

October 18, 2010

Edward Blodgett, Project Manager Jacobs 5005 SW Meadows Road, Suite 100 Lake Oswego, Oregon 97035

Re: Revised Phase II Environmental Site Assessment Ridgefield Rail Overpass Project Ridgefield, Washington 1161-01

Dear Mr. Blodgett:

This letter presents the results of a Phase II environmental site assessment (ESA) at the proposed rail overpass alignment at the Port of Ridgefield (Site; Figure 1). The purpose of the assessment was to identify potential soil and groundwater contamination that may impact construction of the overpass and roadway. This report applies only to conditions south of West Mill Street. Potential contamination may be related to historical applications of oil to the north-south trending gravel road extending between Pioneer Street and Mill Street (Figure 2). The applications, historically conducted as standard dust suppression practices, were identified by Ash Creek Associates (Ash Creek) in the *REVISED Hazardous Materials Review – Soil and Groundwater Contamination*, dated August 22, 2007. To evaluate soil and groundwater conditions along the gravel road, Ash Creek conducted the following:

- Completed seven soil explorations at locations where the proposed alignments intersect the existing gravel road;
- Field screened soil from the explorations and collected soil and groundwater samples, some of which were subsequently analyzed for diesel range organics (DRO), residual range organics (RRO), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals.
- Collected global positioning system (GPS) coordinates of the soil explorations.
- Managed investigation-derived waste (IDW) and arranged for appropriate disposal/recycling.

1.0 BACKGROUND

Several potential alignments for the rail overpass bridge and approach ramps were evaluated in 2006. To assist in the evaluation of potential alignments, environmental conditions at the Site and surrounding vicinity were assessed by Ash Creek in July 2006. The following are observations and conclusions based on the assessment presented in Ash Creek's *REVISED Hazardous Materials Review – Soil and Groundwater Contamination*, dated August 22, 2007.

3015 SW First Avenue Portland, Oregon 97201-4707 (503) 924-4704 Portland (360) 567-3977 Vancouver (503) 943-6357 Fax www.ashcreekassociates.com

- Based on a review of Washington State Department of Ecology (Ecology) files, it is likely that bunker oil was historically used for dust suppression on the gravel road. During the period when road oiling was a common practice, used oils were often utilized. Residual oils or other contaminants (e.g., metals, PCBs) may be present in surface soil on and near the gravel road.
- A former Pacific Wood Treating (PWT) facility was located north of Mill Street. PWT operated a wood treating facility for many years on the land now owned by the Port of Ridgefield. Treatment chemicals included creosote, pentachlorophenol, and arsenates. Widespread releases of treatment chemicals are documented at the facility and included in Maul Foster & Alongi's (MFA's) *Final Cell 3 Remedial Investigation and Risk Assessment Report*, dated February 23, 2007. Soil and groundwater concentrations of the contaminants exceed acceptable risk-based concentrations (RBCs) for exposure under a construction worker scenario.
- A bulk storage facility with aboveground tanks for storing petroleum was historically present on the marina
 property. The nearest point of the former storage facility was located about 100 feet south of the proposed
 alignment. Multiple reports of releases to surface water, soil, and/or sediment at the marina area were
 identified. Soil and sediment contamination above Washington State regulatory levels have been
 confirmed. Identified contaminants include PAHs, halogenated organic compounds, PCBs, and petroleum
 hydrocarbons.
- Incidental contamination may be related to the railroad (e.g., creosoted ties, petroleum). Near surface hydrocarbon concentrations (up to 310 milligrams per kilogram [mg/kg]) associated with a railroad spur at the north end of the marina were identified by Hahn and Associates (Hahn).

Based on the 2006 evaluations of the proposed alignments, the current selected alignment is as follows (Figure 2):

- Approach via Pioneer Street;
- Bridge over the railroad, turning northward to parallel the railroad (and intersecting the gravel road), and reaching current grade on the north portion of the current marina property; and
- At-grade roadway the remainder of the distance to the Port of Ridgefield.

Also, portions of the existing gravel roadway will be realigned as part of the project.

2.0 OBJECTIVES

The objective of this Phase II ESA was to characterize subsurface conditions at locations where the proposed alignment intersects the gravel road and to identify potential soil and/or groundwater contamination associated with historical applications of oil to the gravel road for dust suppression.

3.0 SOIL AND GROUNDWATER INVESTIGATION

Pre-field Activities. Prior to drilling at the Site, Ash Creek prepared a site-specific Health and Safety Plan (HASP) and submitted a Washington One-call utility notification. A sewer main was located adjacent and parallel to the eastern side of the gravel road. Additionally, a water pipe was located adjacent and parallel to the western side of the gravel road. Neither utility was located within 10 feet of the exploration locations.

Field Activities. Field activities were completed on August 9, 2010. On the morning of August 9, 2010, Ash Creek met with Locates Down Under, Inc. (LDU) of Oregon City, Oregon, and Stratus Corporation (Stratus) at the Site. After the explorations locations were cleared by private utility locator and hand auguring to 5 feet below ground surface (bgs), Stratus advanced seven explorations at locations shown on Figure 2. Explorations were advanced to depths ranging from 20 to 25 feet bgs using direct-push technology.

During advancement of the explorations, soil was sampled continuously for purposes of logging and field screening by photoionization detector (PID) and sheen testing. Select soil and groundwater samples were collected and submitted to TestAmerica of Beaverton, Oregon for chemical analysis. The presence of road gravel limited sample recovery in the top 1.5 feet of each location. Each exploration was abandoned using bentonite chips. Soil waste was containerized in a 55-gallon drum and stored on-site until removal and treatment by WasteXpress of Portland, Oregon.

Subsurface Conditions. Subsurface lithology at the Site consists of approximately 1.0 to 1.75 feet of gravel associated with the existing roadway underlain by clayey silt generally extending to a depth of 15 feet bgs. Varying amounts of sand mixed with silt and clay were typically encountered below 15 feet bgs and extended to the total depths of the explorations (20 to 25 feet bgs). Exploration logs and GPS coordinates of the exploration locations are included in Attachment A. Historical geotechnical explorations conducted near the Site suggest that sandy gravel is encountered at depths ranging from approximately 25 to 35 feet bgs. (Ash Creek, 2007). Groundwater was typically encountered at depths ranging between 14 to 24 feet bgs.

Analytical Results. Eight surface soil samples (including one duplicate) and four groundwater samples (including one duplicate) were chemically analyzed. Each soil and groundwater sample was analyzed for DRO and RRO using Method NWTPH-Dx. During follow up analysis, three of the soil samples were also analyzed for PAHs using EPA Method 8270-SIM, PCBs using EPA Method 8082, and total metals using EPA Method 6000/7000. Analytical results are summarized below and in Tables 1 through 4. Laboratory analytical reports are included in Attachment B.

- DRO was detected in soil samples SE-1-1.5 and SE-5-1.5 at concentrations of 41.5 mg/kg and 55.7 mg/kg, respectively.
- RRO was detected in three soil samples (SE-1-1.5, SE-5-1.5, and SE-6-1.5) ranging from 28.5 mg/kg to 205 mg/kg.
- Metals were detected in three soil samples (SE-1-1.5, SE-5-1.5, and SE-6-1.5) at concentrations consistent with Clark County background levels (Ecology, 1994; Gustavson et al., 2001).
- PAHs were detected in one soil sample (SE-1-1.5) at concentrations above the Standard Method A Cleanup Levels for Unrestricted Land Use. The sample is located in the northern-most portion of the Site, near a parking area along West Mill Street.
- PCBs were detected in two samples (SE-5-1.5 and SE-6-1.5) below the Method A Soil Cleanup Level for Unrestricted Land Use.

Concentrations of DRO or RRO were not detected above reporting limits in the three groundwater samples (SE-1, SE-4, and SE-7) that were analyzed.

4.0 QUALITY ASSURANCE / QUALITY CONTROL SUMMARY

Field Control. A field duplicate was collected by splitting the field sample and submitting both samples for chemical analysis. The result of the field duplicate is compared to the initial result to assess variability in the sample matrix and bias due to sampling procedures. This comparison is normally expressed by the relative percent difference (RPD) between the initial and field duplicate samples. Both DRO and RRO concentrations in the primary sample (SE-3-1.5) and duplicate sample (SE-3-1.5 DUP) were below reporting limits.

Laboratory Control. Quality assurance/quality control (QA/QC) review of the analytical data was conducted for quality assurance. Copies of the analytical laboratory reports are included in Attachment B.

Chemical analysis of soil and/or groundwater samples consisted of one or more of the following:

• DRO and RRO by Method NWTPH-Dx;

- PAHs by EPA Method 8270-SIM;
- PCBs by EPA Method 8082; and
- Total metals by EPA Method 6000/7000.

The following criteria were evaluated in the data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries; and
- Laboratory and duplicate RPD.

The laboratory QA/QC indicated the following:

- <u>DRO and RRO</u>. No concentrations of DRO or RRO were detected in the method blank. Surrogate and MS/MSD results were within control limits. A laboratory LCS/LCSD RPD limit for DRO was slightly exceeded by 5.9%. Required holding times were met.
- <u>PAHs and PCBs.</u> No concentrations of PAHs or PCBs were detected in the method blanks. Surrogate and LCS/LCSD results were within control limits. MS/MSD RPD limits for PCB analytes Aroclor 1016 and 1260 were exceeded by 7.6% to 10.5%. Standard laboratory hold times for follow up analysis PCBs and PAHs were slightly exceeded; however SW846 update IV recognizes hold times for PCBs to be reasonably one year.
- <u>Total Metals</u>. No concentrations of metals were detected in the method blank. Surrogate, LCS/LCSD, and MS/MSD results were within control limits. Required holding times were met.

The data and QA/QC findings were reviewed by Ash Creek and the data were found to be acceptable.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the Phase II investigation indicate the following:

- Petroleum hydrocarbons, PAHs, and PCBs are present in some surface soil along the proposed alignment. There was no clear pattern to the locations where hydrocarbons were detected.
- Petroleum hydrocarbons were not detected in groundwater.
- The concentrations of chemicals detected are below risk based concentrations for construction workers and industrial land use.
- The concentrations of some PAHs detected in soil at SE-1 (northernmost sample near West Mill Street) are above risk-based concentrations for unrestricted land use.

Based on the testing conducted, the following recommendations apply to soil and groundwater handling during construction activities south of West Mill Street:

• No special handling of groundwater is expected based on groundwater contamination. At the time of construction, additional testing of groundwater should be conducted to verify the absence of chemical contamination.

- No special handling of soil from depths of greater than 3 feet is expected.
- For soil at depths of less than 3 feet, one of the following is recommended:
 - Re-use soil on-site;
 - (1) Stockpile soil separately; (2) sample and analyze for petroleum, PAHs, and PCBs; and (3) profile and dispose of based on the analytical results; or
 - Profile and dispose of the soil in a licensed solid waste landfill based on the results included in this report.

If you have any questions regarding this letter, please contact the undersigned (503) 924-4704.

Sincerely,

Christopher Sheridan
 Project Manager

ATTACHMENTS

Table 1 – Summary of Soil Analytical Data – TPH and Metals

Table 2 - Summary of Soil Analytical Data - PAHs

Table 3 - Summary of Soil Analytical Data - PCBs

Table 4 – Groundwater Analytical Results

Figure 1 – Site Location Map

Figure 2 – Site Plan with Proposed Alignment

Attachment A – Exploration Logs and GPS Coordinates Attachment B – Laboratory Analytical Report

REFERENCES

- Ash Creek, 2007. Design Level Geotechnical Engineering Study, Ridgefield Rail Overpass Project, Ridgefield, Washington. September 13, 2007.
- Ecology, 1994. Washington Department of Ecology's publication Natural Background Soil Metals Concentrations in Washington State. October 1994.

Gustavson et al., 2001. U.S. Geological Survey Professional Paper 1648 - Geochemical Landscapes of the Conterminous United States - New Map Presentations for 22 Elements.

