,6-Tetrachlorophenol	1000	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	2,4,5-Trichlorophenol	100	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	2,4,6-Trichlorophenol	100	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06RE1	SW8270	2-Methylnaphthalene	331	ug/l	ЕD	DNR	20
HS-MW-11-091505	B5I0364-06	SW8270	Acenaphthene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Acenaphtylene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Anthracene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Benzo(a)anthracene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Benzo(a)pyrene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Benzo(b)fluoranthene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Benzo(g,h,i)perylene	200	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Benzo(k)fluoranthene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Chrysene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Dibenz(a,h)anthracene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Dibenzofuran	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Fluoranthene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Fluorene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Indeno(1,2,3-cd)pyrene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Naphthalene	20.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	N-Nitrosodiphenylamine	40.0	ug/l	DU	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Phenanthrene	40.1	ug/l	D	DNR	11
HS-MW-11-091505	B5I0364-06	SW8270	Pyrene	20.0	ug/l	DU	DNR	11
HS-MW-13-091505	B5I0364-07	SW8270	Benzo(a)pyrene	0.415	ug/l	D	J	5A

Client ID	Laboratory ID	Method	Chemical Name	Value	Units	Lab Qualifier	Validator Qualifier	Validator Reason Code
HS-MW-13-091505	B5I0364-07	SW8270	Benzo(b)fluoranthene	0.210	ug/l	D	J	5A
HS-MW-13-091505	B5I0364-07	SW8270	Benzo(k)fluoranthene	0.805	ug/l	D	J	5A
HS-MW-4-091505	B5I0364-01	SW8270	2,3,4,5-Tetrachlorophenol	50.0	ug/l	[4]	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	2,3,4,5-Tetrachlorophenol	100	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	2,3,5,6-Tetrachlorophenol	50.0	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	2,3,5,6-Tetrachlorophenol	100	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	2,4,5-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	2,4,5-Trichlorophenol	10.0	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	2,4,6-Trichlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	2,4,6-Trichlorophenol	10.0	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	2-Methylnaphthalene	419	ug/l	ЕD	DNR	11
HS-MW-4-091505	B5I0364-01RE2	SW8270	2-Methylnaphthalene	403	ug/l	ЕD	DNR	20
HS-MW-4-091505	B5I0364-01	SW8270	Acenaphthene	21.7	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Acenaphthene	17.6	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Acenaphtylene	1.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Acenaphtylene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Anthracene	4.46	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Anthracene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Benzo(a)anthracene	4.05	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Benzo(a)anthracene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Benzo(a)pyrene	1.78	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Benzo(a)pyrene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Benzo(b)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Benzo(b)fluoranthene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Benzo(g,h,i)perylene	10.0	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Benzo(g,h,i)perylene	20.0	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Benzo(k)fluoranthene	1.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Benzo(k)fluoranthene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Chrysene	2.62	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Chrysene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Dibenz(a,h)anthracene	1.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Dibenz(a,h)anthracene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Dibenzofuran	12.0	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Dibenzofuran	10.5	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Fluoranthene	2.18	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Fluoranthene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Fluorene	15.4	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Fluorene	16.5	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Indeno(1,2,3-cd)pyrene	1.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Indeno(1,2,3-cd)pyrene	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Naphthalene	150	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE2	SW8270	Naphthalene	120	ug/l	E D	DNR	20
HS-MW-4-091505	B5I0364-01	SW8270	N-Nitrosodiphenylamine	2.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	N-Nitrosodiphenylamine	4.00	ug/l	DU	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Phenanthrene	12.5	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01RE1	SW8270	Phenanthrene	14.4	ug/l	D	DNR	11
HS-MW-4-091505	B5I0364-01	SW8270	Pyrene	2.85	ug/l	D	DNR	11

Client ID	Laboratory ID	Method	Chemical Name	Value	Units	Lab Qualifier	Validator Qualifier	Validator Reason Code
HS-MW-4-091505	B5I0364-01RE1	SW8270	Pyrene	2.00	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	2,3,4,5-Tetrachlorophenol	5.00	ug/l	[6]	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	2,4,5-Trichlorophenol	0.500	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	2,4,6-Trichlorophenol	0.500	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02	SW8270	2-Methylnaphthalene	21.3	ug/l	E	DNR	20
HS-MW-5-091505	B5I0364-02RE1	SW8270	2-Methylnaphthalene	25.0	ug/l	D	J	9
HS-MW-5-091505	B5I0364-02	SW8270	Acenaphthene	0.681	ug/l		J	9
HS-MW-5-091505	B5I0364-02RE1	SW8270	Acenaphthene	0.830	ug/l	D	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Acenaphtylene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Anthracene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Benzo(a)anthracene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Benzo(a)pyrene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Benzo(b)fluoranthene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Benzo(g,h,i)perylene	1.00	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Benzo(k)fluoranthene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Chrysene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Dibenz(a,h)anthracene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02	SW8270	Dibenzofuran	0.110	ug/l		J	9
HS-MW-5-091505	B5I0364-02RE1	SW8270	Dibenzofuran	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Fluoranthene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02	SW8270	Fluorene	0.287	ug/l		J	9
HS-MW-5-091505	B5I0364-02RE1	SW8270	Fluorene	0.658	ug/l	D	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Indeno(1,2,3-cd)pyrene	0.100	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02	SW8270	Naphthalene	5.67	ug/l	E	DNR	20
HS-MW-5-091505	B5I0364-02RE1	SW8270	Naphthalene	6.20	ug/l	D	J	9
HS-MW-5-091505	B5I0364-02	SW8270	N-Nitrosodiphenylamine	0.0200	ug/l	U	UJ	8
HS-MW-5-091505	B5I0364-02RE1	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	DNR	11
HS-MW-5-091505	B5I0364-02	SW8270	Pentachlorophenol	0.0500	ug/l	U	UJ	8
HS-MW-5-091505	B5I0364-02	SW8270	Phenanthrene	0.0772	ug/l		J	9
HS-MW-5-091505	B5I0364-02RE1	SW8270	Phenanthrene	0.299	ug/l	D	DNR	11
HS-MW-5-091505	B5I0364-02RE1	SW8270	Pyrene	0.100	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	2,3,4,5-Tetrachlorophenol	250	ug/l	[12]	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	2,3,5,6-Tetrachlorophenol	250	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	2,4,5-Trichlorophenol	25.0	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	2,4,6-Trichlorophenol	25.0	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	2-Methylnaphthalene	1300	ug/l	D	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Acenaphthene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Acenaphtylene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Anthracene	3110	ug/l	D	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Benzo(a)anthracene	596	ug/l	D	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Benzo(a)pyrene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11RE1	SW8270	Benzo(a)pyrene	135	ug/l	D	J	5A
TL-MW-10-091405	B5I0364-11	SW8270	Benzo(b)fluoranthene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11RE1	SW8270	Benzo(b)fluoranthene	57.7	ug/l	D	J	5A
TL-MW-10-091405	B5I0364-11	SW8270	Benzo(g,h,i)perylene	50.0	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Benzo(k)fluoranthene	5.00	ug/l	DU	DNR	11

Client ID	Laboratory ID	Method	Chemical Name	Value	Units	Lab Qualifier	Validator Qualifier	Validator Reason Code
TL-MW-10-091405	B5I0364-11RE1	SW8270	Benzo(k)fluoranthene	78.8	ug/l	D	J	5A
TL-MW-10-091405	B5I0364-11	SW8270	Chrysene	655	ug/l	D	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Dibenz(a,h)anthracene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Dibenzofuran	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Fluoranthene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Fluorene	5440	ug/l	D	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Indeno(1,2,3-cd)pyrene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	Naphthalene	5.00	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11	SW8270	N-Nitrosodiphenylamine	10.0	ug/l	DU	DNR	11
TL-MW-10-091405	B5I0364-11RE1	SW8270	Phenanthrene	11300	ug/l	ЕD	DNR	20
TL-MW-10-091405	B5I0364-11	SW8270	Pyrene	2740	ug/l	D	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	2,3,4,5-Tetrachlorophenol	5.00	ug/l	[14]	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	2,3,5,6-Tetrachlorophenol	5.00	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	2,4,5-Trichlorophenol	0.500	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	2,4,6-Trichlorophenol	0.500	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12	SW8270	2-Methylnaphthalene	7.22	ug/l	E	DNR	20
TL-MW-11-091405	B5I0364-12RE1	SW8270	Acenaphthene	0.812	ug/l	D	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Acenaphtylene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Anthracene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Benzo(a)anthracene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Benzo(a)pyrene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Benzo(b)fluoranthene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12	SW8270	Benzo(g,h,i)perylene	0.100	ug/l	U	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Benzo(g,h,i)perylene	1.00	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Benzo(k)fluoranthene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Chrysene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Dibenz(a,h)anthracene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Dibenzofuran	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Fluoranthene	0.188	ug/l	D	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Fluorene	0.891	ug/l	D	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Indeno(1,2,3-cd)pyrene	0.100	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Naphthalene	0.307	ug/l	D	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	N-Nitrosodiphenylamine	0.200	ug/l	DU	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Phenanthrene	1.05	ug/l	D	DNR	11
TL-MW-11-091405	B5I0364-12RE1	SW8270	Pyrene	0.225	ug/l	D	DNR	11
D091405	B5I0364-09		Diesel Range Hydrocarbons	0.887	mg/l		J	9
HS-MW-5-091505	B5I0364-02		Diesel Range Hydrocarbons	0.25	mg/l	U	UJ	9

APPENDIX C DATA VALIDATION WORKSHEETS

CJW 06/14/95 10:12 AM L:\GeoEngineers 22\C02206002\APPENDIX.docm

Chris Ransom

From:	Jay Lucas [jlucas@geoengineers.com]	
Sent:	Friday, November 04, 2005 11:08 AM	
To:	Chris Ransom	
Subject:	FW: R.G. Haley International Corporation Site Results B510364	
Attachment	ts: B5I0364 Amended.pdf; B5I0364 Amended.RES; B5I0364 Amended.BCH; B5I0364 Amended.FSM; B5I0364 Amended.SMP; B5I0364 Amended.TST	

Chris- here is a revised EDD and I expect to send the hard copy to you Tuesday. Duplicate- only. Name: D091405. Taken from sample location HS-MW-5 MSDS sample was collected from HS-MW-5 No field blanks.

What is the additional cost for a two week TAT on your validation?

