Data Report

Former Mill A MTCA Support Sample Collection Everett, Washington

Prepared for:

Port of Everett Everett, Washington

November 2007

Project No. 13116.000

Data Report

Former Mill A MTCA Support Sample Collection Everett, Washington

Prepared for:

Port of Everett Everett, Washington

Prepared by:

Geomatrix Consultants, Inc. 3500 188th Street SW, Suite 600 Lynnwood, Washington 98037 (425) 921-4000

November 2007

Project No. 13116.000

TABLE OF CONTENTS

Page

1.0	INTRODUCTION
2.0	SITE HISTORY
3.0	PREVIOUS STUDIES
4.0	METHODS54.1CORE COLLECTION PROCEDURES4.2GRAB SAMPLE COLLECTION PROCEDURES4.3ANALYSIS SCHEDULE4.4LABORATORY PROCEDURES6
5.0	RESULTS
	5.1.2 Grab Samples
	5.2.5 Sawdust
6.0	SUMMARY156.1SOIL UNITS156.2CHEMISTRY156.3POTENTIAL SOURCES OF CONTAMINATION166.4RATIONALE FOR PROPOSED DELISTING18
7.0	REFERENCES

TABLES

Table 1	Sampling Locations
Table 2	Chemistry Results Expressed as Dry Weights
Table 3	Chemistry Results Compared to Appropriate Criteria

FIGURES

- Figure 1 Former Mill Vicinity
- Figure 2 1936 Weyerhaeuser Wharf
- Figure 3 1947 South Terminal Vicinity
- Figure 4 1970 Weyerhaeuser Plant Layout and Process Sewers
- Figure 5 1977 Weyerhaeuser Plant
- Figure 6 Outfall Location Map
- Figure 7 Actual Sediment Sample Locations
- Figure 8a Location of Cross-Sections
- Figure 8b Cross-Sections through Wood and Sawdust Deposit
- Figure 8b Cross-Sections through Sawdust Deposits
- Figure 9 Mill Site Conditions in 1936, 1947, 1976, and 2002 Compared

APPENDICES

- Appendix A Quality Assurance Project Plan
- Appendix B Core Sample Collection Field Forms
- Appendix C Core Summary Logs
- Appendix D Core Photo Logs
- Appendix E Qualitative Sample Characteristic Forms for Grab Samples
- Appendix F Grab Photo Logs
- Appendix G Chain-of-Custody Forms
- Appendix H Analytical Laboratory Data Forms
- Appendix I Data Validation Report

DATA REPORT Former Mill A MTCA Support Sample Collection Everett, Washington

1.0 INTRODUCTION

This report describes the results of fieldwork conducted by Geomatrix Consultants, Inc. (Geomatrix), to characterize sediments within and adjacent to the Former Mill A site in Everett, Washington. Structures associated with the Former Mill A were demolished during the 1980s, and the area is now known as the Port of Everett (Port) South Terminal area (the site) (Figure 1). The South Terminal Area was listed on the Washington State Department of Ecology's (Ecology's) 1996 Sediment Management Standards Contaminated Sediment Site List (Ecology 1996). The site was listed for phenols, benzoic acid, metals, and low-molecular-weight polycyclic aromatic hydrocarbons (LPAHs). In response to the Governor's Puget Sound Initiative, the Port conducted additional characterization of the sediments in the South Terminal area to determine what, if any, remediation or other action needs to be taken to seek a delisting of the South Terminal area from the Contaminated Site List. The sampling and analyses were conducted as described in the Quality Assurance Project Plan (QAPP), prepared for the Port of Everett by Geomatrix (Appendix A; Geomatrix, 2007), except as specified in Section 4.0.

2.0 SITE HISTORY

Historically, the South Terminal area has been used for sawmills, pulp mills, and log rafting and storage. The Bell-Nelson sawmill was constructed on pilings south of Pier 1 in the vicinity of the South Terminal site and began operating as early as 1896 (Pentec, 1992). In 1901 the Weyerhaeuser Company (Weyerhaeuser) purchased the Bell-Nelson sawmill and continued lumber production on the site (Pentec, 1992).

During the 1930s, Weyerhaeuser constructed a sulfite pulp mill (Mill A) adjacent to the sawmill (Pentec, 1992; DOF and Pentec, 1992). A shoreline bulkhead was also constructed during the 1930s or 1940s close to the location of the west bulkhead (DOF and Pentec, 1992). The area behind the bulkhead was subsequently filled. An offshore cargo dock was constructed before 1936 using treated timber pilings and connected to the shoreline by bridges (Figure 2).

An aerial photograph of the mill site in 1947 (Figure 3) shows a reconfigured cargo dock, the sulfite pulp mill, and waiting log rafts. Figure 4 shows the sulfite plant layout and process sewer outfalls as they existed in 1970. The sewers identified on the drawing include the bleach plant sewer, the main sewer, and the power house and acid plant sewers (abandoned and rerouted by 1970). Also visible on the 1970 drawing are numerous buildings and tanks, including a chlorinator, a chlorine unloading facility, a barking plant (identified as "Hydraulic Log Barker" on the 1977 Mill Plot Plan [Figure 5]), and a power house with hogged fuel storage.

Three inactive industrial outfalls (WT002, WT003, and WT004) and one stormwater outfall (WT006) were identified by Ecology and Environment (1992) in the vicinity of the Mill A site (Figure 6). The industrial outfalls WT002 and WT003 were reported to discharge spent sulfite liquor, as well as untreated washing, bleaching, and drying process wastewater into the nearshore areas adjacent to the plant (Pentec, 1992; DOF and Pentec, 1992; Ecology and Environment, 1992; Pentec et al., 1993). Industrial outfall WT004 was reported to discharge limestone cleaning water and stormwater (Ecology and Environment, 1992). Outfalls identified as WT002 and WT003 likely correspond to the power house and acid plant sewer and the main sewer, respectively, on Figure 4. The bleach plant sewer line and outfall were located where the current South Terminal Pier (Figure 1) is now located and had been removed or buried by 1977.

In 1951, a deepwater outfall was installed to discharge spent sulfide liquor from the Scott Paper and the Weyerhaeuser mills offshore (Pentec, 1992; DOF and Pentec, 1992). The sewer line

from the Scott Paper mill was laid to the east of the Weyerhaeuser mill and discharged through the deepwater diffuser southwest of the mill. A majority of the process water from the Weyerhaeuser mill was eventually discharged through the deepwater diffuser, but as late as December 1975 effluent and pulp were still being discharged into the nearshore from Outfall 004 (Ecology, 1975).

In 1975, the sulfite pulp mill was converted into a thermomechanical mill. Figure 5 shows the plant layout as it existed in 1977, including the location of the deepwater effluent line to the southwest of the mill.

During the early 1980s the thermomechanical mill ceased operation and was demolished. The property was bought by the Port in 1983, and the uplands were cleared for use as a log yard in 1987 (Pentec et al., 1993). As part of the Port's Marine Terminal Improvement Program, the area just north of the Former Mill A site was dredged. A Nearshore Confined Disposal Facility was constructed along the shoreline north of the Former Mill A site at the current site of the Port's Pacific Terminal facility (Figure 1).

3.0 PREVIOUS STUDIES

Disposal of sawdust and other wood waste into the nearshore areas of the Everett waterfront and the filled tidelands of the Snohomish River appears to have been a common practice until the 1940s (DOF and Pentec, 1992). The operation of sawmill, pulp, and paper facilities have altered native sediments due to deposition of sawdust and wood chips (from milling operations) and rafting debris (bark and wood debris) over native sediments in the nearshore area of South Terminal (DOF and Pentec, 1992).

Early studies in the East Waterway and in the vicinity of South Terminal have been summarized previously (PTI and Tetra Tech, 1988). Three sampling locations near the Mill A site had relatively high concentrations of some metals, polycyclic aromatic hydrocarbons (PAHs), phenols, and benzoic acid, but with localized distributions.

During sediment investigations conducted in 1992 as part of the Port's Marine Terminal Improvement Program, a deposit of sawdust was found adjacent to the Former Mill A site. This deposit was located in the vicinity of the former cargo dock adjacent to the west bulkhead of the Former Mill A site and was estimated to be up to 20 feet thick. This surface and nearsurface deposit was composed of fine-grained sawdust (60 to 80 percent total volatile solids) with sand and silt (Pentec et al., 1993).

Chemical analyses were conducted in 1992 to evaluate the nature and extent of chemical contaminants and disposal options for nearshore sediments at the South Terminal (DOF and Pentec, 1992; EcoChem and Pentec, 1993; Pentec et al., 1993). Three borings were located in the sawdust deposit. Chemical characterization of samples from the borings showed that a total of eight chemicals of concern exceeded the 1998 Puget Sound Dredged Disposal Analysis (PSDDA) screening level or maximum level criteria. Three phenols also exceeded the Sediment Management Standards (SMS) Cleanup Screening Level (CSL) criteria (Washington Administrative Code [WAC] 173-204-520).

EcoChem and Pentec (1992) compared chemical groups (e.g., PAHs and methylphenols) to known contaminant sources reported in the literature to identify potential sources of contamination. The chief chemical group of concern in the sawdust deposit was phenols. The sawdust deposit has a methylphenol pattern that does not show a strong correlation between 2,4-dimethylphenol concentrations and PAH concentrations. Based on the literature, natural wood decomposition and effluent common in the pulp and paper industry have similar patterns (EcoChem and Pentec, 1992).

4.0 METHODS

Sediment sampling within the project area was conducted from May 7 to May 16, 2007. Sample collection was conducted in general accordance with the project QAPP (Geomatrix, 2007), as described in this section; any deviations from the QAPP are noted. Cores were collected at 21 of the 27 coring stations (as specified in the QAPP). Six of the coring stations could not be sampled due to the presence of debris or riprap. Two additional coring stations were added during the field effort to provide additional data on the horizontal extent of the sawdust deposit. Three of the coring stations were also relocated from the original proposed locations to avoid debris. Grab samples were collected at 21 stations (as specified in the QAPP). A duplicate grab sample collected at ST-24 was used as a field QC sample (frequency of approximately 5 percent). No other deviations from the QAPP were noted. Samples were assigned sequential sample ID numbers.

4.1 **CORE COLLECTION PROCEDURES**

Core processing followed the QAPP. Cores were processed within 6 hours of collection.

Core tube processing was performed as follows.

- The uppermost side of the core tube was removed using a circular saw.
- A layer approximately 1 centimeter (cm) (or 0.38 inch) thick was removed from the exposed sediment surface with a decontaminated stainless-steel scraper.
- The exposed sediment surface of the core was photo-documented and logged using the Universal Soil Classification System.
- Sediment from each segment was collected from the center of the core. Sediment touching the sides of the core tube was not collected.
- Sediment samples were placed directly from the core tube into cleaned glass sample containers. Samples for analysis were transferred to the analytical laboratory using chain-of-custody procedures. Samples were identified as unhomogenized on the sample label and the chain-of-custody forms.
- Samples were homogenized by the laboratory prior to analysis. Excess sample material was archived by the analytical laboratory. Archived samples were frozen and held by the analytical laboratory.

4.2 GRAB SAMPLE COLLECTION PROCEDURES

Grab sampling processing followed the QAPP. Grab sampling processing was performed as follows.

- The exposed sediment surface of the grab was photo-documented and logged using the Universal Soil Classification System.
- Sediment from the top 10 cm was collected from the center of the grab. Sediment touching the sides of the grab sampler was not collected.
- Sediment samples were placed directly from the grab sampler into cleaned glass sample containers. Samples for analysis were transferred to the analytical laboratory using chain-of-custody procedures. Samples were identified as unhomogenized on the sample label and the chain-of-custody forms.
- Samples were homogenized by the laboratory prior to analysis. Excess sample material was archived by the analytical laboratory. Archived samples were frozen and held by the analytical laboratory.

4.3 ANALYSIS SCHEDULE

Sediment samples from eight of the grab sample locations (plus one field QC sample) were analyzed for the SMS Chemicals of Concern (COCs; selected metals, semivolatile organic compounds [SVOCs], pesticides, and polychlorinated biphenyls [PCBs]) and total organic carbon (TOC), as specified in the QAPP. Sediment samples from four cores were analyzed for dioxins. Eleven samples from eight cores were analyzed for SVOCs and TOC. During a second round of analyses, two additional samples from cores were analyzed for the Dredged Material Management Program (DMMP) COCs (selected metals, SVOCs, pesticides, and PCBs) and TOC. The two core samples were not analyzed for chromium. No other deviations from the QAPP are noted.

4.4 LABORATORY PROCEDURES

Samples were selected for analysis of selected metals, (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc), PCBs, pesticides, SVOCs, or dioxins/furans. All of the samples selected for analysis of PCBs, pesticides, and SVOCs were also analyzed for TOC. All of the metals (with the exception of mercury) were analyzed using U.S. Environmental Protection Agency (EPA) Method 6010B. Mercury was analyzed using EPA Method 7471A. TOC was analyzed according to Plumb (1981) and the PSDDA guidelines. Samples for PCB analysis were extracted using EPA Method 3550B sonication extraction and analyzed according to EPA Method 8082. Samples for pesticide analysis were

analyzed using EPA Method 8081. Samples for SVOCs analysis were analyzed using EPA Method 8270D. Dioxins/furans were analyzed using EPA Method 1613B.

5.0 RESULTS

Results of sampling and laboratory analysis, including sediment stratigraphy and sediment chemistry, are presented in this section.

5.1 SAMPLE COLLECTION

The locations of cores and grabs collected for this investigation are shown on Figure 7, and information about sample locations is presented in Table 1. Each sampling station was identified by type: Type 1 stations were coring stations; Type 2 stations were grab sample stations; Type 3 stations were sampled using both core and grab samplers.

5.1.1 Core Samples

Core sample collection field forms are provided in Appendix B. Core summary logs describing the sediment types, stratigraphic contacts, summary interpretation, and sample ID for each of the cores are provided in Appendix C. Photo logs for the cores are included as Appendix D.

5.1.2 Grab Samples

Qualitative Sample Characteristic forms for the grab samples are included as Appendix E. Photo logs for the grab samples are in Appendix F.

5.2 SOIL UNITS

This section presents a summary interpretation of the soil types found in the cores, including the presence and character of woody materials or products. Some soil units were found to contain more than one type or source of woody debris (Appendix C).

5.2.1 Recent

This is a surface unit of generally loose or soft unconsolidated sands and silts showing signs of disturbance. The unit frequently contains wood fragments (bark and twigs) or shell debris with a moderately strong smell of hydrogen sulfide.

5.2.2 Native

The native soil unit consists of gray, moderately dense, poorly graded sand, silty sand, sandy silt to moderately soft silts representing alluvial sediments from the Snohomish basin. This unit may contain shells or shell fragments. In addition, the native unit may contain trace amounts of wood and other organics. If a native unit is present in a core then it is the deepest soil unit in the core.

5.2.3 Indeterminate Soil

The indeterminate soil unit consisted of disturbed sediment layers that differ in the percentage of sawdust or other wood debris present compared to adjacent soil units. This unit may grade into adjacent units without an obvious horizon or interface.

5.2.4 Rafting Debris

The rafting unit is a woody debris layer containing identifiable angular chunks of bark or shredded bark in a loose sand or silt matrix. The unit may also contain wood fragments or splinters likely resulting from the in-water storage of logs.

5.2.5 Sawdust

The sawdust unit is characterized by fine, granular, dark-stained wood particles with the appearance of coarse coffee grounds. In addition, this unit may contain variable amounts of angular wood chips (0.5 inch or larger and unstained) as a minor component. The soil unit may contain sand, silt, or shells as a minor component. Wood in the unit is sulfide stained and appears to be a machined product.

5.2.6 Wood Chips

This unit contains deposits of uniformly sized angular chips or chunks (<0.25 inch or larger up to 1.5 inches) of wood in a sand or silt matrix. Deposits of chips within the soil unit are uniform in size. The wood is usually unstained and appears to be a machined product.

5.3 SEDIMENT CHEMISTRY

The laboratory chain-of-custody forms are in Appendix G. The laboratory data forms for the analytical results are in Appendix H.

5.3.1 Analytical Results

The results of the conventional and chemical analyses, including laboratory and data validation qualifiers, are shown in Table 2. Comparison of the chemical results with the SMS Sediment Quality Standards (SQS; WAC 173-204-320) or the appropriate dry weight equivalent Apparent Effects Threshold (AET) values are presented in Table 3. Samples with total organic carbon values less than 4 percent were compared against the carbon-normalized SMS SQS values where appropriate. Samples with elevated TOC values (>4 percent) were compared to the dry weight equivalents. DMMP Screening Levels (SLs) or Bioaccumulation Triggers (BTs) for chemicals that do not have SMS values are also presented in Table 3.

5.3.2 Date-Quality Review

A Level 1 data-quality review was conducted on each batch analyzed for this investigation. A summary of the data-quality review is presented below; a complete review is presented in Appendix I. Sediment samples collected for chemical analysis were submitted to Analytical Resources, Inc., as specified in the QAPP.

The data-quality review included the following steps.

- Review sample holding time.
- Verify that sample numbers and analyses match those requested on the chain-ofcustody form.
- Verify that the required reporting limits have been achieved.
- Verify that field duplicates, matrix spikes, and laboratory control samples were run at the proper frequency.
- Verify that the surrogate compound analyses have been performed and have met quality control criteria.
- Verify that the lab blanks are free of contaminants.

The data-quality review is summarized below by analytical group.

5.3.2.1 PCBs

Each batch included a method blank, laboratory control sample (LCS), matrix spike (MS), matrix-spike duplicate (MSD), and appropriate surrogates. Additionally, a regional reference material (RRM) SQ-1 was analyzed with each batch. All samples were extracted and analyzed within the holding times specified in the QAPP.

Instrument calibration met the functional guidelines. Laboratory blanks met the functional guidelines. Surrogate recoveries were within the limits specified in the QAPP with one exception due to dilution. No qualifiers were necessary. The LCS recoveries were within the limits specified in the QAPP.

RRM recoveries were within the functional guidelines. MS and MSD recoveries were within the limits specified in the QAPP, with the following exceptions. The native concentration of Aroclor 1260 exceeded 4 times the spike amount in 13116000025 MS and MSD, and control

limits do not apply. Matrix effects on accuracy could not be evaluated for Aroclor 1260 in these samples.

MS/MSD relative percent differences (RPDs) were within the limits specified in the QAPP.

Multiple analysis results have been evaluated and reduced to the most appropriate result. All other PCB data, as qualified, were acceptable for use.

5.3.2.2 SVOCs

Each batch included a method blank, LCS, MS, MSD, and appropriate surrogates. Additionally, RRM SQ-1 was analyzed with each batch. All samples were extracted and analyzed within the holding times specified in the QAPP.

Instrument calibration met functional guideline criteria, except as noted. Associated positive and negative results for benzoic acid are qualified as estimated. Associated results for pentachlorophenol are not detected and are considered unaffected.

Phenol, diethyl phthalate, di-n-butyl phthalate, and bis(2-ethylhexyl) phthalate were found in the method blank for batch LA62. Positive sample results with concentrations below 5 times the associated blank concentration are qualified "U" and should be considered not detected at the reported level. Positive sample results with concentrations between 5 and 10 times the associated blank concentration are qualified as estimated. Positive sample results with concentration are considered unaffected.

Surrogates were not recovered or were outside the limit in six samples due to dilution; no qualifiers were assigned. Remaining surrogate recoveries were within the limits specified in the QAPP, except as noted. In instances where three of the four acid and three of the four base-neutral surrogates are within limits, functional guidelines criteria are met and no qualifiers are assigned. Base neutral compounds in samples 13116000015 and 13116000029 are qualified as estimated.

The LCS recoveries were within the limits specified in the QAPP, with the exception of benzyl alcohol in batch LA62. Benzyl alcohol is quantified as estimated in the associated samples.

RRM recoveries were within two standard deviations of the average detected concentration with exceptions. The results are only slightly low, and these analytes are within limits in the LCS.

i:\project\portofeverett\13116-000 former_mill_a_mtca_support\3000 report\data report\poe_datareport_110807.doc

MS and MSD recoveries were within the limits specified in the QAPP, with exceptions. Results for these analytes in the native sample are qualified as estimated. MS/MSD RPDs were within the limits specified in the QAPP, with exceptions. Results for these analytes in the native sample are qualified as estimated.

Multiple analysis results have been evaluated and reduced to the most appropriate result. All other SVOC data, as qualified, were acceptable for use.

5.3.2.3 Pesticides

Each batch included a method blank, LCS, MS, MSD, and appropriate surrogates. Additionally, RRM SQ-1 was analyzed with each batch and an LCS duplicate was analyzed with batch LD21. All samples were extracted and analyzed within the holding times specified in the QAPP.

Instrument calibration met the functional guidelines. Laboratory blanks met the functional guidelines. Surrogate recoveries were within the limits specified in the QAPP. The LCS recoveries were within the limits specified in the QAPP.

RRM recoveries were within two standard deviations of the average detected concentration with exceptions. The results represent 77 and 80 percent recoveries. No qualifiers were assigned.

MS and MSD recoveries were within the limits specified in the QAPP, with exceptions. According to the laboratory narrative, these recoveries were affected by interferences from PCBs. These compounds were not detected in the associated samples, and no qualifiers are required.

MS/MSD RPDs were within the limits specified in the QAPP, with exceptions. According to the laboratory narrative, these recoveries were affected by interferences from PCBs. These compounds were not detected in the associated samples, and no qualifiers are required.

Multiple analysis results have been evaluated and reduced to the most appropriate result. All other pesticide data, as qualified, were acceptable for use.

5.3.2.4 Metals

Each batch included a method blank, LCS, MS, and laboratory duplicate. Additionally, standard reference material (SRM) ERA D044540 was analyzed with batch LD21.

All samples were extracted and analyzed within the holding times specified in the QAPP, except those for mercury analyses. For mercury analyses, 9 of the 11 samples exceeded the 28-day holding time by 2 days. The two samples in the second analysis round exceeded the holding time by more than 77 days and were rejected as unusable. The remaining mercury results were qualified as estimated.

Instrument calibration met the functional guidelines. Laboratory blanks met the functional guidelines. The LCS recoveries were within the limits specified in the QAPP. The SRM recoveries were within the certified range. MS recoveries were within the limits specified in the QAPP, with exceptions. MS recoveries for antimony were below the functional guidelines action level and were rejected as unusable. Laboratory duplicate RPDs were within the limits specified in the QAPP, with exceptions. The results were qualified as estimated in the associated sample. All other metals data, as qualified, were acceptable for use.

5.3.2.5 Total Organic Carbon

Each batch included a method blank, LCS, and SRM National Institute of Standards and Technology (NIST) #8704. Three of the four batches also included an MS and laboratory triplicate. No qualifiers were assigned based on the missing laboratory triplicate.

All samples were extracted and analyzed within the holding times specified in the QAPP. Instrument calibration met the functional guidelines. Laboratory blanks met the functional guidelines. The LCS recoveries, SRM recoveries, MS recoveries, and laboratory triplicate relative standard deviations (RSDs) were within the limits specified in the QAPP. All other TOC data, as qualified, were acceptable for use.

5.3.2.6 Dioxins/Furans

A method blank and an ongoing precision and recovery (OPR) sample were analyzed. Appropriate isotope dilution and cleanup standards were included. All samples were extracted and analyzed within the holding times specified in the QAPP. Instrument calibration met the functional guidelines. Laboratory blanks met the functional guidelines. Standard recoveries of C_{13} labeled isotope dilution were within laboratory and QAPP control limits. Cleanup standard recoveries were within laboratory and QAPP control limits for Cl_{37} labeled isotopes. OPR recoveries were within laboratory and QAPP control limits.

Several results are flagged "J" by the laboratory indicating a concentration below the calibration range. These results are qualified as estimated. Several results are flagged "DM"

by the laboratory indicating the presence of diphenyl ethers and a maximum possible concentration. These results are qualified as estimated.

All other dioxin and furan data, as qualified, were acceptable for use.

5.3.3 Data Usability

All physical and chemical analytical results met the data-quality objectives specified in the approved QAPP because analytical data, as qualified, were acceptable.

6.0 SUMMARY

This section presents a summary the results of the field sampling program. The potential sources of contamination based on the analytical results are discussed, and a strategy for delisting the site from the Contaminated Sites List is presented.

6.1 SOIL UNITS

Soil units at the site are described in Section 5.2, based on the summary logs for each core presented in Appendix C. Soil units that contained more than 30 percent wood products or debris were identified as rafting debris, sawdust, wood chips, or a combination of product types. Wood debris was found at depths up to 19 feet below mudline (station ST-5) with total wood debris accumulations of greater than 18 feet. A minimum of 4 feet of sediments identified as being of recent origin were laid on top of the native undisturbed sands and silts throughout the site.

Interpolated cross-sections through the wood deposit at the Mill A site were constructed based on the sample cores (see Figure 8). Wood accumulations at the toe of the west bulkhead (+3 feet mean lower low water [MLLW]) were assumed to be zero and to increase in thickness with distance from the shore. The thickness of the wood deposits and the mudline elevation at each of the core locations were used to generate simple interpolated surfaces between sample locations. The wood accumulations were assumed to decrease to zero approaching stations ST-32, ST-34, and ST-39 within the dredged ships berth. The estimated volume of sediments containing more than 30 percent wood products or debris (including sawdust, wood chips, and rafting debris) is estimated to be approximately 79,000 cubic yards (cy). The volume of material identified as sawdust is estimated to be approximately 49,000 cy.

6.2 CHEMISTRY

The samples selected for analysis were chosen to provide information on the horizontal and vertical distribution of contaminants. A majority of the samples collected and analyzed were within sawdust units; however, samples of rafting debris, wood chips, and recent surface sediments were also analyzed.

The TOC in sediment samples containing significant amounts of sawdust or other wood debris ranged from 6.11 to 46.9 percent. Surface sediments (top 10 cm) contained from 0.8 to 5.47 percent TOC.

Eleven samples were analyzed for the SMS list of metals. Nine of the samples were from surface grab samples and two samples were composites from cores. None of the samples exceeded the SMS SQS values or the DMMP SLs or BTs for metals.

A total of 22 samples were analyzed for SVOCs (13 core samples and 9 grab samples). Of the 13 core samples analyzed for SVOCs, 7 exceeded one or more of the SMS CSL values (or the appropriate dry weight equivalent). The dominant LPAH contaminants of concern were naphthalene, acenaphthene, phenanthrene, fluorene, and anthracene. The dominant high-molecular-weight PAHs (HPAHs) were fluoranthene and pyrene. Additional SVOCs with elevated concentrations include butyl benzyl phthalate, dibenzofuran, 2-methylphenol, 4-methylphenol, 2,4-dimethyphenol, and benzyl alcohol. There were no detected exceedances of the SQS for SVOCs in grab samples; however, there were non-detected exceedances of the carbon-normalized SQS and CSL levels for chlorinated benzenes due to elevated detection limits.

A total of 11 samples (9 surface grabs and 2 core composites) were analyzed for PCBs and pesticides. Pesticides values were low or undetected in all samples. PCB concentrations in the surface grab samples were well below the SMS SQS or undetected. PCBs were present at levels above the SMS SQS (or dry-weight equivalent) in the two cores that were composited from the top 2.8 and 4 feet of the sediment column (ST-34 and ST-39, respectively); in contrast, the grab samples at the same stations showed low or undetected PCB concentrations in the top 10 cm.

Four core samples were analyzed for dioxins and furans. The four samples had 2,3,7,8-TCDD concentrations ranging from 0.967 to 18.6 picograms (10^{-12} gram) per gram (pg/g) dry weight. The total toxic equivalent concentration (TEQ) was calculated using the World Health Organization 2005 toxicity equivalency factors (TEFs; Van den Berg et al., 2006). Detected values were available for all dioxins and furans; the substitution of half the detection limit for undetected compounds was not used in the calculation of the TEQ. The four samples had total TEQs ranging from 17.9 to 119.6 pg/g.

6.3 **POTENTIAL SOURCES OF CONTAMINATION**

Several of the core samples analyzed had significantly elevated levels of PAHs and other SVOCs. The samples with elevated SVOCs had high TOC content and contained large amounts of wood (rafting debris, sawdust, or wood chips). Fingerprinting and source allocation have not been done; however, a preliminary assessment of the HPAHs and the LPAHs

indicates a pyrogenic source for the PAHs that is potentially creosote. The historic presence of numerous treated pilings in the sample area (Figure 2 and Figure 9) provide a potential source of the pyrogenic PAHs (creosote). Several of the core samples analyzed within the footprint of the former cargo dock showed elevated levels of PAHs. Sample ID 13116000010 from core station ST-11 contained pieces of a piling treated with a creosote-like substance. The sample had the second highest PAH concentrations, and the sample interval had a distinct creosote smell and small blebs of free product.

The presence of elevated methylphenols at the site is consistent with the decomposition of wood products and waste effluents from pulp and paper mills (Ecochem and Pentec, 1993). Figure 9 shows aerial photographs of the Mill A site in 1947, 1976, and 2002. Outfalls that might have been discharging waste effluents from the Weyerhaeuser pulp mill during this time period are shown. The figure also shows the estimated boundaries of the sawdust deposit at the site.

The two surface core samples with elevated PCB concentrations contained a mix of Aroclor 1242 and Aroclor 1248. Detailed fingerprinting and source allocation have not been done; however, Aroclor 1248 was historically used extensively as a primary component of some hydraulic fluids (Lowenbach, 2002). Aroclor 1242 was also used as a component in some hydraulic fluids. PCBs were also used as heat transfer media and as dielectric fluids in transformers and capacitors (Lowenbach, 2002). It is likely that hydraulic equipment was used at the mill site.

Dioxins and furans are common constituents created by combustion and would be expected from burning of wood waste in hog fuel boilers such as exists at the mill site. The power plant at the Weyerhaeuser Mill A plant used wood-derived fuels to fire the industrial boiler. This fuel derived from waste wood is called hog fuel and may include wastewater sludges or fiber as well as other fuel sources. Salt-laden hog fuel (from logs rafted in saltwater) has been implicated in the productions of dioxins (Luthe and Prahacs, 1993, cited in Ecology, 2004). The added chlorine content of wood waste from saltwater-rafted logs can result in a nearly 24-fold increase in the dioxin emission from each unit of waste wood burned (EPA, 2006). The dioxins can be air particulates (fly ash) that falls out of the air or can be grate or bottom ash retained in the boiler and periodically removed and disposed of. Additional potential sources of dioxins include wastewater discharges from bleached pulp production (Ecology, 1998).

6.4 RATIONALE FOR PROPOSED DELISTING

The accumulated wood at the Mill A site is composed of sawdust, wood chips, and rafting debris that comprise 30 percent to 100 percent by volume of the deposit (Figure 9). The deposit is contaminated by COCs that are present at levels above the SMS SQS or CSL (Table 3). It is probable that some remediation will be required to remove or isolate the deposit from the surrounding environment. This study was designed to provide initial information on the types of contamination present. Remediation will be required prior to or in conjunction with any proposed expansion of the Marine Terminal at South Terminal (potential footprint of the Stage 2 development is shown on Figure 7).

The surface sediments surrounding the wood deposit were also sampled using a grab sampler and screened against the SMS. All of the grab samples appeared to have low levels of contamination; however elevated detection limits on some of the chlorinated benzenes resulted in carbon-normalized values above the SMS SLs. All of the detection limits were below the dry weight AETs. The grab samples analyzed were arrayed around the wood deposit. Analytical results for these grab samples demonstrate that the surrounding sediments both within the ship berths and adjacent to areas previously dredged do not exceed the SQS and are substantially cleaner than the sediments within and immediately adjacent to the wood deposits. With the successful remediation of the wood deposit at the Mill A site we believe that a delisting of the South Terminal area from the Contaminated Site List would be warranted.

7.0 REFERENCES

- DOF (Dalton, Olmsted & Fuglevand, Inc.) and Pentec (Pentec Environmental, Inc.), 1992, Site Characterization Report, South Terminal Expansion, Port of Everett, Washington: Port of Everett, Everett, Washington.
- Ecology and Environment, 1992, East Waterway Everett, Washington, Site Management Planning Project, Conceptual Site Management Strategic Plan: Submitted to Washington State Department of Ecology, January.
- EcoChem (EcoChem, Inc.) and Pentec (Pentec Environmental, Inc.), 1993, Characterization of Sediments at Port of Everett South Terminal Development Project: Port of Everett, Everett, Washington.
- Ecology (Washington State Department of Ecology), 1975, Memorandum from Allen Moore to Bruce Johnson concerning Wastewater Discharge from Weyerhaeuser Mechanical Pulp Plant Outfall 004, Publication No 75-e37: Ecology, Olympia.
- Ecology, 1996, Sediment Management Standards Contaminated Sediment Site List: Sediment Management, Ecology, Olympia.
- Ecology, 1998, Washington State Dioxin Source Assessment: Ecology, Olympia.
- Ecology, 2004, Hog Fuel Boiler/Wood Ash Action Plan; Technical Report: Ecology, Hazardous Waste & Toxics Reduction Program, Olympia.
- EPA (U.S. Environmental Protection Agency), 2006, An Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the United States for the Years 1987, 1995, and 2000, EPA/600/P-03/002F: National Center for Environmental Assessment, Office of Research and Development, November 2006.
- Geomatrix (Geomatrix Consultants, Inc.), 2007, Former Mill A MTCA Support Sample Collection Quality Assurance Project Plan, Everett, Washington: Prepared for Port of Everett, Everett, Washington.
- Lowenbach, W.A., 2002, Allocation of PCB Sources at a Scrap Metal Yard Science and Technology Committee-Newsletter Archive, v. 3, no. s1: American Bar Association.
- Luthe, C., and Prahacs, S., 1996. Dioxins from pulp mill combustion processes: implications and control, Pulp & Paper Canada 94:8, p. 37-46.
- Pentec (Pentec Environmental, Inc.), 1992, Landscape Analysis; Port Gardner and the Snohomish River Estuary, Port of Everett, Washington: Port of Everett, Everett, Washington.
- Pentec; Dalton, Olmsted & Fuglevand, Inc.; and Hartman Associates, 1993, Sediment Management Study Plan for South Terminal Expansion Project, Port of Everett, Washington: Port of Everett, Everett, Washington.

i:\project\portofeverett\13116-000 former_mill_a_mtca_support\3000 report\data report\poe_datareport_110807.doc

- Plumb, R.H., 1981, Procedures for handling and chemical analysis of sediment and water samples: Technical Report EPA/CE-81-1, U.S. Army Corps of Engineers, Vicksburg, Mississippi.
- PTI (PTI Environmental Services) and Tetra Tech (Tetra Tech, Inc.), 1988, Everett Harbor Action Program – Analysis of Toxic Problem Areas, Final Report: Prepared by the Puget Sound Estuary Program, Seattle, Washington, for the U.S. Environmental Protection Agency, Region X, TC-3338-26, Olympia, Washington.
- Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Toumisto, J., Tysklind, M., Walker, N., and Peterson, R.E., 2006, The 2005 world health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds: Toxicological Sciences, v. 93(2), p. 223-241.

Tables

SAMPLING LOCATIONS

Former Mill A MTCA Support Sample Collection

Everett, Washington

Page 1 of 2

	Target Co	ordinates1				Sample 1	Location	Estimated Mudline	Bathymetry
Station	Northing	Easting	Station Type	Date	Time	Northing	Easting	(feet MLLW) ²	Mudline (feet MLLW)
Core Samples	5								
ST-1	358699	1298970	Type 1	5/8/2007	9:16:00	358700	1298972	-0.7	-2.958
ST-2	358825	1298833	Type 1	5/14/2007	8:36:00	358824	1298830	-31	-32.42
ST-3	358783	1298949	Type 1	5/7/2007	11:23:00	358785	1298947	-5.4	-6.015
ST-5	358850	1298910		5/7/2007	12:40:00	358852	1298910	-11.4	-11.67
ST-6	358850	1299012	Type 1	5/14/2007	13:58:00	358841	1299008	-4.8	-4.623
ST-8	358938	1298961	Type 1	5/11/2007	13:10:00	358938	1298963	-12.1	-11.453
ST-9	358945	1299057	Type 1	5/8/2007	9:59:00	358943	1299058	-6.1	-5.679
ST-11	359026	1299012	Type 1	5/7/2007	13:27:00	359030	1299011	-22.8	-25.972
ST-12	359026	1299113		5/14/2007	14:49:00	359027	1299117	-6.6	-5.091
ST-14	359113	1299164	Type 1	5/8/2007	10:46:00	359117	1299162	-8.5	-6.305
ST-15	359153	1299103	Type 1	5/7/2007	14:33:00	359148	1299100	-19.8	-23.405
ST-17	359201	1299215	Type 1	5/14/2007	11:36:00	359199	1299215	-11.7	-9.058
ST-19	359228	1299292	Type 1	5/11/2007	9:40:00	359233	1299267	-14.9	-9.908
ST-20	359295	1299243	Type 1	5/7/2007	15:52:00	359297	1299241	-20.9	-19.026
ST-21	359289	1299367	Type 1	5/11/2007	11:46:00	359290	1299372	-11.9	-16.473
ST-29	358563	1298535	Type 3	5/7/2007	9:29:00	358563	1298537	-44.4	-45.715
ST-32	358915	1298739	Type 3	5/7/2007	10:24:00	358913	1298741	-51	-54.664
ST-34	359247	1298988	Type 3	5/9/2007	9:48:00	359248	1298990	-50.8	-50.686
ST-37	359445	1299248	Type 3	5/11/2007	10:20:00	359445	1299244	-35.5	-36.828
ST-39	359579	1299208		5/14/2007	10:16:00	359583	1299208	-49.2	-49.605
ST-42	359798	1299452	Type 3	5/11/2007	15:40:00	359802	1299451	-41	-37.755
ST-43	*		Type 1	5/11/2007	14:16:00	359111	1298991	-38.7	-40.607
ST-44	*		Type 1	5/14/2007	9:15:00	358944	1298897	-32.3	-34.785

SAMPLING LOCATIONS

Former Mill A MTCA Support Sample Collection

Everett, Washington

Page 2 of 2

	Target Coo	ordinates1				Sample	Location	Estimated Mudline	Bathymetry
Station	Northing	Easting	Station Type	Date	Time	Northing	Easting	(feet MLLW) ²	Mudline (feet MLLW)
Grab Sample	es			-					
ST-22	358033	1298433	Type 2	5/16/2007	10:31	358032	1298432		-0.021
ST-23	358033	1298229	Type 2	5/16/2007	10:16	358031	1298232		-9.321
ST-24	358210	1298127	Type 2	5/15/2007	9:16	358212	1298126		-43.377
ST-24 D	358210	1298127	Type 2	5/15/2007	9:52	358206	1298132		-43.305
ST-25	358210	1298331	Type 2	5/16/2007	10:01	358204	1298322		-27.36
ST-26	358386	1298229	Type 2	5/16/2007	9:50	358390	1298222		-48.032
ST-27	358386	1298433	Type 2	5/16/2007	9:30	358389	1298436		-40.616
ST-28	358563	1298331	Type 2	5/16/2007	9:08	358562	1298329		-60.4
ST-29	358563	1298535	Type 3	5/15/2007	10:35	358564	1298542		-45.468
ST-30	358739	1298433	Type 2	5/15/2007	10:09	358740	1298433		-67.719
ST-31	358739	1298637	Type 2	5/16/2007	10:50	358756	1298591		-56.617
ST-32	358915	1298739	Type 3	5/15/2007	11:05	358917	1298739		-55.06
ST-33	359122	1298793	Type 2	5/15/2007	15:26	359125	1298799		-60.958
ST-34	359247	1298988	Type 3	5/15/2007	11:27	359249	1298992		-50.529
ST-35	359268	1299146	Type 2	5/15/2007	15:07	359266	1299143		-35.336
ST-36	359445	1299044	Type 2	5/15/2007	14:52	359448	1299041		-57.328
ST-37	359445	1299248	Type 3	5/15/2007	11:47	359444	1299244		-36.781
ST-38	359445	1299452	Type 2	5/15/2007	14:31	359444	1299454		-17.329
ST-39	359579	1299208		5/15/2007	13:13	359581	1299205		-49.804
ST-40	359621	1299350	Type 2	5/15/2007	14:12	359623	1299345		-36.206
ST-41	359798	1299248	Type 2	5/15/2007	13:53	359799	1299242		-55.522
ST-42	359798	1299452	Type 3	5/15/2007	13:33	359799	1299449		-37.769

1. *Station added in field.

2. Mudline elevation in feet relative to mean lower low water (MLLW).

CHEMISTRY RESULTS EXPRESSED AS DRY WEIGHTS¹

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.	1311	600003	38 13	31160	00004	13116	00006	131	60000	007	13116	00002	29	13116	0000	19	1311600	0010	13116	000021	13116	000023	131	16000	013	13116	00003	7 13	311600	0014	131160	00015
Station ID.	5	ST-2		ST	-3	ST	-3		ST-5		S	Г-8		S	Г-9		ST-1	1	ST	-14	ST	-14	5	ST-15		ST	-17		ST-2	20	ST-	20
Sample Depth (Feet BML)	5.0	to 6.0 f	t 3	3.5 to	6.2 ft	14.0 to	15.9 f	t 0.9	to 2.5	ft	7.3 to	10.5	ft	10.1 to	12.0	ft	0 to 6.2	2 ft	3.4 to	3.6 ft	9.4 to	10.5 ft	0.8	to 2.2	2 ft	5.9 to	7.1 ft	t 9.	9 to 11	1.2 ft	14.0 to 1	15.5 ft
Soil Unit	Sa	wdust		Sawe	dust	Wood	Chips	Wo	od Ch	ips	Sav	vdust		Saw	vdust		Sawdı	ust	Saw	dust	Saw	dust	S	awdus	st	Sav	dust		Sawd	ust	Sawd	lust
Chemical Parameter	Value	Q1 ² (22 ² Val	lue Q	Q1 Q2	Value	Q1 Q2	2 Valu	e Q1	Q2	Value	Q1 (Q2	Value	Q1	Q2	Value Q	1 Q2	Value	Q1 Q2	Value	Q1 Q2	Valu	e Q1	Q2	Value	Q1 Q	2 Va	lue Q	1 Q2	Value ()1 Q2
Conventionals (Percent)																																
Total Organic Carbon	6.11			46.9		9.21					24.1						18.9		44		14.4							3	30.8		25.1	
Total Solids	29.1		2	25.3		42.3					25.9						28.6		17.8		23.2								20		22	
Metals (mg/kg dry weight)	-				-																											
Antimony																																
Arsenic																																
Cadmium																																
Chromium																																
Copper																																
Lead																																
Mercury																																
Nickel																																
Silver																																
Selenium																																
Zinc																																
Nonionizable Organic Compounds																																
Aromatic Hydrocarbons																																
(µg/kg dry weight)																																
Total LPAH	11,800	J	2,2	200		35,100					5,060]	I				137,000		3,300		3,160							1.	830		2,530	J
Naphthalene	3,500			400		4,100					3,400						43,000		2,700		2,200								100		1,400	
Acenaphthylene	88	-		170		79					190						290		48		43								52		56	-
Acenaphthene	2,400			130		5,400					280						22,000		150		350								150		260	J
Fluorene	1,500			120		6,000					260						17,000		110		190								130		240	
Phenanthrene	3,300			330		17,000					760	J	ſ				44,000		250		310								310		460	
Anthracene	1,000			49		2,500					170						11,000		38		71								83		110	
2-Methylnaphthalene	1,100			150		3,000					320		r İ				13,000		200		330		1						130		210	+
Total HPAH	8,790			648		14,600					1,450		ſ				90,200		599		665		1						871		1,190	J
Fluoranthene	3,000			580		7,600					930						36,000		330		220								210		230	
Pyrene	1,700			68		4,200					430						21,000		170		150								190		150	I
Benz[a]anthracene	870			24 U	J	770					37]	ſ				8,600		14		51								77		120	I
Chrysene	1,100			24 U	J	800					48]	_				8,600	+	34		74		1	+					120		120	-J
Benzo[b]fluoranthene	600			24 U		340						UI					4,400		21		48		1	+					64		120	J
Benzo[k]fluoranthene	570			24 U		310					28						4,400	+	19		41		1	+					66		130	Ť
Total benzofluoranthenes	1,170			24 U		650					28						8,800		40		89		1	+					130		250	J
Benzo[a]pyrene	560			24 U	J	260		1			28		UJ				3,900		11		38		+						64		120	- <u>I</u>
Indeno[1,2,3-c,d]pyrene	180	-		24 U		120					28						1,500		9.6	U	22		1	+					37		57	-
Dibenzo[a,h]anthracene	62			24 U	J	43					28						390		9.6		6.2	U	1	+					9.8		15	1
Benzo[g,h,i]perylene	150			24 U		140						UU					1,400		9.6		21	<u> </u>	1	+					33		59	
Denzole, in the field	150	I I		2- T C		1-0					20		05		1		1,400		7.0		21		1		I		I		55	1	57	

Page 1 of 6

CHEMISTRY RESULTS EXPRESSED AS DRY WEIGHTS¹

Former Mill A MTCA Support Sample Collection Everett, Washington

Somela ID No	1311	60000	120	131160	00004	1311		<u>)))(</u>	1211	500000	7	13116000	020	13116	0000	10	13116000	010	13116000021	13116000	172	131160000	12	13116000	027	1311600	00014	12116	Page 2
Sample ID No. Station ID.		50000 ST-2	130	131100 ST-			<u>т-3</u>	000		<u>т-5</u>	,,]	ST-8	029		оооол Г-9	19	13110000 ST-11		ST-14	13110000 ST-14	JZ3	131100000 ST-15	,15	13110000 ST-17		1311000 ST-2			-20
Sample Depth (Feet BML)		51-2 to 6.0	£4	3.5 to 6		14.0 t		0.64		<u>1-5</u> o 2.5 f	* '	51-8 7.3 to 10.	5 f4	10.1 to		£4	0 to 6.2		3.4 to 3.6 ft	9.4 to 10.5	. £ 4	0.8 to 2.2	f4	5.9 to 7.1		9.9 to 1		14.0 to	
Sample Depth (Feet BML) Soil Unit		wdus		<u> </u>		14.0 t Woo				<u>o 2.5 1</u> d Chip		<u>7.5 to 10.</u> Sawdu			dust		Sawdus		Sawdust	9.4 to 10.		Sawdust		5.9 to 7.1		9.9 to 1		14.0 to Saw	
	58	waus	ι	Sawu	lusi	VV 00	u Ch	ips	W 00	u Cinț	5	Sawuu	si T	Saw	aust		Sawuu	si	Sawuust	Sawuus	ι	Sawuus	ι	Sawuu	5L	Sawu	usi	Saw	ausi
	Value	Q12	Q2 ²	Value Q	1 Q2	Value	Q1	Q2	Value	Q1 (Q2 V	alue Q1	Q2	Value	Q1	Q2	Value Q1	Q2	Value Q1 Q2	Value Q1	Q2	Value Q1	Q2	Value Q1	Q2	Value Q	Q1 Q2	Value	Q1 Q2
Chlorinated Benzenes			- 1		-	1				1 1	-		1	1				1	· · · · · · · · · · · · · · · · · · ·						1			T	
1,2-Dichlorobenzene	6.1			24 U		6.2							UJ		\square		6.1 U		9.6 U	6.2 U						6.1 U		6.2	
1,4-Dichlorobenzene	6.1		UJ	24 U		6.2						28 U	UJ		\square		6.1 U		9.6 U	6.2 U						6.1 U		6.2	
1,2,4-Trichlorobenzene	6.1		UJ	24 U		6.2		UJ				28 U	UJ		\square		7.4	J	9.6 U	6.2 U						6.1 U		6.2	
Hexachlorobenzene	6.1	U	UJ	24 U		6.2	U					28 U	UJ				14	J	9.6 U	6.2 U						6.1 U	J	6.2	U UJ
Phthalate Esters	1													1															
Dimethyl phthalate	6.1			24 U		6.2						28 U	UJ				6.1 U		9.6 U	6.2 U						6.1 U			U UJ
Diethyl phthalate	6.7		U	24 U		6.2						28 U	UJ				12 B	U	9.6 U	8.6 B	U					17 B		7.4	
Di-n-butyl phthalate	6.1		UJ	90 B	J	520						270 B			\square		110 B	J	45 B U	=	U					7.3 B	U	48	B UJ
Butyl benzyl phthalate	6.1	-		390		6.2						650					6.1		58 B	6.2 U						180		9.9	J
Bis[2-ethylhexyl] phthalate	10	В	U	36 B		9.9		U				37 B	J				37 B	J	22 B U	18 B	U					26 B		12	
Di-n-octyl phthalate	6.7			24 U		6.2	U					28 U	UJ				6.1 U		9.6 U	6.2 U						6.1 U	J	6.2	U UJ
Miscellaneous																													
Dibenzofuran	1,100			170		4,800						240					13,000		410	240						300		250	
Hexachlorobutadiene	6.1		UJ	24 U		6.2		UJ					UJ				8.6	J	9.6 U	6.2 U						6.1 U	J	6.2	
N-Nitrosodiphenylamine	42	Y	UJY	24 U		71	Y	UY				28 U	UJ				180 Y	UJY	7 9.6 U	6.2 U						6.1 U	J	6.2	U UJ
Ionizable Organic Compounds																													
(µg/kg dry weight)																													
Phenol	15	В	UJ	150 B		31	В	U				85 B					260 B		62 B J	37 B	J					90 B		33	B J
2-Methylphenol	180			44		23						62					120		290	240						200		170	
4-Methylphenol	470			2,600		300					~ ~ ~	3,700					480		2600	830						1,100		1,200	
2,4-Dimethylphenol	170		J	34		42		J				110					800		250	240						95		87	
Pentachlorophenol	30	U		120 U		31	U					140 U					31 U		48 U	31 U						330		31	U
Benzyl alcohol	30	U	UJ	120 U	UJ	510		J				140 U	UJ				170	J	82 J	31 U	UJ					170	J	88	J
Benzoic acid	61	U	UJ	600	J	62	U	J				530	J				680 E	J	110 J	69	J					61 U	U UJ	62	U UJ
Pesticides/PCBs																													
Aroclor 1016																													
Aroclor 1221																													
Aroclor 1232																													
Aroclor 1242																													
Aroclor 1248																													
Aroclor 1254						1							1												1				
Aroclor 1260						1							1												1				
Total PCBs						1							1						1 1						1				
4,4'-DDD						1							1												1				
4,4'-DDE						1							1																
4,4'-DDT						1							1												1				
Total DDT						1							1	1											1			1 1	

Page 2 of 6

CHEMISTRY RESULTS EXPRESSED AS DRY WEIGHTS¹

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.	1311	60000	38	1311	60000	04	131160	0000	06 11	3116	00007	131	16000	020	1311	50000	10	1311600	0010	13116	000021	131160	00023	1311600	0013	13116	6000037	131	160000	11	13116(000015
Station ID.	-	5T-2	50	-	5T-3	V 1	ST		00 1.	<u>5110</u> ST		151	ST-8		-	50000 T-9	/19	1311000 ST-1			<u>-14</u>	ST		1311000 ST-1			<u>г-17</u>	-	ST-20	/14		-20
Sample Depth (Feet BML)		to 6.0	ft		to 6.2	ft	14.0 to) ft (2.5 ft	73	to 10.		10.1 t		0 ft	0 to 6.			• 3.6 ft	9.4 to		0.8 to 2			o 7.1 ft		to 11.2	ft		15.5 ft
Soil Unit		wdust			wdust		Wood				Chips		awdu		-	wdus		Sawd			vdust	Saw		Sawd		-	wdust		awdus			vdust
	Da	wuusi	L I	Da	l					<u>, oou</u>	Cinps		<u>a uu</u>		54	luus		Bawa	ust	Bav	uust	Jaw	uusi	Bawa	usi	Da	uust		uwuus	L	Da ii	uust
Chemical Parameter	Value	Q1 ²	$Q2^2$	Value	Q1	Q2	Value	Q1	Q2 Va	lue	Q1 Q2	2 Valu	e Q1	Q2	Value	Q1	Q2	Value Q	01 Q2	Value	Q1 Q2	Value	Q1 Q2	Value Q	1 Q2	Value	Q1 Q2	2 Valu	e Q1	Q2	alue	Q1 Q2
Pesticides/PCBs (continued)																																
Aldrin																																
Alpha-Chlordane																																
Dieldrin																																
Heptachlor																																
Gamma-BHC (Lindane)																																
Dioxins/Furans (pg/g dry weight)																																
2,3,7,8-TCDD (TEF = 1)									0.	967					5.8	5								2.72		18.6						
2,3,7,8-TCDF (TEF = 0.1)										105	F				25.	2 F								50.2 F		87.4	F					
1,2,3,7,8-PeCDD (TEF = 1)]	1.57	J J				11.	9								5.22		46.4						
1,2,3,7,8-PeCDF (TEF = 0.03)										3.01					10.	6								7.31		37						
2,3,4,7,8-PeCDF (TEF = 0.3)										3.51					12.									8.76		33.3						
1,2,3,4,7,8-HxCDD (TEF = 0.1)										2.57					20.	_								13.6		64.8						
1,2,3,6,7,8-HxCDD (TEF = 0.1)									4	5.85					23.	-								33.1		79						
1,2,3,7,8,9-HxCDD (TEF = 0.1)										3.21					19.									17.8		63.8						
1,2,3,4,7,8-HxCDF (TEF = 0.1)									2	4.29					6.8	9								10.2		23.6						
1,2,3,6,7,8-HxCDF (TEF = 0.1)									2	2.49					7.5	-								5.34		22.8						
1,2,3,7,8,9-HxCDF (TEF = 0.1)										781	J J				2.5									3.57		7.36						
2,3,4,6,7,8-HxCDF (TEF = 0.1)										2.75					8.7									6.2		25.9						
1,2,3,4,6,7,8-HpCDD (TEF = 0.01)										91.8					15									799		500						
1,2,3,4,6,7,8-HpCDF (TEF = 0.01)										43.8					16.	_								58.5		74						
1,2,3,4,7,8,9-HpCDF (TEF = 0.01)										1.74	J J				2.4		J							3.42		8.95						
OCDD (TEF = 0.0003)										552					13	_								8,930		592						
OCDF (TEF = 0.0003)									(58.3					5.5	9								103		61.3						

Page 3 of 6

CHEMISTRY RESULTS EXPRESSED AS DRY WEIGHTS¹

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.	131160	00027	13116000	100	13116000	101	13116000	0103	131160001	02	1311600	0104	1311600	0105	13116000025	13116000106	13116000	0107	131160000)33	13116000	108	131160	00031
Station ID.	ST-	21	ST-24		ST-24	D	ST-29)	ST-30		ST-32	2	ST-3	4	ST-34	ST-37	ST-39	9	ST-39		ST-42		ST-	43
Sample Depth (Feet BML)	9.1 to 1	1.2 ft	0 to 0.3	ft	0 to 0.3	ft	0 to 0.3	ft	0 to 0.3 f	ť	0 to 0.3	3 ft	0 to 0.	3 ft	0 to 2.8 ft	0 to 0.3 ft	0 to 0.3	3 ft	0 to 4.0 f	ît	0 to 0.3	ft	5.7 to 7	/.2 ft
Soil Unit	Rafting	Debris	Recent	t	Recen	t	Recen	t	Recent		Recen	nt	Recei	nt	Recent	Recent	Recen	nt	Recent		Recent	t	Sawd	ust
										~ •														
Chemical Parameter	Value	Q1 Q2	Value Q1	Q2	Value Q1	Q2	Value Q1	Q2	Value Q1	Q2	Value Q1	Q2	Value Q	1 Q2	Value Q1 Q2	Value Q1 Q2	2 Value Q1	1 Q2	Value Q1	Q2	Value Q1	Q2	Value	<u>21 Q2</u>
Conventionals (Percent)	<u> </u>			, ,		-	<u> </u>	-	T			-		-				_						
Total Organic Carbon	17.1		1.45		1.14		1.26		2.14		1.74	_	2.05		3.93	3.27	1.69		5.47		0.8		15.9	
Total Solids	43.2		62.6		64		53.5		44.6		45.6		47.1		43.5	49.8	53.1		41.5		71.6		25.9	
Metals (mg/kg dry weight)	, ,			, ,		-	<u> </u>	-	<u> </u>			-	<u>г г</u>	-		1 1 1		_	r					
Antimony			7 U	R	7 U	R	9 U	R		R	10 U	R	10 U	R	10 U R	10 U R	9 U			R		R		
Arsenic			7 U		7 U		9 U		10		10		10		40 J	10 U	9 U		10		6 U			
Cadmium			0.3 U		0.3 U		0.7		0.7		0.8		0.8		1.5	0.6	0.6		2.1		0.2 U			
Chromium			32.7		33.3		42.2		51		44		39		49	29	34.2		60		22.8			
Copper			23.1		22.1		44.3		47.3		46.8		41.3		104	30.3	28.2		84.3		12.4			
Lead			9		9		21		16		17		19		55	13	13		55		3			
Mercury			0.06	J	0.05 U	UJ	0.09	J	0.1	J	0.15	J	0.14	J	0.37 R	0.08 J	0.11	J	0.3	R		UJ		
Nickel			30		31		38		44		39		35		45	27	33		67		23			
Silver			0.4 U		0.4 U		0.6 U		0.6 U		0.6 U		0.6 U		0.6 U	0.6 U	0.6 U		0.8 U		0.4 U			
Selenium			0.3 U		0.3 U		0.4 U		0.4 U		0.5		0.5		0.8 J	0.4 U	0.5		0.6		0.2 U			
Zinc			56		50		163		94		98		106		341 J	76	67		127		34			
Nonionizable Organic Compounds																								
Aromatic Hydrocarbons																								
(µg/kg dry weight)																								
Total LPAH	2,740		193		104		682		240		471		685		3,720 J	621	397		1,750		67		581,000	
Naphthalene	850		29		20 U		78		37		58		100		630	100	84		570		27		14,000	
Acenaphthylene	67		20 U		20 U		28		20 U		20		20		34	26	20 U		44		20 U		210	
Acenaphthene	340		20		20 U		73		26		57		100		570 J	74	44		180		20 U		15,000	
Fluorene	360		20 U		20 U		73		24		48		81		500	61	44		240		20 U		52,000	
Phenanthrene	850		110		76		310		110		210		300		1,700	260	150		510		40		90,000	
Anthracene	270		34		28		120		43		78		84		290	100	75		210		20 U		410,000	
2-Methylnaphthalene	210		20 U		20 U		35		20 U		22		43		290	36	23		160		20 U		8,700	+
Total HPAH	4,480		977	J	578	J	2,740	J	1,150	J	1,890	J	2,430	J	6,430 J	2,270 J	1,550	J	2,430		306	J	148,000	
Fluoranthene	1,200		330	J	170	J	840	-	320	-	510	-	810	-	2,400	690	440	-	840		110		76,000	
Pyrene	880		190	,	130		570		250	I	280	T	380	T	1,100 J	320 J	230		450		70		36,000	
Benz[a]anthracene	350		77		47	T	220	T	95	0	170	I	190	Ī	490	180 J	140	T	180		30	T	11,000	
Chrysene	560		120		88		360	Ī	160	I	280	I	330	T	740	340 J	240	I	320		43	T	17,000	
Benzo[b]fluoranthene	350		79		55		230	T	100	5	200	-	230	-	550	230	160	5	230		31	5	2,400	
Benzo[k]fluoranthene	300		62		45	1	180	J	98		150	+	160	+	420	180	120		200		20 U		2,400	-+
Total benzofluoranthenes	650		141		100	1	410	J	198		350	+	390	+	970	410	280		430		31		4,700	
Benzo[a]pyrene	370		65	┼╶┤	43	+	170	J	77		140	+	160	+	440	160	120		150	┝──┨	22	╞─┤	1900	+
Indeno[1,2,3-c,d]pyrene	200		27	┼╶┤	20 U	+	78	5	31		79	+	74	+	130	81	30		31	┝──┨	20 U	╞─┤	480	+
Dibenzo[a,h]anthracene	41		20 U	╞╴┤	20 U			UJ			20 U	+	20 U	+	27	20 U	20 U		20 U		20 U	╞╴┤	170	+
Benzo[g,h,i]perylene	230		20 0	┥┥	20 U	+	91	05	20 0		84	+	91	+	130 J	91	71		31		20 U		360	-+-
Denzolg,ii,i]perytene	250		21		20 0	1	21		23		04		71		150 J	21	/1		51		2010		500	

Page 4 of 6

CHEMISTRY RESULTS EXPRESSED AS DRY WEIGHTS¹

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.	13116000027	13116000100	13116000101	13116000103	13116000102	13116000104	13116000105	13116000025	13116000106	13116000107	13116000033	13116000108	13116000031
Station ID.	ST-21	ST-24	ST-24D	ST-29	ST-30	ST-32	ST-34	ST-34	ST-37	ST-39	ST-39	ST-42	ST-43
Sample Depth (Feet BML)	9.1 to 11.2 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 2.8 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 4.0 ft	0 to 0.3 ft	5.7 to 7.2 ft
Soil Unit	Rafting Debris	Recent	Sawdust										
Chemical Parameter	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2
Chlorinated Benzenes													
1,2-Dichlorobenzene	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	96
1,4-Dichlorobenzene	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20
1,2,4-Trichlorobenzene	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	6.2 U
Hexachlorobenzene	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	6.2 U UJ
Phthalate Esters													
Dimethyl phthalate	6.2 U	20 U UJ	65 J	20 U	6.2 U								
Diethyl phthalate	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	9.9 B U
Di-n-butyl phthalate	63 B J	20 U	68 M N	20 U	20 U	47 M N	20 U	210 B J					
Butyl benzyl phthalate	140	20 U UJ	20 U	20 U UJ	20 U UJ	20 U	20 U UJ	290					
Bis[2-ethylhexyl] phthalate	30 B U	44 J	20 U UJ	48 J	30 J	36 J	38 J	130	33 J	34 J	88	20 U UJ	110 B
Di-n-octyl phthalate	7.4	20 U UJ	20 U	20 U UJ	20 U UJ	20 U	20 U UJ	6.2 U					
Miscellaneous													
Dibenzofuran	240	20 U	20 U	62	25	47	81	460	62	37	180	20 U	17,000
Hexachlorobutadiene	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	6.2 U
N-Nitrosodiphenylamine	6.2 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	1,000 Y UY
Ionizable Organic Compounds													
(µg/kg dry weight)													
Phenol	45 B J	20 U	20 U	22	20 U	20 U	23	20 U	25	20 U	25	20 U	37 B J
2-Methylphenol	11	20 U	120										
4-Methylphenol	550	24	20 U	41	20 U	26	42	540	91	46	530	20 U	920
2,4-Dimethylphenol	48	20 U	20	20 U	410								
Pentachlorophenol	31 U	100 U	100 U	100 U	100 U	100 U	100 U	99 U	99 U	100 U	100 U	99 U	31 U
Benzyl alcohol	48 J	20 U	35 J										
Benzoic acid	64 J	200 U UJ	200 U	200 U UJ	200 U UJ	200 U	200 U UJ	86 J					
Pesticides/PCBs													
Aroclor 1016		16 U	9.9 U	16 U	17 U	17 U	16 U	16 U	16 U	16 U	17 U	16 U	
Aroclor 1221		16 U	9.9 U	16 U	17 U	17 U	16 U	16 U	16 U	16 U	17 U	16 U	
Aroclor 1232		16 U	9.9 U	33 Y UY	33 Y UY	17 U	16 U	16 U	16 U	16 U	17 U	16 U	
Aroclor 1242		16 U	9.9 U	16 U	17 U	17 U	16 U	16 U	16 U	16 U	17 U	16 U	
Aroclor 1248		16 U	9.9 U	16 U	17 U	17 U	25	16 U	16 U	16 U	21 Y UY	16 U	
Aroclor 1254		16 U	12	31	17 U	17 U	18	2500	36	16 U	57	16 U	
Aroclor 1260		16 U	9.9 U	26	17 U	17 U	24	2700	26	16 U	74	16 U	
Total PCBs		16 U	12	57	33 Y UY	17 U	67	5,200	62	16 U	131	16 U	
4,4'-DDD		4 U	3.9 U	3.9 U	3.9 U	3.9 U	4 U	2 U	2 U	3.9 U	2 U	1.9 U	
4,4'-DDE		4 U	3.9 U	3.9 U	3.9 U	3.9 U	4 U	2 U	2 U	3.9 U	2 U	1.9 U	
4,4'-DDT		4 U	3.9 U	3.9 U	3.9 U	3.9 U	4 U	2 U	2 U	3.9 U	2 U	1.9 U	
Total DDT		4 U	3.9 U	3.9 U	3.9 U	3.9 U	4 U	2 U	2 U	3.9 U	2 U	1.9 U	

Page 5 of 6

CHEMISTRY RESULTS EXPRESSED AS DRY WEIGHTS¹

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.	13116	000027	13116000100	13116000101	13116000103	13116000102	13116000104	13116000105	13116000025	13116000106	13116000107	13116000033	13116000108	13116000031
Station ID.	ST	-21	ST-24	ST-24D	ST-29	ST-30	ST-32	ST-34	ST-34	ST-37	ST-39	ST-39	ST-42	ST-43
Sample Depth (Feet BML)	9.1 to	11.2 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 2.8 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 4.0 ft	0 to 0.3 ft	5.7 to 7.2 ft
Soil Unit	Rafting	g Debris	s Recent	Recent	Recent	Recent	Recent	Recent	Recent	Recent	Recent	Recent	Recent	Sawdust
Chemical Parameter	Value	01 02	2 Value O1 O2	Value O1 O2	2 Value O1 O2	Value Q1 Q2								
Pesticides/PCBs (continued)														
Aldrin			2 U	1.9 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	2 U	0.99 U	0.97 U	
Alpha-Chlordane			2 U	1.9 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	2 U	0.99 U	0.97 U	
Dieldrin			4 U	3.9 U	3.9 U	3.9 U	3.9 U	4 U	2 U	2 U	3.9 U	2 U	1.9 U	
Heptachlor			2 U	1.9 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	2 U	0.99 U	0.97 U	
Gamma-BHC (Lindane)			2 U	1.9 U	2 U	2 U	2 U	2 U	2.5 Y UY	0.98 U	2 U	0.99 U	0.97 U	
Dioxins/Furans (pg/g dry weight)				•			•							
2,3,7,8-TCDD (TEF = 1)														
2,3,7,8-TCDF (TEF = 0.1)														
1,2,3,7,8-PeCDD (TEF = 1)														
1,2,3,7,8-PeCDF (TEF = 0.03)														
2,3,4,7,8-PeCDF (TEF = 0.3)														
1,2,3,4,7,8-HxCDD (TEF = 0.1)														
1,2,3,6,7,8-HxCDD (TEF = 0.1)														
1,2,3,7,8,9-HxCDD (TEF = 0.1)														
1,2,3,4,7,8-HxCDF (TEF = 0.1)														
1,2,3,6,7,8-HxCDF (TEF = 0.1)														
1,2,3,7,8,9-HxCDF (TEF = 0.1)														
2,3,4,6,7,8-HxCDF (TEF = 0.1)														
1,2,3,4,6,7,8-HpCDD (TEF = 0.01)														
1,2,3,4,6,7,8-HpCDF (TEF = 0.01)														
1,2,3,4,7,8,9-HpCDF (TEF = 0.01)														
OCDD (TEF = 0.0003)														
OCDF (TEF = 0.0003)														

1. Abbreviations:

BML = Below mudline.

HPAH = High-molecular-weight polycyclic aromatic hydrocarbons.

LPAH = Low-molecular-weight polycyclic aromatic hydrocarbons.

mg/kg = milligrams per kilogram.

PCBs = Polychlorinated biphenyls.

 $pg/g = Picograms (10^{-12} gram) per gram.$

TEF = Toxicity equivalency factors.

2. Qualifiers:

Q1 = Lab data qualifier.

Q2 = Data validation qualifier.

B = Blank contamination.

E = Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

F = Analyte confirmation on secondary column.

J = The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample. M = Poor spectral match.

N = Analysis indicates presence of an analyte for which there is presumptive evidence to make a tentative identification.

R = The sample result is rejected. The presence or absence of the analyte cannot be verified and the data are not usable.

U = The material was analyzed for, but was not detected above the level of the associated value.

Y = Elevated reporting limits.

Page 6 of 6

TABLE 3^{1,2}

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.						1311	6000()38	13116	000004	13116	000006	1311600	0007	13116	000029	13116	600001	9 13	1160	000010	13116	000021	13116	000023
Station ID.						5	ST-2		ST	Г-3	S'	Г-3	ST-5	5	S	Т-8		Т-9		ST-	-11	ST	-14	ST	[-14
Sample Depth (Feet BML)						5.0 1	to 6.0	ft	3.5 to	6.2 ft	14.0 to) 15.9 ft	0.9 to 2.	.5 ft	7.3 to	10.5 ft	10.1 to	o 12.0	ft () to 6	5.2 ft	3.4 to	3.6 ft	9.4 to	10.5 ft
Soil Unit	SI	MS		luivalent	PSDDA	Sa	wdus	t	Saw	dust	Wood	l Chips	Wood C	hips	Sav	vdust	Sav	vdust		Sawo	dust	Saw	dust	Sav	vdust
			SQS	CSL																					
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1 ³	$Q2^3$	Value	Q1 Q2	Value	Q1 Q2	Value Q1	Q2	Value	Q1 Q2	Value	Q1 (Q2 Valı	ie (Q1 Q2	Value	Q1 Q2	Value	Q1 Q2
Conventionals (Percent)		1										· · · · ·					1							_	
Total Organic Carbon						6.11			46.9		9.21				24.1				1	8.9		44		14.4	
Total Solids						29.1			25.3		42.3				25.9				2	28.6		17.8		23.2	, r
Metals (mg/kg dry weight)	mg/kg dry wt																								
Antimony	_				150																				
Arsenic	57	93	57	93				1																	
Cadmium	5.1	6.7	5.1	6.7				1																	
Chromium	260	270	260	270				1																	
Copper	390	390	390	390																					
Lead	450	530	450	530																					
Mercury	0.41	0.59	0.41	0.59																					
Nickel	_				140																				
Silver	6.1	6.1	6.1	6.1																					
Selenium					3																				
Zinc	410	960	410	960																					
Nonionizable Organic Compounds						-		-					• •							÷				-	
Aromatic Hydrocarbons	mg/kg carbon	mg/kg carbon	µg/kg dry wt	µg/kg dry wt	µg/kg dry wt	µg/kg dry wt			µg/kg dry wt		µg/kg dry wt				µg/kg dry wt				μg/ dry			µg/kg dry wt		µg/kg dry wt	
Total LPAH	370	780	5,200	5,200		11,800		J	2,200		35,100				5,060	J			137,	000		3,300		3,160	
Naphthalene	99	170	2,100	2,100		3,500			1,400		4,100				3,400				43,	000		2,700		2,200	
Acenaphthylene	66	66	1,300	1,300		88	;		170		79				190					290		48		43	
Acenaphthene	16	57	500	500		2,400		J	130		5,400				280				22,	000		150		350)
Fluorene	23	79	540	540		1,500			120		6,000				260				17,	000		110		190)
Phenanthrene	100	480	1,500	1,500		3,300			330		17,000				760	J			44,	000		250		310)
Anthracene	220	1,200	960	960		1,000			49		2,500				170				11,	000		38		71	
2-Methylnaphthalene	38	64	670	670		1,100			150		3,000				320	J			13,	000		200		330)
Total HPAH	960	5,300	12,000	17,000		8,790)	J	648		14,600				1,450	J			90,	200		599		665	
Fluoranthene	160	1,200	1,700	2,500		3,000			580		7,600				930				36,	000		330		220)
Pyrene	1,000	1,400	2,600	3,300		1,700)		68		4,200				430				21,	000		170		150)
Benz[a]anthracene	110	270	1,300	1,600		870			24		770				37	J			8,	600		14		51	
Chrysene	110	460	1,400	2,800		1,100)		24	U	800				48	J			8,	600		34		74	
Total benzofluoranthenes	230	450	3,200	3,600		1,170			24		650					U UJ			8,	800		40		89	
Benzo[a]pyrene	99	210	1,600	1,600		560)		24		260					U UJ			3,	900		11		38	
Indeno[1,2,3-c,d]pyrene	34	88	600	690		180)		24	U	120				28				1,	500		9.6	U	22	
Dibenzo[a,h]anthracene	12	33	230	230		62			24	U	43				28					<mark>390</mark>		9.6	U	6.2	
Benzo[g,h,i]perylene	31	78	670	720		150)	J	24	U	140				28	U UJ			1,	400		9.6	U	21	

Page 1 of 9

TABLE 3^{1,2}

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.						1311	60000	38	1311600	0004	131160	00006	13116000007	13116000	029 1	3116000019	0 13116000	010	131160000	021	13116000023
Station ID.						S	ST-2		ST-3	;	ST	-3	ST-5	ST-8		ST-9	ST-11		ST-14		ST-14
Sample Depth (Feet BML)						5.0 t	io 6.0	ft	3.5 to 6.	2 ft	14.0 to	15.9 ft	0.9 to 2.5 ft	7.3 to 10.	5 ft 1	0.1 to 12.0 f	t 0 to 6.2	ft	3.4 to 3.6	ft	9.4 to 10.5 ft
Soil Unit	SN	AS	DW Eq	uivalent	PSDDA	Sa	wdus	t	Sawdu	ıst	Wood	Chips	Wood Chips	Sawdus	st	Sawdust	Sawdu	st	Sawdus	st	Sawdust
			SQS	CSL																	
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1 ³	Q2 ³	Value Q1	l Q2	Value (Q1 Q2	Value Q1 Q2	Value Q1	Q2 Va	lue Q1 Q	2 Value Q1	Q2	Value Q1	Q2	Value Q1 Q2
Chlorinated Benzenes																					
1,2-Dichlorobenzene	2.3	2.3	35	50		6.1			24 U		6.2 U				UJ		6.1 U		9.6 U		6.2 U
1,4-Dichlorobenzene	3.1	9.0	110	110		6.1		UJ	24 U		6.2 U				UJ		6.1 U		9.6 U		6.2 U
1,2,4-Trichlorobenzene	0.81	1.8	31	51		6.1		UJ	24 U			J UJ			UJ		7.4	J	9.6 U		6.2 U
Hexachlorobenzene	0.38	2.3	22	70		6.1	U	UJ	<mark>24</mark> U		6.2 U	J		<mark>28</mark> U	UJ		14	J	9.6 U		6.2 U
Phthalate Esters																					
Dimethyl phthalate	53	53	71	160		6.1	U		24 U		6.2 U	J			UJ		6.1 U		9.6 U		6.2 U
Diethyl phthalate	61	110	200	1,200		6.7		U	24 U		6.2 U	J		28 U	UJ		12 B	U	9.6 U		8.6 B U
Di-n-butyl phthalate	220	1700	1,400	5,100		6.1	U	UJ	90 B	J	520 E			270 B			110 B	J	45 B	U	8.6 B U
Butyl benzyl phthalate	4.9	64	63	900		6.1	U		<mark>390</mark>		6.2 U	J		<u>650</u>			6.1		58 B		6.2 U
Bis[2-ethylhexyl] phthalate	47	78	1,300	3,100		10	В	U	36 B	J	9.9 E	3 U		37 B	J		37 B	J	22 B	U	18 B U
Di-n-octyl phthalate	58	4500	6,200	6,200		6.7			24 U		6.2 U	J		28 U	UJ		6.1 U		9.6 U		6.2 U
Miscellaneous																					
Dibenzofuran	15	58	540	540		1100			170		4800			240			13,000		410		240
Hexachlorobutadiene	3.9	6.2	11	120		6.1	U	UJ	24 U		6.2 U	J UJ			UJ		8.6	J	9.6 U		6.2 U
N-Nitrosodiphenylamine	11	11	28	40		42	Y	UJY	24 U		71	UY UY		28 U	UJ		180 Y	UJY	9.6 U		6.2 U
Ionizable Organic Compounds						µg/kg			µg/kg		µg/kg			µg/kg			µg/kg		µg/kg		µg/kg
(µg/kg dry wt)						dry wt			dry wt		dry wt			dry wt			dry wt		dry wt		dry wt
Phenol	420	1200	420	1,200		15	В	UJ	150 B		31 E	8 U		85 B			260 B		62 B	J	37 B J
2-Methylphenol	63	63	63	63		180			44		23			62			120		290		240
4-Methylphenol	670	670	670	670		470			2600		300			3700			480		2,600		830
2,4-Dimethylphenol	29	29	29	29		170		J	34		42	J		110			800		250		240
Pentachlorophenol	360	690	360	690		30	U		120 U		31 U	J		140 U			31 U		48 U		31 U
Benzyl alcohol	57	73	57	72		30	U	UJ	120 U	UJ	510	J		140 U	UJ		170	J	82	J	31 U UJ
Benzoic acid	650	650	650	650		61	U	UJ	600	J	62 U	J J		530	J		680 E	J	110	J	69 J
Pesticides/PCBs																					
Total PCBs	12	65	130	1,000																	
Total DDT					6.9																
Aldrin					10																
Alpha-Chlordane					10																
Dieldrin					10																
Heptachlor					10																
Gamma-BHC (Lindane)					10																

Page 2 of 9

TABLE 3^{1,2}

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection Everett, Washington

Sample ID No.						1311	60000)38	1311	60000)04	131160)0006	13116000	0007	131160	000029	13116	000019	1311	60000	010	13110	50000	21	13116	000023		
Station ID.						S	5 T-2		S	5 T-3		ST-	3	ST-5		ST	-8	S	Г-9	S	T-11		S	Г-14		ST	-14		
Sample Depth (Feet BML)						5.0 to 6.0 ft			3.5 to 6.2 ft			14.0 to 15.9 ft		0.9 to 2.5 ft		7.3 to 10.5 ft		10.1 to 12.0 ft		: 0 t	0 to 6.2 ft			3.4 to 3.6 ft			9.4 to 10.5 ft		
Soil Unit	SMS		DW Equivalent		PSDDA	Sa	awdust		Sawdust		t	Wood Chips		Wood Chips		Sawdust		Sawdust		Sa	Sawdust		Sawdust		t	Sawdust			
			SQS																										
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1 ³	Q2 ³	Value	Q1	Q2	Value Q	1 Q2	Value Q1	Q2	Value	Q1 Q2	Value	Q1 Q	2 Value	Q1	Q2	Value	Q1	Q2	Value	Q1 Q2		
Dioxins/Furans (pg/g dry weight)	TEF																												
2,3,7,8-TCDD (TEF = 1)	1				5									0.97				5.85											
2,3,7,8-TCDF (TEF = 0.1)	0.1													105 F				25.2	F										
1,2,3,7,8-PeCDD (TEF = 1)	1													1.57 J	J			11.9											
1,2,3,7,8-PeCDF (TEF = 0.03)	0.03													3.01				10.6											
2,3,4,7,8-PeCDF (TEF = 0.3)	0.3													3.51				12.9											
1,2,3,4,7,8-HxCDD (TEF = 0.1)	0.1													2.57				20.8											
1,2,3,6,7,8-HxCDD (TEF = 0.1)	0.1													5.85				23.6											
1,2,3,7,8,9-HxCDD (TEF = 0.1)	0.1													3.21				19.5											
1,2,3,4,7,8-HxCDF (TEF = 0.1)	0.1													4.29				6.89											
1,2,3,6,7,8-HxCDF (TEF = 0.1)	0.1													2.49				7.59											
1,2,3,7,8,9-HxCDF (TEF = 0.1)	0.1													0.78 J	J			2.58											
2,3,4,6,7,8-HxCDF (TEF = 0.1)	0.1													2.75				8.78											
1,2,3,4,6,7,8-HpCDD (TEF = 0.01)	0.01													91.8				153											
1,2,3,4,6,7,8-HpCDF (TEF = 0.01)	0.01													43.8				16.7											
1,2,3,4,7,8,9-HpCDF (TEF = 0.01)	0.01													1.74 J	J			2.48	J J										
OCDD (TEF = 0.0003)	0.0003													552				138											
OCDF (TEF = 0.0003)	0.0003													68.3				5.59											
TEQ (1/2U)					15									17.9				35.197											

Page 3 of 9

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection

Everett, Washington

Sample ID No.						13116	50000	13	13116)0003	37	131160	00014	13116	000015	13116	000027	13116	000	100	13116000)101	13116	000103	
Station ID.						SI	Г-15		ST	-17		ST-2	20	ST	[-20	ST	-21	ST	-24		ST-24	D	ST	-29	
Sample Depth (Feet BML)						0.8 to	0 2.2	ft	5.9 to	7.1 ft	t	9.9 to 1	1.2 ft	14.0 to) 15.5 ft	9.1 to	11.2 ft	0 to	0.3 i	ft	0 to 0.3	ft	0 to	0.3 ft	
Soil Unit	SI	MS		quivalent	PSDDA	Sav	vdus	t	Saw	dust		Sawd	lust	Sav	vdust	Rafting	g Debri	s Rec	cent	ţ	Recen	t	Ree	cent	
			SQS	CSL																					
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1	Q2	Value	Q1 (Q2 V	alue Q	Q1 Q2	Value	Q1 Q2	Value	Q1 Q2	2 Value	Q1	Q2	Value Q	1 Q2	Value	Q1 Q2	1
Conventionals (Percent)	1	1	1	1	1	1								_	· · · · ·			- 1	-						_
Total Organic Carbon												30.8		25.1		17.1		1.45			1.14		1.26		_
Total Solids												20		22		43.2		62.6			64		53.5		_
Metals (mg/kg dry weight)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg																				
	dry wt		_																_		_				
Antimony					150		_													R	7 U	R		U R	_
Arsenic	57	93	57	93															U		7 U			U	_
Cadmium	5.1	6.7	5.1	6.7														0.3	U	_	0.3 U		0.7		_
Chromium	260	270	260	270			_											32.7		_	33.3	_	42.2		_
Copper	390	390	390	390			_											23.1			22.1		44.3		_
Lead	450	530	450	530														9		-	9		21		_
Mercury	0.41	0.59	0.41	0.59	4.40													0.06		J	0.05 U	UJ	0.09	J	_
Nickel	—	—	—	—	140		_											30			31		38		_
Silver	6.1	6.1	6.1	6.1	-		_											0.4	-		0.4 U		0.6		_
Selenium			—		3		_											0.3			0.3 U		0.4	U	_
Zinc	410	960	410	960														56			50		163		_
Nonionizable Organic Compounds				-	_	-							-						_				-		
Aromatic Hydrocarbons	mg/kg carbon	mg/kg carbon	µg/kg dry wt	µg/kg dry wt	µg/kg dry wt							ug/kg lry wt		μg/kg dry wt		µg/kg dry wt		mg/kg carbon			mg/kg carbon		mg/kg carbon		
Total LPAH	370	780	5,200	5,200	ary we							1,830		2,530	J	2,740		13			9		54		
Naphthalene	99	170	2,100	2,100								1,100		1,400		850		2			2 U		6		
Acenaphthylene	66	66	1,300	1,300								52		56		67		1	U		2 U		2		
Acenaphthene	16	57	500	500								150		260	J	340		1	-		2 U		6		
Fluorene	23	79	540	540								130		240		360		1	U		2 U		6		
Phenanthrene	100	480	1,500	1,500								310		460		850		8	-		7		25		
Anthracene	220	1,200	960	960								83		110		270		2			2		10		
2-Methylnaphthalene	38	64	670	670								130		210		210		1	U		2 U		3		
Total HPAH	960	5,300	12,000	17,000								871		1,190	J	4,480		67	-	J	51	J	217	J	
Fluoranthene	160	1,200	1,700	2,500								210		230		1,200		23		J	15	J	67	l l	
Pyrene	1,000	1,400	2,600	3,300		1	1					190		150	J	880		13			11		45		1
Benz[a]anthracene	110	270	1,300	1,600								77		120		350		5			4	J	17	J	
Chrysene	110	460	1,400	2,800			1					120		190	J	560		8	_		8		29	J	1
Total benzofluoranthenes	230	450	3,200	3,600			1					130		250	J	650		10	-		9		33		1
Benzo[a]pyrene	99	210	1,600	1,600								64		120	J	370		4			4		13		1
Indeno[1,2,3-c,d]pyrene	34	88	600	690			1					37		57		200		2			2 U		6		1
Dibenzo[a,h]anthracene	12	33	230	230			1					9.8		15	J	41			U		2 U		2	U UJ	1
Benzo[g,h,i]perylene	31	78	670	720		1	1					33		59		230		2			2 U		7		1

Page	4	of	9
------	---	----	---

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection

Everett, Washington

Sample ID No.						13116		3	131160		1311600		13116				13116000	100	1311600010	1 1	3116000103
Station ID.						ST	-15		ST-	17	ST-2	-		-20	ST-2	21	ST-24		ST-24D		ST-29
Sample Depth (Feet BML)						0.8 to	2.2 ft	;	5.9 to	7.1 ft	9.9 to 11	.2 ft	14.0 to	15.5 f	9.1 to 1	1.2 ft	0 to 0.3	ft	0 to 0.3 ft		0 to 0.3 ft
Soil Unit	SN	MS		luivalent	PSDDA	Saw	dust		Sawo	dust	Sawdı	ıst	Saw	dust	Rafting	Debris	Recent	;	Recent		Recent
			SQS	CSL																	
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1 (Q2	Value	Q1 Q2	Value Q	1 Q2	Value	Q1 Q2	2 Value Q	01 Q2	Value Q1	Q2	Value Q1	Q2 Va	lue Q1 Q
Chlorinated Benzenes					r.							_	<u>.</u>								
1,2-Dichlorobenzene	2.3	2.3	35	50							6.1 U			U UJ			1.4 U		1.8 U		1.6 U
1,4-Dichlorobenzene	3.1	9.0	110	110							6.1 U		6.2				1.4 U		1.8 U		1.6 U
1,2,4-Trichlorobenzene	0.81	1.8	31	51							6.1 U		6.2				1.4 U		1.8 U		<mark>1.6</mark> U
Hexachlorobenzene	0.38	2.3	22	70							6.1 U		6.2	U UJ	6.2 U	ſ	1.4 U		1.8 U		1.6 U
Phthalate Esters																					
Dimethyl phthalate	53	53	71	160							6.1 U		6.2				1 U	UJ	6	J	2 U
Diethyl phthalate	61	110	200	1,200							17 B	U	7.4				1 U		2 U		2 U
Di-n-butyl phthalate	220	1700	1,400	5,100							7.3 B	U	48	B UJ	63 B	J	1 U		2 U		2 U
Butyl benzyl phthalate	4.9	64	63	900							180		9.9	J	140		1.4 U	UJ	1.8 U	UJ	1.6 U U
Bis[2-ethylhexyl] phthalate	47	78	1,300	3,100							26 B	U	12	B UJ	30 B	U	3	J	2 U	UJ	4 J
Di-n-octyl phthalate	58	4500	6,200	6,200							6.1 U		6.2	U UJ	7.4		1 U	UJ	2 U	UJ	2 U U
Miscellaneous																					
Dibenzofuran	15	58	540	540							300		250		240		1 U		2 U		5
Hexachlorobutadiene	3.9	6.2	11	120							6.1 U		6.2	U UJ	6.2 U	ſ	1.4 U		1.8 U		1.6 U
N-Nitrosodiphenylamine	11	11	28	40							6.1 U		6.2	U UJ	6.2 U	ſ	1 U		2 U		2 U
Ionizable Organic Compounds											µg/kg		µg/kg		µg/kg		µg/kg		µg/kg	μ	g/kg
(µg/kg dry wt)											dry wt		dry wt		dry wt		dry wt		dry wt		ry wt
Phenol	420	1200	420	1,200							90 B		33	B J	45 B	J	20 U		20 U		22
2-Methylphenol	63	63	63	63							200		170		11		20 U		20 U		20 U
4-Methylphenol	670	670	670	670							1100		1200		550		24		20 U		41
2,4-Dimethylphenol	29	29	29	29							95		87		48		20 U		20 U		20 U
Pentachlorophenol	360	690	360	690							330		31	U	31 U	ſ	100 U		100 U		100 U
Benzyl alcohol	57	73	57	72							170	J	88	J	48	J	20 U		20 U		20 U
Benzoic acid	650	650	650	650							61 U	UJ	62	U UJ	64	J	200 U	UJ	200 U	UJ	200 U U
Pesticides/PCBs																					
Total PCBs	12	65	130	1,000													16 U		12		57
Total DDT					6.9												4 U		3.9 U		3.9 U
Aldrin					10												2 U		1.9 U		2 U
Alpha-Chlordane					10												2 U		1.9 U		2 U
Dieldrin					10												4 U		3.9 U		3.9 U
Heptachlor					10												2 U		1.9 U		2 U
Gamma-BHC (Lindane)			l l		10												2 U		1.9 U		2 U