Herbert F. Clough, P.E. Principal Engineer

Table 1 Summary of Soil Analytical Data - TPH and Metals Ridgefield Rail Overpass Project Ridgefield, Washington

			TI	РН				Ме	tals			
Sample ID	Sample Depth	Collection Date	DRO	RRO	Arsenic	Barium	Cadmiu Cadmiu	Chromic Chromic Margoli	Lead	Mercury	Selenium	Silver
SE-1-1.5	1.5	8/9/2010	41.5	205	4.81	84.2	<0.539	16.2	12.3	<0.104	<0.539	<0.539
SE-2-1.5	1.5	8/9/2010	<16.1	<32.2								
SE-3-1.5	1.5	8/9/2010	<14.6	<29.2								
SE-3-1.5 Dup	1.5	8/9/2010	<14.1	<28.2								
SE-4-1.5	1.5	8/9/2010	<14.8	<29.6								
SE-5-1.5	1.5	8/9/2010	55.7	166	3.72	89.4	<0.518	11.2	7.63	<0.0660	<0.518	<0.518
SE-6-1.5	1.5	8/9/2010	<13.9	28.5	2.89	157	<0.539	19.1	16.4	<0.0795	<0.539	<0.539
SE-7-1.5	1.5	8/9/2010	<15.8	<31.6								
MTCA Method A Le	evel for Unrestricte	d Land Use	2,000	2,000	20		2		250			
MTCA Method A Le	evel for Industrial L	and Use	2,000	2,000	20		2		1,000			
Background Metal (Concentrations, CI	ark County, Washington			5.8	650	0.9	26	17	0.04	0.8	0.6

Notes:

1. Analysis of Diesel Range Organics (DRO) and Residual Range Organics (RRO) by Method NWTPH-Dx.

2. Analysis of Total Metals by EPA Method 6000/7000.

3. < = Analyte is not detected above the given Method Reporting Limit (MRL).

4. Detections above the MRL are **bold**.

5. -- = Value is not available.

6. MTCA = Model Toxics Control Act

 Background Metal Concentrations from Washington Department of Ecology's publication Natural Background Soil Metals Concentrations in Washington State. October 1994. Barium background levels derived from U.S. Geological Survey Professional Paper 1648 - Geochemical Landscapes of the Conterminous United States -New Map Presentations for 22 Elements (Gustavson Et al., 2001).

8. mg/kg = milligrams per kilogram

Table 2 Summary of Soil Analytical Data - PAHs Ridgefield Rail Overpass Project Ridgefield, Washington

Sample ID	Sample Depth	Collection Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene Denzo(ghi)perylene	ad sweeto. Lead sweeto Lead sweeto Manual Solution Lead sweeto Lead sweeto Lea	ene Chrysene kilogram (#û	لف) Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
SE-1-1.5	1.5	8/9/2010	21.1	<14.1	63.3	142	138	121	98.2	123	167	26.2	255	22	92.9	<14.4	149	279
SE-2-1.5	1.5	8/9/2010																
SE-3-1.5	1.5	8/9/2010																
SE-3-1.5 Dup	1.5	8/9/2010																
SE-4-1.5	1.5	8/9/2010																
SE-5-1.5	1.5	8/9/2010	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9	<13.9
SE-6-1.5	1.5	8/9/2010	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7	<14.7
SE-7-1.5	1.5	8/9/2010																
MTCA Method A Level for Unrestricted Land Use						1,000	100	1,000		1,000	10,000	1,000			1,000	5,000		
MTCA Method A Level for Industrial Land Use						20,000	2,000	20,000		20,000	200,000	20,000			20,000	5,000		

Notes:

1. Analysis of polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270-SIM.

2. < = Analyte is not detected above the given Method Reporting Limit (MRL).

3. Detections above the MRL are **bold**.

4. Highlighted concentrations exceed one or more toxicity equivalent Method A levels.

5. -- = Value is not available.

6. MTCA = Model Toxics Control Act

7. mg/kg = milligrams per kilogram

Table 3 Summary of Soil Analytical Data - PCBs Ridgefield Rail Overpass Project Ridgefield, Washington

Sample ID	Sample Depth	Collection Date	Aroclor 1016	Aroclor 1221	Aroclor 1232 Willigram	Aroclor 1242 Aroclor 1242	m Aroclor 1248 (fd)	Aroclor 1254	Aroclor 1260	
SE-1-1.5	1.5	8/9/2010	< 0.0359	<0.0722	< 0.0359	< 0.0359	< 0.0359	<0.0359	<0.0359	
SE-2-1.5	1.5	8/9/2010								
SE-3-1.5	1.5	8/9/2010								
SE-3-1.5 Dup	1.5	8/9/2010								
SE-4-1.5	1.5	8/9/2010								
SE-5-1.5	1.5	8/9/2010	<0.0344	<0.0693	<0.0344	<0.0344	0.11	<0.0344	<0.0344	
SE-6-1.5	1.5	8/9/2010	<0.0728	<0.147	<0.0728	<0.0728	<0.0728	0.427	<0.0728	
SE-7-1.5	1.5	8/9/2010								
MTCA Method A	Level for Unres	stricted Land Use			1.0 n	ng/kg (Total F	PCBs)			
MTCA Method A	Level for Indus	strial Land Use		10 mg/kg (Total PCBs)						

Notes:

1. Analysis of polychlorinated biphenyls (PCBs) by EPA Method 8082

2. < = Analyte is not detected above the given Method Reporting Limit (MRL).

3. Detections above the MRL are ${\color{blue} bold}.$

4. -- = Value is not available.

5. MTCA = Model Toxics Control Act

6. mg/kg = milligrams per kilogram

Table 4 Summary of Groundwater Analytical Data - TPH Ridgefield Rail Overpass Project Ridgefield, Washington

Sample ID	Collection Date	DRO	RRO
		Milligrams pe	er liter (mg/L)
SE-1	8/9/2010	<0.0952	<0.476
SE-1 Dup	8/9/2010	<0.0952	<0.476
SE-4	8/9/2010	<0.0952	<0.476
SE-7	8/9/2010	<0.0952	<0.476
Method A Level for Unr	estricted Land Use	0.5	0.5

Notes:

- 1. Analysis of Diesel Range Organics (DRO) and Residual
- 2. Range Organics (RRO) by Method NWTPH-Dx.
- 3. mg/L = milligrams per Liter.

Attachment A

Exploration Logs and GPS Coordinates

Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

MAJOR CONSTITUENT with additional remarks; color, moisture, minor constituents, density/consistency.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and push probe explorations is estimated based on visual observation and is presented parenthetically on test pit and push probe exploration logs.

SAND and GRAVEL	Standard Penetration Resistance <u>in Blows/Foot</u>	SILT or CLAY Density	Standard Penetration Resistance in Blows/Foot	Approximate Shear Strength <u>in TSF</u>
Very loose Loose Medium dense Dense Very dense	0 - 4 4 - 10 10 - 30 30 - 50 >50	Very soft Soft Medium stiff Stiff Very Stiff Hard	0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 >30	<0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0

Moisture

			v
Dry	Little perceptible moisture.	Not identified in description	0 - 5
SI. Moist	Some perceptible moisture, probably below optimum.	Slightly (clayey, silty, etc.)	5 - 12
Moist	Probably near optimum moisture content.	Clayey, silty, sandy, gravelly	12 - 30
Wet	Much perceptible moisture, probably above optimum.	Very (clayey, silty, etc.)	30 - 50

Sampling Symbols

Groundwater Observations and Monitoring Well Construction

Minor Constituents

Estimated Percentage

Phase II Environmental Site Assessment Ridgefield Rail Overpass Project Ridgefield, Washington

Ach Creek Associates Inc	Project Number	1161-01	Figure
Environmental and Geotechnical Consultants	Septem	ber 2010	Key

Å F	∖sh (Creek	c Ass nd Geot	socíat technica	es, Inc. I Consultants	Phase II Envíronmental Site Assessment Ridgefield Rail Overpass Project Ridgefield, Washington	Boring Nu Project Number Logged By: S.	umber: • 1161-01 • Gray	SE-1
				1			Date: Augus	st 9, 2010	
							Site Conditions	Gravel Road	
	ery						Drilling Contra		
	Ő	le l					Sampler Type	Continuous Co	
	I/Re	amp					Depth to Wate		bre
get	erva	Y S					Surface Elevatio	on: —	
h, fé	<u>1</u>	rato			1 / 1		Sandee Elevane		
Depi	Core	Labo	DID	Shee	Lith	ologic Description	Boring De	etails and Note	ÈS:
_			<5	NS	GRAV	EL with silt (GM); very pale brown (10YR 1/4).			
_	/				GRAV	EL with silt (GM); dark bluish gray (GLEY 7/1), moist.			
		1	<5	NS	Clayey	/ SILT (ML); dark bluish gray (GLEY 7/1), dry,			
	1/	S			meaiu	m plasticity, medium stin.			
							_		
5-			<5	NS			— 5		
-		5							
		S							
-			-5						
-				113					
10	+						— 10		
_			<5	NS					
_									
_					— Becor	mes pale brown (10YR 6/3) with very fine sand (5-10%)			
l _			<5	NS	2000.				
15									
15			<5	NS	Popp	nee meist	— D		
	1 /				— Decor	nes moist.			
	1 /				Sandy	/ SILT (SM); dark bluish gray (GLEY 7/1), moist, stiff,			
-			<5	NS	(~50%	6 silt, ~50% very fine sand).			
-									
20		10	<5	NS			— 20	_	
-		S			— Becor	nes wet.	`		
-								Ħ	
-			_	NIC				SE-I (Wa	ter Sample)
_									
25—							— 25		
_					Botton	n of Boring at 25.0' BGS.			
_									
_									
_									
30-									
50									
							_		
_]						_		
	1						_		
	1								
35—	1						— 35		
-									
-					<u> </u>				
-									
-							 		
									D ·/·
1									rage I/I

A E	Ash (Creek ental an	c Ass id Geot	ocíat	es, Inc. I Consultants	Phase II Envíronmental Síte Assessment Rídgefield Raíl Overpass Project Ridgefield Washington	Boring Num Project Number: 1 Logged By: S. Gi	ber: SE-2 161-01		
						Magenera, Washington	Date: August 9	, 2010		
							Site Conditions: C	Fravel Road		
							Drilling Contractor:	Stratus		
	Ner						Drilling Equipment:	7822 DT		
	Seco	nple					Sampler Type: Co	ntinuous Core		
L _	val/ŀ	Sar					Depth to Water (A	TD): 18.2'		
fee	nter	tory					Surface Elevation:	_		
Depth	Core	Labora	DID	Sheen	Líth	ologic Description	Boring Details and Notes:			
_			<5	NS	GRAV	EL with silt (GM); very pale brown (10YR 1/4).				
	/			143	Clayey	v SILT (ML); reddish brown (5YR 4/3), moist,				
	1 /	2-1.5	<5	NS	mediu	m plasticity, medium stiff.				
	1 /	SE-					_			
-	14						_			
5—		4.5			— Becor	nes light reddish brown (5YR 6/1) and soft				
-		SE-2-	<5	NS	2000.		-			
-	/						—			
_			<5	NS	— Becor	nes gray (5YR 6/1).	—			
_							_			
10	Щ						- 10			
_			<5	NS						
_										
					Bacor	nes light reddish brown (5VR 6/1)				
	1/		<5	NS	_ Decoi					
15-					 Increasing 	using very fine sand (20%).	15			
-			<5	NS			-			
-							-			
-		-2-17			— Becor	nes wet. Increasing very fine sand (25%).				
-		SE	<5	NS			-			
20	\mathbb{H}		.5	NIC	Silty S	CAND (SM): light reddish brown (5VP 6/1) wet	20			
-				145	poorly	graded, loose, (~60% very fine sand, ~40% silt).	-	SE-2 (Water Sample)		
_					Becor	nes gray (5YR 5/1).	_			
_							L			
_			<5	NS			_			
25-							25			
					Botton	n of Boring at 25.0' BGS.				
_							L			
							L			
							L			
30-	1						30			
-	1									
-	1						F			
-	1						F			
-							–			
35—	1									
-							\vdash			
-							\vdash			
_							 -			
_							 -			
								Page 1/1		