Jay Lucas Senior Geologist GeoEngineers, Inc. 206.239.3221 office 206.728.2732 fax jlucas@geoengineers.com

From: Jeff Gerdes [mailto:Jgerdes@ncalabs.com] Sent: Friday, November 04, 2005 9:26 AM To: Jay Lucas Subject: RE: R.G. Haley International Corporation Site Results B5I0364

Jay,

They are finishing up the data package today, and I'll have the courier bring it by on Monday. While putting together the data package, the QA dept. found made a few corrections. I was creating an amended report when your e-mail came through. As you know, many of the samples were analyzed at multiple dilutions. We have removed some of the analytes from one dilution of each of the following samples: HS-MW-4-091505 TL-MW-10-091405 CL-MW-15-091405 (re-shot 1) CL-MW-7-091405 Each of the analytes removed was reported in a different dilution. I've attached the amended report and EDD. Jeff

----Original Message----From: Jay Lucas [mailto:jlucas@geoengineers.com]
Sent: Friday, November 04, 2005 8:45 AM
To: Jeff Gerdes
Subject: RE: R.G. Haley International Corporation Site Results B510364

Jeff- I need the hard copies so we can complete our data validation. Can you please have them sent over as soon as possible-and let me know when I should expect to receive them. Thanks.

Jay Lucas Senior Geologist GeoEngineers, Inc. 206.239.3221 office 206.728.2732 fax jlucas@geoengineers.com **EXHIBIT L-2** NCA Labs Analytical Report Sample BWT-BS-01

 Seattle
 18939 120th Avenue NE
 Suite 121
 Botnell, WA 98011-9508

 425 420 9200
 fax 425 420.9210
 Spokane
 East 11115 Montgomery, Suite B. Spokane, WA 99295-4776

 Spokane
 East 11115 Montgomery, Suite B. Spokane, WA 99295-4776
 Spokane, WA 99295-4776

 909 024 9200
 fax 509 924,9290
 Portland
 9405 SW Nimbus Avenue Beaverton UR 97008-7132

 503.906 9200
 fax 503.906,9210
 Beand
 20332 Empire Avenue, Suite F-1 Bend, OR 97701-5711

 541.383 9310
 fax 541 382.7588
 State 100 State 1

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat

Project Number: N/A

Project Manager: Sandra Smith

Reported:

03/22/00 14:25

ANALYTICAL REPORT FOR SAMPLES

BWT-BS-01	Laboratory ID	Matrix	Date Sampled	Date Received
	B0B0462-01	Soil	02/29/00 18:05	02/29/00 21:03

North Creek Analytical - Bothell

Steve Davis, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 18939 120th Avenue NE, Sinte 101, Botnell, WA 98011-9508

 425-420,9200 tax 425-420 9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200 tax 509.924 9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200 tax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310 tax 541.362.7588

 Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200	Project: Bellingham Wood Treat	
Tacoma WA, 98402	Project Number: N/A Project Manager: Sandra Smith	Reported: 03/22/00 14:25
Semivolatile Pet	roleum Products by NWTPH Dy (m/o to i 1/01)	03/22/00 14:25

emivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BWT-BS-01 (B0B0462-01) Soil	Sampled: 02/29/00	18:05 Rec	eived: 02/29	/00 21:03					l
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	2600 130	30.0 75.0	mg/kg dry "	3	0C01021	03/01/00	03/02/00	NWTPH-Dx "	
Surrogate: Octacosane	115 %	50-150			"	t/	**	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18809 (2011 Aurolle 14: Suite 101 Suite)
 WA 98011-9508

 426 420 9251 tax 476 480 9215
 Spokane
 East 11115 Montaument Suite 5 Lookaie
 WA 98201-9508

 Spokane
 East 11115 Montaument Suite 5 Lookaie
 WA 98206-4776
 509 974 9205 tax 509 994 0096

 Portland
 9405 SW Nimbool Avenue Bealanted OF 97006-7102
 503 906 9205 tax 503 906 92016
 508 906 9205 tax 503 906 9216

 Bend
 00302 Stimpler Avenue, Juite 6-1 Bend OR 97701-5711
 541 383,0016 tax 541 902 1588

Geo Engineers - Tacoma	Project: Bellingham Wood Treat	· · · · · · · · · · · · · · · · · · ·
1101 Fawcett Ave., Ste 200	Project Number: N/A	Reported:
Tacoma WA, 98402	Project Manager: Sandra Smith	03/22/00 14:25
	The IBE AT I WIN COOPERATE	· · · · · · · · · · · · · · · · · · ·

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

	1		Reporting		······			····		
ţ	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	BWT-BS-01 (B0B0462-01) Soil	Sampled: 02/29/00 1	8:05 Rec	eived: 02/29	/00 21:03					J
	Silver	ND	0.321	mg/kg dry	1	0C02025	03/03/00	03/03/00	EPA 6020	
	Aluminum	7530	2.58	"		0C02009	03/02/00	03/03/00	EPA 6010B	
	Arsenic	5.59	0.321	**		0C02025	03/03/00	03/03/00	EPA 6020	
	Barium	93.3	3.21		-	**	"	т т	"	
	Beryllium	ND	0.321	**						
	Calcium	5890	7.73			0C02009	03/02/00	03/03/00	EPA 6010B	
	Cadmium	0.435	0.321	н		0C02025	03/03/00	03/03/00	EPA 6020	
	Cobalt	8.00	0.321	**	-	17		W	"	
	Chromium	30.8	0.321	н		*	-	•1	-	
	Copper	61.3	0.321	**	•	"		π	"	
	ron	27300	41.2	"	10	0C02009	03/02/00	03/03/00	EPA 6010B	
]	Mercury	0.126	0.100	"	1	0C02018	"	03/02/00	EPA 7471A	
]	Potassium	1110	5.52	π	-	0C03002	03/03/00	03/03/00	EPA 6010B	
J	Magnesium	6020	5.15	-		0C02009	03/02/00	03/03/00	LIA OUIOD	
]	langanese	241	0.641		2	0C02025	03/03/00	03/05/00	EPA 6020	
I	Nickel	26.3	0.321		1	*	*	03/03/00	LI A 0020	
]	.ead	47.0	0.321			н		"		
ł	Intimony	ND	0.321		-		-	-	"	
5	elenium	0.522	0.321	-	-	-	94	**	-	
7	hallium	ND	0.321	*	7			n		
١	anadium	36.2	0.321		-					
Z	linc	143 5	3.21	**			-	99		

North Creek Analytical - Bothell

Steve Davis, Project Manager

Seattle 16939 12000 Hulenue NE Done tot Bothel, W4 98011-9508 425 426 9206 114 425 420 9210 East 11115 Montgoment: Suite E. Spokane, WA 99206-4776 509 924 9200, tax 509 924 9290 Spokane Portland 9405 SW Nimpus Avenue, Beaverton, OP 97008-7102 503.906 9200 tay 503 906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541,382 9316 tax 541 382 7588 Benc

Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402

Project: Bellingham Wood Treat Project Number: N/A Project Manager: Sandra Smith

Reported:

03/22/00 14:25

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	Reporting	¥ 7 . •.		_				
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BWT-BS-01 (B0B0462-01) Soil	Sampled: 02/29/00	18:05 Rec	eived: 02/29	/00 21:03					
Acenaphthene	2.84	0.200	mg/kg dry	2	0C02005	03/02/00	03/04/00	EPA 8270C	
Acenaphthylene	ND	0.200		**	#1	"	"	EFA 62/UC	
Aniline	ND	0.200	**	**	n				
Anthracene	ND	0.200	*				••		
Benzoic Acid	ND	1.00	n						
Benzo (a) anthracene	ND	0.200	**			*			
Benzo (b) fluoranthene	ND	0.200	94			н			
Benzo (k) fluoranthene	ND	0.200	Ħ	"		**		•	
Benzo (ghi) perylene	ND	0.200		۳			"		
Benzo (a) pyrene	ND	0.200	-	**		Ħ	"	**	
Benzyl alcohol	ND	0.200	"		*		"	49	
Bis(2-chloroethoxy)methane	ND	0.200	*	#		н ·	*		
lis(2-chloroethyl)ether	ND	0.200					"	er.	
Bis(2-chloroisopropyl)ether	ND	0.200	*1					H	
is(2-ethylhexyl)phthalate	0.394	0.200			*		*	. •	
-Bromophenyl phenyl ether	ND	0.200		n					
utyl benzyl phthalate	ND	0.200	-			"	tt		
arbazole	ND	0.200		**		-	"	*	
-Chloroaniline	ND	1.00	-		*	Ħ	*	Ħ	
-Chloronaphthalene	ND			64	•		*		
-Chloro-3-methylphenol	ND	0.200	"		*		н	71	
Chlorophenol		0.200		••	•		•1		
Chlorophenyl phenyl ether	ND	0.200		**	\$ 7	**	**		
hrysene	ND	0.200	t7	•	*	*	**	*	
ibenz (a,h) anthracene	0.222	0.200	*			H	•1	"	
ibenzofuran	ND	0.200	19	Ħ	*	*		"	
-n-butyl phthalate	ND	0.200		۳.		n	"		
B-Dichlorobenzene	ND	0.200		*		н	N		
4-Dichlorobenzene	ND	0.200	"		Ħ	Ħ	*	н	
2-Dichlorobenzene	ND	0.200	"	n	*	**	'n	•	
-Dichlorobenzidine	ND	0.200	H	*	*	n		n	
	ND	10.0	*	*			*1		
-Dichlorophenol	ND	0.200	*		Ħ	"	Ħ		
ethyl phthalate	ND	0.200	Ħ			"	*	*	
-Dimethylphenol	ND	0.400	"	"	π. 1	n	**	"	
nethyl phthalate	ND	0.200	*				n	"	
-Dinitro-2-methylphenol	ND	1.00	"			64	n		
-Dinitrophenol	ND	1.00		m			"		
-Dinitrotoluene	ND	1.00	π		-		-	n	

North Creek Analytical Bothell

> The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 4 of 20

Seattle 18939-100tt Avenue (42, 2011-10), Bother, WA 3801149508 408-400-9050 (10, 498-40), 2010 Spokane, East 11115 Montgomen, Such & Depkane, WA 39266-1076 500-924-9000, 10, 500-904-0090 Portland 9405 SV/ Imibuo Avenuel Beaverton, OP 97008-7102
 Bool
 SOC
 SOC</t

Geo Engineers - Tacoma	Project:	Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200	Project Number:	N/A	Reported:
Tacoma WA, 98402	Project Manager:	Sandra Smith	03/22/00 14:25