Page 5 of 9

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection

Everett, Washington

Sample ID No.						13116	50000	13	131160	00037	13116	6000014	13110	5000015	131	6000	027	13116	0001	00	13116	000101	13116	5000103
Station ID.						S	Г-15		ST-	17	ST	Г-20	S	Г-20	5	ST-21		ST	-24		ST	24D	ST	Г-29
Sample Depth (Feet BML)						0.8 t	o 2.2	ft	5.9 to	7.1 ft	9.9 to	11.2 ft	14.0 t	o 15.5 f	t 9.1	to 11.2	2 ft	0 to	0.3 f	ť	0 to	0.3 ft	0 to	0.3 ft
Soil Unit	SN	/IS	DW Eq	uivalent	PSDDA	Sav	wdust	;	Sawo	lust	Sav	vdust	Sav	wdust	Rafti	ng De	bris	Re	cent		Re	cent	Re	ecent
			SQS	CSL																				
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1	Q2	Value	Q1 Q	2 Value	Q1 Q2	Value	Q1 Q2	2 Valu	e Q1	Q2	Value	Q1	Q2	Value	Q1 Q2	2 Value	Q1 Q2
Dioxins/Furans (pg/g dry weight)	TEF																							
2,3,7,8-TCDD (TEF = 1)	1				5	2.72	2		18.6															
2,3,7,8-TCDF (TEF = 0.1)	0.1					50.2	2 F		87.4	F														
1,2,3,7,8-PeCDD (TEF = 1)	1					5.22	2		46.4															
1,2,3,7,8-PeCDF (TEF = 0.03)	0.03					7.31			37															
2,3,4,7,8-PeCDF (TEF = 0.3)	0.3					8.76	5		33.3															
1,2,3,4,7,8-HxCDD (TEF = 0.1)	0.1					13.6	5		64.8															
1,2,3,6,7,8-HxCDD (TEF = 0.1)	0.1					33.1			79															
1,2,3,7,8,9-HxCDD (TEF = 0.1)	0.1					17.8	3		63.8															
1,2,3,4,7,8-HxCDF (TEF = 0.1)	0.1					10.2	2		23.6															
1,2,3,6,7,8-HxCDF (TEF = 0.1)	0.1					5.34	ŀ		22.8															
1,2,3,7,8,9-HxCDF (TEF = 0.1)	0.1					3.57	7		7.36															
2,3,4,6,7,8-HxCDF (TEF = 0.1)	0.1					6.2	2		25.9															
1,2,3,4,6,7,8-HpCDD (TEF = 0.01)	0.01					799)		500															
1,2,3,4,6,7,8-HpCDF (TEF = 0.01)	0.01					58.5	5		74															
1,2,3,4,7,8,9-HpCDF (TEF = 0.01)	0.01					3.42	2		8.95				1				Ī							
OCDD (TEF = 0.0003)	0.0003					8,930)		592				1				Ī							
OCDF $(TEF = 0.0003)$	0.0003					103	3		61.3				1				Ī							
TEQ (½U)					15	36.107	7		119.59				1											

Page 6 of 9

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection

Everett, Washington

Sample ID No.						13116000	102	131160	0010)4 13	116000	105	1311600	0025	13116	000106	13116)001	07 1	13116000	033	13116	0001	08	131160	000031
Station ID.						ST-30		ST-	32		ST-34		ST-3	4	ST	-37	ST	-39		ST-39		ST	-42		ST-	-43
Sample Depth (Feet BML)						0 to 0.3	ft	0 to 0	.3 ft) to 0.3 t	ft	0 to 2.	8 ft	0 to	0.3 ft	0 to	0.3 ft	t	0 to 4.0	ft	0 to	0.3 f	ťt	5.7 to	7.2 ft
Soil Unit	SI	MS		uivalent	PSDDA	Recent	t	Rec	ent		Recent		Rece	nt	Rec	cent	Rec	ent		Recen	t	Re	cent		Saw	dust
Chemical Parameter	SQS	CSL	SQS (LAET	CSL (2LAET	ВТ	Value Q1	Q2	Value	Q1	Q2 Valu	ie Q1	Q2	Value Q	1 Q2	Value	Q1 Q	2 Value	Q1	Q2 V	alue Q1	Q2	Value	Q1	Q2	Value	Q1 Q2
Conventionals (Percent)	-		-			· · · · ·				<u> </u>	<u> </u>									<u> </u>						
Total Organic Carbon						2.14		1.74			2.05		3.93		3.27		1.69			5.47		0.8	-		15.9	
Total Solids						44.6		45.6			47.1		43.5		49.8		53.1			41.5		71.6			25.9	
Metals (mg/kg dry weight)	mg/kg dry wt																									
Antimony	_	_		_	150	10 U	R	10	U	R	10 U	R	10 U	R	10	U R	9	U	R	10 U	R	6	U	R		í T
Arsenic	57	93	57	93		10		10			10		40	J	10			U		10			U			
Cadmium	5.1	6.7	5.1	6.7		0.7		0.8			0.8		1.5		0.6		0.6			2.1		0.2			, — _ İ	í – † – –
Chromium	260	270	260	270		51		44			39		49		29		34.2			60		22.8				
Copper	390	390	390	390		47.3		46.8			41.3		104		30.3		28.2			84.3		12.4				
Lead	450	530	450	530		16		17			19		55		13		13			55		3			, <u> </u>	
Mercury	0.41	0.59	0.41	0.59		0.1	J	0.15		J	0.14	J	0.37	R	0.08	J	0.11		J	0.3	R	0.05	U	UJ		
Nickel	_			_	140	44		39			35		45		27		33			67		23				
Silver	6.1	6.1	6.1	6.1		0.6 U		0.6	U		0.6 U		0.6 U	ſ	0.6		0.6			0.8 U		0.4				
Selenium					3	0.4 U		0.5			0.5		0.8	J	0.4	U	0.5			0.6		0.2	U			
Zinc	410	960	410	960	1	94		98			106		341	J	76		67			127		34				i T
Nonionizable Organic Compounds	•	•	•		-		•		•	-	•	•			-		•			·			•	••		
Aromatic Hydrocarbons	mg/kg carbon	mg/kg carbon	µg/kg dry wt	µg/kg dry wt	µg/kg dry wt	mg/kg carbon		mg/kg carbon		mg carl			mg/kg carbon		mg/kg carbon		mg/kg carbon			.g/kg ry wt		mg/kg carbon			µg/kg dry wt	
Total LPAH	370	780	5,200	5,200	ury wi	11		27		Cal	33		95	T	19		23			1,750					581,000	
Naphthalene	99	170	2,100	2,100		2		27			5		16	J	3		5		1	570		3			14.000	
Acenaphthylene	66	66	1,300	1,300		1 U		1			1		10	_	1		5	U		44	+	3	U		210	
Acenaphthytene	16	57	500	500		10		3			5		15	T	2		3	•		180	┥		U		15,000	
Fluorene	23	79	540	540		1		3			1		13	J	2		3			240	+		U		52,000	
Phenanthrene	100	480	1,500	1,500		5		12		_	15		43		8		9			510		5	-		90,000	
Anthracene	220	1,200	960	960		2		12			4				3		4			210		5	U		410,000	
2-Methylnaphthalene	38	64	670	670		1 U		+			2		7		1		1			160	┥		U		8,700	
Total HPAH	960	5,300	12,000	17,000	1	54	T	109		T	119	T	164	T	69	Ι	92		I O	2,430	+	38		T	148.000	
Fluoranthene	160	1,200	12,000	2,500	1	15	5	29	- †	5	40	5	61	5	21		26		3 2	840	+	14		3	76 000	
Pyrene	1,000	1,200	2,600	3,300	1	13	T	16		T	19	T	28	T	10		14			450	+	9	-		36.000	
Benz[a]anthracene	1,000	270	1,300	1,600	1	12	5	10	-	r I	9	I	12	5	6		8		Ţ	180	+	4		T	11,000	
Chrysene	110	460	1,300	2,800		7	T	16	-	J I	16	I	12		10	, i i i i i i i i i i i i i i i i i i i	14		J	320		5		Ţ	17.000	
Total benzofluoranthenes	230	450	3,200	3,600		9	3	20			19	5	25		13		17			430		4	-		4,700	
Benzo[a]pyrene	99	210	1,600	1,600		4		20	-+		8		11		5		7			150		3			1.900	
Indeno[1,2,3-c,d]pyrene	34	88	600	690		1		5	-+		4		3		2		2			31		3	U		480	i — † —
Dibenzo[a,h]anthracene	12	33	230	230		1 U		1	U		1 U		1		1	U	-	U		20 U			U		170	
Benzo[g,h,i]perylene	31	78	670	720		1		5	-		4		3	T	3		1	~		31			U		360	

🚈 Geomatrix

Page 7 of 9

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection

Everett, Washington

Sample ID No.						131160	00102	131160001	04	131160001	05	13116000025	13116000106	13116000107	13116000033	13116000108	13116000031
Station ID.						ST-	30	ST-32		ST-34		ST-34	ST-37	ST-39	ST-39	ST-42	ST-43
Sample Depth (Feet BML)						0 to 0	.3 ft	0 to 0.3 f	t	0 to 0.3 f	t	0 to 2.8 ft	0 to 0.3 ft	0 to 0.3 ft	0 to 4.0 ft	0 to 0.3 ft	5.7 to 7.2 ft
Soil Unit	SN	MS	DW Eq	uivalent	PSDDA	Rec	ent	Recent		Recent		Recent	Recent	Recent	Recent	Recent	Sawdust
			SQS	CSL													
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1 Q2	Value Q1	Q2	Value Q1	Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2	Value Q1 Q2
Chlorinated Benzenes							-							· · · ·			
1,2-Dichlorobenzene	2.3	2.3	35	50		0.9		1.1 U		1.0 U		0.5 U	0.6 U	1.2 U	20 U	2.5 U	96
1,4-Dichlorobenzene	3.1	9.0	110	110		0.9	U	1.1 U		1.0 U		0.5 U	0.6 U	1.2 U	20 U	2.5 U	20
1,2,4-Trichlorobenzene	0.81	1.8	31	51		<mark>0.9</mark>	U	1.1 U		1.0 U		0.5 U	0.6 U	1.2 U	20 U	2.5 U	6.2 U
Hexachlorobenzene	0.38	2.3	22	70		<mark>0.9</mark>	U	1.1 U		1.0 U		0.5 U	<mark>0.6</mark> U	1.2 U	20 U	2.5 U	6.2 U UJ
Phthalate Esters																	
Dimethyl phthalate	53	53	71	160		1	U	1 U		1 U		1 U	1 U	1 U	20 U	3 U	6.2 U
Diethyl phthalate	61	110	200	1,200			U	1 U		1 U		1 U	1 U	1 U	20 U	3 U	9.9 B U
Di-n-butyl phthalate	220	1700	1,400	5,100		1	-	1 U		1 U		2 M N	1 U	1 U	47 M N	3 U	210 B J
Butyl benzyl phthalate	4.9	64	63	900		0.9	U UJ	1.1 U	UJ	1.0 U	UJ	0.5 U	0.6 U UJ	1.2 U UJ	20 U	2.5 U UJ	<u>290</u>
Bis[2-ethylhexyl] phthalate	47	78	1,300	3,100		1	J	2	J	2	J	3	1 J	2 J	88	3 U UJ	110 B
Di-n-octyl phthalate	58	4500	6,200	6,200		1	U UJ	1 U	UJ	1 U	UJ	1 U	1 U UJ	1 U UJ	20 U	3 U UJ	6.2 U
Miscellaneous																	
Dibenzofuran	15	58	540	540		1		3		4		12	2	2	180	3 U	17,000
Hexachlorobutadiene	3.9	6.2	11	120		0.9	U	1.1 U		1.0 U		0.5 U	0.6 U	1.2 U	20 U	2.5 U	6.2 U
N-Nitrosodiphenylamine	11	11	28	40		1	U	1 U		1 U		1 U	1 U	1 U	20 U	3 U	1,000 Y UY
Ionizable Organic Compounds						µg/kg		µg/kg		µg/kg		µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
(µg/kg dry wt)						dry wt		dry wt		dry wt		dry wt	dry wt	dry wt	dry wt	dry wt	dry wt
Phenol	420	1200	420	1,200		20		20 U		23		20 U	25	20 U	25	20 U	37 B J
2-Methylphenol	63	63	63	63		20		20 U		20 U		20 U	20 U	20 U	20 U	20 U	120
4-Methylphenol	670	670	670	670		20		26		42		540	91	46	530	20 U	920
2,4-Dimethylphenol	29	29	29	29		20		20 U		20 U		20 U	20 U	20 U	20	20 U	410
Pentachlorophenol	360	690	360	690		100		100 U		100 U		99 U	99 U	100 U	100 U	99 U	31 U
Benzyl alcohol	57	73	57	72		20		20 U		20 U		20 U	20 U	20 U	20 U	20 U	35 J
Benzoic acid	650	650	650	650		200	U UJ	200 U	UJ	200 U	UJ	200 U	200 U UJ	200 U UJ	200 U	200 U UJ	86 J
Pesticides/PCBs							_										
Total PCBs	12	65	130	1,000			Y UY	17 U		67		5,200	62	16 U	131	16 U	
Total DDT					6.9	3.9		3.9 U		4 U		2 U	2 U	3.9 U	2 U	1.9 U	
Aldrin					10	2	-	2 U		2 U		0.98 U	0.98 U	2 U	0.99 U	0.97 U	
Alpha-Chlordane					10	2	-	2 U		2 U		0.98 U	0.98 U	2 U	0.99 U	0.97 U	
Dieldrin					10	3.9		3.9 U		4 U		2 U	2 U	3.9 U	2 U	1.9 U	
Heptachlor					10	2		2 U		2 U		0.98 U	0.98 U	2 U	0.99 U	0.97 U	
Gamma-BHC (Lindane)					10	2	U	2 U		2 U		2.5 Y UY	2 0.98 U	2 U	0.99 U	0.97 U	

🚈 Geomatrix

Page 8 of 9

CHEMISTRY RESULTS COMPARED TO APPROPRIATE CRITERIA

Former Mill A MTCA Support Sample Collection

Everett, Washington

Sample ID No.						131160	00102	1311	60001	04	13116	00010	5	13116	000025	13110	60001	06	13116	000107	131	16000)033	13116	60001	08	13116	000031
Station ID.						ST	-30	S	T-32		ST	-34		ST	-34	S	Г-37		ST	-39		ST-39	9	S	Γ-42		ST	-43
Sample Depth (Feet BML)						0 to ().3 ft	0 to) 0.3 f	ťt	0 to	0.3 ft		0 to 2	2.8 ft	0 to	0.3 f	t	0 to	0.3 ft	0	to 4.0	ft	0 to	0.3 ft	t	5.7 to	7.2 ft
Soil Unit	SI	MS		luivalent	PSDDA	Rec	ent	R	ecent		Ree	cent		Rec	ent	Re	ecent		Rec	ent]	Recen	ıt	Re	cent		Saw	vdust
			SQS	CSL																								
Chemical Parameter	SQS	CSL	(LAET	(2LAET	BT	Value	Q1 Q2	Value	Q1	Q2	Value	Q1	Q2	Value	Q1 Q2	Value	Q1	Q2	Value	Q1 Q	2 Valu	e Q1	Q2	Value	Q1	Q2	Value	Q1 Q2
Dioxins/Furans (pg/g dry weight)	TEF									-																		
2,3,7,8-TCDD (TEF = 1)	1				5																							
2,3,7,8-TCDF (TEF = 0.1)	0.1																											
1,2,3,7,8-PeCDD (TEF = 1)	1																											
1,2,3,7,8-PeCDF (TEF = 0.03)	0.03																											
2,3,4,7,8-PeCDF (TEF = 0.3)	0.3																											
1,2,3,4,7,8-HxCDD (TEF = 0.1)	0.1																											
1,2,3,6,7,8-HxCDD (TEF = 0.1)	0.1																											
1,2,3,7,8,9-HxCDD (TEF = 0.1)	0.1																											
1,2,3,4,7,8-HxCDF (TEF = 0.1)	0.1																											
1,2,3,6,7,8-HxCDF (TEF = 0.1)	0.1																											
1,2,3,7,8,9-HxCDF (TEF = 0.1)	0.1																											
2,3,4,6,7,8-HxCDF (TEF = 0.1)	0.1																											
1,2,3,4,6,7,8-HpCDD (TEF = 0.01)	0.01																											
1,2,3,4,6,7,8-HpCDF (TEF = 0.01)	0.01																											
1,2,3,4,7,8,9-HpCDF (TEF = 0.01)	0.01																											
OCDD (TEF = 0.0003)	0.0003																											
OCDF (TEF = 0.0003)	0.0003																											
TEQ (1/2U)					15																							

1. Abbreviations:	2.	Exceeds LAET or SQS
BML = Below mudline.		
BT = Bioaccumulation trigger.		
CSL = Cleanup Screening Level.		Exceeds 2LAET or CSL
HPAH = High-molecular-weight		
polycyclic aromatic hydrocarbons.		Carbon < 0.5 or > 4.0 Percent
LAET = lowest-apparent-effects threshold.		
2LAET = second-lowest-apparent-effects threshold	l.	
LPAH = Low-molecular-weight		
polycyclic aromatic hydrocarbons.		
mg/kg = milligrams per kilogram.		
PCBs = Polychlorinated biphenyls.		
pg/g = Picograms (10-12 gram) per gram.		
PSDDA = Puget Sound Dredged Disposal Analysis	s.	
SMS = Sediment Management Standards.		
SQS = Sediment Quality Standards		
TEF = Toxicity equivalency factors.		
wt = Weight.		

- Q1 = Lab data qualifier.
- B = Blank contamination.

 - quantification of the analyte.

 - M = Poor spectral match.

 - associated value.
 - Y = Elevated reporting limits.

📶 Geomatrix

Page 9 of 9

Q2 = Data validation qualifier.

E = Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate

F = Analyte confirmation on secondary column.

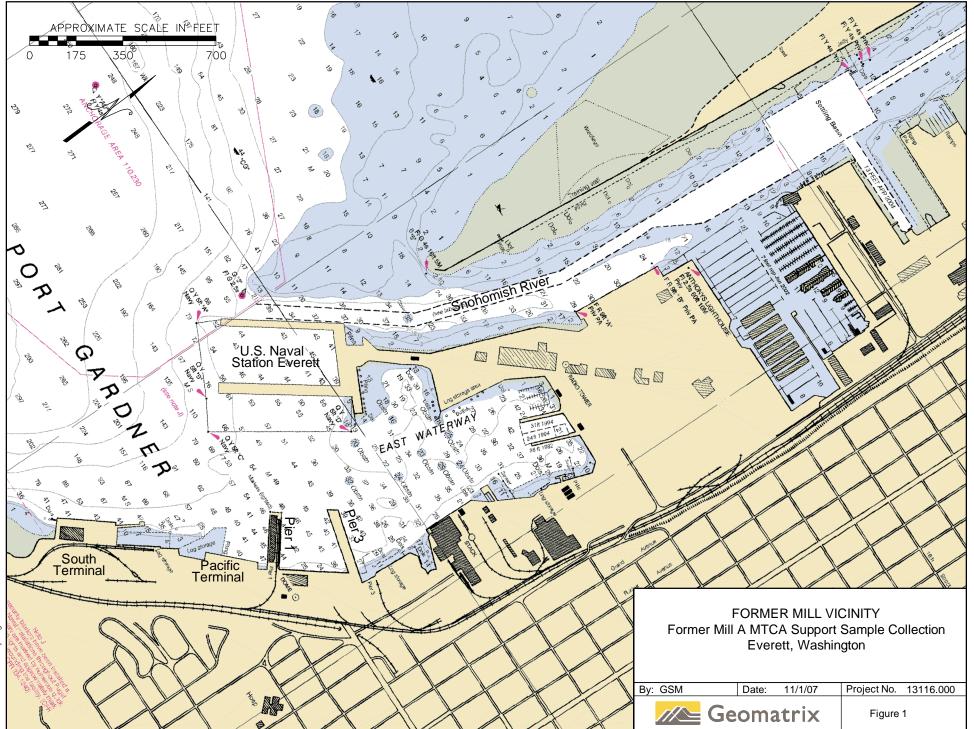
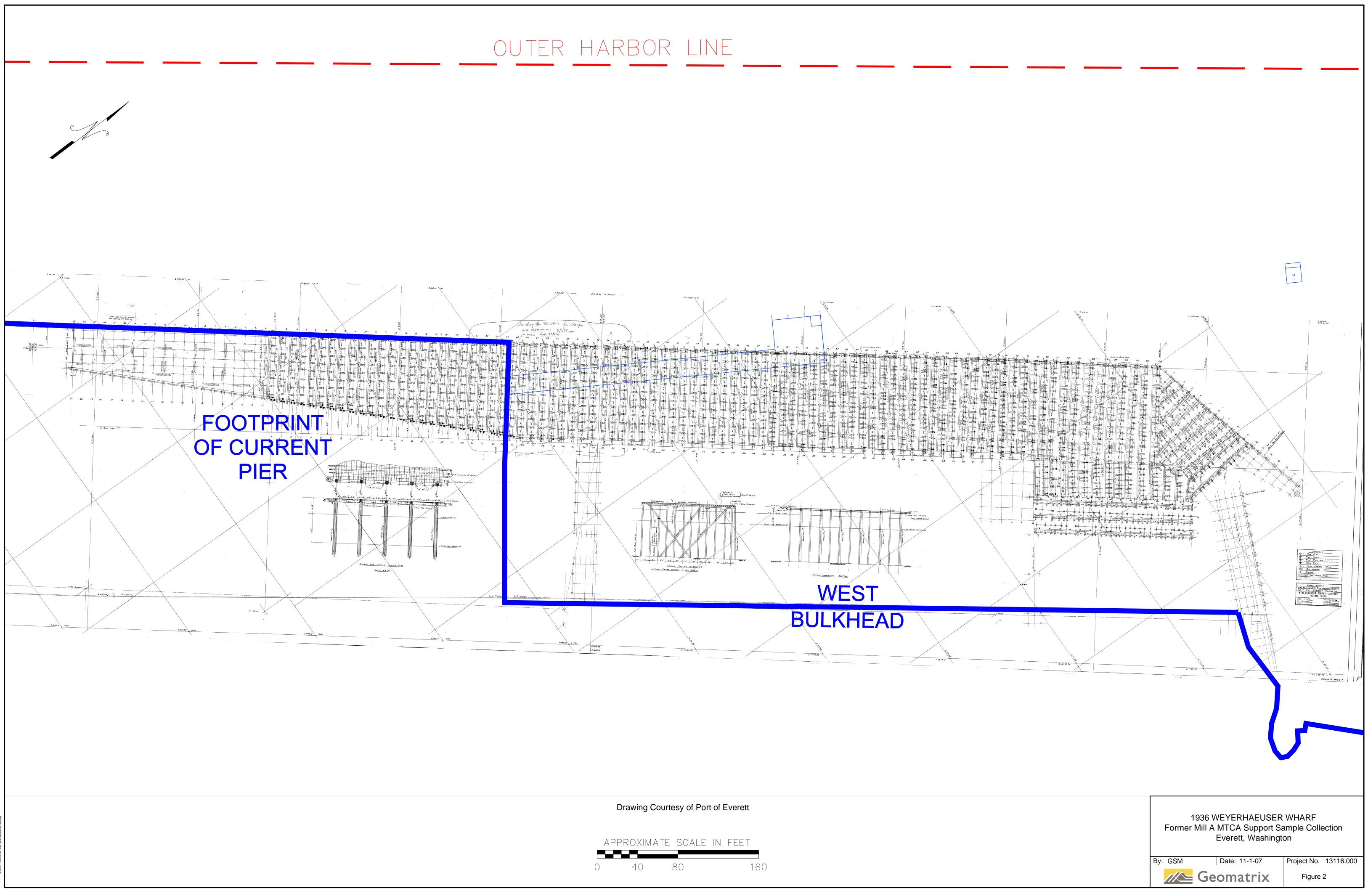
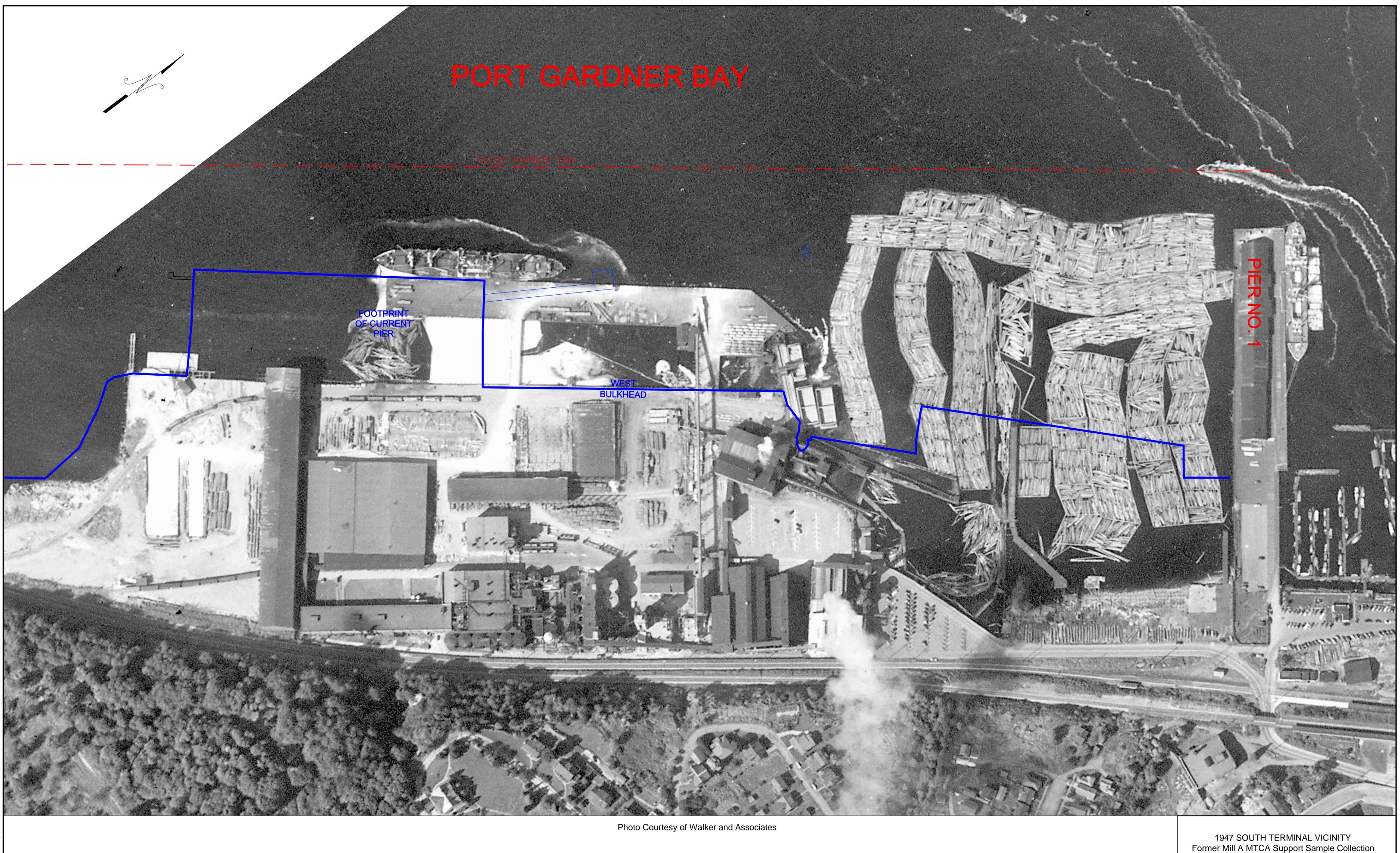
J = The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.

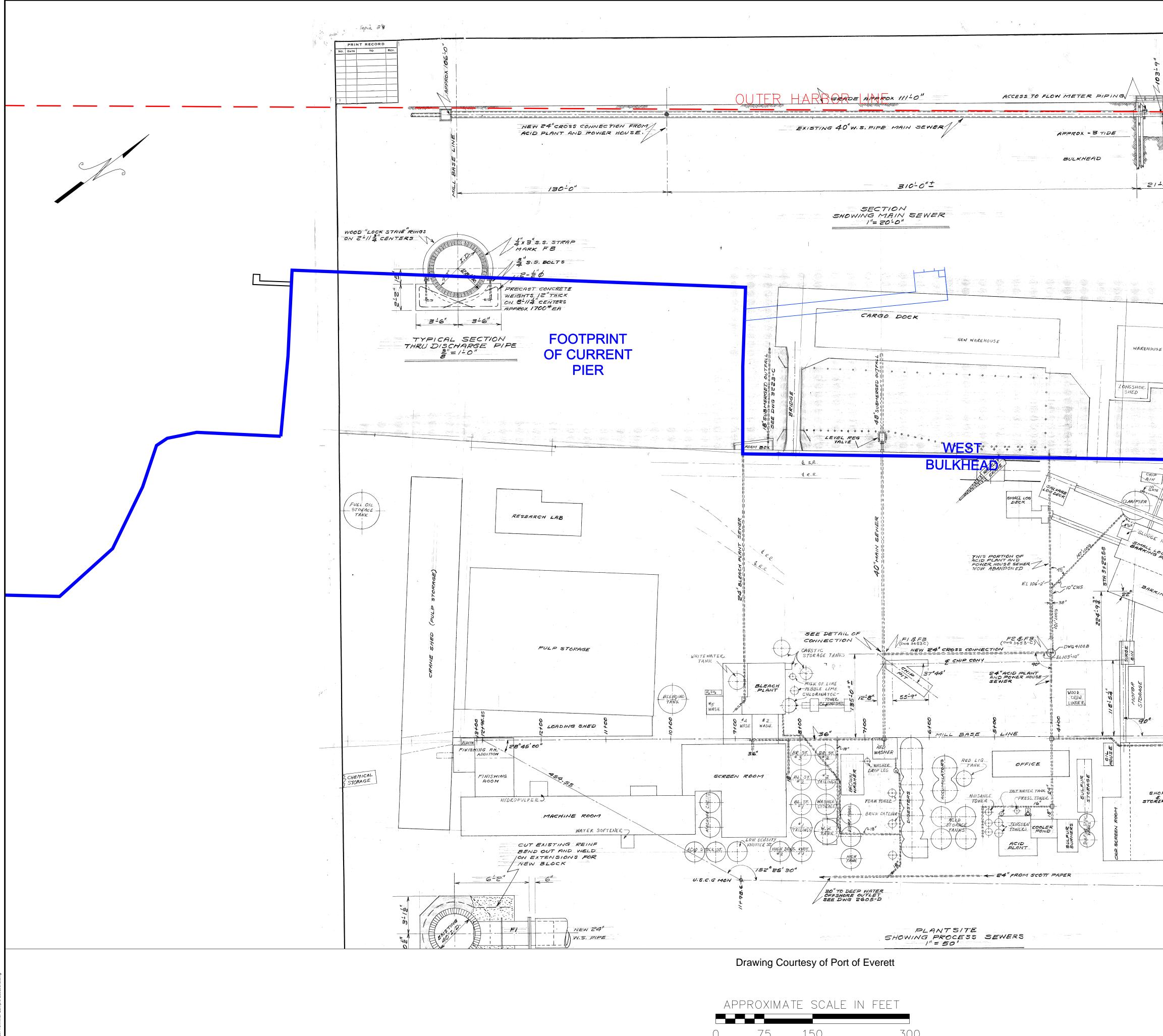
N = Analysis indicates presence of an analyte for which there is presumptive evidence to make a tentative identification.

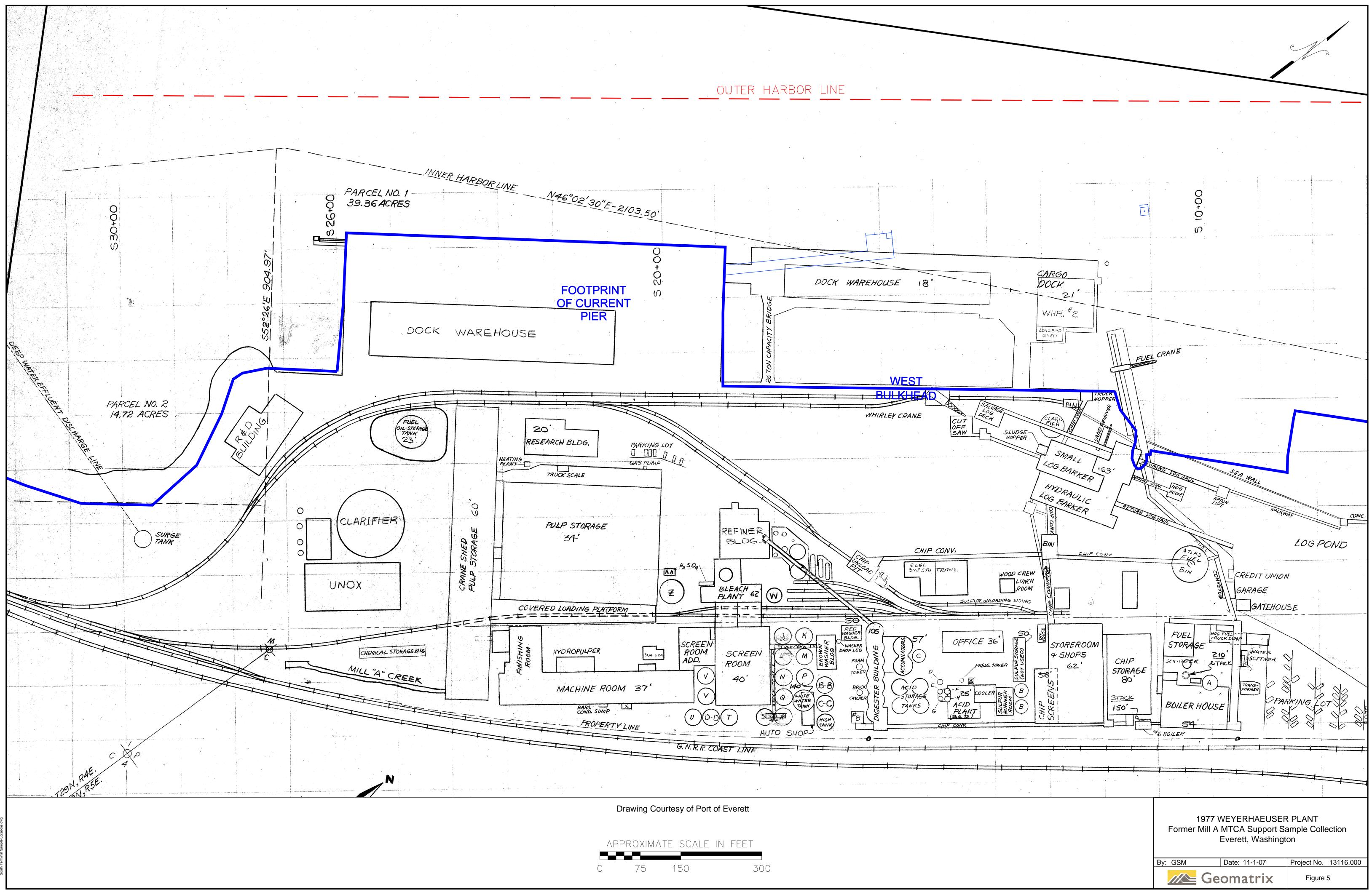
R = The sample result is rejected. The presence or absence of the analyte cannot be verified and the data are not usable.

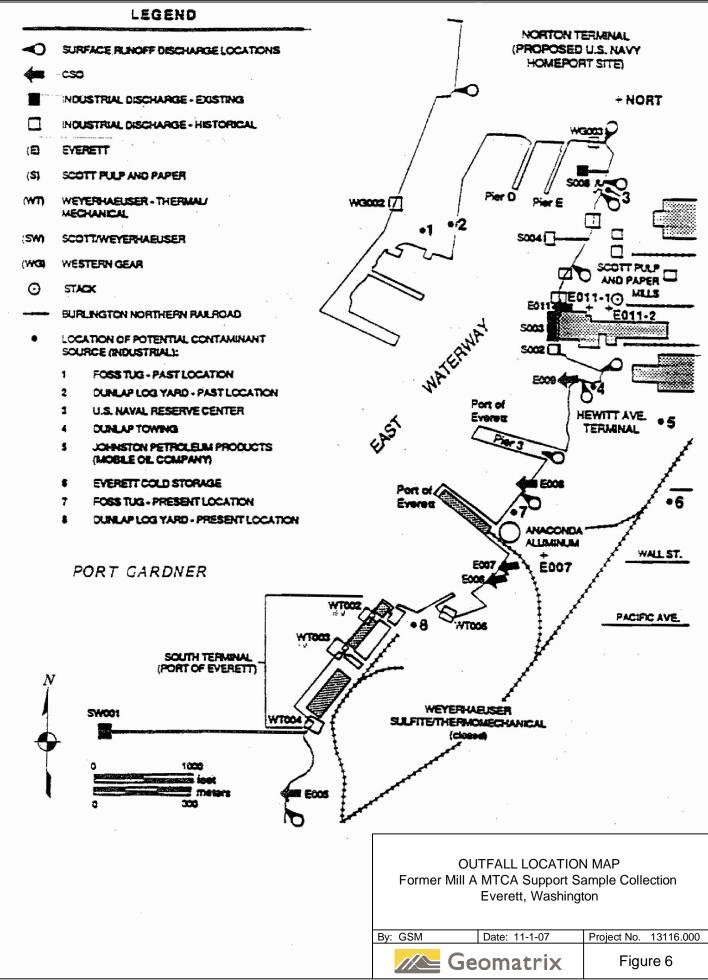
U = The material was analyzed for, but was not detected above the level of the

Figures

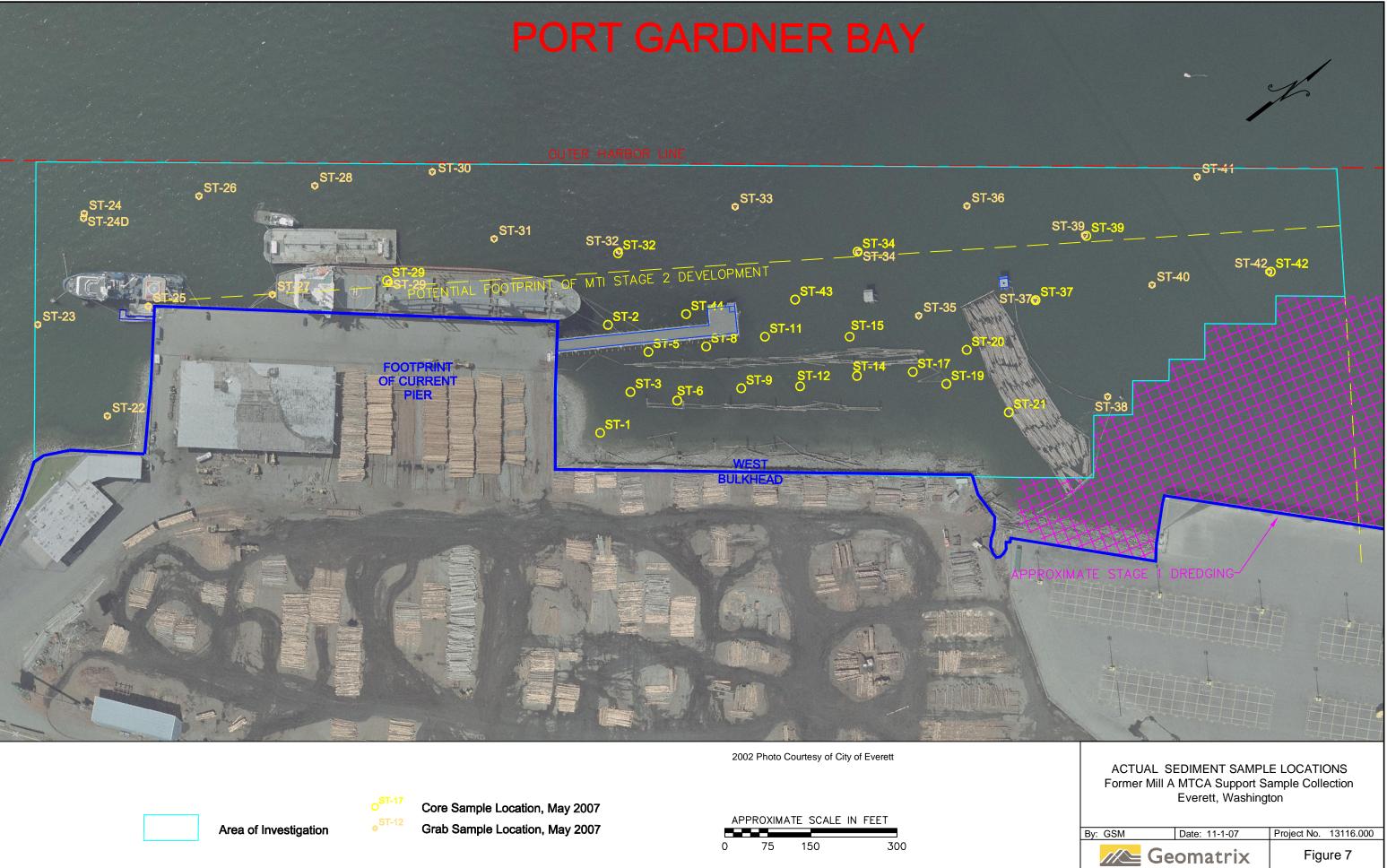





Chart Courtesv of NOAA

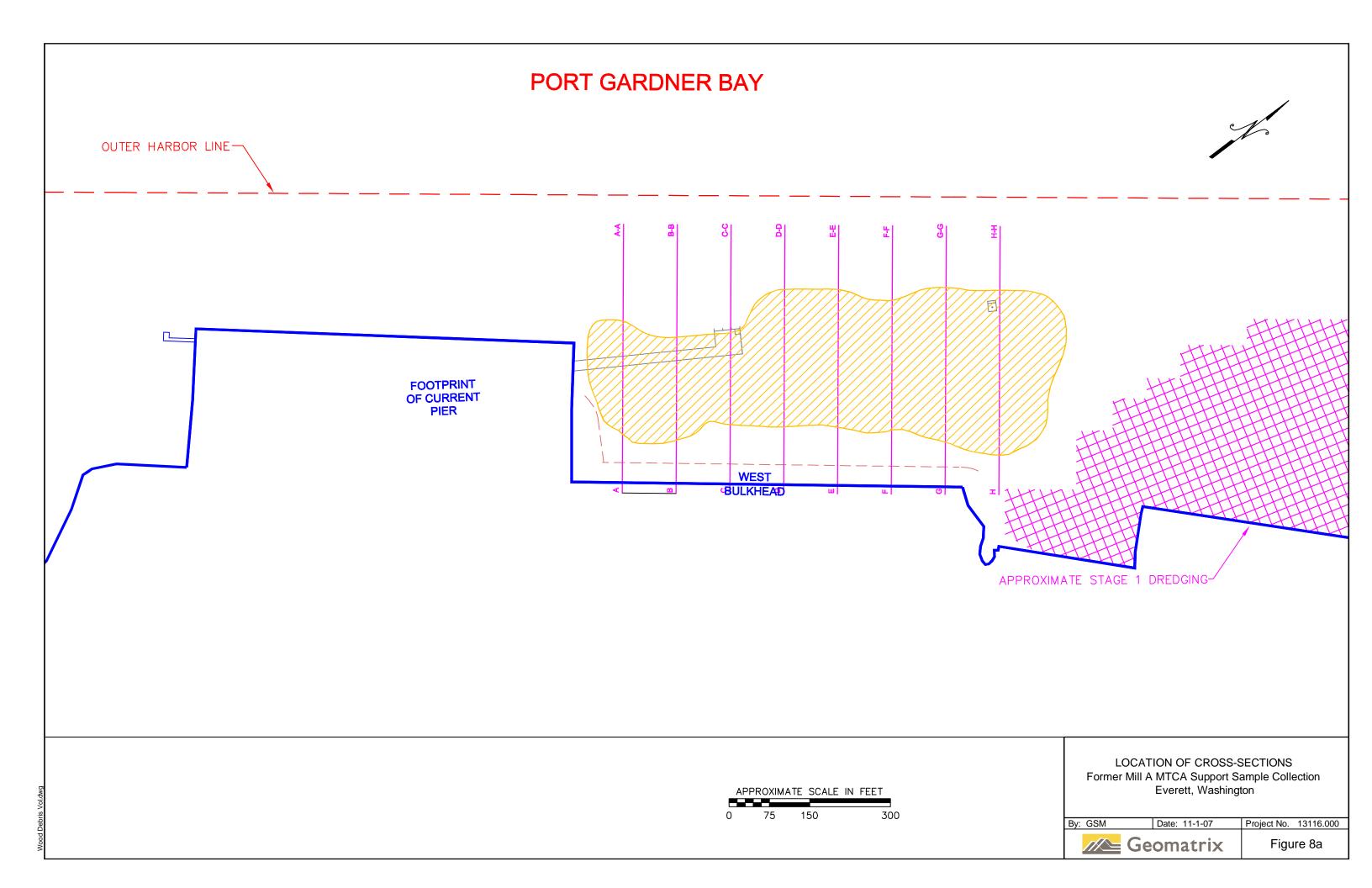


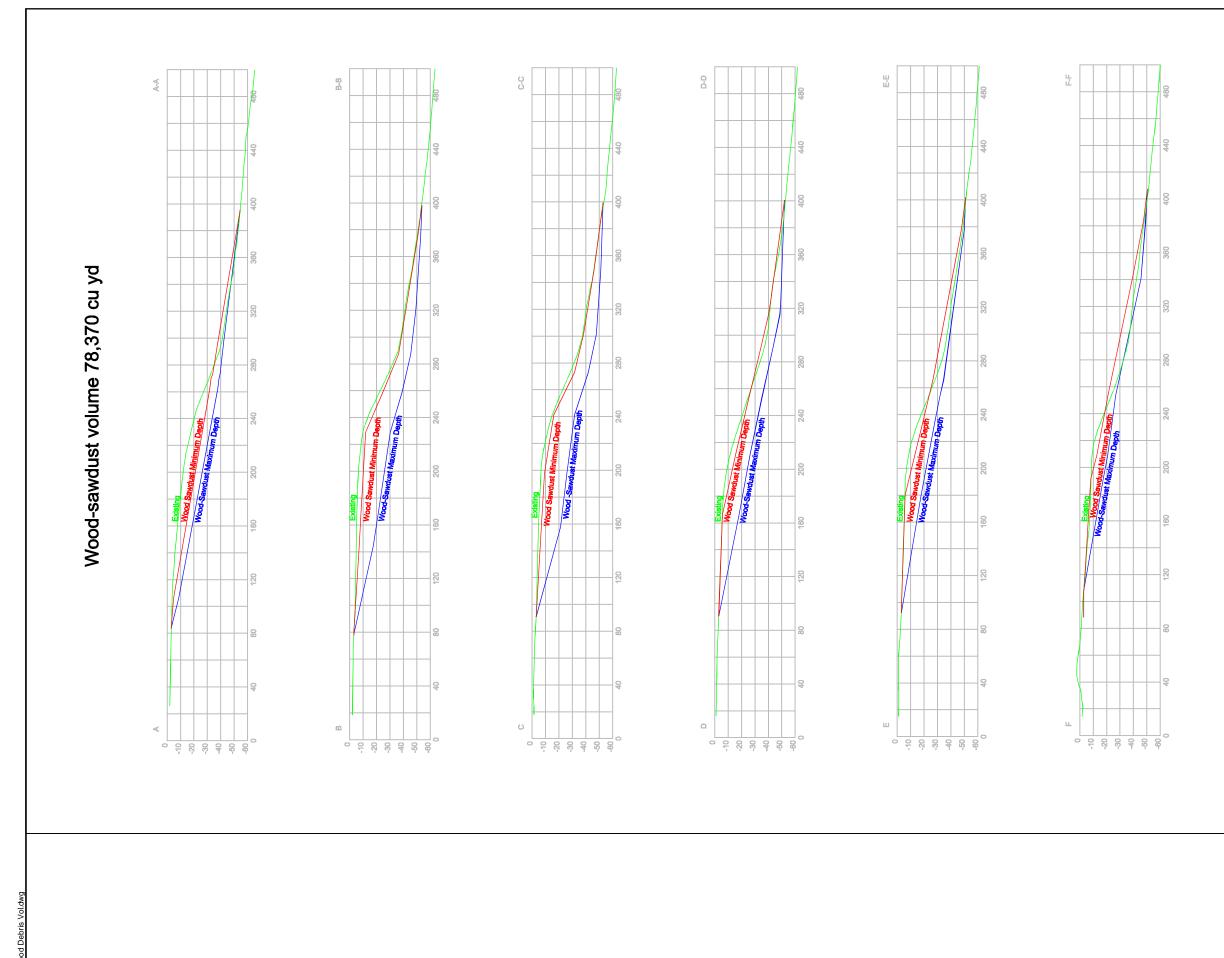

1947 SOUTH TERMINAL VICINITY Former Mill A MTCA Support Sample Collection Everett, Washington

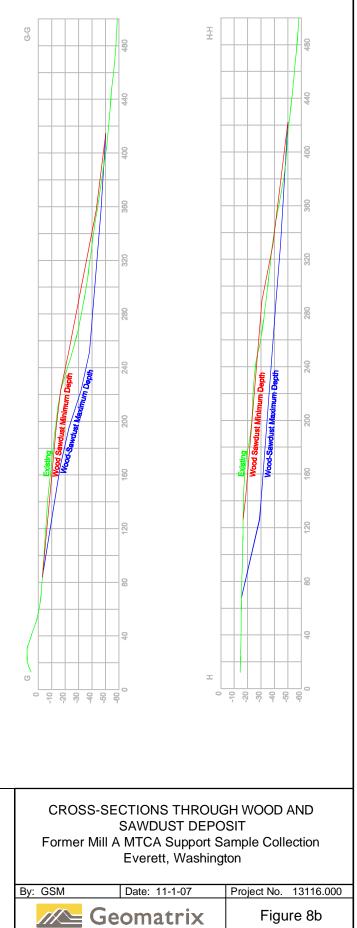
By:	GSM	Date: 11-1-07	Project No. 13116.000)
		Geomatrix	Figure 3	



	DRAWING NO.
FLOAT CONTROLLED LEVEL REGULATING WALVE TO PREVENT GENERATION OF FOAM WITH PROVISIONS FOR FLOOD	
GENCY FLOW SHOULD VALVE MALFUNCTION.	CARGO DOCK
+13 = HIGH TIDE	
48"DISCHARGE PIPE	
2 AT - 6.5 FT TIDE 8'28" 13 SPACES @ 8-114" = 116-24" = 14 WEIGHTS 125-102"	1-55" ALL VALVE PARTS APPROX - 25FT TIDE REMOVABLE FROM TOP FOR REPAIR
	GUIDE WHEEL ASSEMELY
<u></u>	
· //-0" /2" 3'-0" - 2'-0" - 5'-0"	UPPER BODY
BULKHEAD I'U BOLT HANGER	F KOD
F5 103 [±] 11" F4	A PLOOD FLOW AT HIGH TIDES AND VALVE FAILURE
24"OPERATING RANGE	
SE#2 TWO WRAPS & XI2" × 19-0" ANKORITE NO. 475 RUBBER AND 2- PIPE BANDS	-INI + 5 - 9" TIDE
É'ASPHALTIC STRIP	
FOR DETAILS OF CONCRETE BODY SEE DWG 3442D	N ON PIPE RETH.
LEVEL REGULATED FLOW	0 TIDE = 92.6
FUEL CRANE	14-3"
TRASH STRAINER (DWG 41G7C)	DY SLEEVE
CongRipier SUPPLY PMP *163	M N V
HORPER SC" PIPE WATERTIGHT	PORT SEAL
LOG HERE	$ \begin{array}{c} $
TING PLANT PERCENT LOG (4"5TL BARK PRESS SUMP DUMP (DWG 4159A)	FUNCTIONING DETAILS LEVEL REGULATING VALVE == 1-0"
WEILHOG FUEL BIN	LOG POND LEVEL CONTROL WALL OTIDE
ATLAS	LOG DOND
FUELBIN	2 2
18"FROM POWER HOUSE	or m
B9°00'30" HOG FUEL HOGGED FUEL STORAGE	
IOP STORAGE	R SOFTENER
	DTECTION OWER
POWER HOUSE	
89°49'40"	MILL MON NO. 2 ×
9	U.S.C.G. MON
	REFERENCE ONL
	1-M D.WG. NJ. 510 - PR-3439- D
	1970 WEYERHAEUSER PLANT LAYOUT AND PROCESS SEWERS
	Former Mill A MTCA Support Sample Collection Everett, Washington
	By: GSM Date: 11-1-07 Project No. 13116.000
	Geomatrix Figure 4






South Terminal Outfall Locations.dwg

Saturbased Based of the set of th
--

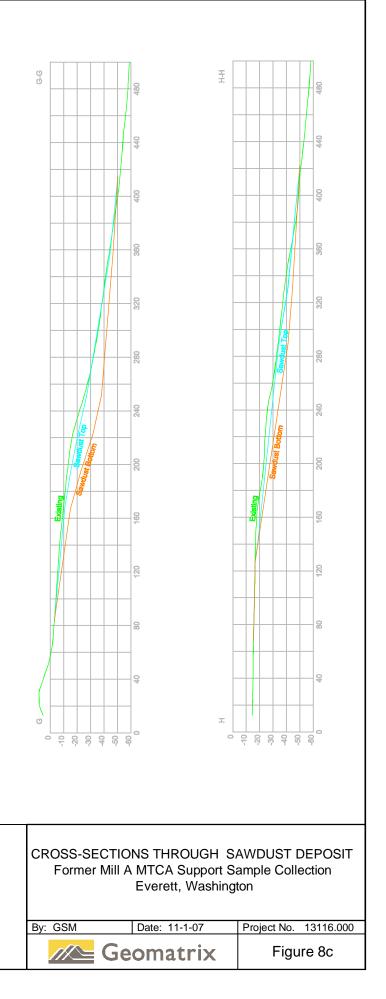


Photo Courtesy of Aero-Metric

Photo Courtesy of City of Everett

Appendix A

Quality Assurance Project Plan

Quality Assurance Project Plan

Former Mill A MTCA Support Sample Collection Everett, Washington

Prepared for:

Port of Everett Everett, Washington

Prepared by:

Geomatrix Consultants, Inc. 6505 – 216th Street SW, Suite 100 Mountlake Terrace, Washington 98043 (425) 697-4340

March 13, 2007

Project No. 13116.000

TITLE AND APPROVAL SHEET FORMER MILL A MTCA SUPPORT SAMPLE COLLECTION QUALITY ASSURANCE PROJECT PLAN

Port of Everett Project Manager

Name

Date

Date

Consultant Team Project Manager

Consultant Team QA Manager

Name

Name

Date

DISTRIBUTION LIST

The following individuals or entities will receive a copy of this Quality Assurance Project Plan and any subsequent revision.

Port of Everett Project Manager	Graham Anderson, Port of Everett
Consultant Team Project Manager	Cliff Whitmus, Geomatrix Consultants, Inc.
Consultant Team QA Manager	Nick Bacher, Geomatrix Consultants, Inc.
Consultant Team Laboratory Coordinator	Cari Sayler, Sayler Data Solutions, Inc.
Analytical Laboratory Project Manager	Mark Harris, Analytical Resources, Inc.

TABLE OF CONTENTS

Page

1.0	INTRODUCTION1					
2.0	PROBLEM DEFINITION/OBJECTIVE					
	2.1 PROJECT DESCRIPTION					
	2.2	QUALITY OBJECTIVES AND CRITERIA	3			
		2.2.1 Quality Objectives and Criteria for Analytical Data	3			
		2.2.2 Precision				
		2.2.3 Accuracy				
		2.2.4 Representativeness				
		2.2.5 Comparability				
	•	2.2.6 Completeness				
	2.3	DOCUMENTATION AND RECORDS				
3.0		DATA GENERATION AND ACQUISITION				
	3.1	SAMPLING PROCESS DESIGN				
	3.2	SAMPLING METHODS				
		3.2.1 Grab Samples				
		3.2.2 Core Samples				
	3.3	SAMPLE HANDLING AND CUSTODY				
		3.3.1 Analysis Schedule				
		3.3.2 Additional Analyses				
	3.4	3.3.3 Field Quality Assurance				
	3. 4 3.5	QUALITY CONTROL				
	3.6	INSTRUMENT/EQUIPMENT TESTING, INSPECTION, MAINTENANCE,	J			
	5.0	AND CALIBRATION	3			
		3.6.1 Field Equipment				
		3.6.2 Analytical Laboratory				
	3.7	INSPECTION/ACCEPTANCE FOR SUPPLIES AND CONSUMABLES				
	3.8	NON-DIRECT MEASUREMENTS)			
	3.9	DATA MANAGEMENT)			
4.0	ASSESSMENT AND OVERSIGHT11					
		4.1.1 Field	1			
		4.1.2 Analytical Laboratory	1			
	4.2	REPORTS TO MANAGEMENT	2			
5.0	DATA VALIDATION AND USABILITY1					
	5.1	DATA REVIEW, VERIFICATION, AND VALIDATION	3			
	5.2	VERIFICATION AND VALIDATION METHODS				
	5.3	RECONCILIATION WITH USER REQUIREMENTS	3			
6.0	HEAL	HEALTH AND SAFETY14				
7.0	SCHEDULE					

8.0	PROJECT MANAGEMENT			
	8.1	Projec	CT ORGANIZATION	
		8.1.1	Port of Everett	
		8.1.2	Consultant Team	16
9.0	REFERENCES			

TABLES

Data-Quality Objectives for the Constituents of Concern, Practical Quantitation			
Requirements			
Summary of Method Quality Objectives for Method 8082—PCBs			
Summary of Method Quality Objectives for Method 6010—ICP Metals			
Summary of Method Quality Objectives for Method 7000 Series—Metals via			
GFAA/CVAA			
Summary of Method Quality Objectives for Method 8270D—SVOCs			
Summary of Method Quality Objectives for Method 1613B—Dioxins/Furans			
Summary of Method Quality Objectives for Method 8081—Pesticides			
Summary of Method Quality Objectives for Sediment Conventionals			
Data Qualifiers			
Proposed Sample Locations			
Sample Analysis Schedule			
Analytical Methodologies and Reporting Limits			

FIGURES

- Figure 1 Figure 2 Proposed Sediment Sample Locations Project Team Organization

APPENDIX

Sample Collection Procedures Appendix

QUALITY ASSURANCE PROJECT PLAN Former Mill A MTCA Support Sample Collection

1.0 INTRODUCTION

This Quality Assurance Project Plan (QAPP) describes work to be conducted for the characterization of sediments within and adjacent to the Former Mill A site in Everett, Washington. This plan conforms to the substantive requirements of the Washington State Department of Ecology's (Ecology) Sediment Sampling and Analysis Plan Appendix (Ecology, 2003) and the U.S. Environmental Protection Agency's (EPA) Guidance for Quality Assurance Project Plans (QA/G-5; EPA, 2002).

2.0 PROBLEM DEFINITION/OBJECTIVE

The problem statement is to further characterize sediments within and adjacent to the Former Mill A site in comparison to the State of Washington Sediment Management Standards (SMS; 173-204 WAC) in order to determine the chemical nature of sediments in this area.

The data from this investigation should generate results that will allow for a better characterization of sediment adjacent to the Former Mill A site. To further characterize this area, tiered grab and core sampling and analysis will be conducted, as discussed in Section 3.1. The proposed sample locations are shown on Figure 1.

2.1 **PROJECT DESCRIPTION**

During sediment investigations conducted in 1992 as part of the Port of Everett's (Port's) Marine Terminal Improvement Program, a deposit of sawdust (Figure 1) was found adjacent to the Former Mill A site. This deposit is located adjacent to the west bulkhead of the Former Mill A site. The estimated volume of the sawdust deposit is approximately 150,000 cubic yards and is composed primarily of sawdust (60 to 80 percent total volatile solids) with sand and silt (Pentec, DOF, and Hartman, 1993). In 1992, sediment sampling and chemical analyses were conducted to determine the nature, extent, and disposal options for nearshore sediments at the South Terminal (DOF and Pentec, 1992; EcoChem and Pentec, 1993; Pentec, DOF, and Hartman, 1993). Three borings (PC1, PC2, and PC3; Figure 1) were located in the sawdust deposit. Chemical characterization of the sawdust deposit showed that a total of eight chemicals of concern exceed the 1998 Puget Sound Dredged Disposal Analysis (PSDDA) screening level or maximum level criteria. Three phenols also exceeded the SMS cleanup screening level (173-204-520 WAC) criteria.

The Former Mill A site is part of the Port's South Terminal area which was listed on Ecology's 1996 Sediment Management Standards Contaminated Sediment Site List. The site was listed for phenols, benzoic acid, metals, and low molecular weight polynuclear aromatic hydrocarbons (LPAHs). In response to the Washington Governor's Puget Sound Initiative, the Port will characterize the sediments, as described in this QAPP, in the South Terminal area to determine what, if any, remediation or other action needs to be taken to seek a delisting of the South Terminal area from the Contaminated Site List.

2.2 QUALITY OBJECTIVES AND CRITERIA

This section outlines the objectives of the QAPP, and summarizes relevant quality assurance (QA) criteria.

2.2.1 Quality Objectives and Criteria for Analytical Data

The goals for the analytical data are to produce data of sufficient quality to meet the project data-quality objectives (DQOs). The primary DQO for this project is that the sediment concentrations must be sufficiently accurate to compare to the Sediment Management Standards Sediment Quality Standards (SQS; 173-204-320 WAC) for marine sediments (Table 1). Because the SQS for many organic compounds is based on carbon-normalized concentrations, the samples must also be analyzed for total organic carbon (TOC). Comparison of carbon-normalized values against the SQS listed in Table 1 may be inappropriate if TOC values are below 0.5 percent or above 4 percent (Michelsen, 1992). At TOC concentrations below 0.5 percent and above 4 percent, the project DQOs for PAH and polychlorinated biphenyl (PCB) data must be accurate at the dry-weight-based standards in Table 1. The practical quantitation limits for the analytes in this study must be at least as low as the concentrations presented in Table 1.

To meet the goal of returning data accurate to within the SQSs, data-quality indicators (DQIs) also need to be established. DQIs are specific measured parameters, including the familiar PARCC parameters (precision, accuracy, representativeness, comparability, and completeness), as well as sensitivity.

The basis for assessing each of these elements of data quality is discussed in the following sections. Precision and accuracy QC (quality control) limits for analytical methods and matrix are identified in Tables 2 through 8.

2.2.2 Precision

Precision measures the reproducibility of measurements. Precision is strictly defined as the degree of mutual agreement among independent measurements as the result of repeated application of the same process under similar conditions. Analytical precision is the measurement of the variability associated with duplicate (two) or replicate (more than two) analyses. If the recoveries of analytes in the laboratory control sample (LCS) are within established control limits, then precision is within limits. Total precision is the measurement of the variability associated with the entire sampling and analysis process. Total precision measures variability introduced by both the laboratory and field operations and is determined

by analysis of duplicate or replicate field samples. Field-duplicate samples (5 percent frequency) and matrix duplicate spiked samples (one per analytical batch) shall be analyzed to assess field and analytical precision, and the precision measurement is determined using the relative percent difference between the duplicate sample results. For replicate analyses, the relative standard deviation is determined.

2.2.3 Accuracy

Accuracy is a statistical measurement of correctness and includes components of random error (variability due to imprecision) and systemic error. It therefore reflects the total error associated with a measurement. A measurement is accurate when the value reported does not differ from the true value or known concentration of the spike or standard. Analytical accuracy is measured by comparing the percent recovery of analytes spiked into an LCS to a control limit. For compounds, such as PCBs, surrogate compound recoveries are also used to assess accuracy and method performance for each sample analyzed.

Both accuracy and precision are calculated for each analytical batch, and the associated sample results are interpreted by considering these specific measurements. The formula for calculation of accuracy returns a percent recovery from pure and sample matrices. Limits of accuracy for Method 8082 (PCBs), Method 6010 (ICP metals), Method 7000 series (GFAA/CVAA metals), Method 8270D (SVOCs), Method 1613B (dioxin), Method 8081 (pesticides and PCBs), and the standard methods for conventionals analysis are contained in Tables 2 through 8, respectively.

2.2.4 Representativeness

Objectives for representativeness are defined for each sampling and analysis task and are a function of the investigative objectives. Representativeness shall be achieved through use of standard field, sampling, and analytical procedures. Representativeness is also determined by appropriate program design, with consideration of elements such as proper core locations, sampling procedures, and sampling intervals. Decisions regarding sample locations and numbers are documented in Section 3.0.

2.2.5 Comparability

Comparability is the confidence with which one data set can be compared to another data set. An objective for this QA/QC program is to produce data comparable to previously collected data. The range of field conditions encountered is considered in determining comparability. Comparability will be achieved by using standard methods for sampling and analysis, reporting

data in standard units, using Regional Reference Material (RRM), and using standard reporting formats. Field documentation using standardized data collection forms shall support the assessment of comparability.

2.2.6 Completeness

Completeness is calculated and reported for each method, matrix, and analyte combination. The number of valid results divided by the number of intended individual analyte results, expressed as a percentage, determines the completeness of the data set. For completeness requirements, valid results are all results not qualified with an "R" flag (see Table 9 for an explanation of flagging criteria). The requirement for completeness is 90 percent for the sediment samples scheduled for the initial round of analyses.

2.3 DOCUMENTATION AND RECORDS

Data and log forms produced in the field will be reviewed daily by the person recording the data, so that any errors or omissions can be corrected. All completed data sheets are removed daily from the field clipboard and photocopied; the original data sheets are filed in a fireproof file cabinet and the photocopies stored in the project file. All data transcribed from field forms into electronic forms and tables will be 100 percent verified for accuracy and freedom from transcription errors.

Laboratory documentation will consist of a case narrative, providing descriptions of any problems and corrective actions, copies of the chain-of-custody forms, tabulated analytical results, data qualifiers, and blank and matrix spike results with calculated percent recoveries and differences. A detailed documentation package (raw data, analyst's reports, extraction logs, chromatograms, etc.) will be provided by the laboratory in case the basic data review discussed in Section 5.1 encounters deficiencies requiring more thorough laboratory documentation.

Field documentation will consist of forms presented in the Appendix. All project documentation records will be kept on file at the offices of Geomatrix Consultants, Inc. (Geomatrix), in Mountlake Terrace, Washington.

3.0 DATA GENERATION AND ACQUISITION

The proposed sampling and analysis plan to meet these requirements is described in this section.

3.1 SAMPLING PROCESS DESIGN

Samples will be collected at the locations shown on Figure 1 and detailed in Table 10. In this investigation, there are three types of sampling locations:

- Type 1 sample locations: only core samples will be collected at these locations. These locations are within the footprint of the sawdust deposit;
- Type 2 sample locations: only grab samples will be collected at these locations. These locations are outside the footprint of the sawdust deposit and inside the Outer Harbor Line; and
- Type 3 sample locations: grab and core samples will be collected at these locations. These locations are outside the footprint of the sawdust deposit and inside the Outer Harbor Line.

The detailed grab and core sample collection and processing procedures are presented in the Appendix.

3.2 SAMPLING METHODS

A brief summary of sampling procedures is presented below. The detailed grab and core collection and processing procedures are presented in the Appendix.

3.2.1 Grab Samples

At the grab sampling locations (Type 2 and 3 stations), a stainless-steel, 0.2-m² pneumaticallyoperated grab sampler will be used to collect the top 10 cm of the sediment. Twenty-two (21 locations plus 1 duplicate location) will be collected during this investigation (Table 10).

3.2.2 Core Samples

At Type 1 core sampling locations (21 stations), discrete samples will be collected from each core at 1-foot *in situ* depth intervals based on field observations (see Table 10) to the proposed core depth of 4 or 15 feet below mudline or to the depth of maximum recovered sediment if full penetration is not achieved (see Table 10). If the volume of recovered sediment available within a depth interval is insufficient to perform all the required analyses, additional sediment volume from the next deeper interval will be added to provide sufficient sample volume. The

next subsequent sample will be collected from the next full 1-foot *in situ* depth interval. Approximately half of the cores from the 21 stations will be visually inspected and logged to assess the horizontal and vertical extent of the sawdust deposit. No analytical samples will be collected from these cores.

At Type 3 core sampling locations (6 stations), a composite sample will be collected from each core from 0 to 4 feet *in situ* depth below mudline. These samples will be placed on hold at the analytical laboratory pending potential analysis for PSDDA COCs (excluding volatile organic analysis).

3.3 SAMPLE HANDLING AND CUSTODY

This section outlines the protocol for field and laboratory handling and storage of samples.

3.3.1 Analysis Schedule

Table 11 provides a list of the samples proposed for initial analysis. Based on field screening and visual observations, a subset of samples collected during this investigation will be initially analyzed for one or more of the following analytical groups: metals, semi-volatile organics, dioxins, PCBs, pesticides, and conventionals. Surplus sample volume will be frozen $(-18^{\circ}C)$ and archived at the analytical laboratory. All samples collected but not initially analyzed will be archived at the analytical laboratory as described in the Appendix.

3.3.2 Additional Analyses

After receipt of the analytical data for the initial samples analyzed, a meeting will be held with the Port of Everett to discuss the results. Depending on the results of the initial round of analyses, additional analysis may be conducted.

3.3.3 Field Quality Assurance

Field QC will include the collection and analysis of a duplicate grab sample for a frequency of approximately 5 percent. Field QC samples will be collected at ST-24. Decontamination blanks will not be collected because sample material that has been in contact with grab sampler will not be used (see Appendix, Section 3.1) or sampling will be conducted using only precleaned, disposable sampling equipment (see Appendix, Section 4.0).

Samples will be handled using the chain-of-custody procedures described in the Appendix. Data and log forms produced in the field will be reviewed daily by the person recording the data, so that any errors or omissions can be corrected. All completed data sheets are removed

daily from the field clipboard and photocopied; the original data sheets are filed in a fireproof file cabinet and the photocopies stored in the project file. All data transcribed from field forms into electronic forms and tables will be 100 percent verified for accuracy and freedom from transcription errors.

3.4 ANALYTICAL METHODS

The analytical laboratory (Analytical Resources, Inc. [ARI]) Standard Operating Procedures (SOPs) are not included in this QAPP due to their proprietary nature. The specific analysis chosen for the samples must be capable of returning accurate results at the concentrations listed in Table 1. Test methods selected to achieve these results are presented in Table 12 along with the reporting limits for each analysis provided by ARI.

As described in the SMS, total PCB concentrations will be calculated by summing the detected concentrations for seven Aroclors (i.e., Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260). Undetected Aroclors will not be included in the calculation of total PCB values. If all seven Aroclors are reported as undetected, then the highest undetected value is reported as the total PCB value.

Total LPAHs (low-molecular-weight polycyclic aromatic hydrocarbons) will be calculated by summing the detected concentrations for naphthalene, acenaphthylene, acenaphthene, phenanthrene, anthracene, and fluorene. If all LPAHs are reported as undetected, then the highest undetected value is reported as the total LPAH value.

Total HPAHs (high-molecular-weight polycyclic aromatic hydrocarbons) will be calculated by summing the detected concentrations of fluoranthene, pyrene, benz(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. If all HPAHs are reported as undetected, then the highest undetected value is reported as the total HPAH value.

3.5 QUALITY CONTROL

Field QC checks include collection and analysis of a duplicate grab sample and standardized sampling documentation forms (see Appendix). Decontamination blanks will not be collected because sample material that has been in contact with the grab sampler will not be used (see Appendix, Section 3.1) or sampling will be conducted using only precleaned, disposable sampling equipment (see Appendix, Section 4.0). Laboratory QC checks include the use of standard EPA analytical methodologies (including analysis of method blanks, spikes, and

surrogates) and laboratory QC samples. These QC checks are detailed in Tables 2 through 8. Additionally, the analyses will be carried out under the laboratory's SOPs.

As specified in the laboratory's SOPs, the PCB analysis will include running suitable standards for calibration purposes. The calibration standard will be run with every analytical batch of samples. A result outside of three standard deviations for the continuing calibration is cause for corrective action, to include rerunning the batch. In addition, suitable RRM will be run with every third batch of samples, beginning with the first batch. Finally, one matrix spike/matrix-spike duplicate will be run every batch to evaluate matrix interferences and recoveries.

3.6 INSTRUMENT/EQUIPMENT TESTING, INSPECTION, MAINTENANCE, AND CALIBRATION

3.6.1 Field Equipment

Prior to each daily sampling event, the Differential Global Positioning System (DGPS) will be tested. A check point accessible to the sampling boat will be occupied. At the DGPS check point, the sampling boat will be stationed and a position reading will be taken. The DGPS position will be compared to the known check point coordinates. The DGPS position readings should agree within to within 1 to 2 m of the known check point coordinates.

3.6.2 Analytical Laboratory

Analytical instruments shall be calibrated in accordance with the analytical methods specified in the laboratory SOPs. All analytes reported shall be included in the initial and continuing calibrations, and these calibrations shall meet the acceptance criteria specified in Tables 2 through 8. Records of standard preparation and instrument calibration shall be maintained and calibration standards shall be traceable to RRMs.

Instrument calibration shall be checked at the frequency specified by the relevant analytical method, using materials prepared independently of the RRM. Multipoint calibrations shall contain the minimum number of calibration points specified by the applicable analytical method, with all points used for the calibration being contiguous. If more than the minimum number of standards are analyzed for the initial calibration, all of the standards analyzed shall be included in the initial calibration. The continuing calibration verification cannot be used as the LCS.

3.7 INSPECTION/ACCEPTANCE FOR SUPPLIES AND CONSUMABLES

The Field Manager will be responsible for ensuring that all supplies necessary to conduct the sampling, including collecting, processing, and transporting samples, are available and in good working order at the beginning of the fieldwork. The Field Manager will monitor supplies and equipment throughout sampling and replenish, or replace, as necessary.

3.8 NON-DIRECT MEASUREMENTS

No non-direct measurements will be made on this project.

3.9 DATA MANAGEMENT

The analytical and field data will be compiled into a SEDQUAL-compatible electronic data deliverable for potential submission to Ecology. The analytical data will also be maintained in ARI's electronic Laboratory Information Management System or archival system. Hard copies of the analytical laboratory data reports will be retained at the offices of Geomatrix.

4.0 ASSESSMENT AND OVERSIGHT

This section describes laboratory oversight, procedures for corrective actions, and reporting responsibilities.

4.1 ASSESSMENTS AND RESPONSE ACTIONS

4.1.1 Field

The Field Manager will be responsible for correcting equipment malfunctions during the field sampling. In addition to equipment failures, conditions that require a modification of the intent of the sampling program will be coordinated with the Port by the Field Manager or the Consultant Team Project Manager. All response actions will be documented in a field logbook.

4.1.2 Analytical Laboratory

ARI participates in Ecology's Environmental Laboratory Accreditation Program and has participated in the EPA Contract Laboratory Program. The laboratory is periodically audited by a variety of outside agencies, including EPA, Ecology, Corps of Engineers, and the Washington State Department of Health. Results of recent audits are available from ARI upon request.

Corrective actions will occur whenever the QC limits are exceeded for any method specified in Tables 2 through 8. Details of the corrective actions to be taken are contained in the laboratory SOPs for each analytical method and conform to the corrective actions outlined in the Sediment Sampling and Analysis Plan Appendix (Ecology, 2003).

Whenever a corrective action does occur, the Laboratory Manager is notified. If the corrective action is judged to be routine, such as a slight exceedance of a percent recovery limit, the corrective action will be implemented without notifying the consultant team Project Manager. If the corrective action requires reanalysis or re-extraction, the consultant team Project Manager and Laboratory Coordinator will be notified. Following removal of material for the initial analyses the samples will be frozen, which allows for a 6-month hold time. Therefore, the laboratory will be able to reanalyze/re-extract samples well within the holding time interval.

4.2 **REPORTS TO MANAGEMENT**

A data report summarizing the results of the characterization will be prepared by the consultant team and the Port' Project Manager for submittal to Ecology. This report will include a narrative of the following:

- field activities,
- chain-of-custody records,
- a Level 1 data review,
- data tables and maps for sample locations,
- data tables and maps summarizing the results of the analytical analyses, and
- electronic data tables including a SEDQUAL-compatible data deliverable.

5.0 DATA VALIDATION AND USABILITY

This section describes procedures for data validation, verification, and usability.

5.1 DATA REVIEW, VERIFICATION, AND VALIDATION

One hundred percent of the data received from the laboratory will be validated at a Level 1 (basic) review. This Level 1 review will include the following steps:

- Verify that the lab utilized the specified extract, analysis, and cleanup methods.
- Review sample holding time.
- Verify that sample numbers and analyses match those requested on the chain-ofcustody form.
- Verify that the required reporting limits have been achieved.
- Verify that field duplicates, matrix spikes, and laboratory control samples were run at the proper frequency and have met QC criteria.
- Verify that the surrogate compound analyses have been performed and have met QC criteria.
- Verify that initial and continuing calibrations were run at the proper frequency and have met acceptance criteria.
- Verify that the lab blanks are free of contaminants.

5.2 VERIFICATION AND VALIDATION METHODS

Data that appear to have significant deficiencies will be validated using the more comprehensive Level 2 verification and review in accordance with the EPA's functional guidelines for data validation (EPA, 1999 and 2004). Following this review, data qualifiers assigned by the laboratory may be amended.

5.3 **RECONCILIATION WITH USER REQUIREMENTS**

Following receipt of all of the analytical data reports, the consultant team Project Manager and the Port of Everett Project Manager will review the sample results to determine if they fall within the acceptance limits and goals set forth in this QAPP. If the DQIs do not meet the project requirements, the data may be discarded and reanalysis performed. This decision will be made jointly between the consultant team and the Port of Everett. If the failure is traced to the analytical laboratory (e.g., sample handling, extraction, or instrument calibration and maintenance), techniques will be reassessed prior to reanalysis.

6.0 HEALTH AND SAFETY

All work performed under this QAPP will be conducted following Geomatrix's Corporate Health and Safety Plan.

7.0 SCHEDULE

The fieldwork for this investigation is dependent on:

- 1. Port approval of this QAPP; and
- 2. issuance of permits.

Fieldwork will start within 2 weeks following completion of the above events (assuming no permit restrictions on when the sampling may be conducted). Field activities for the sampling are expected to take up to 7 days. The schedule and duration of the field sampling, laboratory analysis, and reporting is presented below.

Task	Schedule
Collect sediment samples	1 week, Week 1
Receive initial chemical laboratory data	3 weeks, Weeks 2 through 4
Evaluate preliminary data	2 weeks, Weeks 5 and 6
Meeting with the Port to discuss results	1 week, Week 7
Potentially conduct additional analyses	Dependent on results of meeting with the Port
Perform data quality review and prepare data report	Dependent on results of meeting with the Port

8.0 **PROJECT MANAGEMENT**

This section provides an overview of the project organization, as well as a summary of the nature of the project and QA objectives.

8.1 **PROJECT ORGANIZATION**

An organizational chart showing lines of authority and reporting responsibilities is presented on Figure 2.

8.1.1 Port of Everett

The Port's responsibilities include project direction and project oversight, site security, profiling and disposal of wastes generated, personnel access badges, space allocation, site usage, and other miscellaneous support items associated with planning and performance of the work.

8.1.2 Consultant Team

Geomatrix is the prime consultant working under contract to the Port of Everett for the Former Mill A MTCA Support project.

8.1.2.1 Consultant Team Project Manager

Geomatrix's Project Manager is Cliff Whitmus. He will be responsible for the overall conduct of the work described in this QAPP.

8.1.2.2 QA Manager

Nick Bacher of Geomatrix will be the QA Manager for the project. He will be responsible for performing field and quality reviews and ensuring that the sampling and analysis is conducted as per the requirements specified in this QAPP.

8.1.2.3 Field Manager

Nick Bacher will also be the Field Manager for the project. He will be responsible for:

- Ensuring that all samples are collected in accordance with this QAPP.
- Obtaining authorization to work and anchor at the site.
- Establishing and following chain-of-custody procedures.
- Overseeing compliance with Geomatrix's Corporate Health and Safety Plan.
- Ensuring that all sediment sampling and analysis equipment as described in the Appendix is available and in working order.

8.1.2.4 Laboratory Coordinator

Cari Sayler of Sayler Data Solutions, Inc., will be the Laboratory Coordinator for the work conducted under this QAPP. She will:

- Communicate with and oversee the analytical laboratory, to ensure that project goals are met.
- Coordinate sample analysis with the analytical laboratory.

8.1.2.5 Data Management

Cari Saylor will be responsible for the analytical data management for the project. She will:

- Import the electronic data deliverable (EDD) provided by the analytical laboratory into a data management system.
- Produce analytical data tables for the Data Report that will be produce as part of this work (see Section 4.2)
- Produce the SEDQUAL compatible EDD described in Section 3.9.

8.1.2.6 Data Validation

Cari Sayler will also perform the validation of all analytical data as described in Section 5.0 of this QAPP.

8.1.2.7 Analytical Laboratory Project Manager

Analytical testing will be conducted by Analytical Resources, Inc. (ARI), Tukwila, Washington. ARI is a Washington accredited full-service chemical analytical laboratory. Mark Harris will be the ARI Project Manager.

9.0 **REFERENCES**

- DOF and Pentec (Dalton, Olmsted & Fuglevand Inc. and Pentec Environmental, Inc.), 1992, Site Characterization Report, South Terminal Expansion, Port of Everett, Washington: Port of Everett, Everett, Washington.
- EcoChem and Pentec (EcoChem, Inc. and Pentec Environmental, Inc., 1993, Characterization of Sediments at Port of Everett South Terminal Development Project: Port of Everett, Everett, Washington.
- Ecology (Washington State Department of Ecology), 1996, Sediment Management Standards Contaminated Sediment Site List: Sediment Management, Ecology, Olympia.
- Ecology, 2003, Sediment Sampling and Analysis Plan Appendix: Ecology, Olympia.
- EPA (U.S. Environmental Protection Agency), 1999, Contract Laboratory Program National Functional Guidelines for Organic Data Review: OSWER, EPA 540/R 99-008, Washington, D.C.
- EPA, 2002, Guidance for Quality Assurance Project Plans: EPA QA/G-5, Office of Environmental Information, EPA/240/R-02/009, Washington, D.C.
- EPA, 2004, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review: OSWER, EPA 540/R 04-004, Washington, D.C.
- Michelsen, T.C., 1992, Technical Information Memorandum, Organic Carbon Normalization of Sediment Data: Sediment Management Unit, Washington State Department of Ecology, Publication No. 05-09-050, Olympia.
- Pentec, DOF, and Hartman (Pentec Environmental, Inc.; Dalton, Olmsted & Fuglevand Inc.; and Hartman Associates), 1993, Sediment Management Study Plan for South Terminal Expansion Project, Port of Everett, Washington: Port of Everett, Everett, Washington.

Tables

DATA QUALITY OBJECTIVES FOR THE CONSTITUENTS OF CONCERN PRACTICAL QUANTITATION REQUIREMENTS

Former Mill A MTCA Support Everett, Washington

Page 1 of 3

	Sediment Mana	gement Standards	
Chemical Parameter	SQS ¹	SQS Dry Weight Equivalent (LAET) ²	PSDDA Screening Level or BT ³
Metals	mg/kg dry wt	mg/kg dry wt	mg/kg dry wt
Antimony			150
Arsenic	57	57	
Cadmium	5.1	5.1	
Chromium	260	260	
Copper	390	390	
Lead	450	450	
Mercury	0.41	0.41	
Nickel			140
Silver	6.1	6.1	
Selenium			3
Zinc	410	410	
Nonionizable Organic Compounds			
Aromatic Hydrocarbons	mg/kg carbon	µg/kg dry wt	µg/kg dry wt
Total LPAH	370	5200	
Naphthalene	99	2100	
Acenaphthylene	66	1300	
Acenaphthene	16	500	
Fluorene	23	540	
Phenanthrene	100	1500	
Anthracene	220	960	
2-Methylnaphthalene	38	670	
Total HPAH	960	12000	
Fluoranthene	160	1700	
Pyrene	1000	2600	
Benz[a]anthracene	110	1300	
Chrysene	110	1400	
Total benzofluoranthenes d	230	3200	
Benzo[a]pyrene	99	1600	
Indeno[1,2,3-c,d]pyrene	34	600	
Dibenzo[a,h]anthracene	12	230	
Benzo[g,h,i]perylene	31	670	

¹ Sediment Management Standards Sediment Quality Standards (173-204-320) WAC

² LAET—Lowest Apparent Effects Threshold

³ BT—Bioaccumulation Trigger

DATA QUALITY OBJECTIVES FOR THE CONSTITUENTS OF CONCERN PRACTICAL QUANTITATION REQUIREMENTS

Former Mill A MTCA Support Everett, Washington

Page 2 of 3

	Sediment Mana		
Chemical Parameter	SQS ¹	SQS Dry Weight Equivalent (LAET) ²	PSDDA Screening Level or BT ³
Nonionizable Organic Compounds	mg/kg carbon	μg/kg dry wt	μg/kg dry wt
Chlorinated Benzenes			
1,2-Dichlorobenzene	2.3	35	
1,4-Dichlorobenzene	3.1	110	
1,2,4-Trichlorobenzene	0.81	31	
Hexachlorobenzene	0.38	22	
Phthalate Esters			
Dimethyl phthalate	53	71	
Diethyl phthalate	61	200	
Di-n-butyl phthalate	220	1400	
Butyl benzyl phthalate	4.9	63	
Bis[2-ethylhexyl]phthalate	47	1300	
Di-n-octyl phthalate	58	6200	
Miscellaneous			
Dibenzofuran	15	540	
Hexachlorobutadiene	3.9	11	
N-nitrosodiphenylamine	11	28	
Ionizable Organic Compounds	μg/kg dry wt	µg/kg dry wt	
Phenol	420	420	
2-Methylphenol	63	63	
4-Methylphenol	670	670	
2,4-Dimethylphenol	29	29	
Pentachlorophenol	360	360	
Benzyl alcohol	57	57	
Benzoic acid	650	650	

¹ Sediment Management Standards Sediment Quality Standards (173-204-320) WAC

² LAET—Lowest Apparent Effects Threshold

³ BT—Bioaccumulation Trigger

DATA QUALITY OBJECTIVES FOR THE CONSTITUENTS OF CONCERN PRACTICAL QUANTITATION REQUIREMENTS Former Mill A MTCA Support

Everett, Washington

Page 3 of 3

	Sediment Mar	Sediment Management Standards	
Chemical Parameter	SQS 1	SQS Dry Weight Equivalent (LAET) ²	PSDDA Screening Level or BT ³
Pesticides/PCBs			
Total PCBs	12	130	
Total DDT			6.9
Aldrin			10
Alpha-Chlordane			10
Dieldrin			10
Heptachlor			10
Gamma-BHC (Lindane)			10

¹ Sediment Management Standards Sediment Quality Standards (173-204-320) WAC

² LAET—Lowest Apparent Effects Threshold

³ BT—Bioaccumulation Trigger

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 8082—PCBs

Former Mill A MTCA Support

Everett, Washington

Quality Control Element	Frequency of Implementation	Acceptance Criteria
Initial Calibration	Daily	$r \ge 0.995, RSD \le 20\%, r^2 \ge 0.990$
Initial Calibration Verification (ICV)	After initial calibration	%Recovery = 85 - 115%
Continuing Calibration Verification (CCV)	Every 10 samples and at end of analytical sequence	%Drift \leq 15%, %D \leq 15%
Method Blank (MB)	1 per sample batch	Analytes < MDL
Laboratory Control Sample (LCS)	1 per sample batch	Solids: %Recovery = $50 - 130\%$
Matrix Spike (MS)	1 per 20 samples	%Recovery = 40 - 140%
Matrix-Spike Duplicate (MSD)	1 per 20 samples	RPD = 50%
Surrogates: Interference-Free Matrix	Every sample as specified	Interference-Free Matrix <u>Solids</u> : %Recovery = 50 - 130%
Project Sample Matrix		Project Sample Matrix %Recovery = 40 - 140%
Target Analyte Confirmation		$RPD \le 40\%$

RSD: relative standard deviation.

MDL: method detection limit.

RPD: relative percent difference.

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 6010—ICP METALS

Former Mill A MTCA Support

Quality Control Element	Description of Element	Frequency of Implementation	Acceptance Criteria
Instrumental Precision	% RSD 3 integrations (exposures)	Each calibration and calibration verification standards (ICV/CCV)	% RSD < 5%
Initial Calibration	1 std and blank	Daily	r <u>></u> 0.995
Initial Calibration Verification (ICV)	Midlevel (2nd source) verification	After initial calibration	% recovery <u>+</u> 10 %
Continuing Calibration Verification (CCV)	Midlevel verification	Every 10 samples or 2 hours, whichever is more frequent, and at end of analytical sequence.	% recovery <u>+</u> 10 %
Initial Calibration Blank (ICB)	Interference-Free Matrix to assess analysis contamination	After initial calibration	Analytes < RL check sample (~2x RL)
Continuing Calibration Blank (CCB)	Interference-Free Matrix to assess analysis contamination	Every 10 samples or 2 hours, whichever is more frequent, and at end of analytical sequence.	Analytes < RL check sample (~2x RL)
ICP Interelement Interference Check Samples	Matrix Interference	At beginning and end of analytical sequence or twice per 8-hour shift, whichever is more frequent	% recovery = 80 to 120 %
Method Blank (MB)	Interference-Free Matrix to assess overall method contamination	1 per sample batch or every 20 samples, whichever is more frequent	Analytes < RL check sample (~2x RL)
Laboratory-Control Sample (LCS)	Interference-Free Matrix containing all target analytes	1 per sample batch or 5% of field samples	% recovery = 80 to 120% <u>Sporadic Marginal</u> <u>Failures¹</u> ; % recovery = 80 to 140%
Matrix Spike (MS)	Sample matrix spiked with all or a subset of target analytes prior to digestion	1 per sample batch or every 20 samples, whichever is more frequent	% recovery = 75 to 125%, when sample concentration is <4 times spiked concentration for a particular analyte
Matrix Duplicate (MD) or Matrix-Spike Duplicate (MSD)	Refer to text for MD or MS	1 per sample batch or every 20 samples, whichever is more frequent	$RPD \le 20\%$ applied when analyte concentration is > RL.

Everett, Washington

¹ The number of Sporadic Marginal Failure (SMF) allowances depend on the number of target analytes reported from the analysis. In the instance of only seven metals, one SMF is allowed.