	Ash (invironn	Creek	k Ass nd Geot	ociate	es, Inc. I Consultants	Phase II Envíronmental Site Assessment Rídgefield Rail Overpass Project Rídgefield, Washington	Boring Number:SE-3Project Number:1161-01Logged By:S. GrayDate:August 9, 2010
Depth, feet	Core Interval/Recovery	Laboratory Sample ID	PID	Sheen	Líth	ologíc Descríptíon	Site Conditions: Gravel Road Drilling Contractor: Stratus Drilling Equipment: 7822 DT Sampler Type: Dual Core Depth to Water (ATD): 18.4' Surface Elevation: - Boring Details and Notes:
		SE-3-4.5 SE-3-1.5	<5	NS	Silty G — Becor Clayey mediu	RAVEL (GM); very pale brown (10YR 1/4). nes dark gray. ⁷ SILT (ML); gray (5YR 6/1), moist, high plasticity, n stiff.	 5
			<5 <5	NS NS	— Becor	nes reddish brown (5YR 4/3) and soft.	
15— — — 20— —			<5	NS	Silty, fi poorly Botton	ne SAND (SM); reddish brown (5YR 4/3), wet, graded, loose. n of Boring at 20.0' BGS.	15 SE-3 (Water Sample) 20
 25 	-						25 25
35	-						
	1						Page 1/1

	Ash Creek Associates, Inc. Environmental and Geotechnical Consultants					Phase II Environmental Site Assessment Ridgefield Rail Overpass Project	Boring Project Nu	Number: SE-4
	nvironm	iental ar	nd Geo	technica	l Consultants	Ridgefield, Washington	Logged By	S. Gray
							Date: Au	igust 9, 2010
							Site Cond	litions: Gravel Road
							Drilling C	ontractor: Stratus
	COVE	le II					Drilling Eq	quipment: 7822 DT
	I/Re	amp					Depth to	
set	erva	ry S					Surface Ele	evation: -
th, fé	<u>lut</u>	rato		5	1 41			
Cepi	Core	_abo		Shee	Lith	ologic Description	Boring	g Details and Notes:
		<u> </u>	-		Silty C	PAVEL (CM): pale brown (EVP 1/4), dry modium donae		
			<>	INS	Silly G	RAVEL (GM), pale brown (STR 1/4), dry, medium dense.	–	
_	14						<u> </u>	
		SE- 4-					L	
							L	
5—							5	
			_		Clayey	/ SILT (ML) with organic debris; gray (5YR 6/1),		
_		4-5.5	<5	NS	$\left \begin{array}{c} \text{moist,} \\ \text{Claves} \end{array} \right $	VSILT (ML): grav (5YR 6/1)		
		SE-			moist,	medium to high plasticity, medium stiff.		
-								
10-	117		<5	NS			- 10	
	11 /1						-	
	11/1						-	
			<5	NS			-	
							-	
15—	HI-		_	NIC	Pager	nee wat and patt	— I5	
_			<5	INS	- Decor	nes wei and son.	<u> </u>	
_					- Becor	nes reddish brown (5YR 4/3).	L	
					- Increa	asing fine sand (20%).	L	
_		<u>8</u>	<5	NS			L	
20-	Ш	SE-1			- Becor	nes grav (5YR 6/1).	20	
			<5	NS	2000.			
_								
							L	SE 4 (Water Sample)
25			<5	NS			25	
25-					Botton	n of Boring at 25.0' BGS	25	
	1				Dotton		—	
	1							
-	1							
	1							
30-	1							
-	1						F	
-	1						\vdash	
-	1						 -	
-	1						\vdash	
35—	-							
-							\vdash	
-	-						 -	
_	-						L	
_	-						L	
								Page I/I

A E	\sh (Creek	: Ass id Geot	ocíat technica	es, Inc. I Consultants	Phase II Envíronmental Site Assessment Ridgefield Rail Overpass Project Ridgefield, Washington	Boring Num Project Number: 1 Logged By: S. G	ber: SE-5 161-01 ray
Jepth, feet	Core Interval/Recovery	aboratory Sample ID	DIO	iheen	Líth	ologíc Descríptíon	Site Conditions: C Drilling Contractor Drilling Equipment: Sampler Type: Du Depth to Water (<i>F</i> Surface Elevation: Boring Deta	Stravel Road Stratus 7822 DT Ial Core ID): 14.5' - ils and Notes:
		SE-5-1.5	<5 <5	NS NS	Silty G mediu Clayey mediu	RAVEL (GM); very pale brown (10YR 1/4), dry, well graded, m dense, (60% gravel, 40% silt). v SILT (ML); gray (5YR 6/1), moist, medium to high plasticity, m stiff.		
5		SE-5-4.5	<5	NS			5 	
			<5 <5	NS NS	— Increa Sandy (55%	v SILT (ML); reddish brown (5YR 4/3), moist, soft, silt, 40% very fine sand, 5% clay).	10	
			<5 <5	NS NS	– Becor	nes wet and very soft.	 I5 	
20			<5	NS	Botton	n of Boring at 20.0' BGS.	20	SE-5 (Water Sample)
 25							 25	
35— — —							35 	
								Page 1/1

Ash Creek Associates, Inc. Environmental and Geotechnical Consultants				OCÍ ate	es, Inc. Consultants	Phase II Environmental Site Assessment Ridgefield Rail Overpass Project Ridgefield, Washington	Boring I Project Num Logged By: Date: Aug	Number: ^{nber:} 1161 S. Gray	-01	SE-6
							Site Conditi	ions: Grav	rel Road	
							Drilling Cor	ntractor: St	ratus	
	very	□					Drilling Equ	ipment: 78	22 DT	
	Seco	nple					Sampler Typ	De: Dual C	Core	
L 1	val/F	San					Depth to V	Vater (ATD)	24.1'	
, fee	Inter	itory					Surface Elev	vation: —		
Depth	Core	Labora	DID	Sheen	Lith	ologic Description	Boring	Details a	nd Notes:	
_			<5	NS	Silty G	RAVEL (GM); pale brown (5YR 1/4), dry, medium dense.	_			
	17	<u>ر</u>	<5	NS						
		E-6-I.		1.15						
		S								
5		5			Organi	in rich silty CLAX: your dark grow with woody dobris	5			
5		E-6-2	<5	NS	Organ	ic-nen sity CLAT, very dark gray, with woody debris.				
	/	S			Mediu	m-fine SAND with silt; gray (5YR 6/1), moist, medium dense.				
	1 /				Clayey	/ SILT (ML); gray (5YR 6/1), moist, medium to high plasticity,				
	14		<5	NS	mediu	m stiff.				
10-			<5	NS			10			
_										
-					 Sandv					
_			-5	NIS	(85% s	silt, 15% fine sand).				
-				145						
15—			_	NIC			— I5			
_			<5	INS			_			
_							_			
_							_			
_			<5	NS	— Becor	nes gray (5YR 6/1). Increasing sand (~20%).	_			
20-		6					- 20			
		SE-6	<5	NS	— Becor	nes wet.	_ 20			
									SF_6 (Water	Sample)
			<5	NS				$\nabla \blacksquare$	SE-0 (Waldi	sumple)
25							25	日		
23-					Bottom	n of Boring at 25.0' BGS.				
						J	_			
	1									
	1									
	1									
30-	1									
	1						—			
	1						 			
	1						F			
	1						-			
35—							— 35			
	1						-			
							 -			
							<u> </u>			
							-			
	I									Down 1/1
1										rage I/I

Ash Creek Associates, Inc. Environmental and Geotechnical Consultants				ociat	es, Inc. I Consultants	Phase II Envíronmental Síte Assessment Rídgefield Rail Overpass Project Rídgefield, Washington	Boring N Project Num Logged By: 2 Date: Aug	Number: SE- ber: 1161-01 S. Gray ust 9, 2010	7
spth, feet	ore Interval/Recovery	boratory Sample ID	0	een	Líth	ologíc Descríptíon	Site Condition Drilling Con Drilling Equi Sampler Type Depth to W Surface Eleve Borring I	ons: Gravel Road atractor: Stratus pment: 7822 DT e: Dual Core /ater (ATD): 18.5' ation: - Details and Notes:	
		SE-7-1.5 La	<5 <5	NS Sh	Silty G well gr	RAVEL (GM); very pale brown (10YR 1/4), moist to dry, aded, medium dense, (60% angular gravel, 40% silt).			
5		SE-7-45	<5	NS	Clayey mediu	v SILT (ML); gray (5YR 6/1), moist, medium to high plasticity, m stiff.	5 5		
			<5 <5	NS NS	— Becor	nes reddish brown (5YR 4/3) and soft.	 10 		
		SE-7-13	<5 <5	NS NS	Sandy	v SILT (ML); reddish brown (5YR 4/3), wet, soft,	 15		
20			<5	NS	(~60%	5% clay). 5% silt, ~40% very fine sand, 5% clay).	 	SE-7 (Water Sampl	e)
					Botton	n of Boring at 20.0' BGS.			
25—							— 25 — — —		
30							30 		
 35							35 		
								Pa	ge I/I

GPS Coordinates Ridgefield Rail Overpass Project Ridgefield, Washington

Location ID	Unfilt_Pos	Data_Dicti	Northing	Easting	Point_ID
SE-1	45	Generic	184379.051	1066987.899	1
SE-2	46	Generic	184321.799	1067077.675	2
SE-3	45	Generic	184280.046	1067145.737	3
SE-4	45	Generic	184100.937	1067135.366	4
SE-5	45	Generic	184062.841	1067214.453	5
SE-6	59	Generic	184014.124	1067171.127	6
SE-7	46	Generic	183941.158	1067264.255	7

Attachment B

Laboratory Analytical Report

ORELAP#: OR100021

August 17, 2010

Mike Stevens Ash Creek Associates, Inc. 3015 SW First Avenue Portland, OR 97201

RE: Ridgefield Overpass

Enclosed are the results of analyses for samples received by the laboratory on 08/10/10 14:36. The following list is a summary of the Work Orders contained in this report, generated on 08/17/10 16:46.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTH0302	Ridgefield Overpass	1161-01

TestAmerica Portland

Godcock

Christina Woodcock For Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue Portland, OR 97201 Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Mike Stevens

Report Created: 08/17/10 16:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SE-1	PTH0302-01	Water	08/09/10 09:30	08/10/10 14:36
SE-1Dup	PTH0302-02	Water	08/09/10 09:30	08/10/10 14:36
SE-4	PTH0302-05	Water	08/09/10 15:50	08/10/10 14:36
SE-7	PTH0302-08	Water	08/09/10 14:50	08/10/10 14:36

TestAmerica Portland

Climitine Woodcock

Christina Woodcock For Darrell Auvil, Project Manager

Ash Creek Associates, Inc.				Project N	lame:	Ridgefie	eld Overp	ass				
3015 SW First Avenue				Project N	lumber:	1161-01				Report Created:		
Portland, OR 97201				Project N	fanager:	Mike Ste	vens			08/17/10 16:46		
,				-	-							
Diesel an	d Heavy Rar	ıge Hvdı	rocarbo	ns per N	IWTPF	H-Dx Me	thod wi	th Acid/Silio	a Gel Clean	un		
	TestAmerica Portland											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes		
PTH0302-01 (SE-1) Water Sampled: 08/09/10 09:30												
Diesel Range Organics	NWTPH-Dx	ND		0.0952	mg/l	1x	10H0389	08/12/10 13:30	08/13/10 11:30			
Residual Range/Heavy Oil		ND		0.476		"	"	"				
Organics												
Surrogate(s): 1-Chlorooctadee	cane			69.5%		50 - 150 %	"			"		
PTH0302-02 (SE-1Dup)			W	ater		Samp	led: 08/09/	10 09:30				
Diesel Range Organics	NWTPH-Dx	ND		0.0952	mg/l	1x	10H0389	08/12/10 13:30	08/13/10 11:43			
Residual Range/Heavy Oil	"	ND		0.476			"	"				
Organics												
Surrogate(s): 1-Chlorooctadee	cane			61.9%		50 - 150 %	"			"		
PTH0302-05 (SE-4)			W	ater		Samp	led: 08/09/	10 15:50				
Diesel Range Organics	NWTPH-Dx	ND		0.0952	mg/l	lx	10H0389	08/12/10 13:30	08/13/10 11:57			
Residual Range/Heavy Oil	"	ND		0.476			"	"				
Organics												
Surrogate(s): 1-Chlorooctadee	cane			60.8%		50 - 150 %	"			"		
PTH0302-08 (SE-7)			W	ater		Samp	led: 08/09/	10 14:50				
Diesel Range Organics	NWTPH-Dx	ND		0.0952	mg/l	1x	10H0389	08/12/10 13:30	08/13/10 12:15			
Residual Range/Heavy Oil	"	ND		0.476	"		"	"	"			
Organics												
Surrogate(s): 1-Chlorooctadee	cane			54.7%		50 - 150 %	"			"		