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dranger	Amplumed		
·				Dilution	Datch	Prepareo	Analyzed	Method	Note
BWT-BS-01 (B0B0462-01) Soil	Sampled: 02/29/0	0 18:05 Rec	eived: 02/29	/00 21:03					
2.6-Dinitrotoluene	ND	1.00	mg/kg dry	2	0C02005	03/02/00	03/04/00	EPA 8270C	
Di-n-octyl phthalate	ND	0.200	T	•	"	"		"	
Fluoranthene	0.524	0.200			11	"	"		
Fluorene	3.52	0.200			"	••	Ħ		
lexachlorobenzene	ND	0.200		*		"			
lexachlorobutadiene	ND	0.200	m		"	н	*		
lexachlorocyclopentadiene	ND	1.00	•	H	н	n	*	Ŧ	
Iexachloroethane	ND	0.200			π			×	
ndeno (1.2.3-cd) pyrene	ND	0.200	-	••		"		Π	
sophorone	ND	0.200			*	"			
-Methylnaphthalene	33.9	1.00		10	*	"	03/06/00	ŧr	
-Methylphenol	ND	0.200		2			03/04/00		
& 4-Methylphenol	ND	0.200	Ħ		"		"	м	
aphthalene	2.09	0.200		"	н	۳	"		
-Nitroaniline	ND	1.00		-			н		
-Nitroaniline	ND	1.00	**	"	"				
-Nitroaniline	ND	1.00	"	-			-	-	
litrobenzene	ND	0.200	-		"	м	-	-	
-Nitrophenol	ND	0.200	-	-	n		"		
Nitrophenol	ND	1.00		n	**	**	"		
-Nitrosodiphenylamine	ND	0.200		-	**	P	"		
-Nitrosodi-n-propylamine	ND	0.200	*						
entachlorophenol	ND	1.00	"						
henanthrene	7.68	0.200	•		"				
nenol	ND	0.200		-	ŧr		"		
yrene	0.786	0.200		*				-	
2,4-Trichlorobenzene	ND	0.200			**	"			
4,5-Trichlorophenol	ND	0.200	17	"		"			
4.6-Trichlorophenol	ND	0.200	n	Π	11			*	
rrogate: 2-FP	69.9 %	19-141			"	11		,, ,,	
arrogate: Phenol-d6	89.8 %	44-128			"	"	"		
errogate: 2,4,6-TBP	94.7%	10-137			"	"		"	
rrogate: Nitrobenzene-d5	89.8 %	33-108			"		"	"	
rrogate: 2-FBP	102 %	51-124			"	"	**	"	
rrogate: p-Terphenyl-d14	112 %	51-124 48-149			"	"	"	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939
 120tn
 Avenue NE, Suite 101, Botnell
 WA 98011-9508

 425
 420.9200
 tax 425
 420.9210

 Spokane
 East 11115
 Montgomery, Suite 5, Spokane, WA 99206-4776

 509.924.9200
 tax 425
 420.9210

 Portland
 9405
 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 tax 503.906.9210
 Bend

 20332
 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 tax 541.382.7588

Comm	antional Chamister: Demonstration has A DIVA (DDA) 15	03/22/00 14:25
Tacoma WA, 98402	Project Manager: Sandra Smith	•
1101 Fawcett Ave., Ste 200	Project Number: N/A	Reported:
Geo Engineers - Tacoma	Project: Bellingham Wood Treat	
Con Engineers Tour		

Conventional Chemistry Parameters by APHA/EPA Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BWT-BS-01 (B0B0462-01) Soil Sa	ampled: 02/29/00	18:05 Rec	eived: 02/29	/00 21:03]
Total Organic Carbon - Average	61000	300	mg/kg dry	1	0C21019	03/20/00	03/20/00	EPA 9060 mod.	
Total Organic Carbon - High	92300	300	"	-	n	n	"	LI A 9000 mou.	
Total Organic Carbon - Low	29800	300	et		=	*	**	-	

North Creek Analytical - Bothell

Steve Davis, Project Manager

 Seattle
 18939 120th Avenue NE
 Suite 101. Botnell. WA 98011-9508

 425.420.9200
 tax 425.420.9210

 Spokane
 East 11115 Montgomery Suite B. Spokane. WA 99206-4776

 509.924.9200
 tax 509.924.9290

 Portland
 9405 SW Nimbus Avenue. Beaverton. OR 97006-7132

 503.906.9200
 tax 503.906.9210

 Bend
 20322 Empire Avenue. Suite F-1 Bend, OR 97701-5711

 541.383.9310
 tax 541.382.7588

	Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	lumber: N	ellingham W /A Indra Smith	Reported: 03/22/00 14:25						
Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell										
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BWT-BS-01 (B0B0462-01) Soil	Sampled: 02/29/00 18	:05 Rece	ived: 02/29	9/00 21:03					
Dry Weight	67.7	1.00	%	1	0C01029	03/01/00	03/02/00	BSOPSPL003R07	

North Creek Analytical - Bothell

Steve Davis, Project Manager

Geo Engineers - Tacoma	Project: Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200	Project Number: N/A	Reported:
Tacoma WA, 98402	Project Manager: Sandra Smith	03/22/00 14:25

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0C01021: Prepared 03/01/00	Using l	EPA 3550B						· · · · · · · · · · · · · · · · · · ·		
Blank (0C01021-BLK1)		·····						-		
Diesel Range Hydrocarbons	ND	10.0	mg/kg wet							
Lube Oil Range Hydrocarbons	ND	25.0								
Surrogate: 2-FBP	6.54	<u></u>	"	10.6		61.7	50-150		·····	······
LCS (0C01021-BS1)										
Diesel Range Hydrocarbons	68.7	10.0	mg/kg wet	66.2		104	60-140			
Surrogate: 2-FBP	12.6		п	10.6		119	50-150			
Duplicate (0C01021-DUP1)					Source: B	BOCOOO6- (1			
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry		ND				50	· · · · · · · · · · · · · · · · · · ·
Lube Oil Range Hydrocarbons	ND	25.0			4.24				50 50	
Surrogate: 2-FBP	12.6		"	14.7		85.7	50-150			· · · · · · · · · · · · · · · · · · ·

North Creek Analytical - Bothell

Geo Engineers - Tacoma	Project:	Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200	Project Number:	N/A	Reported:
Tacoma WA, 98402	Project Manager:	Sandra Smith	03/22/00 14:25

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Neer
Batch 0C02009:	Propagod 03/02/00				Lever	Result	/01/20				Notes
	Prepared 03/02/00	Using	EPA 3050B								
Blank (0C02009-B	LK1)										
Aluminum		ND	5.00	mg/kg wet							
Calcium		ND	15.0	"	÷						
Iron		ND	8.00								
Magnesium		ND	10.0	Ħ					e.		
LCS (0C02009-BS	1)										
Aluminum		481	5.00	mg/kg wet	500		96.2	70-130	·····		
Calcium		473	15.0		500		94.6	70-130			
Iron		472	8.00		500		94.4	70-130			
Magnesium		466	10.0		500		93.2	70-130			
Matrix Spike (0C0)	2009-MS1)					Source: B	0B0462-0)1			
Aluminum		9060	2.72	mg/kg dry	401	7530	382	70-130		<u> </u>	Q-1
Calcium		4280	8.15	"	401	5890	-401	70-130			Q-1
Iron		28800	43.5	"	401	27300	374	70-130			Q-1
Magnesium		6170	5.43	•	401	6020	37.4	70-130			Q-1
Matrix Spike Dup ((0C02009-MSD1)					Source: B	0B0462-()1			
Aluminum	· · · · · · · · · · · · · · · · · · ·	7430	2.79	mg/kg dry	412	7530	-24.3	70-130	19.8	20	Q-1
Calcium		4260	8.38	"	412	5890	-396	70-130	0.468	20	Q-1
iron		27600	44.7	n	412	27300	72.8	70-130	4.26	20	× •
Magnesium		4950	5.59	n	412	6020	-260	70-130	21.9	20	Q-1
Batch 0C02018:	Prepared 03/02/00	Using E	CPA 7471A								
Blank (0C02018-BI									· · · · · · · · · · · · · · · · · · ·		
viercury	·	ND	0.100	mg/kg wet			······				

North Creek Analytical - Bothell

Steve Davis, Project Manager

Seattle 1890+120th 40m 24 42, Julie 101, Bother, WA 38011-9508 425,420,9200, 1ax 425,420,9216 East 11115 Montoomery, Suite B. Cookane, WA 99206-4776 Spokane 509 924 9200 tax 509 924 9290 9405 SW Nimpus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 tax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383 9310 tax 541.382 7588

٦

Geo Engineers - T 1101 Fawcett Ave Tacoma WA, 9840	., Ste 200			Project: Be Number: N// Manager: Sar	4					Report 03/22/00	
	Total Met	als by I					Juality	Contro	1		
				eek Analy			Zuanty	Contro	,1		
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits		RPD	
Batch 0C02018:	Prepared 03/02/00	······	EPA 7471A						RPD	Limit	Notes
LCS (0C02018-BS1)										· · · · · · · · · · · · · · · · · · ·
Mercury	· · · · · · · · · · · · · · · · · · ·	1.71	0.333	mg/kg wet	1.75		97.7	80-120			
Matrix Spike (0C02	2018-MS1)			00		Same D					
Мегсигу		1.29	0.254	mg/kg dry	1.24	Source: B 0.135	93.1	80-120			
Matrix Spike Dup (0C02018-MSD1)										
Mercury		1.33	0.254	mg/kg dry	1.23	Source: B 0.135	97.2	80-120	2.05		
Batab 0C02025	D			mg/kg ury	1	0.135	97.2	80-120	3.05	20	
Batch 0C02025:	Prepared 03/02/00	Using E	PA 3050B								
Blank (0C02025-BL	_K1)			-							
Antimony		ND	0.500	mg/kg wet			*				
Arsenic		ND	0.500	• .							
Barium		ND	5.00	-							
Beryllium		ND	0.500	*							
Cadmium		ND	0.500	-							
Chromium		ND	0.500	-							
Cobalt	•	ND	0.500	Ħ							
Copper	•	ND	0.500								
Lead		ND	0.500								
Manganese		ND	0.500	۳							
Nickel		ND	0.500	*							
Selenium		ND	0.500								
Silver		ND	0.500								
Thallium		ND	0.500								
Vanadium		ND	0.500								
Zinc		8.00	5.00	er							В