RL: reporting limit

RPD: relative percent difference

RSD: relative standard deviation

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 7000 SERIES—METALS VIA GFAA/CVAA

Former Mill A MTCA Support

Quality Control Element	Description of Element	Frequency of Implementation	Acceptance Criteria
Instrumental Precision	RPD of 2 injections	All standards, and ICV/CCV	RPD ≤ 10%
Initial Calibration	Three stds and blank	Daily	r ≥0.995
Initial Calibration Verification (ICV)	Midlevel (2nd source) verification	After initial calibration	% recovery <u>+</u> 10 %
Continuing Calibration Verification (CCV)	Midlevel verification	Every 10 samples or 2 hours, whichever is more frequent, and at end of analytical sequence.	% recovery <u>+</u> 10 % GFAA % recovery <u>+</u> 20% CVAA
Initial Calibration Blank (ICB)	Interference-Free Matrix to assess analysis contamination	After initial calibration	Analytes < RL check sample (~2x RL)
Continuing Calibration Blank (CCB)	Interference-Free Matrix to assess analysis contamination	Every 10 samples or 2 hours, whichever is more frequent, and at end of analytical sequence.	Analytes < RL check sample (~2x RL)
Method Blank (MB)	Interference-Free Matrix to assess overall method contamination	1 per sample batch or every 20 samples, whichever is more frequent	Analytes < RL check sample (~2x RL)
Laboratory-Control Sample (LCS)	Interference-Free Matrix containing all target analytes	1 per sample batch or 5% of field samples	% recovery = 80 to 120%
Matrix Spike (MS)	Sample matrix spiked with target analytes prior to digestion	1 per sample batch or every 20 samples, whichever is more frequent	% recovery = 75 to 125%, when sample concentration is <4 times spiked concentration for a particular analyte
Matrix Duplicate (MD) or Matrix-Spike Duplicate (MSD)	Refer to text for MD or MS	1 per sample batch or every 20 samples, whichever is more frequent	$RPD \le 20\%$ applied when analyte concentration is > RL
Post-Digestion spike (PDS)	Sample digestate spiked with target analytes for each GFAA sample	As needed to confirm matrix effects	% recovery = 85 to 115%

Everett, Washington

RL: reporting limit

RPD: relative percent difference

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 8270D—SVOCs

Former Mill A MTCA Support

Everett, Washington

Quality Control Element	Frequency of Implementation	Acceptance Criteria
Initial Calibration	Daily	$r \ge 0.995, RSD \le 15\%, r^2 \ge 0.990$
Initial Calibration Verification (ICV)	After initial calibration	%Recovery = 70 - 130%
Continuing Calibration Verification (CCV)	Every 6 samples and at end of analytical sequence	%Drift ≤ 20%, %D ≤ 20%
Method Blank (MB)	1 per sample batch or every 20 samples, whichever is more frequent, or when there is a change in reagents	Analytes < one half MDL
Laboratory Control Sample (LCS)	1 per sample batch or every 20 samples, whichever is more frequent	<u>Solids</u> : %Recovery = 50 -130%
Matrix Spike (MS)	1 per sample batch or every 20 samples, whichever is more frequent, spiked with the same analytes at the same concentration as the LCS	%Recovery = 45 - 135%
Matrix-Spike Duplicate (MSD)	1 per sample batch or every 20 samples, whichever is more frequent: used MSD when samples are not expected to contain target analytes	RPD <u>< 6</u> 0%
Surrogates:	Every sample as specified	
Interference-Free Matrix		Interference-Free Matrix <u>Solids</u> : %Recovery = 45 - 135% B/N cmpds
Project Sample Matrix		Project Sample Matrix %Recovery = 35 - 140% A cmpds
Target Analyte Confirmation		NA

RSD: relative standard deviation

MDL: method detection limit

RPD: relative percent difference

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 1613B—DIOXINS/FURANS

Former Mill A MTCA Support Everett, Washington

Page 1 of 2

Quality Control Element	Frequency of Implementation		otance teria
Initial Calibration	Until CCV fails	$ \begin{array}{c} m/z \ ratio \ within \pm 15\% \ c\\ Signal/noise \ ratio \geq 10:1\\ RR \ RSD \leq 20\%\\ RRF \ RSD \leq 35\%\\ RTs \ within \ windows\\ GC \ resolution \leq 25\% \end{array} $	of theoretical
Mass Calibration and Mass Spectrometer Resolution	Beginning and end of each 12-hour shift	Resolving power $\geq 10,00$	00
Window Defining Mix	Beginning of each 12-hour shift	RTs within windows	
Continuing Calibration Verification (CCV)	Beginning of each 12-hour shift	$ \begin{array}{c} m/z \ ratio \ within \pm 15\% \ c\\ Signal/noise \ ratio \geq 10:1\\ RR \ \%D \leq \pm 20\%\\ RRF \ \%D \leq \pm 35\%\\ RTs \ within \ windows \end{array} $	of theoretical
Method Blank (MB)	1 per extraction batch	Analytes < RL or < 5x Sample C	Conc.
Ongoing Precision and Recovery (OPR)	1 per sample batch	2,3,7,8-TCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DD 0,2DF	67-158% 75-158% 70-142% 80-134% 68-160% 70-164% 76-134% 64-162% 72-134% 84-130% 78-130% 70-156% 70-140% 82-132% 78-138% 78-138% 78-144% 63-170 %

RR: relative response

RRF: relative response factor

RSD: relative standard deviation

%D: percent difference

RT: retention time

m/z: ion abundance

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 1613B—DIOXINS/FURANS

Former Mill A MTCA Support Everett, Washington

Page 2 of 2

Quality Control Element	Frequency of Implementation	Acceptance Criteria	
Labeled compound recoveries:	Each sample and QC sample	13C12-2,3,7,8-TCDF 13C12-1,2,3,7,8-PeCDD 13C12-1,2,3,7,8-PeCDF 13C12-2,3,4,7,8-PeCDF 13C12-1,2,3,4,7,8-HxCDD 13C12-1,2,3,6,7,8,-HxCDD 13C12-1,2,3,4,7,8-HxCDF 13C12-1,2,3,4,6,7,8-HxCDF 13C12-1,2,3,4,6,7,8-HxCDF 13C12-1,2,3,4,6,7,8-HxCDF 13C12-1,2,3,4,6,7,8-HpCDD 13C12-1,2,3,4,6,7,8-HpCDF 13C12-1,2,3,4,7,8,9-HpCDF 13C12-1,2,3,4,7,8,9-HpCDF 13C12-0CDD 37C14-2,3,7,8-TCDD 13C12-2,3,7,8-TCDD	24-169% 25-181% 24-185% 21-178% 32-141% 28-130% 26-152% 26-123% 29-147% 28-136% 23-140% 28-136% 23-140% 28-143% 26-138% 17-157% 35-197% 25-164%
2,3,7,8-TCDF Confirmation	Each sample with 2,3,7,8-TCDF detected concentration above RL	Second dissimilar column meeting all analysis criteria	

RR: relative response

RRF: relative response factor

RSD: relative standard deviation

%D: percent difference

RT: retention time

m/z: ion abundance

SUMMARY OF METHOD QUALITY OBJECTIVES FOR METHOD 8081—PESTICIDES

Former Mill A MTCA Support

Quality Control Element	Frequency of Implementation	Acceptance Criteria
Initial Calibration	Until CCV fails	$r \ge 0.995, RSD \le 20\%, r^2 \ge 0.990$
Initial Calibration Verification (ICV)	After initial calibration	%Recovery = 85% - 115%
Continuing Calibration Verification (CCV)	Every 20 samples and at end of analytical sequence	$\text{\%Drift} \le 15\%, \text{\%D} \le 15\%$
Degradation Check Standard	Beginning of each 12-hour shift	%Breakdown ≤15%
Method Blank (MB)	1 per sample batch	Analytes < MDL
Laboratory Control Sample (LCS)	1 per sample batch	Solids: %Recovery = $50\% - 130\%$
Matrix Spike (MS)	1 per sample batch	%Recovery = 40% - 140%
Matrix Spike Duplicate (MSD)	1 per sample batch	RPD = 50%
Surrogates:	Every sample as specified	
Interference-Free Matrix		Interference-Free Matrix <u>Solids</u> : %Recovery = 50% - 130%
Project Sample Matrix		Project Sample Matrix %Recovery = 40% - 140%
Target Analyte Confirmation		RPD <u><</u> 40%

Everett, Washington

RSD: relative standard deviation

MDL: method detection limit

RPD: relative percent difference

SUMMARY OF METHOD QUALITY OBJECTIVES FOR SEDIMENT CONVENTIONALS

Former Mill A MTCA Support Everett, Washington

	Suggested Control Limit		
Quality Control Element	Total Organic Carbon	Total Solids	
Initial Calibration	r > 0.995	NA	
Continuing Calibrations	% recovery + 10%	NA	
Calibration Blank	Analytes < RL	NA	
Laboratory Control Sample (LCS)	% recovery + 20%	NA	
Matrix Spike (MS)	% recovery + 25%	NA	
Laboratory Triplicates	RSD < 20%	RSD < 20%	
Method Blank	Analytes < RL	Analytes < RL	

DATA QUALIFIERS Former Mill A MTCA Support

Everett, Washington

Qualifier	Description
J	The analyte was positively identified; the quantitation is an estimation.
U	The analyte was analyzed for, but not detected. The associated numerical value is at or below the reporting limit.
R	The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

П

PROPOSED SAMPLE LOCATIONS

Former Mill A MTCA Support

Everett, Washington

Page 1 of 3

Sample	Station	Loca (SPCS WA NAD83 Su	d Sample ation A N [4601] urvey Feet)	Estimated Mudline Elevation	Grab	Core Samples
Type Type 1 ²	Name ST-1	Easting 1298970	Northing 358699	(feet MLLW) ¹ -2.9	Samples None	(Feet Below Mudline) 1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-2	1298833	358825	-31.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-3	1298949	358783	-5.9	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-4	1299043	358781	-3.0	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-5	1298910	358850	-11.3	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-6	1299012	358850	-4.5	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-7	1299107	358863	-2.0	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-8	1298961	358938	-11.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-9	1299057	358945	-5.8	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-10	1299164	358938	-2.4	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-11	1299012	359026	-24.5	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	SC-12	1299113	359026	-5.3	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics

PROPOSED SAMPLE LOCATIONS

Former Mill A MTCA Support

Everett, Washington

Page 2 of 3

Sample	Station	Proposed Sample Location (SPCS WA N [4601] NAD83 Survey Feet)		Estimated Mudline Elevation	Grab	Core Samples
Туре	Name	Easting	Northing	(feet MLLW) ¹	Samples	(Feet Below Mudline)
Type 1 ²	ST-13	1299215	359026	-2.8	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-14	1299164	359113	-6.2	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-15	1299103	359153	-23.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-16	1299266	359113	-2.6	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-17	1299215	359201	-9.1	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-18	1299334	359160	-1.9	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-19	1299292	359228	-7.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-20	1299243	359295	-18.1	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-21	1299367	359289	-16.3	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics

PROPOSED SAMPLE LOCATIONS

Former Mill A MTCA Support

Everett, Washington

Page 3 of 3

Sample	Station	Proposed Sample Location (SPCS WA N [4601] NAD83 Survey Feet)		Estimated Mudline Elevation	Grab	Core Samples
Туре	Name	Easting	Northing	(feet MLLW) 1	Samples	(Feet Below Mudline)
Type 2 ³	ST-22	1298433	358033	0.0	Top 10 cm	None
	ST-23	1298229	358033	-10.3	Top 10 cm	None
	ST-24 ⁵	1298127	358210	-43.3	Top 10 cm	None
	ST-25	1298331	358210	-30.3	Top 10 cm	None
	ST-26	1298229	358386	-47.2	Top 10 cm	None
	ST-27	1298433	358386	-40.7	Top 10 cm	None
	ST-28	1298331	358563	-60.4	Top 10 cm	None
	ST-30	1298433	358739	-67.7	Top 10 cm	None
	ST-31	1298637	358739	-50.9	Top 10 cm	None
	ST-33	1298793	359122	-61.4	Top 10 cm	None
	ST-35	1299146	359268	-35.1	Top 10 cm	None
	ST-36	1299044	359445	-57.1	Top 10 cm	None
	ST-38	1299452	359445	-17.5	Top 10 cm	None
	ST-40	1299350	359621	-35.4	Top 10 cm	None
	ST-41	1299248	359798	-55.1	Top 10 cm	None
Type 3 ⁴	ST-29	1298535	358563	-45.8	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-32	1298739	358915	-55.0	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-34	1298988	359247	-50.8	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-37	1299248	359445	-36.5	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-39	1299208	359579	-49.4	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-42	1299452	359798	-37.1	Top 10 cm	4-foot interval from 0 to 4 feet

¹ MLLW: mean lower low water. Elevations estimated from multiple bathymetric surveys conducted by Clark Leeman Land Surveying between 1985 and 1989.

² Type 1 sample stations are where core samples will be collected and are located within the sawdust deposit. No grab samples are collected at these locations.

³ Type 2 sample stations are locations where only grab samples will be collected.

⁴ Type 3 sample stations are locations where both grab and core samples will be collected.

⁵ A duplicate grab sample will be collected at this location.

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 1 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
Type 1	ST-1	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-2	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-3	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-4	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-5	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-6	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-7	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-8	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification		Phenols, Dioxins
	ST-9	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	1	
	ST-10	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-11	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	SC-12	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins

¹ Depth below mudline

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 2 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
	ST-13	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-14	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-15	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-16	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-17	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-18	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-19	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-20	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-21	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins

¹ Depth below mudline

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 3 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
Type 2	ST-22	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-23	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-24	Yes	None	Top 10 cm	Grab Sample	SMS COCs, TOC
	ST-24D	Yes	None	Top 10 cm	Grab Sample	SMS COCs, TOC
	ST-25	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-26	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-27	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-28	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-30	Yes	None	Top 10 cm	Grab Sample	SMS COCs, TOC
	ST-31	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-33	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-35	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-36	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-38	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-40	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-41	Yes	None	Top 10 cm	None	SMS COCs, TOC

¹ Depth below mudline

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 4 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
Type 3	ST-29	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-32	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-34	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-37	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-39	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-42	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC

¹ Depth below mudline

ANALYTICAL METHODOLOGIES AND REPORTING LIMITS

Former Mill A MTCA Support

Everett, Washington

Page 1 of 3

Parameter	Sample Prep/Extraction	Analytical Method	Reporting ¹ Limit
Metals			
Antimony	ARI 515S	EPA 6010	5 ppm wet wt
Arsenic	ARI 515S	EPA 6010	5 ppm wet wt
Cadmium	ARI 515S	EPA 6010	0.2 ppm wet wt
Chromium	ARI 515S	EPA 6010	0.5 ppm wet wt
Copper	ARI 515S	EPA 6010	0.2 ppm wet wt
Lead	ARI 515S	EPA 6010	2 ppm wet wt
Mercury	ARI 515S	EPA 7471A	0.05 ppm wet wt
Nickel	ARI 515S	EPA 6010	1 ppm wet wt
Silver	ARI 515S	EPA 6010	0.3 ppm wet wt
Selenium	ARI 515S	EPA 7740	0.2 ppm wet wt
Zinc	ARI 515S	EPA 6010	0.6 ppm wet wt
Nonionizable Organic Compounds			
Aromatic Hydrocarbons			
Total LPAH			
Naphthalene	Sonication	EPA 8270D	20 ppb dry wt
Acenaphthylene	Sonication	EPA 8270D	20 ppb dry wt
Acenaphthene	Sonication	EPA 8270D	20 ppb dry wt
Fluorene	Sonication	EPA 8270D	20 ppb dry wt
Phenanthrene	Sonication	EPA 8270D	20 ppb dry wt
Anthracene	Sonication	EPA 8270D	20 ppb dry wt
2-Methylnaphthalene	Sonication	EPA 8270D	20 ppb dry wt
Total HPAH			
Fluoranthene	Sonication	EPA 8270D	20 ppb dry wt
Pyrene	Sonication	EPA 8270D	20 ppb dry wt
Benz[a]anthracene	Sonication	EPA 8270D	20 ppb dry wt
Chrysene	Sonication	EPA 8270D	20 ppb dry wt
Total benzofluoranthenes			
Benzo(b)fluoranthene	Sonication	EPA 8270D	20 ppb dry wt
Benzo(k)fluoranthene	Sonication	EPA 8270D	20 ppb dry wt
Benzo[a]pyrene	Sonication	EPA 8270D	20 ppb dry wt
Indeno[1,2,3-c,d]pyrene	Sonication	EPA 8270D	20 ppb dry wt
Dibenzo[a,h]anthracene	Sonication	EPA 8270D	20 ppb dry wt
Benzo[g,h,i]perylene	Sonication	EPA 8270D	20 ppb dry wt

¹ Reporting limits obtained from ARI laboratories

ANALYTICAL METHODOLOGIES AND REPORTING LIMITS

Former Mill A MTCA Support

Everett, Washington

Page 2 of 3

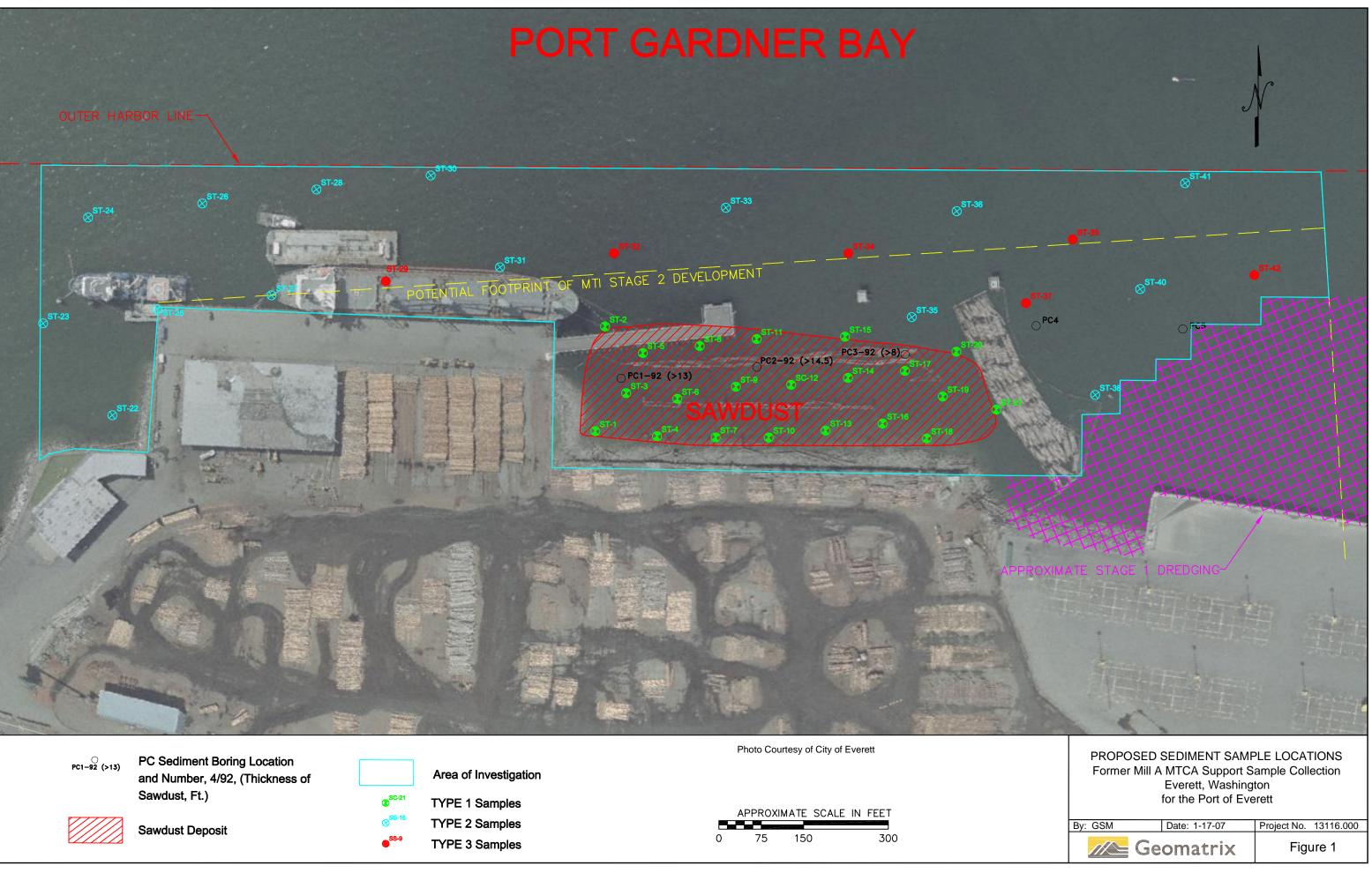
Parameter	Sample Prep/Extraction	Analytical Method	Reporting ¹ Limit
Nonionizable Organic Compounds			
Chlorinated Benzenes			
1,2-Dichlorobenzene	Sonication	EPA 8270D	20 ppb dry wt
1,4-Dichlorobenzene	Sonication	EPA 8270D	20 ppb dry wt
1,2,4-Trichlorobenzene	Sonication	EPA 8270D	20 ppb dry wt
Hexachlorobenzene	Sonication	EPA 8270D	20 ppb dry wt
Phthalate Esters			
Dimethyl phthalate	Sonication	EPA 8270D	20 ppb dry wt
Diethyl phthalate	Sonication	EPA 8270D	20 ppb dry wt
Di-n-butyl phthalate	Sonication	EPA 8270D	20 ppb dry wt
Butyl benzyl phthalate	Sonication	EPA 8270D	20 ppb dry wt
Bis[2-ethylhexyl]phthalate	Sonication	EPA 8270D	20 ppb dry wt
Di-n-octyl phthalate	Sonication	EPA 8270D	20 ppb dry wt
Miscellaneous			
Dibenzofuran	Sonication	EPA 8270D	20 ppb dry wt
Hexachlorobutadiene	Sonication	EPA 8270D	20 ppb dry wt
N-nitrosodiphenylamine	Sonication	EPA 8270D	20 ppb dry wt
Ionizable Organic Compounds			
Phenol	Sonication	EPA 8270D	20 ppb dry wt
2-Methylphenol	Sonication	EPA 8270D	20 ppb dry wt
4-Methylphenol	Sonication	EPA 8270D	20 ppb dry wt
2,4-Dimethylphenol	Sonication	EPA 8270D	20 ppb dry wt
Pentachlorophenol	Sonication	EPA 8270D	100 ppb dry wt
Benzyl alcohol	Sonication	EPA 8270D	100 ppb dry wt
Benzoic acid	Sonication	EPA 8270D	200 ppb dry wt

¹ Reporting limits obtained from ARI laboratories

ANALYTICAL METHODOLOGIES AND REPORTING LIMITS

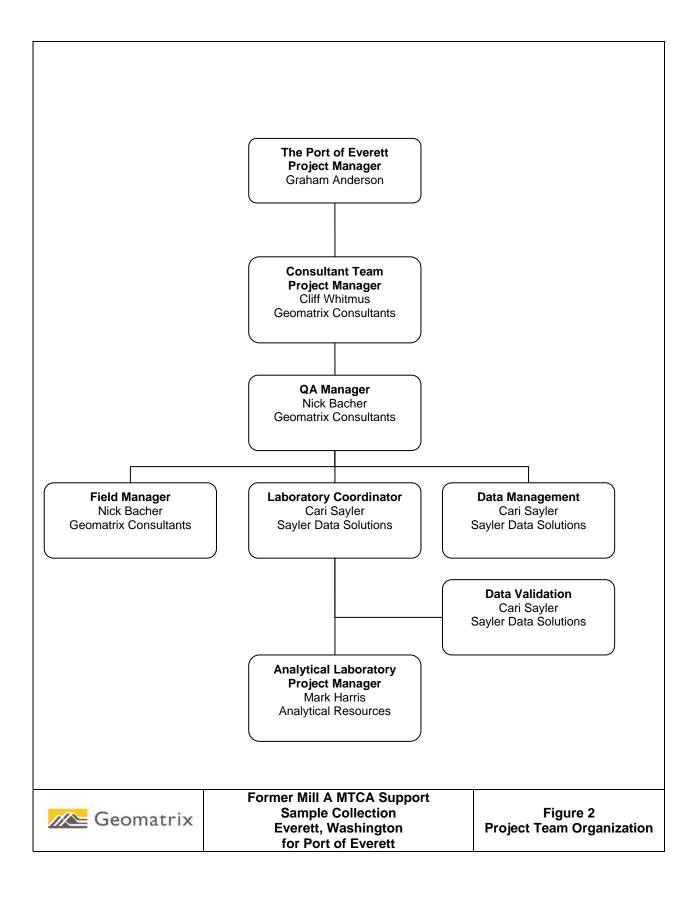
Former Mill A MTCA Support

Everett, Washington


Page 3 of 3

Parameter	Sample Prep/Extraction	Analytical Method	Reporting ¹ Limit
Pesticides/PCBs			
Total PCBs	Sonication	EPA Method 8082	40 ppb dry wt per Aroclor
Total DDT			
4,4'-DDE	Sonication	EPA Method 8081/PSEP	2 ppb dry wt
4,4'-DDD	Sonication	EPA Method 8081/PSEP	2 ppb dry wt
4,4'-DDT	Sonication	EPA Method 8081/PSEP	2 ppb dry wt
Aldrin	Sonication	EPA Method 8081/PSEP	1 ppb dry wt
Alpha-Chlordane	Sonication	EPA Method 8081/PSEP	1 ppb dry wt
Dieldrin	Sonication	EPA Method 8081/PSEP	2 ppb dry wt
Heptachlor	Sonication	EPA Method 8081/PSEP	1 ppb dry wt
Gamma-BHC (Lindane)	Sonication	EPA Method 8081/PSEP	1 ppb dry wt
Conventionals			
Total Organic Carbon		ARI SOP 602S	200 ppm
Total Solids		ARI SOP 639S	0.01%

¹ Reporting limits obtained from ARI laboratories


Figures

	APPROXI	MATE SCAL	E IN FEET
0	75	150	300

Appendix

Sample Collection Procedures

Sample Collection Procedures

Former Mill A MTCA Support Everett, Washington

Prepared for:

Port of Everett Everett, Washington

Prepared by:

Geomatrix Consultants, Inc. 6505 – 216th Street SW, Suite 100 Mountlake Terrace, Washington 98043 (425) 697-4340

March 2007

Project No. 13116.000

TABLE OF CONTENTS

Page

1.0	GENERAL	1
2.0	SAMPLE COLLECTION METHODS 2.1 GRABS 2.2 CORES	2
3.0	SAMPLE PROCESSING METHODS. 3.1 GRABS 3.2 CORES	5
4.0	EQUIPMENT DECONTAMINATION	8
5.0	SAMPLE DESIGNATIONS	9
6.0	SAMPLE HANDLING	0
7.0	FIELD QUALITY CONTROL REQUIREMENTS1	1
8.0	WASTE MANAGEMENT1	2
9.0	REFERENCE	3

TABLES

Table 1	Proposed Sample Locations
Table 2	Sample Analysis Schedule
Table 3	Sample Containers and Holding Times for Analyses

FIGURES

- Proposed Sampling Locations Example of Bore Log Figure 1
- Figure 2
- Figure 3 Example of Core Summary Log
- Figure 4 Example of Chain-of-Custody Form

SAMPLE COLLECTION PROCEDURES Former Mill A MTCA Support Sample Collection

1.0 GENERAL

Surficial sediment grabs and/or cores will be collected at up to 43 locations (42 sample locations plus one duplicate location; Figure 1). Table 1 presents a list of grab and core sampling locations, estimated mudline elevations, coordinates, and proposed core depths. Cores will be driven to the proposed sample depths or until refusal. If penetration is less than 50 percent of the proposed drive depth or if recovery is insufficient to meet the study needs, a second attempt will be made to obtain a satisfactory core. Station ST-24 will have a duplicate grab collected within approximately 2 m (6.5 feet) of the original grab location to serve as a field duplicate.

2.0 SAMPLE COLLECTION METHODS

This section outlines procedures for collection of grab sample and core samples.

2.1 GRABS

Surficial sediment samples will be collected using a modified stainless-steel, 0.2-m² pneumatically-operated grab sampler. The planned sampling locations are shown on Figure 1. Grab sample stations will be located with a Differential Global Positioning System set up on board the sampling vessel. The sampler will be decontaminated prior to arrival at the site in accordance with Section 4.0.

The sampler will be deployed and retrieved with minimum swinging out of the water. Excessive swinging can cause the sampler to trigger prematurely upon deployment and disturb the sediment sample upon retrieval. Swinging is minimized by heading the survey vessel into any waves when the sampler is out of the water and by attaching handling lines to the cable operated by the sampling team.

Because form drag and skin friction of the sampler can produce a bow wave when the device is lowered too quickly, it is essential that the sampler enter the sediment at a relatively slow speed. The lowering speed of the sampler upon entering the sediment must be 0.3 m/sec or less (~1 foot/sec). Lowering rates through the water column can be faster until the sampler is several meters from the bottom as long as the speed at sediment entry is 0.3 m/sec or less. Swell and chop can significantly degrade samples because of effects on the entry speed of the sampler (vertical ship motion alternately adds to and subtracts from entry velocity). These factors will be considered when swell and chop are present.

After the sampler contacts the bottom, it is initially retrieved slowly to permit the device to close properly. After the jaws are closed, a constant retrieval speed will be maintained to avoid jerking the sampler and possibly disturbing the sample. The sampler will be secured as soon as possible after being brought on board.

2.2 CORES

Sediment samples will be collected with the MudMoleTM pneumatic core sampler. The sampler consists of a 4-inch square aluminum core tube with a pneumatic-powered driving assembly attached to the top with a quick-release pin. The planned sampling locations are shown on Figure 1. Core sample stations will be located with a Differential Global Positioning System

set up on board the sampling vessel. Borings at the planned locations have mudline elevations ranging from approximately -2 feet to -55 feet mean lower low water (MLLW). All core tubes will be cleaned before being taken into the field and the ends sealed to prevent contamination. The decontamination procedure is described in Section 4.0.

The core sampler uses the impact from the linear pneumatic hammer delivering approximately 300 blows per minute to drive the core tube into the sediment. The bottom of each core tube will be fitted with a hinged core catcher to prevent loss of the sediment during extraction. Air to operate the pneumatic corer will be provided by an industrial air compressor located on the deck of the sampling vessel. The sampler will be operated by personnel on the sampling vessel in shallow waters, and by a diver in deeper waters.

After reaching the selected sampling location, the core sampler will be lowered to the bottom using a winch. Once the core tube has entered the sediment, the operator will turn the air hammer on. At approximately 2-foot intervals, the operator will suspend the driving operation and measure the penetration and recovery of the core. The internal recovery will be measured by lowering a weighted tape measure down the inside of the core tube until the weight contacts the surface of the sediment. The penetration will be measured using a second tape measure and reference marks on the outside of the core tube. The penetration and recovery information will be recorded during the drilling operation. During diver operations, the penetration and recovery readings are relayed to the sampling vessel by means of a wireless underwater diver communication system. After driving the core to the desired depth, the air hammer will be turned off. The final set of penetration and recovery measurements will be made, the actual sampling position will be logged, and the lifting winch will be used to extract the core.

The paired penetration and recovery measurements will be used to account for thinning and compaction of the sediments during driving. An on-deck top-of-sediment measurement from the top of the core tube to the surface of the sediment within the core tube will be made to account for any movement or loss of sediment in the core tube as the core catcher closes during extraction. The penetration and recovery data and the on-deck top-of-sediment measurement will be entered into a spreadsheet program to generate a bore log (Figure 2). Each bore log will include a bore graph of penetration versus recovery that can be used during processing to identify the *in situ* depth of different sediment horizons. The X axis on the bore graph is the distance to a sediment layer (in feet) referenced to the top of the tube, and the Y axis is the *in situ* depth (feet) below mulline. The solid line is the on-deck recovery (used in the processing of the core), and the gray dashed line is the *in situ* recovery.

The bore logs for this project will have predefined *in situ* sampling depths entered in the table on the right side of the bore log (Figure 2). The distance that each *in situ* sampling depth is from the top of the tube will be estimated using the on-deck recovery curve. The *in situ* depth of a sediment structure or a sampling interval can be interpolated from the on-deck recovery information using the measured distance from the top of the tube.

The bore log with bore graph will be printed either on board the sampling vessel or in the field laboratory from data recorded during the core driving. The field data form or the completed bore log will be kept with the core during transport and processing. The bore log provides a record of each core. Additional cores may be collected at a station if the depth of penetration or the recovery is insufficient to meet the sampling and analysis needs of the study.

3.0 SAMPLE PROCESSING METHODS

This section describes procedures for sample handling and processing.

3.1 GRABS

After the sampler has been secured, the sediment sample will be inspected carefully before being accepted. The following acceptability criteria should be satisfied:

- The sampler is not overfilled with the sample such that the sediment surface is pressed against the top of the sampler.
- Overlying water is present (indicates minimal leakage).
- The overlying water is not excessively turbid (clear water indicates minimal sample disturbance).
- The sediment surface is relatively flat (indicates minimal disturbance or winnowing).
- The penetration depth is at least 15 cm for a 10-cm-deep surficial sample.

If a sample does not meet any one of these criteria, it will be rejected.

If the sample is acceptable, the overlying water must be removed. The water is slowly siphoned off near one side of the sampler with a minimum of sample disturbance. Once the overlying water has been removed, the surficial sediment can be removed. Sediment samples from the grabs will be placed directly from the grab into 1-liter glass jars (i.e., no homogenization). Sample material that is, or has been, in direct contact with the grab sampler will not be placed in the sample container.

Table 2 lists the proposed grab sample locations and an initial sample analysis schedule. Approximately 1 liter of sediment will be needed for all the required analyses. Table 3 lists by analyte the holding time requirements and required sample containers.

3.2 CORES

Core processing will follow the health and safety requirements specified in the Corporate Health and Safety Plan. The handling and processing of sediment cores will occur within a secured exclusion zone using Level D protection. Only one core tube will be handled and processed at a time. Cores will be held for a maximum of 24 hours before processing.

Unprocessed cores held more than 4 hours will be chilled with ice. Core tubes will be transported and stored horizontally.

Procedures will be followed during the processing of the cores to minimize the effects of carrydown of shallower and potentially more contaminated sediments into deeper, less-contaminated sediments. Carry-down may result from wall friction between the sediment and the inside surface of the core tube. This form of carry-down is evident as a bending or a downward deflection of a horizontal soil stratum near the edges of the core tube. Carry-down may also be the result of sediment with low cohesive properties collecting behind the hinged core catcher and being carried down one side of the core tube. Carry-down may contaminate clean, deeper strata with contaminated sediments from shallower strata, confusing the interpreted distribution of chemical contamination within a core.

The steps in processing core tubes to minimize the effects of carry-down are as follows. The core tube will be placed on sawhorses and oriented with the hinged side of the core catcher to the side. The uppermost side of the core tube will be removed using a circular saw. The depth of cut on the saw will be set to just slightly over the wall thickness of the aluminum tube. A thin layer (approximately 1-cm, or 0.38-inch thick) will be removed from the exposed surface of the sediment with a decontaminated stainless-steel scraper. The surface layer of sediment will be removed starting at the bottom of the core tube and moving toward the top. This method minimizes potential contamination of clean, deeper layers with material from shallower, potentially more contaminated layers.

The exposed sediment surface of the core will be photo-documented using either still photos or video. A qualified field geologist will log each core for Universal Soil Classification and note the presence of any soil structures, odors, or visible oil sheens. Sediment descriptions and the interpreted *in situ* depths of each sediment horizon will be transcribed into a summary log (Figure 3).

Table 2 lists the proposed core locations, sample segments, and an initial sample analysis schedule. Stainless-steel plates will be inserted between each 1-foot *in situ* depth interval. Sediments from each segment will be collected from the center of the core starting at the inserted plate marking the top of the segment. Sediment touching the sides of the core tube will be left in place. Approximately 1 liter of sediment will be needed for all the required analyses. Table 3 lists by analyte the holding time requirements and required sample containers. Sediment will be collected from each segment starting from below each inserted plate and

extending down the core tube until sufficient sample volume is obtained. The distance down the tube that sediment is removed will be recorded to provide information on the actual collection interval for each sample.

Sediment samples from the cores (either for initial analysis or archiving) will be placed directly from the core tube into 1-liter glass jars (i.e., no homogenization). The remaining sample volume will be placed in a 1-liter glass sample jar.

4.0 EQUIPMENT DECONTAMINATION

Sample containers, instruments, working surfaces, technician protective gear, and other items that may come into contact with sediment sample material must meet high standards of cleanliness. Sample containers will be provided by Analytical Resources, Inc., and are precleaned, certified, and individually labeled with a lot number traceable to a Certificate of Analysis.

All core tubes and sediment-handling equipment will be cleaned and decontaminated prior to arrival at the site. Aluminum core tubes will be discarded after use. The grab sampler will be pre-cleaned prior to arrival at the site and cleaned between each use using the procedure described below. All equipment and instruments used to remove sediment from the sampler or to homogenize samples will be stainless steel and will be decontaminated before and in between each use. The Geomatrix standard decontamination procedure for the grab sampler, core tubes, and other sample handling equipment is modeled after Puget Sound Estuary Program (PSEP) protocols (PSEP, 1997); however, the decontamination procedure will not use any acid or solvent rinses (the final rinse will use distilled water). The decontamination procedure is as follows:

- 1. Prewash rinse with tap water.
- 2. First wash with solution of tap water and Alconox soap (brush).
- 3. Second rinse with tap water.
- 4. Second wash with solution of tap water and Alconox soap (brush).
- 5. Final rinse with tap water.
- 6. Final rinse with distilled water.
- 7. Coverage (no contact) of all decontaminated items with aluminum foil.
- 8. Storage in clean, closed container prior to use.

5.0 SAMPLE DESIGNATIONS

All samples will be assigned a unique identification code. Core and grab samples will be designated by a numeric code consisting of a project number code and sample number code (e.g., 1311600001). The sample labels will be sequentially printed in the field starting at sample 1211600001. Using a sequentially-numeric code streamlines the sample process and reduces the risk of mislabeled sample jars.

6.0 SAMPLE HANDLING

Unopened and unprocessed core tubes will be kept in sight of the sampling crew or in a secure area at all times. Sediment samples also will be kept in sight of the sampling crew or in a secure, locked vehicle at all times. Samples will be transported to the Geomatrix office at the end of the day for storage (samples will be placed in coolers with "blue ice" or frozen) until transferred to the testing laboratories. Transfer of samples from Geomatrix custody to the laboratory will be documented using chain-of-custody procedures (Figure 4). If someone other than the sample collector transports samples to the laboratory, the collector will sign and date the chain-of-custody form and insert the name of the person or firm transporting the samples under "transported by" before sealing the container with a Custody Seal.

Samples not scheduled for the initial analysis round will be archived and stored at the analytical laboratory in a secure area. Storage requirements for all archived samples will include freezing and storage of the samples in a temperature-monitored freezer at -18° C.

7.0 FIELD QUALITY CONTROL REQUIREMENTS

Data and log forms produced in the field will be reviewed daily by the person recording the data, so that any errors or omissions can be corrected. All completed data sheets will be removed daily from the field clipboard and photocopied; the original data sheets will be filed in a fireproof file cabinet and the photocopies stored in the project file. All data transcribed from field forms into electronic forms and tables will be 100 percent verified for accuracy and freedom from transcription errors.

8.0 WASTE MANAGEMENT

All waste derived during this investigation will be placed in proper containers, labeled, characterized, and disposed of by the Port of Everett or Geomatrix in accordance with the appropriate regulations.

9.0 **REFERENCE**

PSEP (Puget Sound Estuary Program), 1997, Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound: Prepared for the U.S. Environmental Protection Agency and Puget Sound Water Quality Action Team.

Appendix Tables

PROPOSED SAMPLE LOCATIONS Former Mill A MTCA Support

Everett, Washington

Page 1 of 3

Sample Type	Station . Name	Loca (SPCS WA NAD83 Su	A N [4601] rvey Feet)	Estimated Mudline Elevation (feet MLLW) ¹	Grab Samples	Core Samples (Feet Below Mudline)		
Type 1 ²	ST-1	Easting 1298970	Northing 358699	-2.9	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-2	1298833	358825	-31.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-3	1298949	358783	-5.9	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-4	1299043	358781	-3.0	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-5	1298910	358850	-11.3	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-6	1299012	358850	-4.5	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-7	1299107	358863	-2.0	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-8	1298961	358938	-11.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-9	1299057	358945	-5.8	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-10	1299164	358938	-2.4	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	ST-11	1299012	359026	-24.5	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		
	SC-12	1299113	359026	-5.3	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics		

PROPOSED SAMPLE LOCATIONS Former Mill A MTCA Support

Everett, Washington

Page 2 of 3

Sample	Station	Loca (SPCS WA	d Sample ation A N [4601] urvey Feet)	Estimated Mudline Elevation	Grab	Core Samples
Туре	Name	Easting	Northing	(feet MLLW) ¹	Samples	(Feet Below Mudline)
Type 1 ²	ST-13	1299215	359026	-2.8	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-14	1299164	359113	-6.2	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-15	1299103	359153	-23.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-16	1299266	359113	-2.6	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-17	1299215	359201	-9.1	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-18	1299334	359160	-1.9	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-19	1299292	359228	-7.7	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-20	1299243	359295	-18.1	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics
	ST-21	1299367	359289	-16.3	None	1-foot intervals from 0 to 15 feet depending on visual sample characteristics

PROPOSED SAMPLE LOCATIONS

Former Mill A MTCA Support

Everett, Washington

Page 3 of 3

Sample	Station	Proposed Loca (SPCS WA NAD83 Su	ntion A N [4601]	Estimated Mudline Elevation	Grab	Core Samples
Туре	Name	Easting	Northing	(feet MLLW) 1	Samples	(Feet Below Mudline)
Type 2 ³	ST-22	1298433	358033	0.0	Top 10 cm	None
	ST-23	1298229	358033	-10.3	Top 10 cm	None
	ST-24 ⁵	1298127	358210	-43.3	Top 10 cm	None
	ST-25	1298331	358210	-30.3	Top 10 cm	None
	ST-26	1298229	358386	-47.2	Top 10 cm	None
	ST-27	1298433	358386	-40.7	Top 10 cm	None
	ST-28	1298331	358563	-60.4	Top 10 cm	None
	ST-30	1298433	358739	-67.7	Top 10 cm	None
	ST-31	1298637	358739	-50.9	Top 10 cm	None
	ST-33	1298793	359122	-61.4	Top 10 cm	None
	ST-35	1299146	359268	-35.1	Top 10 cm	None
	ST-36	1299044	359445	-57.1	Top 10 cm	None
	ST-38	1299452	359445	-17.5	Top 10 cm	None
	ST-40	1299350	359621	-35.4	Top 10 cm	None
	ST-41	1299248	359798	-55.1	Top 10 cm	None
Type 3 ⁴	ST-29	1298535	358563	-45.8	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-32	1298739	358915	-55.0	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-34	1298988	359247	-50.8	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-37	1299248	359445	-36.5	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-39	1299208	359579	-49.4	Top 10 cm	4-foot interval from 0 to 4 feet
	ST-42	1299452	359798	-37.1	Top 10 cm	4-foot interval from 0 to 4 feet

¹ MLLW: mean lower low water. Elevations estimated from multiple bathymetric surveys conducted by Clark Leeman Land Surveying between 1985 and 1989.

² Type 1 sample stations are where core samples will be collected and are located within the sawdust deposit. No grab samples are collected at these locations.

³ Type 2 sample stations are locations where only grab samples will be collected.

⁴ Type 3 sample stations are locations where both grab and core samples will be collected.

⁵ A duplicate grab sample will be collected at this location.

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 1 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
Type 1	ST-1	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-2	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-3	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-4	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-5	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-6	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-7	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-8	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-9	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-10	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-11	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	SC-12	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins

¹ Depth below mudline

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 2 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
	ST-13	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-14	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-15	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-16	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-17	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-18	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-19	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-20	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins
	ST-21	None	15 feet	1-foot intervals from 0 to 15 feet depending on visual classification	Dependent on Visual Classification	Phenols, Dioxins

¹ Depth below mudline

SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 3 of 4

Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
Type 2	ST-22	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-23	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-24	Yes	None	Top 10 cm	Grab Sample	SMS COCs, TOC
	ST-24D	Yes	None	Top 10 cm	Grab Sample	SMS COCs, TOC
	ST-25	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-26	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-27	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-28	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-30	Yes	None	Top 10 cm	Grab Sample	SMS COCs, TOC
	ST-31	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-33	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-35	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-36	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-38	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-40	Yes	None	Top 10 cm	None	SMS COCs, TOC
	ST-41	Yes	None	Top 10 cm	None	SMS COCs, TOC

¹ Depth below mudline

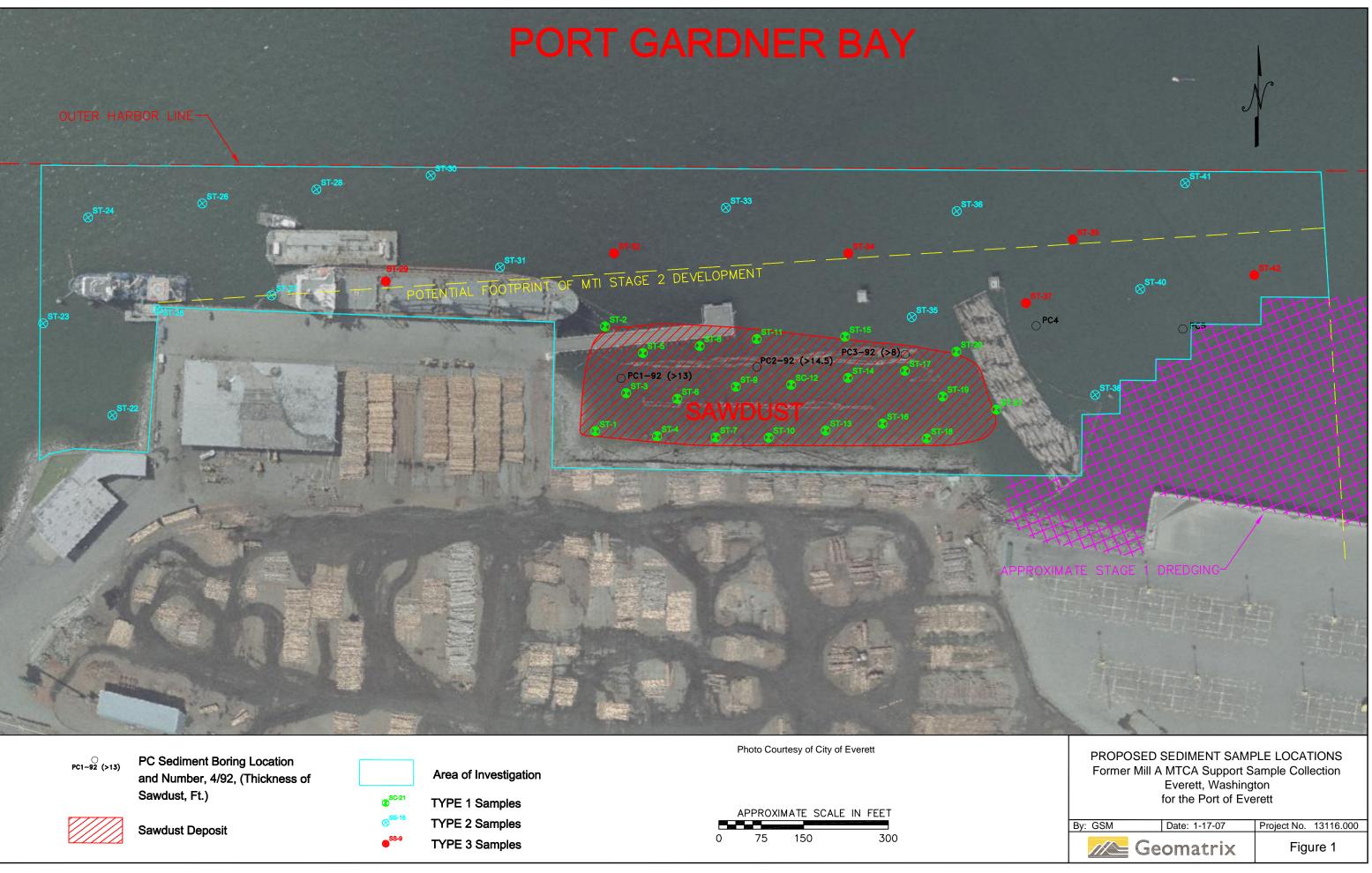
SAMPLE ANALYSIS SCHEDULE Former Mill A MTCA Support

Everett, Washington

Page 4 of 4

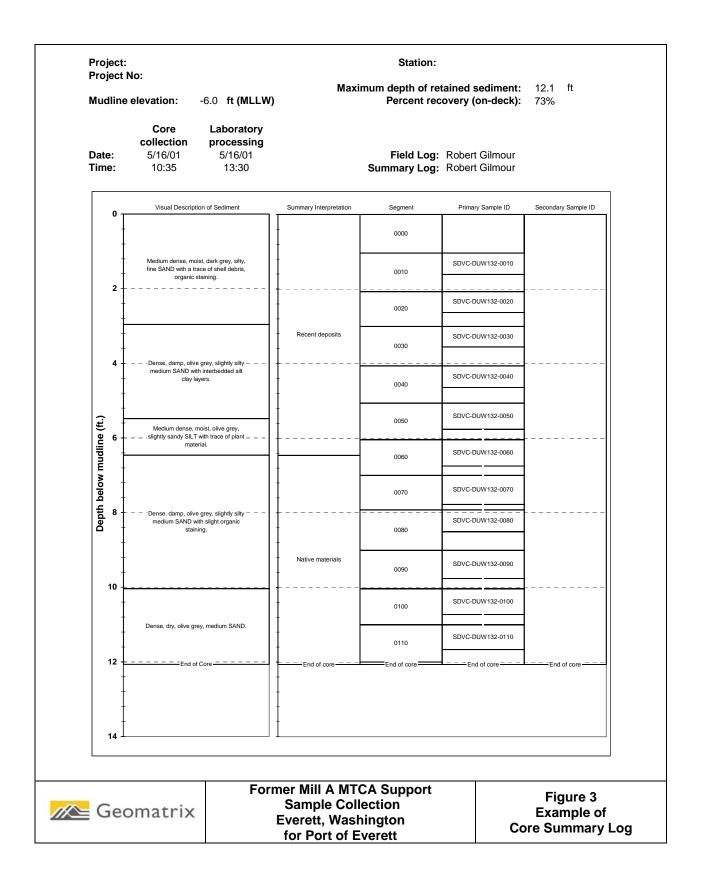
Sample Type	Station Name	Grab Sample	Proposed Coring Depth ¹	Samples Collected	Initial Sample Interval Analyzed	Analyses ²
Type 3	ST-29	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-32	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-34	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-37	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-39	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC
	ST-42	Yes	8 feet	Grab Sample: Top 10 cm Core Sample: 4-foot interval from 0 to 4 feet below mudline	Grab Sample	SMS COCs, TOC

¹ Depth below mudline


SAMPLE CONTAINERS AND HOLDING TIMES FOR ANALYSES Former Mill A MTCA Support

	Initial Roun	d of Analyses	Additional Rounds of Analyses			
Analyte	Holding Time	Sample Containers	Holding Time	Sample Container		
Total Organic Carbon (TOC)	14 days (4°C)		6 months (-18°C)			
Total Solids	14 days (4°C)		6 months (-18°C)			
Semivolatiles, PCBs, dioxins	14 days to extraction (4°C) 40 days after extraction (4°C)	1-liter glass (combined)	1 year (-18°C) 14 days to extraction (4°C) after thawing 40 days after extraction (4°C)	1-liter glass (combined; with sufficient headspace in sample container to allow for expansion during freezing)		
Metals (except mercury)	6 months (4°C)		2 years (-18°C)			
Mercury	28 days (-18°C)		28 days (-18°C)			

Everett, Washington


Appendix Figures

	APPROXI	MATE SCAL	E IN FEET
0	75	150	300

5 – 216 ^{°°} Street SW, Suite 100 ntlake Terrace, WA 98043) 697-4340										_,	
				Anal	ysis (Cont	ainer	s			
Place COC Form Number Label Here or write in seq. number below.											Recorded by:
		PCBs/TOC	ме								Checked by:
		PCBs	Archive								
Place Sample ID Label Here	Date:										
or Write ID Number Here	Time:										Number of containers
Disco Conselo ID Labol Llova	Date:										
Place Sample ID Label Here or Write ID Number Here	Time:										Number of containers
	11110.										
	Date:				╈						
Place Sample ID Label Here or Write ID Number Here											Number of containers
	Time:										
	Date:				+			+			
Place Sample ID Label Here or Write ID Number Here											Number of containers
	Time:										Number of containers
	Date:				_			_			
Place Sample ID Label Here or Write ID Number Here											
	Time:										Number of containers
	Date:				_						
Place Sample ID Label Here or Write ID Number Here											
	Time:										Number of containers
	Date:										
Place Sample ID Label Here	Date.										
or Write ID Number Here	Time:										Number of containers
Laboratory Sample Receipt			Name:	Relinqu	shed E	By	Т	ransp	orted I	Nam	
Number of Sample Containers in Shipping Container			Date: Time: Name:							Date Time Nam	e:
Shipping Container Chain of Custody Seal Intact (Y/N)			Date: Time: Name:				+			Date Time Nam	e:
Receipt Condition Comments (e.g., thawed, warm)			Date: Time:							Date Time	e.
	ormer N		MT	<u>~ ^ (</u>	<u> </u>		rt				Figure 4

Appendix B

Core Sample Collection Field Forms

[ST-01]

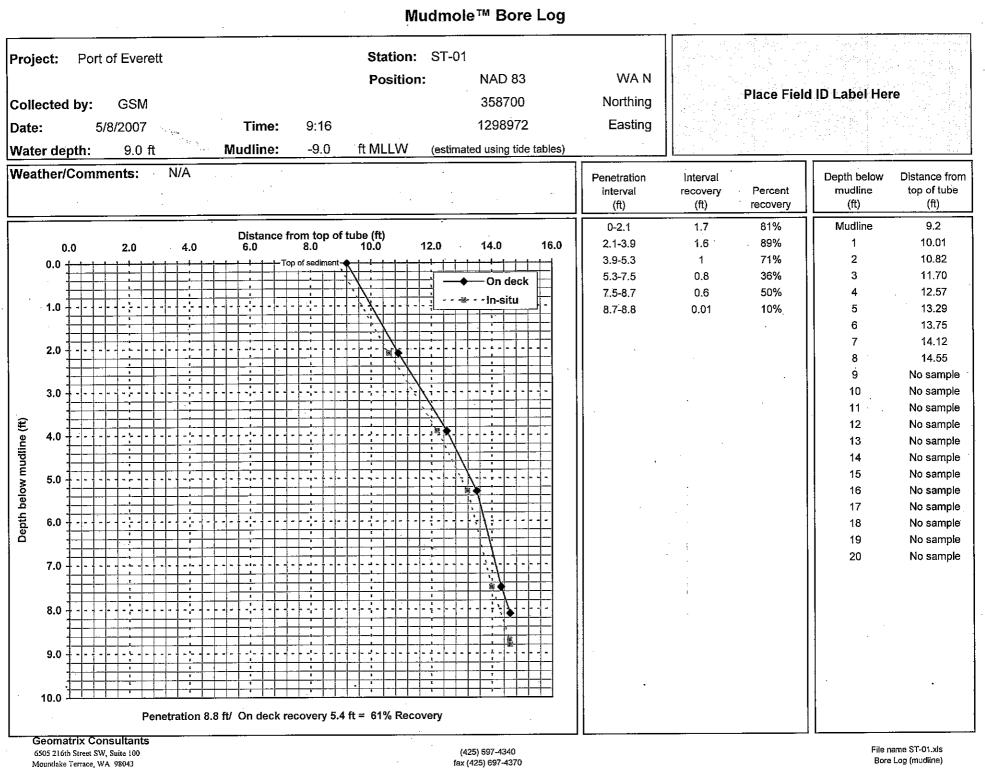
Geomatrix Consultants MudMole Bore Log Collection Information

Date:	5-8-07	Place Field (ID)Label Here
Time:	0916	
Project	Port of Everett Former M	till A Recorder: <u>ℰಽ</u> ∽
Station Name:	57 - 01	Position Information
Tube Length (ft):	14.6	Coordinate Datum:
Water Depth (ft):	9.0	Northing 3587.00
Est. Tide Height (ft)	(MLLV	V) Easting 1298972
Est. Mudline:	(MLLV	ע) On Deck Top of Sediment ୁ ୁ)
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
12.5	12.9	
10.7	11.3	
9-3	10.3	· · · · · · · · · · · · · · · · · · ·
7_1	9.5	
5.9	8.9	°
5.8	8.9	retusal
		·
	· .	
	·	
		· · · · · · · · · · · · · · · · · · ·

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

.

98043


Mudmole™ Core Description Form

•

Project:	Port of Everett			
Station:	ST-01			Place Field ID Label Here
Date: Start Time:	Core collection 5/8/2007 9:16	Laboratory 5 8 07 1 0 : 00	Comments:	
All distances a	Laboratory processing by: re measured from top of core tube.	NPB		· · · · · · · · · · · · · · · · · · ·
Distance ft	Visual sample des	cription	Distance top/bottom	Geomatrix Consultants
π 9.2 · · · - - -	Top of sediment 9,2-10.4: SW: vel w/gravel. Saud, modern V. trace V. trace V. trace V. trace V. trace Salt-pop S% 1075-157 Salt-pop S% 1075-157 Wood 10,4-11.5- SP: poo Sund, gy is con deutse, 5-1070 Sult 1	H-graded black, toly loose. H2S odor. , Forgravel, silty 2020 OTB, trave chips	9.2	Geomatrix Consultants 13116000016 Description Form Initials: <u>ليك</u> Date: <u>Cover 07</u> Time:
	11.5-13.3: 57 57: p sand	orly graded		
	5ml 13 12556 med 80% 517+ 577	L chips. Sand 1070 5-10% Force rd. rounded. Hy gray, mod. Sand is med to		

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370 Core Description Form Field version

Bore Log (mudline)

fax (425) 697-4370

[ST-02]

Geomatrix Consultants MudMole Bore Log Collection Information

des des

.

		Place Field ID Label Here
Date:	5-14-07	
Time:	0836	
Project:	Port of Everett Former Mill	A Recorder: 63 m
Station Name:	57-2	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	31.4	Northing 358824
Est. Tide Height (ft)	(MLLW)	Easting 1298830
Est. Mudline:	(MLLW)	On Deck Top of Sediment 7.7
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
	·	
17.4	17.9	
13.1	13.8	
10.4	11.2	
7:3	8.4	
6.8	7.9	very stow pen
6.4	7.5	retusal
· · · ·		
	······	
*		
	· · · · · · · · · · · · · · · · · · ·	

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

_ ----

Mudmole[™] Core Description Form

Project:	Port of Everett		
Station:	ST-2		Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/14/2007 5/14/0구 8:36 14のつ Laboratory processing by: NPB	Comments:	
All distances an Distance	re measured from top of core tube.	Diotonas	
t	Visual sample description	Distance top/bottom	Geomatrix Consultants
. <u>6</u>	Top of sediment		13116000038
	7.6-8.8. crushed shells	12.0	Description Form
· .	moderatoly denses		Initials: CJW
	moderntdy denses	17.2	Date: 14 may 67 Time: 1400
	trace back foregs.	13.0	Date Where of Inne: 1960
	70% shells,	/	1
	20% 517+,		
	10% borts,		<i>i</i>
	· • ·		
	8.8-9.9. wood chops and		
	69.5' angular, orme layer 45% chips of yellow trings 45% barles were smell. 10% 574500.		
	295' angulari,		
	course layer 45% chips		
	of your may 452 only		
	9.8-10.7: ML: Silt, Joan, mod.		
	soft, shells.		
	9.8-10.7: ML: Silt, gray, mod. soft, shells. Sold silt, 15% shells, 5% faced		
	alle 5% to sand		
	mile # 25.	·	
	gince " ~		
	10.7-13.8: San Just, Slack,		
	- San Sussi, Scattered		
	burk pieces, some		
	STTT. Souching	¥	
	85% brok, 10%		
	85 ho story		
	517, 5% bork frace to mod Has		
	Trace .		
	13.8-16.3: Mr. Silt with send,	/	-
	gray mod sost,		
	An 20% Diece of word		· · ·
	AND Si 10%. In Ale norma halas		
`	13.8-16.3: Mc. Sitt with send, gray mod soft, Whole shells large for 51+20% Piece of read for 51+10% with momentules Smill, 10% with momentules		
	it a lat of anti-	<u>V</u>	<u>I</u>
omatrix Cons 05 216th St. SW, S	uite 100 (425) 697-4340	• .	Core Description Form
ntlake Terrace, W.	A 98043 PORT 4 Street 5 fax (425) 697-4370		Field version
	gray, most dure. Same.		

oject:	Ρ	ort	of E	ver	ett															ST-2	2													
																P	osi	tio	ו:				\D 8				/A N			Dia	oo Ciol	תו גו	Label He	
ollected	d by	:	G	SM																		35	882	24		Nor	hing			r ia	LE LIE	עו טו	сарет пе	ſe
ate:		5/1	4/2	200	7					Tin	ne:		8:	36								129	988	30		Ea	sting							
ater de	pth	:	3	1.4	ft				Mu	dli	ne:		-3	1.4		ft N	ILL	w	(estin	nate	ed us	ina t	tide ta	bles)								1657 1111 년 1997 - 1997 년 1997 - 1997 년	
eather						N/	Δ						· -																			<u>ייי</u> ר		
oution																			_							Penetra inter (ft)	al	Inter recov (ff	very		rcent overy		epth below mudline (ft)	Distance fi top of tuk (ft)
									r	liet	200	n fro	um t		sf fui		¥\									0-3.	2	2.	7	8	4%	1	Mudline	7.6
(0.0				5	.0			L	1(0.0	- 10		oh c	1	be (f 5.0	4			20	.0				25.0	3.2-7		4.		9	5%		1	8.44
0.0		1		i	-Тор	of se	edime	nt 🖏		<u> </u>	<u>.</u>	1	1		1	}		 	-		ļ	1		·····	-	7.5-1		2.			6%		2	9.29
	\downarrow					s s s				\square	, , ,	 									•	0	n de	ck	1	10.2-1		2.			0%		3	10.13
						s s					* *					3 3				~ "	-@~	- <i>-</i> In	-situ	ı [13.3-1		0.			00%		4	11.06
2.0	+		ļ <u>-</u> -	 .		5 5 = n 5	+			A	а аст н а			~ ~		1 1** * *	~ ~	* * *	۲ ۳۳						. -	13.8-1	4.2	0.	4	10	00%		5	12.02
	1					1 1					\					f f									_							· ·	6	12.97
			<u> </u>			• •					R					۶ ۱									_								7 8	13.92 14.88
4.0				~ ~	• •	; ;= =				. .	,)	x -	<u>ا</u> - ۲			1 120 20 7 1			× •					• • • •	.							•	0 9	14.80
	1										1					, , ,				 	l							:					-9 10	15.84
						; ;				-	• •		Δ		_					I					_	11						1 ·	11	17.72
6.0	+					5 3 m m			• • •		• • •			× -		r 1			• •						•			-					12	18.63
	1	-									1 1 -					; ;		-							_								13	19.53
	<u>+</u>			·		x 4					2					5 5																	14	20.50
8.0	+.,					: :					* * *	.		.	.>	<u> </u>	{					. u .	in		-								15	No samp
6.0 8.0 10.0	1				~ <u>~</u>	4. 1 1					1					1									_								16	No samp
	<u> </u> .					1 1	$\left - \right $			\vdash	:											· · · · · · ·		-+	-								17	No samp
10.0	- · ·				• • •	f 5 m m	ļ.,				* * *						. \								• ·								18	No samp
-	1					; ; ;					1 1					1	"	\sum															19	No samp
	+					- F	-	-		┢			-	-		s			<u> </u>	,			_		-								20	No samp
12.0	Ţ.,				ļ	1 . ; * *	• • •				; 4 * *					۲۰۰ × ۱			<i>.</i>]		,		• • •		-									
	1					1					<u>.</u>					۰ ۱					1 <u>.</u> 1				1		·						:	
	+	+	\vdash		-		-			┝			+	-								$\left - \right $			·								•	
14.0	1					f 5					* z + -					, 1 1 1									u u									
	1					•					•					, ,					2 246 1	··			_								1	
		-		~~ <u> </u>	<u> </u>	• • •	-	-	-	\vdash	• · ·	-	<u> </u>			;	-								_									
16.0	1	ĺ	i			1					1				_	;				1						.		•						

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

1

[ST-03]

	Geomat	rix Consultants Muo	dMole Bore Log Collection Information
	Date: Time:	5-7-07	Place Field ID Label Here
·	Project:	Port of Everett Former Mill	A Recorder: 6547
	Station Name:	57-03	Position Information
	Tube Length (ft):	20.6	Coordinate Datum:
	Water Depth (ft):	9.5	Northing <u>358785</u>
	Est. Tide Height (ft)	(MLLW)	Easting 12 9 8 9 4 7
	Est. Mudline:	(MLLW)	On Deck Top of Sediment //、O
	Comments:		
	Penetration Tape Reading	Recovery Tape Reading	Comments
	18.2	18-6	
	15.9	17.0	
1	12.3	15.6	
	9.8	14-6	slow penetration
	6.8	13.4	0
	5.0	12.5	
	3-9	11-7	
	2.9	10.9	very dow
			、 、
•			
		· · · · · · · · · · · · · · · · · · ·	
i			
	<u></u>		· · · · · · · · · · · · · · · · · · ·

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

· · · · · · · · · · · · · · · ·

.

Port of Everett **Project:** Station: ST-03 Place Field ID Label Here Core collection Laboratory 5/7/2007 Date: 517107 Start Time: 11:23 12:25 **Comments:** NPB Laboratory processing by: All distances are measured from top of core tube. Distance Distance Samula ID lahala Visual sample description ff top/bottom Geomatrix Consultants 10.9 Top of sediment 13116000003 109-12.4 Sm with wood chips. 25% word 101 silty same block most chops 4" H2 S odor, mod loose, 55% son rea, last dips to 1/4," and de composition Description Form Initials: CJW 12' large Date: 7 mm 07 Time: 1225 Geomatrix Consultants J.4 12.4.12.9 SP gray medition sand. 13116000004 Description Form 12.9-13.3 wood chops Fresh up to 1/2" and black Sand. Initials: C J 15,1 Date: 7 may 07 Time: 1225 13.3- 13.8; 5P, gray, courses and Geomatrix Consultants 13116000005 16. 13.8-18.4 black, slightly decomp. woodchrps with **Description Form** 0.4 Initials: Csv med-cr black sand Date: 7 may 07 Time: 1225 Geomatrix Consultants moderatz to Sound words worderatz to Hz S order. Simon 46.6 13116000006 **Description Form** Smin Initials: Uw í٩. 18:4-19.1: olve gray green, wood drips (frue < 1/4") Date: 7 may 07 Time: 1275 Sow, gray sand, mod. Just H2S volor, Sold chips 5-15% 20% sand. 19.1-19.9. SP: gray, med dense, 10% Fresh wood chip 10% to 1/2" Sound 15 Five - med. 19.9-20,6: 57 gray, med dences medness to fine MCS Environmental, Inc. (425) 697-4340 Core Description Form

6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370 Field version

Proje	ct:	Po	ort o	of E	ver	ett														ior			T-(03						2.214.22 ACC	ann 200 (C. Dharteachail Charteachail				
																		P	os	itic	on:				NA	D 8	33		WA N	ALCORACION ALCORACION			DI FI		
olle	cted	by	:	G	SM																				35	878	5		Northing	und Samuelle de			Place Fiel	ld ID Label He	re
ate			5/	7/2(007						Tin	ne	:	1	1:2	3	•								129	9894	47		Easting	0.0010405					
		th			9.5				1	Mu								F+ N.	A I 1	W		1-		1 .				(مما		1002000					
	r deļ	-									<u>a</u>	ne:			9.5)		IL IV		_ V V		(e	estin	nate	ea us	ing t	ide tal	oles)	1		sellen dan ber	lêt jarê		n na stander for the stand of the stand of the stand of the stand of the stand of the stand of the stand of the	
leat	her/(Con	nm	ent	s:		N/A	۱.						•							,								Penetration interval (ft)		Interval recovery (ft)		Percent recovery	Depth below mudline (ft)	Distance fr top of tub (ft)
																													0-2		2		100%	Mudline	10.9
	0.	.0				5.0	0			D)ista 10	anc 0.0	e fr	om	top	o of	tut 15	oe (1 10	ft)				20	.0				25.0	2-4.7		- 1.6		59%	11 .	11.90
	0.0 -					+			-Top	p of s			@ —	+	-!	_,									J			-1	4.7-8.3		1.4		39%	2	12.90
	-												\uparrow				•							•	<u>_</u> م	n de	ck		8.3-10.8		1		40%	3	13.49
						1					ĺ	!													In		1		10.8-13.8		1.2		. 40%	4	14.09
	2.0 -					;	†					;			<u>^</u>							· •L				-5100	•}	-	13.8-15.6		0.9		50%	5	14.62
						,						· · · · · · · ·												r					15.6-16.7		0.8		73%	6	15.01
	4.0 -	ļ				1			+			. 2			- -	- X		 	-			• • •						•••	16.7-17.7		0.8		80%	7	15.39
	-												_				7	L										1.1 1.1						8	15.78
	-		· · · · · · · · · · · · · · ·								£	÷					_/		-															9	16.18
	6.0 -					,						;	-	·				<u> </u>	-	-	<u> </u> -													10	16.58
5	-											k		_		<u> </u>		1																11	16.98
5	8.0 -	 				بر اہ ہ ا												:.†						! ! 				-						12	17.38
																			<u>}_</u>															13.	17.78
ĺ	-										ļ	<u>.</u>							1		-			: :										14	18.20
5	10.0 -	<u> </u>										• • •	- -	•				, ,	- \	5			• • •		• • •			-						15	18.70
Jen C												. 								<u>8</u>														16	19.29
Ę	12.0 -					1						: .							-	1				: : 										17	20.04
Deptn pelow mualine (m)		ļ				1						1	_						-															18	No samp
	•																		-	_	<u>∖</u>													19	No samp
	14.0 -	<u> </u>											• •	- -	-	-	• •	tn n t			<u> </u>	<u>.</u>		·				-							No samp
											<u> </u>	<u>.</u>						<u>.</u>	-	_		\mathcal{F}							•]]	
	16.0 -	†		ļ								÷-											\					-						11	
		1		<u> </u>							ļ	••••••••••••••••••••••••••••••••••••••						- 						- 			•							11	
		1				·1						e											·····	1										{	
	18.0	<u> </u>				1	1					4 - 1			• • •					• • •				. ~		• • •	• • • •	-							
		 								ļ														1											
	20.0 ·	<u>+</u>	<u> </u>		<u> </u>				•		<u> </u>	<u>.</u>	_					1 1						•		•							•		
					P	enef	trativ	on 1	7.7	ft/ (On	der	ak r	200	ver	vq	7 f i	= -	55%	6 R4	900	Ver	v												
					•	51101					-11				. 91	y V.		•		9 1 1			,											11	

[ST-05]

Geomat	rix Consultants Muc	Mole Bore Log Collection Information
		Place Field ID Label Here
Date:	5-7-07	
Time:	这:40	
Project:	Port of Everett Former Mill	A Recorder: 64/
Station Name:	57-5	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	13.0	Northing <u>35 6 8 5 2</u>
Est. Tide Height (ft)	(MLLW)	Easting 1298410
Est. Mudline:	(MLLW)	On Deck Top of Sediment 7.7
Comments:	·	
Penetration Tape Reading	Recovery Tape Reading	Comments
19.7	19.7	
17.2	17.6	·
15.2	15.5	
12.7	13-6	
10.1	12.2	
8.4	11-4	
6,1	10.2	
Э.9	9.3	
1.4	8-3	
0.2	7.6	
<u> </u>		
		· · · · · · · · · · · · · · · · · · ·

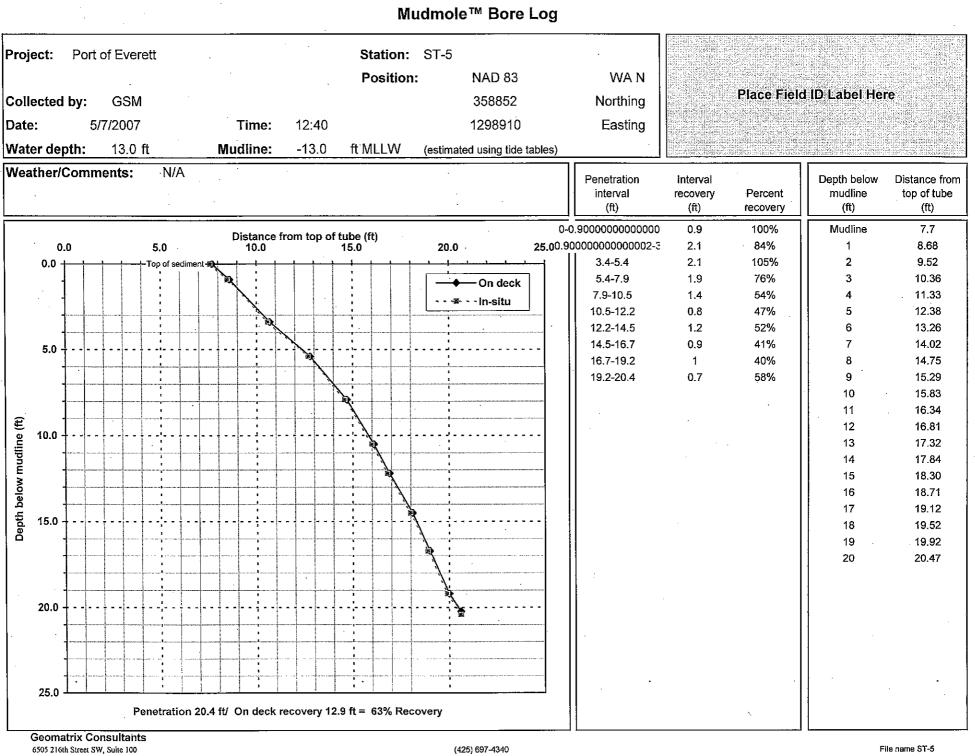
٠.

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

.

.

1 .


ĺ, .

i Field Forms.xls .

ł

1

Project:	Port of Everett			
Station:	ST-5			Place Field ID Label Here
Date: Start Time:	Core collection 5/7/2007 12:40	Laboratory 5 7 07 1330	Comments:	
• • .	Laboratory processing by:	. 0 ~	·	
	e measured from top of core tube.	•		
Distance			Distance	
ft 7.7	Visual sample des Top of sediment		top/bottom	Geomatrix Consultants
	Top of sediment 7.7-8.1: SM, silty so gray, GO' silt, U ch rps Shell fo me	nd, blackish s and, 20% j% avoid troots soft. frace	8.6	13116000007 Description Form Initials: Question Date: 7 Mathematical Consultants 13116000008
-	8.1-9.8 wood dups and fresh, 90% dups gray San	up to 1" mod. Hzs. 11% Med.	14.4	Description Form Initials: <u>CSN</u> Date: <u>> may 07</u> Time: <u>1330</u> Geomatrix Consultants 13116000009
-	9.8-12.1: wood chips	s up to 1.5" silty sand		Description Form Initials: <u>CN</u> Date: 7 May 07 Time: <u>7330</u>
- % (7.8-12.1: wood chips and SM gray, me H2S. 5 He Southon H2S. 5 He Southon H2S. 5 He Southon H2S. 5 Down Fr SD 70 c	oft twigs. aquients. wood/50%.sm		
- 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14		Fresh and ine saw clust. Spello Baro od H2S. intel the st		
-	19A-20.6 SM. gran sand, tra shell f wood a sand, "	y Silty rags and hips. 6% 0% silt.		
Geomatrix Cons 6505 216th St. SW, S	uite 100	(425) 597-4340 fay (425) 697-4340		Core Description Form

Mountlake Terrace, WA 98043

fax (425) 697-4370

i.

[ST-06]

··	
rix Consultants N	IudMole Bore Log Collection Information
	Place Field ID Label Here
_ 5 - 14 - 07	
1358	
Port of Everett Former N	Mill A Recorder: <u>65</u> M
ST 6	Position Information
20.6	Coordinate Datum:
12.0	Northing358841
(MLL)	W) Easting 129908
(MLL)	W) On Deck Top of Sediment 13-4
	giling - moved attachane ~ 7 A
Recovery Tape Reading	Comments
	Attempt 1 hit 100? just under surt
	Attempt Z 14 At attalance at
	station - Kit retural at
	z A - end at care tube crushed
<u></u>	in de crushed
.19.)	Attempt 3 moved swoff station
18.0	
16.0	
)4.0	
13.3	retusal
	$\frac{5 - 14 - 07}{1358}$ Port of Everett Former 1 $\frac{576}{20.6}$ $\frac{12.0}{(MLL)}$ (MLL) Mitempt 1 $\frac{12.0}{(MLL)}$ Recovery Tape Reading $\frac{19.1}{18.0}$ $\frac{18.0}{16.0}$ $\frac{14.0}{13.6}$

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340 • •

Project:	Port of Everett			
Station:	ST-6			Place Field ID Label Here
	Core collection	Laboratory		
Date:	5/14/2007	5/14/07		
Start Time:	13:58	1450	Comments:	
			-	
All distances o	Laboratory processing by:	NPB	_	
Distance	re measured from top of core tube.		Distance	T
ft	Visual sample desc	rintion	top/bottom	Sample ID Jahala
13.5	Top of sediment			Geomatrix Consultants
	125-149.		6.0	13116000039
	13.5-14.9: SP: POST	2-samed		Description Form
-	5 Shackooch	itray Grand,		Initials: UW
	mod de	ise, trees	17.0.	Date: (4 771 07 Time: 14'50
	H2S or	inse, tracing of bark and word		Geomatrix Consultants
-	Diecer a	and wood	1	
1	splinter	7	190/	13116000040
				Description Form
<u> </u>	. 60% san	d, 10% silty	20.0	Initials: CIW
	25% 06	d, lozosity		Date: 14 may 07 Time: 1450
	-01% VX			i se se se se se se se se se se se se se
	11/2 0. 0	~ 1		
	149-20.6: Sawdust	- with		
	upped cl	ips black		
	14.9-20.6: Sawdurst wood d Mod. lova 1+25. C h 1"	NA LAND		
	Mad loss	g vine		· · · · ·
-	1+25.0	do peron		
	1ª	~		
-	75-85656 s	M		
	75-854-54	andust		
_	10-10-00			
	15-25% = -20 U	the wood		
		in 05		
-				
			/·	
			 	
-				
	•		<u>/</u>	
-				
ļ				
-				
			V	

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

llected by te: ter depth	5/14/20 : 12	SM 007 .0 ft	Time: Mudline:		Station:	ST-6 NAD 83 (estimated using tide tables)	WA N Northing Easting		Place Field	d ID Label He	' e
ather/Cor	mments	s: N/A	A				Penetration interval (ft)	Interval recovery (ft)	Percent recovery	Depth below mudline (ft)	Distance from top of tube (ft)
0.0 0.0 2.0 4.0 6.0		5.0	10.0	e from top of	tube (ft) 15.0	20.0 25.0	0-2 2-4 4-7.4 7.4-10.6 10.6-11.6 11.6-12.6	1.5 1.1 2 2 0.4 0.3	75% 55% 63% 40% 30%	Mudline 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	13.5 14.25 15.00 15.55 16.10 16.69 17.28 17.86 18.48 19.10 19.73 20.26 No sample No sample No sample No sample No sample No sample No sample
10.0										19 20	No sample No sample

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 1

[ST-08]

Geomat	rix Consultants Mud	dMole Bore Log Collection Information
		Place Field ID Label Here
Date:	5-11-07 1310	
2	Port of Everett Former Mill	A Recorder: <u>GSM</u>
Station Name:	·	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	19.5	Northing 358938
Est. Tide Height (ft)	(MLLW)	Easting 1298963
Est. Mudline:	(MLLW)	On Deck Top of Sediment
Comments: Penetration Tape Reading	Recovery Tape Reading	Comments
17-6	18.1	
11_9	15.6	
9.4	14.9	
3.9	13.2	
0.2	//.6	

Geometrix Consultants, inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Project:	Port of Everett	
Station:	ST-8	Place Field ID Label Here
Date: Start Time:	Core collectionLaboratory5/11/20075/11 0713:1014.10Laboratory processing by:NPB	Comments:
	re measured from top of core tube.	
Distance	Visual sample description	top/bottom Geomatrix Consultants
<u>11.8</u> 	Top of sediment <u>11.8-15.0:</u> SM : sand with sint and rutting debris, gray, wed. dense. med to strong H2S. 30% sand, 10% sint, 60% ratting debris (barts, spinth UP to 1.5" 15.0-19.6: sawdust with wood chips, black, wood. 10059, mod. H2S odor. 75% saw dust	13116000028 13.0 Description Form Initials: 14.0 Date: 1 1 14.0
	19.6-20.6. ML. Silt w/sand, gray, mod. soft, trace H2S; trace shells. 80% silt (20% sand	

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370 Core Description Form Field version

oject:	P	ort	of E	Ever	ett									St	atic	on:	s	T-8										
															osit				Ν	I AD	83		v	/A N				
ollected	d hv	<i>r</i>	G	SM	I												••			3589				thing		Place Fie	ld ID Label He	re
	սոյ																							-				
ate:		5/	11/2					-	Tim	e:	1	3:10							1	298	963		Ea	sting				i forten de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de Nacional de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la
ater de	pth	1:	1	9.5	ft			Mu	dlin	ie:	-'	19.5	i	ft M	LLV	V	(e	stima	ted	using	tide t	ables)						
eather	/Co	mm	ient	s:	Ν	I/A	•																Penetr	ation	Interval		Depth below	Distance fro
																							inter	al	recovery	Percent	mudline	top of tube
																							(ft)		(ft)	recovery	(ft)	(ft)
								D	ista	nce fi .0	rom	top o	of tub	oe (ft	t)	_	_	_	_	_	_		0-3		2.5	83%	Mudline	11.8
	0.0				5.0							-	15	.0	-			20.0				25.0	3-6.		1.6	50%	1	12.63
0.0	T	1	1		1		1	Top I	of se	diment ^a	*		+ +	1		$\neg \uparrow$	<u> </u>				1		6.2-8		0.9	36%	2	13.47
	1					-			`` ``		1				-		1	•	-	On d	eck		11.2-1		0.7 0.8	28% 33%	3	14.30
	\uparrow				1				1		•)					٦Ĺ_	* * **		In-si	tu		13.6-1		0.9	33% 29%	5	14.80 15.30
	1				*		1		2 2									1					16.7-1		0.6	29 <i>%</i> 32%	6	15.80
5 0	•				*		Í		2						,			1				_	18.6-2		1	56%	7	16.19
5.0	1		1.			-			د ـ ـ ـ ۱ ۱	-			1	Ĵ.								· • ·			•	0074	8	16.55
	1	-			5 5				2 3				1			:		2									9	16.88
	1				i F		1		;				1	. N				1									10	17.16
	.]				1			•	1						١.			1									11	17.44
10.0]	_						<u> </u>							ľ.				_				· ·				12	17.77
10.0 15.0					5 5				3							\sum			-								13	18,10
					1				2						1			:									14	18.42
									2							<u>``</u>]		, , ;									15	18.71
				L	s 				k k																		16	19.00
15.0	4.				ء س ^ا ست		a a 4		۱ 								71										17	19.29
	1	1							2			_					<u>_`\</u>	, ,				_					18	19.61
	-																¥						11 ·				19 20	20.02
	_				s ¥				۲ ۲				;					<u>\:</u> _									20	20.58
	4								, 													_						
20.0	4	-			;-				;		- -		;		-		-	. ;}										
									, 								\square	· ·	**			• ·						
	•				1		_		3		_ _							:		_								
	+				i i	_			ء ب ب				, , ,							_		_						
	+	_	1.		5 				3							-				+		_						
25.0	.L			1			1		•							<u> </u>		ł							•			

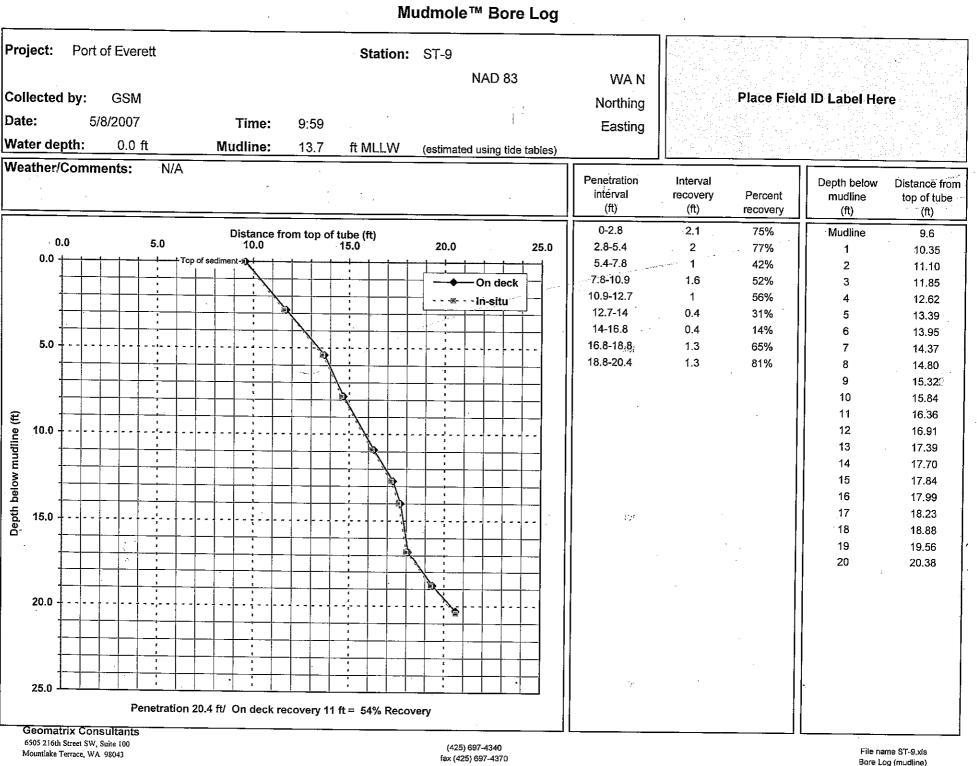
:

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

,

[ST-09]

Geomatrix Consultants MudMole Bore Log Collection Information


Date: Time: Project: Station Name:	$5 - 8 \rightarrow 07$ 0959 Port of Everett Former Mill	IPlace Field ID Label Here A Recorder: 65 m Position Information
Station Manie.		
Tube Length (ft):	20,6	Coordinate Datum:
Water Depth (ft):	13.7	Northing 35894 <u>3</u>
Est. Tide Height (ft)	(MLLW)	Easting_129 9058
Est. Mudline:	(MLLW)	On Deck Top of Sediment
Comments:	· · · · · · · · · · · · · · · · · · ·	
Penetration Tape	Recovery Tape	
Reading	Reading	Comments
١٦, ٤	18.5	
15,2	16.5	
12-8	15.5	
9-7	13.9	
7-9)2.9	
6-6		
3-8	10-8	· · · · · · · · · · · · · · · · · · ·
······	9.5	
e.2	1.3	
····		· · · · · · · · · · · · · · · · · · ·
	<u> </u>	
	·	
	<u></u>	

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Project:	Port of Everett		
Station:	ST-9		Place Field ID Label Here
Date: Start Time:	Core collectionLaboratory5/8/20075/6 める9:59いの	Comments:	
All distances a	Laboratory processing by: NPB		
Distance		Distance	
ft	Visual sample description		Computing Conquitants
ft <u>9.6</u> - - - - - - - - - - - - -	Har con 1/20% bark	top/bottom 10.8 11.8 13.4 14.4 15.9 16.9	Geomatrix Consultants 13116000017 Description Form Initials: $\underline{-}$ Geomatrix Consultants 13116000018 Description Form Initials: $\underline{-}$ Geomatrix Consultants 13116000019 Description Form Initials: $\underline{-}$ Geomatrix Consultants 1311600020 Description Form Initials: $\underline{-}$ Date: $\underline{-}$ $\underline{-}$ $\underline{-}$ Date: $\underline{-}$ $\underline{-}$ $\underline{-}$ Date: $\underline{-}$ $\underline{-}$ $\underline{-}$ Date: $\underline{-}$ $\underline{-}$ $\underline{-}$ Date: $\underline{-}$ $\underline{-}$ $\underline{-}$ Date: $\underline{-}$ $\underline{-}$ $\underline{-}$ Date: $\underline{-}$ -
-			

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370 Core Description Form Field version

[ST-11]

Geomatrix Consultants MudMole Bore Log Collection Information

Date:	5-7-07	Place Field ID Label Here
Time:	13:27	
Project:	Port of Everett Former Mill	A Recorder: 6107
Station Name:	57 11	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	23.0	Northing 359030
Est. Tide Height (ft)	(MLLW)	Easting 1299011
Est. Mudline: Comments:	(MLLW)	On Deck Top of Sediment৭.5
Penetration Tape Reading	Recovery Tape Reading	Comments
·	<u></u> .	broke three hard surtice
16.4	18-4	
14.2	17_1	
12.9	16-4	
9-2	14-3	
6.8	13.0	
4.8	12.3	
2-8	11_1	
1.4	10.2	
0.2	9.4	
	· · · · · · · · · · · · · · · · · · ·	tip at core dented
	<u></u>	v
	. <u></u>	
<u></u>	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
Ŋ		

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountláke Terrace, WA 98043 (425) i:97-4340

Field Forms.xls

Station: ST-11 Date: Core collection Laboratory Start Time: Core collection Laboratory Date: Core collection Laboratory Start Time: Core collection Comments: Distance Visual sample description Bistance	Project:	Port of Everett			- 1945.
Date: Start Time: Laboratory processing by: <u>IVP</u> B At distances measured from top of core tube. Distance <u>n</u> Visual sample description <u>B</u> Top of sediment <u>q</u> , 5-15.1: five wroad churcher <u>hows</u> , saw durch <u>boybatta</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>conserve</u> <u>cons</u>	Station:	ST-11			Place Field ID Label Here
All distances are measured from top of core tube. Distance t Distan		5/7/2007	57107	Comments:	
topsource topsou			NPB	-	
9.5 9.5% Swidt black - and 12.9 12.9 12.9 12.9 12.9 12.9 13.1600011 Description Form 13.1600011 Description Form 13.16.6 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7	ft		cription	E I I I I I I I I I I I I I I I I I I I	
- 10% sand, 30% stills. Jray, soft. large wood piece e base. 17.7-20.6: SP, gray, med. dense, med. sand to Rusand. Mattice trace H2S	- 65% 5100 - 65% 5100 - 20% 50% 50% 00 - 10% 50% 00 - 10% 00 -	-15.1: Fine word hungs, So Shells black 10-1900 ps creosole breat 0.10.4-11.1, c odur and 12.9. moder 12.9-15.1 -17.7: Mi i sit	ed pilmg creasofe sheen to the H2S oder mand small product the	9.5 12.9 16.6 17.6	Description Form Initials: <u>CJW</u> Date: <u>7 may 07</u> Time: <u>1500</u> Geomatrix Consultants 13116000011 Description Form Initials: <u>CJW</u>
Geomatrix Consultants	-	10% sa Jray, so large u e base J-20.6: SP, g dens Sam Fu so Mar	of 30% shells. Ft. rood piece rwy, med. e, med. to mod.		

fax (425) 697-4370

Projec	:t:	Po	t of	Eve	rett									S	tatio	on:	S	T-11								
																			NA	D 83		WA N		Diago Figli	d ID Label He	
ollec	ted	by:	(3SN	1						-											Northing			и пр сарег пе	[e :
ate:			5/7/2	2007	,			-	Гime	e:	13	3:27										Easting	2010-001-001249 1211-004-0021	GUTAN (2009) ANG ANG ANG ANG ANG ANG ANG ANG ANG ANG		
Vater	der			3.0				Mua	dline	. .	-2	23.0		ft M	ILLV	N	(ea	stima	ted usi	na tide	tables)	-				
/eath						N/A		inta			-	.0.0			(term)-res V	•	(01			ng tuo	abieby		en ann an on the second second second second second second second second second second second second second second second		-	
reatin	len.	-011		15.	I																	Penetration interval (ft)	Interval recovery (ft)	Percent recovery	Depth below mudline (ft)	Distance fro top of tube (ft)
																						0-4.2	2.2	52%	Mudline	9,5
	0.	0			5.0)		D	istan 10.0	ice fi)	om	top o	of tu 1	ıbe (i 5.0	ft)			20.0			25.0	4.2-6.4	1.3	52 % 59%	1	9.5 10.02
c	0.0 	-	-	-	,,, 		o of sec							_	·	<u> </u>				ŧ,		6.4-7.7	0.7	54%	2	10.55
									Ĵ.	- Burgers	ŀ			τ					Or	deck	1	7.7-11.4	2.1	57%	3	11.07
							.		Ţ,													11.4-13.8	1.3	54%	4	11.60
					1			•	1	1									<u>* In-</u>	SILU		13.8-15.8	0.7	35%	5	12.17
					1					Ŋ										•		15.8-17.8	. 1.2	60%	6	12.76
	5.0 -					.					र्]_	:								17.8-19.2	0.9	64%	7	13.32
	0.0								7					:								19.2-20.4	0.8	67%	8	13.87
					:	•			1 5			N.		1 5				:	•						9	14.44
]				:				1			þ	X	1				:							10	15.01
-]	•					ļ						X												11	15.57
Ē]				1				1				3	ν.											12	16.13
	0.0 -									• • •	- -		1	1		- 1									13	16.67
na	1				1				:				-	;)				:			*				14	17.17
= ≳	1				1				•						N										15	17.52
Leptn below mualline (ii)	1			-					1						Ń										16	17.92
]												-		† î	1									17	18,52
<u>5</u> 1	5.0 -		- † -			• - † -	-			-			1-			1									18	19.13
	-				r 1				E E	¦			·				··· ·····								19	19.77
	-													;			1	• • • • • •							20	20.43
	-				1				I 1					•			- \	<u>``</u>								
	-										1		-				*******	٦ù						-		
2	0.0 -						-		··į·	-		-		-¦			•		6							
	-		<u> </u>							••••• 			_	r												
	-				 •				t		·			£	1											
	-				!				<u> </u>		1			!												
	-						· · • · · · · · · · · · · · · · · · · ·	$\left \cdots \right $	• . :												•				-	
2	5.0 -				1		!	1		I	i	!	[1		•						· · · · ·		
				P	enetr	ation	20.4	ft/ O	n de	ck re	cov	ery 1	11.1	ft =	54%	Rec	over	Ŋ								

. .