TestAmerica Portland

Climiten Woodcock

Christina Woodcock For Darrell Auvil, Project Manager

Ash Creek Associates, Inc.				Project Nar	ne:	Ridgef	ield Over	rpass						
3015 SW First Avenue				Project Nur	nber:	1161-01							Report Create	ed:
Portland, OR 97201				Project Mar	nager:	Mike St	evens						08/17/10 16	:46
Diesel and Heavy Ran	ge Hydrocar	bons per N	WTPH-D	x Method	with Acio	l/Silica	Gel Clea	anup -	· Lab	oratory	Quali	ty Coi	ntrol Results	
				TestAmeric	a Portland	l								
QC Batch: 10H0389	Water I	Preparation	Method:	EPA 3510 I	Fuels									
Analyte	Method	Result	MDL ³	* MRL	Units	Dil	Source Result	Spike Amt	∾ REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (10H0389-BLK1)								Ext	racted:	08/12/10 13	:30			
Diesel Range Organics	NWTPH-Dx	ND		0.100	mg/l	1x							08/13/10 10:37	
Residual Range/Heavy Oil Organics	"	ND		0.500	"									
Surrogate(s): 1-Chlorooctadecane		Recovery:	101%	Lii	nits: 50-1509	% "							08/13/10 10:37	
LCS (10H0389-BS1)								Ext	racted:	08/12/10 13	:30			
Diesel Range Organics	NWTPH-Dx	2.38		0.100	mg/l	1x		2.50	95.1%	(50-150)			08/13/10 10:54	
Residual Range/Heavy Oil Organics		1.22		0.500	"	"		1.50	81.1%	"				
Surrogate(s): 1-Chlorooctadecane		Recovery:	105%	Lii	nits: 60-1209	% "							08/13/10 10:54	
LCS Dup (10H0389-BSD1)								Ext	racted:	08/12/10 13	:30			
Diesel Range Organics	NWTPH-Dx	2.25		0.100	mg/l	1x		2.50	89.8%	(50-150)	5.69%	6 (20)	08/13/10 11:12	
Residual Range/Heavy Oil Organics		1.27		0.500				1.50	84.5%		4.06%	ó "	"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	95.7%	Lii	nits: 60-1209	% "							08/13/10 11:12	

TestAmerica Portland

Chritten Woodcock

Christina Woodcock For Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue Portland, OR 97201 Project Name: Project Number: Project Manager:

Ridgefield Overpass

Mike Stevens

Report Created: 08/17/10 16:46

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

lood cock

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Christina Woodcock For Darrell Auvil, Project Manager

Client Name: Address: City/State/Zip:

Ash Creek Associates	
3015 SW First Ave	
Portland, OR 97201	

 Telephone Number:
 503.924.4704

 Fax No.:
 503.943.6357

of 1

Analytical Lab: Test America

Page: 1

Report To: Chris Sheridan

Project Manager: Chris Sheridan

Project Name: Ridgefield Overpass

Project Number: 1161-01

Sampler Name: S. Gray

									Pre	ser	vati	ive		T		Ν	Aatr	ix			0				Ana	yze	For		-				•
Sample ID / Description	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	lce	HNO ₃ (Red Label)	HCI (Blue Label)	NaOH (Orange Label)	H2SU4 Plastic (Yellow Label) H SO Glass/Vallow Label)	None (Black Label)		Groundwater	Wastewater	Drinking Water	Sludge	Soll	Other (specify):		eleanity of si GI clany										KUSH IAI (Pre-Schedule) Standard TAT	Fay Results	Send QC with report
SE-1	8/9/10	0930	1	х			Х		x					X							x					•					X	1	
SE-1 DUP	8/9/10	0930	1	Х			Х		x					X							х				<u> </u>		ļ			$ \rightarrow$	X	1	
SE-2	8/9/10	1050	1	x			х		x					X					\downarrow		<u>н</u>										X	1	
SE-3	8/9/10	1150	1	х			Х		x					X							н							<u> </u>	ļ		X	<u>.</u>	
SE-4	8/9/10	1550	1	X			X		x					X							X										X	4	
SE-5	8/9/10	1255	.1	X			X		x	\bot		1		X							н										×	4	
SE-6	.8/9/10	1355	1	Х			X		x					X	: 				_		H					ļ					X	1	
SE-7	8/9/10	1450	1	X			X		x					X	<u></u>	ļ					X										X	4	-
					·				_	\square									_									. .			_	╞	
																							-	,		L							
Special Instructions: H = Hold / Please retain extra sample volume for potential follow ups. Laboratory Comments: Method of Shipment: Temperature Upon Receipt: Sample Containers Intact? Y N VOCs Free of Headspace? Y N																																	
Relinquisted by: Name/Company	6//0/	te 10	12	^{me} 20	Rece	W	iy: N ∕	Varn	e/Co	omp	pany 2				E		ate 1 <u>0/</u>	1 0	14			2				5) _	9					
Relinquished by: Name/Company	Binquished by: Name/Company Date Time Received by: Name/						e/Ce	órnp	oany V	Å	$\overline{\mathbf{A}}$		8	'//		0	1	14 	<u>3</u> (Ø			·	۲ د	5-	2	-						
Relinquished by: Name/Corbpany Date Time Received						lived t	oy: N	Nam	e/Co	omp	bany	9				Da	ate			111	ne			•		C {	5.	. 7	7				
Relinquished by: Name/Company	Da	te	Т	me	Reçe	eived b	oy: N	Nam	e/Co	omp	bany	'		-		Da	ate	-		Tı	ne		-			-			-				

		TestAmerica Portland									
Work Clien	Work Order #: <u>PTH0302</u> Date/Time Received: <u>\$-10-16</u> <u>1436</u> Client Name and Project: <u>ASH CAEEK</u>										
Time [ED]	Zone: T/EST	CDT/CST MDT/MST PDT/PST AK OTHER									
Unp: Coo Temp	ackin oler #(s erature Dig	g Checks:									
N/A	Yes	No RAYTECH Initials:									
		1. If ESI client, were temp blanks received? If no, document on NOD.									
		2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.									
()	Z	3. Chain of Custody present? If no, document on NOD.									
	1	4. Bottles received intact? If no, document on NOD.									
	\square	5. Sample is not multiphasic? If no, document on NOD.									
	\square	\mathbf{Z} $\mathbf{\Box}$ 6. Proper Container and preservatives used? If no, document on NOD.									
\square		7. pH of all samples checked and meet requirements? If no, document on NOD.									
\square		8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.									
\square		9. HF Dilution required?									
	Z	10. Sufficient volume provided for all analysis? If no, document on NOD and consult									
	P	 PM before proceeding. 11. Did chain of custody agree with samples received? If no, document on NOD. 									
		12. Is the "Sampled by" section of the COC completed?									
		13. Were VOA/Oil Syringe samples without headspace?									
X		14. Were VOA vials preserved? HCl Sodium Thiosulfate Ascorbic Acid									
·		15. Did samples require preservation with sodium thiosulfate?									
\square		\Box 16. If yes to #15, was the residual chlorine test negative? If no, document on NOD.									
Z		17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.									
\square		18. Is sufficient volume provided for client requested MS/MSD or matrix duplicates? If									
		no, document on NOD and contact PM before proceeding. 19. Are analyses with short holding times received in hold?									
لمجمعة		20. Was Standard Turn Around (TAT) requested?									
	Z	\Box 21. Receipt date(s) < 48 hours past the collection date(s)? If no, notify PM.									

F:\Sample_Receiving_Documents\Forms (effective 3/16/09)

TestAmerica Portland Sample Receiving Checklist

Work Order #:

Login Checks:

 $\boldsymbol{\triangleleft}$

No

N/A Yes

 \mathbf{Z}

Initials

22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.

23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If no, document on NOD and contact PM.

☐ 24. Did the chain of custody include "received by" and "relinquished by" signatures, dates and times?

25. Were special log in instructions read and followed?

26. Were tests logged checked against the COC?

27. Were rush notices printed and delivered?

28. Were short hold notices printed and delivered?

29. Were subcontract COCs printed?

30. Was HF dilution logged?

Labeling and Storage Checks:

Initials:	J	W

N/A Yes No

7

31.	Were the subcontracted	l samples/containers	put in	Sx fridge?
<i>o</i>			L	

32. Were sample bottles and COC double checked for dissolved/filtered metals?

33. Did the sample ID, Date, and Time from label match what was logged?

☐ 34. Were Foreign sample stickers affixed to each container and containers stored in foreign fridge?

35. Were HF stickers affixed to each container, and containers stored in Sx fridge?

36. Was an NOD for created for noted discrepancies and placed in folder?

Document any problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy form (NOD).

September 08, 2010

Chris Sheridan Ash Creek Associates, Inc. 3015 SW First Avenue Portland, OR 97201

RE: Ridgefield Overpass

Enclosed are the results of analyses for samples received by the laboratory on 08/10/10 14:36. The following list is a summary of the Work Orders contained in this report, generated on 09/08/10 16:13.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
PTH0303	Ridgefield Overpass	1161-01	

TestAmerica Portland

el W. Amil h

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue Portland, OR 97201 Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SE-1-1.5	PTH0303-01	Soil	08/09/10 09:10	08/10/10 14:36
SE-2-1.5	PTH0303-04	Soil	08/09/10 10:20	08/10/10 14:36
SE-3-1.5	PTH0303-07	Soil	08/09/10 11:30	08/10/10 14:36
SE-3-1.5 Dup	PTH0303-08	Soil	08/09/10 11:30	08/10/10 14:36
SE-4-1.5	PTH0303-10	Soil	08/09/10 15:25	08/10/10 14:36
SE-5-1.5	PTH0303-13	Soil	08/09/10 12:30	08/10/10 14:36
SE-6-1.5	PTH0303-16	Soil	08/09/10 14:20	08/10/10 14:36
SE-7-1.5	PTH0303-19	Soil	08/09/10 13:30	08/10/10 14:36

TestAmerica Portland

And W. Amil

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue Portland, OR 97201 Project Name: Project Number: Project Manager: Ridgefield Overpass

Chris Sheridan

Report Created: 09/08/10 16:13

Analytical Case Narrative TestAmerica - Portland, OR

PTH0303

Amended report to reflect additional testing.

Clean Water Act and SW 846 update 4, both recognize hold times for PCBs to reasonably be one year acceptance of the new updates is up to regulatory agency.