North Creek Analytical Bothell

1	Geo Engineers - Tacoma	Project:	Bellingham Wood Treat	
	1101 Fawcett Ave., Ste 200	Project Number:	N/A	Reported:
l	Tacoma WA, 98402	Project Manager:	Sandra Smith	03/22/00 14:25

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike	Source	0/5-5-5	%REC		RPD	
-			<u> </u>		Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C02025:	Prepared 03/02/00	Using El	PA 3050B								
LCS (0C02025-BS1)										
Antimony		24.8	0.500	mg/kg wet	25.0		99.2	80-120			
Arsenic		25.0	0.500		25.0		100	70-130			
Barium		27.5	5.00		25.0		110	80-120			
Beryllium		24.8	0.500		25.0		99.2	80-120			
Cadmium		24.9	0.500	*	25.0		99.6	70-130			
hromium		24.5	0.500		25.0		98.0	80-120			
Cobalt		25.3	0.500	Π	25.0		101	80-120 80-120			
Copper		25.1	0.500	"	25.0		101	80-120 80-120			
cad		27.3	0.500		25.0		100	80-120 80-120			
langanese		25.1	0.500		25.0		109				
ickel		24.5	0.500	-	25.0		98.0	80-120			
elenium		24.4	0.500		25.0			80-120			
lver		24.2	0.500		25.0		97.6	70-130			
allium		25.1	0.500		25.0		96.8	80-120			
anadium		23.5	0.500	-	25.0		100	80-120			
nc		32.4	5.00		25.0 25.0		94.0 130	80-120			
atrix Spike (0C02(025-MS1)					C		70-130			
timony		1.01	0.352	mg/kg dry	19.7	Source: B					
senic		19.5	0.352	ng/kg dry		0.0415	4.92	70-130			Ç
rium		68.6	3.52	*	19.7	1.43	91.7	70-130			
ryllium		19.2	0.352		19.7	46.6	112	70-130			
dmium		21.2			19.7	0.193	96.5	70-130		-	
romium		44.5	0.352		19.7	1.65	99.2	70-130			
balt		44.3 26.9	0.352		19.7	30.0	73.6	70-130			
pper			0.352		19.7	7.84	96.8	70-130			
ad		37.2	0.352		19.7	17.8	98.5	70-130			
nganese		23.7	0.352		19.7	2.81	106	70-130			
kel		340	1.76	"	19.7	312	142	70-130			Q
enium		54.2	0.352	n	19.7	36.6	89.3	70-130			
/er		18.1	0.352		19.7	0.455	89.6	70-130			
dlium		17.2	0.352	Ħ	19.7	0.0654	87.0	70-130			
adium		20.2	0.352	H	19.7	0.0961	102	70-130			
c		49.7	0.352		19.7	34.3	78.2	70-130			
5		220	17.6		19.7	240	-102	70-130			Q-

North Creek Analytical - Bothell

> The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

ī

Seattie	18939 120th Avenue NE, Suite 101, Bothell, WA 38011-9538
	425 420.9200 14* 425 420.9215
Spokane	East 11115 Montgomery, Suite B. Spokane, WA 99206-4776
	509 924 9200 tax 509.924 9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503 906.9200 tay 503.905.9210
Bend	20332 Empire Avenue, Suito F-1, Bend, OR 97701-5711
	541 363 9310 thy 511 382 7520

Geo Engineers - Tacoma	Project:	Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200	Project Number:	-	Reported:
Tacoma WA, 98402	Project Manager:	Sandra Smith	03/22/00 14:25

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting	•••	Spike	Source		%REC		RPD	
		Kesult	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C02025:	Prepared 03/02/00	Using EI	PA 3050E	3						······································	
Matrix Spike Dup	(0C02025-MSD1)					Source: E		10	· · · · · · · · · · · · · · · · · · ·		· · ·
Antimony		0.536	0.362	mg/kg dry	20.2	0.0415	2.45	70-130	61.3	20	
Arsenic		20.6	0.362	"	20.2	1.43	94.9	70-130	5.49	20	Q-
Barium		72.8	3.62	*	20.2	46.6	130	70-130	5.94		
Beryllium		20.0	0.362		20.2	0.193	98.1	70-130	4.08	20	
Cadmium		22.0	0.362		20.2	1.65	101	70-130		20	
Chromium		47.2	0.362	"	20.2	30.0	85.1	70-130	3.70	20	
Cobalt		28.1	0.362		20.2	7.84	100		5.89	20	
Copper		41.6	0.362		20.2	17.8	118	70-130	4.36	20	
Lead		24.6	0.362		20.2	2.81	108	70-130	11.2	20	
vianganese		359	1.81		20.2	312		70-130	3.73	20	
Nickel		55.5	0.362		20.2	36.6	233	70-130	5.44	20	Q-1
Selenium		19.0	0.362		20.2		93.6	70-130	2.37	20	
ilver		17.7	0.362		20.2	0.455	91.8	70-130	4.85	20	
hallium		20.9	0.362	m		0.0654	87.3	70-130	2.87	20	
anadium		51.8	0.362	,	20.2	0.0961	103	70-130	3.41	20	
inc		297	18.1		20.2	34.3	86.6	70-130	4.14	20	
		277	10.1		20.2	240	282	70-130	29.8	20	Q-1
ost Spike (0C02025	5-PS1)					Source: B)B0404-1	0			
ntimony		192	1.79	mg/kg dry	199	0.0415	96.5	70-130	<u> </u>		
atch 0C03002:	Prepared 03/03/00	Using EP.	A 3050B								
lank (0C03002-BLI											
otassium		ND	10.0	mg/kg wet			<u> </u>			<u></u>	
CS (0C03002-BS1)											
otassium		2840	10.0	mg/kg wet	2500	·····	114				
			10.0	mg/kg wei	2500		114	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939-120th Acenari NE
 Suite 101
 Bothell, WA 98011-9508

 425-420-9200
 tax 425-420-9216
 Bothell, WA 98011-9508

 Spokane
 East 11115 Montgoment, Suite B, Spokane, WA 99296-4776
 Spoge 924-9200

 909-924-9200
 tax 509,924-9290
 Portland
 9405 SW Nimous Avenue Beaverton, OR 97008-7132

 503-906-9200
 tax 503,906,9210
 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383,9310
 tax 541.382
 7588

To		Series Methods - Quality Cont	03/22/00 14:25
1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	Project Number: Project Manager:		Reported:
Geo Engineers - Tacoma	Project:	Bellingham Wood Treat	

Metals by EPA 6000/7000 Series Methods - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C03002:	Prepared 03/03/00	Using EI	PA 3050B								
Matrix Spike (0C0)	3002-MS1)					Source: E	B0B0462-6	01	·		
Potassium		3480	5.52	mg/kg dry	2040	1110	116	70-130		·	<u> </u>
Matrix Spike Dup (0C03002-MSD1)					Source: B	0B0462-(01	•		
Potassium		3670	5.49	mg/kg dry	2030	1110	126	70-130	5.31	20	

North Creek Analytical - Bothell

Steve Davis, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

Page 13 of 20

营

Geo Engineers - Tacoma	Project:	Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200	Project Number:	N/A	Reported:
Tacoma WA, 98402	Project Manager:	Sandra Smith	03/22/00 14:25

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting	I Laine	Spike	Source	0/555	%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C02005: Prepared 03/02/0	0 Using El	PA 3550B								
Blank (0C02005-BLK1)					·····				<u> </u>	
Acenaphthene	ND	0.200	mg/kg wet							
Acenaphthylene	ND	0.200	"							
Aniline	ND	0.200	۳							
Anthracene	ND	0.200	77							
Benzoic Acid	ND	1.00								
Benzo (a) anthracene	ND	0.200								
Benzo (b) fluoranthene	ND	0.200								
enzo (k) fluoranthene	ND	0.200	ff							
Benzo (ghi) perylene	ND	0.200	=							
Benzo (a) pyrene	ND	0.200	**							
enzyi alcohol	ND	0.200	"							
is(2-chloroethoxy)methane	ND	0.200	"							
is(2-chloroethyl)ether	ND	0.200	м							
is(2-chloroisopropyl)ether	ND	0.200	n							
is(2-ethylhexyl)phthalate	ND	0.200								
Bromophenyl phenyl ether	ND	0.200	"							
utyl benzyl phthalate	ND	0.200	۳							
arbazoie	ND	0.200	•							
Chloroaniline	ND	1.00	"							
Chloronaphthalene	ND	0.200	н							
Chloro-3-methylphenol	ND	0.200	**							
Chlorophenol	ND	0.200								
Chlorophenyl phenyl ether	ND	0.200								
nrysene	ND	0.200								
ibenz (a,h) anthracene	ND	0.200	H							
benzofuran	ND	0.200								
-n-butyl phthalate	ND	0.200								
S-Dichlorobenzene	ND	0.200								
4-Dichlorobenzene	ND	0.200	-							
2-Dichlorobenzene	ND	0.200	n							
-Dichlorobenzidine	ND	10.0								
-Dichlorophenol	ND	0.200	м							
ethyl phthalate	ND	0.200	"							
-Dimethylphenol	ND	0.400	n							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

	Geo Engineers - Tacoma	Project: Bellingha	im Wood Treat
	1101 Fawcett Ave., Ste 200	Project Number: N/A	Reported:
ļ	Tacoma WA, 98402	Project Manager: Sandra Sn	mith 03/22/00 14:25

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Analyze	E I	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C02005: Prepared 03/02/00	Using EF	PA 3550B								
Blank (0C02005-BLK1)								<u></u>		•••••••
Dimethyl phthalate	ND	0.200	mg/kg wet							
4.6-Dinitro-2-methylphenol	ND	1.00								
2.4-Dinitrophenol	ND	1.00	n							
2.4-Dinitrotoluene	ND	1.00	n							
2.6-Dinitrotoluene	ND	1.00	n							
Di-n-octyl phthalate	ND	0.200	97							
Fluoranthene	ND	0.200	н							
Fluorene	ND	0.200	n							
Hexachlorobenzene	ND	0.200	*							
Hexachlorobutadiene	ND	0.200								
Hexachlorocyclopentadiene	ND	1.00	۳							
lexachloroethane	ND	0.200	"							
ndeno (1,2,3-cd) pyrene	ND	0.200	Π							
sophorone	ND	0.200	"							
-Methyinaphthalene	ND	0.200	m							
-Methylphenol	ND	0.200								
& 4-Methylphenol	ND	0.200	Ħ							
Japhthalene	ND	0.200	π							
-Nitroaniline	ND	1.00	Ħ							
-Nitroaniline	ND	1.00	Ħ							
-Nitroaniline	ND	1.00	"							
litrobenzene	ND	0.200	۳							
-Nitrophenol	ND	0.200								
-Nitrophenol	ND	1.00	*							
I-Nitrosodiphenylamine	ND	0.200	"							
-Nitrosodi-n-propylamine	ND	0.200	Ħ							
entachlorophenol	ND	1.00	n							
henanthrene	ND	0.200	n							
henol	ND	0.200								
угепе	ND	0.200								
2.4-Trichlorobenzene	ND	0.200	"							
4,5-Trichlorophenol	ND	0.200								
4.6-Trichlorophenol	ND	0.200								
urrogate: 2-FP	1.67		**	1.67						