[ST-12]

Geomat	trix Consultants Mu	dMole Bore Log Collection Information
Date: Time:	5-14-07	Place Field ID Label Here
Project:	Port of Everett Former Mill	A Recorder: 65M
Station Name:	ST 12	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	15.4	Northing 3-96 35 40 27
Est. Tide Height (ft)	(MLLW)	Easting 1299117
Est. Mudline:	(MLLW)	On Deck Top of Sediment \\. 6
Comments:	-	
Penetration Tape Reading	Recovery Tape Reading	Comments
16.2	16.6	
9.4	13-8	
Q.Z.	i// 2	· · · · · · · · · · · · · · · · · · ·
9.2	11. 2	retural
······		
· · · ·		
<u> </u>		
		·

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

ł

đ

Ś.

Project:	Port of Everett			
Station:	ST-12			Place Field ID Label Here
·	Core collection	Laboratory	1	
Date:	5/14/2007	5/14/07-		
Start Time:	14:49	1545	Comments:	
			.	
	Laboratory processing by	"NRB		
	re measured from top of core tube			
Distance			Distance	
ft	Visual sample de	scription	top/bottom	Geomatrix Consultants
<u>11.6</u>	Top of sediment			13116000041
	11.6-20.6 Sawden	st. black.	13.5	Description Form
		ł		Initials: CJ w
-	Mod lon	Bey where .	14.5	
	4,5,	10% wood		Date: 14 may 07 Time: 1545
· ·	11.6-20.6 Sawdu Mod lor H2.S Chops o TD 13.1	0		Geomatrix Consultants
	chips o	ngum :	16.0	13116000042
	TD 13.	o then		Description Form
_	liter a sec	K. P. A.		Initials: <u>CIN</u>
	Massive	saw dut	17.0	Date: 14 mar 07 Time: 1545
	19.5	where		Geomatrix Consultants
		A		13116000043
	11	in the second se	19.0	Description Form
	June ba	nue rha pieces und.		Initials: CJW
_	(ser) - C	Ó	20.0	Date: 14 may 02 Time: 1545
	ave ta	· b-	20.0	1545
_				
		н. — н. — н. — н. — н. — н. — н. — н. —		
-				
				·
			(· · · · · · · · · · · · · · · · · · ·
-				
				· · ·
_	1			
		· ·		
			Ķ,	
-				
[⁻				
-				•
-				
			V	

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

roje	ct:	P	ort	of E	ver	ett										St	atio	on:	S	T-1:	2			_					
		•														01		,,,,,	Ŭ			VAD	83		WA N				
ollee	ted	hv		G	SM																				Northing		Place Fiel	d ID Label Hei	re
		~ }								T :		_		. 40											_			이가 주말하는 것을 통하는 것이다. 같이 같이 있는 것은 특별	
ate:	_			4/2							me			:49											Easting				
	dep				5.4				M	udl	ine	:	-1:	5.4	ft	: ML	LV	V	(e	stima	ated	using	tide	ables)				승규는 가슴가 물을	
eatl	ner/(Cor	nm	ent	s:	1	I/A											-							Penetration interval (ft)	Interval recovery (ft)	Percent recovery	Depth below mudline (ft)	Distance fro top of tube (ft)
										Dist	anc	e fro	sm fr	nn of	i tube	e (ff)									0-4	4	100%	Mudline	11.6
	0.	0				5.0				1	0.0				15.	0,				20.0	כ			25.0	4-8.4	2.8	64%	1	12.60
	0.0 -						1	-	+ To	ip of s I	eđime '	enti	t							{ I			11		8.4-11.2	2.4	86%	2	13.60
	Ţ					1					1 2	Ţ,	<u>N</u>								•	•On d			11.2-11.4	0.2	100%	3	14.60
	4					1 1		_				-	<u> `\</u>						_[<i></i>	· · ·	In-si	itu	Ц				4 5	15.60 16.24
						<u>¥</u>	+				*		<u> </u>	\mathbb{N}^+	<u> </u>							_		_				6	16.87
	2.0				• • •	 		* *	~ * •		4		1	<u>``\</u>	1- r 1-		• • •			» , , , , , ,		·						7	17.51
	-										1 7	_		ì	,_ \ ;				_			_		·				8	18.15
	-					:				_	*				<u>_</u> /-		+					_		_				9	18.91
	- 4.0 ~					1		-								7												10	19.77
	4.0 ~		<u> </u>			1	Ì				1	~	<u> </u>		· ,3					• " •			~ ~ ~	• •		· .		11	No sample
	-					;	_	_	_	+	<u>.</u>	_			1 1 1	<u>_}-}∖</u> _									1.	i		12	No sample
	-					i					2 2				, L 1		\		-					· `				13 14	No sample
ni) annunnin Moran	6.0					* * *									r 1		<u>,</u>].											14	No sample No sample
5	-					;	_				-,	_			- 1		-\			1								16	No sample
5	1					1 3 5		-			2				1		<u>' `</u>	\setminus	-+	1		+						17	No sample
1	1	<u> </u>				, , ,					* *	-	+		1		-	\uparrow		1								18	No sample
	8.0 -										, 1				د س س على		, .	/		۔ • سا س								19	No sample
	4						-			_		_	-		1 !			#	┝┤			_						20	No sample
	1	-					+		+	+	, , ,	+	-						-\ -										
	1					,					, 1				:				-;]					r					
1	0.0		u u			·;-	- [-								;-				+ + +	, <u> </u>									
	1					4 1 3			+		1	+	-	$\left \right $, ; ;				_	<u>'.'</u>			$\left \right $			۰.			
	1					3					1 1 1	+					+			<u>،</u> بر ا									
	1					5					; ;					••••••••••••••••••••••••••••••••••••••	-				* #								
1	2.0 -	<u> </u>				. 4					•									ı		<u> </u>				· · ·	,		
					I	Penet	ratic	on 1'	1.4 fi	t/ Oi	1 de	ck re	ecov	ery 9) ft =	79%	γ 6 Re	ecov	/ery										

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

÷

[ST-13]

Geomatrix Consultants MudMole Bore Log Collection Information Place Field ID Label Here 5-8-07 Date: 1220 Time: Recorder: 65m Port of Everett Former Mill A Project: **Position Information** ST 13 Station Name: Coordinate Datum: 14.6 Tube Length (ft): Northing 359031 8.2 7 7--6 Water Depth (ft): Easting 1299202 (MLLW) Est. Tide Height (ft) (MLLW) On Deck Top of Sediment Est. Mudline: Comments: Penetration Tape **Recovery Tape** Comments Reading Reading 1.4 A retusa 山 DILE new 534 Nos) evis Grave ま tip m. <-> v Q ottshove 2 Atten m ova 72-5 ~~ 10 2. \ penetration rotusa έcλ A 23 13-8 Attom 13. 9 U 12.5 10.5 10.6 9.6 $d^{\prime} = d$. • • ċ ••

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

[ST-14]

Geomat	rix Consultants Mu	dMole Bore Log Collection Information
÷		
		Place Field ID Label Here
Date:	5-8-07	
Time:	5-8-07	
Project	Port of Everett Former Mill	A Recorder: <u><</u> SY
Station Name:	ST 14	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	15-1	Northing 359117
Est. Tide Height (ft)	(MLLW)	Northing 359117 Easting 1299162
Est. Mudline:	(MLLW)	On Deck Top of Sediment
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
17.9	18.8	·
17-0	16-8	Bit hard abject - broke part
n - 2	13_0	suddenly
9-8	12-1	
6.5	9.9	
4.3	8.3	
2-4	7.]	
0.2	5-8	
	·	
······································		
		·····
		·

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Field Forms.xls

Mudmole™ Core Description Form

Project:	Port of Everett			
Station:	ST-14			Place Field ID Label Here
.	Core collection	Laboratory		
Date:	5/8/2007	5 8 07		
Start Time:	10:46	1145	Comments:	· · · · · · · · · · · · · · · · · · ·
	Laboratory processing by:	NPB		·
All distances a	re measured from top of core tube.	N		· · · · · · · · · · · · · · · · · · ·
Distance		· · · ·	Distance	
ft	Visual sample des	cription	top/bottom	Geomatrix Consultants
<u>6.3</u>	Top of sediment			13116000021
	6.3-7.7: 30% red ba		8.0 /	Description Form
	336 30%	sawdust		-
-	inad black, 41	12 SP, 5 my	8.9	Initials: <u>Clu</u>
	dense SP= 90% silt;	sand, Who		Date: 6 mor 07 Time: 1145
_	dentse silt;	sand he mad		Geomatrix Consultants
	trace H	25 oder.	11.3	13116000022
	11111	()		Description Form
-	7.7-14.7: Sawdn mod. Moderate deuse H2S odo 90% saw. wood o 10% mismed.	st, black	1.00	Initials: <u>حالم</u>
_	moderate	- to strong	12.2	Date: 8 may 07 Time: 1145
	mod. Hac	r u have	K	Geomatrix Consultants
-	dense 125 oan	, V. Jince	13,9	13116000023
· · ·	and saw. wood O	unp		Description Form
_	1070 mound.			Initials:
				Date: 6 mor 07 Time: 1145
	14.7-15.8: ML: and	y silt .		
- ,	14.7-15.8: ML: gri lange wo @ 14.8	(bark)	/	
	large wo	11" 7" 600		
	@ 19.8	4x2 Frace		· ·
—	creosofe	oder, 130% wood		
-	chinnle	5		
	1000 196			· · ·
·	15.8-19.6: ML silt	1 grany		
- ·	Mod - 5	nH -1		
	40%	rushed		· · ·
_	challs	57+, 10%	F	
	Succe	at 0%		
	50 10	moderate		
<u>-</u>	Samo	oder		
		• •		. •
	19.6-20.6: <7: por	My gruded	K	
-	315	an mod.		
	Jana	sand is		
	dense	Sann S		•
	medin	m. VETV.		
	mile	Shells.	· ·	·
Geomatrix Cons	ultants	· .		

6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

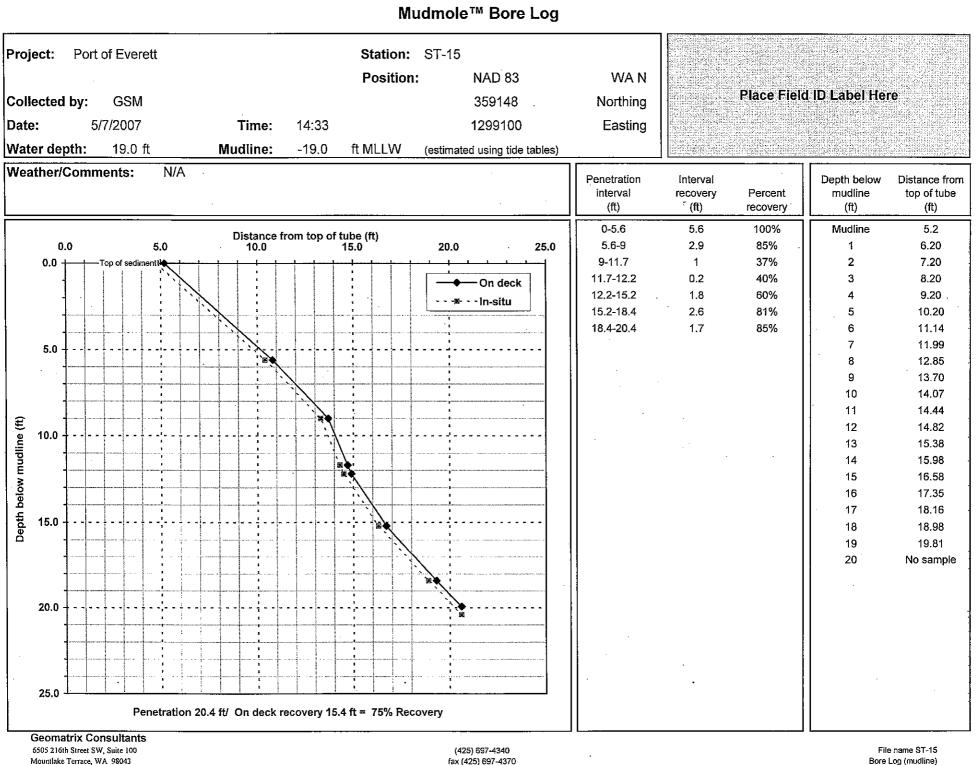
<u></u>		<u></u>																_ua	mo	∍le ' 	₽	30r/	re Log	1						
roject	::	Po	rt o	f Ev	verett	t									s	jtati	on:	ę	ST-14	4							1 			an an an an an an an an an an an an an a
																				,	NAD	D 83	3		WA N					
ollect	ed	by:		GS	M																				Northing			Place Fiel	ld ID Label Hei	re
ate:			5/8	/200	J7				-	Time	e:	1	0:46	ì											Easting				a a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser Ser a ser br>Ser a ser	
later o	lep				1 ft					dline			·15.1		4 4 N	MELV	۱۸/	7		4	-1i-	~ 41,	· /-t-tag		Lasting					
leathe						 N//		<u> </u>	<u>.viuc</u>	<u></u>	<u>. </u>	_	10.1	_	<u> </u>	<u> </u>	<u>/v</u>		stime	ateu	, usini	g tia:	de tables)	4	′					
/taun	911 U	- Uni	llie	/)ເອ.		IN//	A																	- []	Penetration	Interval			Depth below	Distance from
									•														•		interval	recovery		Percent	mudline	top of tube
			_	=		_		_		—		=	=	<u> </u>	—			_		<u> </u>		—		<u> </u>	(ft)	(ft)		recovery	(ft)	(ft)
	0.0	n			7	5.0			Di)istano 10.0	ice fr	rom	top (of tu'	ube (fi 5.0	ít)			20	~			25.0	_)	0-3.6	1.8		50%	Mudline	6.3
0.		, +	-+-	—То	o pofsed		14 0		+		, 		<u>+</u>		J.U		1	l	20.0	ر +			- 25.0)	3.6-6 6-9.4	2 3.8		83%		6.80
	Ì	_			_		17			۱ ــــــــــــــــــــــــــــــــــــ										<u> </u>			<u></u>	- []	9.4-10.8	3.8 0.9		112% 64%	2	7.30
	Ļ			_		1	<u>[``}</u>	4		1					:						— On c		· 📋		9.4-10.8	. 2.2		64% 67%	3	7.80
	ł			·		1	<u> </u>	Δ		1					:				···*	*···	- In-si	,itu			14.1-16.3	1.6		67% 73%	11	8.43
	Ļ					1		Ì.	<u> </u>	- , ,					:			ر آ	1		<u> </u>	T		· []	16.3-18.2	1.0		73% 63%	6	9.27 10.10
5.0 -	۰ļ		↓ .	.].	1 1	\prod		$\sum_{i=1}^{n}$			Ţ.		Τ.				, Ţ				+	+	- []	18.2-20.4	1.2		63% 59%	7	10.10
-	1	\square				1			<u>ַ</u> ן	\mathbf{N}		Ĺ		1	:	7	i]	, - ⁻		- -		- -			10.2-20.1	1.0		0970	8	11.22
	1					1			i 🗌	*		1					1					+	+		t ·)	8	12.34 13.45
						1					1	$\overline{\mathcal{N}}$	1	+	;]			, - 			+		+-1		1)	10	13.45 14.29
~				Τ		1		(\Box)			\top	1	1	+	;		1	, 	1	-+	+	1			(÷	10	14.29 14.93
10.	<u>,</u>]			Τ	1					i	-			<u>ج</u>			1	, 		+	-	+	+	- []	1	·		ļ	12	14.93
2 IV.	1		Ī			**************************************	1-1-	1				· -	-	1	5-1	-	1-1-	, -	арана 1	· - - /		•	-		1				13	15.60
3]			\top		1 . 1		i T	- -	*	+	+-	1	- (5%)	\cdot	$ \uparrow \uparrow$		+	1		+				(. J	13	16.27
:	T	\top		T	1-	1	1	1		,	+		+	+	\mathbb{R}^{1}		1				+				(ļ	15	17.65
ว์ มี	-				+		++	1			+	+-	+	+	<u>, </u>	1Xt	i	+		+-		+			(ļ	16	17.65
(11) a 10. 15.	. †		\top	+	+		$\uparrow \uparrow$	1	, 	<u> </u>	+	+	+	+	, 	 **)	κ^+	_ +	1		\rightarrow	.+		-	1			1	17	18.38
<u>5</u> 15.	0 †	-	- † -	· - - /	· †	-¦	† ·	; - †			• - - •		-	'		-	t,∕√.			·			- }		1			1 - I	18	19.04 19.67
נ	t	+	-	+		1 1 1	<u>†</u> −-†	i 🕇	, 			+	+	+	<u>+</u> +	\vdash	<u> </u>	à 🖈							1			ļ	19	20.27
	t	+	-+	+	-		+-+				+	+-	+	+	++	\vdash		<u>-</u> }	$\overline{\mathbf{x}}$			+			1			1	20	20.27 No sample
	t	\rightarrow		+		<u>в</u> ., 8	$\left - \right $	-+	-+	 1	+-	+	+	+		+ +		+	*		<u> </u>		+-1		1			J	1 ~	No sample
	t			+		1	++	·+		*	+	+	+	+'	$\frac{\cdot}{\cdot}$	+		\rightarrow	<u>```</u> }	+			<u>+-</u>		4				1	
20.	0 +		- -		·	•; 	† ·	+					-	/	· · · ·	1		-		.≹		-			4			ļ	1	
	t			+-	_		+	·+	<u> </u>		+	+		+		++	\rightarrow	-+		<u>*</u>		+						1	1	
	1-	-+	+		<u> </u>	1 1	+	,+			+	+		+		\vdash	-+	+		+]	1	
	+	+	-+-	+		1	+ +	<i>.</i> —†		;		+	_		+	\vdash	-+-	+	_;	-+-	_		+					ļ	1	
	\uparrow					:	+	, 	+			+	+	+-'	; 	├ ──- }	, - -	\rightarrow		+	—					.			1	
25.	0 ㅗ	<u> </u>	1	<u> </u>	!.		<u> </u>			<u> </u>			<u> </u>	<u> </u>	<u>. </u>	<u> </u>			<u> </u>											·
				I	'enet	ratic	აn 20	J.4 ft	/ Or	n dec	∂k re	/COV/	ery 1/	4.3 f/	,t = 7	/0% /	Recc	Sver	лу										-	*

÷

[ST-15]

Geomat	trix Consultants M	IudMole Bore Log Collection Information
Date: Time:	5-7-07	Place Field ID Label Here
Project:	Port of Everett Former M	<u>Mill</u> A Recorder: <u>ຣ</u> າ
Station Name:	57 15	R Z Position Information
Tube Length (ft):	20-6	Coordinate Datum:
Water Depth (ft):	19.0	Northing 359148
Est. Tide Height (ft)	(MLL)	N) Easting 1299 poo
Est. Mudline:	(MLL)	W) On Deck Top of Sediment <u>5-2</u>
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
		Attempt I return at surface
15.0	15.0	Attempt 2
10-0	12.1	
8.9	11-1	
8-4	10.9	
5.4	9-)	
2.2	6-5	
0-2	4-8	
	•	
· ·		

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340



Project:	Port of Everett		
Station:	ST-15		Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/7/2007 5(7/07-14:33) 14:33 1.545	Comments:	
All distances a	Laboratory processing by: <u>NPB</u> e measured from top of core tube.		
Distance	e measured nom top of core tube.	Distance	
ft	Visual sample description	top/bottom	Geomátrix Consultants
5.2	Top of sediment		13116000013
-	5.2-12.9 sawdust & word chips & crushed shells,	160 7.4	Description Form Initials: <u>CJW</u> Date: <u>7 wort 07 Time: 1545</u> Geomatrix Consultants
-	black med dense, mice	10.1	13116000012 Description Form Initials: C1 N
_	black wed dense, trace black wed dense, trace 5% shalls to most this. 5% shalls to 8.2' trace 5% wood gatty. creasate 5% wood gatty. blacks,	11,4	Date: 7 107 Time: 1545
-	12.9-12.0 ML with shells whole op to 1". Stalls to 14.7 60+ 8 shells and then mostly 30% ML. May, crushed. Trace to med. H2S.		
-			
-	17.0-20.6. Sp, gray, med. dense trace Shell Fragments. Med. sond.		· .
	Shell oragments. Med. sand.		
-			
Geomatrix Cons 6505 216th St. SW, 8			Core Description Form

Mountlake Terrace, WA 98043

fax (425) 697-4370

Field version

÷

[ST-17]

Geomat	trix Consultants Mu	Mole Bore Log Collection Information
Date:	- 5-14-07	Place Field ID Label Here
Date.	5-14-07	
Time:))36	a Barry (, , , , , , , , , , , , , , , , , , ,
Project:	Port of Everett Former Mill	A Recorder: <u>SSM</u>
Station Name:	57 17	Position Information
Tube Length (ft):	20-6	Coordinate Datum:
Water Depth (ft):	13.2	Northing <u>359,99</u>
Est. Tide Height (ft)	(MLLW)	Easting 1299215
Est. Mudline:	(MLLW)	On Deck Top of Sediment 7.2
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
17.0	17.7	
14.3	15.5	
11_4)2.9	
9.4	11 - 8	
6.4	10.2	
4.4	8-7	
2.9	7.5	
2-4	7.0	refusal
·		
	·	
	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		
)		

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Г

Mudmole™ Core Description Form

Project:	Port of Everett			
Station:	ST-17			Place Field ID Label Here
	Core collection	Laboratory	a and a second second second second second second second second second second second second second second second	na Bill All an ann an Anna Anna Anna Anna Ann
Date:	5/14/2007	5/14/07		
Start Time:	11:36	1320	Comments:	
	Laboratory processing by:	NPB		
All distances a	re measured from top of core tube.			
Distance			Distance	
<u>t</u>	Visual sample desc	ription	top/bottom	Geomatrix Consultants
<u>7.2</u>	Top of sediment			13116000036
	4.2-13.8: San due	of black,	9.0	Description Form
	7.2-13.8: saw due mod. loc	Be true		Initials:
	n c fa	r barra	JO.D	
	172 000	r, pace	1.0	Date: 14 may 07 Time: 1320
-				Geomatrix Consultants
	+0 8.7		12.0	13116000037
	2 2" barte	preuse		Description Form
			13.0	Initials: <u>esw</u>
	13.8-15.7. ML. silt,	grang,	15.0	Date: 14 WOY 07 Time: 1320
	13.8-15.7. ML: silt, Mod. st H25, tr and occo	off trace		
		. Shells		• • • •
	22,47			
	ana occa	appier an		
	Stra of Land	ngenent.		
	90% 51	1+, 100000		
	577	nd 5% shalk		
	J 10 54			
	15.7.18.0. SAA bu	+ with		
	couche	t with I shells		
		back		
	Gold ST	4 35%		
	60451	15% and		
	shells,	15% send		
	18.0-20.6: SP: poor	ly-graded		
		(U		
		Parzo		
	vvox .	dinse,		
	truce	shells and Fring mentes		· · · · ·
	wood.	Sand went		
	1.05%	med smil.		
		,		· · · ·

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Mudmole™ Bore Log					
roject: Port of Everett Station: ST-17 Position: NAD 83 359199 359199 359199 31299215 329215	WA N Northing Easting		Place Fiel	d ID Label He	re
/eather/Comments: N/A	Penetration interval (ft)	Interval recovery (ft)	Percent	Depth below mudline (ft)	Distance fro top of tube (ft)
0.0 5.0 10.0 15.0 20.0 25.0 0.0 <	0-3.6 3.6-6.3 6.3-9.2 9.2-11.2 11.2-14.2 14.2-16.2 16.2-17.7 17.7-18.2	2.9 2.2 2.6 1.1 1.6 1.5 1.2 0.5	81% 90% 55% 53% 75% 80% 100%	Mudline 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.2 8.01 8.81 9.62 10.43 11.24 12.06 12.93 13.82 14.72 15.34 15.89 16.43 16.96 17.49 18.20 18.95 19.74 18.20 No sample No sample

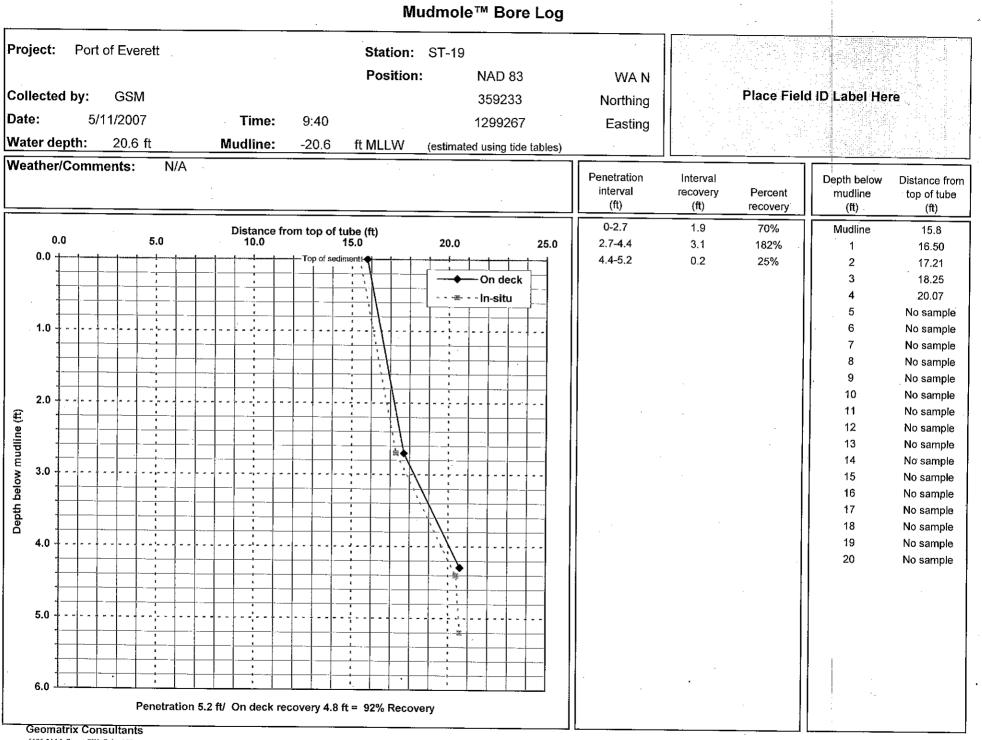
l

[ST-19]

Geomatrix Consultants MudMole Bore Log Collection Information Place Field ID Label Here 5-11-07. Date: 0940 Time: Recorder: 61M Project: Port of Everett Former Mill A **Position Information** ST 19 Station Name: 20.6 Tube Length (ft): Coordinate Datum: 15 Northing_ 359 233 Water Depth (ft): Easting 1299267 Est. Tide Height (ft) (MLLW) (MLLW) On Deck Top of Sediment 15.8 Est. Mudline: Comments: Penetration Tape **Recovery Tape** Reading Reading Comments Altom 19.3 retusa debris æ) Core ~> 0 AHempt ~2 off shore . . 20 A noved ~___ 187 17.9 15-6 4001 bouncing 16 2 0 pen. 15.4 retusa 15-4

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Field Forms xis


Mudmole[™] Core Description Form

Project:	Port of Everett		
Station:	ST-19		Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/11/2007 5 11 0子 9:40 1020	Comments:	
All distances a	Laboratory processing by: <u>MPB</u> re measured from top of core tube.		
Distance ft	Visual sample description	Distance top/bottom	Sample ID labels Geomatrix Consultants
<u>15.8</u>	Top of sediment	17.6	13116000026 Description Form
-	Sawdust, blacky mod. loose, & trace to	18.6	Initials: <u>()</u> Date: <u>11</u> <u>mov()</u> Time: <u>()20</u>
_	Mod. HzS order. 90% sawdust; 5%		
· .	In sand, 5% wood		·
-	of barle 15.9 (3")		
_	3" mod sphiler fresh E \$ 19.2		
.)" 			
-			
-			
-			

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

[ST-20]

Geomatrix Consultants MudMole Bore Log Collection Information

Date: Time:	<u>5-7-07</u> 1552	Place Field ID Label Here
Project:	Port of Everett Former Mill	A Recorder: ららへ
Station Name:	57 20	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	20-4	Northing 359297
Est. Tide Height (ft)	(MLLW)	Easting 1299241
Est. Mudline:	(MLLW)	On Deck Top of Sediment 7-2
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
1623	18-2	
14.8	17.4	
11.9	15.7	
9.0	13.5	
7-0	12-)	
4.2	10.2	
2.0	8.6	
0.2	7.0	·
•	· · · · · · · · · · · · · · · · · · ·	
· .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	iii	:
Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 1	100	

Mountlake Terrace, WA 98043 (425) 697-4340

- 4

Field Forms,xls

• . .

Mudmole™ Core Description Form

Project:	Port of Everett		
Station:	ST-20		Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/7/2007 5 7 0 7 15:52 1700	Comments:	
All distances ar	Laboratory processing by:		· · · · · · · · · · · · · · · · · · ·
Distance ft	Visual sample description	Distance top/bottom /	Geomatrix Consultants
7.2	Top of sediment 7.2-10.1: ML and word Silt spintors (rafting Waterrally browned 30% silt top 10% par (50% wood Wood With cond 40% par (50% wood Wood With cond 40% part (50% wood Wood Wood shells.	13.0	13116000014 Description Form Initials:N Date: Time: 1700
-	30% silt to % par / 20% wood When 10% on shed shells. trace Hzs odor.	16.0	Geomatrix Consultants 13116000015 Description Form Initials: <u>CJN</u> Date: 7 MONOP Time: 1700
	10.1-18.4" sawdust, chistud shells, small word pieces,		
-	10.1-18:4: sawdust, chisted shells, small wood pieces, black, mod. H25 odor. Med. 50:5% sawdust deme 10 50% construct Sulls 10 50% small wood pieces.		
-	dense 10 50% small wood pieces. 14.4-20.6 SP, gray, med.		
-	14.4-20.6 SP, gray, med. dense trace Shell Frags. Sand B. Med.		
-			
Geomatrix Cons			Core Description Form

Mountlake Terrace, WA 98043

25) 697-4370

ield ver:

roje	ect:	Po	rt of I	Ever	ett											: S	T-2										
													F	Pos	itio	n:			AD 83		· WA N			Pla	ce Eieli	d ID Label Hei	
olle	ected	by:	(SM	÷													3	59297		Northing		encesarea. Statuten				
ate	-		5/7/2	007				Ti	me:		15:52	2						12	99241		Easting				1.1.181. Q		
ate	er dep	oth:	2	0.4	ft		N	iudl	ine:		-20.4	4	ft ľ	MLL	W	(e	estim	ated u	sing tid	e tables)							
	ther/(men	ts:	N	/A																·				Double heatow	Di-t
					• .																Penetration interval (ft)		interval ecovery (ft)		rcent overy	Depth below mudline (ft)	Distance fro top of tube (ft)
								<u> </u>	<u> </u>												0-4.3		2.4	5	6%	Mudline	7.2
	0.	.0			5.0			Dis 1	tance 0.0	e troi	n top	OT	ube 15.0	(π)			20.	0		25.0	4.3-5.8		0.8	5	i3%	1	7.76
	0.0 -	h		- <u>}</u> -T		diment#		—	!	<u> </u>	-			-	1	11		!			5.8-8.7		1.7	5	9%	2	8.32
	-				-		. Y		1									•)n decl		8.7-11.6		2.2		6%	3	8.87
	-				•		À	ŀ	•				÷			-		36 I			11.6-13.6		1.4		'0%	4	9.43
	-				1		Ì.`	<u>\</u>	1 1 1							Ļ				`	13.6-16.4		1.9 <u></u>		8%	5	9.97
	-							_}_					• •			-	·····			a (mar) (() a () () ()	16.4-18.6		1.6		'3%	6	10.52
	5.0 -			-	!-				Ŋ.,				، مات م		-						18.6-20.4		1.6	8	9%	7	11.10
	-				1 										_											8	11.69
	-								<u>; </u>	<u> </u>																9	12.33
	-									Ŋ						_									ţ	10	13.09
					, 				1 		<u> </u>				-											11	13.84
5	10.0 -	 .	 .		· · -				,		N		, , , , , ,			4	ه. قريب									12	14.58
					1 f					Ļ]												13	15.28
	•										-	è					;									14	15.97
	·												Ĵ,		_	_										15	16.65
Ę	_				1					-				R.												16	17.33
	15.0 -		🖣 _		۱ س ¹ س س ¹			-						A							.	÷				17	18.04
Ś									•	ļ					1										:	18	18.76 19.56
-													<u>.</u>			<u> </u>										19	-
	-								1				÷			1	į									20	20.44
	•				1				1	1			-				R :						•				
;					r E				L E				•				Ŋ	<u> </u>									
•	20.0 -	 								[· · ·	• • [1				1 .		THE T									•
	•			1								T	1			1	<u>+</u> 1										
	-			1				1	L !			 	1 1				t 5 5										
		1											· • • • •	· • • • •			: : :			t tot fatositat a c							
		1							• • •	•						-	;	-,		•						•	
	25.0 ·	<u>i i</u>	4	}	i	1	. !	<u>· </u>		,	I <u>1</u>			i	ł	ł											

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 ÷

[ST-21]

Geomatrix Consultants MudMole Bore Log Collection Information

			Place Field ID Label Here
Date:	-5-11-07		
Time:	1146		
Project:	Port of Everett Former Mill	A F	Recorder: <u>GSM</u>
Station Name:	57 21	Pos	sition Information
Tube Length (ft):	20-6	Coordinate Datum.	. ·
Water Depth (ft):	19.3	Northing	359290
Est. Tide Height (ft)	(MLLW)	Easting	1299372
Est. Mudline:	(MLLW)	On Deck Top of Sediment	8.8
Comments:			
Penetration Tape Reading	Recovery Tape Reading		comments
16.3	17.9		· · · · · · · · · · · · · · · · · · ·
13.4	16,4		
10.7	15.0		
7.6	13-6		
5.0	12.0	· .	
2.5	10.4		
۰.۷	8-4		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		· · ·
		(
	······································	· · · · · · · · · · · · · · · · · · ·	and and a second second second second second second second second second second second second second second se
			and the second se
# <u></u>	<u> </u>		
		·····	

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Mudmole[™] Core Description Form

Project:	Port of Everett			
Station:	ST-21			Place Field ID Label Here
	Core collection	Laboratory	· · · · · · · · · · · · · · · · · · ·	n 1997, utaližena provinstva predstava predstava predstava predstava predstava predstava predstava predstava p 1997 - Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Ma 1997 - Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Ma
Date:	5/11/2007	5/11/07		
Start Time:	11:46	1300	Comments:	
		00	-	
All distances a	Laboratory processing by: re measured from top of core tube.	NPB		
Distance			Distance	·
ft	Visual sample des	ription	top/bottom	Sample ID labele
8.8	Top of sediment	•		Geomatrix Consultants
			14.0 /	13116000027
				Description Form
	a 120 - 111	21. ortina	lina	Initials: <u>c)</u>
	0.8-16.1 . ML W	INC ANNUT 7	/15.0	Date: 11 may 07 Time: 1300
	B.8-12.9: ML wi debrie booms booms Mod.	, arryish		
-	· · · · · · · · · · · · · · · · · · ·	Sal saft		· · · · ·
		UNOPER DU. 1		
	whed.	#25. DAK		
	aud	wood splitulog	. /	
	and -	F - 67 - 8 ()		
	13 2.	WA ME	K	
-	. 4	Yog wood		
	· .			· .
	8	N. Nord		
	-135 ML:	SIL+ WITH Share		•
	asa.	y Mod SOTT		
_		Has order,		· · · · · · · · · · · · · · · · · · ·
		actiont		
		1 Tome		
-	253	(same		
	w	Silt with sand y mod soft H2S order, \$ 75% Silt & sand, tonce rod chips		
	(3.5	an a	K	
-	A A A A A A A A A A A A A A A A A A A	debris		
	The main failing	Last.		· · · ·
	with	3 D Lonu		
	70% rotting and	Sama 1		
· · · · · · · · · · · · · · · · · · ·	15% sand Splantes	Bto 1/2 and		
_	15 to sand Article	me wed		
	15% 5117. 00	Y.		
	Hz	ong. uned		
!		graded a		· · · · · · · · · · · · · · · · · · ·
7	15.5-10.01 ST- poor of	Uned deres		
	Skink, gra	76 J tora 7	K	,
	medium s	and inter		
	Shells. t	race vo		
	word 4-2	S ·		
-	H2 15.5-20.6 SP: poorly Sand, gra medium s Shells t wood H2			
			-	

Geomatrix Consultants 6505 216th St, SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

.

ojec	t:	Po	ort	of E	ver	ett					·				S	Stati	ion:	5	ST-2	1											
															F	Pos	itio	1:			NAE	0 83			WA N						
ollec	ted	by		G	SM																359	290			Northing			Place Fie	ld ID L	abel He	re
ite:			5/1	1/2	007	•				Tin	ne:		11:4	ŝ							1299	1372			Easting		ана (<u>1</u> ана (1) ана (1)				
	dor								6.8.						£1. 8	at 1	1.47								Lasting						
ater					9.3				IVI	ıdliı	1e:		-19.:	3	TT IN	MLL	.VV	(estim	ateo	l usin	g tide	tables))			· · · · ·				
eath	er/C	Con	nm	ent	s:	ſ	N/A																		Penetration		nterval		Der	oth below	Distance fro
														-											interval	re	ecovery	Percent		nudline	top of tube
																								\exists	(ft)	-	(ft)	recovery		(ft) _	(ft)
	•	^				, ,				Dista	nce	fron	n top	of t	ube ((ft)									0-4.3		2.7	63%	N	ludline	8.8
,	0.0 + 0.0	U.				5.0		i og -P			1.0°	,			15.0				20.	0			25.0		4.3-7.2		1.5	52%		1	9.43
,	··•]						Top of	sequin	ientse			1				-		Г				1	<u>t</u>		7.2-9.9 9.9-13		1.4	52%		2	10.06
	1					1				ľ.					1					•		deck			9.9-13 13-15.6		1.4	45%		3	10.68
	Ī					1					\sum				1			[• • •	<u></u> r.	∼ln-s	itu			15.6-18.1		1.6 1 <i>.</i> 6	62% 64%		4 5	11.31
	Ī		·			1									1				3						18.1-20.4		2	87%		5 6	11.86 12.38
	5.0 -					1		-							1				3						10.1 20.4		2	0770		7	12.36
• •]								1			[]			1]														8	12.30
						5' 5					1 1	ľ	\mathcal{N}		5				1. 1											9	13.93
						1							*		1	—			1 1											10	14.45
	1	•				5								N																11	14.90
1().0 🖡					,								·].	, , ,_ ,										-					12	15.35
	_					+					1				\;			~ ~												13	15.80
						*									<i>`.\</i>				1 1					·						14	16.42
	ļ					, , ,									<u>``</u>				1											15	17.03
	-					4 1										λ_{-}														16	17.66
1:	5.0 -						. .]]]														17	18.30
	,					*		_							1															18	18.94
									_						;		<u>``</u>												.	19.	19.78
	_					ء 			<u> </u>		:				т 1			۱. ۱												20	No sample
	-					1					·				<u>.</u>				\sum												
20).0 -					, , ,	_ _		ļ.,							ļ	ļ.,			\		_									
	-]				1										<u> </u>				瀬]].		
	+					*									•	ļ			i												
	4					1 1			1		-								1 			_									
	4					;-			_						, ,				3												
2	5.0 1					,				1					1				1										· '		

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 ٠

[ST-29]

Geoma	trix Consultants Mu	dMole Bore Log Collection Information
Date:	5-7-07	Place Field ID Label Here
Time:	0929	E nandrom og diværen i popularis, der nandrom som ander næren en ender en som en ender en som en andere som di
Project:	Port of Everett Former Mill	A Recorder: 65%
Station Name:	57-29	Position Information
Tube Length (ft):	10.3	Coordinate Datum:
Water Depth (ft):	51.9	Northing <u>358563</u>
Est. Tide Height (ft)	(MLLW)	Easting 1298537
Est. Mudline:	(MLLW)	On Deck Top of Sediment L 2
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
7.9	8.1	· · · · · · · · · · · · · · · · · · ·
5.5	6.6	
4.8	5-2	, ·,,,,,,,,
5	2-8	
<u> </u>	0.7	
	· · · · · · · · · · · · · · · · · · ·	
· · ·	1.2. on	deck
	4	
	· · ·	

- --- --

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697–4340 ţ

Mudmole[™] Core Description Form

.

Project:	Port of Everett		
Station:	ST-29		Place Field ID Label Here
	Core collection Laboratory		
Date:	5/7/2007 5707		
Start Time:	9:29 10 2 35	Comments:	
			·
All distances or	Laboratory processing by: <u>NPB</u>		
Distance	e measured from top of core tube.	Distance	· · · · · · · · · · · · · · · · · · ·
ft	Visual sample description	top/bottom	Sample ID Jahole
1.2	Top of sediment		Geomatrix Consultants
	1.2.1.6: 5M: black, 5th, sand	1,2	13116000001
	W/ STIT, 1803, turgs		Description Form
-	large pieces of rounded	4.4	Initials:
	gravel @ base. trace		Date: 7 may 0? Time: 1035
	1.2-1.6: 5M: black, 5th sand W/ STIT, 1003, twrgs large pieces of round gravel @ base. trace Shells. 7500% some/20% 14		• • • <u></u>
_			
	1.6-3.1: ML SIA W/ Sand, prayible black, trace trace - trade shells below mod. grades to mon below H2S 66% sitt/40% sand		· ·
_	gravish black, trace		
	toria - times the state to come		· .
	mod. ander to mot below		
-	H25 66% silt/40% sand		
	antis at and we get oreusly		· · · · · · · · · · · · · · · · · · ·
	3.0-4.4. SM : sand 7 silt, graysy black, 757 60% sand		
	black, Toth 60% sund		
	Hace 40% silt rance H2S. Shells/mays. 414-10.3. Sp. porry graded		
	Has shells /mags.		
-			· .
	lu transa		
-	414-10.5. Sp. porty graded		
	Card Dry Wed.		
	Savey group (
	dense, same ().		
	toule		
-	Wediling hours		· ·
	Sandy gray, wed. dense, sand B. Medrum, trace crushed Shell pieces. trace Hzs oder @ base.		· · · · ·
_	in trace	/	
	pleces.		
	His odor @ base.		
-	. ν		
	х.		
		× /	1
— .			
-			· · · ·
MCS Environment	al inc.	. V	· · · · · · · · · · · · · · · · · · ·
6505 216th St. SW, S	uite 100 (425) 697-4340		Core Description Form
Mountlake Terrace, W	A 98043 fax (425) 697-4370		Field version

roject:	Port of Ev	verett								ST-29							
							j	Posit	ion:		NAD		WA N		Place Fiel	d ID Label Hei	e
ollected	•						-				3585		Northing		na seren en MAN SALAN AN		
ate:	5/7/20	07		Time	: 9	9:29					12985	537	Easting			seven de liter (Service) Transferences	
ater de	pth: 51	9 ft	N	ludline	: -	51.9	ft I	MLLV	V	(estimal	ed using	tide tables)					
/eather/	Comments	: N/A	· .										Penetration	Interval		Depth below	Distance fro
				· ·									interval	recovery	Percent "	mudline	top of tube
· ·				•						<u>.</u>			(ft)	(ft)	recovery	(ft)	(ft)
				Distanc	e from	ton of	tube	(ff)					0-2.4	2.2	92%	Mudline	1.2
0) . 0.	2.0	4.0	Distanc 0	• 6	.0		8.0		1	D.O	12.0	2.4-4.8	1.5	63%	1.	2.12
010 p	of sediment										∔		4.8-5.5	1.4	200%	2	3.03
•	1	\mathbf{N} :	1	-		1					— On d	eck	5.5-7.8	2.4	104%	3	3.78
						1					In-sit	u	7.8-10.1	2.1	91%	4	4.40 5.30
	-	÷.N				r							ll · .		-	5 6 ·	6.82
2.0			v											-		7	7.87
	•					•					- Lavara					8	8.88
			$\left \cdot \right $			•					1			· .		9	9.80
											1					10	No samp
4.0	┫╸┥╸┥╸┥╸	;	;	· -\ <u>\</u> - -					- - -							11	No samp
				÷1V-		<u>.</u>					<u>,</u>					12	No samp
				``		; ;		1		-	1					13	No samp
· ·		1 t	i				ļ								. '	14	No samp
6.0	+ • + • • • • • • •			+ _ + _		<u></u>	<u></u>									15	No samp
	•					$\frac{1}{1}$	\cdot									16	No samp
6.0		:						,N;			1					17	No samp
L.			, ,			1	ļ	$\langle \cdot, \rangle$			1					18	No sampl
8.0	.							¥، • • • • •		.	* 					19	No sampl
	•	1 I				*				\cdot	- 					. 20	No samp
	•							-		$\langle \cdot, \cdot \rangle$				•			•
						!					<u>}</u>						
10.0	┫╴╡╴╡╴┥╴															· ·	
	-					1		1			1						
		1															
-		1	1								alua						
12.0		•				1		1		•	1				•		
		Penetratio	on 10 1 ff	/ On de	ck reco	verv 9	1 ff ≕	90% 1	Reco	verv			· · ·				

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 File name ST-29 Bore Log (mudline) .

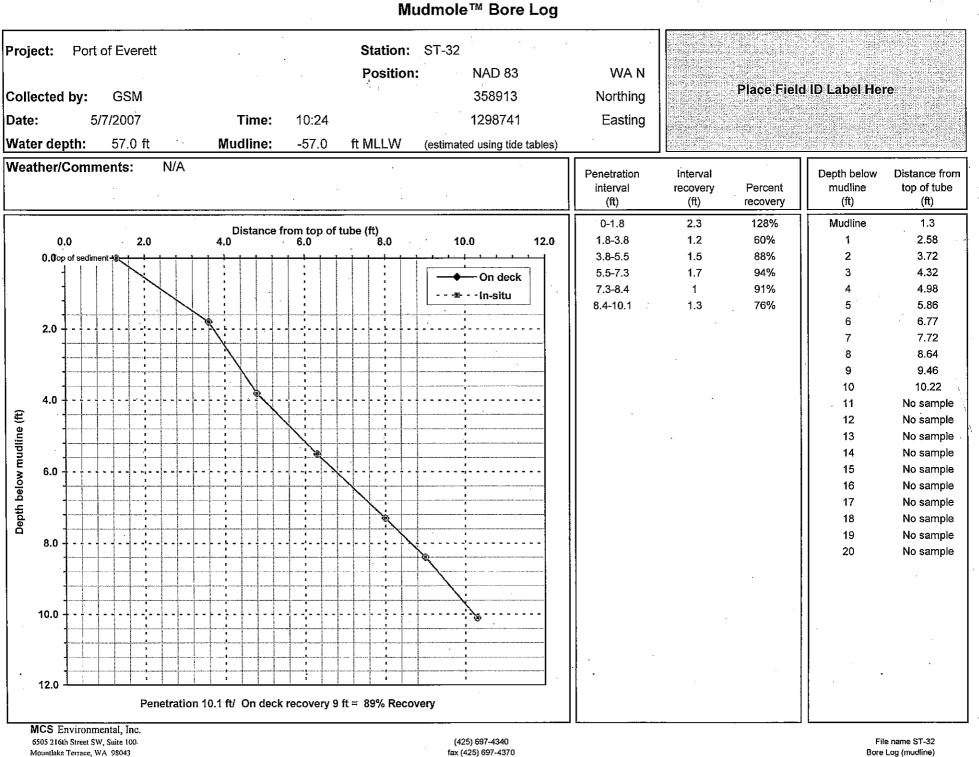
۵

[ST-32]

Geomat	trix Consultants Mu	dMole Bore Log Collection Information
Date: Time:	<u>5-7-07</u> 1024	Place Field ID Label Here
Project:	Port of Everett Former Mill	A Recorder: <u>65m</u>
Station Name:	57 32	Position Information
Tube Length (ft):)o.3	Coordinate Datum:
Water Depth (ft):	57	Northing_ 35 8913
Est. Tide Height (ft)	(MLLW)	Easting 1298741
Est. Mudline:	(MLLW)	On Deck Top of Sediment
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
8.5	8.0	
6.5 4.3	6.8	
4.8	5.3	
3.0	3-6	
1-9	2-6	
0.2	1-3	
		·
	·	
	·	
	· · · · · · · · · · · · · · · · · · ·	· · ·
	·	

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

÷


ł

Mudmole[™] Core Description Form

Project:	Port of Everett		
Station:	ST-32		Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/7/2007 5 アークテー 10:24 11:35	Comments:	
All distances a	Laboratory processing by: <u>VPB</u>	• ·	
Distance	e measured from top of core tube.	Distance	
ft	Visual sample description	top/bottom	Comple ID Jabola
1.3	Top of sediment		Geomatrix Consultants
	1.3-3 ML: silt, gray, trace 5.7 To mod. Hzs.	1.3	13116000002 Description Form Initials:
	70 7070 511+, 10%	5.0	Date: <u>2 may 0 7</u> Time: <u>11 3 5</u>
	Soft to 2.2 w/ lange		
-	moderately strift, 10% barte and 10% sound. trace shell		
-	Ennd. trace shell Fragments		
-	Fragments grades to out		
-	B#12 707, silt, 2020 sand, 1020 baule pieces		
-			
-	5.2-7.9. SM: sand with Silt, wird, duse,		
-	5 my, trace H25 60% sand, 30%		
- -	Sit 1070 bark pièces auf Shell Frings.		· · · · · · · · · · · · · · · · · · ·
-	7,9-9.8: SP: poorly graded Sand, aray, mod.		
-	Sand, gray, med. dense, trace crushed shell frags		
-	Sand 3 medun to force.		
MCS Environmenta	al Inc	-	

6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340 fax (425) 697-4370

Core Description Form Field version

fax (425) 697-4370

Bore Log (mudline)

[ST-34]

Geomat	rix Consultants Mud	Mole Bore Log Collection Information
Date: Time:	5-9-07 948	Place Field ID Label Here
Project:	Port of Everett Former Mill /	Recorder: 651
Station Name:	57 34	Position Information
	10.3	Coordinate Datum:
Tube Length (ff):		
Water Depth (ft):	58.8	Northing <u>359248</u>
Est. Tide Height (ft)	(MLLW)	Easting 1298999
Est. Mudline:	(MLLW)	On Deck Top of Sediment
Comments:		
Penetration Tape Reading	Recovery Tape Reading	Comments
6-8		
5.2	<u> </u>	
1-8	4.7	
0.2	5-6	
	•	
i		
	································	

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

1

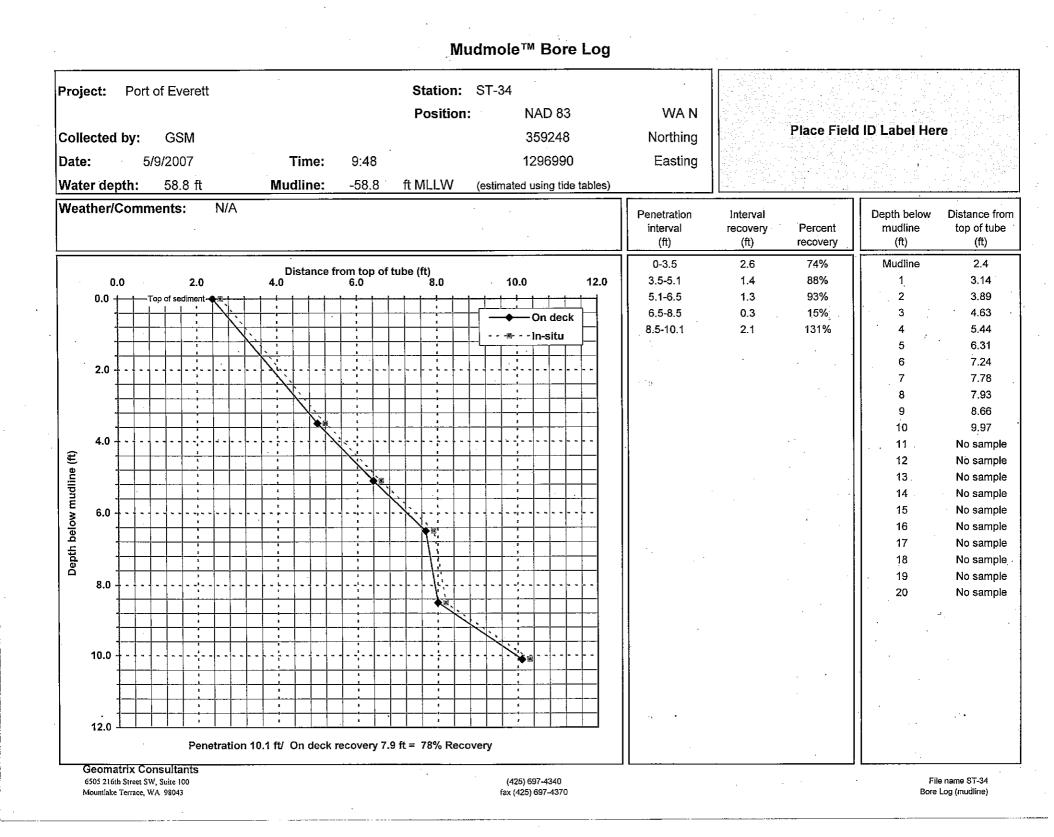
. . .

Field Forms xls

ж. 1

Mudmole[™] Core Description Form

Project:	Port of Everett	
Station:	ST-34	Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/9/2007 5/9/07 9:48 1240	Comments:
	Laboratory processing by: <u>NPB</u>	
All distances a Distance	re measured from top of core tube.	Distance
ft	Visual sample description	top/bottom Geomatrix Consultants
<u>2.4</u> -	Top of sediment of 2.4-5.8. ML: gray, mod. SIFT SITT with Sand, trace to	2.4 Initials: <u>Luw</u>
_	mod. H25. 1570 word chips/barth/splath	
_	55% silt, 20% sand. grades to Selen	
-	5.9-80 . SM, Jury, mod. dense sand with silt.	
 ,	5% 25% wood chips/bark pieces, mod. H25 odor. 85% free-med	
-	Sand, 15% SIH. 8.0-10.3 SP: poorly gradual Sand, gray, mod. dense, true white crushed shells	
	Sand is Furmed. # togice HzS odor	
- · ·		


Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

.

Core Description Form Field version

.

[ST-37]

Geomat	rix Consultants Mu	dMole Bore Log Collection Information
Date: Time: Project: Station Name:	- 5-11-07 1020 Port of Everett Former Mill Sで 37	Place Field ID Label Here Recorder: <u>دن</u> Position Information
Tube Length (ft):	41.9	Coordinate Datum: Northing
Water Depth (ft):	(
Est. Tide Height (ft)	(MLLW)	Easting 1299 244
Est. Mudline:	(MLLW)	
Comments:	large pieces st	book on bottom - 80 % coverage
Penetration Tape	Recovery Tape	
Reading	Reading	Comments
-		Comments
Reading	Reading	Comments
Reading ४ ८ \	Reading	Comments
Reading 중 . \ 3. \ }_ \	Reading 8.5 6.3	Comments
Reading	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	
Reading 중 . \ 3. \ }_ \	Reading 8.5 6.3 4.6	Comments
Reading 중 . \ 	Reading 8.5 6.3 4.6	Comments

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340 ÷,

Mudmole[™] Core Description Form

Project:	Port of Everett	
Station:	ST-37	Place Field ID Label Here
	Core collection Laboratory	
Date:	5/11/2007 5/m/d7	
Start Time:	10:20 (LOD)	Comments:
· .	Laboratory processing by:	
	e measured from top of core tube.	
Distance	Visual sample description	Distance ton/hottom
11 2.4	Top of sediment	top/bottom Geomatrix Consultants
		13116000024
	2.4-4.7: ML: sitt with cand and wood chips, green	Z · 13116000024 Description Form
	and wood chips, green	$59 \qquad \text{Initials: } \underline{CJW} \\ Date: \underline{U} \\ \underline{CJW} \\ C$
	mod soft. Orany trace H2S	Date: 11 may 07 Time: 1100
_	odor, trace turings	
	VOSTS	
-	55/157+ Hiz-4.6 Silt ball MI	
· 🗕	60% 51/t, 10% sand,	
	30% wood the chips	
	4.7-7.8 sawdust, black, mod. loose, mod. H2S MDed 75% sawdud with wood spirit 25% sawdud with wood spirit 25% sawdud with Frags. 57+ 5all 5.8-62	
	4, F= 7.8 Sawans, other,	
	mod loose, moon	
-	H2S MIRED	
	75% sawdurt with wood splitt	cus /
-	23 good barn Frigs.	
	+57-5-6-2 <7+ ball 5.8-6-2	
	10% sittisand 85/15 sittsand	
	10% sittisand 85/15 SITT Struct 15% month of large piece splinters of bark.	
	15% when s of bark.	
-		
	7.8-10.3 SP: poorly-gradual	
	Sand, gray, mod. dense, 10%	
-	Survey	
	dense, the	
_ ·		
	shell Frings truce H2S.	
	the Hos	
	Wine .	
-		
	· · · · ·	

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370 Core Description Form Field version

																				Μu	d	mo	ble	тм	B	ore	Lo	g										
oject:	Ρ	ort	of	Εv	eret	t											S	tat	ior	1:	S	T-3	37															
																	Ρ	os	itic	on:				N/	٩D	83				WA N								
llected	by	/:	(GS	М																			35	594	45			N	orthing				Place Fi	ield	ID Label He	re	
te:		5/	11/	20	07					т	im	.	-	10:2	20											244				Easting		engle officie El costrucci						
ater de	nth				9 ft				6.0	ud							ы. н.	AL 1	147		,								L	-asuny								
									IVI	ua		ð: 		41.	9	1	TIV		W		(e	stim	nate	d us	sing	tide	table	es)			ļ							
eather/	Col	mn	ner	its		۰Ņ	I/A																							etration		Interval				Depth below	Ð	stance fro
																														erval		recovery		Percent		mudline		op of tube
							·																<u> </u>							(ft)		(ft)	_	recovery		(ft)		(ft)
0	n				2.0				4.0	Dis	tan	ce f	ron	1 top 3.0	o of	tub	e (1	ft)	^				40	^						-2.2		1.8		82%		Mudline		2.4
0.0 -		ŀ'	Γόρ ο	fsec	2.0 liment			!	4.0 	, 	ŧ				ļ			<i>в</i> .	U 		t	السبي	10.	U i	L		12.	.v		2-4.6 3-7.2		2.2 1.7		92% 65%		· 1 2		3.22
		\mid		-+	;-``	$\left \right $							-	, ,		[1			_[_[<u></u>	eck	$\left - \right $			2-9.2		1.7		85%		2 3		4.04 4.93
		\vdash	-	+	1	+	+	\square	:		+		+	1		+		1		-	-						$\left - \right $			-10.1		1		111%		4		4.95 5.85
					1			\mathbf{n}	X.I				_					1			-L T	1	ear i		-31					· .	-					5		6.66
2.0 ·								÷.		<u>.</u> .	- 4,			, ,, , ,				ء ك]	-	 ,		ء م ^ي د ح				» .							•		6		7.32
		— <i>1</i>	_		÷		-		י א ז ו	┥		·	-	:		\rightarrow		1		_				_		_									_]].	. 7		7.97
					1 1				i		\mathbf{i}	\mathbf{T}	Ì	-1 1											┢	+										8		8.78
						_					1.	\sum		1	ļ			1					4													9		9.63
4.0					¦-		-	~ ~			•	· • • .				-			••	-					- -											10 11		No sample No sample
6.0				-			-		; _;			+						. <u> </u>	+			-			+		$\left \right $	[12		lo sample
					÷.				1					·``	Δ			i I I					1													13		lo sample
	·			+	i i	-	+		ii					1	۶ ۱	\downarrow		ر بو	_					_	_	_										14	· •	lo sample
6.0 -	• • •		* "		· •, •	•		• •	• • r 1	• • •	• • •	1-		- ng 1	• •	;)	<u>\</u> .		•••	* +	• {	-	• • •, • •	• • •	-										- 11	15		lo sample
					1				1								Ì	Ń					4													16		lo sample
	_		•		2	+			,	_	-			:			<u>`</u>	$ \rightarrow $		_		.	1		-											17		lo sample
				+			+							<u>.</u>			-	<u></u>		\forall		-	. 1 5		+											18 19		lo sample lo sample
8.0 -						<u> </u>	<u> </u>			<u> </u>		~~~	~ ~ `	· ·			` `	~ ~ % 			Ū,	~ ~	w ⁴ 				~ •									20		lo sample
	_			_					1	_	_			۱ ۱			_	1	_			\mathbf{A}	•			_												
,			\dashv	+			+			_		+					-				Ì	¢	€_	_	+	+												
- 10.0			_		' .	u			!	·		1.		1 ·				1				Ţ,		•														
			-		, , ,		-		1		_			1 1 1		_			_				• • • • •	*														
			-			+	-			+	+		-	, , ,				• • •	_	-	-	+	, , ,		+													
					L 						Ţ							1. i					<u>،</u> ۲															
12.0									1					1			٠Ţ						\$								•							•
					Pen	etra	ation	10.	1 ft/	On	de	ck r		von	,70) ff :	= 7	8%	Ro	<u></u>	(on							- 1	1									

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

. .

[ST-39]

Geomatrix Consultants MudMole Bore Log Collection Information

		Place Field ID Label Here
Date:	- 5-14-07	
Time:	1016	
Project:	Port of Everett Former Mill	A Recorder: 65 m
Station Name:	ST 39	Position Information
Tube Length (ft):	<u>4</u> 10 <u>3</u>	Coordinate Datum:
Water Depth (ft):	48.9	Northing 359583
Est. Tide Height (ft)	(MLLW)	Easting 129908
Est. Mudline:	(MLLW)	On Deck Top of Sediment 2.3
Comments:	. <u></u>	
Penetration Tape Reading	Recovery Tape Reading	Comments
· <u></u> ·		
8.0	8.3	
3.8	6-4	
3_0	<u> </u>	
1 - 8	3.3	
<u> </u>	2.0	
	· <u>······</u> ·····························	
	<u> </u>	
<u>.</u>		
· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
		<u> </u>

Mudmole™ Core Description Form

Project:	Port of Everett	
Station:	ST-39	Place Field ID Label Here
Date: Start Time:	Core collection Laboratory 5/14/2007 5/14/07 10:16 1115	Comments:
	Laboratory processing by: <u>NPB</u> re measured from top of core tube.	
Distance	Visual comple description	Distance
ft 2.3	Visual sample description Top of sediment	top/bottom Geomatrix Consultants
_	2.3-13 7.3: ML: Silt with Sand, gray, mod. Soft, trace to mod. H2S.	2.3 13116000033 Description Form Initials: <u>CJW</u> Date: <u>14 move 07</u> Time: <u>1115</u>
-	seattered turgs, wood spiriters wood cinners	
-	For 3-10.3: SP. porty-sorted	
-	sand, gray, mod tense, trace H2S odar, trace who te	
-	Shells. Smil B med.	
-		
-		

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

.

Mudmole[™] Bore Log

roje	ct:	Pc	ort c	of E	ver	ett			·								S	tatio	on:	s	ST-3	39					···· · · · · · · · · · · · · · · · · ·					
																							NA	D 8	3		WA N		DI			
olle	cted	by:		G	SM																						Northing		Place Fiel	י עו מ	Label Hei	e
ate:	r		5/1	4/2	007	,					Tin	ne:		10	:16												Easting					
late	r de	depth: 48.9 ft Mudline: -48.9 ft MLLW (estimated using tide tables)										les)					11.25-14日(小) 空雪橇(古一)															
• • • •	her/			ente	s'		N//	Δ																<u> </u>				J L				
								•																			Penetration interval (ft)	Interval recovery (ft)	Percent recovery		pth below mudline (ft)	Distance from top of tube (ft)
)iet:	ance	- fra	vm f	<u>on o</u>	ftsık	no (f										0-2.3	2	87%		Mudline	2.3
	0.	0			2	.0				4.0	1000			6.0	op 0		, oc	ť) 8.0				10.0	D		1	2.0	2.3-4.5	1.9	86%		1	3.17
	0.0 -		-Тор	of se	dime	nt 🔨	\uparrow		1		1-1			{ 1	1	1			-	<u> </u>	<u>†</u> †			1		1	4.5-7.3	2.2	79%		2	4.04
	1						Ň			1 1	\square			:	1				~/	H		•	-Or	n dee	ck	-	7.3-8.5	0.9	75%		3	4.90
]					•		Ņ		1				;				:			a n	aitte a	~In-	situ]	8.5-10.1	1.3	81%	ŀ	4	5.77
	-		-	_	_								<u> </u>	÷								, ,		-	<u> </u>						5	6.59
	2.0 -							-			<u> </u> .				-	.				¦	{	- 1 ² -		-							- 6	7.38
				_ <u> </u> _	_			-			\mathbb{N}				+	+		 1						+		-			· .		7	8.16
	-				_	,				-1 1						-		:				1				1					8	8.93 9.71
	-					,																1								-	9 10	9.71 No sample
	4.0 -	• • •	-				• •		-		 		·	<u>,</u>					. .	ļ.,										Í	10 11	No sample
Ê.	-			+	-	1 1			+	1	\vdash			*		+						1 1				-					12	No sample
ine	-				+	1				-					1			•				1				-					13	No sample
udl	-														·····	X						·/	••••								14	No sample
2	6.0 -		. .			1 1 ~ ~					ļ									ļ., .		*									15	No sample
<u>0</u>	-			_	_	1 1	_				<u> </u>				_			\leftarrow				1	_	_		-					16	No sample
ā c	-		-	_	•	1 1	-		····•	1				1	-	-		Ż				- 1 F	-# -4 .14 -		—————	-					17	No sample
Depth below mudline (ft)	-				_	1 1 1					+			1	+					\vdash						-				·	18	No sample
	8.0 -					: !								1 1	·~			•	<u>```</u>	Κ.		<u>،</u> ۱				1					19	No sample
					<u> </u>					, 	<u> </u>]			1 					`			1 1		_		_					20 🕔	No sample
	-		+	_	_		_			1 <u>t</u>				t		-				[₩] .	\mathbb{N}					-						
	-			·	-	2 1 1			+	1	1-		_	_:-			$\left \right $	÷		\vdash	$\left \right\rangle$	$\overline{\mathbf{x}}$	_			-						
	40 0		\neg			1		+		•		\square		:	1			:		\vdash		د بر د	•	+		-						
	- 10.0				4 4				- [* ī *				• • • •				<u> </u>				· · ·	<u> </u>		* * * * ·							
		\square				•		\square		-	<u> </u>				_		\square					1 1				-						
	-	\vdash	+	_		: 		-+		1 	–				_	-		<u>:</u>	_	-		1 1	_	_		-						
	-	\vdash	+		- ·	_				- 	+	\vdash			+				-	$\left \cdot \right $		* 	_			4						
	12.0 -	<u>} </u>						!			4,	1				<u> </u>		-	1	<u> </u>	<u></u>					4						
					F	'ene	tra	tion	10.	1 ft∕	On	deo	ck re	ecov	ery	8 ft :	= 79	9% R	leco	very	1											
G	eoma	trix (Con	sult	ants	i																					J L					

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

.

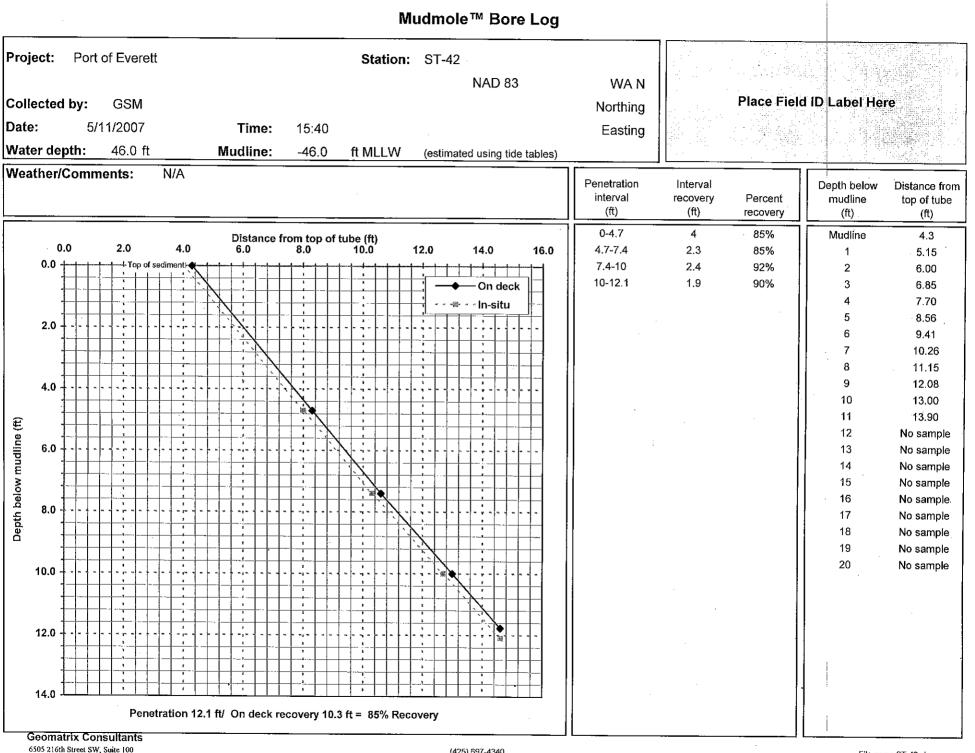
.

[ST-42]

Geomatrix Consultants MudMole Bore Log Collection Information

•		
· · · · · ·		Place Field ID Label Here
Date:	5-11-07	
Time:	1540	
Project:	Port of Everett Former Mill	A Recorder: <u>S</u> SM
Station Name:	ST 42	Position Information
Tube Length (ft):	14.6	Coordinate Datum:
Water Depth (ft):	46	Northing 359802
Est. Tide Height (ft)	(MLLW)	Easting 129945)
Est. Mudline:	(MLLW)	On Deck Top of Sediment <u>4.3</u>
Comments:		-
Penetration Tape	Recovery Tape	
Reading	Reading	Comments
9.9	10.6	
7.2		- , ,,,
4.6	<u> </u>	
2.5	4.0	
••••••••••••••••••••••••••••••••••••••		
		· · · · · · · · · · · · · · · · · · ·

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340 .


Mudmole™ Core Description Form

Project:	Port of Everett		
Station:	ST-42		Place Field ID Label Here
	Core collection Laboratory		
Date:	5/11/2007 5/11/07		
Start Time:	15:40 (6.5	Comments:	
All distances	Laboratory processing by: <u>NPB</u>		
Distance	re measured from top of core tube.	Distance	·
ft	Visual sample description	top/bottom	Somela ID Jahala
4.3	Top of sediment		Geomatrix Consultants
	4.3-6.6: ML: silt with	4.3	13116000032
	Eurod a stare (mod.	4.	Description Form
-	Sand, Jory, mod. SHIFF, trace H2S	67	Initials: CIW
		1.1.	Date: 11 moy 07 Time: 1615
	odor, true Fresh wood		ter a ser e se
	had wood		
.*			
-	chips,		
	75% 317 25%		
-	en is used		·····
	In to incel Sound.		
	picture 1 2" cliulien litre priece @ 6.4', vesiculated.		
-	1 2" clitter like		•
	picture priece @ 6.4,		
_	Vesiculated.		
	6.6-14.6: 57: poorly-graded		5
	Sand, gray, mod		
-	dense, trace H2S		
· ·	oder, trace shalls		
_	. · · · · · · · · · · · · · · · · · · ·		
	and native wood		
		K	
-	clauses,		
	100% sand		
_			· · · ·
		r /	
1			
 .			
Geometrix Cone		v	

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

[ST-43]

Geomatrix Consultants MudMole Bore Log Collection Information

Date:	- 5-11-07	Place Field ID Label Here
Time:	- 5-11-07 N#16	
Project:	Port of Everett Former Mil	A Recorder: 65 M
Station Name:	ST 43	Position Information
Tube Length (ft):	14-6	Coordinate Datum:
Water Depth (ft):	45-4	Northing 359111
Est. Tide Height (ft)	(MLLW)	Easting 129899
Est. Mudline:	(MLLW)	On Deck Top of Sediment 3-4
Comments:	additional st	ation - 100 % mood debris conser
Penetration Tape Reading	Recovery Tape Reading	on bothom Comments
9,8	10.6	
6.5	8.4	
3.9	6.4	
2.1	4.9	
0.2	3_0	
·		
÷		
· · · · · · · · · · · · · · · · · · ·		
- <u>-</u>		
· · · · · · · · · · · · · · · · · · ·		
	_	

Geomatrix Consultants, Inc. 6505 - 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

Mudmole[™] Core Description Form

Project:	Port of Everett		
Station:	ST-43		Place Field ID Label Here
Date:	Core collection Laboratory 5/11/2007 5/11/07		
Start Time:	14:16 1515	Comments:	
All distances a	Laboratory processing by:		
Distance		Distance	
ft	Visual sample description	top/bottom	Geomatrix Consultants
<u>3.4</u>	Top of sediment		13116000031
	3.4-B.O: HE. SM; sand wit	4 8.0	Description Form
-	grayvon black,	9.0	Initials: <u>(1)</u> Date: <u>11 may 07</u> Time: <u>1515</u>
_	3.4-8.0: ME. SM: sand un silt, mod. 1003e, grayven black, wood sphitters to 2", mod. H2S		1
	50% sand, 20% sinters		
-	6.0-7.1. ML- silt with		
	Sand, gray, ma Soft, Frace to Med. H2S-0	<i>X</i> .	
-	Sand, gray, ma Soft, Frace to Mord: H2S. Trace wood Splinters. SD% silt, 20200	2.	
	7.1-9.6: sawdust, black,		
v	mod, lovse, mod.		
-	75% It 25, trace wood Sawdust churches		•
	9.6-14.6. SP: poorly-graded sand, gray, and		
-	dense, true		
_	Shells, trace H2S sand B		
_	Medrum.		

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

roject:	Port of Everett		Station: ST-4						
			Position:	NAD 83	WA N				
ollected	lby: GSM			359111	Northing		Place Field	ID Label Her	6
ate:	5/11/2007	Time: 14:16		1298991	Easting				
ater de	pth: 45.4 ft	Mudline: -45.4	ft MLLW (estin	nated using tide tables)			، دون 		
eather/	Comments:	N/A			Penetration	Interval		Depth below	Distance fro
				.'	interval	recovery	Percent	mudline	top of tube
			-	· · · · · · · · · · · · · · · · · · ·	(ft)	. (ft)	recovery	(ft)	(ft)
		Distance from top of t 4.0 6.0 8.0	ube (ft)		0-4.8	4	83%	Mudline	3.4
	0.0 2.0		10.0 12.0	14.0 16.0	4.8-8.1 8.1-10.7	2.2 2	67% 77%	1 2	4.23 5.07
0.0 ·	Top of sediment				10.7-12.5	2 1.5	83%	2	5.07
•				-◆ On deck 	12.5-14.4	1.9	100%	4	6.73
2.0			L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					5	7.53
	n		2 2 3					6	8.20
								7	8.87
4.0	4			· · · · · · · · · · · · · · · · · · ·				8	9.53
			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	т				9	10.29
						-		10 11	11.0 6 11.85
E 6.0	* • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •		W N W W W N N N W W W				12	11.68
e								13	13.60
								14	14.40
= ≥ 8.0		* • • • • • • • • • • • • • • • • • • •						15	No sample
6.0 · · · · · · · · · · · · · · · · · · ·								16	No sample
5								17	No sample
<u>3</u> 10.0								18	No sample
	n							19 20	No sample No sample
								20	no sample
12.0	*								
14.0		n n n n n n n n n n	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1				
			1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	- 27/14 T = ==14.1 = == = = = = = = = = = = = = = = = =				:	
• *									
16.0		ration 14.4 ft/ On deck recovery 11.2							

6505 216th Street SW, Suite 100 Mountlake Terrace, WA 98043

.

1

[ST-44]

Geomatrix Consultants MudMole Bore Log Collection Information

Date: Time: Project:	- 5 - 14 - 07 - 09 15 Port of Everett Former Mill	A Recorder:
Station Name:	ST 44	Position Information
Tube Length (ft):	20.6	Coordinate Datum:
Water Depth (ft):	3210	Northing <u>358944</u>
Est. Tide Height (ft)	(MLLW)	Easting 1298897
Est. Mudline:	(MLLW)	On Deck Top of Sediment 6-8
Comments:	added state	<u>هم</u>
Penetration Tape Reading	Recovery Tape Reading	Comments
15.9	18.0	· · · · · · · · · · · · · · · · · · ·
12.7	14.8	
8.2	12.3	
4.9	7.5	
3.0	7.3	Nex- Som
1.9	6-4	retus al
	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·
· · ·		
······································		

Mudmole[™] Core Description Form

Project:	Port of Everett			
Station:	ST-44			Place Field ID Label Here
	Core collection Labo	ratory	ing the second sec	n an
Date:	5/14/2007 5 14	07-		
Start Time:	9:15 12.4	5	Comments:	
		20		· · · · · · · · · · · · · · · · · · ·
All distances a	Laboratory processing by: <u></u>	PB		
Distance			Distance	
ft (Visual sample description		top/bottom	Geomatrix Consultants
<u>6.4</u>	Top of sediment	~~~.		13116000034
	G.4-7.7: SM: sand with Guells, black mod - dens Med. Hz.		12.2/	Description Form
	and chist	0		Initials:
-	shells black	e,	13.2	
	wod-dems	e		Date: <u>14 ma 707</u> Time: <u>12 4</u> 5 Geomatrix Consultants
_	Med. ITZ.	<i>></i> ,		13116000035
	10% Somer 1	540 1	14.0	
	517+, 45%	stills		Description Form
—			15.0	Initials: CJw
	+.+. 8.9; SAA but o	nly.		Date: 14 may of Time: 1245
	7.7.8.9; SAA but o 15% shells 30% bark	and	(÷
	275% burk	and		
-	forde			
	8.9.12.2: ML: 577 wit Sand and debros (bark, th Jmy, mod. 5 mod. H2S.	4		
_		ind	<hr/>	
	Sand and	10004		
	Lebons (barter to	~Gs)		
-	gray, mod. 5	SOTH		
	mod. Has.			
_				· · · ·
	60% silt, 19,	o sand		
	25% wood			
-				
	12.2-15.1: wood chunks	2		
_	barry dare	mun,	<u> </u>	
	45/45 thody H2S odor, W	ww		
-	the charge derections are	ular,		
	10 me/sy up to 11. 60	nA		
_	i les au		r	
	1 20.6	raded		
	15 1- 20:0 SP: Porry . J	- stor		
	15-1-20:6 SP: porty - 3 Sand inedrug dense fratie	side.		
	Sand Bredhing activities Hz	5		

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370

Core Description Form Field version

Mudmole[™] Core Description Form

Project:	Port of Everett		
Station:	ST-44		Place Field ID Label Here
	Core collection Laboratory	Contacts and \$11.14	
Date:	5/14/2007 51407		
Start Time:	9:15 1245	Comments:	
	Laboratory processing by: <u>いア</u> re measured from top of core tube.	-	
Distance		Distance	
ft	Visual sample description	top/bottom	Geomatrix Consultants
<u>6.4</u> -	Top of sediment G.4-7.7: SM. sand with sith and crushed shells, black, mod-dense, mod. HzS.	12.2/	13116000034 Description Form Initials: <u>c.s.</u>
	mod-durse,		Date: 14 mar 07 Time: 1245
	med. H2S.	<u>/</u>	Geomatrix Consultants
~	40% coul, 15% 577, 45% shells	14.0	13116000035 Description Form Initials:
-		15.0	Date: 14 may 07 Time: 1245
	- Julle and	IK	
-	7.7.8.9; SAA but only 15% shells and 30% bark and		
	Anots		
	89-17.2: MI : 577 with		
_	- Sand and wood		
	debros (barte, turgs)		
-	8.9.12.2: ML: Sitt with Sand and wood debros (bark, turgs) Jrny, mod. Sott		·
-	60% silt, 15% soud		
_	25% wood		
	12.2-15.1: wood chundes 2 barty dark braun,		
-			
_	45/45 those H2S order wood 10 m/sy up to 1". Lank up to 1"		
	vp to l'	/ /	· · · ·
	15.1-20:6 SP: porry graded		
	15.1-20:6 SP: porty-gradul Sand inderny danse trace shall		

Geomatrix Consultants 6505 216th St. SW, Suite 100 Mountlake Terrace, WA 98043

(425) 697-4340 fax (425) 697-4370 Core Description Form Field version

oject:	Ρ	ort	of E	ver	ett														ST-	44										
															Ρ	osi	itio	n:			NA	AD 8	33		WA N					한 전통 화장이 가 날 1. 전화 전에 나날 것
llected	l by	:	G	SM																	35	6894	4		Northing		E	Place Fiel	d ID Label He	re
te:		5/1	4/2	007	7				т	ime	: :	9:	15								12	988	97		Easting		utu 1915 - S			는 것 같은 것 같이다. 같이 모습했다. 그는 것
iter de	nfh			2.0				N	lud				2.0		ft N	יווי	w	,	'actir	note			ide ta				gina Antonia			
ather/						N/A	<u> </u>						2.0							nate	u ua	ing i			۰ <u>۰</u>			·		<u>, anna 198</u> 7 - Arrigan T
ather/	COI	nm	ent	5:	1	WA																			Penetration interval (ft)	Interval recovery (ft)		Percent recovery	Depth below mudline (ft)	Distance fn top of tub (ft)
									Die	tan	ce fr		<u></u>		ha (1	F#1									0-4.7	2.6		55%	Mudline	6.4
0	0.0				5.0	1				10.0		2113 L	օր զ	1	5.0 5.0	4			20	0.0			:	25.0	4.7-7.9	3.2		100%	1	6.95
0.0		1		Гор о	f sedin	nent-@	1						1	1	ł	 	ļ	ţ		<u> </u>	<u> </u>			1	7.9-12.4	2.5		56%	2	7.51
	1						¥			,					1					+	-0	n de	ck	_	12.4-15.7	4.8		145%	3	8.06
2.0	<u>+</u>				* 		-	$\overline{+}$.	· 				j	1 				u u	*	<u>~ ~ I</u> n	I-siti	<u> </u>	.	15.7-17.6	0.2		1 1%	4	8.61
					5			Y		•		-			1 1 1					r r				1	17.6-18.7	0.9		82%	5	9.30 10.30
	1								+				1		, ,			1	Ė	1 1				_						11.30
4.0	†				وکر ہے ۔ ر			- 1 -	· <u>\</u> [-	 		1		1 • •	•			• • •		·			· • • •	-					8	12.26
]				1				\neg	$\overline{\cdot}$		-		_					-	1				-				-	9	12.81
6.0	}						-		• - -	- 7	<u>,</u>			{	1 1									·]					10	13.37
											1	_			1 1					; ;;									11	13.92
8.0	<u> </u>				<u>،</u> ماير بر ا					، _ گ _		离.			ا بر بر ا					۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				.					12	14.48
				_	F F					•					1 5 5					1 1 1				-					13	15.57
				_	1					2	+		<u>\</u>		1 1					1				_					14	17.03
10.0	<u>† </u>		• • •						• • •				· -)-	•••	1 · · ·		• • •	• • •	• • •	y • •	« « «	~		·					15 16	18.48
	1—	[-				;		-		\mathbf{k}	1	<u> </u>				<u>}</u>				_					17	19.53 19.64
12.0]								•	- ; -	~			1	¦					1 1				-					18	20.03
		·								1					-					1				_					19	No sampl
14.0	<u>+</u>											<u> </u>												_					20	No sampl
					н н	_	\pm			!	_				, ,					г. к				_				-		
					1 1	\pm			\pm	1 1				\vdash	r r				 @-	<u> </u>				_						
16.0	<u>† </u>			u a .			• ~ ~		• • -	• • •	* * *			« <i>« «</i>	,= ~ ^ r				1	(r			· • • •	-						
	=								1	;				1	۰ ۰				Ħ	۱ ۱										
18.0	4				ء - بـ بـ •		-			- 3 -					'		,			<u>.</u> *				-						
	1						-	+		2	_	-	-		3 1	••••	<u>,</u>	1		; ; ;				-						
20.0	1				3		·			2			•		5					1 1					·					
20.0	-			-		- 41 -					ck re				×	700/	D -							_					ļļi.	

Mountlake Terrace, WA 98043

Appendix C

Core Summary Logs

CHANGES TO SUMMARY BORE LOGS Former Mill A MTCA Support Sample Collection Everett, Washington

General Comments and Universal Changes

SAA stands for Same as Above

Trace is 5% or less

Density or Consistency

- ► Medium is presented as moderate
- ► For silt units moderately firm is presented as moderately stiff
- ▶ Descriptions in parentheses are interpretations based on visual records of the cores.

If trace constituents were not include in the percentages recorded on the field sheets, then the trace amounts were taken from the dominant constituent percentages.

Wood chunks or chips appear to be a coarse machined product, unstained or appeared fresh or recent, that are angular and uniform in size.

Rafting debris includes chunks of bark (often with reddish tints), wood splinters or fibrous wood chunks. Rafting debris may include twigs.