TestAmerica Portland

Charle W. Amil

Darrell Auvil, Project Manager

Ash Creek Associates, Inc 3015 SW First Avenue Portland, OR 97201			Project 1 Project 1 Project 1	Name: Number: Manager:	Ridgefield Overpass 1161-01 Chris Sheridan				Report Created: 09/08/10 16:13	
Diesel a	nd Heavy Rar	nge Hydr	ocarbor	is per l TestAn	NWTPE nerica Por	I-Dx Me tland	thod wi	th Acid/Silio	ca Gel Clean	սթ
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTH0303-01 (SE-1-1.5)			Soil	l		Samp	led: 08/09/	10 09:10		
Diesel Range Organics Residual Range/Heavy Oil Organics	NWTPH-Dx "	41.4 205		13.3 26.7	mg/kg dry "	1x "	10H0513 "	08/16/10 21:55	08/17/10 13:45	Q10 Q10
Surrogate(s): 1-Chlorooctad	ecane			90.5%		50 - 150 %	"			"
PTH0303-04 (SE-2-1.5)			Soil	l		Samp	led: 08/09/	10 10:20		
Diesel Range Organics Residual Range/Heavy Oil Organics	NWTPH-Dx "	ND ND		16.1 32.2	mg/kg dry "	lx "	10H0513 "	08/16/10 21:55	08/17/10 10:53	
Surrogate(s): 1-Chlorooctad	ecane			93.7%		50 - 150 %	"			"
PTH0303-07 (SE-3-1.5)			Soil	l		Samp	led: 08/09/	10 11:30		
Diesel Range Organics Residual Range/Heavy Oil Organics	NWTPH-Dx "	ND ND		14.6 29.2	mg/kg dry "	1x "	10H0513 "	08/16/10 21:55	08/17/10 11:49	
Surrogate(s): 1-Chlorooctad	ecane			102%		50 - 150 %	"			"
PTH0303-08 (SE-3-1.5 Dup)		Soil	l		Samp	led: 08/09/	10 11:30		
Diesel Range Organics Residual Range/Heavy Oil Organics	NWTPH-Dx "	ND ND		14.1 28.2	mg/kg dry "	lx "	10H0513 "	08/16/10 21:55 "	08/17/10 12:07	"
surrogate(s). 1-Chioroociaa	ecane			09.570		50 - 150 78				
PTH0303-10 (SE-4-1.5)			Soil			Samp	led: 08/09/	10 15:25		
Diesel Range Organics Residual Range/Heavy Oil Organics	NWTPH-Dx "	ND ND		14.8 29.6	mg/kg dry "	1x "	10H0513 "	08/16/10 21:55	08/17/10 12:27	
Surrogate(s): 1-Chlorooctad	ecane			108%		50 - 150 %	"			"
PTH0303-13 (SE-5-1.5)			Soil	l		Samp	led: 08/09/	10 12:30		
Diesel Range Organics	NWTPH-Dx	55.7		12.9	mg/kg dry	1x	10H0513	08/16/10 21:55	08/17/10 12:45	Q6
Residual Range/Heavy Oil Organics		166		25.8	"	"	"		"	
Surrogate(s): 1-Chlorooctad	ecane			98.1%		50 - 150 %	"			"
PTH0303-16 (SE-6-1.5)			Soil	l		Samp	led: 08/09/	10 14:20		
Diesel Range Organics	NWTPH-Dx	ND		13.9	mg/kg dry	1x	10H0513	08/16/10 21:55	08/17/10 13:05	
TestAmerica Portland							1	The results in this report	t apply to the samples an	alyzed in accordance with the

in of custody docı cal rei tot be ri

in full, without the written approval of the laboratory.

Darrell Auvil, Project Manager

Il W. Amil

On

Ash Creek Associates, Inc.	Project Name:	Ridgefield Overpass	
3015 SW First Avenue	Project Number:	1161-01	Report Created:
Portland, OR 97201	Project Manager:	Chris Sheridan	09/08/10 16:13

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method with Acid/Silica Gel Cleanup TestAmerica Portland											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PTH0303-16 (SE-6-1.5) Soil Sampled: 08/09/10 14:20											
Residual Range/Heavy Oil Organics	"	28.5		27.7	"		"	"	"		
Surrogate(s): 1-Chlorooctade	ecane			110%		50 - 150 %	"			"	
PTH0303-19 (SE-7-1.5)			Soi	I		Samp	led: 08/09/	10 13:30			
Diesel Range Organics	NWTPH-Dx	ND		15.8	mg/kg dry	1x	10H0513	08/16/10 21:55	08/17/10 13:25		
Residual Range/Heavy Oil Organics		ND		31.6	"		"	'n	"		
Surrogate(s): 1-Chlorooctade	ecane			96.1%		50 - 150 %	"			"	

TestAmerica Portland

Quel W. Amil

Darrell Auvil, Project Manager

Report Created: 09/08/10 16:13

THE LEADER IN ENVIRONMENTAL TESTING

Ash Creek Associates, Inc.	Project Name:	Ridgefield Overpass
3015 SW First Avenue	Project Number:	1161-01
Portland, OR 97201	Project Manager:	Chris Sheridan

	Total Metals per EPA 6000/7000 Series Methods TestAmerica Portland										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTH0303-01	(SE-1-1.5)			Soi	1		Sam	pled: 08/09/	10 09:10		
Arsenic		EPA 6020	4.81		0.539	mg/kg dry	lx	10H0931	08/27/10 19:38	08/30/10 15:01	
Barium			84.2		0.539	"		"		"	
Cadmium			ND		0.539	"		"		"	
Chromium			16.2		1.08	"		"		"	
Lead			12.3		0.539	"		"		"	
Selenium			ND		0.539	"		"		08/29/10 18:50	
Silver			ND		0.539	"		"		08/30/10 15:01	
PTH0303-13	(SE-5-1.5)			Soi	1		Sam	pled: 08/09/	10 12:30		
Arsenic		EPA 6020	3.72		0.518	mg/kg dry	1x	10H0931	08/27/10 19:38	08/30/10 15:48	
Barium		"	89.4		0.518	"		"			
Cadmium			ND		0.518	"		"		"	
Chromium			11.2		1.04	"		"		"	
Lead		"	7.63		0.518	"		"			
Selenium		"	ND		0.518	"		"		08/29/10 19:05	
Silver		"	ND		0.518	"		"		08/30/10 15:48	
PTH0303-16	(SE-6-1.5)			Soi	1		Sam	pled: 08/09/	10 14:20		
Arsenic		EPA 6020	2.89		0.539	mg/kg dry	1x	10H0931	08/27/10 19:38	08/30/10 15:52	
Barium			157		0.539	"		"		"	
Cadmium			ND		0.539	"	"	"	"	"	
Chromium			19.1		1.08	"	"	"	"	"	
Lead			16.4		0.539	"	"	"	"	"	
Selenium			ND		0.539	"	"	"	"	08/29/10 19:09	
Silver			ND		0.539	"		"		08/30/10 15:52	

TestAmerica Portland

Quel W. Amil

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

	Total Mercury per EPA Method 7471A TestAmerica Portland										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTH0303-01	(SE-1-1.5)			Soi	l		Sam	pled: 08/09/	10 09:10		
Mercury		EPA 7471A	ND		0.104	mg/kg dry	1x	10H0915	08/27/10 12:02	08/27/10 17:07	
PTH0303-13	(SE-5-1.5)			Soi	I		Sam	pled: 08/09/	10 12:30		
Mercury		EPA 7471A	ND		0.0660	mg/kg dry	1x	10H0915	08/27/10 12:02	08/27/10 17:09	
РТН0303-16	(SE-6-1.5)			Soi	l		Sam	pled: 08/09/	10 14:20		
Mercury		EPA 7471A	ND		0.0795	mg/kg dry	1x	10H0915	08/27/10 12:02	08/27/10 17:12	

TestAmerica Portland

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.	Project Name:	Ridgefield Overpass	
3015 SW First Avenue	Project Number:	1161-01	Report Created:
Portland, OR 97201	Project Manager:	Chris Sheridan	09/08/10 16:13

		Polych	lorinate	d Biphe TestAm	enyls per nerica Por	r EPA M	1ethod 8	8082			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PTH0303-01RE1	(SE-1-1.5)		Soi	1		Samp	led: 08/09/	10 09:10			H1, N1
Aroclor 1016	EPA 8082	ND		35.9	ug/kg dry	1x	10H0945	08/30/10 09:30	09/01/10 16:37		
Aroclor 1221	"	ND		72.2	"	"	"	"	"		
Aroclor 1232	"	ND		35.9			"		"		
Aroclor 1242	"	ND		35.9	"	"	"		"		
Aroclor 1248	"	ND		35.9	"	"	"		"		
Aroclor 1254	"	ND		35.9	"	"	"		"		
Aroclor 1260	"	ND		35.9	"	"	"	"	"		
Surrogate(s):	Decachlorobiphenyl			93.7%		16 - 149 %	"			"	
РТН0303-13 (SE-5-1.5)		Soi	1		Samp	led: 08/09/	10 12:30			H1, N1
Aroclor 1016	EPA 8082	ND		34.4	ug/kg dry	1x	10H0945	08/30/10 09:30	08/31/10 18:25		
Aroclor 1221	"	ND		69.3	"	"	"		"		
Aroclor 1232	"	ND		34.4	"	"	"		"		
Aroclor 1242	"	ND		34.4	"	"	"		"		
Aroclor 1248	"	110		34.4			"		"		
Aroclor 1254	"	ND		34.4	"	"	"		"		
Aroclor 1260	"	ND		34.4	"	"	"	"	"		
Surrogate(s):	Decachlorobiphenyl			91.9%		16 - 149 %	"			"	
РТН0303-16 (3	SE-6-1.5)		Soi	1		Samp	led: 08/09/	10 14:20			H1, N1
Aroclor 1016	EPA 8082	ND		72.8	ug/kg dry	2x	10H0945	08/30/10 09:30	08/31/10 18:02		
Aroclor 1221	"	ND		147	"	"	"		"		
Aroclor 1232	"	ND		72.8	"	"	"		"		
Aroclor 1242	"	ND		72.8	"	"	"		"		
Aroclor 1248	"	ND		72.8			"		"		
Aroclor 1254	"	427		72.8	"	"	"	"	"		
Aroclor 1260	"	ND		72.8	"	"	"	"	"		
Surrogata(s):	Decachlorobinhenvl			79 3%		16 - 149 %	"			"	

Surrogate(s): Decachlorobiphenyl

79.3%

16 - 149 %

TestAmerica Portland

Quel W. Amil

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Ridgefield Overpass Project Name: Project Number: Project Manager:

1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

	Po	lynuclea	r Aron	natic Co TestAm	mpounc erica Port	is per El tland	PA 8270	M-SIM			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
PTH0303-01 (SE-1-1.5)			So	il		Samp	led: 08/09/	′10 09:10			Н8
Acenaphthene	EPA 8270m	21.1		14.4	ug/kg dry	1x	10H0944	08/30/10 10:00	09/01/10 20:24		
Acenaphthylene		ND		14.4	"	"	"	"	"		
Anthracene		63.3		14.4	"	"	"	"	"		
Benzo (a) anthracene		142		14.4	"	"	"	"	"		
Benzo (a) pyrene		138		14.4	"	"	"	"			
Benzo (b) fluoranthene		121		14.4	"	"	"	"			
Benzo (ghi) perylene		98.2		14.4	"	"	"	"	"		
Benzo (k) fluoranthene		123		14.4	"	"	"	"			
Chrysene		167		14.4	"	"	"	"	"		
Dibenzo (a,h) anthracene	"	26.2		14.4			"	"	"		
Fluoranthene		255		14.4	"	"	"	"	"		
Fluorene	"	22.0		14.4			"	"	"		
Indeno (1,2,3-cd) pyrene	"	92.9		14.4	"		"	"	"		
Naphthalene	"	ND		14.4	"		"	"	"		
Phenanthrene		149		14.4	"	"	"	"	"		
Pyrene		279		14.4	"		"	"	"		
Surrogate(s): Fluorene-dl	'0			71.6%		24 - 125 %	"			"	
Pyrene-d10				73.8%		41 - 141 %	"			"	
Benzo (a) py	vrene-d12			72.8%		38 - 143 %	"			"	
PTH0303-13 (SE-5-1.5)			So	il		Samp	led: 08/09/	10 12:30			H8
Acenaphthene	EPA 8270m	ND		13.9	ug/kg dry	1x	10H0944	08/30/10 10:00	09/01/10 20:55		
Acenaphthylene	"	ND		13.9	"		"	"	"		
Anthracene	"	ND		13.9	"		"	"	"		
Benzo (a) anthracene		ND		13.9	"	"	"	"	"		
Benzo (a) pyrene		ND		13.9	"	"	"	"	"		
Benzo (b) fluoranthene		ND		13.9	"	"	"	"	"		
Benzo (ghi) perylene		ND		13.9	"	"	"	"	"		
Benzo (k) fluoranthene		ND		13.9	"	"	"	"	"		
Chrysene	"	ND		13.9	"	"	"		"		

TestAmerica Portland

Dibenzo (a,h) anthracene

Indeno (1,2,3-cd) pyrene

Fluoranthene

Naphthalene

Phenanthrene

Fluorene

Charle W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the

chain of custody document. This analytical report shall not be reproduced except

in full, without the written approval of the laboratory.