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

Geo Engineers - Tacoma	Project:	Bellingham Wood Treat						
1101 Fawcett Ave., Ste 200	Project Number:	N/A	Reported:					
Tacoma WA, 98402	Project Manager:	Sandra Smith	03/22/00 14:25					
Semivolatile Organia Compoundo by ED4 Mathed 22700 0 11 0								

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C02005: Prepared 03/02/00	Using E	PA 3550B								
Blank (0C02005-BLK1)								·		
Surrogate: Phenol-d6	1.72		mg/kg wet	1.67		103	44-128			
Surrogale: 2,4,6-TBP	1.54		,	1.67		92.2	10-137			
Surrogate: Nitrobenzene-d5	1.49		"	1.67		89.2	33-108			
Surrogate: 2-FBP	1.68		"	1.67		101	51-124			
Surrogate: p-Terphenyl-d]4	2.03		"	1.67		122	48-149			
LCS (0C02005-BS1)										
Acenaphthene	3.41	0.200	mg/kg wet	3.33		102	48-110			
4-Chloro-3-methylphenol	7.30	0.200		6.67		109	34-115			
2-Chlorophenol	6.68	0.200		6.67		100	57-110			
1,4-Dichlorobenzene	2.97	0.200	*	3.33		89.2	39-110			
2.4-Dinitrotoluene	3.53	1.00	-	3.33		106	50-110			
-Nitrophenol	6.05	1.00		6.67		90.7	26-116			
N-Nitrosodi-n-propylamine	3.39	0.200	н	3.33		102	28-147			
entachlorophenol	6.69	1.00		6.67		102	46-120			
Phenol	6.00	0.200		6.67		90.0				
yrene	3.77	0.200		3.33			35-110			
.2.4-Trichlorobenzene	3.26	0.200		3.33		113 97.9	35-143 39-110			
urrogate: 2-FP	1.58	· · · · ·	н	1.67		94.6			Martinian	
urrogate: Phenol-d6	1.60		**	1.67		94.0 95.8	19-141 44-128			
urrogate: 2,4,6-TBP	1.56		<i>n</i> -	1.67		93.4	44-128 10-137			
urrogate: Nitrobenzene-d5	1.44		**	1.67		86.2	33-108			
urrogate: 2-FBP	1.65		**	1.67		98.8	51-124			
urrogate: p-Terphenyl-d]4	1.93		"	1.67		116	48-149			
fatrix Spike (0C02005-MS1)					Source: B	0B0462-0	1			
cenaphthene	8.40	0.200	mg/kg dry	4.92	2.84	113	34-122	····		
-Chloro-3-methylphenol	12.1	0.200	"	9.84	ND	123	26-129			
Chlorophenol	8.89	0.200		9.84	ND	90.3	43-131			
4-Dichlorobenzene	3.91	0.200	n	4.92	ND	79.5	34-131			
4-Dinitrotoluene	8.47	1.00		4.92	ND	172				~
Nitrophenol	8.62	1.00	n	4. <i>92</i> 9.84	ND		10-126			Q
Nitrosodi-n-propylamine	5.30	0.200	#			87.6	10-111			
ntachlorophenol	11.6		"	4.92	ND	108	29-160			
enol		1.00		9.84	ND	118	46-120			
rene	8.62	0.200		9.84	ND	87.6	41-118			
	6.16	0.200	H	4.92	0.786	109	44-122			

North Creek Analytical - Bothell

> The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Steve Davis, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network 1

Geo Engineers - Tacoma	Project: Belling	gham Wood Treat
1101 Fawcett Ave., Ste 200	Project Number: N/A	Reported:
Tacoma WA, 98402	Project Manager: Sandra	a Smith 03/22/00 14:25

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C02005: Pr	epared 03/02/00	Using E	PA 3550B								
Matrix Spike (0C02005	-MS1)					Source: H	B0B0462-0	D1			
1.2,4-Trichlorobenzene		5.10	0.200	mg/kg dry	4.92	ND	104	10-176			
Surrogate: 2-FP		1.85		n	2.46		75.2	19-141			
Surrogate: Phenol-d6		2.32		"	2.46		94.3	44-128			
Surrogate: 2.4,6-TBP		1.87		**	2.46		76.0	10-137			
Surrogate: Nitrobenzene-d5		2.26		"	2.46		91.9	33-108			
Surrogate: 2-FBP		2.57		**	2.46		104	51-124			
Surrogate: p-Terphenyl-d14		2.81		"	2.46		114	48-149			
Matrix Spike Dup (0C0	2005-MSD1)					Source: H	30B0462-0	D1			
Acenaphthene		9.05	0.200	mg/kg dry	4.92	2.84	126	34-122	7.45	56	Q-0
4-Chloro-3-methylphenol		12.0	0.200	-	9.84	ND	122	26-129	0.830	29	
2-Chlorophenol		10.3	0.200		9.84	ND	105	43-131	14.7	27	
1,4-Dichlorobenzene		4.49	0.200	"	4.92	ND	91.3	34-131	13.8	23	
2,4-Dinitrotoluene		9.10	1.00	n	4.92	ND	185	10-126	7.17	22	Q-0
4-Nitrophenol		8.95	1.00	-	9.84	ND	91.0	10-111	3.76	43	
N-Nitrosodi-n-propylamine		5.55	0.200		4.92	ND	113	29-160	4.61	25	
Pentachlorophenol		12.4	1.00		9.84	ND	126	46-120	6.67	29	Q-0
Phenol		9.19	0.200		9.84	ND	93.4	41-118	6.40	29	
Pyrene		6.40	0.200	"	4.92	0.786	114	44-122	3.82	31	
1.2.4-Trichlorobenzene		5.53	0.200	۳	4.92	ND	112	10-176	8.09	24	
Surrogate: 2-FP		2.20		"	2.46		89.4	19-141			
Surrogate: Phenol-d6		2.32		"	2.46		94.3	44-128			
Surrogate: 2.4.6-TBP		2.75		**	2.46		112	10-137			
Surrogate: Nitrobenzene-d5		2.61		"	2.46		106	33-108			
Surrogate: 2-FBP		2.81		"	2.46		114	51-124			
Surrogate: p-Terphenyl-d14		2.92		**	2.46		119	48-149			

North Creek Analytical - Bothell

Seattle 18939-120tr Avenue NE Guite 101 Botnell WA 98011-9508 425 429 9200 tax 425 420 9219-Spokane - East 11115 Montgomery Suite B. Spokane, WA 99206-4776 509.924 9200 tax 509.924 9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 tax 503.906.0210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-571* 541.383.9310 tax 541.382 7588

Geo Engineers - Tacoma	Project: Bellingham Wood Treat	
1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	Project Number: N/A Project Manager: Sandra Smith	Reported: 03/22/00 14:25
Conventional Ch		05/22/00 14:25

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control North Creek Analytical - Bothell

Алајуте	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0C21019: Prepared 03/20/00	Using (General Pr	eparation							
Blank (0C21019-BLK1)					• ••					·····
Total Organic Carbon - Average	ND	300	mg/kg wet					· · · · · · · · · · · · · · · · · · ·	····	
Blank (0C21019-BLK2)										
Total Organic Carbon - Average	ND	300	mg/kg wet	<u></u>						
LCS (0C21019-BS1)										
Total Organic Carbon - Average	2130	300	mg/kg wet	3820	1.1.1.8 illusion one	55.8	53.7-146			<u> </u>
LCS Dup (0C21019-BSD1)										
Total Organic Carbon - Average	3270	300	mg/kg wet	3820	<u> </u>	85.6	53.7-146	42.2	30	Q-1

North Creek Analytical - Bothell

Steve Davis, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

	Geo Engineers - Tacoma 1101 Fawcett Ave., Ste 200 Tacoma WA, 98402	Project: Bellingham Wood Treat Project Number: N/A Project Manager: Sandra Smith	Reported: 03/22/00 14:25
1	Physical Para	meters by APHA/ASTM/EPA Methods - Quality (Control

North Creek Analytical - Bothell

		I	Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0C01029:	Prepared 03/01/00	Using Dr	y Weight								
Blank (0C01029-B	LK1)					······································	<u> </u>		· · · · · · · · · · · · ·		
Dry Weight		100	1.00	%			-		······		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

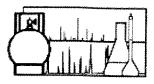
Steve Davis, Project Manager

North Creek Analytical, Inc. Page 19 of 20 Environmental Laboratory Network

Seattle 18939 120th Avenue NE, Suite 101, Bothell, WA 98011-9508
 Seamle
 Tesse Testin Avenue (n.), sun tor, bolineir, the bolineir (n.), bolinei 509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 tax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Geo Eng	ineers - Tacoma			
	vcett Ave., Ste 200		Bellingham Wood Treat	
	WA, 98402	Project Number:		Reported:
		Project Manager:	Sandra Smith	03/22/00 14:25
		Notes and De	efinitions	
В	Analyte detected in the method blank.			
Q-01	The spike recovery for this QC sample is or recovery for this analyte does not represent	utside of established an out-of-control co	control limits. Review of associated batch QC indicate ndition for the batch.	es the
Q-07	The RPD value for this QC sample is above not represent an out-of-control condition fo	the established cont r the batch.	trol limit. Review of associated QC indicates the high	RPD does
Q-13	Multiple analyses indicate the percent recov	ery is outside the co	ntrol limits due to a matrix effect.	
Q-15	Analyses are not controlled on matrix spike than the spike level.	RPD and/or percent	recoveries when the sample concentration is significa	ntly higher
S-05	Due to interference from coeluting organic or used to control the analysis.	compounds with the	primary surrogate, results of the secondary surrogate i	1ave been
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the r	eporting limit		
NR	Not Reported			
dry	Sample results reported on a dry weight basi	is		
RPD	Relative Percent Difference			•