Summary		
Log	Interval	Changes
ST-1	0 to 1.5 ft	Large riprap <3-inch description changed to angular gravel description in surface unit.
ST-3	1.6 to 2 ft	Moderately dense description added to unit.
ST-3	2 to 2.7 ft	Moderately dense description added to unit.
ST-3	2.7 to 3.5 ft	Moderately dense description added to unit.
ST-3	3.5 to 14.4 ft	Moderately dense description added to unit.
ST-3	14.4 to 15.7 ft	Moderately dense description added to unit.
ST-3	15.7 to 16.8 ft	Moderately dense description added to unit.
ST-3	16.8 to 17.7 ft	Moderately dense description added to unit.
ST-3	14.4 to 15.7 ft	80% wood chips/20% sand changed to 75%2/0%5% to reflect presence of 5% sawdust.
ST-5	0 to 0.4 ft	60% sand/20% silt /10%/wood and shells changed to 70%/20%/10% to equal 100%.
ST-5	19 to 20 ft	60% sand/40% silt changed to 55%/40%/5% to reflect presence of trace constituents.
ST-6	2 to 12 ft	Sawdust and wood chip percentages recorded as ranges on field form, average percentage
		recorded on bore log.
ST-8	18 to 20 ft	80% silt/20% sand changed to 75%/20%/5% to reflect presence of trace constituents.
ST-11	0 to 10 ft	Moderately loose description estimated from photographs.
ST-14	10.7 to 12.2 ft	Moderately stiff description added to unit.
ST-15	8 to 15.5 ft	Moderately stiff description added to unit.
ST-17	14.8 to 18 ft	100% sand changed to 95%/5% to reflect trace amount of shells and wood fragments.
ST-21	8.1 to 12.3 ft	Moderately dense description added to unit.
ST-21	7 to 8 ft	75% silt/25% sand changed to 70%/25%/5% to reflect presence of trace constituents
		(wood chips).
ST-29	0 to 0.4 ft	80% sand/20% silt changed to 75%2/0%5% to reflect presence of 5% twigs, shells, gravel.
		Moderately loose added to description of unit.
ST-29	0.4 to 2 ft	60% silt/40% sand changed to 55%/40%/5% to reflect presence of trace constituents (twigs and
		shells). Moderately stiff added to description of the unit.
ST-29	2 to 4 ft	60% sand/40% silt changed to 55%/40%/5% to reflect presence of trace constituents
		(twigs and shells).
ST-37	6.8 to 9.6 ft	100% sand changed to 95%/5% to reflect trace amount of shells.
ST-42	0 to 2.8 ft	75% silt/25% sand changed to 70%/25%/5% to reflect presence of trace constituents
		(wood chips).
ST-42	2.8 to 11.8 ft	100% sand changed to 95%/5% to reflect trace amount of shells and native wood chunks. Sand
		estimated as medium from photos.
ST-43	3.2 to 4.4 ft	80% silt/20% sand to 75%/20%/5% wood splinters (trace).

I:\Project\Port of Everett\13116-000 Former Mill A MTCA Support\3000 REPORT\Data Report\Appendix C Core Summary Logs\EditChanges_SummaryLogs.xls

Project: Port of Everett

Station: ST-1

Maximum depth of retained sediment: 8.1 ft

Mudline elevation: -0.7 ft MLLW

•		
Percent	recovery (on-deck):	61%

	Core	Laboratory
	collection	processing
Date:	5/8/2007	5/8/2007
Time:	9:16	10:00

0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
- - - - - - - - - - - - - - - - - - -	SW: Well-graded sand with gravel, black, loose, very trace H2S odor. 50% sand, 40% large angular gravel to 3*, 5% silt, 5% twigs and wood chips.			13116000016	
2	SP: Poorly-graded sand, gray, moderately dense, sand is coarse. 90% sand, 10% fine gravel.	Recent			
3		-			
4	SP: Poorly-graded sand, gray, moderately loose, sand is medium, trace wood chips. 80% sand, 10% silt, 5% fine gravel, 5% wood chips.				
5					
6 7	SP: Poorly-graded sand, gray, moderately dense, sand is medium to fine. 100 % sand.	- Native			
8	End of Core	End of core	End of core	End of core	End of core
9		-			

Project: Port of Everett

Γ

Station: ST-2

Maximum depth of retained sediment: 14.1 ft 92%

Percent recovery (on-deck):

Mudline elevation: -31.0 ft MLLW

	Core collection	Laboratory processing
Date:	5/14/2007	5/14/2007
Time:	8:36	14:00

Field Log: NPB Summary Log: RHG

0 —	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample II
+	Crushed shells with silt, black, moderately dense. 70% shells, 20% silt, 10% bark fragments.	- Recent			
2	Wood chips and bark, pieces up to 1" and angular. 45% wood chips, 45%	Wood Chips and			
Ł	bark, 10% silt.	Rafting Debris			
+	ML: silt, gray, moderately soft, trace H2S odor. 80% silt, 15% shells, 5% sand.	Indeterminate			
4 +		-			
6 -	Saw dust, black, moderately loose, trace to moderate H2S. 85% saw dust, 10% silt, 5% bark fragments.	Saw Dust		13116000038	
8 +	ML: silt with sand, gray, moderately soft. 70% silt, 20% sand, 10% shells. Large wood piece with worm holes at 8.9 ft.	Indeterminate			
10 +					
12	SP: poorly-sorted sand, gray, moderately dense, sand is medium. 100% sand.	Native			
14 +	End of Core	End of core	End of core	End of core	End of core
İ					

Geomatrix Consultants 3500 188th ST. SW Suite 600 Lynnwood, WA 98037

Project: Port of Everett

Station: ST-3

Maximum depth of retained sediment: 17.7 ft

Mudline elevation: -5.4 ft MLLW

	Core collection	Laboratory processing
Date:	5/7/2007	5/7/2007
Time:	11:23	12:25

Percent recovery (on-deck):

55%

0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
	SM: sand with silt and wood chips, black, moderately losse, moderate H2S odor, wood chips up to 1/4*, 55% sand, 25% wood chips, 20% silt. Large piece of ballast rock at base of unit.	- - Recent		13116000003	
	SP: poorly-graded sand, gray, (moderately dense), sand is medium.				
2	SP: poorly-graded sand with wood chips, black, (moderately dense), wood chips up to 1/2". 60% sand, 40 % wood chips.	Wood Chips			
Ĺ	SP: poorly-graded sand, gray, (moderately dense), sand is coarse, 100% sand.	Indeterminate			
4					
-				13116000004	
6		-			
10	PT: saw dust with sand, black, (moderately loose), moderate to strong H2S odor, sand is medium to coarse. 85% saw dust, 15% sand.	Saw Dust			
10 +				13116000005	
12					
14					
	PT: wood chips with sand, olive gray green, (moderately dense), moderate H2S odor, wood chips < 1/4*, sand is fine to medium. 75% wood chips, 20% sand, 5% sawdust.	Wood Chips		13116000006	
16 -	SP: poorly-graded sand; gray; (moderately dense), sand is fine to medium, wood chips < 1/2°. 90% sand, 10% wood chips.	Indeterminate			
	SP: poorly-graded sand, gray, (moderately dense), sand is medium to fine, 100% sandEnd of Core	- Native End of core	End of core	End of core	End of core
18 +…					
20					

Project: Port of Everett

Station: ST-5

Maximum depth of retained sediment: 20.2 ft

Mudline elevation: -11.4 ft MLLW

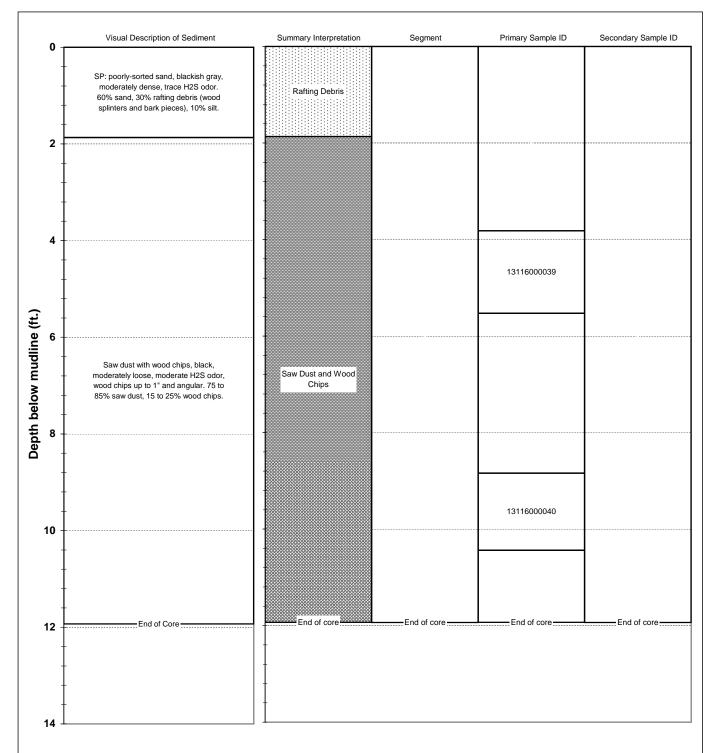
	Core collection	Laboratory processing
Date:	5/7/2007	5/7/2007
Time:	12:40	13:30

Percent recovery (on-deck): 63%

-	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
0 -	Still ead util: All, Macking any, losse, trace to moderate H2S oddr. 70% sand, 20% silt, 10% wood chips, roots, and sheets. PT: wood chips, gray, < 1", moderate H2S oddr, sand is medium, 90% wood chips, 10% gray sand.	Recent		13116000007	
	SWPT: sand with silt and wood chips to 1.5 in, gray, soft, moderate to strong H2S odor. 50% wood chips and debris, twigs and bark and 50% silty sand.	Wood Chips			
(-			13116000008	
Depth below mudline (ft.) 0	- PT: saw dust, black, (moderately loose), moderate H2S odor. 95% saw	-			
Depth	dust, 5% wood chips to 1.5 in. with interbedded layers containing higher percent of wood chips or up to 15% gray fine sand.	Saw Dust		13116000009	
15 -	-				
20 -	SM: sand with silt, gray, (moderately dense), trace crushed shells and wood chips. 55% sand, 40% silt, 5% shells and wood chips.	Native End of core	End of core	End of core	End of core
	End of Core				

Project: Port of Everett

Station: ST-6


Maximum depth of retained sediment: 11.9 ft

Mudline elevation: ft MLLW -4.8

	Core collection	Laboratory processing
Date:	5/14/2007	5/14/2007
Time:	13:58	14:50

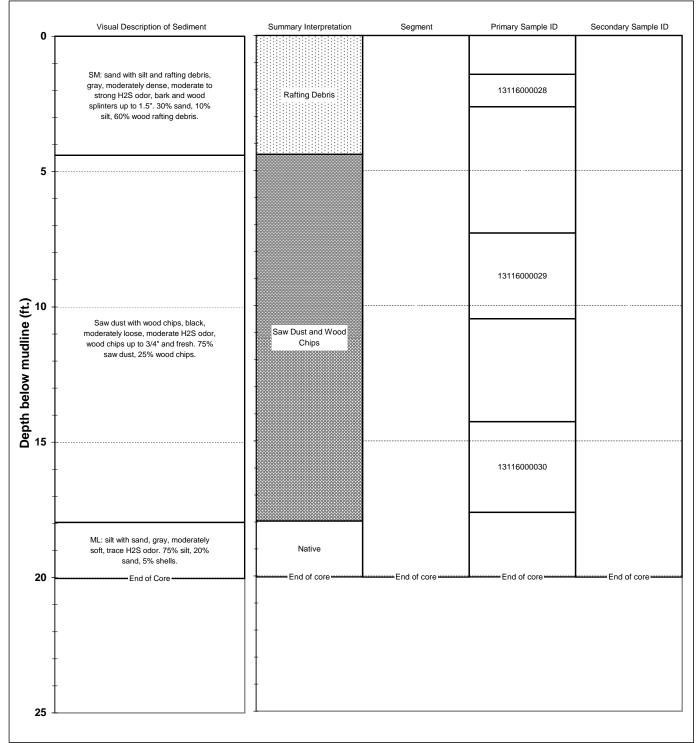
Percent recovery (on-deck): 56%

Field Log:	NPB
Summary Log:	RHG

Project: Port of Everett

Station: ST-8

Maximum depth of retained sediment: 20.0 ft


Mudline elevation: -12.1 ft MLLW

	Core	Laboratory
	collection	processing
Date:	5/11/2007	5/11/2007
Time:	13:10	14:10

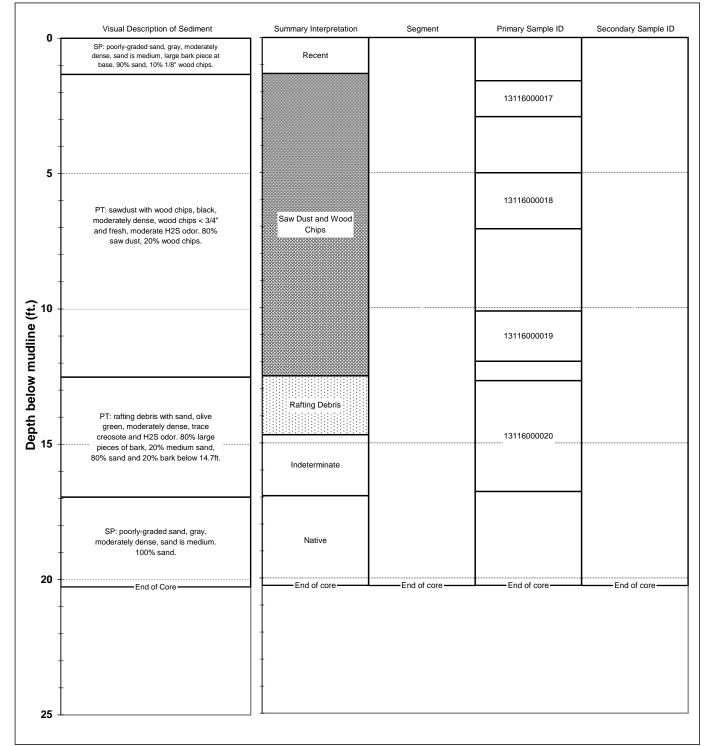
Percent recovery (on-deck): 43%

Field Log: NPB

Summary Log: RHG

Project: Port of Everett

Station: ST-9


Maximum depth of retained sediment: 20.3 ft Percent recovery (on-deck): 54%

Mudline elevation: -6.1 ft MLLW

	Core collection	Laboratory processing
Date:	5/8/2007	5/8/2007
Time:	9:59	11:00

Field Log: NPB

Summary Log: RHG

Project: Port of Everett

Г

Station: ST-11

Maximum depth of retained sediment: 20.3 ft

Mudline elevation: -22.8 ft MLLW

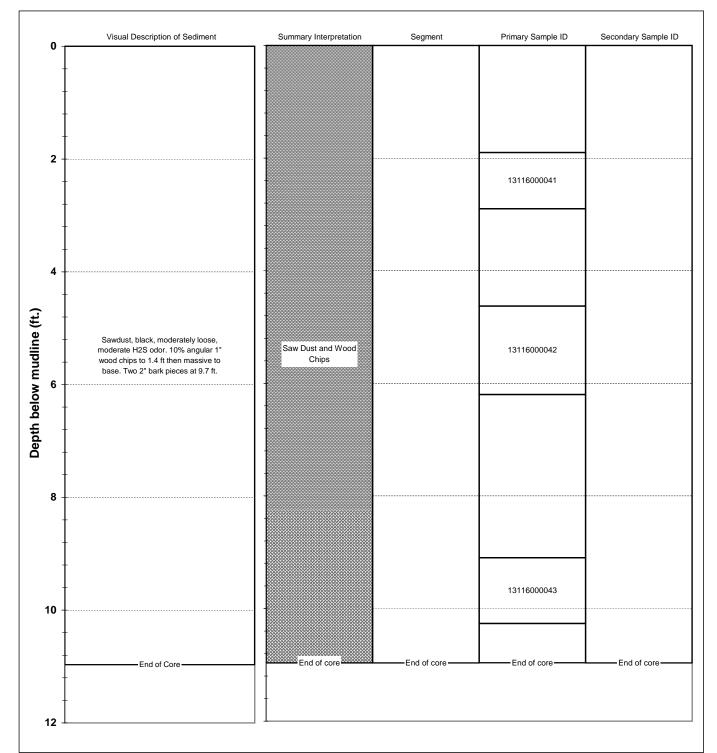
	Core collection	Laboratory processing
Date:	5/7/2007	5/7/2007
Time:	13:27	15:00

Percent recovery (on-deck):

54%

0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
5	PT: saw dust, black, (moderately loose), creosote piling at 1.7-3.0 ft, creosote odor and small creosote blebs at 6.2 ft, moderate H2S odor to 10.2 ft. 85% saw dust, 10% medium sand, 5% shells.	Saw Dust		13116000010	
10	ML: silt with crushed shells, gray, soft, moderate H2S odor, trace creosote odor, large wood piece at base. 60% silt, 10% sand, 30% shells.	- Indeterminate		13116000011	
20	SP: poorly-graded sand, gray, moderately dense, trace H2S odor, sand is fine to medium. 100% sand.	Native	End of core	End of core-	End of core
25					

Project: Port of Everett


Station: ST-12

Maximum depth of retained sediment: 11.0 ft

Mudline elevation: -6.6 ft MLLW

	Core collection	Laboratory processing
Date:	5/14/2007	5/14/2007
Time:	14:49	15:45

Percent recovery (on-deck): 79%

Project: Port of Everett

Г

Station: ST-14

Maximum depth of retained sediment: 19.6 ft

Mudline elevation: -8.5 ft MLLW

Percent recovery (on-deck): 70%

 Core
 Laboratory

 collection
 processing

 Date:
 5/8/2007
 5/8/2007

 Time:
 10:46
 11:45

0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
	SP: poorly-graded sand with wood debris and saw dust, black, moderately dense, trace H2S odor. Sand is fine to medium. 40% sand, 30% red bark pieces, 30% saw dust.	- Recent			
- -				13116000021	
5 +-	PT: saw dust, black, moderately dense, moderate to strong H2S odor, trace wood chips. Sand is fine. 90%	Saw Dust			
	saw dust, 10% sand.			13116000022	
10 -					
10	ML: silt with wood chunks, gray, (moderately stiff), large 4" by 2" bark piece at 10.8 ft, trace creosote odor. 70% silt, 30% wood chunks.	- Indeterminate			
15	ML: silt with crushed shells, gray, moderately stiff, moderate H2S odor.	-			
+	50% silt, 40% shells, 10% sand.	- Native			
+	SP: poorly-graded sand, gray, moderately dense, trace shells, sand is medium. 95% sand, 5% shells.	- End of core	End of core	End of core	End of core
20 +-	End of Core	-			
25					

Project: Port of Everett

Station: ST-15

Maximum depth of retained sediment: 19.9 ft

Mudline elevation: -19.8 ft MLLW

Percent	recovery	(on-deck):	75%	

	Core	Laboratory
	collection	processing
Date:	5/7/2007	5/7/2007
Time:	14:33	15:45

0 -	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
- - -	PT: saw dust, black, moderately dense, moderate H2S odor, trace creosote odor and creosote blebs to 3ft. 85% saw dust, 5% fine sand, 5% wood chips, 5% shells.	Saw Dust		13116000013	
5 -	- - -			13116000012	
Depth below mudline (ft.) 10	ML: silt with shells, gray, (moderately stiff), trace to moderate H2S odor. 30% silt, 70% shells, whole shells to 11.7 then mostly crushed.	- Native			
20 -	SP: poorly-graded sand, gray, moderately dense, trace shell fragments, sand is medium. 95% sand, 5% shell.	- - - 	End of core	End of core	End of core
	-				

Project: Port of Everett

Station: ST-17

Maximum depth of retained sediment: 18.0 ft

Mudline elevation: -11.7 ft MLLW

	Core collection	Laboratory processing
Date:	5/14/2007	5/14/2007
Time:	11:36	13:20

Percent recovery (on-deck):

74%

0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample II
2					
	Saw dust, black, moderately loose,			13116000036	
4	trace H2S odor, 10% twigs and roots to 1.2 ft, two 2" pieces of bark at 5.4 ft. 90% saw dust, 10% twigs and roots.	Saw Dust			
6				13116000037	
8	ML: silt, gray, moderately stiff, trace H2S odor.Trace of shells and bark				
8	fragments. 90% silt, 5% sand, 5% shells.	 - - - - -			
12 +	ML: silt with crushed shells, gray, moderately stiff, trace H2S odor. 60% silt, 30% shells, 10% sand.	Indeterminate			
14 +		- - - -			
16	SP: poorly-sorted sand, gray, moderately dense, sand is medium. 95% sand, 5% shells and wood fragments.	- - - Native -			
18	End of Core	- End of core	End of core	End of core	End of core
ł					

Project: Port of Everett

Station: ST-19

Field Log: NPB Summary Log: RHG

Maximum depth of retained sediment: 4.3 ft

Mudline elevation: -14.9 ft MLLW

collection	Laboratory processing
5/11/2007 9:40	5/11/2007 10:20
	collection 5/11/2007 9:40

Percent recovery (on-deck):

92%

			_		
0.0 -	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
-	-	-			
-	-	1			
-	-	-			
0.5 -		1			
-	-	-			
-	-	-			
1.0 -		1			
-	-	-			
-					
-	-				
1.5 -		1			
-	-	-			
-	-				
<u>2.0</u>	Saw dust, black, moderately loose,				
e (f	trace to moderate H2S odor. 3" piece of bark at 0.2 ft and 3" wood splinter at	Saw Dust			
dlin	3.5 ft. 90% saw dust, 5% fine sand, 5% wood chips.				
Depth below mudline (ft.)	-	-			
2.5		1			
oelc	-				
ţ, ţ	-			13116000026	
a 3.0 -		-			
	-	-			
-	t l				
-	-				
3.5 -		1			
-					
-	L I	-			

End of Core-

4.0

4.5

5.0

-End of core -

End of core-

End of core

End of core

Project: Port of Everett

Station: ST-20

Maximum depth of retained sediment: 20.2 ft

Mudline elevation: -20.9 ft MLLW

	Core collection	Laboratory processing
Date:	5/7/2007	5/7/2007
Time:	15:52	17:00

Percent recovery (on-deck): 66%

0 -	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
- - - -	ML: silt and wood splinters, brownish gray, (moderately firm), trace H2S odor. 50% wood splinters, rafting material, 30% silt, 10% sand, 10% shells.	- Recent			
5 -					
Depth below mudline (ft.) 10	PT: saw dust, black, moderately dense, moderate H2S odor. 80% saw dust, 10% sand, 10% small wood chips.	Saw Dust		13116000014	
- 51 Depth	- 				
20 -	SP: poorly-graded sand, gray, moderately dense, trace shell fragments, sand is medium. 95% sand, 5% shell fragments. End of Core	End of core	End of core	End of core	End of core
25	-				

Project: Port of Everett

Station: ST-21

Maximum depth of retained sediment: 19.9 ft

Mudline elevation: -11.9 ft MLLW

	Core collection	Laboratory processing
Date:	5/11/2007	5/11/2007
Time:	11:46	13:00

Percent recovery (on-deck):

58%

0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
5	ML: silt with rafting debris, bark and splinters to 2", grayish brown, moderately soft, moderate H2S odor. 60% silt, 40% wood bark and splinters.				
5 ===	ML: silt with sand, gray, moderately soft, trace H2S odor. 70% silt, 25% sand, 5% wood chips.	Rafting debris			
Depth below mudline (ft.)	Rafting debris with silt and sand, brown, (moderately dense), moderate H2S odor, splinters up to 1/2'. 70% wood, 15% sand, 15% sand.			13116000027	
Depth belo	SP: poorly-graded sand, gray, moderately dense, trace to moderate H2S odor, sand is medium. 95% sand, 5% shells.	- Native			
20	End of Core	End of core	End of core	End of core	End of core
25		-			

Project: Port of Everett

Station: ST-29

Maximum depth of retained sediment: 9.6 ft

Mudline elevation: -44.4 ft MLLW

Percen	t recovery	(on-de

eck): 90%

	Core	Laboratory
	collection	processing
Date:	5/7/2007	5/7/2007
Time:	9:29	10:35

0 -	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample I
• -	trace twigs, large pieces of gravel at base, trace shells. 75% sand, 20% silt, 5% twigs, shells,	-			
-	aravel.	+			
-	+ 1	+			
-	ML: silt with sand, grayish black,	-			
1 -	(moderately stiff), trace twigs and				
-	shells, trace to moderate H2S odor.	+ I			
-	55% silt, 40% sand, 5% twigs and shells.	† I			
-	- Shells.	+ I			
-	+	-			
2 -		Recent		13116000001	
-		Ť			
_		I			
_	SM: sand with silt, grayish black,				
3 -	moderately dense, trace shells and				
Ű.	twigs, trace H2S odor. 55% sand, 40% silt, 5% twigs and shells.				
-	Silt, 5 % twigs and shells.	1 I			
_		+			
-					
4 -				-	
-	-	+			
-	+	+			
-	+	-			
-	-	+			
5 -					
-	+	+			
-	+	+			
4 - - - 5 - - - - - - - - - - - - - - - -	-	+			
-	-	+			
6 -					
-		Ţ I			
-	SP: poorly-graded sand, gray,	I			
	moderately dense, trace crushed shells, trace H2S odor at base, sand is	_ Native			
7 -	medium. 95% sand, 5% crushed				
-	shells.				
		1 I			
8 -					
Ϋ.		1			
-	_	-			
-	ļ l	+ I			
-	Į I	+ I			
9 -	<u> </u>				
-	Į I	+ I			
-	ł I		End of	Frederi	F = 1 (
-	End of Core	End of core	End of core	End of core	End of core
	1	1			

Project: Port of Everett

Station: ST-32

Maximum depth of retained sediment: 10.1 ft

Mudline elevation: -51.0 ft MLLW

	Core collection	Laboratory processing
Date:	5/7/2007	5/7/2007
Time:	10:24	11:35

Percent recovery (on-deck):

89%

Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
ML: silt, gray, soft to 0.7 ft then moderately stiff, moderate H2S odor, trace shell fragments. 80% silt, 10% sand, 10% bark and shell fragments grading to 70% silt , 20% sand, and 10% bark and shell at 1.6 ft.	-			
ML: silt with sand, gray, moderately stiff, trace H2S odor. 70% silt, 20% sand, 10% bark pieces.	Recent		13116000002	
SM: sand with silt, gray, moderately dense, trace H2S odor. 60% sand, 30% silt, 10% bark and shell fragments.				
SP: poorly-graded sand, gray,	Native			
moderately dense, trace crushed shell fragments, sand is medium to fine. 95% sand, 5% crushed shells.	End of core	End of core	End of core	End of core
	ML: silt, gray, soft to 0.7 ft then moderately stiff, moderate H2S odor, trace shell fragments. 80% silt, 10% sand, 10% bark and shell fragments grading to 70% silt, 20% sand, and 10% bark and shell at 1.6 ft. ML: silt with sand, gray, moderately stiff, trace H2S odor. 70% silt, 20% sand, 10% bark pieces. SM: sand with silt, gray, moderately dense, trace H2S odor. 60% sand, 30% silt, 10% bark and shell fragments. SP: poorly-graded sand, gray, moderately dense, trace crushed shell fragments, sand is medium to fine. 95% sand, 5% crushed shells.	ML: silt, gray, soft to 0.7 ft then moderately stiff, moderate H2S odor, trace shell fragments. 80% silt, 10% sand, 10% bark and shell fragments grading to 70% silt, 20% sand, and 10% bark and shell at 1.6 ft. ML: silt with sand, gray, moderately stiff, trace H2S odor. 70% silt, 20% sand, 10% bark pieces. SM: sand with silt, gray, moderately dense, trace H2S odor. 60% sand, 30% silt, 10% bark and shell fragments. SP: poorly-graded sand, gray, moderately dense, trace crushed shell fragments, sand is medium to fine. 95% sand, 5% crushed shells.	ML: silt, gray, soft to 0.7 ft then moderately stiff, moderate H2S odor, trace shell fragments. 80% silt, 10% sand, 10% bark and shell fragments grading to 70% silt, 20% sand, 10% bark and shell at 1.6 ft. ML: silt with sand, gray, moderately stiff, trace H2S odor. 70% silt, 20% sand, 10% bark pieces. SM: sand with silt, gray, moderately dense, trace H2S odor. 70% silt, 20% sand, 10% bark pieces. SM: sand with silt, gray, moderately dense, trace H2S odor. 60% sand, 30% silt, 10% bark and shell fragments. SP: poorly-graded sand, gray, moderately dense, trace crushed shell fragments. sand is medium to fine. 95% sand, 5% crushed shells.	ML: silt, gray, soft to 0.7 ft then moderately stiff, moderate H2S odor, trace stell fragments, 80% silt, 10% sand, 10% bark and shell at 1.6 ft. ML: silt with sand, gray, moderately stiff, trace H2S odor, 70% silt, 20% sand, 10% bark pieces. SM: sand with silt, gray, moderately dense, trace H2S odor, 60% sand, 30% stif, 10% bark and shell tragments. SP: poorly-graded sand, gray, moderately dense, trace crushed shell regreements, sand is moderately siff, 10% bark and shell tragments.

Project: Port of Everett

Station: ST-34

Maximum depth of retained sediment: 10.1 ft

Mudline elevation: -50.8 ft MLLW

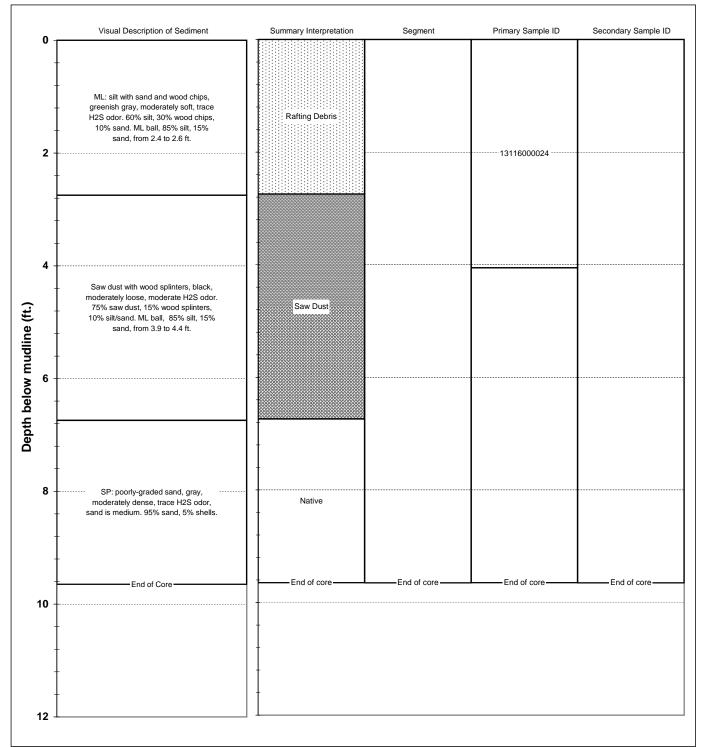
	Core collection	Laboratory processing
Date:	5/9/2007	5/9/2007
Time:	9:48	12:40

Percent recovery (on-deck):

78%

0 -	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
+		-		13116000025	
2	ML: silt with sand, gray, moderately soft, trace to moderate H2S odor, grades to unit below. 65% silt, 20%	Recent			
+	sand, 15% wood chips.	-			
4 -		-			
+		-			
6		-			
6 +	SM: sand with silt, gray, moderately dense, moderate H2S odor, trace bark pieces. 85% sand, 15% silt.	-			
ł		- Native -			
8 +					
+	SP: poorly-graded sand, gray, moderately dense, trace crushed shells, trace H2S odor, sand is fine to medium. 95% sand, 5% crushed shells.	-			
10 -	End of Core	End of core	End of core	End of core	End of core
12		-			

Project: Port of Everett


Station: ST-37

Maximum depth of retained sediment: 9.7 ft Percent recovery (on-deck): 78%

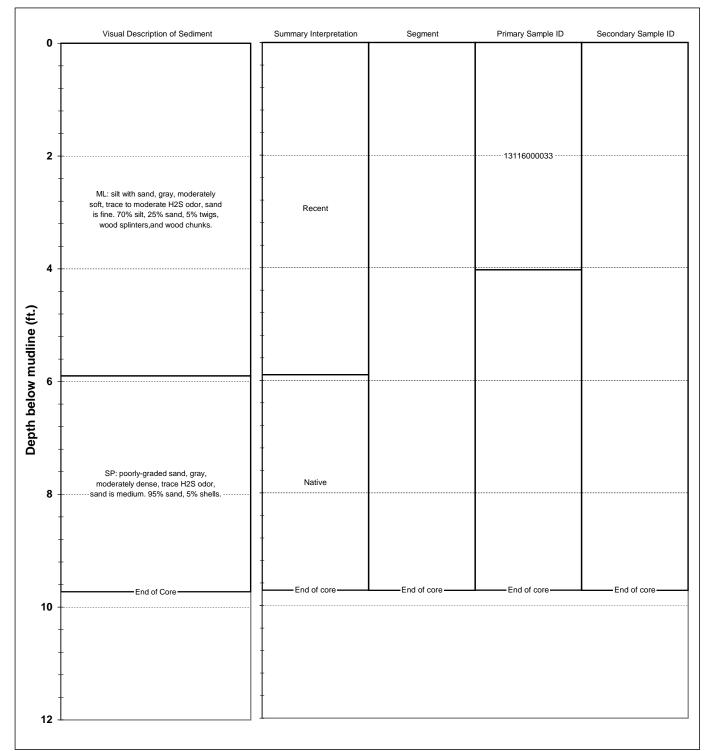
Mudline elevation: -35.5 ft MLLW

Core	Laboratory
collection	processing
5/11/2007	5/11/2007

Date:5/11/20075/11/200Time:10:2011:00

Project: Port of Everett

Station: ST-39


Maximum depth of retained sediment: 9.7 ft

Mudline elevation: -49.2 ft MLLW

	Core collection	Laboratory processing
Date:	5/14/2007	5/14/2007
Time:	10:16	11:15

Percent recovery (on-deck):

79%

Mudmole[™] Core Summary Log

Project: Port of Everett

Station: ST-42

Field Log: NPB Summary Log: RHG

Maximum depth of retained sediment: 11.8 ft Percent recovery (on-deck): 85%

Mudline elevation: -41.0 ft MLLW

	Core collection	Laboratory processing
Date:	5/11/2007	5/11/2007
Time:	15:40	16:15

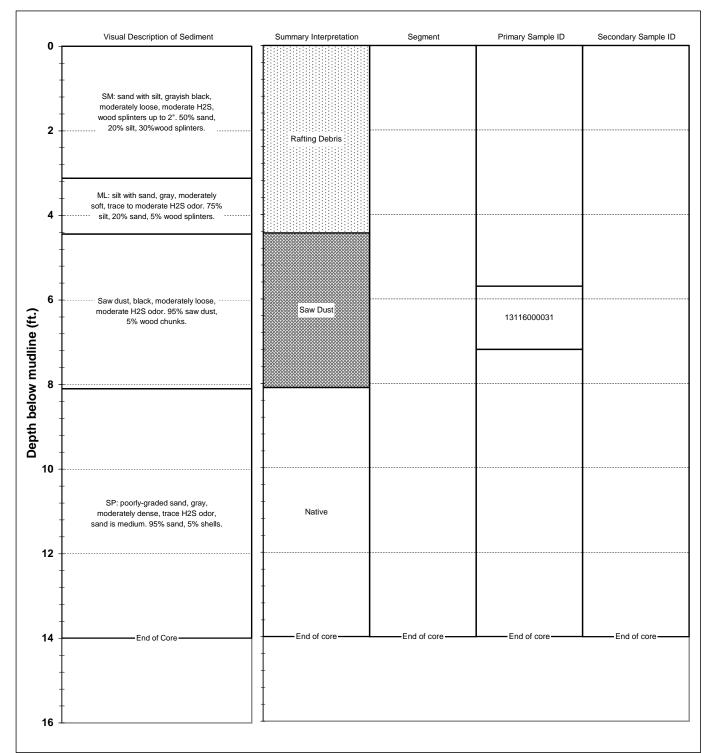
0	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample ID
0 - - - 2 -	ML: silt with sand, gray, moderately stiff, trace H2S odor, sand is fine to medium. 70% silt, 25% sand, 5% fresh wood chips. One 2" vesiculated clinker- like piece at 2.5 ft.	Recent			
- - 4 - -	- - - -	-			
	- - - - SP: poorly-graded sand, gray, moderately dense, trace H2S odor,	-			
- 8 - - -	(sand is medium). 95% sand, 5% shells and wood chunks.	- Native			
- 10 - - -	- 				
12 -	End of Core	End of core	End of core	End of core	End of core
14					

Mudmole[™] Core Summary Log

Project: Port of Everett

Station: ST-43

Maximum depth of retained sediment: 14.0 ft


Mudline elevation: -38.7 ft MLLW

Percent recover	ry (on-de

n-deck): 78%

	Core	Laboratory
	collection	processing
Date:	5/11/2007	5/11/2007
Time:	14:16	15:15

Field Log: NPB Summary Log: RHG

Mudmole[™] Core Summary Log

Project: Port of Everett

Station: ST-44

Maximum depth of retained sediment: 18.7 ft

Mudline elevation: -32.3 ft MLLW

	Core collection	Laboratory processing
Date:	5/14/2007	5/14/2007
Time:	9:15	12:45

Percent recovery (on-deck):

76%

Field Log: NPB Summary Log: RHG

0 —	Visual Description of Sediment	Summary Interpretation	Segment	Primary Sample ID	Secondary Sample II
2	SM: sand with silt and crushed shells, black, moderately dense, moderate H2S odor. 40% sand, 15% silt, 45% shells.	- - - Recent			
4	SM: sand with silt and bark fragments, black, moderately dense, moderate H2S odor. 40% sand, 15% silt, 30% bark and twigs, 15% shells.				
6	ML: silt with sand and wood rafting debris, bark and twigs, gray, moderately soft, moderate H2S odor. 60% silt, 15% sand, 25% wood.	Rafting Debris			
8 +				13116000034	
8	Wood chunks and bark, dark brown, moderately loose, strong H2S odor, wood chunks are angular and up to 1, bark is up to 1". 45% bark, 45% wood chunks , 10% silt.	Rafting Debris and Wood Chips			
12				13116000035	
14 +		-			
16	SP: poorly-graded sand, gray, moderately dense, trace H2S odor, sand is medium. 95% sand, 5% shells	- Native			
18 +	End of Core	End of core	End of core	End of core	End of core
20 L					

Geomatrix Consultants 3500 188th ST SW Suite 600 Lynnwood, WA 98037



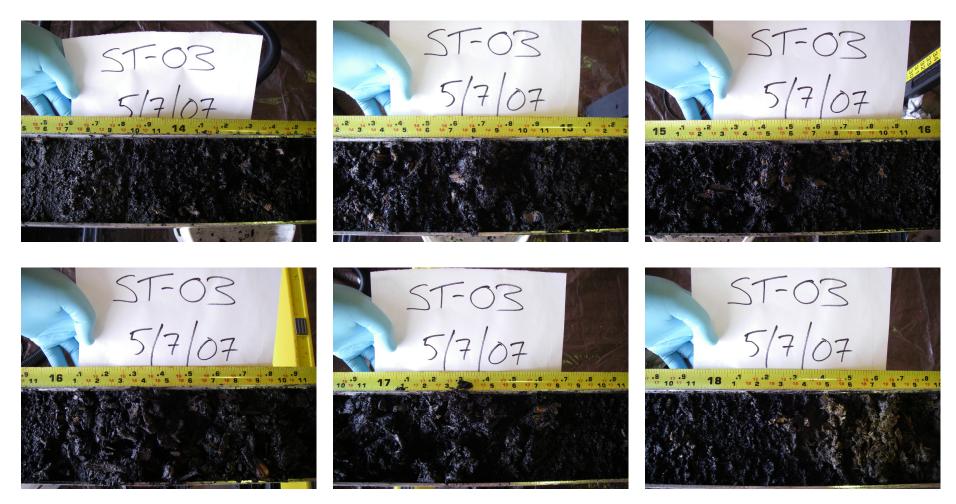
Appendix D

Core Photo Logs

PHOTO APPENDIX Former Mill A MTCA Support Everett, Washington

ST-1

ST-2 (continued)



ST-3 (continued)

ST-5 (continued)

ST-9 (continued)

ST-11

ST-11 (continued)

ST-11 (continued)

ST-12

(continued)

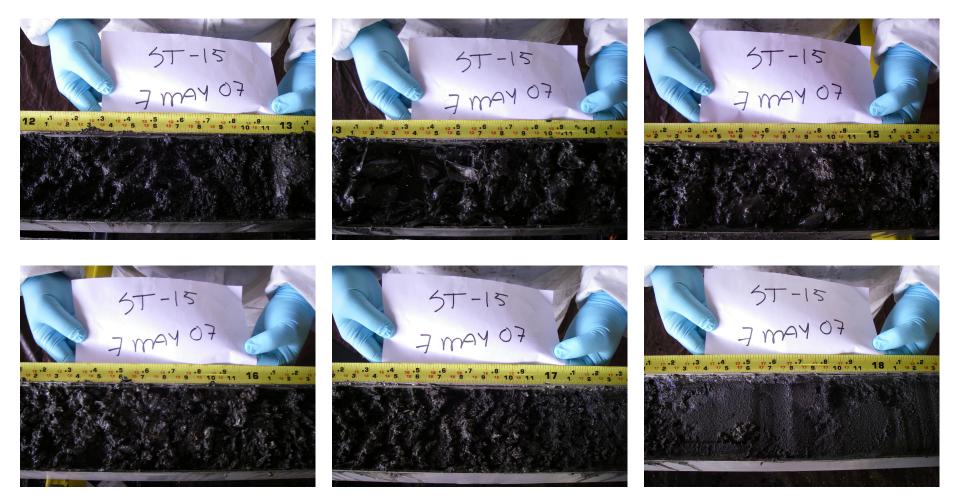
Y:\Port of Everett\13116-000 Former Mill A MTCA Support\14000 FIELD DATA_PHOTOS\Photos\Mill A MTCA Photo Appendix (2).doc

ST-12 (continued)

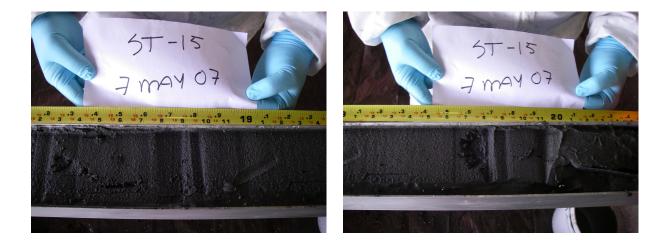
ST-12 (continued)

ST-14

ST-14 (continued)

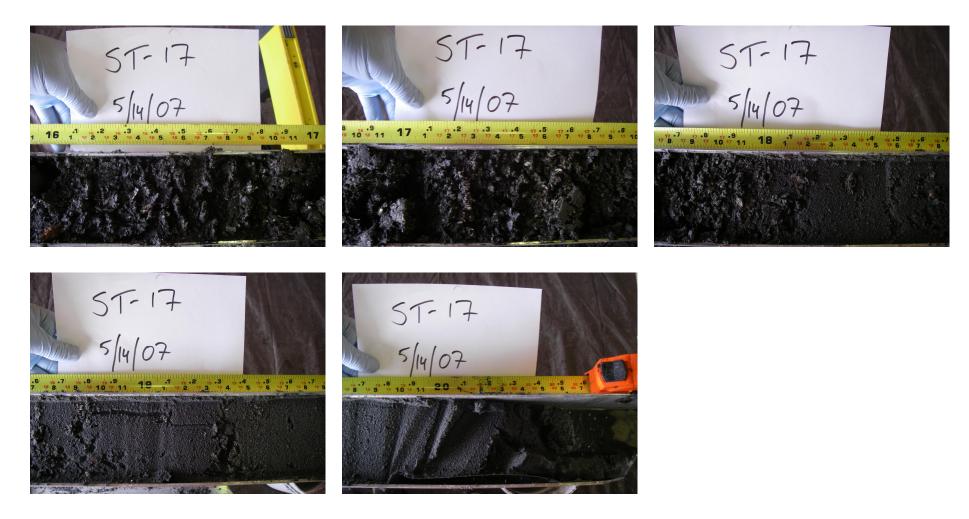


ST-14 (continued)



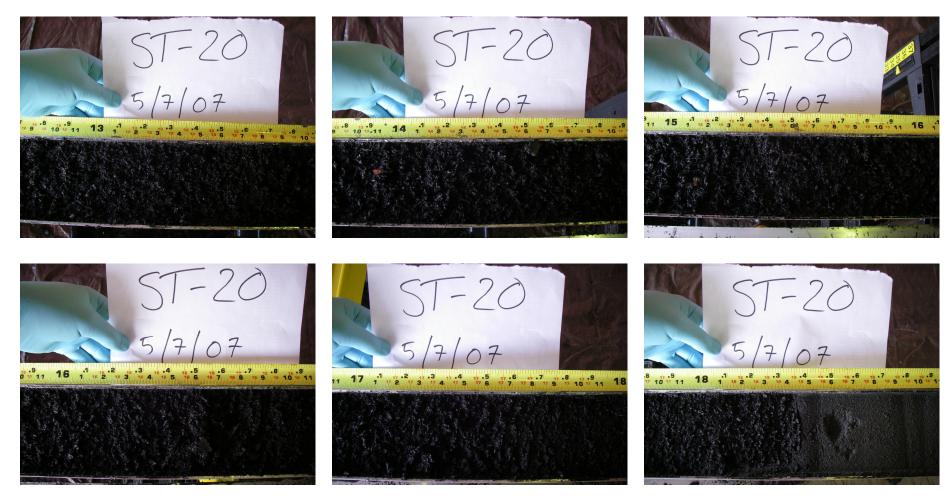
ST-15 (continued)

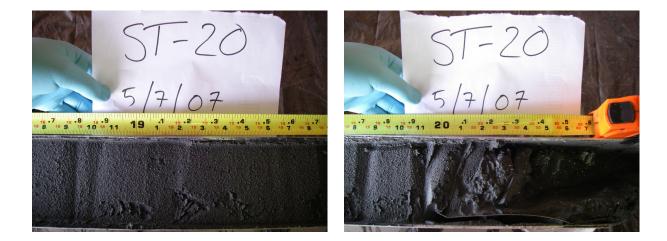
ST-15 (continued)



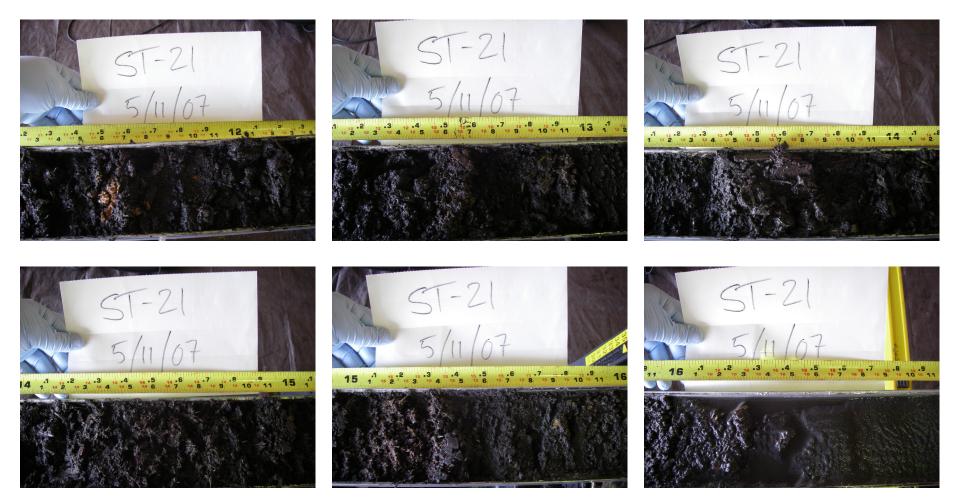
ST-17 (continued)

ST-17 (continued)




(continued)

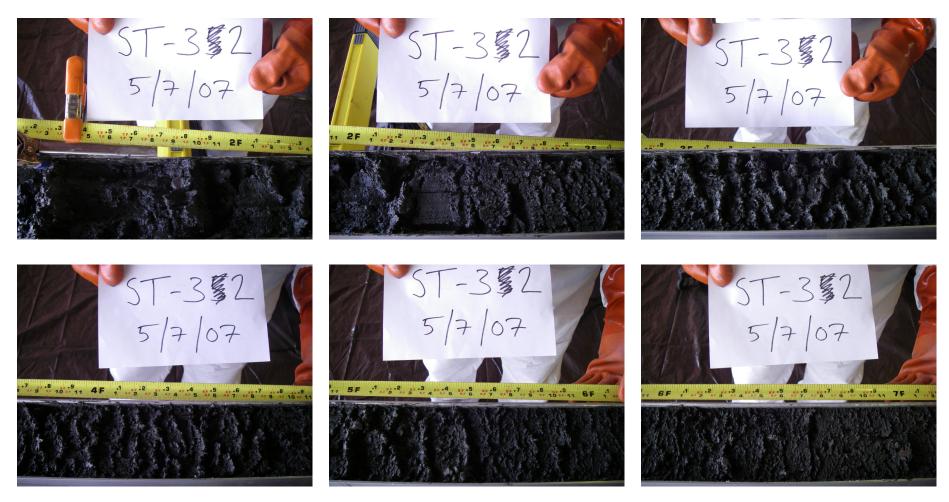
ST-20 (continued)



ST-20 (continued)

ST-21 (continued)

ST-21 (continued)



ST-29 (continued)

ST-32 (continued)

ST-34

ST-34 (continued)

ST-37

ST-37 (continued)

ST-39

ST-39 (continued)

(continued)

ST-39 (continued)

ST-42

ST-42 (continued)

ST-42 (continued)

ST-43

ST-43 (continued)

ST-44

(continued)

ST-44 (continued)

ST-44 (continued)

Appendix E

Qualitative Sample Characteristic Forms for Grab Samples

QUALITATIVE	SAMPLE	CHARAC'	TERISTICS
-------------	--------	---------	-----------

Page 22 of

.

Coordinate Datum		Date (mm/dd/yy)	Project Port of Everett Former Mill A	Sample Identification Number
Coordina Coordina	ates	East	Water Depth Depth Unit Re	D Gear
358032	12984		OM beach	1031
Penetration Initials I	er Fines (%)	Surficial We Contact Poi	ood Estimate: nts	X 5 =%
	i i i			T
Biological:% I	Debris:	%	Oil Sheen: None	Trace (<5%)%
' Moisture Very Wet Wet Moist	Damp	Dry	· .	
Color Light Medium Dark		(Circle maj Olive Gray	or & underline modifyi Brown Black∖	ng) Other
Major Constituent Fine Medium Coarse		(Circle majo Gravel Sand	or & underline modifyi Silt Cla	
Minor Constituent with trace Fine Medium Coarse		Gravel Sand	Silt Cla	ay
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose	Loose) Medium Der	ise Dense	Very Dense
Silt / Clay - Very Soft	Soft	Medium Stif	f Stiff	Very Stiff Hard
Very Wet Wet Moist	Damp	Dry		
Color Light Medium Dark		Olive Gray	or & underline modifyi Brown Black	ng) Other
Major Constituent Fine Medium Coarse		(Circle main Gravel Sand	silt Cla	
Minor Constituent with trace Fine Medium Coarse		Gravel Sand	Silt Cla	ay
Biological:% 1	Debris:	%	Oil Sheen: None	Trace (<5%)%
Comments: DA beach. Massive be	ench s	and.	Geomatrix (1311600005) Description I Initials: Geomatrix (1311600005) Description I Initials: Geomatrix (1311600005) Date: Geomatrix (1311600005)	5 Form

IVE SAMPLE CHARA	CTERISTICS	Page <u>2)</u> of
Date (mm/dd/yy)		Sample Identification Number
5-16-07	Mill A	ST 23
	Water Depth	Time
East	Depth Unit Rep	Gear
98232	1.3 4	0211 1016
Contact Poi	nts	X5 =%
ve as subs	urt.	
s:%	Oil Sheen: None	Trace (<5%)%
Damp Dry	. •	
(Circle majo Olive Gray	or & underline modifying Brown Black) Other
(Circle majo Gravel Sand	or & underline modifying Silt Clay)
Gravel Sand	Silt Clay	. <u></u>
	<u> </u>	
Loose Medium Den	Dense	Very Dense
Soft Medium Stiff	Stiff	Very Stiff Hard
Damp Dry		
(Circle majo Olive Gray	or & underline modifying Brown Black) Other
(Circle maje Gravel Sand	Silt Clay) <u>SP: 95/5</u>
Gravel Sand	Silt Clay	sand.
s:%	Oil Sheen: None	Trace (<5%)%
sand-	Geomatrix Consul 13116000054 Description Form Initials: <u>65 m</u> Date: <u>5-96-9</u>	
	Date (mm/dd/yy) 5 - 16 - 07 East 9 8 2 3 2 Surficial Wo Contact Poi Contact Poi Colive Gray Contact Sand Gravel Sand Colive Gray Colive Gray Colive Gray Colive Gray Colive Gray Gravel Sand Gravel Sand Gravel Sand Gravel Sand Sand Gravel Sand Gravel Sand Sand	Date (mm/dd/yy) Project S 5 - 16 - o 7 Port of Everett Former Mill A Water Depth Unit Rep 4.8232 1.3 A Surficial Wood Estimate: Contact Points Contact Points WE Sufficial Wood Estimate: Contact Points None Damp Dry Oil Sheen: None Damp Dry (Circle major & underline modifying Oilve Gray Brown Black Clay Gravel Sand Silt Clay Gravel Sand Silt Clay Coose Medium Dense Dense Dense Soft Medium Stiff Stiff Damp Dry (Circle major & underline modifying Olive Gray Dense Soft Medium Stiff Stiff Damp Dry Gravel Sand Silt Gravel Sand Silt Clay Gravel Sand Silt Clay Gravel Sand Silt Clay Gravel Sand Silt Clay Gravel Sand Silt

14.11

QUALITATIVE SA	AMPLE CHARAC	CTERISTICS	Page of
Coordinate Datum	Date (mm/dd/yy)	Project	Sample Identification Number
	5-15-07	Port of Everett Former Mill A	57-24
Coordinates		Water Depth	Time
North 358212 12481	East 2, 6	Depth Unit Rep 39.7 A	$\begin{array}{c c} & \text{Gear} \\ \hline & 2.2 \vee & 0.916 \end{array}$
Penetration Depth Unit Initials Volume Set (a) 0.8 6 m 5 5 5	Surficial Woo Contact Poin		X.5 =%
Surficial sediment characteristics:	0/		(-FO() 0/
Biological:% Debris: Moisture Very Wet Wet Moist Damp	% (Oil Sheen: None	Trace (<5%)%
Color Light Medium Dark		& underline modifyin Brown Black	g) Other
Major Constituent	(Circle major Gravel Sand)	& underline modifyin Silt Clay	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	/
Subsurface sediment characteristics: Density / Consistency			
Sand / Gravel - Very Loose Loose	Medium Dens		Very Dense
<u>Silt / Clay -</u> Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark		• & underline modifyin Brown Black	g) Other
Major Constituent	(Circle major Gravel Sand	& underline modifyin Silt Cla	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	y
Biological:% Debris:%	%	Oil Sheen: None	Trace (<5%)%
Comments:		Geomatrix C 1311600010 Description Initials: <u>S</u> Date: <u>S</u>)0 Form

par 2 Line

Ì

QUAL	ITATIVE S	AMPLE CHARA	CTERISTI	CS			Page <u></u> of
Coordinate Datum		Date (mm/dd/yy)	Proje			Sample Identifi	cation Number
		5-13-07	Port of Evere Mill		ner	57 24	D
Coordin	ates	· · · · · · · · · · · · · · · · · · ·	Water D		-		Time
North 358206	129.8	East	Depth	Unit	Rep	Gear ಾ_2 ∽∽	0952
Penetration Depth Unit Initials 0.65 em 6(m) Surficial sediment characteristics:))	Surficial Wo Contact Poir				X 5 =	%
	Debris:	% Dry	Oil Sheen:	, No	ne	Trace (<5%)	%
Color Light Medium Dark		(Circle majo		e mod Black		Other	
Major Constituent Fine Medium Coarse	е .	(Circle majo Gravel Sand)	r & underline Silt	e mod	ifying) Clay		
Minor Constituent with trace Fine Medium Coarse	e	Gravel Sand	Silt		Claÿ		
Subsurface sediment characteristics: Density / Consistency <u>Sand / Gravel -</u> Very Loose	Loose	Medium Dens				Very Dense	
<u>Silt / Clay -</u> Very Soft Moisture Very Wet Wet Moist	Soft	Medium Stiff	Stil	Ť		Very Stiff	Hard
Color Light Medium Dark		C	Brown	Black		Other	
Major Constituent	9	(Circle major Gravel Sand)	r & underline Silt	e mod	i fying) Clay		
Minor Constituent with trace Fine Medium Coarse	9	Gravel Sand	Silt		Clay		
	Debris:	%	Oil Sheen:	No	ne	Trace (<5%)	%
Comments:				13116 Descr Initial	500010 iption s: <u>6</u> 5	Form	e: <u>595</u> Z

QUALI	TATIVE SA	MPLE CHARA	CTERISTICS	Page 20 of
Coordinate Datum		Date (mm/dd/yy)	Project	Sample Identification Number
		5-16-07	Port of Everett Former Mill A	5725
Coordina			Water Depth	Time
North		East	Depth Unit Rep	
358204	129 8	525	30.9	0211 1001
Penetration B Deptin Unit 1 1 20 C m 65 <	er Fines (%)	Surficial We Contact Po	ood Estimate: ints	X 5 =%
Surficial sediment characteristics:		• .		•
Biological: <u>5% seaweel</u> % I	Debris:	%	Oil Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist	Damp	Dry		
Color Light Medium Dark		(Circle majo Olive Grav	or & underline modifyin Brown Black	g) Other
Major Constituent Fine Medium Coarse	•	(Circle maj Gravel Sand	or & underline modifyin	
Minor-Constituent with trace Fine Medium Coarse		Gravel Sand	Silt Cla	y
Subsurface sediment characteristics:		· · ·	. \	· · ·
Density / Consistency		·		
Sand / Gravel - Very Loose	Loose	Medium Der	Dense	Very Dense
<u>Silt / Clay -</u> Very Soft	Soft	Medium Stif	f ' Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist	Damp	Dry		· · ·
Color Light Medium Dark		(Circle maj Olive Gray	or & underline modifyin Brown Black	g) Other
Major Constituent Fine Medium Coarse		(Circle-maj Gravel Sand	or & underline modifyin Silt Cla	
Minor Constituent with trace Fine Medium Coarse		Gravel Sand	Silt Cla	y <u>S?</u> 9975
Biological: tune, not % 1	Debris:	%	Oil Sheen: None) Trace (<5%)%
Comments:		• • • • • • • • • • • • • • • • • • • •	Geomatrix C	. 1
vp against delph	in - as	spore	1_1C000053	
to station as	placetog	L	Initials: ٤٢	\sim
· · ·			Date: <u>5 -)</u>	5 - 07 Time: <u>100</u>
				······································

QUALITATIVE SAMP	_E CHARACTERISTICS
------------------	--------------------

Page 19 of

		Date		Droio			ample Identii	ication Number
Coordinate Datum	·····	(mm/dd/yy)	Por	Proje t of Evere				
		5-16-07		Mill			55 20	Ś
Coordinate	 35			Water D	Depth			Time
North	· · ·	East		Depth	Unit	Rep	Gear	
358390	1298	222		45,8	4		0.2VV	0950
		Cuefficial N	(•	
Penetration Building Depth Unit Initials O	Fines (%)	Surficial W						
DepthUnitInitials \vec{o} Weathercm $\zeta_1 m$ $z_1 m$		Contact Po	nnts		••		X5 =	%
Surficial sediment characteristics:	<u></u>				;			
		P/		-			······································	
Biological: truc shells % De	ebris:	%	- Oil	Sheen:	No	ne	Trace (<5%)	%
Moisture		· ,					· •	
Very Wet Wet Moist	Damp	Dry						· .
Color	• .	(Circle maj	or &	underlin	e mod	ifying)		
Light Medium Dark	المعادلة برير. المعادلة عن من	Olive Gray	Bro	wn	Black		Other	
Major Constituent		(Circle maj	jor &	underlin	e mod	ifying)		
Fine Medium Coarse		Gravel Sand		Silt)	Clay	· _	
Minor Constituent with trace				-			ML:	
Fine Medium Coarse		Gravel Sand	D 2	Sil)	Clay	·	
Subsurface sediment characteristics:								
Subsumate seament characteristics.								
Density / Consistency		· · · · · · · · · · · · · · · · · · ·	4					
Sand / Gravel - Very Loose	Loose	Medium De	nse) De	ense		Very Dense	
	Ceff	Medium Sti	<i>c</i> ;	Sti	.		Very Stiff	Hard
<u>Silt / Clay -</u> Very Soft	Soft	Medium Su	11	· 31	111		very oun	naru
Moisture	_							
Very Wet Wet Moist	Damp	Dry						
Color		(Circle maj	jor &	underlin				
Light Medium Dark		Olive Gray	Bro	<u>wn</u>	Black		Other	
Major Constituent		(Circle ma	jęr &	underlin	e mod	lifying)		
(Fine) Medium Coarse		Gravel Sand	シ	Silt		Clay		
Minor Constituent with trace	,			\sim	`			
Fine Medium Coarse		Gravel Sand	1	Silt	リ	Clay	· 	
Biological:% Do	ebris:	·%	Oil	Sheen:	No	one	Trace (<5%))%
Comments:		· · · · · · · · · · · · · · · · · · ·	T	<u> </u>	eoman	1x Con	suitants	
CHA: THAN	7515			1 1	311600			
	\rightarrow		-+		-	ion For		
		·				697	<u>?</u> _Time:	0950
							<u> </u>	

			n (1997) - El Contra Mariana (m. 1997) 1999 - Maria Maria (m. 1997) 1999 - Maria Maria (m. 1997) 1999 - Maria Maria (m. 1997)
QUALITATIVE	SAMPLE CHARA	CTERISTICS	Page <u>) &</u> of
Coordinate Datum	Date (mm/dd/yy)	Project	Sample Identification Number
	5-16-07	Port of Everett Former Mill A	5727
Coordinates	······································	Water Depth	Time
North 358388 1298	East	Depth Unit Rep	Gear 9.2.VV 0930
Penetration pinot Penetration pinot Penetration Penetacion	7	nts	
Surficial sediment characteristics: Biological: Debris:	159		
Biological: <u>154 Shells</u> % Debris: Moisture Very Wet Wet Moist Dam	<u>15%</u> % p Dry	Oil Sheen: None	Trace (<5%)%
Color Light Medium Dark	(Circle majo Olive Grav	e r & underline modifyin Brown Black	g) Other
Major Constituent Fine Medium Coarse	(Circle majo Gravel Sand	or & underline modifyin Silt Clay	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	,
Subsurface sediment characteristics: Density / Consistency			
Sand / Gravel - Very Loose	e Medium Den	se Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist Damy	p Dry		
Color Light Medium Dark		r & underline modifyin Brown Black	g) 15th turg3 Other
Major-Constituent Fine Medium Coarse	(Circle majo Gravel Sand)	r & underline modifyin Silt Clay	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	
Biological:% Debris:	%	Oil Sheen: None	Trace (<5%)%
Comments: 			l : Form

.....

.

Q	UALITATIVE SA	MPLE CHARAC	TERISTICS	• • •		Page <u>17</u> of
Coordinate Datum	n	Date (mm/dd/yy)	Project		ample Identifi	cation Number
		5-16-07	ort of Everett For Mill A	mer	5258	
<u> </u>	ordinates		Water Depth	T		Time
North		East		Rep	Gear	
358562	12983	29	59 8		0214	0408
PenetrationPenetrationDepthUnitInitialsInitialscmGft	Veather (%)	Surficial Woo Contact Point	d Estimate: 20 s	52	Sm/c, X5 =	%
Surficial sediment characteristics:		× *				
Biological: 3% anemere %	6 Debris:	<u>25</u> % c	oil Sheen: No	one	Trace (<5%)	%
Moisture Very Wet Wet M	<i>l</i> oist Damp	Dry		·		
Color Light Medium D	Dark		& underline mod rown Black		Other	
Major Constituent Fine Medium C	Coarse	(Circle major Gravel Sand	& underline moo Silt	lifying) Clay		
Minor Constituent with trace Fine Medium C	Coarse	Gravel Sand	Silt	Clay		
Subsurface sediment characteristic	S:					
Density / Consistency	_					
Sand) Gravel - Very Lo	ose Loose	Medium Dense	e Dense		Very Dense	
Sint / Clay - Very So	ft John	Medium Stiff	Stiff		Very Stiff	Hard
Moisture Very Wet Wet N	<i>l</i> oist Damp	Dry				
Color Light Medium D	Dark		& underline mod frown Black		Other	
Major Constituent Fine Medium C	Coarse	(Circle major Gravel Sand	& underline mod Silt	lifying) Clay		
Minor Constituent with trace Fine Medium C	Coarse	Gravel Sand	Silt	Clay	,	
Biological:9	6 Debris:	25 % 0	Dil Sheen:	one	Trace (<5%)	%
Comments:			13116 Descr	000050 iption F s:3	orm	e: <u>09</u> 08

QUALITATIVE SA		ERISTICS	Page <u>4</u> of
Coordinate Datum	Date (mm/dd/yy)		Sample Identification Number
	5-15-07 PC	ort of Everett Former Mill A	57 29
Coordinates		Water Depth	Time
North 358564 129854	East 2	Depth Unit Rep 식승	Gear 92 VV 1035
Penetration B V V Depth Unit Initials 0 Veather 0 0, 7 C-m C SN SNN 1 J T Surficial sediment characteristics: Surficial sediment characteristics:	Surficial Wood Contact Points	and the second second second second second second second second second second second second second second second	X 5 =%
Biological:% Debris:%	<u>5 </u> % Oi	Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist Damp	Dry	• *.	
Color Light Medium Dark		underline modifying own Black) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	Silf Clay)
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	·
Subsurface sediment characteristics:	<u> </u>		
Density / Consistency			
Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense
Soft / Clay - Very Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist Damp	Dry	• •	
Color Light Medium Dark		underline modifying own Black) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifying Silt Clay	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	· · · · · · · · · · · · · · · · · · ·
Biological:% Debris:	% Oi	I Sheen: None	Trace (<5%)%
Comments:		Geomatrix Const 13116000103 Description Form Initials: $\leq \leq M$ Date: $\leq -3 \leq -$	n Na 25

۰.

6-j4 .

QUALITATIVE	SAMPLE	CHARACTERIS	STICS
-		, .	

	*		
Pag	e 🚓	of	

	·	· · · · · · · · · · · · · · · · · · ·	······
Coordinate Datum	Date (mm/dd/yy)	Project	Sample Identification Number
	5-15-07 PC	ort of Everett Former Mill A	ST 30
	· · ·		· · · · · · · · · · · · · · · · · · ·
Coordinates North	East	Water Depth Depth Unit Rep	Gear Time
	·····	68 A 1	5.2 YV 1009
358740 129843	> 2	00 11 1	5.000
Penetration pp v v Depth Unit Initials S Weather S	Surficial Wood	l Estimate:	•
Penetration Put of the second secon	Contact Points		
$O_v 7$ $\frac{c}{c} m$	oonmot i onna		X5 = %
fr			
Surficial sediment characteristics:	00D		
Biological: % Debris: 9		il Sheen: None	Trace (<5%) %
Moisture Very Wet Wet Moist Damp	Dry		
Very Wet Wer Moist Damp	Diy		
Color		k underline modifyir	ig)
Light Medium Dark 🤇	Olive Gray Br	own Black	Other
Maion Constituent	···	, undorlino modificin	
Major Constituent Fine Medium Coarse	Gravel Sand	Lunderline modifyin	
	Charon Chard		· ····································
Minor Constituent with trace	ан (тр. 1997) 1977 - Салан Салан (тр. 1977) 1977 - Салан (тр. 1977)	·	1. 1 . 1
Fine Medium Coarse	Gravel Sand	Silt Cla	у
Subsurface sediment characteristics:	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Density / Consistency			
	Madium Danas	Demos	
Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
	·		
Moisture	'Davi		
Very Wet (Wet) Moist Damp	Dry	· ·	
Color	(Circle major 8	k underline modifyin	ıg)
Light (Medium) Dark		own Black	Other
		and a state of the second state of the	·
Major Constituent Fine Medium Coarse	(Circle major 8 Gravel Sand	underline modifyin	
Minor Constituent with trace			
Fine Medium Coarse	Gravel Sand	Silt Cla	у
Bislasiash 0/ Debrist	% OI	I Sheen: None) Trace (<5%) %
Biological:% Debris:	% U	i Sileen: None	/ ITaue (~070) %
Comments:		Gaarree	
	• •	1311600	x Consultants
	·····		
		Description Initials: 6	
			15-07 Time: 10=04
		11 M - 11	·····

QUALITATIVE SA	MPLE CHARACT	ERISTICS	Page <u>16</u> of
Coordinate Datum	Date (mm/dd/yy)	Project ort of Everett Former	Sample Identification Number
	5-16-07	Mill A	573)
Coordinates		Water Depth	Time
North	East	Depth Unit Rep	
358756 129850			92 VV 1050
Penetration Depth Unit Initials Veather Sector c m 6 m 6 m 6 m	Surficial Wood Contact Points		X5 =%
Surficial sediment characteristics:			
Biological:% Debris: 202	1 bark % Oi	il Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark		& underline modifyir own Black	ng) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	Lunderline modifyi Silt Cla	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	IY
Subsurface sediment characteristics:			
Density / Consistency			
Sand/ Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense
<u>Silt / Clay -</u> Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Wet Moist Damp	Dry		
Color Light Medium Dark		& underline modifyin rown Black	ng) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	& underline modifyi Silt Cla	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	ay
Biological:% Debris:	% O	il Sheen: None	Trace (<5%)%
Comments: Attempt 1 debris - e	able	131160000	
Attempt 2 moned	tool barge	Descriptior Initials: <u>6 &</u> Date: 5 -	
			<u> </u>

QUALITA	TIVE SAMPLE CHAR	ACTERISTICS	Page <u>S</u> of
Coordinate Datum	Date (mm/dd/yy)	- Project	Sample Identification Number
	5-15-27	Port of Everett Former Mill A	57 32
Coordinates		Water Depth	Time
North	East	Depth Unit Rep	
358917	1298738	56 -	0211 1105
PenetrationpurphingDepthUnitInitialsDepthUnit	Surficial W	ood Estimate: ints	
0.7 stm GSM Snn ft	<u> </u>	·	X 5 = %
Surficial sediment characteristics	2.000		
	ris: <u>35</u> %	Oil Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist	Damp Dry		· · · · · ·
Color Light Medium Dark	(Circle maj Olive Gray	or & underline modifyin Brown Black	g) Other
Major Constituent Fine Medium Coarse	(Circle maj Gravel Sanc	or & underline modifyin	
Minor Constituent with trace Fine Medium Coarse	Gravel Sanc	Silt Clay	
Subsurface sediment characteristics:		•	· · · · · · · · · · · · · · · · · · ·
Density / Consistency			
Sand / Gravel - Very Loose (Loose Medium De	nse Dense	Very Dense
Silt / Clay - Very Soft	Soft Medium Sti	f Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist	Damp Dry		•
Color Light Medium Dark	(Circle maj Olive Grav	or & underline modifyin Brown Black	g) Other
Major Constituent Fine Medium Coarse	(Circle maj Gravel Sanc	or & underline modifyin	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	y
Biological:% Deb	ris: <u>cals/e</u> %	Oil Sheen: None	Trace (<5%)%
Comments:		Geomatrix Con	sultants
		13116000104 — Description For	
		Initials: 65 ~	
		Date: 5 - 1 5 -	Time: <u>, , , , , , , , , , , , , , , , , , ,</u>
			· · · · · · · · · · · · · · · ·

-

		•		• •				
QUAL	ITATIVE SA	MPLE CHAF	RACT	ERISTI	CS		8	Page <u>]5</u> of
Coordinate Datum	· · · · · · · · · · · · · · · · · · ·	Date (mm/dd/yy)		Proje			ample Identif	ication Number
			Po	rt of Evere Mill		her	STE	.3
Coordin	ates			Water D	Depth			Time
North		East		Depth	Unit	Rep	Gear	
359125	129.87	99		71			0.2VV	15.26
Penetration		Surficial	Wood	Estimate				
Penetration Depth Unit Initials	er Lines	Contact			•		• • •	
07 em Esn Sun		·					X 5 =	%
र्म Surficial sediment characteristics:	·							
ť	wood	-				$ \rightarrow $		
Biological:%	Debris: <u>//</u>	ace %	Oil	Sheen:	Nor	19-W	Trace (<5%)	%
Moisture Very Wet Wet Moist	Damp	Dry						
Color Light Medium Dark		(Circle m		underline	e modi l Black		Other	
Major Constituent Fine Medium Coarse	e	(Circle m Gravel <u>Sa</u>	-	underline		fying) Clay		
Minor Constituent with trace							, <i>i</i>	
Fine Medium Coarse	9	Gravel Sa	าd	Silt		Clay		
Subsurface sediment characteristics:			_			-		
Density / Consistency	-			'				
Sand / Gravel - Very Loose	Loose	Medium I)ense	De	nse	•	Very Dense	
<u>Silt / Clay -</u> Very Soft	Sóft	Medium S	Stiff	Stil	ff .		Very Stiff	Hard
Moisture Very Wet Wet Moist	Damp	Dry						
Color		(Circle m	ajor &	underline	e modi	fying)		
Light Medium Dark	·. ·	Olive Gray	Bro	own -	Black	100mm	Other	·
Major Constituent	e	(Circle m Gravel Sa	-	underline Silt		fying) Clay		
Minor Constituent with trace Fine Medium Coarse	. .	Gravel Sa	nd	Silt		Clay		:
						2		· · · · · · · · · · · · · · · · · · ·
Biological:%	Debris:	%	Oil	Sheen:	Nor	10/1	Trace (<5%)	%
Comments:		:			Geoma	trix C	onsultants	
					131160	000049	9	
	·			 	Descri	ption l	~	
	<u></u>			 	Initials	s: <u> </u>	5 7Tii	me: 1526.
	<u>;</u>			· · · · ·				

QUALITATIVE SA	MPLE CHARA	CTERISTICS		Page <u>6</u> of
Coordinate Datum	Date (mm/dd/yy) S ・リジーロフ	Project Port of Everett Form Mill A	Sample Identifi	
Coordinates	- <u></u>	Water Depth		Time
North	East	Depth Unit F	Rep Gear	·
359249 129899	2	50 A	2500	11.27
Penetration Depth Unit Initials $0 > Weather = 0$ $0 - 7 - 5 = 10^{-10} 6 \le 10^{-10} \le 1$	Surficial W Contact Po	ood Estimate: ints 	X 5 =	%
Surficial sediment characteristics:				
Biological:% Debris:%	5%	Oil Sheen: Non	e Trace (<5%)	%
Moisture Very Wet Wet Moist Damp	Dry			
Color Light <u>Medium</u> Dark	(Circle maj	or & underline modif Brown Black	ying) Other	
Major Constituent Fine Medium Coarse	(Circle maj Gravel Sand	or & underline modif	ying) Diay	-
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt	Clay	<i>\$</i> 5
Subsurface sediment characteristics: Density / Consistency				: : :
Sand / Gravel - Very Loose Loose	Medium De	nse Dense	Very Dense	
Silt / Clay - Very Soft Soft	Medium Stit	f Stiff	Very Stiff	Hard
Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark		or & underline modif Brown Black	ying) Other	
Major Constituent Fine Medium Coarse	(Circle maj Gravel Sand	or & underline modif	ying) Clay	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt	Clay	
Biological:% Debris:%	%	Oil Sheen: Non	e Trace (<5%)	%
Comments:		Geomatrix Cons 13116000105 Description For Initials: 650 Date: 5-75-	nı "	2

1_

۰ ۲

QUALITATIVE SA	MPLE CHARACT	ERISTICS	Page <u>19</u> of
Coordinate Datum	Date (mm/dd/yy)	Project	Sample Identification Number
		rt of Everett Former Mill A	57 35
Coordinates		Water Depth	Time
North	East	_Depth Unit Rep	
359266 12991	43	41	02VV 1507
Penetration	Surficial Wood Contact Points	Estimate:	X 5 =%
Surficial sediment characteristics:			
Biological:% Debris: _/O	<u>/) </u>	Sheen: None	Trace (<5%)%
Moisture Very Wet Wet Moist Damp	Dry		анан сайтаан ал ал ал ал ал ал ал ал ал ал ал ал ал
Color Light Medium Dark	(Circle major & Olive Gray Bro	underline modifyir own Black	ig) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifyin Silt Cla	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	y
Subsurface sediment characteristics:	· · · · · ·		
Density / Consistency		_	
<u>Sand / Gravel -</u> Very Loose Loose	Medium Dense	Dense	Very Dense
Silt / Clay - Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard
Moisture Very Wet Wet Moist Damp	Dry		
Color Light Medium Dark	(Circle-major & Olive Gray Bro	underline modifyin own Black	g) Other
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifyin Silt Cia	
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	у
Biological:% Debris:%	% Oil	Sheen: None	Trace (<5%)%
Comments:		Geomatriz Co 13116000048 Description F Initials: <u>650</u> Date: <u>5 - 7</u>	form

	QUAL	TATIVE S	AMPLE C	HARA	CTERIS	TICS			Page 13_of
			Dat	e					
Coordina	ate Datum		(mm/de	d/yy)	Pr Port of Ev	oject		Sample Identit	fication Number
· .			5-15-	.07		lill A		7-36	4
	Coordina	ites			Wate	r Depth			Time
North			East		Dept	h Unit	Rep	Gear	·
359448		12990	+)		62	A		0.211	1452
Penetration	_	s	Surf	iicial Wo	od Estima	ite:			• •
Depth Unit Initials ග්	∀ ○ > Weath	er (%)	Con	tact Poi	nts				
DiG cm 65m	Swn				-			X5 =	9
urficial sediment characte	eristics:	-			۰.				
Biological:	% 1	Debris:		_%	Oil Sheer	: N	one	Trace (<5%)	9
Moisture Very Wet Wet	(Moist)	Damp	Dry						ï.
		Bump	·						
Color Light	Dark				r & under Brown		difying) Other	
Major Constituent Fine Medium	Coarse		(Circ Gravel	cle majo Sánd	r & under) <u>Silt</u>		difying Clay)	
Minor Constituent with Fine Medium	race Coarse	÷	Gravel	Sand	Silt		Clay		
Ibsurface sediment chara	cteristics:			54 1					
Density / Consistency				a an an in the second second second second second second second second second second second second second secon				·	
Sand / Gravel -	Very Loose	Loose	Med	ium Dens	se i	Dense		Very Dense	. <u>-</u>
<u>Silt / Clay -</u>	Very Soft	Soft	Med	ium Stiff		Stiff		Very Stiff	Hard
Moisture Very Wet Wet	Moist	Damp	Dry						·· ·
Color Light Medium	Dark	:			r & under Brown	ine moo Biack) Other	
Major Constituent	Coarse			Sand ²	r & under Silt		lifying Clay) .	
Minor Constituent with t Fine Medium	race Coarse		Gravel	Sand	Silt		Clay		
Biological:	% [Debris:		_%	Oil Sheen	: N	one	Trace (<5%)	
Comments:						Geomatr 311600 Descripti nitials:	0047 on Fori らずい	n	

QUALITA	TIVE SA	MPLEC	HARAC	CTERI	STICS		F	Page_ 7 _ of
Coordinate Datum		Da (mm/c	id/yy)		Project		Sample Identific	cation Number
		5-15			verett For Mill A	mer	21 3,	7
Coordinates	; ;			Wa	ter Depth			Time
North		East	·	Dep		Rep		
3599243	1299	243		36	4	<u> </u>	0.2//	1147
Penetration Depth Unit Initials $0, 7$ cm $63 n$ Sum	Fines (%)		rficial Woo ntact Poin		nate:		X 5 = _	%
Surficial sediment characteristics:	000	D						
Biological:% Deb	oris: <u>/</u>	5	%	Oil Shee	en: No	one	Trace (<5%)	%
Moisture Very Wet Wet Moist	Damp	Dry						
Color Light Medium Dark	ć		rcle major Gray	r & unde Brown	rline mod Black		g) Other	
Major Constituent Fine Medium Coarse		(Cin Gravel	rcle major Sand	& unde		l ifyin Clay		
Minor Constituent with trace Fine Medium Coarse		Gravel	Sand	Si	It	Clay	·	
Subsurface sediment characteristics:								
Density / Consistency								
Sand / Gravel - Very Loose	Loose	Ме	dium Dens	e	Dense		Very Dense	
<u>Silt / Clay -</u> Very Soft	Soft	Me	dium Stiff		Stiff		Very Stiff	Hard
Moisture Very Wet Wet Moist	Damp	Dry						•
Color Light Medium Dark		•	rcle majo Gray)	r & unde Brown	erline moc Black		g) Other	· ·
Major Constituent		(Ci Gravel	rcle majo Sand		erline moo	l ifyin Clay		
Minor Constituent with trace Fine Medium Coarse		Gravel	Sand	s	ilt	Clay	/	
Biological:% Dei	oris:		%	Oil She		one	Trace (<5%)	%
Comments:					13116 Descri Initials	00010 ption s:	Form	<u>. 1147</u>
· ·				L				r

QUALITATIVE S	AMPLE CHARAC	TERISTICS	Page <u>12</u> of _	
Coordinate Datum	Date (mm/dd/yy)	Project	Sample Identification Numb	ber
· ·	5-15-07 P	ort of Everett Former Mill A	57 38	
Coordinates		Water Depth	Time	
North 359444 12994	East	Depth Unit Rep	D Gear 0.2.VV 143)	
	Surficial Wood	<u></u>		
Penetration B	Contact Point		X5 =	%
Surficial sediment characteristics:				-
WOOD	Trace % 0	il Sheen: None	Zface (<5%)	_%
Moisture Very Wet Wet Moist Damp	Dry	. · · ·		
Color Light Medium Dark		& underline modifyir rown Black	ig) Other	
Major Constituent	(Circle major) Gravel Sand ¹	& underline modifyir Silt Cla		
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	y	
Subsurface sediment characteristics:			·····	
Density / Consistency		I		
Sand / Gravel - Very Loose Loose	Medium Dense	Dense	Very Dense	
<u>Silt / Clay -</u> Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard	
Moisture Very Wet Wet Moist Damp	Dry			
Color Light Medium Dark		& underline modifyin rown Black	g) Other	
Major Constituent Fine Medium Coarse	(Circle major a Gravel Sand	& underline modifyin Silt Cla		
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Cla	y	
Biological:% Debris:%	% O	il Sheen: None	Trace (<5%) 30	_%
Comments:		Geomatrix C 1311600004 Description I Initials: Date:	S Form	
]

QUALITATIVE	SAMPLE	CHARAC	TERISTICS
-------------	--------	--------	------------------

Page	8	of	
гауе	<u> </u>	UI.	_

Coordinate Datum					(m	Date m/dd/yy)		Projec			Sample Identifi	cation Number
					5-1	S-15-07 Port of Everett Forme Mill A			ner	57 39		
				-1				Martan D	41-		[]	
			Coordin	ates				Water D		-		Time
	North				East	<u></u>		Depth	Unit	Кер	Gear	
3595	8)			1299	205			52	A		9,277	1313
Penetration		e 🤇		S		Surficial W	òod	Estimate:				
Depth Unit	Initials	Sulfide VOÁ	Weath	er Fines (%)		Contact Po						
0.6 ccm	65~		Sur			· · · ·	ma				X5 =	%
-1#				······································							-	
Surficial sedime	ent charac	terist						ĩ				
Biological: _				<i>いっ</i> の ひ Debris:	10 70	2%	. Oil	Sheen:		ne)	Trace (<5%)	%
Moisture		5								-	· .	
· Very Wet	We		Moist	Damp	Dry	/						
Color		_				(Circle maj	or &	underline	modi	ifying	1)	
Light	Medium		Dark		Olive	Gray			Black		Other	,
Major_Consti	ituant					(Circle maj	or R	underline	modi	fying	A	
Fine	Mediun	n	Coarse)	Grave			(Silt)		Clay		
\mathcal{C}							aid Col Dire			-		
' Minor Consti Fine	i tuent witl Mediun		e Coarse	•	Grave	l Sand		Silt		Clay		
			,		<u> </u>							
Subsurface sed	iment cha	racter	ristics:									
Density / Cor	nsistency											tar Tari
Sand /	<u>Gravel -</u>	Ver	y Loose	Loose)	Medium Der	ise	Den	se		Very Dense	
			-	(-	
Sil	<u>t / Clay -</u>	Ver	y Soft	Soft		Medium Stif	f	Stif			Very Stiff	Hard
Moisture												
Very Wet	Wet	$\overline{\mathbf{D}}$	Moist	Damp	Dry	1						
Color		_				(Circle_maj	0 F 8	undorlino	modi	fuinc	a	
Light	Medium	\mathcal{D}	Dark		Olive	Gray			Black	nying	0 Other	:
-	L	in the second second second second second second second second second second second second second second second				<u> </u>						· · · · · · · · · · · · · · · · · · ·
Major Consti						(Circle maj					1)	
Fine	Mediun	1	Coarse	•	Grave	I Sand	2	Silt		Clay		
Minor Consti	tuent with	trace	•									
Fine	Mediun	ı	Coarse)	Grave	l Sand		Silt		Clay		
Biological:		i	%	Debris:		%	Oil	Sheen:	-No	ne) Trace (<5%)	%
Comments:							T	Geo	omatri	x Cor	sultants	
									16000			
	-							ļ	criptio		rm	· · · · ·
· · · · ·								1	ials:_ <			
•.								1			- 07 Time:	1313
· · · · ·								<u> </u>				

QUALITATIVE SAMPLE CHARACTERISTICS							
Coordinate Datum	Date (mm/dd/yy)			cation Number			
	5-15-07	ort of Everett Former Mill A	ST 40				
Coordinates	· · · · · · · · · · · · · · · · · · ·	Water Depth		Time			
North	East	Depth Unit Rep	Gear ०१४४	1412			
359623 12993	75	72 4		1112			
Penetration Penetration Penetration Penetration Vitil Unit Initials V Veather	Surficial Wood Contact Points						
DITIEM GSN Sun	Contact Forms	<u> </u>	X5 = _	%			
チ ズ Surficial sediment characteristics:							
Biological:% Debris:	% Oil	Sheen: None	Trace (<5%)	%			
Moisture Very Wet Wet Moist Damp	Dry						
Color Light Medium Dark		underline modifying own Black	g) Other	• 			
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand	underline modifying Silt Clay					
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	, 	<u></u>			
Subsurface sediment characteristics:	· · · · · · · · · · · · · · · · · · ·						
Density / Consistency							
Sand / Gravel - Very Loose	Medium Dense	Dense	Very Dense				
<u>Silt / Clay -</u> Very Soft Soft	Medium Stiff	Stiff	Very Stiff	Hard			
Moisture Very Wet Wet Moist Damp	Dry		a a state a s				
Color Light Medium Dark		underline modifying own Black	g) Other				
Major Constituent Fine Medium Coarse	(Circle major & Gravel Sand)	underline modifying Silt Clay					
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay	· · · · · · · · · · · · · · · · · · ·	-			
Biological:% Debris:	% Oil	Sheen: None) Trace (<5%)	%			
Comments:	T	Geomatrix Cor	isultants	\			
Ghost shrimp in p	aws	13116000045 Description Fo	orm				
		Tritials GUN	√ 5-0] Time:_!	412			

1.