13.9

13.9

13.9

13.9

13.9

13.9

..

..

..

..

..

..

..

..

..

..

ND

ND

ND

ND

ND

ND

...

..

..

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

	Polynuclear Aromatic Compounds per EPA 8270M-SIM TestAmerica Portland										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	No	otes
PTH0303-13 (SE-5-1.5)			S	oil		Samp	oled: 08/09/	10 12:30			H
Pyrene	EPA 8270m	ND		13.9	ug/kg dry	1x	10H0944	08/30/10 10:00	09/01/10 20:55		
Surrogate(s): Fluorene-d10				68.3%		24 - 125 %	"			"	
Pyrene-d10				71.1%		41 - 141 %	"			"	
Benzo (a) pyren	ne-d12			70.3%		38 - 143 %	"			"	
PTH0303-16 (SE-6-1.5)			Soil Sampled: 08/09/10 14:20								H
Acenaphthene	EPA 8270m	ND		14.7	ug/kg dry	lx	10H0944	08/30/10 10:00	08/31/10 04:02		
Acenaphthylene		ND		14.7		"					
Anthracene		ND		14.7		"					
Benzo (a) anthracene		ND		14.7							
Benzo (a) pyrene		ND		14.7							
Benzo (b) fluoranthene		ND		14.7							
Benzo (ghi) perylene		ND		14.7							
Benzo (k) fluoranthene		ND		14.7							
Chrysene		ND		14.7					"		
Dibenzo (a,h) anthracene		ND		14.7							
Fluoranthene		ND		14.7					"		
Fluorene		ND		14.7							
Indeno (1,2,3-cd) pyrene		ND		14.7							
Naphthalene		ND		14.7							
Phenanthrene		ND		14.7					"		
Pyrene	"	ND		14.7	"		"	"	"		
Surrogate(s): Fluorene-d10			82.4%		24 - 125 %	"			"		
Pyrene-d10				91.4%		41 - 141 %	"			"	

Benzo (a) pyrene-d12

TestAmerica Portland

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

87.5%

38 - 143 %

"

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

Percent Dry Weight (Solids) per ASTM D2216-80 TestAmerica Portland															
Analyte	Analyte Method Result MDL* MRL Units Dil Batch Prepared Analyzed Notes														
PTH0303-01	(SE-1-1.5)			Soi	1		Sam	pled: 08/09/	10 09:10						
% Solids		ASTM D2216-80	92.8		0.0100	% by Weight	1x	10H0438	08/13/10 12:40	08/14/10 08:30					
PTH0303-04	(SE-2-1.5)			Soi	1		Sam	pled: 08/09/	10 10:20						
% Solids		ASTM D2216-80	76.4		0.0100	% by Weight	lx	10H0438	08/13/10 12:40	08/14/10 08:30					
PTH0303-07 (SE-3-1.5) Soil Sampled: 08/09/10 11:30															
% Solids		ASTM D2216-80	85.0		0.0100	% by Weight	1x	10H0438	08/13/10 12:40	08/14/10 08:30					
PTH0303-08	03-08 (SE-3-1.5 Dup) Soil Sampled: 08/09/10 11:30														
% Solids		ASTM D2216-80	89.3		0.0100	% by Weight	lx	10H0438	08/13/10 12:40	08/14/10 08:30					
PTH0303-10	(SE-4-1.5)			Soi	1		Sam	pled: 08/09/	10 15:25						
% Solids		ASTM D2216-80	83.4		0.0100	% by Weight	1x	10H0438	08/13/10 12:40	08/14/10 08:30					
PTH0303-13	(SE-5-1.5)			Soi	1		Sam	pled: 08/09/	10 12:30						
% Solids		ASTM D2216-80	95.5		0.0100	% by Weight	1x	10H0420	08/12/10 19:21	08/13/10 07:13					
PTH0303-16	(SE-6-1.5)			Soi	1		Sam	pled: 08/09/	10 14:20						
% Solids		ASTM D2216-80	90.0		0.0100	% by Weight	lx	10H0420	08/12/10 19:21	08/13/10 07:13					
PTH0303-19	(SE-7-1.5)			Soi	1		Sam	pled: 08/09/	10 13:30						
% Solids		ASTM D2216-80	79.9		0.0100	% by Weight	1x	10H0420	08/12/10 19:21	08/13/10 07:13					

TestAmerica Portland

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.			F	Project Na	ame: F	Ridgefi	ield Over	pass						
3015 SW First Avenue			F	Project Nu	umber: 1	161-01	l						Report Creat	ed:
Portland, OR 97201			F	Project Ma	anager: C	Chris Sł	heridan						09/08/10 16	5:13
Diesel and Heavy Ran	ge Hydrocar	bons per N	N WTPH-Dx M Te	Method estAmeri	with Acid	/Silica	Gel Clea	nup -	Lab	oratory	Quali	ity Cont	trol Results	
QC Batch: 10H0513	Soil Pre	paration M	ethod: EPA	3550 Fu	iels									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10H0513-BLK1)								Exti	acted:	08/16/10 2	1:55			
Diesel Range Organics	NWTPH-Dx	ND		12.5	mg/kg wet	1x							08/17/10 10:15	
Residual Range/Heavy Oil Organics	"	ND		25.0	"	"							"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	104%	L	imits: 50-150%	"							08/17/10 10:15	

LCS (10H0513-BS1)							Extra	acted:	08/16/10 21:	55			
Diesel Range Organics	NWTPH-Dx	133		12.5 mg/kg wet	1x		125	106%	(50-150)			08/17/10 09:55	
Residual Range/Heavy Oil Organics	"	69.7		25.0 "			75.0	93.0%	"			"	
Surrogate(s): 1-Chlorooctadecane		Recovery:	87.7%	Limits: 60-120%	"							08/17/10 09:55	
Duplicate (10H0513-DUP1)				QC Source: PTH0303-0	1		Extra	acted:	08/16/10 21:	55			
Diesel Range Organics	NWTPH-Dx	66.1		13.4 mg/kg dry	1x	41.4				45.9% ((40)	08/17/10 10:34	R2, Q10
Residual Range/Heavy Oil Organics	"	146		26.8 "		205				33.8%	"	"	

Recovery: 99.8%

Limits: 50-150% "

Surrogate(s): 1-Chlorooctadecane

TestAmerica Portland

Quel W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

08/17/10 10:34

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

Total Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results TestAmerica Portland

QC Batch: 10H0931	Soil Pre	paration Meth	od: EPA	3050										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	∾ REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (10H0931-BLK1)								Ext	racted:	08/27/10 19	:38			
Arsenic	EPA 6020	ND		0.500	mg/kg wet	1x							08/30/10 14:54	
Barium	"	ND		0.500	"								"	
Cadmium		ND		0.500	"	"							"	
Chromium		ND		1.00	"	"							"	
Lead	"	ND		0.500	"								"	
Selenium	"	ND		0.500									08/29/10 18:43	
Silver	"	ND		0.500									08/30/10 14:54	
LCS (10H0931-BS1)								Ext	racted:	08/27/10 19	:38			
Arsenic	EPA 6020	42.0		0.490	mg/kg wet	1x		49.0	85.8%	(80-120)			08/30/10 14:57	
Barium	"	41.2		0.490		"		"	84.0%	"			"	
Cadmium	"	42.7		0.490		"		"	87.0%	"				
Chromium	"	43.4		0.980	"	"		"	88.5%	"			"	
Lead	"	44.4		0.490				"	90.6%	"			"	
Selenium	"	59.1		0.490				"	120%	"			08/29/10 18:47	
Silver	"	21.6		0.490				24.5	88.1%	"			08/30/10 14:57	
Matrix Spika (10H0031 MS1)				OC Source	• PTH0303-0	1		Ext	racted:	08/27/10 19	:38			
	EDA (020	50.4		0.520		1	4.91	52.0	04.60/	(75.105)			08/20/10 15:00	
Arsenic	EPA 6020	50.4		0.539	mg/kg dry	1X	4.81	53.9	84.0%	(75-125)			08/30/10 15:09	
Barium		130		0.539			84.2	"	84.0%					

				0 0 . ,					()		
Barium		130	 0.539	"	"	84.2	"	84.0%		 	"
Cadmium	"	47.9	 0.539	"	"	0.189	"	88.4%		 	"
Chromium	"	63.7	 1.08	"	"	16.2	"	88.2%		 	"
Lead	"	60.9	 0.539	"	"	12.3	"	90.1%		 	"
Selenium		56.1	 0.539	"	"	0.199	"	104%		 	08/29/10 18:58
Silver		23.7	 0.539	"	"	0.0647	27.0	87.5%		 	08/30/10 15:09

Matrix Spike Dup	(10H0931-MSD1)		QC Source	e: PTH0303-	01		Extr	acted: (08/27/10 19:	38	
Arsenic	EPA 6020	51.8	 0.534	mg/kg dry	1x	4.81	53.4	88.0%	(75-125)	2.62% (40)	08/30/10 15:13
Barium	"	138	 0.534	"	"	84.2	"	101%	"	6.57% "	"
Cadmium	"	49.3	 0.534	"	"	0.189	"	91.9%	"	2.89% "	"
Chromium	"	66.7	 1.07	"	"	16.2	"	94.7%	"	4.60% "	"
Lead	"	65.0	 0.534	"	"	12.3	"	98.7%	"	6.50% "	"
Selenium	"	52.8	 0.534	"	"	0.199	"	98.5%	"	6.04% "	08/29/10 19:02
Silver	"	24.1	 0.534	"	"	0.0647	26.7	90.2%	"	2.04% "	08/30/10 15:13

TestAmerica Portland

And W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except

in full, without the written approval of the laboratory.

Darrell Auvil, Project Manager

EPA 7471A

0.656

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

Total Mercury per EPA Method 7471A - Laboratory Quality Control Results TestAmerica Portland														
QC Batch: 10H0915	Soil Prej	paration Met	hod: EPA	A 7471A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	C (Limits)	% RPD	(Limits) Analyzed	Notes	
Blank (10H0915-BLK1)								Extracted	: 08/27/101	2:02				
Mercury	EPA 7471A	ND		0.0988	mg/kg wet	1x						08/27/10 16:50		
LCS (10H0915-BS1) Extracted: 08/27/10 12:02														
Mercury	EPA 7471A	0.616		0.0973	mg/kg wet	1x		0.608 1019	(80-120)			08/27/10 16:53		
LCS Dup (10H0915-BSD1)								Extracted	: 08/27/10 1	2:02				
Mercury	EPA 7471A	0.623		0.0985	mg/kg wet	1x		0.616 1019	(80-120)	1.23%	(20)	08/27/10 16:56		
Duplicate (10H0915-DUP1)				QC Sourc	e: PTH0303-()1		Extracted	: 08/27/10 1	2:02				
Mercury	EPA 7471A	ND		0.101	mg/kg dry	1x	ND			26.0%	(40)	08/27/10 16:58		
Matrix Spike (10H0915-MS1)				QC Sourc	e: PTH0303-()1		Extracted	: 08/27/10 1	2:02				
Mercury	EPA 7471A	0.688		0.107	mg/kg dry	1x	0.0196	0.669 1009	% (75-125)			08/27/10 17:01		
Matrix Spike Dup (10H0915-MS	SD1)			QC Sourc	e: PTH0303-()1		Extracted	: 08/27/101	2:02				