North Creek Analytical - Bothell


Steve Davis, Project Manager

	GEOENGINE 1101 FAWCET COMA, WASH (206) 38	T, SUIT INGTOI	E 200 N 984							Engi				Ur			DATE PAGE LAB LAB NO.	2120 1 NIC	γ (<i>O</i> F OF	
PROJE	CT NAME/LOCATION	Bellin	ham 1	Dood Trea	t	[-0		ANA	LYSIS	S RE(QUIR	ED					OTES/C		
	PROJECT NUMBER						209	00	~								(F	reserved,	filtered,	etc.)
	PROJECT MANAGER					0	50	-												
	SAMPLED BY		LI SM			5	-	$\sum_{i=1}^{n}$	Ē											
SAMPLE LAB	IDENTIFICATION GEOENGINEERS	DATE	PLE'COLL	MATRIX	# OF JARS	0	171	TH.	Ż											
	BUT-BS-01	A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF	والبابعة الشراهير والمتوابية المتحد والباده	Sediaval			$\frac{1}{\lambda}$		$\overline{\mathbf{x}}$		1	01	5/14	11-	7	DĽ		Jer A	undu	GOS
	1201-122-01	2/24/00	12:15	Sealar.		F	Δ				- <u>-</u> [20	بمنا		<u>6-4</u> -			n ziel	<u> </u>
						1					1									
												1								
			·····															· · · · · · · · · · · · · · · · · · ·	١	
	· · · · · · · · · · · · · · · · · · ·																		~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
																				12
																				,
								,	(
									·									•		
																				0
INQUISHE		FIRM G		RELINQUISH				FIRM				LINQU		DBY				FIRM		
NATURE NTED NAM	<u>Aandhu I</u>		<u>+ l_</u>	SIGNATURE PRINTED NA						····	7	SNAT					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-{'
TE 2	E Sendra BSA 29100	TIME 21	103	DATE		TIM	1E					INTED TE	NAN				TIME	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CEIVED BY	() C	FIRM 🔥	1F-	RECEIVED B	Y			FIRM		<u>}</u>		ĢEIVE	DBY					FIRM		
INATURE				SIGNATURE							sig	NAT	JRE					·······		
NTED NAM	124100	TIME 1	107	PRINTED NA	ME	714						INTED	NAM	1 <u>E</u>		·				
والزركار فاعتد فجاد فتستبت فالكاف	L COMMENTS:		05	DATE	·	TIM					DA	IE	-				TIME			
211/010																				

EXHIBIT L-3 ENSR Air Toxics Specialty Laboratory Analytical Report

Air Toxics Specialty Laboratory 3/25 Ayer Road Harvard, MA 01451 (978) 772-2345 Fax (978) 772-4956

ENSR Air Toxics Specialty Laboratory Analytical Report

Client:

Neil Morton GEOENGINEERS 600 Stewart Street Seattle, WA 98101 Client ID: 0275-002-01 T1

Laboratory ID: 05-252

Date(s) Received: 8/24/05

All work contained in this report has been done in accordance with laboratory standard operating procedures. ENSR's Air Toxics Specialty Laboratory follows methodologies based upon standard EPA/NIOSH/OSHA Methods. Data contained herein should be considered accurate and complete to the best of our knowledge. This report cannot be duplicated in part without the written permission of ENSR.

Christopher Philbrick Senior Chemist ENSR Air Toxics Specialty Laboratory

page 1 of 22

Case Narrative

Re: Volatile Organic Analysis of SUMMA® Canisters by Gas Chromatography/Mass Spectrometry (GC/MS) – **GEOENGINEERS**

- PROJECT #: 0275-002-01 T1
- LAB ID #: 05-252
- ANALYTICAL PROCEDURE:

Eight (8) SUMMA® canister samples were analyzed under the guidelines of MADEP Draft Method 1.0; <u>Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH)</u>.

A Hewlett Packard 6890 gas chromatograph equipped with a Hewlett Packard 5973 mass selective detector (MSD) was employed for the analysis. A Nutech 3550A/3600 automatic concentrator was utilized for pre-concentration.

A 250, 25 and 10-ml aliquot was drawn from each SUMMA® canister, concentrated at -160°C and then transferred to the GC/MSD for the analysis. The operating conditions of the GC/MSD are listed in Table 1.

GC/MSD calibration was performed with canister standards prepared for each target compound. Five to seven point calibrations were generated for each compound using these standards.

No problems occurred during sample receipt or login.

QUALITY CONTROL:

- 1. A laboratory blank was analyzed daily prior to sample analysis in the same manner as the samples. Target analytes were not detected in the blank.
- 2. A laboratory check standard (LCS) was analyzed with each batch of samples. All percent recoveries were within the laboratory's QC acceptance limits.
- Sample [HS-SV-1 was analyzed in duplicate. The relative percent difference of 2-methyl naphthalene slightly exceeded the laboratory's QC acceptance limits. All other relative percent differences were within the laboratory's QC acceptance limits.
- 4. The SUMMA canisters for the samples were cleaned on 8/11/05 and were certified clean by the analysis of one canister (A100) from the cleaning batch.
- 5. The flow controllers for the samples were cleaned on 7/28/05 and 8/9/05 and were certified clean by the analysis of one flow controller (A019, A011) from each cleaning batch.

DISCUSSION:

- 1. Acetone and a siloxane isomer were present in sample [HS-SV-4]; these compounds elute in the C5-C8 aliphatic hydrocarbon range. These compounds were not included in the quantitation of the hydrocarbon range, since they are not petroleum hydrocarbons.
- 2. Pinene was present in samples [HS-SV-1] and [HS-SV-4]; this compound elutes in the C9-C12 aliphatic hydrocarbon range. This compound was not included in the quantitation of the hydrocarbon range, since it is not a petroleum hydrocarbon.
- 3. Due to concentrations of target and non-target compounds, which would have exceeded the calibrated range of the instrument and/or caused detector saturation if analyzed undiluted, all samples, with the exception of [HS-SV-1] and [HS-SV-4], were analyzed at a 10-fold to 25-fold dilution. Reporting limits and detected values have been adjusted accordingly. However, in some of the diluted samples the levels of various compounds (ethylbenzene, p&m-xylene, o-xylene, naphthalene and 2-methylnaphthalene) still exceeded the calibrated range of the instrument in the diluted analysis. Due to analytical limitations, a further dilution was not performed. These diluted values have been reported and flagged with an "E" and should be considered estimated.

TABLE 1 GC/MSD Operating Conditions						
Instrument Hewlett Packard 6890 GC/ 5973 MSD						
Column Rtx-1 60 m Capillary						
Parameters 0.25mm ID, 1.0µm df						
Carrier gas UHP Helium; Flow rate = 2.0 cc/min						
Detector	Mass Selective detector; Temperature: 240°C					
Temperature program	Initial Temp.: 10°C Hold: 6.0 min					
	Ramping Rate 1: 4.0°C/min					
	Temp 1: 135°C Time 1: 0 min					
	Ramping Rate 2: 10°C/min					
	Final Temp: 220°C Final Time: 1 min					
Data System	HP ChemStation					

Date Analysis Started: 9/6/05

R:\Air_Tox\LAB\2005 Reports\05-252 GeoEngineering\05-252APH.doc

Client	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-1	Client Sample ID:	HS-SV-1
Laboratory ID:	05-252	Data File ID:	090705_12.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	1.0	Date & Time Analyzed:	8 Sep 2005 1:31 am

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	2.0 U	0.90 U
Methyl t-butylether	1634-04-4	2.0 U	0.55 U
Benzene	71-43-2	3.1	0.97
Toluene	108-88-3	37	9.7
Ethylbenzene	100-41-4	3.3	0.75
m&p-Xylenes	108-38-3 & 106-42-3	12	2.8
o-Xylene	95-47-6	4.4	1.0
Naphthalene	91-20-3	10	2.0
2-Methylnaphthalene	91-57-6	15	2.6
C5-C8 Aliphatics	NA	1,000	
C9-C12 Aliphatics	NA	1,100	
C9-C10 Aromatics	NA	150	

U = undetected at specified reporting limit B= analyte detected in blank

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-2	Client Sample ID:	HS-SV-2
Laboratory ID:	05-252	Data File ID:	090805_08.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	10	Date & Time Analyzed:	8 Sep 2005 7:18 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	20 U	9.0 U
Methyl t-butylether	1634-04-4	20 U	5.5 U
Benzene	71-43-2	22	7.0
Toluene	108-88-3	85	23
Ethylbenzene	100-41-4	93	22
m&p-Xylenes	108-38-3 & 106-42-3	510	120
o-Xylene	95-47-6	140	33
Naphthalene	91-20-3	100 U	19 U
2-Methylnaphthalene	91-57-6	100 U	17 U
C5-C8 Aliphatics	NA	780,000	
C9-C12 Aliphatics	NA	260,000	
C9-C10 Aromatics	NA	11,000	

U = undetected at specified reporting limit B= analyte detected in blank

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-3	Client Sample ID:	HS-SV-3
Laboratory ID:	05-252	Data File ID:	090805_09.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	25	Date & Time Analyzed:	9 Sep 2005 9:59 am

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	50 U	23 U
Methyl t-butylether	1634-04-4	50 U	14 U
Benzene	71-43-2	97	30
Toluene	108-88-3	110	29
Ethylbenzene	100-41-4	8,200 E	1,900 E
m&p-Xylenes	108-38-3 & 106-42-3	350	80
o-Xylene	95-47-6	190	44
Naphthalene	91-20-3	1,700	320
2-Methylnaphthalene	91-57-6	250 U	43 U
C5-C8 Aliphatics	NA	1,600,000	
C9-C12 Aliphatics	NA	760,000	
C9-C10 Aromatics	NA	130,000	

U = undetected at specified reporting limit B= analyte detected in blank

				ſ	
Client	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-4	Client Sample ID:	HS-SV-4
Laboratory ID:	05-252	Data File ID:	090905_06.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	1.0	Date & Time Analyzed:	9 Sep 2005 5:32 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	2.0 U	0.90 U
Methyl t-butylether	1634-04-4	2.0 U	0.55 U
Benzene	71-43-2	3.0	0.94
Toluene	108-88-3	34	9.0
Ethylbenzene	100-41-4	8.3	1.9
m&p-Xylenes	108-38-3 & 106-42-3	18	4.1
o-Xylene	95-47-6	6.9	1.6
Naphthalene	91-20-3	14	2.7
2-Methylnaphthalene	91-57-6	10 U	1.7 U
C5-C8 Aliphatics	NA	230	
C9-C12 Aliphatics	NA	230	
C9-C10 Aromatics	NA	40 U	