QUALITATIVE SAMPLE CHARACTERISTICS							
Coordinate Datum	Date (mm/dd/yy)		Sample Identification Number				
	5-15-07 PC	57 41					
, Coordinates		Water Depth	Time				
North 359799 12993	East	Depth Unit Rep	Gear 0.2VV 1353				
Penetration	Surficial Wood Contact Points	Estimate:	X 5 =%				
Surficial sediment characteristics: Biological:% Debris:	% OI	I Sheen: None	Trace (<5%)%				
Moisture Very Wet Wet Moist Damp	Dry						
Color Light Medium Dark		k underline modifying own Black	I) Other				
Major Constituent	(Circle major 8 Gravel Sand	Silt Clay	-				
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt → Clay					
Subsurface sediment characteristics: Density / Consistency	Medium Dense	Dense	Very Dense				
<u>Sand / Gravel -</u> Very Loose Loose <u>Silt / Clay -</u> Very Soft Soft	Medium Derise	Stiff	Very Stiff Hard				
Moisture Very Wet Wet Moist Damp	Dry	·					
Color Light (Medium) Dark	(Circle major 8 Olive (Gray) Br	k underline modifying own Black	I) Other				
Major Constituent Fine Medium Coarse	(Circle major 8 Gravel Sand	underline modifying Silt Clay	-				
Minor Constituent with trace Fine Medium Coarse	Gravel Sand	Silt Clay					
Biological:% Debris:	% Oi	Sheen: None	Trace (<5%)%				
Comments:		Geomatrix Cons 13116000044 Description Form Initials: $\leq 5 \times 10^{-10}$ Date: $5 - 15 - 10^{-10}$					

* //

,	· · · · ·	;	• .	a a a a fair a standar a sa			
QUALITATIVE SAMPLE CHARACTERISTICS							
Coordina	te Datum	Date (mm/dd/yy) Po 5-)5-07 Po	Project rt of Everett Former Mill A	Sample Identification Number 5772			
	Coordinates		Water Depth	Time			
North		East	Depth Unit Rep	Gear			
359799	12994	149	46 14	0.2 1333			
Penetration Depth Unit Initials		Surficial Wood Contact Points		X 5 =%			
Surficial sediment characte		· ·					
Biological:	% Debris:	% Oil	Sheen: None	Trace (<5%)%			
Moisture Very Wet Wet	Moist Damp	Dry					
Color Light Medium	Dark		underline modifying own Black) Other			
Major Constituent Fine Medium	Coarse	(Circle major & Gravel Sand	underline modifying Silt Clay)			
Minor Constituent with the Fine Medium	race Coarse	Gravel Sand	Silt Clay				
Subsurface sediment chara	cteristics:			·····			
Density / Consistency			ς.				
<u>Sand / Gravel -</u>	Very Loose Loose	Medium Dense) Dense	Very Dense			
<u>Silt / Clay -</u>	Very Soft Soft	Medium Stiff	Stiff	Very Stiff Hard			
Moisture Very Wet Wet	Moist Damp	Dry					
Color Light Medium	Dark	(Circle major & Olive Gray Bro	underline modifying own Black) Other			
Major Constituent	Coarse	(Circle major & Gravel Sand	underline modifying Silt Clay)			
Minor Constituent with to Fine Medium	race Coarse	Gravel Sand	Silt Clay				
Biological:	% Debris:	% Oil	Sheen: None	Trace (<5%)%			
Comments:			Geomatrix C 1311600010				
			Description Initials: <u>6</u> Date: <u>5</u>				

ł

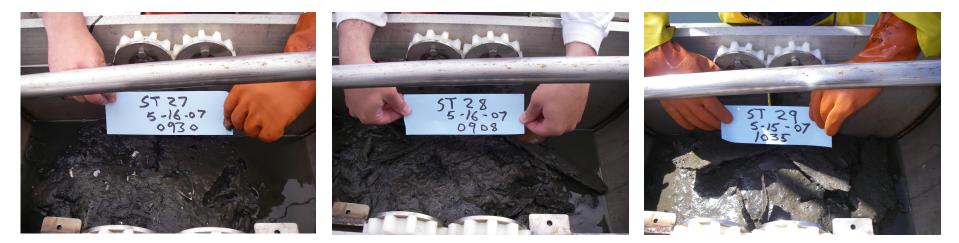
ł:T

Appendix F

Grab Photo Logs

GRAB SAMPLES

ST-22


ST-24

ST-24D

ST-26

ST-27

ST-28



ST-33

ST-35

ST-36

ST-37

ST-39

ST-41

ST-42

Appendix G

Chain-of-Custody Forms

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

CHAIN OF CUSTODY

1921

· · · · · · · · · · · · · · · · · · ·	_				An	alys	sis C	ont	aine	ers				
Place: COC: Form Number Label Here or write in seq: number below:		PCBs/TOC	Archive											Recorded by:
Geomatrix Consultants	Date:		4		•			-+					-	
13116000100			3×					[°]						
CCC Form	Time:	1												Number of containers
Initials: 65M	Titte.	1		·										~
Date: 5 - 15 - 97 Time: 0416									-					
Geomatrix Consultants	Date:													
13116000101														
COC Form	Time:	1												Number of containers
Initials: 65^{1}	1.													
Date: 5-15- >7 Time: 0952	Date:									-	_			
Geomatrix Consultants														
13116000102														Number of containers
COC Form	Time:											ļ		
Initials: <u>CSY</u>														
Initials: Date: 5.15.07 Time: 1009	Date:													
Geomatrix Consultants							, i							
13116000103	Time:)												Number of containers
COC Form														
Initials: <u>65</u> Date: <u>5-5-07</u> Time: 1035						1								,
Geomatrix Consultants	Date:										ļ			
13116000104														
COC Form	Time:													Number of containers
2.0														
Initials: \underline{G}^{2} Date: \underline{G}^{2} \underline{G}	Date:											_		
Place Sample ID Label Here	1													
or Write ID Number Here														Number of containers
	Time:													
	Date:													
Place Sample ID Label Here														
or Write ID: Number Here	Time:								•					Number of containers
								,					1	
Laboratory/Analysis Comments	1]	Nam	_		up t	ed E	V A	1		nspo		By	Name: Bul. Conclut
ARI Contact: Mark HArris Sediment Management Standards Chemicals of Concern (see attache	d list)		Dale Time	325	5	Tia	-10	7	,	Y	ſ	>		Date: 126 Congress Time: 825 5/19/07
TOC All analysis from single 1-I container			Name Date:				-†-*							Name: Date:
Samples require homogenization before analysis		r '	Tirne	:										Time: Name:
			Date:	:										Date: Time:

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

LDZI

CHAIN OF CUSTODY

(425) 051-1040	_				An	alys	is C	Cont	aine	ers			i.	
Place COC Form Number Label Here or write in seq. number below:		PCBs/TOC	Archive			s.								Recorded by: Checked by:
Geomatrix Consultants	Date:											-+	+	·
13116000105														:
COC Form														Number of containers
Initials: 65%	Time:													
Date: 5-15-07 Time: 1127														
Geomatrix Consultants	Date:													
13116000106														
COC Form	Time:	}												Number of containers
Initials: 65m NH7														ь
Date: <u>5-15-57</u> Time: <u>1147</u>						÷				_				
Geomatrix Consultants	Date:											1		
13116000107														
COC Form	Time:	1												Number of containers
Initials: 65m		1												
Date: <u>5 - 5 - 57</u> Time: <u>13</u> Geomatrix Consultants	i Data:			<u> </u>		ļ					_			
	Date:													
13116000108														Number of containers
COC Form	Time:])												Number of containers
Initials: <u>65</u> M														
Date: 5-15-07 Time: 1333	Date:	+	+	┼──			<u> </u>				_			
Place Sample ID Label Here or Write ID Number Here		and the second se												Number of containers
	Time:	and the second sec												
Place Sample ID Label Here or Write ID Number Here	Date:													Number of containers
	Time:							-						
	Date:	+	┼─	+										
Place Sample ID Label Here														
or Write ID Number Here														Number of containers
	Time:													
Laboratory/Analysis:Comments	·]		M	₹¢)in	្រ ឲ្យវទ្រ	ned.	- Ву <i>/</i> /	, 	Tra	inspi	orted	By	Received By
		1	Nan Date	ne: 1	57	科	en 17	<i>''</i>				2		Name: B=6 Constra Date: 13=6 Constra Time: 825 5/17/07
ARI Contact: Mark HArris Sediment Management Standards Chemicals of Concern (see attach	ed list)		Tim	e:	-1		08	25)	 	2	1))	Time: <u><u>F25</u><u>5/17/0</u> Name:</u>
TOC All analysis from single 1-I container			Nan Dati	e:										Date:
Samples require homogenization before analysis			Tim	ne:										Time: Name:
			Dat											Date: Time:

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

CHAIN OF CUSTODY

(423) 037-4340					An	alys	is C	Cont	aine	ers			:	
Place COC Form Number Label Here or write in seq. number below:		PCBs/TOC	Archive											Recorded by:
13116000001 COC Form ¹ Initials: <u>CJW</u> Date: <u>A www. 07</u> Time: <u>1035</u>	Date: Time:													Number of containers
Geomatrix Consultants 13116000002 COC Form Initials: \underline{CJw} Date: \underline{Pmer} \underline{OP} Time: $\underline{145}$	Date: Time:										,			Number of containers
Geomatrix Consultants 1311600003 COC Form Initials: الملاك Date: 7 ممكر Time: 1225	Date: Time:		1											Number of containers
Geomatrix Consultants 13116000004 COC Form Initials: CSM	Date:													Number of containers
Date: 7 mon 07 Time: 1225 Geomatrix Consultants 13116000005 COC Form Initials: CSN	Date:	_												Number of containers
Date: <u>7 mor 07</u> Time: <u>1225</u> Geomatrix Consultants 13116000006 COC Form Initials: <u>CON</u>	Date: Time:		1								• • •			Number of containers
Date: 7 Time: 1225 Geomatrix Consultants 13116000007 COC Form Initials: CJW	Date: Time:	-	}									1		Number of containers
Date: 7 07 Time: 1330 Sediment Management Standards Chemicals of Concern (see attack TOC All analysis from single 1-I container Samples require homogenization before analysis	ned list)	i.	Nam Date Time Nam Date Nam Date	2: 10: 2: 10: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	elin 5/	sist S/U		By AZ	\$ \$	Tra	E	ortec	I:By:	Received:By i Name: Date: 57.77.73 Time: 0.77.73 7.77 Name: Date: 1000000000000000000000000000000000000

Geomatrix Consultants $6505-216^{\circ\circ}$ Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

CHAIN OF CUSTODY

(425) 697-4340					An	alysi	is C	onta	aine	rs			÷.		
Place:COC:Form Number Label:Here or write in seq: number below:		PCBs/TOC	Archive											Recorded by:	
	Date:	+										T			
13116000008															
COC Form	-	4												Number of containers	1
Initials: CJW	Time:													43	
Date: 7 my 07 Time: 1330														۲. ۲۰۰۳ میر ۲۰۰۹ میر	
Geomatrix Consultants	Date:	\uparrow		·						1		T			
13116000009															· · ·
COC Form	-	4							·					Number of containers	
Initials:	Time:													••	
Date: 7 mer 07 Time: 1330 Geomatrix Consultants	·*,					-								1 and the second second second second second second second second second second second second second second se	
	ate:	+													
13116000010												1		.*	
COC Form		1	1											Number of containers	
Initials:	me:		N												
Date: 7 107 Time: 1500															
Geomatrix Consultants	Date:	1	1		T										
13116000011															
COC Form		_												Number of containers	
Initials:_CJw	Time:		1	Ċ											
Date: 7 men 07 Time: 1500 Geomatrix Consultants		1													
	Date:	+	+		1						-		_		
13116000012															
COC Form	<u></u>													Number of containers	
Initials: CJW	Time:		1												
Date: 7 100 VY Time: 1 545															
Geomatrix Consultants	Date:	+	1									1		· ·	
13116000013															
COC Form			,											Number of containers	
Initials: CJW	Time:		1			ŀ									
Date: 7 may Time: 1545															· ·]
Geomatrix Consultants	Date:	+-	+	\top	+	1									
13116000014			1												
COC Form	<u>;</u>													Number of containers	
	Time:		ľ												
Date: 7 mot Time: (70)															•
1 mic. 1700	<u> </u>			6.1	Relin	quist	Red	l 3y	<u>د</u>	Tra	nspo	orted	By		i.
			Nam Date		U.	71	red a		-	U	VSL	Ç		Date 5/8/7	
ARI Contact: Mark HAmis Sediment Management Standards Chemicals of Concern (see attach	ned list)		Time	e:	η «	华	38			E	sac	r	<u>ــــــــــــــــــــــــــــــــــــ</u>	Time: 07-32	
TOC All analysis from single 1-1 container			Narr Date	e:										Date:	
Samples require homogenization before analysis			Time											Time: Name:	
			Date											Date: Time:	

* 1. * . *.

٠.

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340、

CHAIN OF CUSTODY

(420) 097-4340					An	alys	is C	Cont	aine	ers			÷	
Place COC: Form Number Label Here or write in seq. number below.		PCBs/TOC	Archive											Recorded by:
13116000015	Date:													
COC Form Initials: CJW Date: 7 mon Time: 1700	Time:		٨									•	-	Number of containers
Place Sample ID Label Here or Write ID Number Here	Date: Time:													Number of containers
Place Sample ID Label Here or Write ID Number Here	Date: Time:	-									•			Number of containers
Place Sample ID Label Here or Write ID:Number Here	Date:													Number of containers
Place Sample ID Label Here or Write (D: Number Here	Date:							·						Number of containers
Place Sample ID Label Here or Write ID Number Here	Date:	-												Number of containers
Place Sample ID Label Here or Write ID Number Here	Date:													Number of containers
(Laboraton/Analysis/Comments		7	r	1 :=	lelin	auif	ed I	By /	1	Tr	INSP	orter	l:By	Received By
Laboratory/Analysis Comments ARI Contact: Mark HArris Sediment Management Standards Chemicals of Concern (see attach TOC All analysis from single 1-I container Samples require homogenization before analysis	ed list)	-	Nam Date Time Nam Date Nam Date	e: a: a: a: a: a: a: a: b: a: b: b: b: b: b: b: b: b: b: b	5/4			2 0 7	4 K	K	SF			Name: Date: $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 $
			Time	e:						1				Time:

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340 11925

CHAIN OF CUSTODY

(425) 697-4340 1./ c / ce - yes					Ana	alys	is C	ont	aine	rs				
Place COC Form Number Label Here or write in seq. number below:		PCBs/TOC	Archive											Checked by:
Geomatrix Consultants		D D	Arc					•						
13116000016	iate:											Τ		
COC Form										1				
Initials:	ime:	-												Number of containers
Date: 6 107 Time: 1000														
Geomatrix Consultants	 <u>Armanan an</u> an an an an an an an an an an an an an								_	_		_	_	
13116000017	Date:													
COC Form			4											Alumber of containers
Initials: Chr	lime:	1	1											Number of containers
Date: 6007 Time: 100											·			
Geomatrix Consultants)ate:	<u></u>			$\left - \right $		•		_		-+		-+	
13116000018	Jaic.													
COC Form			1											Number of containers
Initials: C)W	îme:		ľ											
Date: 6 mart 09 Time: 100 Geomatrix Consultants														
Geomatrix Consultants	Date:	┿─									-	\neg		
13116000019														
COC Form		4	1											Number of containers
Initials: CJW	Time:													
Date: 6 mor 67 Time: 1100														
Geomatrix Consultants	Date:	T		Τ	1			Γ						
13116000020														
COC Form	Time:	- `												Number of containers
Initials: <u>CJw</u>			 											
Date 6 Men 07 Time: 100 Geomatrix Consultants			<u> </u>			1		ļ						
13116000021	Date:													
COC Form					ľ	ŀ								
Initials:	Time:	1												Number of containers
Date: 5 mon 07 Time: 1145														
	ite:			+	+				┝					
Geomatrix Consultants 13116000022 COC Form Initials: دان	мс.													
COC Form														Number of containers
Initials: Clw	me:						.							
Date: 6 mon 07 Time: 1145														
			 	<u> </u>	Relin	। ଜଙ୍ଗାର	hed	Bv	;	Tra	nspo	ortec	By	Received:By
		-	Nar Dat	ne	57.	P.	A A			1	1	2		Name: D
ARI Contact: Mark HAms Sediment Management Standards Chemicals of Concern (see atlac	hed list)		Tim	ie:	<u>'''</u>	. 10	'0	73	8	_'	\sim	2	>	Time: 0733
TOC All analysis from single 1-I container			Dat	e:										Date: Time:
Samples require homogenization before analysis			Tim	ne:										Name:
			Dat	e:						1				Date:

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 CHAIN OF CUSTODY

(425) 697-4340					An	alys	is C	Cont	aine	ers				
Place:COC: Form Number Label Here or write in seq: number below.		PCBs/TOC	Archive `	-									-	Recorded by:
Geomatrix Consultants	Date:													
13116000023		ŀ												
COC Form	Time:	1												Number of containers
Initials: CJW							·							
Date: <u>6 wello7</u> Time: <u>1145</u>	: Date:				<u> </u>				-	-	-	-+	-+	
Place Sample: ID Label Here or Write ID Number Here	Time:	-							:					Number of containers
		.				:								
Place Sample ID Label Here or Write ID Number Here	Date:	-												Number of containers
Place Sample ID Label Here or Write ID Number Here	Date:													Number of containers
	Time:													
Place Sample ID Label Here or Write ID Number Here	Date:													Number of containers
Place Sample: ID Label Here or Write ID Number Here	Date:													Number of containers
Place Sample ID Label Here	Date:													
or Write ID: Number Here	Time:	-												Number of containers
Laboratory/Analysis Comments			Г		Relin	iquja	hed.	By		Tra	insp	ortec	I:By:	Received:By
ARI Contact: Mark HArris Sediment Management Standards Chemicals of Concern (see attach	ned list)		Nan Dat Tim Nan	пЮ а: и:	51	9/0	AT.	υŦ	38		1	B)	Name: 57977 Date: 57977 Time: 0775
TOC All analysis from single 1-1 container			Dat	e:										Date: Time:
Samples require homogenization before analysis			Tim Nar Dat Tim	ne: le:										Name: Date: Time:
4		1	1.1.11							1				.1

KZ33 -0.8, 0.4, 1.6, 3.6° / ce - yes **Geomatrix Consultants** CHAIN OF CUSTODY 6505-216" Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340 Analysis Containers Place COC Form Number Label Here Recorded by: ____ or write in seq. number below. PCBs/TOC Checked by: _____ Archive Date: Geomatrix Consultants 13116000025 Number of containers COC Form Time: Initials: CJW Date: 9,07 Time: 1240 Date: Place Sample ID Label Here or Write ID Number Here Number of containers Time: Date: Place Sample ID Label Here: or Write ID Number Here Number of containers Time: Date: Place Sample ID Label Here or Write ID: Number: Here Number of containers Time: Date: Place Sample ID Label Here or Write ID Number Here Number of containers Time: Date: Place Sample ID Label Here or Write ID Number Here-Number of containers Time: Date: Place Sample ID Label Here or Write ID Number Here Number of containers Time: Relinquished By Received:By Transported:By Laboratory/Analysis'Comments Name: 3 do ChibWtDate: <math>3 do ChibWtTime: <math>5/17/07 825LUJ LUJ Name Date: ARI Contact: Mark HArris 25 Sediment Management Standards Chemicals of Concern (see altached list) Time: TOC Name Name All analysis from single 1-I container Date: Date: Samples require homogenization before analysis Time: Time: Name Name: Date: Date: Time Time

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697 4340

CHAIN OF CUSTODY

(425) 697-4340					An	alysi	s [:] C	ont	aine	rs		;i	
Place COC Form Number Label Here or write in seq: number below.		PCBs/TOC	Archive										Recorded by:
Geomatrix Consultants	Date:	1				-	1		\uparrow		\mathbf{T}		
13116000026													
COC Form	Time:	-	١										Number of containers
Initials: <u>CJU</u>			•										
Date: 11 1020 Time: 1020													•
Geomatrix Consultants	Date:												
13116000024													
COC Form	Time:	-											Number of containers
Initials: CJV													
Date: 11 Mov 07 Time: 11 00 Geomatrix Consultants	Date:						+	+	+		┢	<u> </u>	
13116000027													
COC Form	Time:	-											Number of containers
Initials: CM		-	-										
Date: 1 107 Time: 1300 Geomatrix Consultants	Date:	-				_		_		_	+	<u> </u>	
13116000028													
COC Form	Time:	4	1										Number of containers
Initials: <u>CJw</u>	11116.		•										
Date: 1410 Time: 1410													
Geomatrix Consultants	Date:	T					Τ				Γ	Γ	
13116000029													· · ·
COC Form	Time:	-	I										Number of containers
Initials: <u>C1</u> Date: <u>11 may 03</u> Time: <u>1410</u>							_	_	_		<u> </u>		
Geomatrix Consultants	Date:				•								
13116000030													
COC Form	Time:		l										Number of containers
Initials: C I													
Date: 11 mar 07 Time: 1410	Date:						\rightarrow		-+		–	╞	
Geomatrix Consultants													
· 13116000031	•		1										Number of containers
COC Form	Time:].	1										Number of containers
Initials:													
Date: 11 moy 07 Time: 1515	<u>.</u>			:D	eling	uisbo	1	2		Transp			Received By
			Name	: L	<u><u> </u></u>			50	╡	V	P	<u>ייטאַ</u> כ	Name: Date: 386 Server 5
ARI Contact: Mark HArris Sediment Management Standards Chemicals of Concern (see attach	ed list)		Date: Time:			710	ď	82	5	<u>_ /</u>	5	<u>></u>	Time: 5/17/24
TOC All analysis from single 1-I container			Name Date:	2									Name: L C Date:
Samples require homogenization before analysis			Time: Name						+				Time: Name:
			Date: Time:										Date: Time:

.

Geomatrix Consultants 6505 – 216th Street SW, Suite 100 Mountlake Terrace, WA 98043 (425) 697-4340

CHAIN OF CUSTODY

ş

(420) 097-4340		<u> </u>			Ar	alys	sis (Con	tain	ers			÷	
Place COC Form Number Label Here or write in seq: number below.		PCBs/TOC	Archive						,					Recorded by:
Geomatrix Consultants	ite:													
13116000033														
COC Form	<u>.</u>		1											Number of containers
Initials: CIN	ne:		1											
Date: 14 Wood 07 Time: 1115 Geomatrix Consultants														
13116000034	.ate:													
COC Form	4		1											
Initials: <u>CJu</u>	lime:			ľ										Number of containers
Date: 14 mart 07 Time: 1245 Geomatrix Consultants	-					2								
13116000035)ate:													
COC Form														
Initials: CJW	Time:													Number of containers
Date: 14 www.07 Time: 1245 Geomatrix Consultants	·												•	
13116000036	Date:													
COC Form														
Initials:	Time:		1											Number of containers
Date: 11 may 09 Time: 1320														
Geomatrix Consultants														
13116000037	Date:													
COC Form			1											Number of containers
Initials:	Time:					•								Number of containers
Date: 14 may 07 Time: 1320														
Geomatrix Consultants	Date:													
13116000038														
COC Form			1											Number of containers
Initials: CJW	Time:		0											
Date: 14 may 07 Time: 1400														
Geomatrix Consultants	Date:													
13116000039														
COC Form	Time:													Number of containers
Initials: <u>CJ</u>			V											
Date: 14 may 07 Time: 1450														
					elino	uish	ed.E	ly	<u>م</u>	Tra	nspo	rted	By	Received By
ARI Contact: Mark HArris			Name Date:	1-	5	71	Fly	Ĩ.			1	R		Name: Date: 106 Conglith
Sediment Management Standards Chemicals of Concern (see attached TOC	u HSL)		Time: Name	:				100	S	·			د.	Time: 125 JEUT Name:
All analysis from single 1-I container Samples require homogenization before analysis			Date: Time:											Date: Time:
		1 1	Name Date:											Name: Date:
			Time:											Time:

Appendix H

Analytical Laboratory Data Forms

June 19, 2007

FAL Project ID: 4475

Mr. Mark Harris Analytical Resources Incorporated 4611 South 134th Place Tukwila, WA 98168-3240

Dear Mr. Harris,

Enclosed are the results for Frontier Analytical Laboratory project **4475**. This corresponds to ARI Project; **LA62** and Project ID; Port of Everett. The four sediment samples received on 5/30/2007 were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and dibenzo furans. Analytical Resources Incorporated requested a turnaround time of fifteen business days for project **4475**.

The following Level I report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form and a sample photo. The Electronic Data Deliverable (EDD) you requested has been sent to you via email. The enclosed results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full.

If you have any questions regarding project **4475**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Shoule 1

Bradley B. Silverbush Director of Operations

> FRONTIER ANALYTICAL LABORATORY 5172 Hillsdale Circle • El Dorado Hills, CA 95762 Tel (916) 934-0900 • Fax (916) 934-0999 www.frontieranalytical.com

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 4475

	Received on:	05/30/2007		Project Due:	06/21/2007	Storage:	<u>R2</u>
FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time
4475-001-0001-SA	0	LA62	13116000007	EPA 1613 D/F	Sediment	05/07/2007	01:30 pm
4475-002-0001-SA	۰ O	LA62	13116000013	EPA 1613 D/F	Sediment	05/07/2007	03:45 pm
4475-003-0001-SA	. 0	LA62	13116000019	EPA 1613 D/F	Sediment	05/08/2007	11:00 am
4475-004-0001-SA	. 0	LA62	13116000037	EPA 1613 D/F	Sediment	05/14/2007	01:20 pm

FAL Sample ID	Notes
4475-001-0001-SA	Using hand written sampling time and date from bottle label for our tracking purposes.
4475-002-0001-SA	Using hand written sampling time and date from bottle label for our tracking purposes.
4475-003-0001-SA	Using hand written sampling time and date from bottle label for our tracking purposes.
4475-004-0001-SA	Using hand written sampling time and date from bottle label for our tracking purposes.

FAL ID: 4475-001-MB Client ID: Method Blank Matrix: Sediment Batch No: X1173	Date F	Extracted: 06 Received: N nt: 10.00 g			PCDDFAL3-6-5 olumn: DB5 pg/g		Acquired: 06 998 WHO		
Compound	Conc	DL	Qual	1998 WHO Tox	MDL	Compound	Conc	DL (Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND ND	0.0783 0.0946 0.255 0.267 0.292 0.298 0.548		- - - - - - -	0.100	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.0783 0.0946 0.292 0.298	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.0775 0.118 0.124 0.145		-	0.0383 0.0403	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.115 0.118 0.118 0.145	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 89.3 78.5 88.4 87.0 92.3 88.0 97.4 84.7 86.2 85.5 86.8 92.0 87.4 131 93.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 143 26.0 - 138 17.0 - 157	Qual		A signal to B Analyte is C Chemical D Presence E Analyte o F Analyte o J Analyte o M Maximum ND Analyte N NP Not Provi S Sample a X Matrix int	ided acceptance crite	0:1 hod Blank ners above calib secondary o below calib entration ria not met	pration range column ration range	;
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	95.3	35.0 - 197							
Analyst: Date:G/15/07		•				Reviewed E Date:	3y <u>C</u>	<u> </u>	

000003 of 000011

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 4475-001-OPR Client ID: OPR Matrix: Sediment Batch No: X1173	Date Extracted: 06-13 Date Received: NA Amount: 10.00 g	-2007	ICal: PCDDFAL3-6-5-07 GC Column: DB5 Units: ng/ml	Acquired: 06-14-2007 1998 WHO TEQ: NA
х				
Compound	Conc QC Limits	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Internal Standards	110 63.0 - 170 % Rec QC Limits	Qual		
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	104 20.0 - 175 98.2 21.0 - 227 91.3 21.0 - 193 94.2 25.0 - 163 103 26.0 - 166 109 13.0 - 198 114 22.0 - 152 108 21.0 - 192 112 13.0 - 328 90.0 19.0 - 202 92.6 21.0 - 159 93.7 22.0 - 176 101 17.0 - 205 97.1 21.0 - 158 130 20.0 - 186 107 13.0 - 198	Quai	 A signal to noise rati B Analyte is present C Chemical Interfere D Presence of Diphe E Analyte concentration F Analyte confirmation 	in Method Blank ence enyl Ethers tion is above calibration range on on secondary column tion is below calibration range e concentration ted
Cleanup Surrogate			* Result taken from	dilution or reinjection
37CI-2,3,7,8-TCDD	110 31.0 - 191			

Analyst: Glis Date:_

000004 of 000011

Reviewed By:___

Date:_

FAL ID: 4475-001-SA Client ID: 13116000007 Matrix: Sediment Batch No: X1173			ICal: PCDDFAL3-6-5-07 GC Column: DB5 Units: pg/g	Acquired: 06-15-2007 1998 WHO TEQ: 18.6
Compound	Conc	DL Qual 1998	WHO Tox MDL C	ompound Conc DL Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	0.967 1.57 2.57 5.85 3.21 91.8 552	- J - J -	0.321 0.0918 Tota 0.918 0.0806 Tota	tal TCDD 166 - al PeCDD 90.4 - al HxCDD 103 - al HpCDD 189 -
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	105 3.01 3.51 4.29 2.49 2.75 0.781 43.8 1.74 68.3	- F - - - - J - J	0.438 0.0383 Tota 0.0174 0.0403 Tota	otal TCDF 274 - D,M al PeCDF 51.7 - D,M al HxCDF 67.2 - al HpCDF 132 -
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF Cleanup Surrogate 37Cl-2,3,7,8-TCDD	% Rec QC Li 106 25.0 - 87.1 25.0 - 81.5 32.0 - 90.8 28.0 - 94.5 23.0 - 90.7 17.0 - 109 24.0 - 100 24.0 - 105 21.0 - 79.3 26.0 - 87.1 28.0 - 98.9 29.0 - 93.1 28.0 - 106 26.0 - 81.7 17.0 - 111 35.0 -	164 181 141 130 140 157 169 185 178 152 123 136 147 143 138 157	 A signal to noise B Analyte is press C Chemical Inter D Presence of Di E Analyte concer F Analyte concer M Analyte concer M Maximum poss ND Analyte Not De NP Not Provided S Sample accept X Matrix interfered 	ent in Method Blank ference phenyl Ethers ntration is above calibration range nation on secondary column ntration is below calibration range sible concentration etected
Analyst:				eviewed By: ate:6/15/07

000005 of 000011

FAL ID: 4475-002-SA Client ID: 13116000013 Matrix: Sediment Batch No: X1173	Date Re Amount	xtracted: 06-13-2/ eceived: 05-30-2/ t: 10.17 g ls: 35.09			CDDFAL3-6-5 lumn: DB5 bg/g		cquired: 06 998 WHO T		
Compound	Conc	DL Qual	1998 V	VHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD OCDD	2.72 5.22 13.6 33.1 17.8 799 8930			2.72 5.22 1.36 3.31 1.78 7.99 0.893	0.0463 0.0277 0.0904 0.100 0.0918 0.0806 0.191	Total TCDD Total PeCDD Total HxCDD Total HpCDD	377 214 476 1910	-	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	50.2 7.31 8.76 10.2 5.34 6.20 3.57 58.5 3.42 103	- F - - - - - - - - - -		5.02 0.366 4.38 1.02 0.534 0.620 0.357 0.585 0.0342 0.0103	0.0373 0.0383 0.0426 0.0282 0.0285 0.0322 0.0289 0.0383 0.0403 0.104	Total TCDF Total PeCDF Total HxCDF Total HpCDF	311 120 173 175	-	D,M D,M
Internal Standards	% Rec	QC Limits Qual							
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	85.6 2 84.4 3 89.9 2 106 2 122 1 106 2 97.6 2 104 2 89.7 2 93.6 2 100 2 122 2 105 1	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157			A signal to B Analyte is C Chemica D Presence E Analyte of J Analyte of M Maximun ND Analyte N NP Not Provi S Sample a X Matrix int	ided acceptance crite	0:1 hod Blank ners above calibi secondary c below calibr entration ria not met	ration range olumn ation range	e
Analyst:				×		Reviewed E	3y: 50		

000006 of 000011

5172 Hillsdale Circle • El Dorado Hills, CA 95762 • Tel (916) 934-0900 • Fax (916) 934-0999 • www.frontieranalytical.com

FAL ID: 4475-003-SA Client ID: 13116000019 Matrix: Sediment Batch No: X1173	Date Extracted: Date Received: Amount: 9.99 g % Solids: 29.96	05-30-2007	Cal: PCDDFAL3-6-5-07 SC Column: DB5 Inits: pg/g	Acquired: 06-15-2007 1998 WHO TEQ: 38.0
Compound	Conc D	Qual 1998 WHO	Tox MDL Com	pound Conc DL Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	5.85 11.9 20.8 23.6 19.5 153 138	 - -	5.85 0.0463 11.9 0.0277 2.08 0.0904 2.36 0.100 Total 1.95 0.0918 Total F 1.53 0.0806 Total H 0138 0.191 Total H	ixCDD 1310 -
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	25.2 10.6 12.9 6.89 7.59 8.78 2.58 16.7 2.48 5.59	-	0.167 0.0383 Total F 0248 0.0403 Total H	PeCDF 496 - D,M PeCDF 197 - D,M HxCDF 80.8 - D,M HpCDF 27.6 -
Internal Standards	% Rec QC Limits	Qual		
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-2,2,4,7,8,9-HpCDF 13C-2,2,4,7,8,9-HpCDF 13C-2,3,7,8-TCDD	97.9 25.0 - 164 76.6 25.0 - 18 82.2 32.0 - 144 85.4 28.0 - 130 96.3 23.0 - 140 93.1 17.0 - 155 99.9 24.0 - 168 97.7 21.0 - 178 87.7 21.0 - 178 86.7 26.0 - 152 90.8 28.0 - 136 96.9 29.0 - 147 93.9 28.0 - 142 93.9 28.0 - 136 87.0 17.0 - 157 102 35.0 - 197		 A signal to noise rational sis a signal to noise rational signal to noise rational sign	It in Method Blank rence lenyl Ethers ation is above calibration range tion on secondary column ation is below calibration range le concentration cted
Analyst: Date:			Rev Date	riewed By:

000007 of 000011

latrix: Sediment atch No: X1173		unt: 10.14 g olids: 21.73		Units:	pg/g			
Compound	Con	c DL	Qual	1998 WHO Tox	MDL	Compound	Conc	DL Qu
2,3,7,8-TCDD	18.	6 -		18.6	0.0463			
1,2,3,7,8-PeCDD	46.			46.4	0.0277			
1,2,3,4,7,8-HxCDD	64.			6.48	0.0904			
1,2,3,6,7,8-HxCDD	79.			7.90	0.100	Total TCDD	7200	-
1,2,3,7,8,9-HxCDD	63.			6.38	0.0918	Total PeCDD	3990	-
1,2,3,4,6,7,8-HpCDD	50			5.00	0.0806	Total HxCDD	4040	-
OCDD	59			0.0592	0.191	Total HpCDD	878	-
2,3,7,8-TCDF	87.	4 -	F	8.74	0.0373			
1,2,3,7,8-PeCDF	37.	0 -		1.85	0.0383			
2,3,4,7,8-PeCDF	33.	-		16.6	0.0426			
1,2,3,4,7,8-HxCDF	23.	6 ' -		2.36	0.0282			
1,2,3,6,7,8-HxCDF	22.	8 -		2.28	0.0285			
2,3,4,6,7,8-HxCDF	25.	.9 -		2.59	0.0322			
1,2,3,7,8,9-HxCDF	7.3			0.736	0.0289	Total TCDF	1730	- D
1,2,3,4,6,7,8-HpCDF	74.			0.740		Total PeCDF	622	- D
1,2,3,4,7,8,9-HpCDF	8.9			0.0895		Total HxCDF	268	- D
OCDF	61.	.3 -		0.00613	0.104	Total HpCDF	150	-
Internal Standards	% Rec	QC Limits	Qual					
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	106 87.0	25.0 - 164 25.0 - 181				Labeled Standa		C range but
13C-1,2,3,4,7,8-HxCDD	85.9	32.0 - 141			'` signal to	noise ratio is >1	10:1	
13C-1,2,3,6,7,8-HxCDD	90.6	28.0 - 130			B Analyte	is present in Me	thod Blank	
13C-1,2,3,4,6,7,8-HpCDD	110	23.0 - 140				al Interference		
13C-OCDD	104	17.0 - 157				e of Diphenyl Et	hers	
13C-2.3.7.8-TCDF	118	24.0 - 169			E Analvte	concentration is	above calib	ration range
13C-1.2,3,7,8-PeCDF	108	24.0 - 189				confirmation on		•
13C-1,2,3,7,8-PeCDF	112	24.0 - 185			1		-	
13C-1,2,3,4,7,8-HxCDF	89.7	26.0 - 152			J Analyte	concentration is	below calib	ration range
13C-1,2,3,6,7,8-HxCDF	94.5	26.0 - 123		1. Sec. 1. Sec	M Maximu	m possible conc	entration	
13C-2,3,4,6,7,8-HxCDF	95.6	28.0 - 136			ND Analyte	Not Detected		
13C-1,2,3,7,8,9-HxCDF	104	29.0 - 147						
13C-1,2,3,4,6,7,8-HpCDF	108	28.0 - 143			NP Not Prov			
13C-1,2,3,4,7,8,9-HpCDF	126	26.0 - 138			S Sample	acceptance crite	ria not met	
13C-OCDF	92.9	17.0 - 157			X Matrix in	terferences		
						aken from dilutio	n or reinject	ion
Cleanup Surrogate					E	anna ann a bha an stainn ann ann ann ann ann ann ann ann ann		
	109	35.0 - 197						

000008 of 000011

Date: 6/15/07

6/11/0

Date:

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 05/24/07

Laboratory: Frontier Analytical Laboratory Lab Contact: BRAD SILVERBUSH Lab Address: 5172 Hillsdale Circle El Dorado Hills, CA 95762 Phone: 916-934-0900 Fax: 916-934-0999

Analytical Protocol: PSDDA Special Instructions: ARI Client: Geomatrix Consultants Project ID: Port of Everett ARI PM: Mark Harris Phone: 206-695-6210 Fax: 206-695-6201

Requested Turn Around: 06/08/07 Fax Results (Y/N): Y

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID		Sampled	Matrix	Bottles	Analyses	
07-10229-LA62A	13116000007		05/07/07	Sediment	1	Dioxins/Furans	(Sub)
Special Instruc	tions: None				*	1613	
07-10230-LA62B	13116000013		05/07/07	Sediment	1	Dioxins/Furans	(Sub)
Special Instruc	tions: None					1613	
07-10231-LA62C	13116000019		05/08/07	Sediment	1	Dioxins/Furans	(Sub)
Special Instruc	tions: None					163	
07-10232-LA62D	13116000037		05/14/07	Sediment	1	Dioxins/Furans	(Sub)
Special Instruc	tions: None					163	
		n <mark>,</mark>					

Carrier 1.D<	Aiı	rbill	Date 6/29/22
Relinquished by	Company	12 832 693 13 4410 Date	0 9637 7 121/07
Beceived by	Company	Date.	107 [500 Time
for fotAt Joseph M	Jgo FA	L 5/30,	107 11:30

000009 of 000011

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 4475

Client:	Analytical Resources Inc. Mark Harris
Client Project ID:	LA62
Date Received:	05/30/2007
Time Received:	11:30 am
Received By:	JN
Logged In By:	JN
# of Samples Received:	4
Duplicates:	0
Storage Location:	R2

Method of Delivery:	UPS
Tracking Number:	1Z8326951344169637
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test for residual Chlorine	No
Thiosulfate Added	No
Earliest Sample Hold Time Expiration	05/06/2008
Adequate Sample Volume	Yes
Anomalies or additional comments:	· · · · · · · · · · · · · · · · · · ·

000010 of 000011

Analytical Resources, Incorporated

Analytical Chemists and Consultants

22 June 2007

Rob Gilmour Geomatrix, Inc. 6505 216th St. SW Ste 100 Mountlake Terrace, WA 98043

RE: Project: Port of Everett ARI Job No.: LA62

Dear Rob:

Please find enclosed the final data package for the samples from the project referenced above. Analytical Resources, Inc. received sixty-five sediment samples in good condition on May 17, 2007. There were no discrepancies in the paperwork. All samples were placed on hold as specified.

Fifteen samples were removed from hold and they were analyzed for SVOAs, dioxins/furans and TOC as requested on 5/24/07. The test for dioxins/furans was sub-contracted to Frontier Analytical in El Dorado Hills, California.

Problems associated with these analyses are discussed in the case narrative.

A copy of this package will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

nd ? Bay

Mark Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file LA62

MDH/mdh

Case Narrative

prepared for

GEOMATRIX CONSULTANTS

Project: Port of Everett

ARI JOB NO: LA62

prepared by

Analytical Resources, Inc.

0014

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Case Narrative

Client: Geomatrix, Inc. **Project: Port of Everett Matrix: Sediment** ARI Job No: LA62 Date: June 22, 2007

Semivolatile Organics Analysis

All samples were initially analyzed on 6/13/07. The areas for the internal standards, d8naphthalene and d10-phenanthrene, were not within control limits following the initial analyses of samples 13116000006, 13116000010 and 13116000031. These samples were diluted and re-analyzed. The areas for all internal standards were within acceptable QC limits for the re-analyses. The results for both analyses have been submitted for these samples.

The percent recoveries for the surrogates, d14-p-terphenyl and d5-nitrobenzne, were not within control limits following the initial analyses of samples 13116000004, 13116000021 and 13116000029. These samples were diluted and re-analyzed. The percent recoveries for all surrogates were within established QC limits for the re-analyses. The results for both analyses have been submitted for these samples.

The percent difference for PCP was slightly high following the analysis of the continuing calibration standard that bracketed the analyses of these samples on 6/14/07. Since all PCP date were within established control limits for the 6/13/07 analyses, no corrective actions were taken.

Conventionals Analyses

These analyses proceeded without incident of note.

Data Summary Package

prepared for

GEOMATRIX CONSULTANTS

Project: Port of Everett

ARI JOB NO: LA62

prepared by

Analytical Resources, Inc.

1

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Case Narrative

Client: Geomatrix, Inc. Project: Port of Everett Matrix: Sediment ARI Job No: LA62 Date: June 22, 2007

Semivolatile Organics Analysis

All samples were initially analyzed on 6/13/07. The areas for the internal standards, d8naphthalene and d10-phenanthrene, were not within control limits following the initial analyses of samples 13116000006, 13116000010 and 13116000031. These samples were diluted and re-analyzed. The areas for all internal standards were within acceptable QC limits for the re-analyses. The results for both analyses have been submitted for these samples.

The percent recoveries for the surrogates, d14-p-terphenyl and d5-nitrobenzne, were not within control limits following the initial analyses of samples 13116000004, 13116000021 and 13116000029. These samples were diluted and re-analyzed. The percent recoveries for all surrogates were within established QC limits for the re-analyses. The results for both analyses have been submitted for these samples.

The percent difference for PCP was slightly high following the analysis of the continuing calibration standard that bracketed the analyses of these samples on 6/14/07. Since all PCP date were within established control limits for the 6/13/07 analyses, no corrective actions were taken.

Conventionals Analyses

These analyses proceeded without incident of note.

0017

SIM SEMIVOLATILE

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62E LIMS ID: 07-10233 Matrix: Sediment Data Release Authorized:

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 18:09 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000004

SAMPLE

Sample Amount: 4.11 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 68.4% pH: 8.0

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	24	1,200
91-57-6	2-Methylnaphthalene	24	140
208-96-8	Acenaphthylene	24	140
83-32-9	Acenaphthene	24	97
86-73-7	Fluorene	24	95
85-01-8	Phenanthrene	24	310
120-12-7	Anthracene	24	49
206-44-0	Fluoranthene	24	330
129-00-0	Pyrene	24	68
56-55-3	Benzo(a) anthracene	24	< 24 U
218-01-9	Chrysene	24	< 24 U
205-99-2	Benzo(b)fluoranthene	24	< 24 U
207-08-9	Benzo(k) fluoranthene	24	< 24 U
50-32-8	Benzo(a)pyrene	24	< 24 U
193-39-5	Indeno(1,2,3-cd)pyrene	24	< 24 U
53-70-3	Dibenz(a,h)anthracene	24	< 24 U
191-24-2	Benzo(g,h,i)perylene	24	< 24 U
132-64-9	Dibenzofuran	24	110
106-46-7	1,4-Dichlorobenzene	24	< 24 U
120-82-1	1,2,4-Trichlorobenzene	24 24	< 24 U < 24 U
118-74-1	Hexachlorobenzene	24 24	< 24 U < 24 U
87-68-3	Hexachlorobutadiene	24 24	< 24 0 140 B
108-95-2	Phenol	24 24	2,500 E
106-44-5	4-Methylphenol	24	2,500 E
65-85-0	Benzoic Acid	240	< 24 U
131-11-3	Dimethylphthalate	24 24	< 24 U
84-66-2	Diethylphthalate	24	90 B
84-74-2	Di-n-Butylphthalate	24	220
85-68-7	Butylbenzylphthalate	24	36 B
117-81-7	bis(2-Ethylhexyl)phthalate	24	< 24 U
117-84-0	Di-n-Octyl phthalate	24	44
95-48-7	2-Methylphenol	24	34
105-67-9	2,4-Dimethylphenol	24	< 24 U
86-30-6	N-Nitrosodiphenylamine Benzyl Alcohol	120	< 120 U
100-51-6	Pentachlorophenol	120	< 120 U
87-86-5	1,2-Dichlorobenzene	24	< 24 U
95-50-1	T' T - DICHITOTODOHISCHC		

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 2 of 2

Sample ID: 13116000004 SAMPLE

Lab Sample ID: LA62E LIMS ID: 07-10233 Matrix: Sediment Date Analyzed: 06/13/07 18:09 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Result

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

2-Fluorobiphenyl	43.2%	d5-Phenol	53.3%
2-Fluorophenol	50.7%	d4-2-Chlorophenol	52.8%
d4-1,2-Dichlorobenzene	47.6%	d5-Nitrobenzene	53.6%
2,4,6-Tribromophenol	63.5%	d14-p-Terphenyl	25.2%

Semivolatiles by Selected ion Monitoring GC/M Page 1 of 2

Lab Sample ID: LA62E LIMS ID: 07-10233 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 14:42 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000004

DILUTION

Sample Amount: 4.11 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 68.4% pH: 8.0

91-57-6 2-Methylnaphthalene 120 1 208-96-8 Acenaphthylene 120 1 83-32-9 Acenaphthene 120 1 85-01-8 Phenanthrene 120 3 120-12-7 Anthracene 120 3 120-12-7 Anthracene 120 5 129-00-0 Pyrene 120 5 129-00-0 Pyrene 120 5 129-00-0 Pyrene 120 5 129-00-0 Pyrene 120 5 129-00-1 Chrysene 120 5 120-9 Chrysene 120 5 120-9 Benzo (a) anthracene 120 5 120-99-2 Benzo (b) fluoranthene 120 5 120-70-8 Benzo (k) fluoranthene 120 5 133-39-5 Inden (1, 2, 3-cd) pyrene 120 5 132-64-9 Dibenzofuran 120 5 132-64-7 1, 4-Dichlorobenzene 120 5 120-82-1 1, 2, 4-Trichlorobenzene 120	CAS Number	Analyte	RL	Result
91-57-6 2-Methylnaphthalene 120 1 208-96-8 Acenaphthylene 120 1 83-32-9 Acenaphthene 120 1 85-01-8 Phenanthrene 120 3 120-12-7 Anthracene 120 3 120-12-7 Anthracene 120 3 120-12-7 Anthracene 120 4 206-44-0 Fluoranthene 120 4 120-5-93 Benzo(a) anthracene 120 4 18-01-9 Chrysene 120 4 207-08-9 Benzo(k) fluoranthene 120 4 193-39-5 Indeno(1,2,3-cd) pyrene 120 4 193-39-5 Indeno(1,2,3-cd) pyrene 120 4 191-24-2 Benzo(g,h,i) perylene 120 4 122-64-9 Dibenzofuran 120 4 106-46-7 1, 4-Dichlorobenzene 120 4 120-82-1 1, 2, 4-Trichlorobenzene 120 4 18-74-1 Hexachlorobutadiene 120 4 106-44-5 <	91-20-3	Naphthalene	120	1,400
208-96-8 Acenaphthylene 120 1 83-32-9 Acenaphthene 120 1 86-73-7 Fluorene 120 1 85-01-8 Phenanthrene 120 3 120-12-7 Anthracene 120 3 120-12-7 Anthracene 120 4 206-44-0 Fluoranthene 120 4 129-00-0 Pyrene 120 4 56-55-3 Benzo(a) anthracene 120 4 205-99-2 Benzo(b) fluoranthene 120 4 207-08-9 Benzo(a) pyrene 120 4 50-32-8 Benzo(a) pyrene 120 4 193-39-5 Indeno(1,2,3-cd) pyrene 120 4 191-24-2 Benzo(g,h,i) perylene 120 4 120-82-1 1,4-Dichlorobenzene 120 4 120-82-1 1,2,4-Trichlorobenzene 120 4 106-46-7 1,4-Dichlorobenzene 120 4 108-95-2 Phenol 120 4 108-95-2 Phenol			120	150
83-32-9 Acenaphthene 120 1 86-73-7 Fluorene 120 1 85-01-8 Phenanthrene 120 3 120-12-7 Anthracene 120 3 206-44-0 Fluoranthene 120 5 129-00-0 Pyrene 120 5 56-55-3 Benzo(a) anthracene 120 5 207-08-9 Benzo(k) fluoranthene 120 1 207-08-9 Benzo(k) fluoranthene 120 1 50-32-8 Benzo(k) fluoranthene 120 1 50-32-8 Benzo(a) pyrene 120 1 53-70-3 Dibenz (a, h) anthracene 120 1 191-24-2 Benzo(g, h, i) perylene 120 1 132-64-9 Dibenzofuran 120 1 106-46-7 1, 4-Dichlorobenzene 120 1 120-82-1 1, 2, 4-Trichlorobenzene 120 1 106-44-5 4-Methylphenol 120 1 106-44-5 4-Methylphenol 120 1 131-11-3			120	170
86-73-7 Fluorene 120 1 85-01-8 Phenanthrene 120 3 120-12-7 Anthracene 120 4 206-44-0 Fluoranthene 120 5 129-00-0 Pyrene 120 5 56-55-3 Benzo(a) anthracene 120 4 205-99-2 Benzo(b) fluoranthene 120 4 207-08-9 Benzo(k) fluoranthene 120 4 193-39-5 Indeno(1,2,3-cd) pyrene 120 4 193-39-5 Indeno(1,2,3-cd) pyrene 120 4 191-24-2 Benzo(g,h,i) perylene 120 4 191-24-2 Benzo(g,h,i) perylene 120 4 106-46-7 1,4-Dichlorobenzene 120 4 106-46-7 1,4-Trichlorobenzene 120 4 118-74-1 Hexachlorobutadiene 120 4 106-44-5 4-Methylphenol 120 4 106-44-5 4-Methylphenol 120 4 120-82-1 1,2,4-Trichlorobenzene 120 4 118			120	130
85-01-8 Phenanthrene 120 3 120-12-7 Anthracene 120 1 206-44-0 Fluoranthene 120 1 129-00-0 Pyrene 120 1 56-55-3 Benzo (a) anthracene 120 1 205-99-2 Benzo (b) fluoranthene 120 1 207-08-9 Benzo (k) fluoranthene 120 1 193-39-5 Indeno (1, 2, 3-cd) pyrene 120 1 193-39-5 Indeno (1, 2, 3-cd) pyrene 120 1 191-24-2 Benzo (g, h, i) perylene 120 1 106-46-7 1, 4-Dichlorobenzene 120 1 106-46-7 1, 4-Dichlorobenzene 120 1 106-46-7 1, 4-Dichlorobenzene 120 1 106-44-5 Hexachlorobutadiene 120 1 106-44-5 Hexachlorobutadiene 120 <		-	120	120
120-12-7 Anthracene 120 < 1		Phenanthrene	120	330
206-44-0Fluoranthene1205 $129-00-0$ Pyrene120<1		Anthracene	120	′ < 120 U
129-00-0Pyrene 120 < 1 $56-55-3$ Benzo (a) anthracene 120 < 1		Fluoranthene	120	580
56-55-3 Benzo (a) anthracene 120 < 1		Pvrene	120	< 120 U
218-01-9 Chrysene 120 < 1		x	120	< 120 U
205-99-2 Benzo (b) fluoranthene 120 < 1		Chrysene	120	< 120 U
207-08-9 Benzo(k) fluoranthene 120 < 1		Benzo (b) fluoranthene	120	< 120 U
50-32-8Benzo (a) pyrene 120 < 1 $193-39-5$ Indeno (1, 2, 3-cd) pyrene 120 < 1			120	< 120 U
193-39-5Indeno (1, 2, 3 cot) product120< 153-70-3Dibenz (a, h) anthracene120< 1		Benzo (a) pyrene		< 120 U
53-70-3Dibenz (a, h) anthracene120< 1 $191-24-2$ Benzo (g, h, i) perylene120< 1	193-39-5	Indeno (1, 2, 3-cd) pyrene		< 120 U
191-24-2 Denzof(9,11,1) peryione 120 132-64-9 Dibenzofuran 120 1 106-46-7 1,4-Dichlorobenzene 120 1 120-82-1 1,2,4-Trichlorobenzene 120 1 118-74-1 Hexachlorobenzene 120 1 87-68-3 Hexachlorobutadiene 120 1 108-95-2 Phenol 120 1 106-44-5 4-Methylphenol 120 2,6 65-85-0 Benzoic Acid 1,200 1,2 131-11-3 Dimethylphthalate 120 1 84-66-2 Diethylphthalate 120 1 84-66-2 Diethylphthalate 120 1 85-68-7 Butylbenzylphthalate 120 1 117-81-7 bis (2-Ethylhexyl) phthalate 120 1 117-84-0 Di-n-Octyl phthalate 120 1 95-48-7 2-Methylphenol 120 1 105-67-9 2,4-Dimethylphenol 120 1 86-30-6 N-Nitrosodiphenylamine 120 1	53-70-3	Dibenz (a, h) anthracene		< 120 U
132-64-9Diberzolutan120 $106-46-7$ 1,4-Dichlorobenzene120<1	191-24-2	Benzo(g,h,i)perylene		< 120 U
106-46-7 1,4-Dichlorobenzene 120 < 1	132-64-9	Dibenzofuran		170
120-82-1 $1,2,4-11101010101010101010101010101010101010$				< 120 U
118-74-1 Hexachlorobenzene 120 < 1		1,2,4-Trichlorobenzene		< 120 U
87-68-3 hexachiofobutation 120 1 108-95-2 Phenol 120 1 106-44-5 4-Methylphenol 120 2,6 65-85-0 Benzoic Acid 1,200 <1,2	118-74-1			< 120 U
108-95-2 Phenol 120 2,6 106-44-5 4-Methylphenol 1,200 < 1,2	87-68-3	Hexachlorobutadiene		< 120 U
106-44-5 1-Methylphenol 1,200 < 1,2	108-95-2	Phenol		150 B
131-11-3 Dimethylphthalate 120 < 1	106-44-5			2,600
131-11-3 Dimethylphthalate 120 < 1	65-85-0	Benzoic Acid		< 1,200 U
84-66-2 Diethylphthalate 120 < 1	131-11-3			< 120 U
84-74-2 D1-n-Buty1phthalate 120 3 85-68-7 Buty1benzy1phthalate 120 3 117-81-7 bis (2-Ethy1hexy1)phthalate 120 4 117-84-0 Di-n-Octy1 phthalate 120 4 95-48-7 2-Methy1phenol 120 4 105-67-9 2,4-Dimethy1phenol 120 4 86-30-6 N-Nitrosodipheny1amine 120 4	84-66-2	Diethylphthalate		< 120 U
85-68-7 ButyiDenzyiPhendite 120 < 1	84-74-2			< 120 U
117-81-7 Dis(2-Benyinexy), phenatate 120 < 1	85-68-7			390
117-84-0 D14n-Occy1 phendice 120 < 1	117-81-7			< 120 U
95-48-7 2-Methylphenol 120 120 105-67-9 2,4-Dimethylphenol 120 < 1	117-84-0			< 120 U
86-30-6 N-Nitrosodiphenylamine 120 < 1	95-48-7			< 120 U
86-30-6 N-NICLOBOGIPHCHYIGHTING	105-67-9			< 120 U
100 F1 C Pengyl Alcohol 610 < 6	86-30-6			< 120 U
100-21-9 Benzyi Arconor	100-51-6	Benzyl Alcohol		< 610 U
87-86-5 Pencachiorophenor	87-86-5			< 610 U
95-50-1 1,2-Dichlorobenzene 120 < 2	95-50-1	1,2-Dichlorobenzene	120	< 120 U

Sample ID: 13116000004 DILUTION

Result

Lab Sample ID: LA62E LIMS ID: 07-10233 Matrix: Sediment Date Analyzed: 06/14/07 14:42 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl 2-Fluorophenol d4-1,2-Dichlorobenzene 2,4,6-Tribromophenol	56.0% 52.0% 52.0% 76.0%	d5-Phenol d4-2-Chlorophenol d5-Nitrobenzene d14-p-Terphenyl	54.7% 53.3% 58.0% 22.0%

.

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62F LIMS ID: 07-10234 Matrix: Sediment Data Release Authorized: // Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 18:42 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000006

SAMPLE

Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 58.6% pH: 7.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.2	480
91-57-6	2-Methylnaphthalene	6.2	570
208-96-8	Acenaphthylene	6.2	79
83-32-9	Acenaphthene	6.2	2,600 E
86-73-7	Fluorene	6.2	3,200 E
85-01-8	Phenanthrene	6.2	9,600 E
120-12-7	Anthracene	6.2	2,500 E
206-44-0	Fluoranthene	6.2	4,500 E
129-00-0	Pyrene	6.2	3,300 E
56-55-3	Benzo (a) anthracene	6.2	720 E
218-01-9	Chrysene	6.2	690 E
205-99-2	Benzo (b) fluoranthene	6.2	270
207-08-9	Benzo(k) fluoranthene	6.2	300
50-32-8	Benzo (a) pyrene	6.2	260
193-39-5	Indeno (1, 2, 3-cd) pyrene	6.2	120
53-70-3	Dibenz (a, h) anthracene	6.2	43
191-24-2	Benzo(g,h,i)perylene	6.2	140
132-64-9	Dibenzofuran	6.2	1,900 E
106-46-7	1,4-Dichlorobenzene	6.2	< 6.2 Ŭ
120-82-1	1,2,4-Trichlorobenzene	6.2	< 6.2 U
118-74-1	Hexachlorobenzene	6.2	< 6.2 U
87-68-3	Hexachlorobutadiene	6.2	< 6.2 U
108-95-2	Phenol	6.2	31 B
106-44-5	4-Methylphenol	6.2	270
65-85-0	Benzoic Acid	62	< 62 U
131-11-3	Dimethylphthalate	6.2	< 6.2 U
84-66-2	Diethylphthalate	6.2	< 6.2 U
84-74-2	Di-n-Butylphthalate	6.2	290 B
85-68-7	Butylbenzylphthalate	6.2	< 6.2 U
117-81-7	bis(2-Ethylhexyl)phthalate	6.2	9.9 B
117-84-0	Di-n-Octyl phthalate	6.2	< 6.2 U
95-48-7	2-Methylphenol	6.2	23
105-67-9	2,4-Dimethylphenol	6.2	42
86-30-6	N-Nitrosodiphenylamine	71	< 71 Y
100-51-6	Benzyl Alcohol	31	510
87-86-5	Pentachlorophenol	31	< 31 U
95-50-1	1,2-Dichlorobenzene	6.2	< 6.2 Ŭ

Sample ID: 13116000006 SAMPLE

Result

Lab Sample ID: LA62F LIMS ID: 07-10234 Matrix: Sediment Date Analyzed: 06/13/07 18:42 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl 2-Fluorophenol	46.4% 38.7%	d5-Phenol d4-2-Chlorophenol	44.3% 44.0%
d4-1,2-Dichlorobenzene	39.6%	d5-Nitrobenzene	12.0%
2,4,6-Tribromophenol	82.9%	d14-p-Terphenyl	60.8%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62F LIMS ID: 07-10234 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 15:15 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000006

DILUTION

Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 20.0 Percent Moisture: 58.6% pH: 7.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	120	3,100
91-57-6	2-Methylnaphthalene	120	2,400
208-96-8	Acenaphthylene	120	< 120 U
83-32-9	Acenaphthene	120	5,200
86-73-7	Fluorene	120	5,700
85-01-8	Phenanthrene	120	16,000 E
120-12-7	Anthracene	120	2,100
206-44-0	Fluoranthene	120	6,600
129-00-0	Pyrene	120	4,200
56-55-3	Benzo (a) anthracene	120	760
218-01-9	Chrysene	120	760
205-99-2	Benzo (b) fluoranthene	120	320
207-08-9	Benzo(k) fluoranthene	120	280
207-08-9 50-32-8	Benzo (a) pyrene	120	260
193-39-5	Indeno(1,2,3-cd)pyrene	120	< 120 U
53-70-3	Dibenz(a,h)anthracene	120	< 120 U
191-24-2	Benzo (g, h, i) perylene	120	< 120 U
132-64-9	Dibenzofuran	120	4,300
106-46-7	1,4-Dichlorobenzene	120	< 120 U
120-82-1	1,2,4-Trichlorobenzene	120	< 120 U
118-74-1	Hexachlorobenzene	120	< 120 U
87-68-3	Hexachlorobutadiene	120	< 120 U
108-95-2	Phenol	120	< 120 U
106-44-5	4-Methylphenol	120	300
65-85-0	Benzoic Acid	1,200	< 1,200 U
131-11-3	Dimethylphthalate	120	< 120 U
84-66-2	Diethylphthalate	120	< 120 U
84-74-2	Di-n-Butylphthalate	120	410 B
85-68-7	Butylbenzylphthalate	120	< 120 U
117-81-7	bis (2-Ethylhexyl) phthalate	120	< 120 U
117-84-0	Di-n-Octyl phthalate	120	< 120 U
95-48-7	2-Methylphenol	120	< 120 U
105-67-9	2,4-Dimethylphenol	120	< 120 U
86-30-6	N-Nitrosodiphenylamine	120	< 120 U
100-51-6	Benzyl Alcohol	620	< 620 U
87-86-5	Pentachlorophenol	620	< 620 U
95-50-1	1,2-Dichlorobenzene	120	< 120 U

Sample ID: 13116000006 DILUTION

Result

Lab Sample ID: LA62F LIMS ID: 07-10234 Matrix: Sediment Date Analyzed: 06/14/07 15:15 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	56.0%	d5-Phenol	48.0%
2-Fluorophenol	48.0%	d4-2-Chlorophenol	48.0%
d4-1,2-Dichlorobenzene	48.0%	d5-Nitrobenzene	40.0%
2,4,6-Tribromophenol	53.3%	d14-p-Terphenyl	64.0%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62F LIMS ID: 07-10234 Matrix: Sediment Data Release Authorized: // Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 22:26 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes

Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000006

DILUTION

Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 50.0 Percent Moisture: 58.6% pH: 7.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	310	4,100
91-57-6	2-Methylnaphthalene	310	3,000
208-96-8	Acenaphthylene	310	< 310 U
83-32-9	Acenaphthene	310	5,400
86-73-7	Fluorene	310	6,000
85-01-8	Phenanthrene	310	17,000
120-12-7	Anthracene	310	2,500
206-44-0	Fluoranthene	310	7,600
129-00-0	Pyrene	310	4,200
56-55-3	Benzo (a) anthracene	310	770
218-01-9	Chrysene	310	800
205-99-2	Benzo(b)fluoranthene	310	340
207-08-9	Benzo(k) fluoranthene	310	310
50-32-8	Benzo (a) pyrene	310	< 310 U
193-39-5	Indeno(1,2,3-cd)pyrene	310	< 310 U
53-70-3	Dibenz (a, h) anthracene	310	< 310 U
191-24-2	Benzo(g,h,i)perylene	310	< 310 U
132-64-9	Dibenzofuran	310	4,800
106-46-7	1,4-Dichlorobenzene	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	310	< 310 U
118-74-1	Hexachlorobenzene	310	< 310 U
87-68-3	Hexachlorobutadiene	310	< 310 U
108-95-2	Phenol	310	< 310 U
106-44-5	4-Methylphenol	310	< 310 U
65-85-0	Benzoic Acid	3,100	< 3,100 U
131-11-3	Dimethylphthalate	310	< 310 U
84-66-2	Diethylphthalate	310	< 310 U 520 B
84-74-2	Di-n-Butylphthalate	310	520 В < 310 U
85-68-7	Butylbenzylphthalate	310	< 310 U < 310 U
117-81-7	bis(2-Ethylhexyl)phthalate	310	
117-84-0	Di-n-Octyl phthalate	310	< 310 U < 310 U
95-48-7	2-Methylphenol	310	< 310 U < 310 U
105-67-9	2,4-Dimethylphenol	310 310	< 310 U
86-30-6	N-Nitrosodiphenylamine		< 1,500 U
100-51-6	Benzyl Alcohol	1,500 1,500	< 1,500 U
87-86-5	Pentachlorophenol	1,500 310	< 310 U
95-50-1	1,2-Dichlorobenzene	210	< <u>310</u> 0

FORM I

Sample ID: 13116000006 DILUTION

RL

QC Report No: LA62-Geomatrix, Inc. Lab Sample ID: LA62F Project: Port of Everett LIMS ID: 07-10234 Event: NA Matrix: Sediment Date Analyzed: 06/14/07 22:26 Result

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	D	d5-Phenol	D
2-Fluorophenol	D	d4-2-Chlorophenol	D
d4-1,2-Dichlorobenzene	D	d5-Nitrobenzene	D
2,4,6-Tribromophenol	D	d14-p-Terphenyl	D
2,4,6-111Dromophenor	2		

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62G LIMS ID: 07-10235 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 19:15 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample Amount: 16.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 68.7% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.1	40,000 E
91-57-6	2-Methylnaphthalene	6.1	22,000 E
208-96-8	Acenaphthylene	6.1	270
83-32-9	Acenaphthene	6.1	9,100 E
86-73-7	Fluorene	6.1	7,400 E
85-01-8	Phenanthrene	6.1	21,000 E
120-12-7	Anthracene	6.1	6,800 E
206-44-0	Fluoranthene	6.1	18,000 E
129-00-0	Pyrene	6.1	15,000 E
56-55-3	Benzo (a) anthracene	6.1	7,400 E
218-01-9	Chrysene	6.1	7,700 E
205-99-2	Benzo(b)fluoranthene	6.1	3,200 E
207-08-9	Benzo(k)fluoranthene	6.1	2,800 E
50-32-8	Benzo (a) pyrene	6.1	2,700 E
193-39-5	Indeno (1,2,3-cd) pyrene	6.1	1,100 E
53-70-3	Dibenz (a, h) anthracene	6.1	300
191-24-2	Benzo(g,h,i)perylene	6.1	830 E
132-64-9	Dibenzofuran	6.1	5,000 E
106-46-7	1,4-Dichlorobenzene	6.1	< 6.1 U
120-82-1	1,2,4-Trichlorobenzene	6.1	7.4
118-74-1	Hexachlorobenzene	6.1	14
87-68-3	Hexachlorobutadiene	6.1	8.6
108-95-2	Phenol	6.1	260 B
106-44-5	4-Methylphenol	6.1	390
65-85-0	Benzoic Acid	61	680 E
131-11-3	Dimethylphthalate	6.1	< 6.1 U
84-66-2	Diethylphthalate	6.1	12 B
84-74-2	Di-n-Butylphthalate	6.1	110 B
85-68-7	Butylbenzylphthalate	6.1	6.1
117-81-7	bis (2-Ethylhexyl) phthalate	6.1	37 B
117-84-0	Di-n-Octyl phthalate	6.1	< 6.1 U
95-48-7	2-Methylphenol	6.1	120
105-67-9	2,4-Dimethylphenol	6.1	2,700 E
86-30-6	N-Nitrosodiphenylamine	180	< 180 Y
100-51-6	Benzyl Alcohol	31	170
87-86-5	Pentachlorophenol	31	< 31 U
95-50-1	1,2-Dichlorobenzene	6.1	< 6.1 U

Sample ID: 13116000010 SAMPLE

RL

QC Report No: LA62-Geomatrix, Inc. Lab Sample ID: LA62G Project: Port of Everett LIMS ID: 07-10235 Event: NA Matrix: Sediment Date Analyzed: 06/13/07 19:15 Result

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	56.4%	d5-Phenol	46.1%
2-Fluorophenol	48.5%	d4-2-Chlorophenol	51.2%
d4-1,2-Dichlorobenzene	51.2%	d5-Nitrobenzene	259%
2,4,6-Tribromophenol	90.9%	d14-p-Terphenyl	108%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62G LIMS ID: 07-10235 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 16:22 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000010

DILUTION

Sample Amount: 16.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 30.0 Percent Moisture: 68.7% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	180	34,000 E
91-57-6	2-Methylnaphthalene	180	11,000
208-96-8	Acenaphthylene	180	290
83-32-9	Acenaphthene	180	18,000
86-73-7	Fluorene	180	14,000
85-01-8	Phenanthrene	180	33,000 E
120-12-7	Anthracene	180	9,400
206-44-0	Fluoranthene	180	30,000 E
129-00-0	Pyrene	180	18,000
56-55-3	Benzo (a) anthracene	180	7,700
218-01-9	Chrysene	180	7,800
205-99-2	Benzo(b)fluoranthene	180	4,400
207-08-9	Benzo(k) fluoranthene	180	3,200
50-32-8	Benzo (a) pyrene	180	3,500
193-39-5	Indeno (1,2,3-cd) pyrene	180	1,400
53-70-3	Dibenz (a, h) anthracene	180	390
191-24-2	Benzo(g,h,i)perylene	180	1,200
132-64-9	Dibenzofuran	180	11,000
106-46-7	1,4-Dichlorobenzene	180	< 180 U
120-82-1	1,2,4-Trichlorobenzene	180	< 180 U
118-74-1	Hexachlorobenzene	180	< 180 U
87-68-3	Hexachlorobutadiene	180	< 180 U
108-95-2	Phenol	180	220 B
106-44-5	4-Methylphenol	180	480
65-85-0	Benzoic Acid	1,800	< 1,800 U
131-11-3	Dimethylphthalate	180	< 180 U
84-66-2	Diethylphthalate	180	< 180 U
84-74-2	Di-n-Butylphthalate	180	< 180 U
85-68-7	Butylbenzylphthalate	180	< 180 U
117-81-7	bis(2-Ethylhexyl)phthalate	180	< 180 U < 180 U
117-84-0	Di-n-Octyl phthalate	180	< 180 U < 180 U
95-48-7	2-Methylphenol	180	< 180 0 720
105-67-9	2,4-Dimethylphenol	180	< 220 Y
86-30-6	N-Nitrosodiphenylamine	220	< 220 I < 920 U
100-51-6	Benzyl Alcohol	920 920	< 920 U < 920 U
87-86-5	Pentachlorophenol	920 180	< 180 U
95-50-1	1,2-Dichlorobenzene	TOO	< T00 0

Lab Sample ID: LA62G LIMS ID: 07-10235 Matrix: Sediment Date Analyzed: 06/14/07 16:22 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

Sample ID: 13116000010

DILUTION

Result

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	D	d5-Phenol	D
2-Fluorophenol	 ת	d4-2-Chlorophenol	D
d4-1,2-Dichlorobenzene	D	d5-Nitrobenzene	D
		d14-p-Terphenyl	D
2,4,6-Tribromophenol	U	dra b rerbuenta	

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62G LIMS ID: 07-10235 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 15:49 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes

Alumina Cleanup: No

.

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000010

DILUTION

Sample Amount: 16.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 100 Percent Moisture: 68.7% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	610	43,000
91-57-6	2-Methylnaphthalene	610	13,000
208-96-8	Acenaphthylene	610	< 610 U
83-32-9	Acenaphthene	610	22,000
86-73-7	Fluorene	610	17,000
85-01-8	Phenanthrene	610	44,000
120-12-7	Anthracene	610	11,000
206-44-0	Fluoranthene	610	36,000
129-00-0	Pyrene	610	21,000
56-55-3	Benzo (a) anthracene	610	8,600
218-01-9	Chrysene	610	8,600
205-99-2	Benzo (b) fluoranthene	610	4,200
203-99-2	Benzo(k) fluoranthene	610	4,400
207-08-9	Benzo (a) pyrene	610	3,900
	Indeno (1,2,3-cd) pyrene	610	1,500
193-39-5	Dibenz(a,h) anthracene	610	< 610 U
53-70-3	Benzo (g, h, i) perylene	610	1,400
191-24-2	Dibenzofuran	610	13,000
132-64-9	1,4-Dichlorobenzene	610	< 610 U
106-46-7	1,2,4-Trichlorobenzene	610	< 610 U
120-82-1	Hexachlorobenzene	610	< 610 U
118-74-1	Hexachlorobutadiene	610	< 610 U
87-68-3	Phenol	610	< 610 U
108-95-2	4-Methylphenol	610	< 610 U
106-44-5	Benzoic Acid	6,100	< 6,100 U
65-85-0 131-11-3	Dimethylphthalate	610	< 610 U
84-66-2	Diethylphthalate	610	< 610 U
84-74-2	Di-n-Butylphthalate	610	< 610 U
85-68-7	Butylbenzylphthalate	610	< 610 U
117-81-7	bis(2-Ethylhexyl)phthalate	610	< 610 Ŭ
117-84-0	Di-n-Octyl phthalate	610	< 610 U
95-48-7	2-Methylphenol	610	< 610 U
105-67-9	2,4-Dimethylphenol	610	800
86-30-6	N-Nitrosodiphenylamine	610	< 610 U
100-51-6	Benzyl Alcohol	3,100	< 3,100 U
87-86-5	Pentachlorophenol	3,100	< 3,100 U
95-50-1	1,2-Dichlorobenzene	610	< 610 U

Sample ID: 13116000010 DILUTION

Result

Lab Sample ID: LA62GQC ReportLIMS ID: 07-10235ProMatrix: Sediment1Date Analyzed: 06/14/07 15:491

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	D	d5-Phenol	D
2-Fluorophenol	D	d4-2-Chlorophenol	D
d4-1,2-Dichlorobenzene	D	d5-Nitrobenzene	D
2,4,6-Tribromophenol	D	d14-p-Terphenyl	D
2, 4, 6 = 111010100001010101			

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62H LIMS ID: 07-10236 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 19:48 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No SAMPLE QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07 Sample Amount: 16.4 g-dry-wt

Sample ID: 13116000014

Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 78.1% pH: 8.4

91-57-6 208-96-8 83-32-9	Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	6.1 6.1 6.1 6.1 6.1 6.1	650 E 100 52 150 130
91-57-6 208-96-8 83-32-9	2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	6.1 6.1 6.1 6.1	52 150 130
208-96-8 2 83-32-9 2	Acenaphthylene Acenaphthene Fluorene Phenanthrene	6.1 6.1 6.1	150 130
83-32-9	Acenaphthene Fluorene Phenanthrene	6.1 6.1	130
	Fluorene Phenanthrene	6.1	
	Anthracene		300
		6.1	83
	Fluoranthene	6.1	210
	Pyrene	6.1	190
	Benzo(a) anthracene	6.1	76
	Chrysene	6.1	100
	Benzo(b) fluoranthene	6.1	59
	Benzo(k) fluoranthene	6.1	66
	Benzo(a) pyrene	6.1	64
	Indeno (1,2,3-cd) pyrene	6.1	34
53-70-3	Dibenz (a, h) anthracene	6.1	9.8
	Benzo(g,h,i)perylene	6.1	32
	Dibenzofuran	6.1	300
	1,4-Dichlorobenzene	6.1	< 6.1 U
120-82-1	1,2,4-Trichlorobenzene	6.1	< 6.1 U
118-74-1	Hexachlorobenzene	6.1	< 6.1 U
	Hexachlorobutadiene	6.1	< 6.1 U
108-95-2	Phenol	6.1	47 B
106-44-5	4-Methylphenol	6.1	870 E
65-85-0	Benzoic Acid	61	< 61 U
131-11-3	Dimethylphthalate	6.1	< 6.1 U
84-66-2	Diethylphthalate	6.1	17 B
84-74-2	Di-n-Butylphthalate	6.1	7.3 B
85-68-7	Butylbenzylphthalate	6.1	120
117-81-7	bis(2-Ethylhexyl)phthalate	6.1	25 B
117-84-0	Di-n-Octyl phthalate	6.1	< 6.1 U
95-48-7	2-Methylphenol	6.1	160
105-67-9	2,4-Dimethylphenol	6.1	77
86-30-6	N-Nitrosodiphenylamine	6.1	< 6.1 U
100-51-6	Benzyl Alcohol	30	170
87-86-5	Pentachlorophenol	30	330
95-50-1	1,2-Dichlorobenzene	6.1	< 6.1 U

Sample ID: 13116000014 SAMPLE

RL

Result

Lab Sample ID: LA62HQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10236Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/13/07 19:48Event: NA

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	50.0%	d5-Phenol	44.8%
2-Fluorophenol	41.3%	d4-2-Chlorophenol	42.9%
d4-1,2-Dichlorobenzene	44.4%	d5-Nitrobenzene	35.2%
2,4,6-Tribromophenol	41.9%	d14-p-Terphenyl	50.8%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62H LIMS ID: 07-10236 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 16:55 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07 Sample Amount: 16.4 g-dry-wt

Sample ID: 13116000014

DILUTION

Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 78.1% pH: 8.4

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	18	1,100
91-57-6	2-Methylnaphthalene	18	130
208-96-8	Acenaphthylene	18	51
83-32-9	Acenaphthene	18	150
86-73-7	Fluorene	18	130
85-01-8	Phenanthrene	18	310
120-12-7	Anthracene	18	80
206-44-0	Fluoranthene	18	200
129-00-0	Pyrene	18	140
56-55-3	Benzo (a) anthracene	18	77
218-01-9	Chrysene	18	120
205-99-2	Benzo(b) fluoranthene	18	64
207-08-9	Benzo(k) fluoranthene	18	64
50-32-8	Benzo (a) pyrene	18	64
193-39-5	Indeno (1,2,3-cd) pyrene	18	37
53-70-3	Dibenz(a,h)anthracene	18	< 18 U
191-24-2	Benzo (g, h, i) perylene	18	33
132-64-9	Dibenzofuran	18	270
106-46-7	1,4-Dichlorobenzene	18	< 18 U
120-82-1	1,2,4-Trichlorobenzene	18	< 18 U
118-74-1	Hexachlorobenzene	18	< 18 U
87-68-3	Hexachlorobutadiene	18	< 18 U
108-95-2	Phenol	18	90 B
106-44-5	4-Methylphenol	18	1,100
65-85-0	Benzoic Acid	180	< 180 U
131-11-3	Dimethylphthalate	18	< 18 U
84-66-2	Diethylphthalate	18	< 18 U
84-74-2	Di-n-Butylphthalate	18	< 18 U
85-68-7	Butylbenzylphthalate	18	180
117-81-7	bis(2-Ethylhexyl)phthalate	18	26 B
117-84-0	Di-n-Octyl phthalate	18	< 18 U
95-48-7	2-Methylphenol	18	200
105-67-9	2,4-Dimethylphenol	18	95 10 H
86-30-6	N-Nitrosodiphenylamine	18	< 18 U
100-51-6	Benzyl Alcohol	92	170
87-86-5	Pentachlorophenol	92	300
95-50-1	1,2-Dichlorobenzene	18	< 18 U

Sample ID: 13116000014 DILUTION

Result

Lab Sample ID: LA62H LIMS ID: 07-10236 Matrix: Sediment Date Analyzed: 06/14/07 16:55 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	50.4%	d5-Phenol	51.2%
2-Fluorophenol	50.4%	d4-2-Chlorophenol	48.8%
d4-1,2-Dichlorobenzene	46.8%	d5-Nitrobenzene	56.4%
2,4,6-Tribromophenol	56.0%	d14-p-Terphenyl	42.0%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62I LIMS ID: 07-10237 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 20:21 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000015

SAMPLE

Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 73.1% pH: 8.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.2	860 E
91-57-6	2-Methylnaphthalene	6.2	160
208-96-8	Acenaphthylene	6.2	54
83-32-9	Acenaphthene	6.2	260
86-73-7	Fluorene	6.2	230
85-01-8	Phenanthrene	6.2	440
120-12-7	Anthracene	6.2	100
206-44-0	Fluoranthene	6.2	210
129-00-0	Pyrene	6.2	150
56-55-3	Benzo (a) anthracene	6.2	120
218-01-9	Chrysene	6.2	190
205-99-2	Benzo (b) fluoranthene	6.2	120
207-08-9	Benzo(k) fluoranthene	6.2	100
50-32-8	Benzo (a) pyrene	6.2	120
193-39-5	Indeno (1,2,3-cd) pyrene	6.2	53
53-70-3	Dibenz (a, h) anthracene	6.2	15
191-24-2	Benzo (g, h, i) perylene	6.2	56
132-64-9	Dibenzofuran	6.2	240
106-46-7	1,4-Dichlorobenzene	6.2	< 6.2 U
120-82-1	1,2,4-Trichlorobenzene	6.2	< 6.2 U
118-74-1	Hexachlorobenzene	6.2	< 6.2 U
87-68-3	Hexachlorobutadiene	6.2	< 6.2 U
108-95-2	Phenol	6.2	27 B
106-44-5	4-Methylphenol	6.2	960 E
65-85-0	Benzoic Acid	62	< 62 Ŭ
131-11-3	Dimethylphthalate	6.2	< 6.2 U
84-66-2	Diethylphthalate	6.2	7.4 B
84-74-2	Di-n-Butylphthalate	6.2	48 B
85-68-7	Butylbenzylphthalate	6.2	9.9
117-81-7	bis(2-Ethylhexyl)phthalate	6.2	12 B
117-84-0	Di-n-Octyl phthalate	6.2	< 6.2 U
95-48-7	2-Methylphenol	6.2	140
105-67-9	2,4-Dimethylphenol	6.2	72
86-30-6	N-Nitrosodiphenylamine	6.2	< 6.2 U
100-51-6	Benzyl Alcohol	31	88
87-86-5	Pentachlorophenol	31	< 31 U
95-50-1	1,2-Dichlorobenzene	6.2	< 6.2 U

Sample ID: 13116000015 SAMPLE

 \mathbf{RL}

Result

Lab Sample ID: LA62IQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10237Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/13/07 20:21Event: NA

CAS Number Analyte

Reported in μ g/kg (ppb)

2-Fluorobiphenyl	44.8%	d5-Phenol	45.3%
2-Fluorophenol	46.4%	d4-2-Chlorophenol	45.3%
d4-1,2-Dichlorobenzene	45.6%	d5-Nitrobenzene	32.0%
2,4,6-Tribromophenol	47.7%	d14-p-Terphenyl	34.4%

Lab Sample ID: LA62I LIMS ID: 07-10237 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 17:28 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Sample ID: 13116000015

DILUTION

Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 73.1% pH: 8.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	18	1,400
91-57-6	2-Methylnaphthalene	18	210
208-96-8	Acenaphthylene	18	56
83-32-9	Acenaphthene	18	260
86-73-7	Fluorene	18	240
85-01-8	Phenanthrene	18	460
120-12-7	Anthracene	18	110
206-44-0	Fluoranthene	18	230
129-00-0	Pyrene	18	130
56-55-3	Benzo (a) anthracene	18	120
218-01-9	Chrysene	18	190
205-99-2	Benzo(b) fluoranthene	18	120
	Benzo(k) fluoranthene	18	130
207-08-9 50-32-8	Benzo(a) pyrene	18	120
50-32-8 193-39-5	Indeno (1,2,3-cd) pyrene	18	57
	Dibenz(a,h) anthracene	18	< 18 U
53-70-3 191-24-2	Benzo(g,h,i)perylene	18	59
	Dibenzofuran	18	250
132-64-9	1,4-Dichlorobenzene	18	< 18 U
106-46-7	1,2,4-Trichlorobenzene	18	< 18 Ŭ
120-82-1 118-74-1	Hexachlorobenzene	18	< 18 U
87-68-3	Hexachlorobutadiene	18	< 18 U
108-95-2	Phenol	18	33 B
106-44-5	4-Methylphenol	18	1,200
65-85-0	Benzoic Acid	180	< 180 U
131-11-3	Dimethylphthalate	18	< 18 U
84-66-2	Diethylphthalate	18	< 18 U
84-74-2	Di-n-Butylphthalate	18	46 B
85-68-7	Butylbenzylphthalate	18	< 18 U
117-81-7	bis (2-Ethylhexyl) phthalate	18	< 18 U
117-84-0	Di-n-Octyl phthalate	18	< 18 U
95-48-7	2-Methylphenol	18	170
105-67-9	2,4-Dimethylphenol	18	87
86-30-6	N-Nitrosodiphenylamine	18	< 18 U
100-51-6	Benzyl Alcohol	93	< 93 U
87-86-5	Pentachlorophenol	93	< 93 U
95-50-1	1,2-Dichlorobenzene	18	< 18 U

Sample ID: 13116000015 DILUTION

Result

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Date Analyzed: 06/14/07 17:28

.