0.103 mg/kg dry

0.0196

1x

TestAmerica Portland

Mercury

And W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

0.643 98.9% (75-125) 4.90% (40) 08/27/10 17:04

Ash Creel	Associates,	Inc.
-----------	-------------	------

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass

Chris Sheridan

Report Created: 09/08/10 16:13

Polychlorinated Biphenyls per EPA Method 8082 - Laboratory Quality Control Results TestAmerica Portland QC Batch: 10H0945 Soil Preparation Method: EPA 3550 Source Spike 0/ % RPD Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes REC Result Amt Blank (10H0945-BLK1) Extracted: 08/30/10 09:30 Aroclor 1016 EPA 8082 ND 33 2 08/31/10 18:48 1x ---_ ug/kg wet --Aroclor 1221 ND 66.9 ------Aroclor 1232 .. 33.2 ... ND ------------Aroclor 1242 .. 33.2 ... ND ---------------.. Aroclor 1248 33.2 ND ------.. Aroclor 1254 ND 33.2 .. 33.2 Aroclor 1260 ND ------Decachlorobiphenvl Limits: 16-149% 08/31/10 18:48 Surrogate(s): Recovery: 96.7% Blank (10H0945-BLK2) Extracted: 08/30/10 09:30 EPA 8082 Aroclor 1016 ND 33.3 1x 09/01/10 15:51 ug/kg wet -------------------... Aroclor 1221 ND ---67.0 ---------------.. Aroclor 1232 ND ____ 33.3 ___ ___ ---.. ... Aroclor 1242 ND 33.3 ND 333 Aroclor 1248 ---------------Aroclor 1254 ND 333 ---------------Aroclor 1260 ND 33.3 ---___ ___ ___ ___ ---Decachlorobiphenyl 97.8% Limits: 16-149% " 09/01/10 15:51 Surrogate(s): Recovery: Extracted: 08/30/10 09:30 LCS (10H0945-BS1) Aroclor 1016 EPA 8082 325 ---32.8 1x 329 (57-135) 08/31/10 19:11 ug/kg wet ---98.8% Aroclor 1260 328 32.8 ---99.7% (60-135) -----Limits: 16-149% 08/31/10 19:11 Surrogate(s): Decachlorobiphenvl Recovery: 98.0% 08/30/10 09:30 LCS (10H0945-BS2) Extracted: EPA 8082 338 33.3 09/01/10 16:14 Aroclor 1016 1x 333 101% (57-135) ---ug/kg wet ---------., 33.3 Aroclor 1260 355 ------107% (60-135) ------Surrogate(s): Decachlorobiphenyl 105% Limits: 16-149% " 09/01/10 16:14 Recovery: QC Source: PTH0795-01 Extracted: 08/30/10 09:30 Matrix Spike (10H0945-MS1) 08/31/10 18:48 Aroclor 1016 EPA 8082 236 ---72.0 ug/kg dry 2x ND 360 65.4% (37-145) ---Aroclor 1260 " 245 72.0 .. ND " 68.0% (25-144) .. ---" ------

Surrogate(s): Decachlorobiphenyl Recovery: 58.1% Limits: 16-149% "

TestAmerica Portland

and W. Amil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

08/31/10 18:48

Ash (Creek	Associates,	Inc.
-------	-------	-------------	------

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01

Chris Sheridan

Report Created: 09/08/10 16:13

Polychlorinated Biphenyls per EPA Method 8082 - Laboratory Quality Control Results TestAmerica Portland

QC Batcl	n: 10H0945	Soil Pre	paration M	lethod: EPA	A 3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	∾ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike	(10H0945-MS2)				QC Sourc	e: PTH0795-01			Ext	racted:	08/30/10 09	9:30			
Aroclor 1016		EPA 8082	207		72.2	ug/kg dry	2x	ND	361	57.3%	(37-145)		(09/01/10 15:51	
Aroclor 1260		"	218		72.2	"		ND	"	60.4%	(25-144)			"	
Surrogate(s):	Decachlorobiphenyl		Recovery:	58.5%	L	imits: 16-149%	"							09/01/10 15:51	
Matrix Spike D	up (10H0945-MS	D1)			QC Sourc	e: PTH0795-01			Ext	racted:	08/30/10 09	9:30			
Aroclor 1016		EPA 8082	300		71.9	ug/kg dry	2x	ND	360	83.4%	(37-145)	24.1%	(26)	08/31/10 19:11	
Aroclor 1260		"	307		71.9	"		ND	"	85.4%	(25-144)	22.6%	(30)	"	
Surrogate(s):	Decachlorobiphenyl		Recovery:	70.8%	L	imits: 16-149%	"							08/31/10 19:11	
Matrix Spike D	up (10H0945-MS	D2)			QC Sourc	e: PTH0795-01			Ext	racted:	08/30/10 09	:30			
Aroclor 1016		EPA 8082	299		72.2	ug/kg dry	2x	ND	361	82.8%	(37-145)	36.5%	(26)	09/01/10 16:14	R2
Aroclor 1260			319		72.2			ND	"	88.4%	(25-144)	37.6%	(30)	"	R2
Surrogate(s):	Decachlorobiphenyl		Recovery:	73.5%	L	imits: 16-149%	"							09/01/10 16:14	

TestAmerica Portland

And W. Amil

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01 Chris Sheridan

Report Created: 09/08/10 16:13

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results TestAmerica Portland

QC Batc	h: 10H0944	Soil Pre	eparation N	fethod: EPA	3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10H09	44-BLK1)								Ext	racted:	08/30/10 10	:00			
Acenaphthene	,	EPA 8270m	ND		13.2	ug/kg wet	1x							08/30/10 23:28	
Acenaphthylene			ND		13.2	"								"	
Anthracene			ND		13.2									"	
Benzo (a) anthracen	e		ND		13.2									"	
Benzo (a) pyrene			ND		13.2									"	
Benzo (b) fluoranthe	ene		ND		13.2									"	
Benzo (ghi) perylene	e		ND		13.2									"	
Benzo (k) fluoranthe	ene		ND		13.2									"	
Chrysene			ND		13.2									"	
Dibenzo (a,h) anthra	icene		ND		13.2										
Fluoranthene			ND		13.2										
Fluorene			ND		13.2										
Indeno (1,2,3-cd) py	rene		ND		13.2										
Naphthalene			ND		13.2										
Phenanthrene			ND		13.2										
Pyrene		"	ND		13.2										
Surrogate(s):	Fluorene-d10		Recovery:	81.1%	Ι	imits: 24-125%	"							08/30/10 23:28	3
	Pyrene-d10			88.9%		41-141%	"							"	
	Benzo (a) pyrene-d12			88.6%		38-143%	"							"	
LCS (10H094	4-BS1)								Ext	racted:	08/30/10 10	:00			
Acenaphthene		EPA 8270m	146		13.4	ug/kg wet	1x		166	87.9%	(33-139)			08/30/10 23:58	
Benzo (a) pyrene			159		13.4	"	"		"	95.8%	(45-149)				
Pyrene		"	155		13.4	"			"	93.5%	(39-138)			"	
Surrogate(s):	Fluorene-d10		Recovery:	87.7%	I	imits: 24-125%	"							08/30/10 23:58	3
	Pyrene-d10			92.5%		41-141%	"							"	
	Benzo (a) pyrene-d12			93.5%		38-143%	"							"	
Matrix Spike	(10H0944-MS1)				QC Sourc	e: PTH0706-03	;		Ext	racted:	08/30/10 10	:00			
Acenaphthene	•	EPA 8270m	206		167	ug/kg dry	10x	27.7	208	85.9%	(33-139)			08/31/10 00:28	
Benzo (a) pyrene			194		167			4.97	"	91.1%	(45-149)			"	
Pyrene		"	220		167			36.6	"	88.5%	(39-138)			"	
Surrogate(s):	Fluorene-d10		Recovery:	82.7%	Ι	imits: 24-125%	"							08/31/10 00:28	3
0 (7)	Pyrene-d10			88.6%		41-141%	"							"	
	Benzo (a) pyrene-d12			85.2%		38-143%	"							"	

TestAmerica Portland

And W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.

3015 SW First Avenue

Portland, OR 97201

Project Name: Project Number: Project Manager:

Ridgefield Overpass 1161-01

Chris Sheridan

Report Created: 09/08/10 16:13

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results TestAmerica Portland

QC Batcl	h: 10H0944	Soil Pre	paration N	lethod: EPA	A 3550										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike D			QC Sourc	e: PTH0706-(13		Ext	racted:	08/30/10 10	:00					
Acenaphthene		EPA 8270m	213		168	ug/kg dry	10x	27.7	209	88.6%	(33-139)	3.28%	6 (40)	08/31/10 00:58	
Benzo (a) pyrene			188		168	"	"	4.97	"	87.5%	(45-149)	3.31%	5 "	"	
Pyrene		"	225		168	"	"	36.6	"	90.3%	(39-138)	2.19%	5 "	"	
Surrogate(s):	Fluorene-d10		Recovery:	87.0%	L	imits: 24-125%	6 "							08/31/10 00:58	
	Pyrene-d10			86.4%		41-141	% "							"	
	Benzo (a) pyrene-d12			81.6%		38-143	% "							"	

TestAmerica Portland

Darrell Auvil, Project Manager

Ash Creek Associates, Inc. 3015 SW First Avenue Portland, OR 97201				Project Nam Project Num Project Mana	e: ber: ager:	Ridgefi 1161-01 Chris Sh	ield Over	rpass					Report Crea 09/08/10 1	ited: 6:13
	Percent Dry	Weight (Solid	ls) per A	STM D22	16-80 - 1 Portland	Labor d	atory Qu	uality C	ontr	ol Resul	ts			
QC Batch: 10H0420	Soil Pre	paration Meth	od: Dry	Weight										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (10H0420-DUP1)				QC Source:	PTH0303	-13		Extra	cted:	08/12/10 19	:21			
% Solids	ASTM D2216-80	93.3		0.0100 %	by Weight	1x	95.5				2.26%	6 (20)	08/13/10 07:13	
QC Batch: 10H0438	Soil Pre	paration Meth	od: Dry	Weight										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (10H0438-DUP1)				QC Source:	PTH0266	-02		Extra	cted:	08/13/10 12	:40			
% Solids	ASTM D2216-80	90.8		0.0100 %	by Weight	1x	91.1				0.2609	% (20)	08/14/10 08:30	
Duplicate (10H0438-DUP2)				QC Source:	PTH0266	-01		Extra	cted:	08/13/10 12	:40			
% Solids	ASTM	93.3		0.0100 %	by Weight	1x	92.8				0.5999	% (20)	08/14/10 08:30	

ASTM D2216-80

TestAmerica Portland

Quel W. Amil

Darrell Auvil, Project Manager

Ash Creek Associates, Inc.	Project Name:	Ridgefield Overpass	
3015 SW First Avenue	Project Number:	1161-01	Report Created:
Portland, OR 97201	Project Manager:	Chris Sheridan	09/08/10 16:13
			09/00/10 10:15
	Notes and Definit	tions	

Report Specific Notes:

H1	-	Sample analysis performed past the method-specified holding time per client's approval.
H8	-	The sample was extracted past the holding time.
N1	-	See case narrative.
Q10	-	Hydrocarbon pattern most closely resembles a blend of creostoe or similar product as well as oil.
Q6	-	Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
R2	-	The RPD exceeded the acceptance limit.
<u>Laborat</u>	ory Re	porting Conventions:
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Danel W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Darrell Auvil, Project Manager

CERTIFICATION SUMMARY

TestAmerica Portland

Method	Matrix	Washington	
ASTM D2216-80	Soil		
EPA 6020	Soil	Х	
EPA 7471A	Soil	Х	
EPA 8082	Soil	Х	
EPA 8270m	Soil	Х	
NWTPH-Dx	Soil	Х	

TestAmerica Portland

Quel W. Amil

Darrell Auvil, Project Manager

Client Name: Address: City/State/Zip:

Ash Creek Associates 3015 SW First Ave Portland, OR 97201 Telephone Number: 503.924.4704