U = undetected at specified reporting limit B= analyte detected in blank

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-5	Client Sample ID:	HS-SV-5
Laboratory ID:	05-252	Data File ID:	090905_07.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	10	Date & Time Analyzed:	9 Sep 2005 6:21 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106~99-0	20 U	9.0 U
Methyl t-butylether	1634-04-4	20 U	5.5 U
Benzene	71-43-2	210	66
Toluene	108-88-3	140	38
Ethylbenzene	100-41-4	1,700	400
m&p-Xylenes	108-38-3 & 106-42-3	4,100	930
o-Xylene	95-47-6	3,300 E	760 E
Naphthalene	91-20-3	11,000 E	2,100 E
2-Methylnaphthalene	91-57-6	1,600 E	270 E
C5-C8 Aliphatics	NA	920,000	
C9-C12 Aliphatics	NA	620,000	
C9-C10 Aromatics	NA	110,000	

U = undetected at specified reporting limit

B= analyte detected in blank

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-6	Client Sample ID:	HS-SV-6
Laboratory ID:	05-252	Data File ID:	090905_08.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	10	Date & Time Analyzed:	9 Sep 2005 7:11 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	20 U	9.0 U
Methyl t-butylether	1634-04-4	20 U	5.5 U
Benzene	71-43-2	65	20
Toluene	108-88-3	110	28
Ethylbenzene	100-41-4	1,200	270
m&p-Xylenes	108-38-3 & 106-42-3	980	230
o-Xylene	95-47-6	270	62
Naphthalene	91-20-3	26,000 E	4,900 E
2-Methylnaphthalene	91-57-6	1,500 E	260 E
C5-C8 Aliphatics	NA	450,000	
C9-C12 Aliphatics	NA	980,000	
C9-C10 Aromatics	NA	180,000	

U = undetected at specified reporting limit B= analyte detected in blank

				Γ	
Client:	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-7	Client Sample ID:	HS-SV-7
Laboratory ID:	05-252	Data File ID:	091205_07.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	10	Date & Time Analyzed:	12 Sep 2005 6:17 pm

Compound	CAS #	ug/m³	ppbV
1,3-Butadiene	106-99-0	20 U	9,0 U
Methyl t-butylether	1634-04-4	20 U	5.5 U
Benzene	71-43-2	130	40
Toluene	108-88-3	230	62
Ethylbenzene	100-41-4	630	140
m&p-Xylenes	108-38-3 & 106-42-3	9,500 E	2,200 E
o-Xylene	95-47-6	5,400 E	1,200 E
Naphthalene	91-20-3	850	160
2-Methylnaphthalene	91-57-6	120	21
C5-C8 Aliphatics	NA	1,100,000	
C9-C12 Aliphatics	NA	470,000	
C9-C10 Aromatics	NA	53,000	

U = undetected at specified reporting limit B= analyte detected in blank

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	05-252-8	Client Sample ID:	HS-SV-8
Laboratory ID:	05-252	Data File ID:	091205_08.D	Date Sampled:	8/16/05
Date Received:	8/24/05	Dilution Factor:	10	Date & Time Analyzed:	12 Sep 2005 7:06 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	20 U	9.0 U
Methyl t-butylether	1634-04-4	20 U	5.5 U
Benzene	71-43-2	49	15
Toluene	108-88-3	52	14
Ethylbenzene	100-41-4	76	17
m&p-Xylenes	108-38-3 & 106-42-3	140	32
o-Xylene	95-47-6	83	19
Naphthalene	91-20-3	410	77
2-Methylnaphthalene	91-57-6	100 U	17 U
C5-C8 Aliphatics	NA	210,000	
C9-C12 Aliphatics	NA	55,000	
C9-C10 Aromatics	NA	1,600	

U = undetected at specified reporting limit B= analyte detected in blank

Client	GEOENGINEERS / HALEY	Lab Sample ID:	APH BLANK	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	090705_08.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed:	7 Sep 2005 9:47 pm

Compound	CAS#	ug/m ³	ppbV
1,3-Butadiene	106-99-0	2.0 U	0.90 U
Methyl t-butylether	1634-04-4	2.0 U	0.55 U
Benzene	71-43-2	2.0 U	0.63 U
Toluene	108-88-3	2.0 U	0.53 U
Ethylbenzene	100-41-4	2.0 U	0.46 U
m&p-Xylenes	108-38-3 & 106-42-3	4.0 U	0.92 U
o-Xylene	95-47-6	2.0 U	0.46 U
Naphthalene	91-20-3	10 U	1.9 U
2-Methylnaphthalene	91-57-6	10 U	1.7 U
C5-C8 Aliphatics	NA	40 U	
C9-C12 Aliphatics	NA	40 U	
C9-C10 Aromatics	NA	40 U	

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	APH BLANK	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	090805_07.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed:	8 Sep 2005 6:28 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	2.0 U	0.90 U
Methyl t-butylether	1634-04-4	2.0 U	0.55 U
Benzene	71-43-2	2.0 U	0.63 U
Toluene	108-88-3	2.0 U	0.53 U
Ethylbenzene	100-41-4	2.0 U	0.46 U
m&p-Xylenes	108-38-3 & 106-42-3	4.0 U	0.92 U
o-Xylene	95-47-6	2.0 U	0.46 U
Naphthalene	91-20-3	10 U	1.9 U
2-Methylnaphthalene	91-57-6	10 U	1.7 U
C5-C8 Aliphatics	NA	40 U	
C9-C12 Aliphatics	NA	40 U	
C9-C10 Aromatics	NA	40 U	

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	APH BLANK	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	090905_05.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed:	9 Sep 2005 3:02 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	2.0 U	0.90 U
Methyl t-butylether	1634-04-4	2.0 U	0.55 U
Benzene	71-43-2	2.0 U	0.63 U
Toluene	108-88-3	2.0 U	0.53 U
Ethylbenzene	100-41-4	2.0 U	0.46 U
m&p-Xylenes	108-38-3 & 106-42-3	4.0 U	0.92 U
o-Xylene	95-47-6	2.0 U	0.46 U
Naphthalene	91-20-3	10 U	1.9 U
2-Methylnaphthalene	91-57-6	10 U	1.7 U
C5-C8 Aliphatics	NA	40 U	
C9-C12 Aliphatics	NA	40 U	
C9-C10 Aromatics	NA	40 U	

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	APH BLANK	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	091205_05.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed:	12 Sep 2005 3:47 pm

Compound	CAS #	ug/m ³	ppbV
1,3-Butadiene	106-99-0	2.0 U	0.90 U
Methyl t-butylether	1634-04-4	2.0 U	0.55 U
Benzene	71-43-2	2.0 U	0.63 U
Toluene	108-88-3	2.0 U	0.53 U
Ethylbenzene	100-41-4	2.0 U	0.46 U
m&p-Xylenes	108-38-3 & 106-42-3	4.0 U	0.92 U
o-Xylene	95-47-6	2.0 U	0.46 U
Naphthalene	91-20-3	10 U	1.9 U
2-Methylnaphthalene	91-57-6	10 U	1.7 U
C5-C8 Aliphatics	NA	40 U	
C9-C12 Aliphatics	NA	40 U	
C9-C10 Aromatics	NA	40 U	

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	10 ppbV APH LCS	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	090705_04.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed:	7 Sep 2005 6:03 pm

Compound	ug/m ³	ppbV	True Value ug/m ³	% Recovery
1,3-Butadiene	25	11	22	113%
Methyi t-butylether	31	8.7	37	84%
Benzene	30	9.3	32	93%
Toluene	36	9.6	38	95%
Ethylbenzene	40	9.2	44	91%
m&p-Xylenes	80	19	88	91%
o-Xylene	44	10	44	101%

U = undetected at specified reporting limit

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	10 ppbV APH LCS	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	090805_03.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed: 8	Sep 2005 12:03 pm

Compound	ug/m ³	ppbV	True Value ug/m ³	% Recovery
1,3-Butadiene	21	9.3	22	93%
Methyl t-butylether	27	7.4	37	72%
Benzene	27	8.5	32	84%
Toluene	34	8.9	38	89%
Ethylbenzene	40	9.3	44	92%
m&p-Xylenes	76	17	88	86%
o-Xylene	47	11	44	107%

U = undetected at specified reporting limit

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	10 ppbV APH LCS	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	090905_03.D	Date Sampled:	N/A
Date Received:	N/A	Dilution Factor:	1.0	Date & Time Analyzed:	9 Sep 2005 1:10 pm

Compound	ug/m ³	ppbV	True Value ug/m ³	% Recovery
1,3-Butadiene	21	9.3	22	93%
Methyl t-butylether	31	8.5	37	83%
Benzene	28	8.8	32	87%
Toluene	35	9.4	38	93%
Ethylbenzene	41	9.5	44	94%
m&p-Xylenes	77	18	88	87%
o-Xylene	43	9.9	44	98%

U = undetected at specified reporting limit

Client:	GEOENGINEERS / HALEY	Lab Sample ID:	10 ppbV APH LCS	Client Sample ID:	N/A
Laboratory ID:	05-252	Data File ID:	091205_03.D	Date Sampled:	N/A
Date Received:	<u>N/A</u>	Dilution Factor:	1.0	Date & Time Analyzed: 12 S	ep 2005 1:55 pm

Compound	ug/m ³	ppbV	True Value ug/m ³	% Recovery
1,3-Butadiene	24	11	22	109%
Methyl t-butylether	36	9.9	37	97%
Benzene	27	8.6	32	86%
Toluene	35	9.2	38	91%
Ethylbenzene	40	9.3	44	92%
m&p-Xylenes	76	17	88	86%
o-Xylene	42	9.8	44	96%

U = undetected at specified reporting limit

ENSR AIR TOXICS SPECIALTY LABORATORY QUALITY CONTROL RESULTS-DUPLICATE ANALYSES

Client:	GEOENGINEERS / HALEY	Lab Sample IDs:	05-252-1	05-252-1DP	Client Sample ID: HS-SV-1
Laboratory ID:	05-252	Data File IDs:	090705_12.D	090705_13.D	
Dilution Factor:	1.0	Date & Time Analyzed:	8 Sep 2005 1:31 am	8 Sep 2005 2:29 am	