Lab Sample ID: LA62I

LIMS ID: 07-10237

Matrix: Sediment

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	46.8%	d5-Phenol	51.2%
2-Fluorophenol	52.0%	d4-2-Chlorophenol	49.6%
d4-1,2-Dichlorobenzene	45.6%	d5-Nitrobenzene	52.8%
2,4,6-Tribromophenol	47.2%	d14-p-Terphenyl	31.2%

Lab Sample ID: LA62J LIMS ID: 07-10238 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 20:54 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/08/07 Date Received: 05/09/07

Sample ID: 13116000021

SAMPLE

Sample Amount: 10.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 81.5% pH: 8.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	9.6	2,100 E
91-57-6	2-Methylnaphthalene	9.6	180
208-96-8	Acenaphthylene	9.6	48
83-32-9	Acenaphthene	9.6	140
86-73-7	Fluorene	9.6	110
85-01-8	Phenanthrene	9.6	240
120-12-7	Anthracene	9.6	38
206-44-0	Fluoranthene	9.6	220
129-00-0	Pyrene	9.6	140
56-55-3	Benzo (a) anthracene	9.6	14
218-01-9	Chrysene	9.6	34
205-99-2	Benzo (b) fluoranthene	9.6	21
207-08-9	Benzo(k) fluoranthene	9.6	19
50-32-8	Benzo (a) pyrene	9.6	11
193-39-5	Indeno (1,2,3-cd) pyrene	9.6	< 9.6 U
53-70-3	Dibenz (a, h) anthracene	9.6	< 9.6 U
191-24-2	Benzo(g,h,i)perylene	9.6	< 9.6 U
132-64-9	Dibenzofuran	9.6	390
106-46-7	1,4-Dichlorobenzene	9.6	< 9.6 U
120-82-1	1,2,4-Trichlorobenzene	9.6	< 9.6 U
118-74-1	Hexachlorobenzene	9.6	< 9.6 U
87-68-3	Hexachlorobutadiene	9.6	< 9.6 U
108-95-2	Phenol	9.6	56 B
106-44-5	4-Methylphenol	9.6	2,000 E
65-85-0	Benzoic Acid	96	110
131-11-3	Dimethylphthalate	9.6	< 9.6 U
84-66-2	Diethylphthalate	9.6	< 9.6 U
84-74-2	Di-n-Butylphthalate	9.6	45 B
85-68-7	Butylbenzylphthalate	9.6	< 9.6 U
117-81-7	bis(2-Ethylhexyl)phthalate	9.6	22 B
117-84-0	Di-n-Octyl phthalate	9.6	< 9.6 U
95-48-7	2-Methylphenol	9.6	210
105-67-9	2,4-Dimethylphenol	9.6	250
86-30-6	N-Nitrosodiphenylamine	9.6	< 9.6 U
100-51-6	Benzyl Alcohol	48	82
87-86-5	Pentachlorophenol	48	< 48 U
95-50-1	1,2-Dichlorobenzene	9.6	< 9.6 U

Sample ID: 13116000021 SAMPLE

RL

Result

Lab Sample ID: LA62JQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10238Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/13/07 20:54Event: NA

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

2-Fluorobiphenyl	39.6%	d5-Phenol	49.3%
2-Fluorophenol	46.4%	d4-2-Chlorophenol	45.1%
d4-1,2-Dichlorobenzene	43.6%	d5-Nitrobenzene	51.6%
2,4,6-Tribromophenol	34.9%	d14-p-Terphenyl	20.8%

FORM I

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62J LIMS ID: 07-10238 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 18:01 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/08/07 Date Received: 05/09/07

Sample ID: 13116000021

DILUTION

Sample Amount: 10.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 81.5% pH: 8.8

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	48	2,700
91-57-6	2-Methylnaphthalene	48	200
208-96-8	Acenaphthylene	48	48
83-32-9	Acenaphthene	48	150
86-73-7	Fluorene	48	110
85-01-8	Phenanthrene	48	250
120-12-7	Anthracene	48	< 48 U
206-44-0	Fluoranthene	48	330
129-00-0	Pyrene	48	170
56-55-3	Benzo (a) anthracene	48	< 48 U
218-01-9	Chrysene	48	< 48 U
205-99-2	Benzo(b)fluoranthene	48	< 48 U
207-08-9	Benzo(k)fluoranthene	48	< 48 U
50-32-8	Benzo (a) pyrene	48	< 48 U
193-39-5	Indeno (1,2,3-cd) pyrene	48	< 48 U
53-70-3	Dibenz (a, h) anthracene	48	< 48 U
191-24-2	Benzo(g,h,i)perylene	48	< 48 U
132-64-9	Dibenzofuran	48	410
106-46-7	1,4-Dichlorobenzene	48	< 48 U
120-82-1	1,2,4-Trichlorobenzene	48	< 48 U
118-74-1	Hexachlorobenzene	48	< 48 U
87-68-3	Hexachlorobutadiene	48	< 48 U
108-95-2	Phenol	48	62 B
106-44-5	4-Methylphenol	48	2,600
65-85-0	Benzoic Acid	480	< 480 U
131-11-3	Dimethylphthalate	48	< 48 U
84-66-2	Diethylphthalate	48	< 48 U
84-74-2	Di-n-Butylphthalate	48	< 48 U
85-68-7	Butylbenzylphthalate	48	58 B
117-81-7	bis(2-Ethylhexyl)phthalate	48	< 48 U
117-84-0	Di-n-Octyl phthalate	48	< 48 U
95-48-7	2-Methylphenol	48	290
105-67-9	2,4-Dimethylphenol	48	250
86-30-6	N-Nitrosodiphenylamine	48	< 48 U
100-51-6	Benzyl Alcohol	240	< 240 U
87-86-5	Pentachlorophenol	240	< 240 U
95-50-1	1,2-Dichlorobenzene	48	< 48 U

Sample ID: 13116000021 DILUTION

RL

Result

Lab Sample ID: LA62JQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10238Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/14/07 18:01Event: NA

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	42.0%	d5-Phenol	52.0%
2-Fluorophenol	52.0%	d4-2-Chlorophenol	49.3%
d4-1,2-Dichlorobenzene	46.0%	d5-Nitrobenzene	60.0%
2,4,6-Tribromophenol	48.0%	d14-p-Terphenyl	22.0%

Lab Sample ID: LA62K LIMS ID: 07-10239 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 21:26 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/08/07 Date Received: 05/09/07 Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL

Sample ID: 13116000023

SAMPLE

Dilution Factor: 1.00 Percent Moisture: 74.7% pH: 8.0

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.2	1,700 E
91-57-6	2-Methylnaphthalene	6.2	330
208-96-8	Acenaphthylene	6.2	43
83-32-9	Acenaphthene	6.2	350
86-73-7	Fluorene	6.2	190
85-01-8	Phenanthrene	6.2	290
120-12-7	Anthracene	6.2	71
206-44-0	Fluoranthene	6.2	200
129-00-0	Pyrene	6.2	150
56-55-3	Benzo (a) anthracene	6.2	51
218-01-9	Chrysene	6.2	74
205-99-2	Benzo (b) fluoranthene	6.2	48
207-08-9	Benzo (k) fluoranthene	6.2	41
50-32-8	Benzo (a) pyrene	6.2	38
193-39-5	Indeno (1, 2, 3-cd) pyrene	6.2	22
53-70-3	Dibenz (a, h) anthracene	6.2	< 6.2 U
191-24-2	Benzo(g,h,i)perylene	6.2	21
132-64-9	Dibenzofuran	6.2	240
106-46-7	1,4-Dichlorobenzene	6.2	< 6.2 U
120-82-1	1,2,4-Trichlorobenzene	6.2	< 6.2 U
118-74-1	Hexachlorobenzene	6.2	< 6.2 U
87-68-3	Hexachlorobutadiene	6.2	< 6.2 U
108-95-2	Phenol	6.2	37 B
106-44-5	4-Methylphenol	6.2	900 E
65-85-0	Benzoic Acid	62	69
131-11-3	Dimethylphthalate	6.2	< 6.2 U
84-66-2	Diethylphthalate	6.2	8.6 B
84-74-2	Di-n-Butylphthalate	6.2	8.6 B
85-68-7	Butylbenzylphthalate	6.2	< 6.2 U
117-81-7	bis(2-Ethylhexyl)phthalate	6.2	18 B
117-84-0	Di-n-Octyl phthalate	6.2	< 6.2 U
95-48-7	2-Methylphenol	6.2	240
105-67-9	2,4-Dimethylphenol	6.2	240
86-30-6	N-Nitrosodiphenylamine	6.2	< 6.2 U
100-51-6	Benzyl Alcohol	31	< 31 U
87-86-5	Pentachlorophenol	31	< 31 U
95-50-1	1,2-Dichlorobenzene	6.2	< 6.2 Ŭ

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Sample ID: 13116000023 Page 2 of 2

SAMPLE

Result

÷

RL

QC Report No: LA62-Geomatrix, Inc. Lab Sample ID: LA62K LIMS ID: 07-10239 Project: Port of Everett Event: NA Matrix: Sediment Date Analyzed: 06/13/07 21:26

> Analyte CAS Number

> > Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	46.0%	d5-Phenol	44.8%
2-Fluorophenol	44.3%	d4-2-Chlorophenol	44.5%
d4-1,2-Dichlorobenzene	44.4%	d5-Nitrobenzene	50.4%
2,4,6-Tribromophenol	51.5%	d14-p-Terphenyl	42.0%

Page 1 of 2

Lab Sample ID: LA62K LIMS ID: 07-10239 Matrix: Sediment Data Release Authorized: /// Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 18:34 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No DILUTION QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/08/07 Date Received: 05/09/07 Sample Amount: 16.2 g-dry-wt Final Extract Volume: 1.0 mL

Sample ID: 13116000023

Dilution Factor: 20.0 Percent Moisture: 74.7% pH: 8.0

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	120	2,200
91-57-6	2-Methylnaphthalene	120	270
208-96-8	Acenaphthylene	120	< 120 U
83-32-9	Acenaphthene	120	270
86-73-7	Fluorene	120	150
85-01-8	Phenanthrene	120	310
120-12-7	Anthracene	120	< 120 U
206-44-0	Fluoranthene	120	220
129-00-0	Pyrene	120	120
56-55-3	Benzo(a) anthracene	120	< 120 U
218-01-9	Chrysene	120	< 120 U
205-99-2	Benzo (b) fluoranthene	120	< 120 U
207-08-9	Benzo(k) fluoranthene	120	< 120 U
50-32-8	Benzo (a) pyrene	120	< 120 U
193-39-5	Indeno (1,2,3-cd) pyrene	120	< 120 U
53-70-3	Dibenz (a, h) anthracene	120	< 120 U
191-24-2	Benzo(g,h,i)perylene	120	< 120 U
132-64-9	Dibenzofuran	120	160
106-46-7	1,4-Dichlorobenzene	120	< 120 U
120-82-1	1,2,4-Trichlorobenzene	120	< 120 U
118 - 74 - 1	Hexachlorobenzene	120	< 120 U
87-68-3	Hexachlorobutadiene	120	< 120 U
108-95-2	Phenol	120	< 120 U
106-44-5	4-Methylphenol	120	830
65-85-0	Benzoic Acid	1,200	< 1,200 U
131-11-3	Dimethylphthalate	120	< 120 U
84-66-2	Diethylphthalate	120	< 120 U
84-74-2	Di-n-Butylphthalate	120	< 120 U
85-68-7	Butylbenzylphthalate	120	< 120 U
117-81-7	bis(2-Ethylhexyl)phthalate	120	< 120 U
117-84-0	Di-n-Octyl phthalate	120	< 120 Ŭ
95-48-7	2-Methylphenol	120	180
105-67-9	2,4-Dimethylphenol	120	180
86-30-6	N-Nitrosodiphenylamine	120	< 120 U
100-51-6	Benzyl Alcohol	620	< 620 U
87-86-5	Pentachlorophenol	620	< 620 U
95-50-1	1,2-Dichlorobenzene	120	< 120 U

Sample ID: 13116000023 DILUTION

Result

Lab Sample ID: LA62K LIMS ID: 07-10239 Matrix: Sediment Date Analyzed: 06/14/07 18:34 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorophenol32.0%ds Interfor2-Fluorophenol37.3%d4-2-Chlorophenol32d4-1,2-Dichlorobenzene32.0%d5-Nitrobenzene40			
d4-1,2-Dichlorobenzene 32.0% d5-Nitrobenzene 40	 		37.3% 32.0%
2,4,6-Tribromophenol 48.0% dl4-p-Terphenyl 32		· · · · · · · · · · · · · · · · · · ·	40.0% 32.0%

Lab Sample ID: LA62L LIMS ID: 07-10240 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 21:59 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No SAMPLE QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07 Sample Amount: 16.1 g-dry-wt Final Extract Volume: 1.0 mL

Sample ID: 13116000027

Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 57.6% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.2	710 E
91-57-6	2-Methylnaphthalene	6.2	180
208-96-8	Acenaphthylene	6.2	53
83-32-9	Acenaphthene	6.2	290
86-73-7	Fluorene	6.2	290
85-01-8	Phenanthrene	6.2	760 E
120-12-7	Anthracene	6.2	260
206-44-0	Fluoranthene	6.2	800 E
129-00-0	Pyrene	6.2	990 E
56-55-3	- Benzo (a) anthracene	6.2	340
218-01-9	Chrysene	6.2	480
205-99-2	Benzo (b) fluoranthene	6.2	300
207-08-9	Benzo(k) fluoranthene	6.2	290
50-32-8	Benzo (a) pyrene	6.2	350
193-39-5	Indeno (1,2,3-cd) pyrene	6.2	200
53-70-3	Dibenz (a, h) anthracene	6.2	41
191-24-2	Benzo(g,h,i)perylene	6.2	210
132-64-9	Dibenzofuran	6.2	200
106-46-7	1,4-Dichlorobenzene	6.2	< 6.2 U
120-82-1	1,2,4-Trichlorobenzene	6.2	< 6.2 U
118-74-1	Hexachlorobenzene	6.2	< 6.2 U
87-68-3	Hexachlorobutadiene	6.2	< 6.2 U
108-95-2	Phenol	6.2	30 B
106-44-5	4-Methylphenol	6.2	380
65-85-0	Benzoic Acid	62	64
131-11-3	Dimethylphthalate	6.2	< 6.2 U
84-66-2	Diethylphthalate	6.2	< 6.2 U
84-74-2	Di-n-Butylphthalate	6.2	7.4 B
85-68-7	Butylbenzylphthalate	6.2	120
117-81-7	bis(2-Ethylhexyl)phthalate	6.2	20 B
117-84-0	Di-n-Octyl phthalate	6.2	7.4
95-48-7	2-Methylphenol	6.2	11
105-67-9	2,4-Dimethylphenol	6.2	42
86-30-6	N-Nitrosodiphenylamine	6.2	< 6.2 U
100-51-6	Benzyl Alcohol	31	48
87-86-5	Pentachlorophenol	31	< 31 U
95-50-1	1,2-Dichlorobenzene	6.2	< 6.2 U
	•		

Sample ID: 13116000027 SAMPLE

Lab Sample ID: LA62L LIMS ID: 07-10240 Matrix: Sediment Date Analyzed: 06/13/07 21:59 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

CAS Number Analyte

RL Result

.....

Reported in μ g/kg (ppb)

2-Fluorobiphenyl	45.2%	d5-Phenol	44.0%
2-Fluorophenol	46.9%	d4-2-Chlorophenol	48.0%
d4-1,2-Dichlorobenzene	48.4%	d5-Nitrobenzene	44.8%
2,4,6-Tribromophenol	61.9%	d14-p-Terphenyl	62.0%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62L LIMS ID: 07-10240 Matrix: Sediment Data Release Authorized:

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 19:08 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No DILUTION QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07 Sample Amount: 16.1 g-dry-wt

Sample ID: 13116000027

Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 57.6% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	19	850
91-57-6	2-Methylnaphthalene	19	210
208-96-8	Acenaphthylene	19	67
83-32-9	Acenaphthene	19	340
86-73-7	Fluorene	19	360
85-01-8	Phenanthrene	19	850
120-12-7	Anthracene	19	270
206-44-0	Fluoranthene	19	1,200
129-00-0	Pyrene	19	880
56-55-3	Benzo (a) anthracene	19	350
218-01-9	Chrysene	19	560
205-99-2	Benzo (b) fluoranthene	19	350
207-08-9	Benzo(k) fluoranthene	19	300
50-32-8	Benzo(a)pyrene	19	370
193-39-5	Indeno (1,2,3-cd) pyrene	19	200
53-70-3	Dibenz (a, h) anthracene	19	39
191-24-2	Benzo(g,h,i)perylene	19	230
132-64-9	Dibenzofuran	19	240
106-46-7	1,4-Dichlorobenzene	19	< 19 U
120-82-1	1,2,4-Trichlorobenzene	19	< 19 U
118-74-1	Hexachlorobenzene	19	< 19 U
87-68-3	Hexachlorobutadiene	19	< 19 U
108-95-2	Phenol	19	45 B
106-44-5	4-Methylphenol	19	550
65-85-0	Benzoic Acid	190	< 190 U
131-11-3	Dimethylphthalate	19	< 19 U
84-66-2	Diethylphthalate	19	< 19 U
84-74-2	Di-n-Butylphthalate	19	63 B
85-68-7	Butylbenzylphthalate	19	140
117-81-7	bis(2-Ethylhexyl)phthalate	19	30 B
117-84-0	Di-n-Octyl phthalate	19	< 19 U
95-48-7	2-Methylphenol	19	< 19 U
105-67-9	2,4-Dimethylphenol	19	48
86-30-6	N-Nitrosodiphenylamine	19	< 19 U
100-51-6	Benzyl Alcohol	93	< 93 U
87-86-5	Pentachlorophenol	93	< 93 U
95-50-1	1,2-Dichlorobenzene	19	< 19 U

Sample ID: 13116000027 DILUTION

Result

Lab Sample ID: LA62L LIMS ID: 07-10240 Matrix: Sediment Date Analyzed: 06/14/07 19:08 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in μ g/kg (ppb)

2-Fluorobiphenyl	57.6%	d5-Phenol	52.0%
2-Fluorophenol	56.8%	d4-2-Chlorophenol	54.4%
d4-1,2-Dichlorobenzene	50.4%	d5-Nitrobenzene	54.0%
2,4,6-Tribromophenol	86.4%	d14-p-Terphenyl	56.4%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Sample ID: 13116000029 SAMPLE

Lab Sample ID: LA62M LIMS ID: 07-10241 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 22:32 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

	LA62-Geomatrix, Inc. Port of Everett NA
Date Sampled:	05/11/07
Date Received:	05/17/07
Sample A	mount: 3.52 g-dry-wt
Final Extract V	olume: 1.0 mL
Dilution F	actor: 1.00

Percent Moisture: 73.0% pH: 8.1

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	28	3,400 E
91-57-6	2-Methylnaphthalene	28	320
208-96-8	Acenaphthylene	28	110
83-32-9	Acenaphthene	28	190
86-73-7	Fluorene	28	160
85-01-8	Phenanthrene	28	760
120-12-7	Anthracene	28	160
206-44-0	Fluoranthene	28	890
129-00-0	Pyrene	28	310
56-55-3	Benzo (a) anthracene	28	37
218-01-9	Chrysene	28	48
205-99-2	Benzo(b)fluoranthene	28	< 28 Ŭ
207-08-9	Benzo (k) fluoranthene	28	< 28 0
50-32-8	Benzo (a) pyrene	28	< 28 l
193-39-5	Indeno (1,2,3-cd) pyrene	28	< 28 Ŭ
53-70-3	Dibenz (a, h) anthracene	28	< 28 l
191-24-2	Benzo(g,h,i)perylene	28	< 28 U
132-64-9	Dibenzofuran	28	120
106-46-7	1,4-Dichlorobenzene	28	< 28 l
120-82-1	1,2,4-Trichlorobenzene	28	< 28 l
118-74-1	Hexachlorobenzene	28	< 28 ĭ
87-68-3	Hexachlorobutadiene	28	< 28 l
108-95-2	Phenol	28	74 H
106-44-5	4-Methylphenol	28	2,600
65-85-0	Benzoic Acid	280	530
131-11-3	Dimethylphthalate	28	< 28 l
84-66-2	Diethylphthalate	28	< 28 l
84-74-2	Di-n-Butylphthalate	28	220 H
85-68-7	Butylbenzylphthalate	28	340
117-81-7	bis(2-Ethylhexyl)phthalate	28	37 E
117-84-0	Di-n-Octyl phthalate	28	< 28 T
95-48-7	2-Methylphenol	28	62
105-67-9	2,4-Dimethylphenol	28	110
86-30-6	N-Nitrosodiphenylamine	28	< 28 T
100-51-6	Benzyl Alcohol	140	< 140 U
87-86-5	Pentachlorophenol	140	< 140 l
95-50-1	1,2-Dichlorobenzene	28	< 28 t

.

Sample ID: 13116000029 SAMPLE

Result

Lab Sample ID: LA62M LIMS ID: 07-10241 Matrix: Sediment Date Analyzed: 06/13/07 22:32 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	31.6%	d5-Phenol	45.1%
2-Fluorophenol	46.7%	d4-2-Chlorophenol	47.2%
d4-1,2-Dichlorobenzene	47.2%	d5-Nitrobenzene	54.0%
2,4,6-Tribromophenol	57.1%	d14-p-Terphenyl	29.2%

Lab Sample ID: LA62M LIMS ID: 07-10241 Matrix: Sediment Data Release Authorized: M Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 19:41 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

DILUTION QC Report No: LA62-Geomatrix, Inc.

Sample ID: 13116000029

Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

.

Sample Amount: 3.52 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 73.0% pH: 8.1

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	85	3,400
91-57-6	2-Methylnaphthalene	85	320
208-96-8	Acenaphthylene	85	190
83-32-9	Acenaphthene	85	280
86-73-7	Fluorene	85	260
85-01-8	Phenanthrene	85	750
120-12-7	Anthracene	85	170
206-44-0	Fluoranthene	85	930
129-00-0	Pyrene	85	430
56-55-3	Benzo (a) anthracene	85	< 85 U
218-01-9	Chrysene	85	< 85 U
205-99-2	Benzo(b)fluoranthene	85	< 85 U
207-08-9	Benzo(k)fluoranthene	85	< 85 U
50-32-8	Benzo (a) pyrene	85	< 85 U
193-39-5	Indeno(1,2,3-cd)pyrene	85	< 85 U
53-70-3	Dibenz (a,h) anthracene	85	< 85 U
191-24-2	Benzo(g,h,i)perylene	85	< 85 U
132-64-9	Dibenzofuran	85	240
106-46-7	1,4-Dichlorobenzene	85	< 85 U
120-82-1	1,2,4-Trichlorobenzene	85	< 85 U
118-74-1	Hexachlorobenzene	85	< 85 U
87-68-3	Hexachlorobutadiene	85	< 85 U
108-95-2	Phenol	85	85 B
106-44-5	4-Methylphenol	85	3,700
65-85-0	Benzoic Acid	850	< 850 Ŭ
131-11-3	Dimethylphthalate	85	< 85 U
84-66-2	Diethylphthalate	85	< 85 U
84-74-2	Di-n-Butylphthalate	85	270 B
85-68-7	Butylbenzylphthalate	85	650
117-81-7	bis(2-Ethylhexyl)phthalate	85	< 85 U
117-84-0	Di-n-Octyl phthalate	85	< 85 U
95-48-7	2-Methylphenol	85	< 85 U
105-67-9	2,4-Dimethylphenol	85	100
86-30-6	N-Nitrosodiphenylamine	85	< 85 U
100-51-6	Benzyl Alcohol	430	< 430 U
87-86-5	Pentachlorophenol	430	< 430 U
95-50-1	1,2-Dichlorobenzene	85	< 85 Ŭ

Sample ID: 13116000029 DILUTION

Result

RL

Lab Sample ID: LA62MQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10241Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/14/07 19:41Event: NA

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	49.2%	d5-Phenol	52.8%
2-Fluorophenol	52.0%	d4-2-Chlorophenol	52.8%
d4-1,2-Dichlorobenzene	49.2%	d5-Nitrobenzene	51.6%
2,4,6-Tribromophenol	74.48	d14-p-Terphenyl	24.0%

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62N LIMS ID: 07-10242 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 23:05 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

Sample ID: 13116000031 SAMPLE

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

Sample Amount: 16.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 72.2% pH: 8.3

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.2	3,600 E
91-57-6	2-Methylnaphthalene	6.2	3,400 E
208-96-8	Acenaphthylene	6.2	210
83-32-9	Acenaphthene	6.2	6,900 E
86-73-7	Fluorene	6.2	17,000 E
85-01-8	Phenanthrene	6.2	53,000 ES
120-12-7	Anthracene	6.2	64,000 ES
206-44-0	Fluoranthene	6.2	35,000 ES
129-00-0	Pyrene	6.2	17,000 ES
56-55-3	Benzo (a) anthracene	6.2	8,200 E
218-01-9	Chrysene	6.2	11,000 E
205-99-2	Benzo(b)fluoranthene	6.2	1,600 E
207-08-9	Benzo(k) fluoranthene	6.2	2,400 E
50-32-8	Benzo (a) pyrene	6.2	1,600 E
193-39-5	Indeno (1,2,3-cd) pyrene	6.2	380
53-70-3	Dibenz (a, h) anthracene	6.2	130
191-24-2	Benzo(g,h,i)perylene	6.2	250
132-64-9	Dibenzofuran	6.2	6,700 E
106-46-7	1,4-Dichlorobenzene	6.2	20
120-82-1	1,2,4-Trichlorobenzene	6.2	< 6.2 U
118-74-1	Hexachlorobenzene	6.2	< 6.2 U
87-68-3	Hexachlorobutadiene	6.2	< 6.2 U
108-95-2	Phenol	6.2	37 B
106-44-5	4-Methylphenol	6.2	860 E
65-85-0	Benzoic Acid	62	86
131-11-3	Dimethylphthalate	6.2	< 6.2 U
84-66-2	Diethylphthalate	6.2	9.9 B
84-74-2	Di-n-Butylphthalate	6.2	210 B
85-68-7	Butylbenzylphthalate	6.2	130
117-81-7	bis(2-Ethylhexyl)phthalate	6.2	110 B
117-84-0	Di-n-Octyl phthalate	6.2	< 6.2 U
95-48-7	2-Methylphenol	6.2	120
105-67-9	2,4-Dimethylphenol	6.2	350
86-30-6	N-Nitrosodiphenylamine	2,000	< 2,000 Y
100-51-6	Benzyl Alcohol	31	35
87-86-5	Pentachlorophenol	31	< 31 U
95-50-1	1,2-Dichlorobenzene	6.2	96

Sample ID: 13116000031 SAMPLE

Result

Lab Sample ID: LA62N LIMS ID: 07-10242 Matrix: Sediment Date Analyzed: 06/13/07 23:05

÷

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl 2-Fluorophenol d4-1,2-Dichlorobenzene	59.2% 54.1% 51.2% 105%	d5-Phenol d4-2-Chlorophenol d5-Nitrobenzene d14-p-Terphenyl	54.9% 55.5% 54.0% 98.8%
2,4,6-Tribromophenol	105%	d14-p-Terpheny1	90.05

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA62N LIMS ID: 07-10242 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 20:47 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

Sample ID: 13116000031

DILUTION

Sample Amount: 16.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 20.0 Percent Moisture: 72.2% pH: 8.3

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	120	10,000
91-57-6	2-Methylnaphthalene	120	7,200
208-96-8	Acenaphthylene	120	190
83-32-9	Acenaphthene	120	11,000
86-73-7	Fluorene	120	34,000 E
85-01-8	Phenanthrene	120	47,000 E
120-12-7	Anthracene	120	160,000 E
206-44-0	Fluoranthene	120	43,000 E
129-00-0	Pyrene	120	22,000 E
56-55-3	Benzo (a) anthracene	120	8,500
218-01-9	Chrysene	120	12,000 E
205-99-2	Benzo (b) fluoranthene	120	2,400
207-08-9	Benzo(k) fluoranthene	120	2,300
50-32-8	Benzo (a) pyrene	120	1,900
193-39-5	Indeno (1,2,3-cd) pyrene	120	480
53-70-3	Dibenz (a, h) anthracene	120	170
191-24-2	Benzo(g,h,i)perylene	120	360
132-64-9	Dibenzofuran	120	12,000
106-46-7	1,4-Dichlorobenzene	120	< 120 U
120-82-1	1,2,4-Trichlorobenzene	120	< 120 U
118-74-1	Hexachlorobenzene	120	< 120 U
87-68-3	Hexachlorobutadiene	120	< 120 U
108-95-2	Phenol	120	< 120 U
106-44-5	4-Methylphenol	120	920
65-85-0	Benzoic Acid	1,200	< 1,200 U
131-11-3	Dimethylphthalate	120	< 120 U
84-66-2	Diethylphthalate	120	< 120 U
84-74-2	Di-n-Butylphthalate	120	120 B
85-68-7	Butylbenzylphthalate	120	290
117-81-7	bis(2-Ethylhexyl)phthalate	120	< 120 U
117-84-0	Di-n-Octyl phthalate	120	< 120 U
95-48-7	2-Methylphenol	120	< 120 U
105-67-9	2,4-Dimethylphenol	120	410
86-30-6	N-Nitrosodiphenylamine	1,000	< 1,000 Y
100-51-6	Benzyl Alcohol	620	< 620 U
87-86-5	Pentachlorophenol	620	< 620 U
95-50-1	1,2-Dichlorobenzene	120	< 120 U

.

Sample ID: 13116000031 DILUTION

 \mathbf{RL}

Result

Lab Sample ID: LA62NQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10242Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/14/07 20:47Event: NA

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

2-Fluorobiphenyl	64.0%	d5-Phenol	58.7%
2-Fluorophenol	58.7%	d4-2-Chlorophenol	58.7%
d4-1,2-Dichlorobenzene	56.0%	d5-Nitrobenzene	64.0%
2,4,6-Tribromophenol	80.0%	d14-p-Terphenyl	88.0%

FORM I

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS

Lab Sample ID: LA62N LIMS ID: 07-10242 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/15/07 14:49 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes

Alumina Cleanup: No

Page 1 of 2

DILUTION QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett

Sample ID: 13116000031

Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

Sample Amount: 16.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1000 Percent Moisture: 72.2% pH: 8.3

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6,200	14,000
91-57-6	2-Methylnaphthalene	6,200	8,700
208-96-8	Acenaphthylene	6,200	< 6,200 U
83-32-9	Acenaphthene	6,200	15,000
86-73-7	Fluorene	6,200	52,000
85-01-8	Phenanthrene	6,200	90,000
120-12-7	Anthracene	6,200	410,000
206-44-0	Fluoranthene	6,200	76,000
129-00-0	Pyrene	6,200	36,000
56-55-3	Benzo (a) anthracene	6,200	11,000
218-01-9	Chrysene	6,200	17,000
205-99-2	Benzo(b)fluoranthene	6,200	< 6,200 U
207-08-9	Benzo(k)fluoranthene	6,200	< 6,200 U
50-32-8	Benzo (a) pyrene	6,200	< 6,200 U
193-39-5	Indeno (1,2,3-cd) pyrene	6,200	< 6,200 U
53-70-3	Dibenz(a,h)anthracene	6,200	< 6,200 U
191-24-2	Benzo(g,h,i)perylene	6,200	< 6,200 Ŭ
132-64-9	Dibenzofuran	6,200	17,000
106-46-7	1,4-Dichlorobenzene	6,200	< 6,200 U
120-82-1	1,2,4-Trichlorobenzene	6,200	< 6,200 U
118-74-1	Hexachlorobenzene	6,200	< 6,200 U
87-68-3	Hexachlorobutadiene	6,200	< 6,200 U
108-95-2	Phenol	6,200	< 6,200 U
106-44-5	4-Methylphenol	6,200	< 6,200 U
65-85-0	Benzoic Acid	62,000	< 62,000 U
131-11-3	Dimethylphthalate	6,200	< 6,200 U
84-66-2	Diethylphthalate	6,200	< 6,200 U
84-74-2	Di-n-Butylphthalate	6,200	< 6,200 U
85-68-7	Butylbenzylphthalate	6,200	< 6,200 U
117-81-7	bis(2-Ethylhexyl)phthalate	6,200	< 6,200 U
117-84-0	Di-n-Octyl phthalate	6,200	< 6,200 U
95-48-7	2-Methylphenol	6,200	< 6,200 U
105-67-9	2,4-Dimethylphenol	6,200	< 6,200 U
86-30-6	N-Nitrosodiphenylamine	6,200	< 6,200 U
100-51-6	Benzyl Alcohol	31,000 31,000	< 31,000 U < 31,000 U
87-86-5	Pentachlorophenol	6,200	< 6,200 U
95-50-1	1,2-Dichlorobenzene	0,200	< 0,200 0

Sample ID: 13116000031 DILUTION

RL

Result

Lab Sample ID: LA62NQC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10242Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/15/07 14:49Event: NA

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

D
D
D
D

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: "" Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 23:38 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Sample ID: 13116000038

SAMPLE

Sample Amount: 16.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 62.8% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.1	1,900 E
91-57-6	2-Methylnaphthalene	6.1	1,000 E
208-96-8	Acenaphthylene	6.1	88
83-32-9	Acenaphthene	6.1	2,000 E
86-73-7	Fluorene	6.1	1,500 E
85-01-8	Phenanthrene	6.1	2,800 E
120-12-7	Anthracene	6.1	1,200 E
206-44-0	Fluoranthene	6.1	2,700 E
129-00-0	Pyrene	6.1	1,900 E
56-55-3	Benzo (a) anthracene	6.1	970 E
218-01-9	Chrysene	6.1	1,100 E
205-99-2	Benzo (b) fluoranthene	6.1	600
207-08-9	Benzo(k)fluoranthene	6.1	570
50-32-8	Benzo (a) pyrene	6.1	560
193-39-5	Indeno (1,2,3-cd) pyrene	6.1	180
53-70-3	Dibenz (a, h) anthracene	6.1	62
191-24-2	Benzo(g,h,i)perylene	6.1	150
132-64-9	Dibenzofuran	6.1	910 E
106-46-7	1,4-Dichlorobenzene	6.1	< 6.1 U
120-82-1	1,2,4-Trichlorobenzene	6.1	< 6.1 U
118-74-1	Hexachlorobenzene	6.1	< 6.1 U
87-68-3	Hexachlorobutadiene	6.1	< 6.1 U
108-95-2	Phenol	6.1	15 B
106-44-5	4-Methylphenol	6.1	470
65-85-0	Benzoic Acid	61	< 61 U
131-11-3	Dimethylphthalate	6.1	< 6.1 U
84-66-2	Diethylphthalate	6.1	6.7 B
84-74-2	Di-n-Butylphthalate	6.1	< 6.1 U
85-68-7	Butylbenzylphthalate	6.1	< 6.1 U
117-81-7	bis(2-Ethylhexyl)phthalate	6.1	10 B
117-84-0	Di-n-Octyl phthalate	6.1	6.7
95-48-7	2-Methylphenol	6.1	180
105-67-9	2,4-Dimethylphenol	6.1	_ 170
86-30-6	N-Nitrosodiphenylamine	42	< 42 Y
100-51-6	Benzyl Alcohol	30	< 30 U
87-86-5	Pentachlorophenol	30	< 30 U
95-50-1	1,2-Dichlorobenzene	6.1	< 6.1 U

Sample ID: 13116000038 SAMPLE

Result

RL

Lab Sample ID: LA620QC Report No: LA62-Geomatrix, Inc.LIMS ID: 07-10243Project: Port of EverettMatrix: SedimentEvent: NADate Analyzed: 06/13/07 23:38Event: NA

CAS Number Analyte

Reported in μ g/kg (ppb)

2-Fluorobiphenyl	46.4%	d5-Phenol	41.3%
2-Fluorophenol	40.3%	d4-2-Chlorophenol	41.3%
d4-1,2-Dichlorobenzene	41.2%	d5-Nitrobenzene	43.2%
2,4,6-Tribromophenol	49.6%	d14-p-Terphenyl	54.4%

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 21:20 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Sample ID: 13116000038

DILUTION

Sample Amount: 16.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 20.0 Percent Moisture: 62.8% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	120	3,500
91-57-6	2-Methylnaphthalene	120	1,100
208-96-8	Acenaphthylene	120	< 120 U
83-32-9	Acenaphthene	120	2,400
86-73-7	Fluorene	120	1,500
85-01-8	Phenanthrene	120	3,300
120-12-7	Anthracene	120	1,000
206-44-0	Fluoranthene	120	3,000
129-00-0	Pyrene	120	1,700
56-55-3	Benzo(a) anthracene	120	870
218-01-9	Chrysene	120	1,100
205-99-2	Benzo(b) fluoranthene	120	420
207-08-9	Benzo(k) fluoranthene	120	450
50-32-8	Benzo (a) pyrene	120	430
193-39-5	Indeno (1, 2, 3-cd) pyrene	120	150
53-70-3	Dibenz (a, h) anthracene	120	< 120 U
191-24-2	Benzo(g,h,i)perylene	120	130
132-64-9	Dibenzofuran	120	1,100
106-46-7	1,4-Dichlorobenzene	120	< 120 U
120-82-1	1,2,4-Trichlorobenzene	120	< 120 U
118-74-1	Hexachlorobenzene	120	< 120 U
87-68-3	Hexachlorobutadiene	120	< 120 U
108-95-2	Phenol	120	< 120 U
106-44-5	4-Methylphenol	120	430
65-85-0	Benzoic Acid	1,200	< 1,200 U
131-11-3	Dimethylphthalate	120	< 120 U
84-66-2	Diethylphthalate	120	< 120 U
84-74-2	Di-n-Butylphthalate	120	< 120 U
85-68-7	Butylbenzylphthalate	120	< 120 U
117-81-7	bis(2-Ethylhexyl)phthalate	120	< 120 U
117-84-0	Di-n-Octyl phthalate	120	< 120 U
95-48-7	2-Methylphenol	120	130
105-67-9	2,4-Dimethylphenol	120	130
86-30-6	N-Nitrosodiphenylamine	120	< 120 U
100-51-6	Benzyl Alcohol	610	< 610 U
87-86-5	Pentachlorophenol	610	< 610 U
95-50-1	1,2-Dichlorobenzene	120	< 120 U

4

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 2 of 2

Sample ID: 13116000038 DILUTION

QC Report No: LA62-Geomatrix, Inc. Lab Sample ID: LA620 Project: Port of Everett LIMS ID: 07-10243 Event: NA Matrix: Sediment Date Analyzed: 06/14/07 21:20 Result RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	40.0%	d5-Phenol	37.38
2-Fluorophenol	37.3%	d4-2-Chlorophenol	42.78
d4-1,2-Dichlorobenzene	32.0%	d5-Nitrobenzene	40.08
2,4,6-Tribromophenol	42.7%	d14-p-Terphenyl	32.08

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment	QC Report No:	LA62-Geomatrix, Inc.
	Project:	Port of Everett

Client ID	FBP	PHL	FPH	CPL	DCB	NBZ	TBP	TER	TOT OUT
13116000004	43.28	53.3%	50.7%	52.8%	47.6%	53.6%	63.5%	25.2%*	1
13116000004 DL	56.0%	54.7%	52.0%	53.3%	52.0%	58.0%	76.0%	22.0%*	1
13116000006	46.4%	44.3%	38.7%	44.0%	39.6%	12.0%*	82.9%	60.8%	1
13116000006 DL	56.0%	48.0%	48.0%	48.0%	48.0%	40.0%	53.3%	64.0%	0
13116000006 DL	D	D	D	D	D	D	D	D	0
13116000010	56.4%	46.1%	48.5%	51.2%	51.2%	2598*	90.9%	108%	1
13116000010 DL	D	D	D	D	D	D	D	D	0
13116000010 DL	D	D	D	D	D	D	D	D	0
13116000014	50.0%	44.8%	41.3%	42.9%	44.48	35.2%	41.9%	50.8%	0
13116000014 DL	50.4%	51.2%	50.4%	48.8%	46.8%	56.4%	56.0%	42.0%	0
13116000015	44.8%	45.3%	46.4%	45.3%	45.6%	32.0%	47.7%	34.4%	0
13116000015 DL	46.8%	51.2%	52.0%	49.6%	45.6%	52.8%	47.2%	31.2%	0
13116000021	39.6%	49.3%	46.4%	45.1%	43.6%	51.6%	34.9%	20.8%*	1
13116000021 DL	42.0%	52.0%	52.0%	49.3%	46.0%	60.0%	48.0%	22.0%*	1
13116000023	46.0%	44.8%	44.3%	44.5%	44.4%	50.4%	51.5%	42.0%	0
13116000023 DL	32.0%	37.3%	37.3%	32.0%	32.0%	40.0%	48.0%	32.0%	0
13116000027	45.2%	44.0%	46.9%	48.0%	48.48	44.8%	61.9%	62.0%	0
13116000027 DL	57.6%	52.0%	56.8%	54.4%	50.4%	54.0%	86.4%	56.4%	0
13116000029	31.6%	45.1%	46.7%	47.28	47.28	54.0%	57.1%	29.2%*	1
13116000029 DL	49.28	52.8%	52.0%	52.8%	49.28	51.6%	74.48	24.0%*	1
13116000031	59.2%	54.9%	54.1%	55.5%	51.2%	54.0%	105%	98.8%	0
13116000031 DL	64.0%	58.7%	58.7%	58.7%	56.0%	64.0%	80.0%	88.0%	0
13116000031 DL	D	D	D	D	D	D	D	D	0
MB-060507	59.6%	57.6%	55.2%	57.6%	54.4%	48.4%	53.3%	68.4%	0
LCS-060507	56.8%	57.6%	54.78	57.3%	50.8%	47.6%	61.9%	63.6%	0
SRM SQ-1	59.2%	54.7%	52.5%	53.9%	48.4%	49.28	67.5%	64.8%	0
13116000038	46.4%	41.3%	40.3%	41.3%	41.2%	43.28	49.6%	54.4%	0
13116000038 DL	40.0%	37.3%	37.3%	42.7%	32.0%	40.0%	42.7%	32.0%	0
13116000038 MS	43.2%	41.3%	38.9%	41.3%	40.0%	41.2%	50.9%	32.8%	0
13116000038 MSD	52.4%	51.5%	50.1%	49.1%	44.4%	46.8%	70.9%	52.8%	0
TOTTO000000 WOD									

LCS/MB LIMITS	QC LIMITS
(30-160) (30-160) (30-160) (30-160) (30-160) (30-160) (30-160) (30-160) (30-160)	(30-160) (30-160) (30-160) (30-160) (30-160) (30-160) (30-160) (30-160)
	(30-160) (30-160) (30-160) (30-160) (30-160) (30-160) (30-160)

Prep Method: SW3550B Log Number Range: 07-10233 to 07-10243

•

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Sample ID: 13116000038

MATRIX SPIKE

Date Extracted MS/MSD: 06/05/07

Date Analyzed MS: 06/14/07 00:11 MSD: 06/14/07 21:53 Instrument/Analyst MS: NT2/LJR MSD: NT2/LJR Sample Amount MS: 16.4 g-dry-wt MSD: 16.4 g-dry-wt Final Extract Volume MS: 1.0 mL MSD: 1.0 mL Dilution Factor MS: 1.00 MSD: 1.00

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Acenaphthene	1970 E	3510	E 152	NA	2100 E	152	NA	NA
Pyrene	1860 E	2100	E 152	NA	2020 E	152	NA	NA
Benzo(g,h,i)perylene	154	63.4	152	NA	220	152	43.4%	NA
1,4-Dichlorobenzene	< 6.1 U	62.2	152	40.9%	78.7	152	51.8%	23.4%
1,2,4-Trichlorobenzene	< 6.1 U	64.6	152	42.5%	70.7	152	46.5%	9.0%
Phenol	15.2 B	98.2	B 229	36.2%	117 B	229	44.5%	17.5%
Di-n-Octyl phthalate	6.7	92.7	152	56.6%	84.1	152	50.9%	9.7%
Pentachlorophenol	< 30.5 U	121	229	52.8%	150	229	65.5%	21.4%

Reported in $\mu g/kg$ (ppb)

NA-No recovery due to high concentration of analyte in original sample, calculated negative recovery, or undetected spike. RPD calculated using sample concentrations per SW846.

÷

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 00:11 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Sample ID: 13116000038

MATRIX SPIKE

Sample Amount: 16.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 62.8% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.1	3,200 E
91-57-6	2-Methylnaphthalene	6.1	1,900 E
208-96-8	Acenaphthylene	6.1	120
83-32-9	Acenaphthene	6.1	
86-73-7	Fluorene	6.1	2,600 E
85-01-8	Phenanthrene	6.1	5,100 E
120-12-7	Anthracene	6.1	1,300 E
206-44-0	Fluoranthene	6.1	3,400 E
129-00-0	Pyrene	6.1	
56-55-3	Benzo (a) anthracene	6.1	360
218-01-9	Chrysene	6.1	470
205-99-2	Benzo (b) fluoranthene	6.1	180
207-08-9	Benzo(k) fluoranthene	6.1	160
50-32-8	Benzo (a) pyrene	6.1	110
193-39-5	Indeno (1,2,3-cd) pyrene	6.1	46
53-70-3	Dibenz (a, h) anthracene	6.1	20
191-24-2	Benzo(g,h,i)perylene	6.1	
132-64-9	Dibenzofuran	6.1	1,600 E
106-46-7	1,4-Dichlorobenzene	6.1	
120-82-1	1,2,4-Trichlorobenzene	6.1	
118-74-1	Hexachlorobenzene	6.1	< 6.1 U
87-68-3	Hexachlorobutadiene	6.1	< 6.1 U
108-95-2	Phenol	6.1	ative there are
106-44-5	4-Methylphenol	6.1	540
65-85-0	Benzoic Acid	61	< 61 U
131-11-3	Dimethylphthalate	6.1	< 6.1 U
84-66-2	Diethylphthalate	6.1	12 B
84-74-2	Di-n-Butylphthalate	6.1	9.2 B
85-68-7	Butylbenzylphthalate	6.1	< 6.1 U
117-81-7	bis (2-Ethylhexyl) phthalate	6.1	14 B
117-84-0	Di-n-Octyl phthalate	6.1	
95-48-7	2-Methylphenol	6.1	210
105-67-9	2,4-Dimethylphenol	6.1	200
86-30-6	N-Nitrosodiphenylamine	93	< 93 Y
100-51-6	Benzyl Alcohol	30	< 30 U
87-86-5	Pentachlorophenol	30	
95-50-1	1,2-Dichlorobenzene	6.1	< 6.1 U

Sample ID: 13116000038 MATRIX SPIKE

Result

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Date Analyzed: 06/14/07 00:11 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	43.2%	d5-Phenol	41.3%
2-Fluorophenol	38.9%	d4-2-Chlorophenol	41.3%
d4-1,2-Dichlorobenzene	40.0%	d5-Nitrobenzene	41.28
2,4,6-Tribromophenol	50.9%	d14-p-Terphenyl	32.8%

ANALYTICAL RESOURCES

MATRIX SPIKE DUPLICATE

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/14/07 21:53 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Sample ID: 13116000038

Sample Amount: 16.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 62.8% pH: 7.9

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	6.1	1,700 E
91-57-6	2-Methylnaphthalene	6.1	1,000 E
208-96-8	Acenaphthylene	6.1	110
83-32-9	Acenaphthene	6.1	
86-73-7	Fluorene	6.1	1,800 E
85-01-8	Phenanthrene	6.1	3,800 E
120-12-7	Anthracene	6.1	1,800 E
206-44-0	Fluoranthene	6.1	3,700 E
129-00-0	Pyrene	6.1	·
56-55-3	Benzo (a) anthracene	6.1	1,200
218-01-9	Chrysene	6.1	1,600
205-99-2	Benzo(b) fluoranthene	6.1	610
207-08-9	Benzo(k) fluoranthene	6.1	600
50-32-8	Benzo (a) pyrene	6.1	560
193-39-5	Indeno (1,2,3-cd) pyrene	6.1	220
53-70-3	Dibenz (a, h) anthracene	6.1	71
191-24-2	Benzo(g,h,i)perylene	6.1	
132-64-9	Dibenzofuran	6.1	1,200 E
106-46-7	1,4-Dichlorobenzene	6.1	
120-82-1	1,2,4-Trichlorobenzene	6.1	
118-74-1	Hexachlorobenzene	6.1	< 6.1 U
87-68-3	Hexachlorobutadiene	6.1	< 6.1 U
108-95-2	Phenol	6.1	
106-44-5	4-Methylphenol	6.1	560
65-85-0	Benzoic Acid	61	70
131-11-3	Dimethylphthalate	6.1	< 6.1 U
84-66-2	Diethylphthalate	6.1	< 6.1 U
84-74-2	Di-n-Butylphthalate	6.1	< 6.1 U
85-68-7	Butylbenzylphthalate	6.1	< 6.1 U
117-81-7	bis (2-Ethylhexyl) phthalate	6.1	18 B
117-84-0	Di-n-Octyl phthalate	6.1	
95-48-7	2-Methylphenol	6.1	200
105-67-9	2,4-Dimethylphenol	6.1	190
86-30-6	N-Nitrosodiphenylamine	43	< 43 Y
100-51-6	Benzyl Alcohol	30	< 30 U
87-86-5	Pentachlorophenol	30	5445 - 2445 - 5468
95-50-1	1,2-Dichlorobenzene	6.1	< 6.1 U

4

Sample ID: 13116000038 MATRIX SPIKE DUPLICATE

Result

Lab Sample ID: LA620 LIMS ID: 07-10243 Matrix: Sediment Date Analyzed: 06/14/07 21:53 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	52.4%	d5-Phenol	51.5%
2-Fluorophenol	50.1%	d4-2-Chlorophenol	49.1%
d4-1,2-Dichlorobenzene	44.4%	d5-Nitrobenzene	46.8%
2,4,6-Tribromophenol	70.9%	d14-p-Terphenyl	52.8%

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Sample ID: SQ-1 060507 Page 1 of 2 STANDARD RE

STANDARD REFERENCE QC Report No: LA62-Geomatrix, Inc.

Lab Sample ID: SRM-060507 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 17:36 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

Project:	Port of	Everett
Event:	NA	
Date Sampled:	NA	
Date Received:	NA	
Sample A		9.60 g-dry-wt

.

Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 40.2% pH: NA

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	10	24
91-57-6	2-Methylnaphthalene	10	33
208-96-8	Acenaphthylene	10	12
83-32-9	Acenaphthene	10	42
86-73-7	Fluorene	10	47
85-01-8	Phenanthrene	10	69
120-12-7	Anthracene	10	94
206-44-0	Fluoranthene	10	130
129-00-0	Pyrene	10	100
56-55-3	Benzo (a) anthracene	10	110
218-01-9	Chrysene	10	110
205-99-2	Benzo(b) fluoranthene	10	110
207-08-9	Benzo(k)fluoranthene	10	< 10 U
50-32-8	Benzo (a) pyrene	10	110
193-39-5	Indeno (1,2,3-cd) pyrene	10	21
53-70-3	Dibenz (a, h) anthracene	10	91
191-24-2	Benzo(g,h,i)perylene	10	96
132-64-9	Dibenzofuran	10	< 10 U
106-46-7	1,4-Dichlorobenzene	10	< 10 U
120-82-1	1,2,4-Trichlorobenzene	10	< 10 U
118-74-1	Hexachlorobenzene	10	< 10 U
87-68-3	Hexachlorobutadiene	10	< 10 U
108-95-2	Phenol	10	25 B
106-44-5	4-Methylphenol	10	26
65-85-0	Benzoic Acid	100	< 100 U
131-11-3	Dimethylphthalate	10	< 10 U
84-66-2	Diethylphthalate	10	< 10 U
84-74-2	Di-n-Butylphthalate	10	10 B
85-68-7	Butylbenzylphthalate	10	< 10 U
117-81-7	bis (2-Ethylhexyl) phthalate	10	91 B
117-84-0	Di-n-Octyl phthalate	10	< 10 U
95-48-7	2-Methylphenol	10	< 10 U
105-67-9	2,4-Dimethylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	10	< 10 U
100-51-6	Benzyl Alcohol	52	< 52 U
87-86-5	Pentachlorophenol	52	490
95-50-1	1,2-Dichlorobenzene	10	10

Sample ID: SQ-1 060507 STANDARD REFERENCE

Result

Lab Sample ID: SRM-060507 LIMS ID: 07-10243 Matrix: Sediment Date Analyzed: 06/13/07 17:36 QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Reported in $\mu g/kg$ (ppb)

59.2% 52.5% 48.4%	d5-Phenol d4-2-Chlorophenol d5-Nitrobenzene	54.78 53.98 49.28
67.5%	d14-p-Terphenyl	64.8%
	52.5% 48.4%	52.5%d4-2-Chlorophenol48.4%d5-Nitrobenzene

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Sample ID: LCS-060507 Page 1 of 2

LAB CONTROL SAMPLE

.

Lab Sample ID: LCS-060507 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA

Date Extracted: 06/05/07 Date Analyzed LCS: 06/13/07 17:02 Final Extract Volume LCS: 1.0 mL Instrument/Analyst LCS: NT2/LJR

Sample Amount LCS: 16.0 g-dry-wt Dilution Factor LCS: 1.00

Analyte	LCS	Spike Added	Recovery
Naphthalene	89.4	156	57.3%
2-Methylnaphthalene	89.4	156	57.3%
Acenaphthylene	94.4	156	60.5%
Acenaphthene	95.0	156	60.9%
Fluorene	99.4	156	63.7%
Phenanthrene	100	156	64.1%
Anthracene	96.9	156	62.1%
Fluoranthene	109	156	69.9%
Pyrene	100	156	64.1%
Benzo (a) anthracene	99.1	156	63.5%
Chrysene	104	156	66.7%
Benzo(b)fluoranthene	95.6	156	61.3%
Benzo(k)fluoranthene	123	156	78.8%
Benzo(a)pyrene	99.0	156	63.5%
Indeno (1,2,3-cd) pyrene	101	156	64.7%
Dibenz (a, h) anthracene	102	156	65.4%
Benzo(g,h,i)perylene	100	156	64.1%
Dibenzofuran	95.6	156	61.3%
1,4-Dichlorobenzene	84.4	156	54.1%
1,2,4-Trichlorobenzene	86.9	156	55.7%
Hexachlorobenzene	101	156	64.7%
Hexachlorobutadiene	82.5	156	52.9%
Phenol	93.1	156	59.7%
4-Methylphenol	174	312	55.8%
Benzoic Acid	353	469	75.3%
Dimethylphthalate	101	156	64.7%
Diethylphthalate	103	156	66.0%
Di-n-Butylphthalate	117	156	75.0%
Butylbenzylphthalate	108	156	69.2%
bis(2-Ethylhexyl)phthalate	104	156	66.7%
Di-n-Octyl phthalate	106	156	67.9%
2-Methylphenol	93.8	156	60.1%
2,4-Dimethylphenol	85.6	156	54.9%
N-Nitrosodiphenylamine	132	156	84.6%
Benzyl Alcohol	141	312	45.2%
Pentachlorophenol	119	156	76.3%
1,2-Dichlorobenzene	93.8	156	60.1%

Reported in $\mu g/kg$ (ppb)

2-Fluorobiphenyl	56.8%
d5-Phenol	57.6%
2-Fluorophenol	54.7%
d4-2-Chlorophenol	57.3%
d4-1,2-Dichlorobenzene	50.8%
d5-Nitrobenzene	47.6%

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Page 2 of 2

g GC/MS Sample ID: LCS-060507 LAB CONTROL SAMPLE

Lab Sample ID: LCS-060507 LIMS ID: 07-10243 Matrix: Sediment

:

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

		Spike	
Analyte	LCS	Added	Recovery

۱

2,4,6-Tribromophenol	61.9%
d14-p-Terphenyl	63.6%

LA62MBS1

Lab Name: ANALYTICAL RESOURCES, INC Client: GEOMATRIX, INC.

ARI Job No: LA62

Lab File ID: LA62MB

Instrument ID: NT2

Matrix: SOLID

Client: GEOMATRIX, INC. Project: PORT OF EVERETT Date Extracted: 06/05/07 Date Analyzed: 06/13/07 Time Analyzed: 1629

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=================	=============	=========
01	LA62LCSS1	LA62LCSS1	LA62SB	06/13/07
02	SQ-1	LA62SRM1	LA62SRM	06/13/07
03	13116000004	LA62E	LA62E	06/13/07
04	13116000006	LA62F	LA62F	06/13/07
05	13116000010	LA62G	LA62G	06/13/07
06	13116000014	LA62H	LA62H	06/13/07
07	13116000015	LA62I	LA62I	06/13/07
08	13116000021	LA62J	LA62J	06/13/07
09	13116000023	LA62K	LA62K	06/13/07
10	13116000027	LA62L	LA62L	06/13/07
11	13116000029	LA62M	LA62M	06/13/07
12	13116000031	LA62N	LA62N	06/13/07
13	13116000038	LA620	LA620	06/13/07
14	13116000038 MS	LA62OMS	LA620MS	06/14/07
15	13116000004	LA62E	LA62EDL	06/14/07
16	13116000006	LA62F	LA62FDL	06/14/07
17	13116000010	LA62G	LA62GDL	06/14/07
18	13116000010	LA62G	LA62GDL2	06/14/07
19	13116000014	LA62H	LA62HDL	06/14/07
20	13116000015	LA62I	LA62IDL	06/14/07
21	13116000021	LA62J	LA62JDL	06/14/07
22	13116000023	LA62K	LA62KDL	06/14/07
23	13116000027	LA62L	LA62LDL	06/14/07
24	13116000029	LA62M	LA62MDL	06/14/07
25	13116000031	LA62N	LA62NDL2	06/14/07
26	13116000038	LA620	LA620DL	06/14/07
27	13116000038 MSD	LA620MSD	LA620MD2	06/14/07
28	13116000006	LA62F	LA62FDL2	06/14/07
29	13116000031	LA62N	LA62NDL3	06/15/07
30				00/10/0/
	I	I i		

COMMENTS:

page 1 of 1

FORM IV SV

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 2

Lab Sample ID: MB-060507 LIMS ID: 07-10243 Matrix: Sediment Data Release Authorized: M Reported: 06/20/07

Date Extracted: 06/05/07 Date Analyzed: 06/13/07 16:29 Instrument/Analyst: NT2/LJR GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA Sample Amount: 16.0 g-dry-wt

Sample ID: MB-060507

METHOD BLANK

Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA pH: NA

91-20-3Naphthalene6.2< 6.2	CAS Number	Analyte	RL	Result
208-96-8 Acenaphthylene 6.2 < 6.2	91-20-3	Naphthalene		< 6.2 U
83-32-9 Acenaphthene 6.2 < 6.2	91-57-6	2-Methylnaphthalene		< 6.2 U
86-73-7 Fluorene 6.2 < 6.2	208-96-8		6.2	< 6.2 U
85-01-8 Phenanthrene 6.2 < 6.2	83-32-9	Acenaphthene	6.2	< 6.2 U
120-12-7 Anthracene 6.2 < 6.2	86-73-7	Fluorene	6.2	< 6.2 U
206-44-0 Fluoranthene 6.2 < 6.2	85-01-8	Phenanthrene	6.2	
129-00-0 Pyrene 6.2 < 6.2	120-12-7	Anthracene	6.2	< 6.2 U
56-55-3 Benzo (a) anthracene 6.2 < 6.2	206-44-0	Fluoranthene	6.2	< 6.2 U
218-01-9 Chrysene 6.2 < 6.2	129-00-0	Pyrene		< 6.2 U
205-99-2Benzo (b) fluoranthene6.2< 6.2U207-08-9Benzo (k) fluoranthene6.2< 6.2	56-55-3	Benzo (a) anthracene		< 6.2 U
207-08-9Benzo(k) fluoranthene6.2< 6.2U50-32-8Benzo(a) pyrene6.2< 6.2	218-01-9	Chrysene	6.2	< 6.2 U
50-32-8 Benzo(a) pyrene 6.2 < 6.2	205-99-2	Benzo(b)fluoranthene	6.2	< 6.2 U
193-39-5 Indeno(1,2,3-cd)pyrene 6.2 < 6.2 U	207-08-9	Benzo(k)fluoranthene	6.2	< 6.2 U
53-70-3 Dibenz (a, h) anthracene 6.2 < 6.2 U	50-32-8	Benzo (a) pyrene	6.2	< 6.2 U
191-24-2 Benzo(g,h,i)perylene 6.2 < 6.2 U	193-39-5	Indeno(1,2,3-cd)pyrene	6.2	< 6.2 U
132-64-9Dibenzofuran6.2< 6.2U106-46-71,4-Dichlorobenzene6.2< 6.2	53-70-3	Dibenz(a,h)anthracene	6.2	< 6.2 U
106-46-71,4-Dichlorobenzene6.2< 6.2 U120-82-11,2,4-Trichlorobenzene6.2< 6.2 U	191-24-2	Benzo(g,h,i)perylene	6.2	< 6.2 U
120-82-1 1,2,4-Trichlorobenzene 6.2 < 6.2 U	132-64-9	Dibenzofuran	6.2	< 6.2 U
118-74-1 Hexachlorobenzene 6.2 < 6.2	106-46-7	1,4-Dichlorobenzene	6.2	< 6.2 U
87-68-3 Hexachlorobutadiene 6.2 < 6.2 U	120-82-1	1,2,4-Trichlorobenzene	6.2	< 6.2 U
108-95-2Phenol6.26.2106-44-54-Methylphenol6.2< 6.2	118-74-1	Hexachlorobenzene	6.2	< 6.2 U
106-44-5 4-Methylphenol 6.2 < 6.2 U	87-68-3	Hexachlorobutadiene	6.2	< 6.2 U
65-85-0 Benzoic Acid 62 < 62 U	108-95-2	Phenol	6.2	6.2
65-85-0 Benzoic Acid 62 < 62 U	106-44-5	4-Methylphenol	6.2	< 6.2 U
131-11-3 Dimethylphthalate 6.2 < 6.2 U	65-85-0		62	< 62 U
84-66-2 Diethylphthalate 6.2 5.0 J 84-74-2 Di-n-Butylphthalate 6.2 10 85-68-7 Butylbenzylphthalate 6.2 < 6.2 U	131-11-3	Dimethylphthalate	6.2	< 6.2 U
85-68-7 Butylbenzylphthalate 6.2 < 6.2 U	84-66-2		6.2	5.0 J
85-68-7 Butylbenzylphthalate 6.2 < 6.2 U	84-74-2	Di-n-Butylphthalate	6.2	10
117-81-7bis(2-Ethylhexyl)phthalate6.26.2117-84-0Di-n-Octyl phthalate6.2< 6.2 U	85-68-7		6.2	< 6.2 U
117-84-0Di-n-Octyl phthalate6.2< 6.2 U95-48-72-Methylphenol6.2< 6.2 U	117-81-7		6.2	6.2
95-48-72-Methylphenol6.2< 6.2 U105-67-92,4-Dimethylphenol6.2< 6.2 U			6.2	< 6.2 U
105-67-92,4-Dimethylphenol6.2< 6.2 U86-30-6N-Nitrosodiphenylamine6.2< 6.2 U			6.2	< 6.2 U
86-30-6 N-Nitrosodiphenylamine 6.2 < 6.2 U 100-51-6 Benzyl Alcohol 31 < 31 U			6.2	< 6.2 U
100-51-6 Benzyl Alcohol 31 < 31 U 87-86-5 Pentachlorophenol 31 < 31 U				< 6.2 U
87-86-5 Pentachlorophenol 31 < 31 U			31	< 31 U
			31	< 31 U
	95-50-1	1,2-Dichlorobenzene	6.2	

Sample ID: MB-060507 METHOD BLANK

QC Report No: LA62-Geomatrix, Inc. Project: Port of Everett Event: NA

RL

CAS Number Analyte

Lab Sample ID: MB-060507

Date Analyzed: 06/13/07 16:29

LIMS ID: 07-10243

Matrix: Sediment

Result

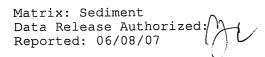
Reported in μ g/kg (ppb)

2-Fluorobiphenyl	59.6%	d5-Phenol	57.6%
2-Fluorophenol	55.2%	d4-2-Chlorophenol	57.6%
d4-1,2-Dichlorobenzene	54.4%	d5-Nitrobenzene	48.4%
2,4,6-Tribromophenol	53.3%	d14-p-Terphenyl	68.4%

GENERAL CHEMISTRY

Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	05/28/07 05/28/07	Percent	< 0.01 U < 0.01 U
Total Organic Carbon	06/07/07	Percent	< 0.020 U


Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Client ID: 13116000004 ARI ID: 07-10233 LA62E

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#2	EPA 160.3	Percent	0.01	25.30
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.826	46.9

RL Analytical reporting limit

Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Client ID: 13116000006 ARI ID: 07-10234 LA62F

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#2	EPA 160.3	Percent	0.01	42.30
Total Organic Carbon	06/07/07 060707#1	Plumb, 1981	Percent	0.020	9.21

RL Analytical reporting limit

Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Client ID: 13116000010 ARI ID: 07-10235 LA62G

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#2	EPA 160.3	Percent	0.01	28.60
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.284	18.9

RL Analytical reporting limit

Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Client ID: 13116000014 ARI ID: 07-10236 LA62H

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#2	EPA 160.3	Percent	0.01	20.00
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.504	30.8

RL Analytical reporting limit

U Undetected at reported detection limit

.

Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

. .

Client ID: 13116000015 ARI ID: 07-10237 LA621

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#2	EPA 160.3	Percent	0.01	22.00
Total Organic Carbon	06/07/07 060707#1	Plumb, 1981	Percent	0.538	25.1

RL Analytical reporting limit

Project: Port of Everett Event: NA Date Sampled: 05/08/07 Date Received: 05/09/07

Client ID: 13116000021 ARI ID: 07-10238 LA62J

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#3	EPA 160.3	Percent	0.01	17.80
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.856	44.0

RL Analytical reporting limit

٠

Matrix: Sediment Data Release Authorized: A Reported: 06/08/07

Project: Port of Everett Event: NA Date Sampled: 05/08/07 Date Received: 05/09/07

Client ID: 13116000023 ARI ID: 07-10239 LA62K

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#3	EPA 160.3	Percent	0.01	23.20
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.372	14.4

RL

.

Analytical reporting limit Undetected at reported detection limit U

.

Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

Client ID: 13116000027 ARI ID: 07-10240 LA62L

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#3	EPA 160.3	Percent	0.01	43.20
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.396	17.1

RL Analytical reporting limit

Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

Client ID: 13116000029 ARI ID: 07-10241 LA62M

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#3	EPA 160.3	Percent	0.01	25.90
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.486	24.1

RL Analytical reporting limit

4

Matrix: Sediment Data Release Authorized Reported: 06/08/07 Project: Port of Everett Event: NA Date Sampled: 05/11/07 Date Received: 05/17/07

Client ID: 13116000031 ARI ID: 07-10242 LA62N

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#3	EPA 160.3	Percent	0.01	25.90
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.444	15.9

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment Data Release Authorized: Reported: 06/08/07 Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Client ID: 13116000038 ARI ID: 07-10243 LA620

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/28/07 052807#3	EPA 160.3	Percent	0.01	29.10
Total Organic Carbon	06/07/07 060707#1	Plumb,1981	Percent	0.440	6.11

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment Data Release Authorized (A Reported: 06/08/07 Project: Port of Everett Event: NA Date Sampled: 05/07/07 Date Received: 05/08/07

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: LA62E Client ID:	13116000004				
Total Solids	05/28/07	Percent	25.30	25.30 26.10	1.8%
Total Organic Carbon	06/07/07	Percent	46.9	37.3 42.0	11.4%

.

.

Matrix: Sediment Data Release Authorized Reported: 06/08/07

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: LA62E Client ID:	13116000004					
Total Organic Carbon	06/07/07	Percent	46.9	112	61.7	105.5%

Matrix: Sediment Data Release Authorized Reported: 06/08/07

Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Total Organic Carbon	06/07/07	Percent	0.488	0.500	97.6%

Matrix: Sediment Data Release Authorized Reported: 06/08/07

Port	of	Everett
NA		
NA		
NA		
	Port NA NA NA	NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	06/07/07	Percent	3.13	3.35	93.4%

TOTAL SOLIDS

Extractions Total Solids-extts Data By: Adam L. Rains Created: 5/25/07

ĥ,

Worklist: 9921 Analyst: ALR Comments:

		ARI ID CLIENT ID		Wet Wt (g)	Dry Wt (g)	% Solids	рН
	1.	LA62E 07-10233 13116000004		11.83	4.50	31.6	8.0
	2.	LA62F 07-10234 13116000006		11.18	5.30	41.4	7.8
	3.	LA62G 07-10235 13116000010		11.66	4.46	31.3	7:9
	4.	LA62H 07-10236 13116000014		10.22	3.14	21.9	8.4
	5.	LA62I 07-10237 13116000015		10.48	3.68	26.9	8.8
	6.	LA62J 07-10238 13116000021		10.46	2.90	18.5	8.8
	7.	LA62K 07-10239 13116000023	1.14	10.54	3.52	25.3	8.0
		LA62L 07-10240 13116000027		10.82	5.26	42.4	7.9
	9.	LA62M 07-10241 13116000029		10.90	3.78	27.0	8.1
		LA62N 07-10242 13116000031		11.32	3.98	27.8	8.3
مسا		LA620 07-10243 13116000038	1.14	11.84	5.12	37.2	7.9

Analytical Resources, Incorporated

Analytical Chemists and Consultants

25 June 2007

Rob Gilmour Geomatrix, Inc. 3500 188th Street SW, Suite 600 Lynnwood, WA 98037-4763

RE: Project: Port of Everett ARI Job No.: LD21

Dear Rob:

Please find enclosed the final data package for the samples from the project referenced above. Analytical Resources, Inc. received nine sediment samples in good condition on May 17, 2007. There were no discrepancies in the paperwork.

The samples were analyzed for SVOAs, pesticides, PCBs, total metals and TOC as requested.

Problems associated with these analyses are discussed in the case narrative.

A copy of this package will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Wa MDH

Mark Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file LD21

MDH/mdh

Case Narrative

prepared for

GEOMATRIX CONSULTANTS

Project: 13116000

ARI JOB NO: LD21

prepared by

Analytical Resources, Inc.

Case Narrative

Client: Geomatrix, Inc. Project: Port of Everett Matrix: Sediment ARI Job No: LD21 Date: June 26, 2007

Semivolatile Organics Analysis

The surrogate 2-Fluorophenol was high of ARI limits in several samples, due to co-elution with interferences. The 2-Fluorophenol was also high of ARI limits in the Method Blank at 100%. No action was taken.

Undiluted analyses showed internal standards outside limits due to matrix interference. All extracts were analyzed at a 1:3 dilution, bringing internal standards into control. Both sets of results have been reported.

Pesticides Analyses

The sample extracts were analyzed twice, both times with the closing calibrations failing low, due to the matrix. Only the second run has been reported.

PCBs Analysis

These sample extracts were also analyzed twice, both times with the closing calibrations failing low, due to the matrix. Only the second run has been reported.

Total Metals Analyses

These analyses proceeded without incident of note.

Conventionals Analyses

These analyses proceeded without incident of note.

Analytical Resources Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers

Effective 12/28/04

Inorganic Data

U Indicates that the target analyte was not detected at the reported concentration

- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

U Indicates that the target analyte was not detected at the reported concentration

Flagged value is not within established control limits.

- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for

Analytical Resources Incorporated Analytical Chemists and Consultants

- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

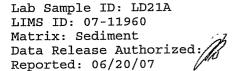
Page 132 of 153

Version 12-007 4/11/06

Data Summary Package

prepared for

GEOMATRIX CONSULTANTS


Project: 13116000

ARI JOB NO: LD21

prepared by

Analytical Resources, Inc.

SEMIVOLATILE ORGANICS

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 14:03 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000100 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.0 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 39.0% pH: 7.3

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	24
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	29
87-68-3	Hexachlorobutadiene	20	< 20 Ŭ
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	20
132-64-9	Dibenzofuran	. 20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	98
120-12-7	Anthracene	20	34
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	330
129-00-0	Pyrene	20	160
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	71
117-81-7	bis(2-Ethylhexyl)phthalate	20	44
218-01-9	Chrysene	20	110
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	79
207-08-9	Benzo(k) fluoranthene	20	61
50-32-8	Benzo (a) pyrene	20	59
193-39-5	Indeno (1,2,3-cd) pyrene	20	27
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo (g, h, i) perylene	20	27

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	67.2% 61.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	68.08 54.48
d14-p-ferphenyi d5-Phenol	62.9%	2-Fluorophenol	76.8%
2,4,6-Tribromophenol	78.9%	d4-2-Chlorophenol	65.6%

;;;

ì.

State of the second second second second second second second second second second second second second second

.

;

1.11

ANALYTICAL RESOURCES

alle ingen balan

ţ.

۰.

•

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 10:27 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000100 DILUTION

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.0 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 39.0% pH: 7.3

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	< 60 U
87-68-3	Hexachlorobutadiene	60	< 60 U
91-57-6	2-Methylnaphthalene	60	< 60 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
83-32-9	Acenaphthene	60	< 60 U
132-64-9	Dibenzofuran	60	< 60 U
84-66-2	Diethylphthalate	60	< 60 U
86-73-7	Fluorene	60	< 60 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	110
120-12-7	Anthracene	60	< 60 U
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	200
129-00-0	Pyrene	60	190
85-68-7	Butylbenzylphthalate	60	< 60 U
56-55-3	Benzo (a) anthracene	60	77
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 Ŭ
218-01-9	Chrysene	60	120
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo (b) fluoranthene	60	76
207-08-9	Benzo (k) fluoranthene	60	62
50-32-8	Benzo(a) pyrene	60	65
193-39-5	Indeno (1,2,3-cd) pyrene	60	< 60 U
	Dibenz (a, h) anthracene	60	< 60 U
53-70-3	Benzo (g, h, i) perylene	60	< 60 U
191-24-2	penzo (g, n, r) per yrene	00	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	65.8% 77.2%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	66.7% 56.0%
d14-p-Terphenyl d5-Phenol	65.7%	2-Fluorophenol	77.6%
2,4,6-Tribromophenol	70.7%	d4-2-Chlorophenol	66.6%

. Mark 14 - 14 -

いたいに

1.4

100 3000

Sample ID: 13116000101 SAMPLE

Lab Sample ID: LD21B LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 16:16 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 36.5% pH: 7.5

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
87-68-3	Hexachlorobutadiene	20	' < 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	61
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	< 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	62
120-12-7	Anthracene	20	28
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	170
129-00-0	Pyrene	20	100
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	47
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
218-01-9	Chrysene	20	76
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	55
207-08-9	Benzo (k) fluoranthene	20	45
50-32-8	Benzo (a) pyrene	20	43
193-39-5	Indeno (1,2,3-cd) pyrene	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U
エフエームモーム	Denvo (G'n' T) her Arene	20	< 20 0

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	60.4% 56.8%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	59.6% 50.4%
d5-Phenol	55.7%	2-Fluorophenol	77.1%
2,4,6-Tribromophenol	69.3%	d4-2-Chlorophenol	58.1%

.

.

÷

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

Lab Sample ID: LD21B LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 11:01 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

Sample ID: 13116000101 DILUTION

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 36.5% pH: 7.5

108-95-2Phenol 60 < 60 U $106-46-7$ $1, 4$ -Dichlorobenzene 60 < 60 U $100-51-6$ Benzyl Alcohol 60 < 60 U $95-50-1$ $1, 2$ -Dichlorobenzene 60 < 60 U $95-48-7$ 2 -Methylphenol 60 < 60 U $106-44-5$ 4 -Methylphenol 60 < 60 U $105-67-9$ $2, 4$ -Dimethylphenol 60 < 60 U $105-67-9$ $2, 4$ -Dimethylphenol 60 < 60 U $91-20-3$ Naphtalene 60 < 60 U $91-20-3$ Naphthalene 60 < 60 U $91-57-6$ 2 -Methylphthalate 60 < 60 U $132-64-9$ Dibenzofuran 60 < 60 U $132-64-9$ Dibenzofuran 60 < 60 U $18-74-1$ Hexachlorobenzene 60 < 60 U $18-74-1$ Hexachlorophenol 300 < 300 U $18-74-1$ Hexachlorophenol 300 < 60 U $19-74-2$ Di-n-Butylphthalate 60 < 60 U $206-44-0$ Fl	CAS Number	Analyte	RL	Result
100-51-6 Benzyl Alcohol 60 < 60	108-95-2	Phenol	60	< 60 U
10.0 1.1 (2-Dichlorobenzene)60< 60 U95-50.11,2-Dichlorobenzene)60< 60 U	106-46-7	1,4-Dichlorobenzene	60	
95-48-7 2-Methylphenol 60 < 60	100-51-6	Benzyl Alcohol	60	< 60 U
106-44-5 4-Methylphenol 60 < 60	95-50-1	1,2-Dichlorobenzene	60	< 60 U
105-67-9 2,4-Dimethylphenol 60 < 60	95-48-7	2-Methylphenol	60	< 60 U
65-85-0 Benzoic Acid 600 < 600 U	106-44-5	4-Methylphenol	60	
120-82-11,2,4-Trichlorobenzene60< 60U91-20-3Naphthalene60< 60	105-67-9	2,4-Dimethylphenol	60	< 60 U
31-20-3 Naphthalene 60 < 60	65-85-0	Benzoic Acid	600	< 600 U
11 10 3Implementation60< 60 U91-57-62-Methylnaphthalene60< 60 U	120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-57-6 2-Methylnaphthalene 60 < 60 U	91-20-3	Naphthalene	60	< 60 U
131-11-3 Dimethylphthalate 60 65 208-96-8 Acenaphthylene 60 < 60	87-68-3	Hexachlorobutadiene	60	< 60 U
208-96-8Acenaphthylene60< 60U $332-9$ Acenaphthene60< 60	91-57-6	2-Methylnaphthalene	60	< 60 U
83-32-9 Acenaphthene 60 < 60 U	131-11-3	Dimethylphthalate	60	65
132-64-9 Dibenzofuran 60 < 60	208-96-8	Acenaphthylene	60	< 60 U
132-64-9 Dibenzofuran 60 < 60	83-32-9	Acenaphthene	60	< 60 U
86-73-7 Fluorene 60 < 60	132-64-9		60	< 60 U
86-30-6 N-Nitrosodiphenylamine 60 < 60	84-66-2	Diethylphthalate	60	< 60 U
118-74-1 Hexachlorobenzene 60 < 60	86-73-7	Fluorene	60	< 60 U
87-86-5 Pentachlorophenol 300 < 300	86-30-6	N-Nitrosodiphenylamine	60	< 60 U
85-01-8 Phenanthrene 60 76 120-12-7 Anthracene 60 < 60	118-74-1	Hexachlorobenzene	60	< 60 U
120-12-7 Anthracene 60 < 60	87-86-5	Pentachlorophenol	300	< 300 U
112 11 11 11 11 11 11 11 11 12 <t< td=""><td>85-01-8</td><td>Phenanthrene</td><td>60</td><td>76</td></t<>	85-01-8	Phenanthrene	60	76
206-44-0 Fluoranthene 60 130 129-00-0 Pyrene 60 130 85-68-7 Butylbenzylphthalate 60 400 56-55-3 Benzo (a) anthracene 60 <60	120-12-7	Anthracene	60	< 60 U
129-00-0 Pyrene 60 130 85-68-7 Butylbenzylphthalate 60 < 60 U	84-74-2	Di-n-Butylphthalate	60	< 60 U
85-68-7 Butylbenzylphthalate 60 < 60	206-44-0	Fluoranthene	60	130
85-68-7 Butylbenzylphthalate 60 < 60	129-00-0	Pyrene	60	130
56-55-3 Benzo (a) anthracene 60 < 60 U		Butylbenzylphthalate	60	< 60 U
117-81-7bis (2-Ethylhexyl) phthalate60< 60U218-01-9Chrysene6088117-84-0Di-n-Octyl phthalate60< 60	56-55-3		60	< 60 U
218-01-9Chrysene6088117-84-0Di-n-Octyl phthalate60< 60 U			60	< 60 U
117-84-0Di-n-Octyl phthalate60< 60 U205-99-2Benzo(b)fluoranthene60< 60 U			60	88
205-99-2 Benzo (b) fluoranthene 60 < 60			60	< 60 U
207-08-9Benzo(k)fluoranthene60< 60U50-32-8Benzo(a)pyrene60< 60			60	< 60 U
50-32-8Benzo (a) pyrene60< 60 U193-39-5Indeno (1,2,3-cd) pyrene60< 60 U				< 60 U
193-39-5Indeno (1,2,3-cd) pyrene60< 60 U53-70-3Dibenz (a,h) anthracene60< 60 U				< 60 U
53-70-3 Dibenz (a, h) anthracene 60 < 60 U				< 60 U
				< 60 U
	191-24-2	Benzo(g,h,i)perylene	60	< 60 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	60.4%	2-Fluorobiphenyl	61.2%
d14-p-Terphenyl	69.28	d4-1,2-Dichlorobenzene	50.3%
d5-Phenol	57.3%	2-Fluorophenol	72.2%
2,4,6-Tribromophenol	61.8%	d4-2-Chlorophenol	58.5%

Lab Sample ID: LD21C LIMS ID: 07-11962 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

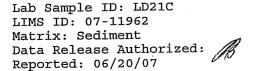
Date Extracted: 06/15/07 Date Analyzed: 06/19/07 16:49 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000102 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.0 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 62.4% pH: 7.5

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	37
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	26
132-64-9	Dibenzofuran	20	25
84-66-2	Diethylphthalate	20	< 20 Ŭ
86-73-7	Fluorene	20	24
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	1.00
120-12-7	Anthracene	20	43
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	320
129-00-0	Pyrene	20	250
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	92
117-81-7	bis(2-Ethylhexyl)phthalate	20	30
218-01-9	Chrysene	20	160
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	100
207-08-9	Benzo(k) fluoranthene	20	98
50-32-8	Benzo (a) pyrene	20	77
193-39-5	Indeno (1,2,3-cd) pyrene	20	31
193-39-5 53-70-3	Dibenz (a, h) anthracene	20	< 20 U
	Benzo (g, h, i) perylene	20	23
191-24-2	benzo(g,n,1)peryrene	20	<i>44 - 4</i>

Reported in $\mu g/kg$ (ppb)


Semivolatile Surrogate Recovery

d5-Nitrobenzene	60.8%	2-Fluorobiphenyl	60.4%
d14-p-Terphenyl	62.4%	d4-1,2-Dichlorobenzene	50.0%
d5-Phenol	59.7%	2-Fluorophenol	104%
2,4,6-Tribromophenol	82.7%	d4-2-Chlorophenol	61.9%

ANALYTICAL RESOURCES

INCORPORATED

- amai tutu

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 11:34 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

Sample ID: 13116000102 DILUTION

ANALYTICAL RESOURCES

INCORPORATED

9 Contraction of the second

Ą.

فتبه

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.0 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 62.4% pH: 7.5

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	< 60 U
87-68-3	Hexachlorobutadiene	60	< 60 U
91-57-6	2-Methylnaphthalene	60	< 60 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
83-32-9	Acenaphthene	60	< 60 U
132-64-9	Dibenzofuran	60	< 60 U
84-66-2	Diethylphthalate	60	< 60 U
86-73-7	Fluorene	60	< 60 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	110
120-12-7	Anthracene	60	< 60 U
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	210
129-00-0	Pyrene	60	230
85-68-7	Butylbenzylphthalate	60.	< 60 U
56-55-3	Benzo (a) anthracene	60	95
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	150
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo (b) fluoranthene	60	100
207-08-9	Benzo(k) fluoranthene	60	74
207-08-9 50-32-8	Benzo (a) pyrene	60	70
	Indeno (1,2,3-cd) pyrene	60	< 60 U
193-39-5	Dibenz (a, h) anthracene	60	< 60 U
53-70-3		60	< 60 U
191-24-2	Benzo(g,h,i)perylene	00	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol	61.4% 63.6% 59.0% 64.7%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	61.1% 48.1% 79.0% 59.8%
2,4,6-Tribromophenol	64.78	d4-2-chrorophenor	59.00

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 17:22 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000103 SAMPLE

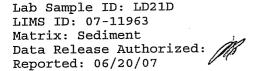
QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 49.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 51.1% pH: 7.8

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	22
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	' < 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	41
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	78
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	35
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	28
83-32-9	Acenaphthene	20	69
132-64-9	Dibenzofuran	20	62
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	73
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	300
120-12-7	Anthracene	20	120
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	840
129-00-0	Pyrene	20	560
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	220
117-81-7	bis(2-Ethylhexyl)phthalate	20	48
218-01-9	Chrysene	20	360
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	230
207-08-9	Benzo(k)fluoranthene	20	180
50-32-8	Benzo (a) pyrene	20	170
193-39-5	Indeno (1,2,3-cd) pyrene	20	47
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo (g, h, i) perylene	20	40
	(3/m/m/Forlagene		

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery


d5-Nitrobenzene d14-p-Terphenyl	64.0% 58.4%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	62.4% 54.0%
d5-Phenol	62.4%	2-Fluorophenol	93.3%
2,4,6-Tribromophenol	80.3%	d4-2-Chlorophenol	65.1%

.

ŀ

• • •

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 12:07 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

Sample ID: 13116000103 DILUTION

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 49.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 51.1% pH: 7.8

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 Ŭ
106-46-7	1,4-Dichlorobenzene	60	< 60 Ŭ
100-51-6	Benzyl Alcohol	60	< 60 Ŭ
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 Ŭ
106-44-5	4-Methylphenol	60	< 60 Ŭ
105-67-9	2,4-Dimethylphenol	60	< 60 Ŭ
65-85-0	Benzoic Acid	600	< 600 Ŭ
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	76
87-68-3	Hexachlorobutadiene	60	< 60 l
91-57-6	2-Methylnaphthalene	60	< 60 l
131-11-3	Dimethylphthalate	60	< 60 T
208-96-8	Acenaphthylene	60	< 60 T
83-32-9	Acenaphthene	60	73
132-64-9	Dibenzofuran	60	61
84-66-2	Diethylphthalate	60	< 60 T
86-73-7	Fluorene	60	67
86-30-6	N-Nitrosodiphenylamine	60	< 60 T
118-74-1	Hexachlorobenzene	60	< 60 T
87-86-5	Pentachlorophenol	300	< 300 T
85-01-8	Phenanthrene	60	310
120-12-7	Anthracene	60	96
84-74-2	Di-n-Butylphthalate	60	< 60 T
206-44-0	Fluoranthene	60	560
129-00-0	Pyrene	60	570
85-68-7	Butylbenzylphthalate	60	< 60 T
56-55-3	Benzo (a) anthracene	60	210
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 T
218-01-9	Chrysene	60	340
117-84-0	Di-n-Octyl phthalate	60	< 60 1
205-99-2	Benzo (b) fluoranthene	60	190
207-08-9	Benzo (k) fluoranthene	60	170
	Benzo (a) pyrene	60	150
50-32-8		60	78
193-39-5	Indeno(1,2,3-cd)pyrene	60	< 60 t
53-70-3	Dibenz(a, h) anthracene	60	< 80 (91
191-24-2	Benzo(g,h,i)perylene	00	21

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	60.6%	2-Fluorobiphenyl	60.1%
d14-p-Terphenyl	63.1%	d4-1,2-Dichlorobenzene	51.0%
d5-Phenol	58.8%	2-Fluorophenol	74.6%
2,4,6-Tribromophenol	64.3%	d4-2-Chlorophenol	61.6%

1

111111

٠,

200

Service and the service of the servi

Sample ID: 13116000104 SAMPLE No: LD21-Geomatrix, Inc.

Lab Sample ID: LD21E LIMS ID: 07-11964 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 17:56 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 58.9% pH: 7.6

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	26
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	58
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	22
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	20
83-32-9	Acenaphthene	20	57
132-64-9	Dibenzofuran	20	47
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	48
86-30-6	N-Nitrosodiphenylamine	. 20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	200
120-12-7	Anthracene	20	78
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	510
129-00-0	Pyrene	20	280
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	170
117-81-7	bis(2-Ethylhexyl)phthalate	20	36
218-01-9	Chrysene	20	280
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	200
207-08-9	Benzo(k) fluoranthene	20	150
50-32-8	Benzo (a) pyrene	20	140
193-39-5	Indeno (1,2,3-cd) pyrene	20	47
53-70-3	Dibenz(a, h) anthracene	20	< 20 U
191-24-2	Benzo (g, h, i) perylene	20	37
میں اور اور اور اور اور اور اور اور اور اور	(3/ m/ m/ Ponl		

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	61.2% 54.8%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	61.2% 50.0%
d14-p-feiphenyi d5-Phenol	58.9%	2-Fluorophenol	91.2%
2,4,6-Tribromophenol	76.0%	d4-2-Chlorophenol	60.5%

i.

 $M = M_{\rm eff}$

Sample ID: 13116000104 DILUTION

Lab Sample ID: LD21E LIMS ID: 07-11964 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 12:41 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.2 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 58.9% pH: 7.6

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	< 60 U
87-68-3	Hexachlorobutadiene	60	< 60 U
91-57-6	2-Methylnaphthalene	60	< 60 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
83-32-9	Acenaphthene	60	< 60 U
132-64-9	Dibenzofuran	60	< 60 U
84-66-2	Diethylphthalate	60	< 60 U
86-73-7	Fluorene	60	< 60 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	210
120-12-7	Anthracene	60	63
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	320
129-00-0	Pyrene	60	280
85-68-7	Butylbenzylphthalate	60	< 60 U
56-55-3	Benzo (a) anthracene	60	160
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	270
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo(b) fluoranthene	60	160
207-08-9	Benzo(k) fluoranthene	60	130
50-32-8	Benzo (a) pyrene	60	120
193-39-5	Indeno (1,2,3-cd) pyrene	60	79
53-70-3	Dibenz (a, h) anthracene	60	< 60 U
191-24-2	Benzo(g,h,i)perylene	60	84

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	57.1%	2-Fluorobiphenyl	57.8%
d14-p-Terphenyl	60.1%	d4-1,2-Dichlorobenzene	46.9%
d5-Phenol	56.0%	2-Fluorophenol	73.48
2,4,6-Tribromophenol	61.6%	d4-2-Chlorophenol	55.9%

Lab Sample ID: LD21F LIMS ID: 07-11965 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 18:29 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes SAMPLE QC Report No: LD21-Geomatrix, Inc. Project: NA

Sample ID: 13116000105

NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 56.8% pH: 7.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	23
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	42
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	100
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	43
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	20
83-32-9	Acenaphthene	20	98
132-64-9	Dibenzofuran	20	81
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	81
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	300
120-12-7	Anthracene	20	84
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	810
129-00-0	Pyrené	20	380
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	190
117-81-7	bis(2-Ethylhexyl)phthalate	20	38
218-01-9	Chrysene	20	330
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	230
207-08-9	Benzo(k) fluoranthene	20	160
50-32-8	Benzo(a) pyrene	20	160
193-39-5	Indeno (1,2,3-cd) pyrene	20	48
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo (g, h, i) perylene	20	42
	Towne (Alwin'horl mone		

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	59.2% 56.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	59.2% 47.2%
d5-Phenol	58.1%	2-Fluorophenol	88.3% 55.7%
2,4,6-Tribromophenol	78.4%	d4-2-Chlorophenol	55./6

FORM I

.

Lab Sample ID: LD21F LIMS ID: 07-11965 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 13:14 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes DILUTION QC Report No: LD21-Geomatrix, Inc. Project: NA NA

Sample ID: 13116000105

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 56.8% pH: 7.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	98
87-68-3	Hexachlorobutadiene	60	< 60 U
91-57-6	2-Methylnaphthalene	60	< 60 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
83-32-9	Acenaphthene	60	100
132-64-9	Dibenzofuran	60	70
84-66-2	Diethylphthalate	60	< 60 U
86-73-7	Fluorene	60	69
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	270
120-12-7	Anthracene	60	65
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	460
129-00-0	Pyrene	60	360
85-68-7	Butylbenzylphthalate	60	< 60 U
56-55-3	Benzo (a) anthracene	60	180
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	320
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo (b) fluoranthene	60	190
207-08-9	Benzo(k) fluoranthene	60	130
50-32-8	Benzo (a) pyrene	60	130
193-39-5	Indeno (1,2,3-cd) pyrene	60	74
53-70-3	Dibenz (a, h) anthracene	60	< 60 U
191-24-2	Benzo(g,h,i) perylene	60	< 00 0 91
171-24-2	Benzo (g, n, r) peryrene	00	

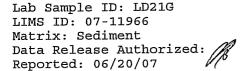
Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	56.6%	2-Fluorobiphenyl	56.3%
d14-p-Terphenyl	59.5%	d4-1,2-Dichlorobenzene	44.6%
d5-Phenol	55.8%	2-Fluorophenol	72.3%
2,4,6-Tribromophenol	62.1%	d4-2-Chlorophenol	55.1%

FORM I

ANALYTICAL RESOURCES


è

į.

38 . Y.

þ

/MS

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 19:02 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000106 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 53.0% pH: 7.9

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	25
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	91
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	99
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	36
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	26
83-32-9	Acenaphthene	20	74
132-64-9	Dibenzofuran	20	62
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	61
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	< 99 U
85-01-8	Phenanthrene	20	260
120-12-7	Anthracene	20	100
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	690
129-00-0	Pyrene	20	320
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	180
117-81-7	bis(2-Ethylhexyl)phthalate	20	33
218-01-9	Chrysene	20	340
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	230
207-08-9	Benzo(k) fluoranthene	20	170
50-32-8	Benzo (a) pyrene	20	160
		20	43
193-39-5	Indeno (1,2,3-cd) pyrene Dibenz (a,h) anthracene	20	< 20 U
53-70-3		20	39
191-24-2	Benzo(g,h,i)perylene	20	59

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	66.0% 63.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	65.6% 54.8%
d5-Phenol	65.1%	2-Fluorophenol	105%
2,4,6-Tribromophenol	86.4%	d4-2-Chlorophenol	66.7%

ANALYTICAL RESOURCES INCORPORATED

i

Lab Sample ID: LD21G LIMS ID: 07-11966 Matrix: Sediment Data Release Authorized: MA Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 13:47 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

ž

100 H 100 H

2

ι.

à.

Sample ID: 13116000106 DILUTION

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 53.0% pH: 7.9

CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
106-44-5	4-Methylphenol	60	91
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	100
87-68-3	Hexachlorobutadiene	60	< 60 U
91-57-6	2-Methylnaphthalene	60	< 60 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 U
83-32-9	Acenaphthene	60	70
132-64-9	Dibenzofuran	60	< 60 U
84-66-2	Diethylphthalate	60	< 60 U
86-73-7	Fluorene	60	< 60 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	260
120-12-7	Anthracene	60	86
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	440
129-00-0	Pyrene	60	320
85-68-7	Butylbenzylphthalate	60	< 60 U
56-55-3	Benzo (a) anthracene	60	180
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	330
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo (b) fluoranthene	60	160
207-08-9	Benzo(k) fluoranthene	60	180
50-32-8	Benzo (a) pyrene	60	140
193-39-5	Indeno (1,2,3-cd) pyrene	60	81
53-70-3	Dibenz (a, h) anthracene	60	< 60 U
191-24-2	Benzo(g, h, i) perylene	60	< 00 0 91
171-24-2	penzo (d'n't) bet à tene	00	ـــ د

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	64.6%	2-Fluorobiphenyl	65.5%
d14-p-Terphenyl	65.3%	d4-1,2-Dichlorobenzene	53.3%
d5-Phenol	64.0%	2-Fluorophenol	85.6%
2,4,6-Tribromophenol	70.8%	d4-2-Chlorophenol	65.4%

Lab Sample ID: LD21H LIMS ID: 07-11967 Matrix: Sediment Data Release Authorized:

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 19:35 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

i

÷,

1

۰.