Fax No.: 503.943.6357

Project Manager: Chris Sheridan

Project Name: Ridgefield Overpass

Analytical Lab: Test America

Report To: Chris Sheridan Page: 1 of 3

Project Number: 1161-01

Sampler Name: S. Gray

]		F	res	erva	ative	Э				Matr	ix			Analyze For:							_			
Sample ID / Description	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Ice	HNO ₃ (Red Label) HCI / Illiue Label)	NaOH (Orange Label)	H ₂ SO ₄ Plastic (Yellow Label)	H ₂ SO ₄ Glass(Yellow Label)	None (Black Label)		Groundwater Wastewater	Drinking Water	Sludge	Soil	Other (specify):	NWTPHDx w/ Si Gel Clean Up									RUSH TAT (Pre-Schedule)	Statruaro TAT Fax Results Connet Of with report	ספוות מה אווו ובליחור
SE-1-15	8/9/1n	09117	5	X			X		T			-		ŀ			X		X									X	$\langle $	
SF-1-5	1	0920	6	X			X		1								X		H					·				X)	<u>त</u>	7
SF-1-19'		0940	1	X			X			-					Τ	Π	X		H								4	\$)		
SE-2-65		1020	6	X			χ										χ		χ									$\langle \boldsymbol{\lambda} \rangle$	≮⊥	
SE-2-4.5		1030	6	\mathbf{X}			χ										X		H	-								2		
5E-2-17		1055	1	X			χ							·			X		Ή									X		
SE-3-1.5		1130	5	X			X										χ		X									X	≮⊥	
SE-3-1.5 DUP		1130	5	X			X										X		X										≰⊥	
SE-3-4,5		<u>1140</u>	6	\times			X							•			X		H									$\langle \chi \rangle$	<u>{</u>	
SE-4-1.5	U	1525	5	X			X										X		X								2	X	<u>⊀</u> ` _	
Special Instructions:	H	H	5/0]			4	8h	.	AT.										La	bora Ten	tory ndera	Cor ature	nme e Upo	nts: on Re	eceipt		L,		
			61				Met	thoo	l of	Shi	pm	ent:									VO	Cs Fr	ree	of He	adsp	bace?		Y	Ν	
Relinquished by: Name/Company Sam Gray / Ash Creek	Date 8/10/	10	Tir 12	ne 10	Receiv	ved by	y: Na		/Cor	npar	vi D			3	D 8/12	ate 5//	r D	٦ إلم:	ime 15				5	- 0	2				·	
Relinquished by: Name/Company Date Time Receive			ved by	y: Ni 1	ame. M	1667	npar N	۳ ۸	r	,	8	₽ <u>7/</u> [ate 0/(r D	т јЧ	ime 30		5-2												
Relinquished by: Name/Company	Date	e	Tir	ne	Rećeiv	ved b	y: Na	ame	(Cor	npar	dy 				D	ate		T	ime				5	5-5	7					
Relinquished by: Name/Company	Date	e	Tir	ne	Receiv	ved by	y: Na	ame	/Cor	npar	ıy				D	ate		T	ime											
				•																1				_					<u></u>	

Client Name: Address: City/State/Zip:

Ash Creek Associates 3015 SW First Ave Portland, OR 97201
 Telephone Number:
 503.924.4704

 Fax No.:
 503.943.6357

Project Manager: Chris Sheridan

Project Name: Ridgefield Overpass

Analytical Lab: Test America

Report To: Chris Sheridan Page: 2 **of** 3

Project Number: 1161-01

Sampler Name: S. Gray

				Preservative Matrix Analyze For:				yze For:			
Sample ID / Description	Date Sampled Time Sampled	No. of Containers Shipped Grab	Composite Field Filtered	lce HNO ₃ (Red Label) HCI (Blue Label) NaOH (Orange Label)	H ₂ SO ₄ Plastic (Yellow Label) H ₂ SO ₄ Glass(Yellow Label) None (Black Label)	Groundwater Wastewater Drinking Water Sludge Soll	Other (specify): NW-TP HOx w15: Cel Clanyo			RUSH TAT (Pre-Schedule)	Standard TAT Fax Results Send QC with report
5E-4-55	8/9/0 1535	$6 \times$		X		X	H			K	X
SE-4-18	1 1540	X		X		Χ	H			X	X
SE-5-1.5	1230	6 7				χ				K	ХЦ
SE-5-4.5	1240	6 X		X		X	H			Ň	X
SE-5-14	1245	$l \times$		X			H	-		X	X
SE-6-1.5	1420	6 X	t	X		X	X			- X	ХЦ
515-6-4,5	1430	6 X		χ		Χ	H			X	<u>Х</u> Ц
SE-6-19	1440	$\frac{1}{\lambda}$		X			H			<u>الأ</u>	ХЦ
SE-7-1.5	1330	6 X		X			X			_X	X
SE-7 - 4.5	V 1340	6 X		X			H			X	ΧЦ
Special Instructions:	48hr TA	Ŧ	ł	$f = H_{\mathcal{O}}$	Shipment:			Temper Sample VOCs F	rature Upon Receipt: Containers Intact?	Y Y	N N
Relinquished by: Name/Company	Date	Time	Received	y: Name/Com	rpany	Date	Time	-	•		
San Ga Athlack	8/10/10	1200	15	A Jø	Z	8/10/10	14:15	5		-	
Relinquished by: Name/Company	Date	Time	Received I	oy: Name/Com	pany	Date	Time				
Bulles	8/10/10	14:36	,	· ·							
Relinquished by: Name/Cerripany	Date	Time	Received I	oy: Name/Com	npany 1 A	Date					
			1/11	Man N	hr	8/10/10	1430				
Relinquished by: Name/Company.	Date	Time	Received	by: Name/Con	ngany	Date	Ime			.1	
a second s				· · · • • • •	e de la compañía de l			~ <u></u>	21. The Second	i yan sin in	

Ash Creek Associa Environmental and Geotechnical Consultant	tes, Inc.	peridan		Clie City/	ent Na Addr State	ame: ress: /Zip:		Ash 3015 Port	Cre 5 SW lanc	ek / Fi 1, O	Asso rst A R-97	ve 201	es				Tei Analy	leph	one Ni Fa Lab:	umbei ax No. Test	י: .: Ame	503 503	a.924 a.943	.470 .635	4 7	p	Tł	Þ	3€
Project Manager.	Didgofie	Id Ovo	rnse													·	R	eno	- t To: I	Chris	s She	erid	an						_
Project Name:	Ridgene		ipas													'		1040	,	3		of	.3						
Project Number:	1161-01															_		·	uge	<u> </u>	- `		<u> </u>						
Sampler Name:	S. Gray	···																			Ana	470	For						
	1	<u>`</u>					Т	۱ ۲	res	erva T		-						+			Ana					T	<u></u>		٦
mplo ID (Description	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	lce	HNO ₃ (Red Label)	Nor (blue Label) NaOH (Orange Label)	H ₂ SO ₄ Plastic (Yellow Label)	H ₂ SO ₄ Glass(Yellow Label)	None (Black Label)	Groundwater	Wastewater	Drinking Water	Soldge	Other (specify):	1/21 - 010- 94	lan 10 m KAWAIM					-			RUSH TAT (Pre-Schedule Standard TAT	Fax Results	Send QU WITH report
	Slalin	1350	1				\mathbf{k}		1	1	+	+-	╈		1	Tχ		1-			1	1					XX	11	
>12 - 7 - 1 3		150	l				4	+	+-		$\left \right $	+	+		+			ľ			+						1911 C 1		1
										-	┝╌┼	-	╋	\vdash	+	+	+	+-				+		+					
		<u> </u>						+	+	+	$\left + \right $		+	\square	-+		╉╋	+			+	+			_	+		$\left \right $	-
· · · · · · · · · · · · · · · · · · ·			 	ļ				_		<u> </u> .	$\left \right $	_	_		_		++		┼┼			-						$\left\{ \right\}$	4
									_	-		+	_		-		\square	+		_	_	<u> </u>		-+				╄╌┠	-
											\square							⊥			_							$\left \right $	_
,																													
										1																			
··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		5							+	\top	$\uparrow \uparrow$	-			1		\uparrow	+										\mathbf{T}	
cial Instructions:	1			<u> </u>	1				<u> </u>						 •				_L	Laboi	aton	y Co	mme	ents:				1	
	48/00-	TAT			H =	Hol	d	1						07/					•	Te	empe	ratur	re Up	on F	Receip	t:	v	N	
-			- 1				Мо	tho	d of	Shi	inme	nt								Sa Vi	ampie DCs I	Free	of H	eis ii eads		?	Ý	N	
inquished by: Name/Cempany	Dat	te	Ti	me	Rece	ived b	y: N	ame	<u> </u> Con	npa	ny			Γ	Da	te	1	Time	,	-							٠		
San Gen TAW sorte	8/10/	10	17	00	P	Est	1	(fe	L	Z	\sim		-	8,	:[0]	<u>/īŭ</u>	14	6.1	5										3
inquished by: Nane/Company	Dat	te	Ti	me	Rece	ived b	y: N	ame	/Con	npa	PY A				Da	te í	· .	Time					• •						
my Hen	8/0/1	0	143	36	//	1 KA	11	A		Π	/h	N		8	101	lio	14	30										•	
inquished by: NamerCompany	Da	te	Ti	ime	Rece	eived b	y: N	lame	/Con	npa	ný –				Da	te		Time	,										
											¥																		
inquished by: Name/Company	Da	te	 т і	ime	Rece	ived b	v: N	lame	/Cor	npa	ny			\vdash	Da	te		Tim											
surger and and the second and the se				*	1					•	-																		

		TestAmerica Portland	•									
Sample Receiving Checklist												
Work Clien	Work Order #: PTH0303 Date/Time Received: <u>8-10-16</u> 1436 Client Name and Project: <u>ASH CAEE/C</u>											
Time []ED	Zone: T/EST	CDT/CST MDT/MST PDT/PST	AK OTHER									
Unp: Coo Temp	ackin oler #(s erature Dig	g Checks: s):	Temperature out of Range: Not enough or No Ice Ice Melted W/in 4 Hrs of collection Other:									
N/A	Yes	No RAYTECH	Initials:									
$\mathbf{\nabla}$		1. If ESI client, were temp blanks received? If no, do	ocument on NOD.									
		2. Cooler Seals intact? (N/A if hand delivered) if no.	document on NOD.									
()	Ł	3. Chain of Custody present? If no, document on No	DD.									
	5	4. Bottles received intact? If no, document on NOD	·									
	\square	5. Sample is not multiphasic? If no, document on N	OD.									
	\square	6, Proper Container and preservatives used? If no, c	ocument on NOD.									
Ø		7. pH of all samples checked and meet requirements	? If no, document on NOD.									
Z		8. Cyanide samples checked for sulfides and meet re	equirements? If no, notify PM.									
		9. HF Dilution required?										
·	Z	10. Sufficient volume provided for all analysis? If r	o, document on NOD and consult									
		PM before proceeding.	d? If no. document on NOD.									
		12. Is the "Sampled by" section of the COC complet	ed?									
		13. Were VOA/Oil Syringe samples without headsp	ace?									
	\square	14. Were VOA vials preserved? HCl Sodium	Thiosulfate Ascorbic Acid									
		15. Did samples require preservation with sodium th	iosulfate?									
		\square 16. If yes to #15, was the residual chlorine test nega	tive? If no, document on NOD.									
Z		17. Are dissolved/field filtered metals bottles sedim	ent-free? If no, document on NOD.									
		18. Is sufficient volume provided for client requeste	d MS/MSD or matrix duplicates? If									
		no, document on NOD and contact PM before proce 19. Are analyses with short holding times received it	eding. n hold?									
		20. Was Standard Turn Around (TAT) requested?	•									
	Z	21. Receipt date(s) < 48 hours past the collection date	e(s)? If no, notify PM.									

TestAmerica Portland
Sample Receiving Checklist

Work Order #:

Login Checks:

Initials:

N/A	Yes	10
		22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.
\square		23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
•		no, document on NOD and contact PM.
	\square	24. Did the chain of custody include "received by" and "relinquished by" signatures,
	•	dates and times?
	Z,	25. Were special log in instructions read and followed?
	Z	26. Were tests logged checked against the COC?
\square		27. Were rush notices printed and delivered?
\square		28. Were short hold notices printed and delivered?
Z		29. Were subcontract COCs printed?
		30. Was HF dilution logged?

Labeling and Storage Checks:

Initials:

N/A	Yes	No	

 \square

- 31. Were the subcontracted samples/containers put in Sx fridge?
 - 32. Were sample bottles and COC double checked for dissolved/filtered metals?
 - 33. Did the sample ID, Date, and Time from label match what was logged?
 - ☐ 34. Were Foreign sample stickers affixed to each container and containers stored in foreign fridge?
 - 35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
 - 36. Was an NOD for created for noted discrepancies and placed in folder?

Document any problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy form (NOD).