Compound	CAS #	ug/m ³	ug/m ³ DUP	% RPD
1,3-Butadiene	106-99-0	2.0 U	2.0 U	NC
Methyl t-butylether	1634-04-4	2.0 U	2.0 U	NC
Benzene	71-43-2	3.1	3.1	0.0%
Toluene	108-88-3	37	36	2.7%
Ethylbenzene	100-41-4	3.3	3.0	9.5%
m&p-Xylenes	108-38-3 & 106-42-3	12	12	0.0%
o-Xylene	95-47-6	4.4	4.1	7.1%
Naphthalene	91-20-3	10	10 U	NC
2-Methylnaphthalene	91-57-6	15	11	31%
C5-C8 Aliphatics	NA	1,000	1,000	0.0%
C9-C12 Aliphatics	NA	1,100	1,200	8.7%
C9-C10 Aromatics	NA	150	160	6.5%

U = undetected at specified reporting limit

B= analyte detected in blank

NC = not calculable

CHAIN OF CUSTODY RECORD

INTERNATIONAL					CHA	IN OF CUST	ODY RECO	RD								P	age of	A
Client/Project Name:					Project Location:									Page of				
AEOENGINEERS HALEY				500 CORNWALL AVE, BELLINGHAM, WA								Analysis Requested						
Project Number: 0275-002-01 TT				Field Logbook No.:								/		S /	6 / S.	XEX)		
Sampler (Print Name)/(Affiliation):				Chain of Custody Tape No.:								Sar	J.S.	[][][]	K.	S.		
MARCELLA RIPICH, GEI Signature, M. REMAIL				1	Chain of Custody Tape No.: Send Results/Report to: SEOENGINESRS, 600 STEWART ST								Zs.		No.			
Field Sample No /					EIL MORT	24 564	THE, WA	1		······			×Z 🖲	Zo	<u>Kejre</u>	70		
Identification	Date	Time	Grab	Comp	Sample Container (Can/Bag)	Canister I.D.	Regulator I.D.		ple Type as/ambient)		S/c	Ì.	Ż	Ż	Lab I.D.		Remarks	
HS-5V-1	8-16-05	U23c			CAN	<u>C132 0</u>	A010 (?)	-501	_ 625			X				05	-262-7	
H-5-5V-2		115					Adol			Ľ.			×			05	- Q.T Door	
<u> </u>		1500	<u>}</u>	<u> </u>		A205	4031			X	X	X	X		UNX WITH TRANSPORT	05	- 262 - 3	
945-5V-4 900-5V-5		250	>	·······		25	A 007(3)			$\left \times \right $	×		\times			65-	252-4	
		1534				4454	A023				×	X	<u>></u>	X		05-	252-5	
of 3-5V-6		1400			New York Control of Co	A210	<u>\$006</u>			\sim	\searrow	X	\geq	X	Carata and C	35-	252-6	Kommericie -
F	Advances of the second s	1320		 		C124*	Aol 2	`	ent.	X	×	<u>×</u>				05-	<i>2</i> 52-74	2. Junior
HS-5V-8		14-30			<u> </u>	6-6	ANA	<u>611</u>	<u> </u>	×	L×.		<u>×</u>	X			<u>252 - E</u>	
Relinquished by: (print name)	I			1	Received by: (pr		1	F		L		<u> </u>						
MARCELLA RIPICH Date: 8-			17-65 Date:					Analytical Laboratory (Destination):										
			and a second			where a second s	T)		ENSR Air Laboratory									
Signature M Manual Time: 15 Relinquished by: (print name)						Time: 2158 Air Laboratory					.013							
Date:			Received by: (print name)			Date:	Date:		Harvard, MA 01451-1132 Phone: (978) 772-2345 Fax: (978) 772-4956									
Signature: Time:			Signature: Time:					rax:⊣	(ə/8) 7	72-49	106							
Relinquished by: (print name) Date:				Received for laboratory by: (print name) Date: Styles														
Signature: Time:				Signature:					Serial No.							-		
															L	**		J

SAMPLE LOG-IN & RECEIPT CHECKLIST

Client/Proj# <u>GeoEngineers / HAley / 0275-002-01TI</u> Project Mgr: <u>Christopher Philbrick</u> Lab Pool #: 05-252 Inspected & Logged in by: Chrston Philler CK Date & Time: 8/24/05 11:45

Sample Matrix	Number of Samples	Analysis Requested	Hold Time & Due by(date)	Storage Location	Disposal Date*
SUMMa Coms	8	Select APH Companios	HT: 9/13/05 Due: 9/7/05		
			HT: Due:		
			HT: Due:		

Circle the appropriate response:UPS #: 1Z 933 $\emptyset E5$ 12 4 $\emptyset C3$ 56531) Shipped Hand delivered1Z 933 $\emptyset E5$ 03 4 $\emptyset I1$ 1486

- 2) COC present / not present on receipt
- 3) COC Tape present / not present on shipping container
- 4) Samples broken / leaking / intact on receipt
- 5) Samples (ambient / chilled on receipt
- 6) Samples preserved correctly / incorrectly / none recommended
- 7) Received within voutside holding time
- 8) COC tapes present / not present on samples
- 9) Discrepancies / NO discrepancies noted between COCs and samples

Additional Comments: <u>CANISTET JOS where not filles out on the con</u> with the exception of canister 48 for sample HS-SV-8 Losin personnel filled & mithal acc for Can Join.

*= Note that all Canister samples will be considered disposed of during next cleaning. For canister samples, please refer to Canister Log Book for details.

10

R:\Air_Tox\LAB\Lab forms\samplog.xls Last Revised 5/30/03

page 22 of 22

APPENDIX M Benthic Habitat Survey

Table of Contents

1.0	BENTH	HIC HABITAT SURVEY METHODOLOGY	M-1
1.1.	Side-S	Scan Sonar	M-1
	1.1.1.	Equipment	M-1
	1.1.2.	Track Lines	M-1
	1.1.3.	Calibration	M-1
	1.1.4.	Planning	M-2
	1.1.5.	Data Processing and Interpretation	M-2
1.2.	Visual	Assessment	M-2
1.3.	SCUBA	A Dive Survey	M-2

APPENDIX M BENTHIC HABITAT SURVEY

1.0 BENTHIC HABITAT SURVEY METHODOLOGY

GeoEngineers biologists conducted a benthic habitat survey between September 25 and 27, 2012. The primary goal of the survey was to identify the locations and extent of eelgrass at the site. Side-Scan Sonar (SSS) and SCUBA diving were conducted to accomplish the benthic survey. Visual observations of eelgrass locations and densities were made both during the SCUBA dive survey and from the vessel during low tide. This appendix describes the survey methodology.

1.1. Side-Scan Sonar

The SSS is an in-water imaging system which uses an acoustic oblique image similar to an aerial photograph. The SSS in conjunction with a global positioning system (GPS) and data reduction software produces an image that is built up of objects on the sea floor.

1.1.1. Equipment

Equipment used to acquire the SSS imagery consisted of:

- Boston Whaler acquisition vessel
- Independent Trimble PRO XH with NIMA string out at 9600 baud GPS
- EdgeTec 4125: Ultra High Resolution, dual frequency side-scan sonar imaging unit (towfish)
- EdgeTech's Discover acquisition software loaded on a Dell laptop computer
- Leraand Engineering, Inc. Sonar TRX data reduction software

1.1.2. Track Lines

Track lines are planned vessel paths across a site. The area imaged on either side of the track line is called a swath. The width of a swath is determined by the angle of the sonar within the towfish, the depth the towfish is towed, and the bottom depth. Track lines are designed so that there is approximately 50 percent overlap of associated swaths. This high percentage of overlap is required to image the narrow area directly below the towfish (nadir), which the towfish does not have the ability to "see."

1.1.3. Calibration

Calibration of the SSS was accomplished by performing a patch test. The patch test consisted of running the SSS over a known submerged target twice in opposite directions. The data from the Patch Test were then compared for positional accuracy and image calibration. The patch test also allowed for fine tuning of the swath width of the towfish. Positional accuracy for the purposes of this survey were considered acceptable with a +/- 1 foot between the patch test swaths. Towfish frequency, swath width, and ping rate (rate of sonar pulse transmission in "pings per second") used in the survey were 400 and 900 kHz with a swath width of 30 meters and a ping rate of 200 pings per second. This combination yielded a sonar resolution of 0.4 inches (29.6 pings per foot) at a boat speed of 4 knots.

1.1.4. Planning

The original survey design included three track lines; however, after running the patch test, it was determined that two tracks running parallel with approximately 40 feet of separation would yield 100 percent coverage of the desired area with greater than 50 percent overlap.

1.1.5. Data Processing and Interpretation

The process of combining all sonar files into a composite image using specialized software is known as "mosaicing." Distortions of data induced by fluctuations in vessel speed and tow depth are corrected during this process. Mosaics can be considered as images and are georeferenced raster image formats suitable for use within a GIS format. Classification and interpretation of the images was performed by GeoEngineers using an image truthing methodology. Areas of potential eelgrass identified during the survey were then observed from the surface vessel at low tide and by a diver.

1.2. Visual Assessment

The survey area was visually inspected from the vessel during low tide on September 26, 2012 to survey for visible macroalgae at the site. Moderate visibility of approximately two feet allowed for observation of eelgrass beds. Visual observations of eelgrass were then compared to the eelgrass distribution maps generated from SSS.

1.3. SCUBA Dive Survey

Two GeoEngineers biologists conducted SCUBA dive surveys along six transects. The surveys were conducted in general accordance with the Washington Department of Fish and Wildlife (WDFW) "Eelgrass/Macroalgae Habitat Interim Survey Guidelines" (WDFW 2008). Equipment used to conduct the eelgrass SCUBA dive survey included:

- Boston Whaler acquisition vessel
- 0.25 square meter weighted PVC frame
- Standard SCUBA apparatus with high pressure compressed air tanks
- OTS Guardian full-face masks with 2-way buddy phone communication

The extent of eelgrass within each transect was noted and eelgrass densities were assessed using a 0.25 square meter frame. The frame was placed in a representative portion of the eelgrass bed and the turions (1 turion is a clump of eelgrass) within the frame were counted. The turion count at each eelgrass density sampling location was then multiplied by four to estimate eelgrass density in turions/square meter. Results are discussed in Section 4.0.