Sample ID: 13116000107 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 52.3% pH: 7.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20.	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	46
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	84
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	23
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	44
132-64-9	Dibenzofuran	20	37
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	44
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	150
120-12-7	Anthracene	20	75
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	440
129-00-0	Pyrene	20	210
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	140
117-81-7	bis(2-Ethylhexyl)phthalate	20	34
218-01-9	Chrysene	20	240
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	160
207-08-9	Benzo (k) fluoranthene	20	120
50-32-8	Benzo (a) pyrene	20	120
193-39-5	Indeno (1,2,3-cd) pyrene	20	30
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
		20	32
191-24-2	Benzo(g,h,i) perylene	20	32

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	65.2%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	60.4%	d4-1,2-Dichlorobenzene	52.8%
d5-Phenol	64.8%	2-Fluorophenol	1028
2,4,6-Tribromophenol	81.6%	d4-2-Chlorophenol	64.3%

4

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

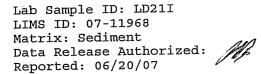
Lab Sample ID: LD21H LIMS ID: 07-11967 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 14:20 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

Sample ID: 13116000107 DILUTION

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 52.3% pH: 7.7


CAS Number	Analyte	RL	Result
108-95-2	Phenol	60	< 60 U
106-46-7	1,4-Dichlorobenzene	60	< 60 U
100-51-6	Benzyl Alcohol	60	< 60 U
95-50-1	1,2-Dichlorobenzene	60	< 60 U
95-48-7	2-Methylphenol	60	< 60 U
106-44-5	4-Methylphenol	60	< 60 U
105-67-9	2,4-Dimethylphenol	60	< 60 U
65-85-0	Benzoic Acid	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	60	< 60 U
91-20-3	Naphthalene	60	80
87-68-3	Hexachlorobutadiene	60	< 60 U
91-57-6	2-Methylnaphthalene	60	< 60 U
131-11-3	Dimethylphthalate	60	< 60 U
208-96-8	Acenaphthylene	60	< 60 Ŭ
83-32-9	Acenaphthene	60	< 60 U
132-64-9	Dibenzofuran	60	< 60 U
84-66-2	Diethylphthalate	60	< 60 U
86-73-7	Fluorene	60	< 60 U
86-30-6	N-Nitrosodiphenylamine	60	< 60 U
118-74-1	Hexachlorobenzene	60	< 60 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	60	140
120-12-7	Anthracene	60	62
84-74-2	Di-n-Butylphthalate	60	< 60 U
206-44-0	Fluoranthene	60	280
129-00-0	Pyrene	60	230
85-68-7	Butylbenzylphthalate	60	< 6 <u>0</u> U
56-55-3	Benzo (a) anthracene	60	140
117-81-7	bis(2-Ethylhexyl)phthalate	60	< 60 U
218-01-9	Chrysene	60	220
117-84-0	Di-n-Octyl phthalate	60	< 60 U
205-99-2	Benzo (b) fluoranthene	60	130
207-08-9	Benzo (k) fluoranthene	60	110
50-32-8	Benzo (a) pyrene	60	100
193-39-5	Indeno (1,2,3-cd) pyrene	60	< 60 U
53-70-3	Dibenz (a, h) anthracene	60	< 60 U
191-24-2	Benzo (g, h, i) perylene	60	71
171-47-A	Pourse (Alul 1) Forl roue		

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	61.0%	2-Fluorobiphenyl	61.3%
d14-p-Terphenyl	63.8%	d4-1,2-Dichlorobenzene	53.2%
d5-Phenol	61.3%	2-Fluorophenol	82.4%
2,4,6-Tribromophenol	67.0%	d4-2-Chlorophenol	61.7%

FORM I

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 20:08 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000108 SAMPLE v,

11

÷

. . .

ANALYTICAL RESOURCES

INCORPORATED

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 30.6% pH: 7.6

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	27
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 Ŭ
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	< 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	< 99 U
85-01-8	Phenanthrene	20	40
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	110
129-00-0	Pyrene	20	63
85-68-7	Butylbenzylphthalate	20	< 20 Ŭ
56-55-3	Benzo (a) anthracene	20	30
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 Ŭ
218-01-9	Chrysene	20	43
117-84-0	Di-n-Octyl phthalate	20	< 20 Ü
205-99-2	Benzo (b) fluoranthene	20	31
	Benzo(k) fluoranthene	20	< 20 Ŭ
207-08-9	Benzo (a) pyrene	20	22
50-32-8	Indeno (1,2,3-cd) pyrene	20	< 20 U
193-39-5	Dibenz (a, h) anthracene	20	< 20 U
53-70-3	Benzo(g,h,i)perylene	20	< 20 U
191-24-2	penzo (g, n, r) per yrene	20	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	63.6%	2-Fluorobiphenyl	66.0%
d14-p-Terphenyl	64.0%	d4-1,2-Dichlorobenzene	53.6%
d5-Phenol	61.1%	2-Fluorophenol	78.7%
2,4,6-Tribromophenol	83.7%	d4-2-Chlorophenol	63.7%

ANALYTICAL RESOURCES Ë

ţ

1.1.1.1 A. 1.1.1.1

ii ii i

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 14:53 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

Sample ID: 13116000108 DILUTION

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 30.6% pH: 7.6

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	< 59 U
106-46-7	1,4-Dichlorobenzene	59	< 59 Ŭ
100-51-6	Benzyl Alcohol	59	< 59 U
95-50-1	1,2-Dichlorobenzene	59	< 59 U
95-48-7	2-Methylphenol	59	< 59 U
106-44-5	4-Methylphenol	59	< 59 U
105-67-9	2,4-Dimethylphenol	59	< 59 U
65-85-0	Benzoic Acid	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	59	< 59 U
91-20-3	Naphthalene	59	< 59 U
87-68-3	Hexachlorobutadiene	59	< 59 U
91-57-6	2-Methylnaphthalene	59	< 59 Ŭ
131-11-3	Dimethylphthalate	59	< 59 U
208-96-8	Acenaphthylene	59	< 59 Ŭ
83-32-9	Acenaphthene	59	< 59 U
132-64-9	Dibenzofuran	59	< 59 U
84-66-2	Diethylphthalate	59	< 59 U
86-73-7	Fluorene	59	< 59 Ŭ
86-30-6	N-Nitrosodiphenylamine	59	< 59 U
118-74-1	Hexachlorobenzene	59	< 59 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	59	< 59 U
120-12-7	Anthracene	59	< 59 U
84-74-2	Di-n-Butylphthalate	59	< 59 U
206-44-0	Fluoranthene	59	71
129-00-0	Pyrene	59	70
85-68-7	Butylbenzylphthalate	59	< 59 U
56-55-3	Benzo (a) anthracene	59	< 59 U
117-81-7	bis(2-Ethylhexyl)phthalate	59	< 59 U
218-01-9	Chrysene	59	< 59 U
117-84-0	Di-n-Octyl phthalate	59	< 59 U
205-99-2	Benzo (b) fluoranthene	59	< 59 U
207-08-9	Benzo(k) fluoranthene	59	< 59 U
50-32-8	Benzo (a) pyrene	59	< 59 Ŭ
193-39-5	Indeno (1,2,3-cd) pyrene	59	< 59 U
53-70-3	Dibenz(a, h) anthracene	59	< 59 U
	Benzo (g, h, i) perylene	59	< 59 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	61.1%	2-Fluorobiphenyl	58.8%
d14-p-Terphenyl	67.2%	d4-1,2-Dichlorobenzene	49.0%
d5-Phenol	58.1%	2-Fluorophenol	69.8%
2,4,6-Tribromophenol	60.6%	d4-2-Chlorophenol	60.4%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: LD21-Geomatrix, Inc. Project:

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	DT OUT
MB-061507	73.2%	74.8%	81.2%	62.8%	69.6%	100%*	77.9%	73.6%	1
LCS-061507	70.8%	69.6%	61.2%	65.2%	76.8%	84.88*	77.3%	71.78	1
SRM-SQ-1	64.8%	64.0%	55.6%	53.2%	56.0%	83.7%	71.2%	60.0%	0
13116000100	67.2%	68.0%	61.6%	54.4%	62.9%	76.8%	78.9%	65.6%	0
13116000100 DL	65.8%	66.7%	77.28	56.0%	65.7%	77.68	70.7%	66.6%	0
13116000100 MS	67.2%	67.2%	61.6%	56.4%	64.8%	86.4%*	76.5%	67.2%	1
13116000100 MSD	71.2%	72.0%	64.8%	57.6%	69.3%	92.5%*	84.0%	70.78	1
13116000101	60.4%	59.6%	56.8%	50.4%	55.7%	77.1%	69.3%	58.1%	0
13116000101 DL	60.4%	61.2%	69.2%	50.3%	57.3%	72.28	61.8%	58.5%	0
13116000102	60.8%	60.4%	62.4%	50.0%	59.7%	1048*	82.7%	61.9%	1
13116000102 DL	61.4%	61.1%	63.6%	48.1%	59.0%	79.0%	64.7%	59.8%	0
13116000103	64.0%	62.4%	58.4%	54.0%	62.4%	93.38*	80.3%	65.1%	1
13116000103 DL	60.6%	60.1%	63.1%	51.0%	58.8%	74.6%	64.3%	61.6%	0
13116000104	61.2%	61.2%	54.8%	50.0%	58.9%	91.2%*	76.0%	60.5%	1
13116000104 DL	57.1%	57.8%	60.1%	46.9%	56.0%	73.48	61.6%	55.9%	0
13116000105	59.2%	59.2%	56.0%	47.28	58.1%	88.3%*	78.4%	55.7%	1
13116000105 DL	56.6%	56.3%	59.5%	44.6%	55.8%	72.3%	62.1%	55.1%	0
13116000106	66.0%	65.6%	63.6%	54.8%	65.1%	105%*	86.4%	66.7%	1
13116000106 DL	64.6%	65.5%	65.3%	53.3%	64.0%	85.6%*	70.8%	65.4%	1
13116000107	65.2%	64.0%	60.4%	52.8%	64.8%	1028*	81.6%	64.3%	1
13116000107 DL	61.0%	61.3%	63.8%	53.2%	61.3%	82.4%	67.0%	61.7%	0
13116000108	63.6%	66.0%	64.0%	53.6%	61.1%	78.7%	83.7%	63.7%	0
13116000108 DL	61.1%	58.8%	67.2%	49.0%	58.1%	69.8%	60.6%	60.48	0

	LCS/MB LIMITS	QC LIMITS
(NBZ) = d5-Nitrobenzene	(42-79)	(26-88)
(FBP) = 2-Fluorobiphenyl	(43-80)	(34-91)
(TPH) = d14-p-Terphenyl	(39-105)	(22-100)
(DCB) = d4-1, 2-Dichlorobenzene	(38-79)	(24-90)
(PHL) = d5-Phenol	(42-82)	(25-86)
(2FP) = 2-Fluorophenol	(26-83)	(11-84)
(TBP) = 2, 4, 6-Tribromophenol	(41-94)	(25-107)
(2CP) = d4-2-Chlorophenol	(43-80)	(23-91)

Prep Method: SW3550B Log Number Range: 07-11960 to 07-11968

0028

÷

÷

ANALYTICAL RESOURCES

1

hander ander ander die MacMachanamister (12)

į,

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

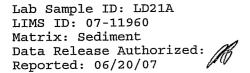
Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted MS/MSD: 06/15/07

Date Analyzed MS: 06/19/07 15:09 MSD: 06/19/07 15:43 Instrument/Analyst MS: NT4/LJR MSD: NT4/LJR GPC Cleanup: YES

Sample ID: 13116000100 MS/MSD

QC Report No: LD21-Geomatrix, Inc. Project:


Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount MS: 50.1 g-dry-wt MSD: 50.0 g-dry-wt Final Extract Volume MS: 1.0 mL MSD: 1.0 mL Dilution Factor MS: 1.00 MSD: 1.00 Percent Moisture: 39.0 % pH: 7.3

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 20.0	404	749	53.9%	428	, 750	57.1%	5.8%
1,4-Dichlorobenzene	< 20.0	281	499	56.3%	295	500	59.0%	4.9%
1,2,4-Trichlorobenzene	< 20.0	301	499	60.3%	324	500	64.8%	7.48
Acenaphthene	20.0	368	499	69.7%	385	500	73.0%	4.5%
Pentachlorophenol	< 99.9	534	749	71.3%	570	750	76.0%	6.5%
Pyrene	155	482	499	65.5%	545	500	78.0%	12.38
Di-n-Octyl phthalate	< 20.0	291	499	58.3%	311	500	62.2%	6.6%
Benzo(g,h,i)perylene	26.6	257	499	46.2%	270	500	48.7%	4.98

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 15:09 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes

Sample ID: 13116000100 MATRIX SPIKE

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.1 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 39.0% pH: 7.3

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	
106-46-7	1,4-Dichlorobenzene	20	
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	
91-20-3	Naphthalene	20	22
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	
85-01-8	Phenanthrene	20	98
120-12-7	Anthracene	20	63
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	240
129-00-0	Pyrene	20	
85-68-7	Butylbenzylphthalate	20	75
56-55-3	Benzo(a) anthracene	20	90
117-81-7	bis(2-Ethylhexyl)phthalate	20	57
218-01-9	Chrysene	20	210
117-84-0	Di-n-Octyl phthalate	20	
205-99-2	Benzo(b) fluoranthene	20	84
207-08-9	Benzo(k) fluoranthene	20	77
50-32-8	Benzo (a) pyrene	20	68
193-39-5	Indeno (1,2,3-cd) pyrene	20	28
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	67.2% 61.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	67.2% 56.4%
d5-Phenol	64.8%	2-Fluorophenol	86.4%
2,4,6-Tribromophenol	76.5%	d4-2-Chlorophenol	67.2%

į,

and the stand the

t,

· · · · · ·

.

ť

ŝ,

12 mar 24

.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 15:43 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: 13116000100 MATRIX SPIKE DUPLICATE

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.0 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 39.0% pH: 7.3

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	
106-46-7	1,4-Dichlorobenzene	20	
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	<u>< 20 U</u>
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	
91-20-3	Naphthalene	20	26
87-68-3	Hexachlorobutadiene	20	< 20 Ŭ
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	
132-64-9	Dibenzofuran	20	< 20 Ŭ
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	
85-01-8	Phenanthrene	20	110
120-12-7	Anthracene	20	36
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	310
129-00-0	Pyrene	20	
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	92
117-81-7	bis (2-Ethylhexyl) phthalate	20	29
218-01-9	Chrysene	20	140
117-84-0	Di-n-Octyl phthalate	20	
205-99-2	Benzo (b) fluoranthene	20	93
207-08-9	Benzo (k) fluoranthene	20	93
207-08-9 50-32-8	Benzo (a) pyrene	20	87
	Indeno (1, 2, 3-cd) pyrene	20	35
193-39-5	Dibenz (a, h) anthracene	20	< 20 U
53-70-3 191-24-2	Benzo (g, h, i) perylene	20	< 20 0

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	71.2%	2-Fluorobiphenyl	72.0%
d14-p-Terphenyl	64.8%	d4-1,2-Dichlorobenzene	57.6%
d5-Phenol	69.3%	2-Fluorophenol	92.5%
2,4,6-Tribromophenol	84.0%	d4-2-Chlorophenol	70.7%

ł.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

Lab Sample ID: SRM-061507 LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 12:56 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: NA

Sample ID: SQ-1 061507

STANDARD REFERENCE

Date Received: NA

Sample Amount: 35.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 40.2% pH: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	28	< 28 U
106-46-7	1,4-Dichlorobenzene	28	< 28 U
100-51-6	Benzyl Alcohol	28	< 28 U
95-50-1	1,2-Dichlorobenzene	28	< 28 U
95-48-7	2-Methylphenol	28	< 28 U
106-44-5	4-Methylphenol	28	29
105-67-9	2,4-Dimethylphenol	28	< 28 U
65-85-0	Benzoic Acid	280	190 J
120-82-1	1,2,4-Trichlorobenzene	28	< 28 U
91-20-3	Naphthalene	28	26 J
87-68-3	Hexachlorobutadiene	28	< 28 U
91-57-6	2-Methylnaphthalene	28	44
131-11-3	Dimethylphthalate	28	< 28 U
208-96-8	Acenaphthylene	28	< 28 U
83-32-9	Acenaphthene	28	52
132-64-9	Dibenzofuran	28	< 28 U
84-66-2	Diethylphthalate	28	< 28 U
86-73-7	Fluorene	28	54
86-30-6	N-Nitrosodiphenylamine	28	< 28 U
118-74-1	Hexachlorobenzene	28	< 28 Ŭ
87-86-5	Pentachlorophenol	140	240
85-01-8	Phenanthrene	28	77
120-12-7	Anthracene	28	50
84-74-2	Di-n-Butylphthalate	28	< 28 U
206-44-0	Fluoranthene	28	130
129-00-0	Pyrene	28	64
85-68-7	Butylbenzylphthalate	28	< 28 U
56-55-3	Benzo (a) anthracene	28	67
117-81-7	bis(2-Ethylhexyl)phthalate	28	38
218-01-9	Chrysene	28	76
117-84-0	Di-n-Octyl phthalate	28	< 28 U
205-99-2	Benzo(b) fluoranthene	28	72
207-08-9	Benzo(k)fluoranthene	28	< 28 U
50-32-8	Benzo (a) pyrene	28	68
193-39-5	Indeno (1,2,3-cd) pyrene	28	16 J
53-70-3	Dibenz(a, h) anthracene	28	70
191-24-2	Benzo (g, h, i) perylene	28	78

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.8%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	55.6%	d4-1,2-Dichlorobenzene	53.2%
d5-Phenol	56.0%	2-Fluorophenol	83.7%
2,4,6-Tribromophenol	71.2%	d4-2-Chlorophenol	60.0%

FORM I

i G

Contraction of the second second

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 2

Lab Sample ID: LCS-061507 LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: MR Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 12:23 Instrument/Analyst: NT4/LJR GPC Cleanup: YES Sample ID: LCS-061507 LAB CONTROL

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA pH: NA

Analyte	Lab Control	Spike Added	Recovery
Phenol	337	500	67.48
1,4-Dichlorobenzene	324	500	64.8%
Benzyl Alcohol	673	1000	.67.38
1,2-Dichlorobenzene	332	500	66.4%
2-Methylphenol	346	500	69.2%
4-Methylphenol	795	1000	79.5%
2,4-Dimethylphenol	355	500	71.0%
Benzoic Acid	1200	1500	80.0%
1,2,4-Trichlorobenzene	336	500	67.2%
Naphthalene	320	500	64.0%
Hexachlorobutadiene	346	500	69.2%
2-Methylnaphthalene	350	500	70.0%
Dimethylphthalate	401	500	80.2%
Acenaphthylene	341	500	68.2%
Acenaphthene	361	500	72.2%
Dibenzofuran	372	500	74.48
Diethylphthalate	383	500	76.6%
Fluorene	344	500	68.8%
N-Nitrosodiphenylamine	387	500	77.48
Hexachlorobenzene	394	500	78.8%
Pentachlorophenol	338	500	67.6%
Phenanthrene	389	500	77.8%
Anthracene	363	500	72.6%
Di-n-Butylphthalate	406	500	81.2%
Fluoranthene	387	500	77.48
Pyrene	311	500	62.2%
Butylbenzylphthalate	352	500	70.4%
Benzo (a) anthracene	390	500	78.0%
bis (2-Ethylhexyl) phthalate	284	500	56.8%
Chrysene	359	500	71.8%
Di-n-Octyl phthalate	327	500	65.4%
Benzo (b) fluoranthene	408	500	81.6%
Benzo(k) fluoranthene	403	500	80.6%
	380	500	76.0%
Benzo(a) pyrene	432	500	86.4%
Indeno (1,2,3-cd) pyrene	433	500	86.6%
Dibenz(a,h)anthracene	CCF	500	00.00

Ę

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 2 of 2

Sample ID: LCS-061507 LAB CONTROL

Lab Sample ID: LCS-061507 LIMS ID: 07-11960 Matrix: Sediment Date Analyzed: 06/19/07 12:23

QC Report No: LD21-Geomatrix, Inc. Project:

Analyte	Lab Control	Spike Added	Recovery
Benzo(g,h,i)perylene	422	500	84.4%

Semivolatile Surrogate Recovery

Results reported in $\mu g/kg$

LD21MBS1

Lab Name: ANALYTICAL RESOURCES, INC

ARI Job No: LD21

Lab File ID: LD21MB

Instrument ID: NT4

Matrix: SOLID

Client: GEOMATRIX, INC. Project: UNSPECIFIED Date Extracted: 06/15/07 Date Analyzed: 06/19/07 Time Analyzed: 1150

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		T 7 75	T 7 7 7	
	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		===========	============	=========
01	LD21LCSS1	LD21LCSS1	LD21SB	06/19/07
02	SQ-1	LD21SRM1	LD21SRM	06/19/07
03	13116000100	LD21A	LD21A	06/19/07
04	13116000100 MS	LD21AMS	LD21AMS	06/19/07
05	13116000100 MSD	LD21AMSD	LD21AMD	06/19/07
06	13116000101	LD21B	LD21B	06/19/07
07	13116000102	LD21C	LD21C	06/19/07
08	13116000103	LD21D	LD21D	06/19/07
09	13116000104	LD21E	LD21E	06/19/07
10	13116000105	LD21F	LD21F	06/19/07
11	13116000106	LD21G	LD21G	06/19/07
12	13116000107	LD21H	LD21H	06/19/07
13	13116000108	LD21I	LD21I	06/19/07
14		LD21A	LD21ADL	06/20/07
15		LD21B	LD21BDL	06/20/07
16	13116000102	LD21C	LD21CDL	06/20/07
17	13116000103	LD21D	LD21DDL	06/20/07
18	13116000104	LD21E	LD21EDL	06/20/07
19	13116000105	LD21F	LD21FDL	06/20/07
20	13116000106	LD21G	LD21GDL	06/20/07
21	13116000107	LD21H	LD21HDL	06/20/07
22	13116000108	LD21I	LD21IDL	06/20/07
23	10110000100		1001101	00/20/07
24				
25				
26		·		
27	W			
28				
29				
30				
30			I	

COMMENTS:

page 1 of 1

FORM IV SV

1.1

And the second second second

۳.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270 GC/MS Page 1 of 1

Lab Sample ID: MB-061507 LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/20/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 11:50 Instrument/Analyst: NT4/LJR GPC Cleanup: Yes Sample ID: MB-061507 METHOD BLANK

QC Report No: LD21-Geomatrix, Inc. Project: NA NA Date Sampled: NA Date Received: NA

Sample Amount: 50.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA pH: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	< 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	< 20 U
129-00-0	Pyrene	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
218-01-9	Chrysene	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b)fluoranthene	20	< 20 U
207-08-9	Benzo(k)fluoranthene	20	< 20 U
50-32-8	Benzo (a) pyrene	20	.< 20 U
193-39-5	Indeno (1,2,3-cd) pyrene	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	73.2% 81.2%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	74.8% 62.8%
d5-Phenol	69.6%	2-Fluorophenol	100%
2,4,6-Tribromophenol	77.9%	d4-2-Chlorophenol	73.6%

0036

PESTICIDES

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 23:21 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000100 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.3 Percent Moisture: 39.0%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	< 2.0 U
76-44-8	Heptachlor	2.0	< 2.0 U
309-00-2	Aldrin	2.0	< 2.0 U
60-57-1	Dieldrin	4.0	< 4.0 U
72-55-9	4,4'-DDE	4.0	< 4.0 U
72-54-8	4,4'-DDD	4.0	< 4.0 U
50-29-3	4,4'-DDT	4.0	< 4.0 U
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	101%
Tetrachlorometaxylene	97.0%

10.4

· And and and a state

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LD21B LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 00:34 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000101 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.8 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.5 Percent Moisture: 36.5%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	1.9	< 1.9 U
76-44-8	Heptachlor	1.9	< 1.9 U
309-00-2	Aldrin	1.9	< 1.9 U
60-57-1	Dieldrin	3.9	< 3.9 Ŭ
72-55-9	4,4'-DDE	3.9	< 3.9 U
72-54-8	4,4'-DDD	3.9	< 3.9 U
50-29-3	4,4'-DDT	3.9	< 3.9 Ŭ
5103-71-9	alpha Chlordane	1.9	< 1.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	114%
Tetrachlorometaxylene	94.5%

i,

to the market rates

ь g

.

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LD21C LIMS ID: 07-11962 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 00:58 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000102 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.5 Percent Moisture: 62.4%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	< 2.0 U
76-44-8	Heptachlor	2.0	< 2.0 U
309-00-2	Aldrin	2.0	< 2.0 U
60-57-1	Dieldrin	3.9	< 3.9 U
72-55-9	4,4'-DDE	3.9	< 3.9 Ŭ
72-54-8	4,4'-DDD	3.9	< 3.9 U
50-29-3	4,4'-DDT	3.9	< 3.9 U
5103-71-9	alpha Chlordane	2.0	< 2.0 Ŭ

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	91.0%
Tetrachlorometaxylene	75.5%

Lab Sample ID: LD21D LIMS ID: 07-11963 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 01:23 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000103 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.8 Percent Moisture: 51.1%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	< 2.0 U
76-44-8	Heptachlor	2.0	< 2.0 U
309-00-2	Aldrin	2.0	< 2.0 U
60-57-1	Dieldrin	3.9	< 3.9 U
72-55-9	4,4'-DDE	3.9	< 3.9 U
72-54-8	4,4'-DDD	3.9	< 3.9 U
50-29-3	4,4'-DDT	3.9	< 3.9 U
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	103%
Tetrachlorometaxylene	69.0%

Lab Sample ID: LD21E LIMS ID: 07-11964 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 01:47 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000104 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.6 Percent Moisture: 58.9%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	< 2.0 U
76-44-8	Heptachlor	2.0	< 2.0 U
309-00-2	Aldrin	2.0	< 2.0 U
60-57-1	Dieldrin	3.9	< 3.9 U
72-55-9	4,4'-DDE	3.9	< 3.9 U
72-54-8	4,4'-DDD	3.9	< 3.9 U
50-29-3	4,4'-DDT	3.9	< 3.9 Ŭ
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

	1050
Decachlorobiphenyl	105%
Tetrachlorometaxylene	78.5%

ł

Lab Sample ID: LD21F LIMS ID: 07-11965 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 02:12 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000105 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.3 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.7 Percent Moisture: 56.8%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	< 2.0 U
76-44-8	Heptachlor	2.0	< 2.0 U
309-00-2	Aldrin	2.0	< 2.0 U
60-57-1	Dieldrin	4.0	< 4.0 U
72-55-9	4,4'-DDE	4.0	< 4.0 U
72-54-8	4,4'-DDD	4.0	< 4.0 U
50-29-3	4,4'-DDT	4.0	< 4.0 U
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	98.5%
Tetrachlorometaxylene	81.5%

10000000000

ł

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LD21G LIMS ID: 07-11966 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 02:36 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000106 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: 7.9 Percent Moisture: 53.0%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
5103-71-9	alpha Chlordane	0.98	< 0.98 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	95.2%
Tetrachlorometaxylene	69.5%

A PARTIE AND A REAL PROPERTY OF THE PARTY OF

.

· · · · · · · · ·

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LD21H LIMS ID: 07-11967 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 03:00 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000107 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.7 Percent Moisture: 52.3%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	< 2.0 U
76-44-8	Heptachlor	2.0	< 2.0 U
309-00-2	Aldrin	2.0	< 2.0 U
60-57-1	Dieldrin	3.9	< 3.9 U
72-55-9	4,4'-DDE	3.9	< 3.9 U
72-54-8	4,4'-DDD	3.9	< 3.9 U
50-29-3	4,4'-DDT	3.9	< 3.9 U
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	100%
Tetrachlorometaxylene	87.0%

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 03:25 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000108 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.8 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: 7.6 Percent Moisture: 30.6%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	0.97	< 0.97 U
76-44-8	Heptachlor	0.97	< 0.97 U
309-00-2	Aldrin	0.97	< 0.97 U
60-57-1	Dieldrin	1.9	< 1.9 U
72-55-9	4,4'-DDE	1.9	< 1.9 U
72-54-8	4,4'-DDD	1.9	< 1.9 U
50-29-3	4,4'-DDT	1.9	< 1.9 U
5103-71-9	alpha Chlordane	0.97	< 0.97 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	63.8%
Tetrachlorometaxylene	56.2%

11.444

1

;

ł

SW8081 PESTICIDE SOLID SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: LD21-Geomatrix, Inc. Project:

Client ID	DCBP	TCMX	TOT OUT
			<u> </u>
MB-061507	92.5%	86.2%	0
LCS-061507	81.5%	81.2%	0
LCSD-061507	82.2%	75.0%	0
13116000100	101%	97.08	0
13116000100 MS	91.5%	80.0%	0
13116000100 MSD	96.0%	74.5%	0
SRM SQ-1	70.2%	64.28	0
13116000101	114%	94.5%	0
13116000102	91.0%	75.5%	0
13116000103	1038	69.0%	0
13116000104	105%	78.5%	0
13116000105	98.5%	81.5%	0
13116000106	95.2%	69.5%	0
13116000107	100%	87.0%	0
13116000108	63.8%	56.2%	0

	LCS/MB LIMITS	QC LIMITS
(DCBP) = Decachlorobiphenyl	(69-121)	(52-137)
(TCMX) = Tetrachlorometaxylene	(60-101)	(48-121)

Prep Method: SW3550B Log Number Range: 07-11960 to 07-11968

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted MS/MSD: 06/15/07

Date Analyzed MS: 06/20/07 23:45 MSD: 06/21/07 00:10 Instrument/Analyst MS: ECD4/YZ MSD: ECD4/YZ GPC Cleanup: No

Sulfur Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000100 MS/MSD

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount MS: 25.0 g-dry-wt MSD: 25.0 g-dry-wt Final Extract Volume MS: 5.0 mL MSD: 5.0 mL Dilution Factor MS: 2.00 MSD: 2.00 Silica Gel: Yes pH: 7.3 Percent Moisture: 39.0%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
gamma-BHC (Lindane)	< 2.00	8.34	9.98	83.6%	6.88	10.0	68.8%	19.2%
Heptachlor	< 2.00	9.66	9,98	96.8%	7.64	10.0	76.4%	23.4%
Aldrin	< 2.00	8.90	9.98	89.2%	7.52	10.0	75.2%	16.8%
Dieldrin	< 3.99	17.3	20.0	86.5%	13.5	20.0	67.5%	24.7%
4,4'-DDT	< 3.99	18.4	20.0	92.0%	16.3	20.0	81.5%	12.1%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 23:45 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000100 MATRIX SPIKE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.3 Percent Moisture: 39.0%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	
76-44-8	Heptachlor	2.0	
309-00-2	Aldrin	2.0	
60-57-1	Dieldrin	4.0	
72-55-9	4,4'-DDE	4.0	< 4.0 U
72-54-8	4,4'-DDD	4.0	< 4.0 U
50-29-3	4,4'-DDT	4.0	
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

,	
Decachlorobiphenyl	91.5%
Tetrachlorometaxylene	80.0%

í

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized:

Date Extracted: 06/15/07 Date Analyzed: 06/21/07 00:10 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000100 MATRIX SPIKE DUP

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes pH: 7.3 Percent Moisture: 39.0%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.0	
76-44-8	Heptachlor	2.0	
309-00-2	Aldrin	2.0	
60-57-1	Dieldrin	4.0	
72-55-9	4,4'-DDE	4.0	< 4.0 U
72-54-8	4,4'-DDD	4.0	< 4.0 U
50-29-3	4,4'-DDT	4.0	
5103-71-9	alpha Chlordane	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	96.0%
Tetrachlorometaxylene	74.5%

:

i

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: SRM SQ-1 LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 22:56 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: SRM SQ-1 STANDARD REFERENCE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: NA Date Received: NA

Sample Amount: 23.9 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: NA Percent Moisture: 40.2%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	42	< 42 Y
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.7	< 1.7 Y
60-57-1	Dieldrin	4.1	< 4.1 Y
72-55-9	4,4'-DDE	5.1	< 5.1 Y
72-54-8	4,4'-DDD	2.1	< 2.1 U
50-29-3	4,4'-DDT	7.2	< 7.2 Y
5103-71-9	alpha Chlordane	1.0	6.5

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	70.2%
Tetrachlorometaxylene	64.2%

Lab Sample ID: LCS-061507 LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted LCS/LCSD: 06/15/07

Date Analyzed LCS: 06/20/07 16:02 LCSD: 06/20/07 16:26 Instrument/Analyst LCS: ECD4/YZ LCSD: ECD4/YZ GPC Cleanup: No

Sulfur Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-061507 LCS/LCSD

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount LCS: 25.0 g-dry-wt LCSD: 25.0 g-dry-wt Final Extract Volume LCS: 5.0 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: Yes pH: NA Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Analy ce							
gamma-BHC (Lindane)	3.46	4.00	86.5%	3.34	4.00	83.5%	3.5%
Heptachlor	3.98	4.00	99.5%	3.78	4.00	94.5%	5.2%
Aldrin	3.66	4.00	91.5%	3.58	4.00	89.5%	2.2%
Dieldrin	6.72	8.00	84.0%	6.70	8.00	83.8%	0.3%
4,4'-DDE	6.98	8.00	87.2%	6.92	8.00	86.5%	0.9%
4,4'-DDD	6.44	8.00	80.5%	6.88	8.00	86.0%	6.6%
4,4'-DDT	6.48	8.00	81.0%	7.12	8.00	89.0%	9.4%
alpha Chlordane	3.20	4.00	80.0%	3.16	4.00	79.0%	1.3%

Pest/PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	81.5%	82.2%
Tetrachlorometaxylene	81.2%	75.0%

Reported in μ g/kg (ppb) RPD calculated using sample concentrations per SW846. FORM 4

SAMPLE NO.

PESTICIDE METHOD BLANK SUMMARY

LD39MBS1 Lab Name: ANALYTICAL RESOURCES, INC Client: GEOMATRIX ARI Job No.: LD21 Project: Lab Sample ID: LD39MBS1 Lab File ID: 0620-04R Matrix (soil/water) SOLID Extraction: (SepF/Cont/Sonc) SW3550B Sulfur Cleanup (Y/N) Y Date Extracted: 06/15/07 Date Analyzed (1): 06/20/07 Date Analyzed (2): 06/20/07 Time Analyzed (1): 1537 Time Analyzed (2): 1537 Instrument ID (1): ECD4 Instrument ID (2): ECD4 GC Column (1): RTX-440 ID: 0.53(mm) GC Column (2): STX-CLP2 ID: 0.53 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	1		-	
	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
			==========	
01	LD39LCSS1	LD39LCSS1	06/20/07	06/20/07
02	LD39LCSDS1	LD39LCSDS1	06/20/07	06/20/07
03	SO-1	LD21SRM1	06/20/07	06/20/07
04	13116000100	LD21A	06/20/07	06/20/07
05		LD21AMS	06/20/07	06/20/07
06	13116000100	LD21AMSD	06/21/07	06/21/07
07	13116000101	LD21B	06/21/07	06/21/07
08	13116000102	LD21C	06/21/07	06/21/07
. 09	13116000103	LD21D	06/21/07	06/21/07
10	13116000104	LD21E	06/21/07	06/21/07
11	13116000105	LD21F	06/21/07	06/21/07
12	13116000106	LD21G	06/21/07	06/21/07
13		LD21H	06/21/07	06/21/07
14	13116000108	LD21I	06/21/07	06/21/07
		·	' · · /	

page 1 of 1

FORM IV PEST

Lab Sample ID: MB-061507 LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/21/07

Date Extracted: 06/15/07 Date Analyzed: 06/20/07 15:37 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No QC Report No: LD21-Geomatrix, Inc. Project:

Sample ID: MB-061507

METHOD BLANK

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: NA Percent Moisture: NA

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	1.0	< 1.0 U
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.0	< 1.0 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
5103-71-9	alpha Chlordane	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	92.5%
Tetrachlorometaxylene	86.2%

PCBS

0055

The set of the set

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 00:03 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000100 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 31.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.3 Percent Moisture: 39.0%

RL	Result
16	< 16 U
16	< 16 U
16	< 16 U
16	< 16 U
16	< 16 U
16	< 16 U
16	< 16 U
	16 16 16 16 16 16 16

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	75.2%
Tetrachlorometaxylene	75.2%

10

States - and the last

10, 21, 21, 21, 2

12

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21B LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 00:20 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000101 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 50.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.5 Percent Moisture: 36.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	9.9	< 9.9 U
53469-21-9	Aroclor 1242	9.9	< 9.9 U
12672-29-6	Aroclor 1248	9.9	< 9.9 U
11097-69-1	Aroclor 1254	9.9	12
11096-82-5	Aroclor 1260	9.9	< 9.9 U
11104-28-2	Aroclor 1221	9.9	< 9.9 U
11141-16-5	Aroclor 1232	9.9	< 9.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	81.2%
Tetrachlorometaxylene	79.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21C LIMS ID: 07-11962 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 00:37 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000102 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.1 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.5 Percent Moisture: 62.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	17	< 17 U
53469-21-9	Aroclor 1242	17	< 17 U
12672-29-6	Aroclor 1248	17	< 17 U
11097-69-1	Aroclor 1254	17	< 17 U
11096-82-5	Aroclor 1260	17	< 17 U
11104-28-2	Aroclor 1221	17	< 17 U
11141-16-5	Aroclor 1232	33	< 33 Y

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	79.8%
Tetrachlorometaxylene	76.5%

j.

ALLEY A LOCAL AND

Ť

-

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21D LIMS ID: 07-11963 Matrix: Sediment Data Release Authorized:

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 00:54 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000103 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.8 Percent Moisture: 51.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	< 16 U
53469-21-9	Aroclor 1242	16	< 16 U
12672-29-6	Aroclor 1248	16	< 16 U
11097-69-1	Aroclor 1254	16	31
11096-82-5	Aroclor 1260	16	26
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	33	< 33 Y

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	92.5%
Tetrachlorometaxylene	79.8%

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21E LIMS ID: 07-11964 Matrix: Sediment Data Release Authorized:

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 01:12 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000104 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.6 Percent Moisture: 58.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	17	< 17 U
53469-21-9	Aroclor 1242	17	< 17 U
12672-29-6	Aroclor 1248	17	< 17 U
11097-69-1	Aroclor 1254	17	< 17 U
11096-82-5	Aroclor 1260	17	< 17 U
11104-28-2	Aroclor 1221	17	< 17 U
11141-16-5	Aroclor 1232	17	< 17 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	83.8%
Tetrachlorometaxylene	78.5%

ANALYTICAL RESOURCES

> n i,

and a state of the second second second second second second second second second second second second second s

.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21F LIMS ID: 07-11965 Matrix: Sediment Data Release Authorized: A Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 01:29 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: 13116000105 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.3 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.7 Percent Moisture: 56.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	< 16 U
53469-21-9	Aroclor 1242	16	< 16 U
12672-29-6	Aroclor 1248	16	25
11097-69-1	Aroclor 1254	16	18
11096-82-5	Aroclor 1260	16	24
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	16	< 16 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	87.0%
Tetrachlorometaxylene	81.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21G LIMS ID: 07-11966 Matrix: Sediment Data Release Authorized: A Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 01:46 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000106 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.2 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.9 Percent Moisture: 53.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	< 16 U
53469-21-9	Aroclor 1242	16	< 16 U
12672-29-6	Aroclor 1248	16	< 16 U
11097-69-1	Aroclor 1254	16	36
11096-82-5	Aroclor 1260	16	26
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	16	< 16 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.0%
Tetrachlorometaxylene	78.5%

.

1114

414131

5 . L . . .

10 No. 10

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21H LIMS ID: 07-11967 Matrix: Sediment Data Release Authorized: M Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 02:03 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000107 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.2 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.7 Percent Moisture: 52.3%

RL

Result

CAS Number Analyte

12674-11-2 Aroclor 1016 16 < 16 U < 16 U 53469-21-9 Aroclor 1242 16 < 16 U Aroclor 1248 16 12672-29-6 Aroclor 1254 < 16 U 11097-69-1 16 Aroclor 1260 < 16 U 11096-82-5 16 Aroclor 1221 < 16 U 11104-28-2 16 < 16 U Aroclor 1232 11141-16-5 16

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	85.2%
Tetrachlorometaxylene	81.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 02:20 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000108 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.6 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.6 Percent Moisture: 30.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	< 16 U
53469-21-9	Aroclor 1242	16	< 16 U
12672-29-6	Aroclor 1248	16	< 16 U
11097-69-1	Aroclor 1254	16	< 16 U
11096-82-5	Aroclor 1260	16	< 16 U
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	16	< 16 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	82.8%
Tetrachlorometaxylene	77.0%

1.01.100.0

÷

- 11 - 12 - 1

the state of the second

1

<u>р</u>.

SW8082/PCB SOLIDS SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: LD21-Geomatrix, Inc. Project:

	DCBP	DCBP	TCMX	TCMX	
Client ID	% REC	LCL-UCL	% REC	LCL-UCL	TOT OUT
13116000100	75.2%	42-149	75.2%	47-127	0
13116000101	81.2%	42-149	79.0%	47-127	0
13116000102	79.8%	42-149	76.5%	47-127	0
13116000103	92.5%	42-149	79.8%	47-127	0
13116000104	83.8%	42-149	78.5%	47-127	0
13116000105	87.0%	42-149	81.2%	47-127	0
13116000106	89.0%	42-149	78.5%	47-127	0
13116000107	85.2%	42-149	81.2%	47-127	0
MB-061507	87.2%	60-125	86.5%	60-120	0
LCS-061507	91.8%	60-125	92.5%	60-120	0
SRM SQ-1	88.0%	42-149	95.2%	47-127	0
13116000108	82.8%	42-149	77.0%	47-127	0
13116000108 MS	88.0%	42-149	82.8%	47-127	0
13116000108 MSD	96.8%	42-149	83.8%	47-127	0

Prep Method: SW3550B Log Number Range: 07-11960 to 07-11968

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted MS/MSD: 06/15/07

Date Analyzed MS: 06/19/07 02:37 MSD: 06/19/07 02:54 Instrument/Analyst MS: ECD5/PK MSD: ECD5/PK GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No MS/MSD

Sample ID: 13116000108

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount MS: 30.9 g-dry-wt MSD: 31.1 g-dry-wt Final Extract Volume MS: 5.0 mL Dilution Factor MS: 1.00 MSD: 1.00 Silica Gel: No pH: 7.6 Percent Moisture: 30.6%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 16.4 U	51.0	81.0	63.0%	64.3	80.4	80.0%	23.1%
Aroclor 1260	< 16.4 U	72.5	81.0	89.5%	79.9	80.4	99.4%	9.7%

Results reported in μ g/kg (ppb)

RPD calculated using sample concentrations per SW846.

ANALYTICAL RESOURCES

8

.

18104-0412

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 02:37 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000108 MATRIX SPIKE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 30.9 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.6 Percent Moisture: 30.6%

CAS Number	Analyte	RL	Result	
12674-11-2	Aroclor 1016	16		
53469-21-9	Aroclor 1242	16	< 16 U	
12672-29-6	Aroclor 1248	16	< 16 U	
11097-69-1	Aroclor 1254	16	< 16 U	
11096-82-5	Aroclor 1260	16		
11104-28-2	Aroclor 1221	16	< 16 U	
11141-16-5	Aroclor 1232	16	< 16 U	

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	82.8%

ANALYTICAL RESOURCES Ŗ

1

51 W. W.

:

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/19/07 02:54 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000108 MATRIX SPIKE DUP

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Sample Amount: 31.1 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.6 Percent Moisture: 30.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	
53469-21-9	Aroclor 1242	16	< 16 U
12672-29-6	Aroclor 1248	16	< 16 U
11097-69-1	Aroclor 1254	16	< 16 U
11096-82-5	Aroclor 1260	16	
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	16	< 16 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	96.8%
Tetrachlorometaxylene	83.8%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: SRM SQ-1 LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/18/07 23:46 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: SRM SQ-1 STANDARD REFERENCE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: NA Date Received: NA

Sample Amount: 26.9 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: NA Percent Moisture: 40.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	130
11096-82-5	Aroclor 1260	19	< 19 U
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	95.2%

1.15

i E

1.1

10,000

.

÷

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LCS-061507 LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/18/07 23:29 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-061507 LAB CONTROL

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: NA Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Aroclor 1016	78.7	100	78.7%
Aroclor 1260	95.7	100	95.7%

PCB Surrogate Recovery

Decachlorobiphenyl 91.8% Tetrachlorometaxylene 92.5%

Results reported in $\mu g/kg$ (ppb)

PCB METHOD BLANK SUMMARY

BLANK NO.

LD21MBS1

Lab Name: ANALYTICAL RESOURCES, INC

ARI Job No.: LD21

Lab Sample ID: LD21MBS1

Date Extracted: 06/15/07

Date Analyzed: 06/18/07

Time Analyzed: 2312

Client: GEOMATRIX, INC. Project: UNSPECIFIED Lab File ID: 0618B038 Matrix: SOLID Instrument ID: ECD5

GC Columns: ZB5/ZB35

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED
01 02 03 04 05 06 07 08 09 10	LD21LCSS1 SQ-1 13116000100 13116000101 13116000102 13116000103 13116000104 13116000105 13116000106	SAMPLE ID ====================================	ANALYZED ======= 06/18/07 06/19/07 06/19/07 06/19/07 06/19/07 06/19/07 06/19/07 06/19/07
11 12 13	13116000108 13116000108 MS	LD21I LD21IMS LD21IMSD	06/19/07 06/19/07 06/19/07
]	

ALL RUNS ARE DUAL COLUMN

page 1 of 1

FORM IV PCB

and the state of the set

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: MB-061507 LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Extracted: 06/15/07 Date Analyzed: 06/18/07 23:12 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

f

i

11 11 10

ŗ,

CONTRACTOR - A

Sample ID: MB-061507 METHOD BLANK

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: NA Percent Moisture: NA

Analyte	RL	Result		
Aroclor 1016	20	< 20 U		
Aroclor 1242	20	< 20 U		
Aroclor 1248	20	< 20 U		
Aroclor 1254	20	< 20 U		
Aroclor 1260	20	< 20 U		
Aroclor 1221	20	< 20 U		
Aroclor 1232	20	< 20 U		
	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221	Aroclor 1016 20 Aroclor 1242 20 Aroclor 1248 20 Aroclor 1254 20 Aroclor 1260 20 Aroclor 1221 20		

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	87.2%
Tetrachlorometaxylene	86.5%

METALS

ANALYTICAL RESOURCES

化林林花 化氯化化氯化 化分子分子 医副外部的 计分析 化分子分子

.....

1

1

Allow and a site with a

4

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000100 SAMPLE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 63.3%

Data Release Authorized:

Lab Sample ID: LD21A LIMS ID: 07-11960

Matrix: Sediment

Reported: 06/19/07

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
	00/10/07	C010D	06/18/07	7440-36-0	Antimony	7	7	U
3050B	06/15/07	6010B			-	7	7	-
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	7	7	U
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.3	0.3	U
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	0.7	32.7	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.3	23.1	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	3	9	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.06	0.06	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	1	30	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.3	0.3	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.4	0.4	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	1	56	

U-Analyte undetected at given RL RL-Reporting Limit

10.00

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: LD21A

Data Release Authorized

LIMS ID: 07-11960 Matrix: Sediment

Reported: 06/19/07

Sample ID: 13116000100 DUPLICATE

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Antimony	6010B	7 U	7 U	0.0%	+/- 7	L	
Arsenic	6010B	7 ט	7 U	0.0%	+/- 7	L	
Cadmium	6010B	0.3 U	0.3 U	0.0%	+/- 0.3	L	
Chromium	6010B	32.7	33.2	1.5%	+/- 20%		
Copper	6010B	23.1	23.8	3.0%	+/- 20%		
Lead	6010B	9	10	10.5%	+/- 3	L	
Mercury	7471A	0.06	0.06	0.0%	+/- 0.06	L	
Nickel	6010B	30	31	3.3%	+/- 20%		
Selenium	7740	0.3 U	0.3 U	0.0%	+/- 0.3	\mathbf{L}	
Silver	6010B	0.4 U	0.4 U	0.0%	+/- 0.4	\mathbf{L}	
Zinc	6010B	56	58	3.5%	+/- 20%		

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

÷

1.12

÷

.

- 141 - 11

4

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000100 MATRIX SPIKE

Lab Sample ID: LD21A LIMS ID: 07-11960 Matrix: Sediment Data Release Authorized Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	۶ Recovery	Q
Antimony	6010B	7 U	61	291	21.0%	N
Arsenic	6010B	7. U	293	291	101%	
Cadmium	6010B	0.3 U	69.0	7.2.7	94.9%	
Chromium	6010B	32.7	103	72.7	96.7%	
Copper	6010B	23.1	95.6	72.7	99.7%	
Lead	6010B	9	277	291	92.1%	
Mercury	7471A	0.06	0.70	0.617	104%	
Nickel	6010B	30	98	72.7	93.5%	
Selenium	7740	0.3 U	14.7	15.7	93.6%	
Silver	6010B	0.4 U	68.6	72.7	94.48	
Zinc	6010B	56	129	72.7	100%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

1

ť

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000101 SAMPLE

Lab Sample ID: LD21B LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 64.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
*******	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>							
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	7	7	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	7	7	U
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.3	0.3	U
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	0.7	33.3	
3050B	. 06/15/07	6010B	06/18/07	7440-50-8	Copper	0.3	22.1	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	3	9	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.05	0.05	U
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	1	31	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.3	0.3	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.4	0.4	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	1	50	

U-Analyte undetected at given RL RL-Reporting Limit

ANALYTICAL RESOURCES INCORPORATED ł

 $(a_1, a_2) \in \mathcal{A}$

.

110

·····

0.647 (55.1.1

÷

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000102 SAMPLE

Lab Sample ID: LD21C LIMS ID: 07-11962 Matrix: Sediment Data Release Authorized: Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 45.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
	06/15/07	C010D	06/10/07	7440-36-0	Antimony	10	10	υ
3050B	06/15/07	6010B	06/18/07		-			0
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	10	10	
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.4	0.7	
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	1	51	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.4	47.3	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	4	16	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.1	0.1	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	2	44	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.4	0.4	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.6	0.6	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	2	94	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000103 SAMPLE

Lab Sample ID: LD21D LIMS ID: 07-11963 Matrix: Sediment Data Release Authorized: Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 52.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
• • • • • • • • • • • • • • • • • • •							_	
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	9	9	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	9	9	U
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.4	0.7	
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	0.9	42.2	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.4	44.3	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	4	21	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.07	0.09	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	2	38	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.4	0.4	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.6	0.6	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	2	163	

U-Analyte undetected at given RL RL-Reporting Limit

-11400 1244

ANALYTICAL RESOURCES

Second second

1.1

The second second second

į.

..

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000104 SAMPLE

Lab Sample ID: LD21E LIMS ID: 07-11964 Matrix: Sediment Data Release Authorized: Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 45.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
	06/15/07	C010D	06/10/07	7440-36-0	Antimony	10	10	U
3050B	06/15/07	6010B	06/18/07	/440-36-0	Ancimony			0
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	10	10	
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.4	0.8	
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	1	44	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.4	46.8	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	4	17	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.09	0.15	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	2	39	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.4	0.5	
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.6	0.6	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	2	98	

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

ANALYTICAL RESOURCES INCORPORATED

+

2

1.1.1.1.1.1.1.1

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000105 SAMPLE

Lab Sample ID: LD21F LIMS ID: 07-11965 Matrix: Sediment Data Release Authorized Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 45.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
	Date							
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	10	10	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	10	10	
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.4	0.8	
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	1	39	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.4	41.3	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	4	19	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.08	0.14	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	2	35	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.4	0.5	
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.6	0.6	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	2	106	

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

ANALYTICAL RESOURCES

t

19 - 19 - 19 -

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000106 SAMPLE

Lab Sample ID: LD21G LIMS ID: 07-11966 Matrix: Sediment Data Release Authorized Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 50.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	10	10	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	10	10	U
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.4	0.6	
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	1	29	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.4	30.3	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	4	13	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.07	0.08	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	2	27	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.4	0.4	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.6	0.6	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	2	76	
						.*		

U-Analyte undetected at given RL RL-Reporting Limit

0082

ANALYTICAL RESOURCES

.....

•••

4

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000107 SAMPLE

Lab Sample ID: LD21H LIMS ID: 07-11967 Matrix: Sediment Data Release Authorized Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 53.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
						_	_	
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	9	9	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	9	9 ·	U
· 3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.4	0.6	
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	0.9	34.2	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.4	28.2	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	4	13	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.08	0.11	
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	2	33	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.4	0.5	
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.6	0.6	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	2	67	

U-Analyte undetected at given RL RL-Reporting Limit

ANALYTICAL RESOURCES INCORPORATED t.

ţ,

111

÷

5

į,

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000108 SAMPLE

Lab Sample ID: LD21I LIMS ID: 07-11968 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: 05/15/07 Date Received: 05/31/07

Percent Total Solids: 74.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	6	б	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	6	6	U
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.2	0.2	U
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	0.6	22.8	
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.2	12.4	
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	2	3	
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.05	0.05	U
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	1	23	
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.2	0.2	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.4	0.4	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	1	34	

U-Analyte undetected at given RL RL-Reporting Limit

ł

·

1. . . .

11111111

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: METHOD BLANK

Lab Sample ID: LD21MB LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
			0.6./1.0./0.5			-	r.	
3050B	06/15/07	6010B	06/18/07	7440-36-0	Antimony	5	· 5	U
3050B	06/15/07	6010B	06/18/07	7440-38-2	Arsenic	5	5	U
3050B	06/15/07	6010B	06/18/07	7440-43-9	Cadmium	0.2	0.2	U
3050B	06/15/07	6010B	06/18/07	7440-47-3	Chromium	0.5	0.5	U
3050B	06/15/07	6010B	06/18/07	7440-50-8	Copper	0.2	0.2	U
3050B	06/15/07	6010B	06/18/07	7439-92-1	Lead	2	2	U
CLP	06/15/07	7471A	06/15/07	7439-97-6	Mercury	0.05	0.05	U
3050B	06/15/07	6010B	06/18/07	7440-02-0	Nickel	1	1	U
3050B	06/15/07	7740	06/18/07	7782-49-2	Selenium	0.2	0.2	U
3050B	06/15/07	6010B	06/18/07	7440-22-4	Silver	0.3	0.3	U
3050B	06/15/07	6010B	06/18/07	7440-66-6	Zinc	1	1	U

U-Analyte undetected at given RL RL-Reporting Limit

1.1.1

ŷ

A subsection of the second second second

1

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: LAB CONTROL

QC Report No: LD21-Geomatrix, Inc. Project:

Lab Sample ID: LD21LCS LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

2noluto	Analysis Method	Spike Found	Spike Added	१ Recovery	Q
Analyte	method	Found	naueu		×
Antimony	6010B	210	200	105%	
Arsenic	6010B	213	200	106%	
Cadmium	6010B	52.4	50.0	105%	
Chromium	6010B	51.2	50.0	102%	
Copper	6010B	51.2	50.0	102%	
Lead	6010B	211	200	106%	
Mercury	.7471A	1.02	1.00	102%	
Nickel	6010B	50	50	100%	
Selenium	7740	10	10	100%	
Silver	6010B	50.2	50.0	100%	
Zinc	6010B	50	50	100%	

Reported in mg/kg-dry

N-Control limit not met Control Limits: 80-120%

f

ł,

à

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: STD REFERENCE ERA D044540

Lab Sample ID: LD21SRM LIMS ID: 07-11961 Matrix: Sediment Data Release Authorized: Reported: 06/19/07 QC Report No: LD21-Geomatrix, Inc. Project:

Date Sampled: NA Date Received: NA

Analyte	Analysis Method	Analysis Date	mg/kg-dry	Certified Value	Advisory Range
Antimony	6010B	06/18/07	49	79	5-162
Arsenić	6010B	06/18/07	105	96	76-115
Cadmium	6010B	06/18/07	58.1	54.6	44.5-64.7
Chromium	6010B	06/18/07	73.4	68.8	54.0-83.6
Copper	6010B	06/18/07	89.6	83.8	69.0-98.6
Lead	6010B	06/18/07	128	121	98-145
Mercury	7471A	06/15/07	5.13	5.82	3.96-7.68
Nickel	6010B	06/18/07	56.0	54.5	44.4-64.6
Selenium	7740	06/18/07	102	104	49-129
Silver	6010B	06/18/07	110	106	64.9-147
Zinc	6010B	06/18/07	257	243	193-293

*Lower advisory range for antimony is the calculated detection limit.

GENERAL CHEMISTRY

t

Matrix: Sediment Data Release Authorized Reported: 06/19/07 Project: NA Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	06/14/07	Percent	< 0.01 U
Total Organic Carbon	06/15/07 06/18/07	Percent	< 0.020 U < 0.020 U

÷

÷

Matrix: Sediment Data Release Authorized Reported: 06/19/07 Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000100 ARI ID: 07-11960 LD21A

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	62.60
Total Organic Carbon	06/15/07 061507#1	Plumb,1981	Percent	0.020	1.45

RL Analytical reporting limit

1.11

7.5

è

(1,1,1,1)

Matrix: Sediment Data Release Authorized: Reported: 06/19/07

Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000101 ARI ID: 07-11961 LD21B

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	64.00
Total Organic Carbon	06/15/07 061507#1	Plumb,1981	Percent	0.020	1.14

RL

Analytical reporting limit Undetected at reported detection limit U

11.27

1

A DATA SANGARAN AND AND A

.* ł

ź

Matrix: Sediment Data Release Authorized Reported: 06/19/07

Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000102 ARI ID: 07-11962 LD21C

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	44.60
Total Organic Carbon	06/15/07 061507#1	Plumb,1981	Percent	0.020	2.14

RL

Analytical reporting limit Undetected at reported detection limit U

:

ķ

ŝ

and a second second second second second second second second second second second second second second second

Matrix: Sediment Data Release Authorized Reported: 06/19/07

Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000103 ARI ID: 07-11963 LD21D

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	53.50
Total Organic Carbon	06/15/07 061507#1	Plumb,1981	Percent	0.020	1.26

RL Analytical reporting limit

1.0000

ŝ

101111-0

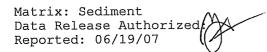
Matrix: Sediment Data Release Authorized Reported: 06/19/07 Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000104 ARI ID: 07-11964 LD21E

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	45.60
Total Organic Carbon	06/15/07 061507#1	Plumb,1981	Percent	0.020	1.74

RL Analytical reporting limit

:


•

W. 17.

r

A DESCRIPTION OF A DESC

Ť

Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000105 ARI ID: 07-11965 LD21F

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	47.10
Total Organic Carbon	06/18/07 061807#1	Plumb,1981	Percent	0.020	2.05

RL Analytical reporting limit

ų

ľ.

.

Ť.

Quarter to

÷

-

Matrix: Sediment Data Release Authorized: Reported: 06/19/07 Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000106 ARI ID: 07-11966 LD21G

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	49.80
Total Organic Carbon	06/18/07 061807#1	Plumb, 1981	Percent	0.020	3.27

RL Analytical reporting limit

ţ

Matrix: Sediment Data Release Authorized Reported: 06/19/07 Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000107 ARI ID: 07-11967 LD21H

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	53.10
Total Organic Carbon	06/18/07 061807#1	Plumb,1981	Percent	0.020	1.69

RL Analytical reporting limit

Matrix: Sediment Data Release Authorized: Reported: 06/19/07 Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Client ID: 13116000108 ARI ID: 07-11968 LD21I

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/07 061407#1	EPA 160.3	Percent	0.01	71.60
Total Organic Carbon	06/18/07 061807#1	Plumb,1981	Percent	0.020	0.800

RL Analytical reporting limit

U Undetected at reported detection limit

A CONTRACTOR STOR

0.000

;

÷

ł;

1944) 1944) 1944)

ł,

. 1

ŀ

And a second second

Matrix: Sediment Data Release Authorized: Reported: 06/19/07 Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: LD21A Client ID:	13116000100				
Total Solids	06/14/07	Percent	62.60	62.90 61.90	0.8%
Total Organic Carbon	06/15/07	Percent	1.45	1.34 1.70	12.3%

Soil Replicate Report-LD21

ŗ

÷.

-ar i cuin

Matrix: Sediment Data Release Authorized: Reported: 06/19/07			Project: NA Event: NA Date Sampled: 05/15/07 Date Received: 05/31/07			
Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: LD21A Client ID	: 1311600010	0				
Total Organic Carbon	06/15/07	Percent	1.45	3.25	1.76	102.0%

Soil MS/MSD Report-LD21

r,

۲,

ł

й С

a a caracteria a serie da serie da serie da serie da serie da serie da serie da serie da serie da serie da ser

Matrix: Sediment Data Release Authorized Reported: 06/19/07 Project: NA Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Total Organic Carbon	06/15/07 06/18/07	Percent	0.491	0.500 0.500	98.2% 90.6%

. . . .

۰.

.....

2010.004

341. J. J.

Matrix: Sediment Data Release Authorized Reported: 06/19/07

١

Project: NA Event: NA Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon	06/15/07	Percent	3.22	3.35	96.1%
NIST #8704	06/18/07		3.30	3.35	98.5%

TOTAL SOLIDS

Extractions Total Solids-extts Data By: Tia Hawk Created: 6/14/07 Worklist: 5599 Analyst: DAP Comments:

	ARI ID CLIENT ID	Wet Wt (g)	Dry Wt (g)	% Solids	рН
1	L. LD21A 07-11960 13116000100	11.54	7.50	61.0	7.3
2	2. LD21B 07-11961 13116000101	10.14	6.88	63.5	7.5
3	3. LD21C 07-11962 13116000102	10.66	4.72	37.6	7.5
Ą	4. LD21D 07-11963 13116000103	10.92	5.92	48.9	7.8
Ē	5. LD21E 07-11964 13116000104	12.60	5.84	41.1	7.6
6	5. LD21F 07-11965 13116000105	10.30	5.12	43.2	7.7
	7. LD21G 07-11966 13116000106	11.02	5.80	47.0	7.9
8	3. LD21H 07-11967 13116000107	11.94	6.30	47.7	7.7
2	9. LD21I 07-11968 13116000108	13.20	9.52	69.4	7.6

Solids Data Entry Report Date: 06/16/07

с.

Checked by: EJR Date: 6/18/07 Data Analyst: DM

Solids Determination performed on 06/15/07 by DM

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
LD21 LD21 LD21 LD21 LD21 LD21 LD21 LD21	A B C D E F G H	13116000100 13116000101 13116000102 13116000103 13116000104 13116000105 13116000106 13116000107	1.006 1.039 1.023 1.007 1.010 1.035 1.035 1.044	$ \begin{array}{c} 10.474\\ 10.346\\ 10.271\\ 10.520\\ 10.402\\ 10.347\\ 10.115\\ 10.618\\ \end{array} $	6.998 7.006 5.240 5.988 5.241 5.274 5.598 6.147	63.29 64.11 45.60 52.36 45.05 45.52 50.25 53.30
LD21	I.	13116000108	1.043	10.658	8.169	74.11

Analytical Resources, Incorporated Analytical Chemists and Consultants

31 August 2007

Cliff Whitmus Geomatrix, Inc. 3500 188th Street SW, Suite 600 Lynnwood, WA 98037-4763

RE: Project: Port of Everett ARI Job No.: LK71

Dear Cliff:

Please find enclosed the final data package for the samples from the project referenced above. Analytical Resources, Inc. received these samples in good condition on May 17, 2007. There were no discrepancies in the paperwork.

The samples were removed from hold and they were analyzed for SVOAs, pesticides, PCBs, metals and TOC as requested on August 10, 2007.

Problems associated with these analyses are discussed in the case narrative.

A copy of this package will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

nor Gan

Mark Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file LK71

MDH/mdh

Case Narrative

prepared for

GEOMATRIX CONSULTANTS

Project: Port of Everett

ARI JOB NO: LK71

prepared by

Analytical Resources, Inc.

0001

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Case Narrative

Client: Geomatrix, Inc. Project: Port of Everett Matrix: Sediment ARI Job No: LK71 Date: August 31, 2007

SVOAs Analyses

These analyses proceeded without incident of note.

Pesticides Analyses

A matrix spike (MS) and a matrix spike duplicate (MSD) was extracted and analyzed in conjunction with sample 13116000025. The percent recoveries and RPDs were high following the initial analyses of the MS/MSD. This was due to the presence of PCB patterns in the native sample. Since the percent recoveries for all compounds were within acceptable QC limits for the corresponding LCS, no corrective actions were taken.

PCBs Analyses

These analyses proceeded without incident of note.

Conventionals Analyses

These analyses proceeded without incident of note.

Metals Analyses

An MS and a matrix duplicate (MD) were prepared and analyzed in conjunction with sample 13116000025. The percent recoveries were low and the RPDs were high for several elements following the initial analyses of the MS and the MD. The affected samples were re-prepared and re-analyzed. The percent recoveries for all elements were within acceptable QC limits for the re-analysis except for Sb which is commonly recovered at low percentages. The RPD for zinc was slightly high following the re-analysis of the MD. Since the percent recoveries for all elements were within acceptable QC limits for the all elements were within acceptable QC limits for the re-analysis except for Sb which is commonly recovered at low percentages. The RPD for zinc was slightly high following the re-analysis of the MD. Since the percent recoveries for all elements were within acceptable QC limits for the corresponding LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPD. No further corrective actions were taken. The results for the re-analyses only have been submitted.

Data Summary Package

prepared for

GEOMATRIX CONSULTANTS

Project: Port of Everett

ARI JOB NO: LK71

prepared by

Analytical Resources, Inc.

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Case Narrative

Client: Geomatrix, Inc. Project: Port of Everett Matrix: Sediment ARI Job No: LK71 Date: August 31, 2007

SVOAs Analyses

These analyses proceeded without incident of note.

Pesticides Analyses

A matrix spike (MS) and a matrix spike duplicate (MSD) was extracted and analyzed in conjunction with sample 13116000025. The percent recoveries and RPDs were high following the initial analyses of the MS/MSD. This was due to the presence of PCB patterns in the native sample. Since the percent recoveries for all compounds were within acceptable QC limits for the corresponding LCS, no corrective actions were taken.

PCBs Analyses

These analyses proceeded without incident of note.

Conventionals Analyses

These analyses proceeded without incident of note.

Metals Analyses

An MS and a matrix duplicate (MD) were prepared and analyzed in conjunction with sample 13116000025. The percent recoveries were low and the RPDs were high for several elements following the initial analyses of the MS and the MD. The affected samples were re-prepared and re-analyzed. The percent recoveries for all elements were within acceptable QC limits for the re-analysis except for Sb which is commonly recovered at low percentages. The RPD for zinc was slightly high following the re-analysis of the MD. Since the percent recoveries for all elements were within acceptable QC limits for the all elements were within acceptable QC limits for the re-analysis except for Sb which is commonly recovered at low percentages. The RPD for zinc was slightly high following the re-analysis of the MD. Since the percent recoveries for all elements were within acceptable QC limits for the corresponding LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPD. No further corrective actions were taken. The results for the re-analyses only have been submitted.

0004

SEMIVOLATILE

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 14:26 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes Sample ID: 13116000025 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 54.7% pH: 7.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	540
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	630
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	290
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	34
83-32-9	Acenaphthene	20	570
132-64-9	Dibenzofuran	20	460
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	500
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	< 99 U
85-01-8	Phenanthrene	20	1,500
120-12-7	Anthracene	20	290
84-74-2	Di-n-Butylphthalate	20	49 M
206-44-0	Fluoranthene	20	2,000 E
129-00-0	Pyrene	20	990
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	480
117-81-7	bis (2-Ethylhexyl) phthalate	20	130
218-01-9	Chrysene	20	710
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	550
207-08-9	Benzo(k) fluoranthene	20	420
50-32-8	Benzo (a) pyrene	20	440
193-39-5	Indeno (1,2,3-cd) pyrene	20	110
53-70-3	Dibenz (a, h) anthracene	20	27
191-24-2	Benzo(g,h,i)perylene	20	110
191-24-2	Denzo (Ginit) Der Trene	20	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	67.6% 69.2%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	67.6% 61.2%
d5-Phenol	68.5%	2-Fluorophenol	67.5%
2,4,6-Tribromophenol	86.9%	d4-2-Chlorophenol	73.3%

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 17:16 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes Sample ID: 13116000025 DILUTION

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 3.00 Percent Moisture: 54.7% pH: 7.7

106-46-7 1,4-Dichlorobenzene 60 < 60 U 100-51-6 Benzyl Alcohol 60 < 60 U 95-50-1 1,2-Dichlorobenzene 60 < 60 U 95-48-7 2-Methylphenol 60 < 60 U 106-44-5 4-Methylphenol 60 < 60 U 105-67-9 2,4-Dimethylphenol 60 < 60 U 120-82-1 1,2,4-Trichlorobenzene 60 < 60 U 91-20-3 Naphthalene 60 < 60 U 91-57-6 2-Methylphthalene 60 < 60 U 103-11-3 Dimethylphthalate 60 < 60 U 103-32-9 Acenaphthylene 60 < 60 U 131-11-3 Dimethylphthalate 60 < 60 U 108-32-9 Acenaphthylene 60 < 60 U 132-64-9 Dibenzofuran 60 460 U 86-30-6 N-Nitrosodiphenylamine 60 < 60 U 187-86-5 Pentachlorophenol 300	CAS Number	Analyte	RL	Result
100-51-6 Benzyl Alcohol 60 < 60 U	108-95-2	Phenol	60	
100-51-0 1.2-Dichlorobenzene 60 < 60	106-46-7	1,4-Dichlorobenzene		
95-48-7 2-Methylphenol 60 < 60	100-51-6	Benzyl Alcohol	60	
95-48-7 2-Methylphenol 60 < 60	95-50-1	1,2-Dichlorobenzene		
105-67-9 2,4-Dimethylphenol 60 < 60	95-48-7	2-Methylphenol		
105075 2,4 Dimension 60 < 600	106-44-5	4-Methylphenol	60	
120-82-1 1,2,4-Trichlorobenzene 60 < 60	105-67-9	2,4-Dimethylphenol		
12.0.0.2 i Naphthalene 60 630 87-68-3 Hexachlorobutadiene 60 < 60 U	65-85-0	Benzoic Acid		
87-68-3 Hexachlorobutadiene 60 < 60	120-82-1	1,2,4-Trichlorobenzene		
91-57-6 2-Methylnaphthalene 60 290 31-11-3 Dimethylphthalate 60 < 60	91-20-3	Naphthalene	60	
131-11-3 Dimethylphthalate 60 < 60	87-68-3	Hexachlorobutadiene	60	
131-11-13 Dimetriny ipplication 60 < 60	91-57-6	2-Methylnaphthalene	60	
200 00 00 00 00 00 00 00 00 00 00 00 00	131-11-3	Dimethylphthalate	60	
132-64-9 Dibenzofuran 60 460 84-66-2 Diethylphthalate 60 < 60 U	208-96-8	Acenaphthylene		
132-04-0 Diethylphthalate 60 < 60 U	83-32-9	Acenaphthene	60	570
84-00-2 Dictiny philadec 60 480 86-73-7 Fluorene 60 480 86-30-6 N-Nitrosodiphenylamine 60 < 60 U	132-64-9	Dibenzofuran	60	460
86-30-6 N-Nitrosodiphenylamine 60 < 60	84-66-2	Diethylphthalate	60	< 60 U
118-74-1 Hexachlorobenzene 60 < 60 U	86-73-7	Fluorene	60	480
110-74-1 Inclution of booms of the second of the secon	86-30-6	N-Nitrosodiphenylamine	60	< 60 U
85-01-8 Phenanthrene 60 1,700 120-12-7 Anthracene 60 290 84-74-2 Di-n-Butylphthalate 60 68 206-44-0 Fluoranthene 60 2,400 129-00-0 Pyrene 60 1,100 85-68-7 Butylbenzylphthalate 60 490 17-81-7 Dis (2-Ethylhexyl) phthalate 60 110 218-01-9 Chrysene 60 740 117-81-7 Dis (2-Ethylhexyl) phthalate 60 740 205-99-2 Benzo (b) fluoranthene 60 530 207-08-9 Benzo (k) fluoranthene 60 380 50-32-8 Benzo (a) pyrene 60 440 193-39-5 Indeno (1,2,3-cd) pyrene 60 130 53-70-3 Dibenz (a, h) anthracene 60 <60	118-74-1	Hexachlorobenzene	60	< 60 U
120-12-7 Anthracene 60 290 84-74-2 Di-n-Butylphthalate 60 68 M 206-44-0 Fluoranthene 60 2,400 129-00-0 Pyrene 60 1,100 85-68-7 Butylbenzylphthalate 60 490 17-81-7 bis (2-Ethylhexyl) phthalate 60 110 218-01-9 Chrysene 60 740 117-84-0 Di-n-Octyl phthalate 60 530 207-08-9 Benzo (k) fluoranthene 60 380 50-32-8 Benzo (a) pyrene 60 440 193-39-5 Indeno (1,2,3-cd) pyrene 60 130 53-70-3 Dibenz (a, h) anthracene 60 <60 U	87-86-5	Pentachlorophenol	300	< 300 U
120-12-7 Interfacence 60 68 M 84-74-2 Di-n-Butylphthalate 60 2,400 206-44-0 Fluoranthene 60 2,400 129-00-0 Pyrene 60 1,100 85-68-7 Butylbenzylphthalate 60 490 16-55-3 Benzo (a) anthracene 60 490 117-81-7 bis (2-Ethylhexyl)phthalate 60 110 218-01-9 Chrysene 60 740 117-84-0 Di-n-Octyl phthalate 60 530 207-08-9 Benzo (k) fluoranthene 60 380 50-32-8 Benzo (a) pyrene 60 440 193-39-5 Indeno (1,2,3-cd) pyrene 60 130 53-70-3 Dibenz (a, h) anthracene 60 <60	85-01-8	Phenanthrene	60	1,700
206-44-0 Fluoranthene 60 2,400 129-00-0 Pyrene 60 1,100 85-68-7 Butylbenzylphthalate 60 490 56-55-3 Benzo (a) anthracene 60 490 117-81-7 bis (2-Ethylhexyl) phthalate 60 740 218-01-9 Chrysene 60 740 117-84-0 Di-n-Octyl phthalate 60 530 207-08-9 Benzo (k) fluoranthene 60 380 50-32-8 Benzo (a) pyrene 60 440 193-39-5 Indeno (1,2,3-cd) pyrene 60 130 53-70-3 Dibenz (a, h) anthracene 60 <60	120-12-7	Anthracene	60	290
129-00-0 Pyrene 60 1,100 85-68-7 Butylbenzylphthalate 60 < 60 U	84-74-2	Di-n-Butylphthalate	60	68 M
129-00-0 Pyrene 60 1,100 85-68-7 Butylbenzylphthalate 60 < 60	206-44-0	Fluoranthene	60	2,400
85-68-7 Butylbenzylphthalate 60 < 60 U		Pyrene	60	1,100
56-55-3 Benzo(a) anthracene 60 490 117-81-7 bis(2-Ethylhexyl)phthalate 60 110 218-01-9 Chrysene 60 740 117-84-0 Di-n-Octyl phthalate 60 <60		→	60	< 60 U
117-81-7bis (2-Ethylhexyl) phthalate60110218-01-9Chrysene60740117-84-0Di-n-Octyl phthalate60< 60 U			60	490
218-01-9Chrysene60740117-84-0Di-n-Octyl phthalate60< 60 U			60	110
117-84-0Di-n-Octyl phthalate60< 60 U205-99-2Benzo (b) fluoranthene60530207-08-9Benzo (k) fluoranthene6038050-32-8Benzo (a) pyrene60440193-39-5Indeno (1,2,3-cd) pyrene6013053-70-3Dibenz (a, h) anthracene60< 60 U			60	740
205-99-2 Benzo (b) fluoranthene 60 530 207-08-9 Benzo (k) fluoranthene 60 380 50-32-8 Benzo (a) pyrene 60 440 193-39-5 Indeno (1,2,3-cd) pyrene 60 130 53-70-3 Dibenz (a, h) anthracene 60 < 60			60	< 60 U
207-08-9Benzo (k) fluoranthene6038050-32-8Benzo (a) pyrene60440193-39-5Indeno (1,2,3-cd) pyrene6013053-70-3Dibenz (a, h) anthracene60< 60			60	530
50-32-8 Benzo (a) pyrene 60 440 193-39-5 Indeno (1,2,3-cd) pyrene 60 130 53-70-3 Dibenz (a, h) anthracene 60 < 60				380
193-39-5Indeno (1,2,3-cd) pyrene6013053-70-3Dibenz (a, h) anthracene60< 60 U				440
133-39-3Indens (1/2/3) $cd/p/2000$ $53-70-3$ Dibenz (a, h) anthracene 60 < 60 U				130
				< 60 U
	191-24-2	Benzo (g, h, i) perylene	60	

Reported in $\mu g/kg$ (ppb)

ŗ

÷

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: LK71B LIMS ID: 07-16422 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 16:08 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes

Sample ID: 13116000033 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA Date Sampled: 05/14/07 Date Received: 05/17/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 58.8% pH: 7.6

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	25
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	530
105-67-9	2,4-Dimethylphenol	20	20
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	570
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	160
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	44
83-32-9	Acenaphthene	20	180
132-64-9	Dibenzofuran	20	180
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	240
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	510
120-12-7	Anthracene	20	210
84-74-2	Di-n-Butylphthalate	20	47 M
206-44-0	Fluoranthene	20	840
129-00-0	Pyrene	20	450
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	180
	bis(2-Ethylhexyl)phthalate	20	88
117-81-7	Chrysene	20	320
218-01-9	Di-n-Octyl phthalate	20	< 20 U
117-84-0	Benzo (b) fluoranthene	20	230
205-99-2		20	200
207-08-9	Benzo(k) fluoranthene	20	150
50-32-8	Benzo(a)pyrene	20	31
193-39-5	Indeno (1,2,3-cd) pyrene	20	< 20 U
53-70-3	Dibenz(a,h)anthracene		< 20 0
191-24-2	Benzo(g,h,i) perylene	20	76

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	61.6% 63.2% 61.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol	62.8% 58.0% 64.5%
d5-Phenol	01.04	£	
2,4,6-Tribromophenol	82.7%	d4-2-Chlorophenol	67.7%

ł

.....

í.

:

1111

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-081507 LCS-081507 SRM-SQ-1 13116000025 13116000025 DL 13116000025 MS 13116000025 MSD 13116000033	54.4% 57.2% 62.4% 67.6% 66.7% 59.2% 67.2% 61.6%	52.0% 55.6% 66.0% 67.6% 71.2% 60.0% 68.0% 62.8%	67.6% 65.2% 62.0% 69.2% 61.8% 59.6% 66.8% 63.2%	47.6% 52.4% 60.0% 61.2% 61.8% 55.6% 62.0% 58.0%	56.8% 65.3% 63.5% 68.5% 67.2% 62.1% 68.0% 61.6%	58.9% 62.1% 62.4% 67.5% 65.5% 60.0% 66.4% 64.5%	64.5% 71.5% 72.3% 86.9% 79.1% 77.6% 84.5% 82.7%	58.1% 64.0% 67.7% 73.3% 72.2% 66.1% 73.1% 67.7%	0 0 0 0 0 0 0

	LCS/MB LIMITS	QC LIMITS
(NBZ) = d5-Nitrobenzene	(42-79)	(26-88)
(FBP) = 2-Fluorobiphenyl	(43-80)	(34-91)
(TPH) = d14-p-Terphenyl	(39-105)	(22-100)
(DCB) = d4-1, 2-Dichlorobenzene	(38-79)	(24-90)
(PHL) = d5-Phenol	(42-82)	(25-86)
(2FP) = 2-Fluorophenol	(26-83)	(11-84)
(TBP) = 2, 4, 6-Tribromophenol	(41-94)	(25-107)
(2CP) = d4-2-Chlorophenol	(43-80)	(23-91)

Prep Method: SW3550B Log Number Range: 07-16421 to 07-16422

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted MS/MSD: 08/15/07

Date Analyzed MS: 08/22/07 15:00 MSD: 08/22/07 15:34 Instrument/Analyst MS: NT6/LJR MSD: NT6/LJR GPC Cleanup: YES

MS/MSD QC Report No: LK71-Geomatrix, Inc.

Sample ID: 13116000025

Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount MS: 50.3 g-dry-wt MSD: 50.3 g-dry-wt Final Extract Volume MS: 1.0 mL MSD: 1.0 mL Dilution Factor MS: 1.00 MSD: 1.00 Percent Moisture: 54.7 % pH: 7.7

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 19.9	423	746	56.7%	452	746	60.6%	6.6%
1,4-Dichlorobenzene	< 19.9	290	497	58.4%	312	497	62.8%	7.3%
1,2,4-Trichlorobenzene	< 19.9	309	497	62.2%	340	497	68.4%	9.6%
Acenaphthene	572	786	497	43.1%	1050	497	96.2%	28.8%
Pentachlorophenol	< 99.4	427	746	57.2%	445	746	59.7%	4.18
Pyrene	990	928	497	NA	1040	497	10.1%	11.4%
Di-n-Octyl phthalate	< 19.9	399	497	80.3%	441	497	88.7%	10.0%
Benzo(g,h,i)perylene	107	182	497	15.1%	198	497	18.3%	8.4%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 15:00 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes

Sample ID: 13116000025 MATRIX SPIKE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 54.7% pH: 7.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	
106-46-7	1,4-Dichlorobenzene	20	
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 Ŭ
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	470
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	
91-20-3	Naphthalene	20	500
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	240
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	30
83-32-9	Acenaphthene	20	
132-64-9	Dibenzofuran	20	340
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	380
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	
85-01-8	Phenanthrene	20	1,200
120-12-7	Anthracene	20	230
84-74-2	Di-n-Butylphthalate	20	60 M
206-44-0	Fluoranthene	20	1,400
129-00-0	Pyrene	20	
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	310
117-81-7	bis(2-Ethylhexyl)phthalate	20	310
218-01-9	Chrysene	20	500
117-84-0	Di-n-Octyl phthalate	20	
205-99-2	Benzo (b) fluoranthene	20	360
	Benzo(k) fluoranthene	20	280
207-08-9	Benzo (a) pyrene	20	290
50-32-8		20	74
193-39-5	Indeno (1,2,3-cd) pyrene	20	26
53-70-3	Dibenz (a, h) anthracene	20	
191-24-2	Benzo(g,h,i)perylene	20	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	59.2%	2-Fluorobiphenyl	60.0%
d14-p-Terphenyl	59.6%	d4-1,2-Dichlorobenzene	55.6%
d5-Phenol	62.1%	2-Fluorophenol	60.0%
2,4,6-Tribromophenol	77.6%	d4-2-Chlorophenol	66.1%

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 15:34 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes MATRIX SPIKE DUPLICATE QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA

Sample ID: 13116000025

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 54.7% pH: 7.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	
106-46-7	1,4-Dichlorobenzene	20	
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 Ŭ
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	570
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	
91-20-3	Naphthalene	20	610
87-68-3	Hexachlorobutadiene	20	< 20 Ŭ
91-57-6	2-Methylnaphthalene	20	320
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	39
83-32-9	Acenaphthene	20	
132-64-9	Dibenzofuran	20	490
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	560
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	
85-01-8	Phenanthrene	20	1,500
120-12-7	Anthracene	20	320
84-74-2	Di-n-Butylphthalate	20	89 M
206-44-0	Fluoranthene	20	1,800 E
129-00-0	Pyrene	20	
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	390
117-81-7	bis(2-Ethylhexyl)phthalate	20	140
218-01-9	Chrysene	20	580
117-84-0	Di-n-Octyl phthalate	20	
205-99-2	Benzo(b) fluoranthene	20	420
207-08-9	Benzo(k) fluoranthene	20	390
50-32-8	Benzo(a) pyrene	20	360
193-39-5	Indeno (1,2,3-cd) pyrene	20	85
53-70-3	Dibenz (a, h) anthracene	20	33

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	67.2% 66.8%	2-Fluorobiphenyl d4-1.2-Dichlorobenzene	68.0% 62.0%
d5-Phenol	68.0%	2-Fluorophenol	66.4%
2,4,6-Tribromophenol	84.5%	d4-2-Chlorophenol	73.1%

0012

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Lab Sample ID: LCS-081507 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 12:44 Instrument/Analyst: NT6/LJR GPC Cleanup: YES Sample ID: LCS-081507 LAB CONTROL

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 50.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA pH: NA

Analyte	Lab Control	Spike Added	Recovery
Phenol	313	500	62.6%
1,4-Dichlorobenzene	279	500	55.8%
Benzyl Alcohol	693	1000	69.3%
1,2-Dichlorobenzene	294	500	58.8%
2-Methylphenol	357	500	71.4%
4-Methylphenol	756	1000	75.6%
2,4-Dimethylphenol	268	500	53.6%
Benzoic Acid	987	1500	65.8%
1,2,4-Trichlorobenzene	294	500	58.8%
Naphthalene	306	500	61.2%
Hexachlorobutadiene	273	500	54.6%
2-Methylnaphthalene	329	500	65.8%
Dimethylphthalate	372	500	74.48
Acenaphthylene	334	500	66.8%
Acenaphthene	331	500	66.2%
Dibenzofuran	337	500	67.4%
Diethylphthalate	376	500	75.2%
Fluorene	342	500	68.4%
N-Nitrosodiphenylamine	469	500	93.8%
Hexachlorobenzene	339	500	67.8%
Pentachlorophenol	365	500	73.0%
Phenanthrene	373	500	74.6%
Anthracene	360	500	72.0%
Di-n-Butylphthalate	415	500	83.0%
Fluoranthene	411	500	82.2%
Pyrene	330	500	66.0%
Butylbenzylphthalate	368	500	73.6%
Benzo(a) anthracene	345	500	69.0%
bis (2-Ethylhexyl) phthalate	451	500	90.2%
	361	500	72.2%
Chrysene Di-n-Octyl phthalate	460	500	92.0%
Benzo(b) fluoranthene	400	500	80.0%
Benzo(k) fluoranthene	401	500	80.2%
	388	500	77.6%
Benzo(a) pyrene	360	500	72.0%
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	371	500	74.2%

ź

ŀ

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: LCS-081507 LAB CONTROL

Lab Sample ID: LCS-081507 LIMS ID: 07-16421 Matrix: Sediment Date Analyzed: 08/22/07 12:44 QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Project: Port of Everett

Analyte	Lab Control	Spike Added	Recovery
Benzo(g,h,i)perylene	365	500	73.0%

Semivolatile Surrogate Recovery

Results reported in $\mu g/kg$

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: SRM-081507 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 13:18 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes Sample ID: SQ-1 081507 STANDARD REFERENCE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA Date Sampled: NA Date Received: NA

Sample Amount: 35.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 40.2% pH: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	28	32
106-46-7	1,4-Dichlorobenzene	28	< 28 U
100-51-6	Benzyl Alcohol	28	< 28 U
95-50-1	1,2-Dichlorobenzene	28	< 28 U
95-48-7	2-Methylphenol	28	< 28 U
106-44-5	4-Methylphenol	28	31
105-67-9	2,4-Dimethylphenol	28	< 28 U
65-85-0	Benzoic Acid	280	490
120-82-1	1,2,4-Trichlorobenzene	28	< 28 U
91-20-3	Naphthalene	28	41
87-68-3	Hexachlorobutadiene	28	< 28 U
91-57-6	2-Methylnaphthalene	28	66
131-11-3	Dimethylphthalate	28	< 28 U
208-96-8	Acenaphthylene	28	< 28 U
83-32-9	Acenaphthene	28	60
132-64-9	Dibenzofuran	28	< 28 U
84-66-2	Diethylphthalate	28	< 28 U
86-73-7	Fluorene	28	58
86-30-6	N-Nitrosodiphenylamine	28	< 28 U
118-74-1	Hexachlorobenzene	28	< 28 U
87-86-5	Pentachlorophenol	140	310
85-01-8	Phenanthrene	28	100
120-12-7	Anthracene	28	51
84-74-2	Di-n-Butylphthalate	28	< 28 U
206-44-0	Fluoranthene	28	130
129-00-0	Pyrene	28	79
85-68-7	Butylbenzylphthalate	28	< 28 U
56-55-3	Benzo (a) anthracene	28	67
117-81-7	bis(2-Ethylhexyl)phthalate	28	73
218-01-9	Chrysene	28	80
117-84-0	Di-n-Octyl phthalate	28	< 28 U
205-99-2	Benzo (b) fluoranthene	28	78
207-08-9	Benzo(k)fluoranthene	28	< 28 U
50-32-8	Benzo (a) pyrene	28	72
193-39-5	Indeno (1,2,3-cd) pyrene	28	< 28 U
53-70-3	Dibenz (a, h) anthracene	28	57
191-24-2	Benzo(g,h,i)perylene	28	62

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl	62.4% 62.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	66.0% 60.0%
d5-Phenol	63.5%	2-Fluorophenol	62.48
2,4,6-Tribromophenol	72.3%	d4-2-Chlorophenol	67.7%

BLANK NO.

4BSEMIVOLATILE METHOD BLANK SUMMARY

LK71MBS1

Lab Name: ANALYTICAL RESOURCES, INC Client: GEOMATRIX ARI Job No: LK71 Lab File ID: LK71MB Instrument ID: NT6 Matrix: SOLID

Project: PORT OF EVERETT Date Extracted: 08/15/07 Date Analyzed: 08/22/07 Time Analyzed: 1209

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	- FILE ID	ANALYZED
01 02 03 05 07 08 90 112 13 145 16 7 89 02 22	CLIENT SAMPLE NO. ====================================	LAB SAMPLE ID ====================================	LAB FILE ID ====================================	DATE ANALYZED ======= 08/22/07 08/22/07 08/22/07 08/22/07 08/22/07 08/22/07 08/22/07
22 23				
24 25				
26 27				
28 29				
30				

COMMENTS:

page 1 of 1

FORM IV SV

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: MB-081507 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/23/07

Date Extracted: 08/15/07 Date Analyzed: 08/22/07 12:09 Instrument/Analyst: NT6/LJR GPC Cleanup: Yes Sample ID: MB-081507 METHOD BLANK

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett NA Date Sampled: NA Date Received: NA

Sample Amount: 50.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA pH: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	< 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	< 20 U
129-00-0	Pyrene	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 Ŭ
56-55-3	Benzo (a) anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
218-01-9	Chrysene	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	< 20 U
	Benzo (k) fluoranthene	20	< 20 U
207-08-9 50-32-8	Benzo (a) pyrene	20	< 20 U
	Indeno (1,2,3-cd) pyrene	20	< 20 U
193-39-5	Dibenz (a, h) anthracene	20	< 20 U
53-70-3	Benzo (g, h, i) perylene	20	< 20 U
191-24-2	DCI190 (2111 + 1 501] = 0110		

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol	54.4% 67.6% 56.8% 64.5%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	52.0% 47.6% 58.9% 58.1%
2,4,6-Tribromophenol	64.58	d4-z-ciii0i0piicii0i	00.2

PESTICIDES

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/27/07

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 19:08 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000025 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 25.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	2.5	< 2.5 Y
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 Ŭ
72-55-9	4,4'-DDE	2.0	< 2.0 Ŭ
72-54-8	4,4'-DDD	2.0	< 2.0 Ŭ
50-29-3	4,4'-DDT	2.0	< 2.0 U
5103-71-9	alpha Chlordane	0.98	< 0.98 Ŭ

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	1018
Tetrachlorometaxylene	63.2%

Lab Sample ID: LK71B LIMS ID: 07-16422 Matrix: Sediment Data Release Authorized: Reported: 08/27/07

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 20:22 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000033 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/14/07 Date Received: 05/17/07

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: 7.6 Percent Moisture: 58.8%

CAS Number	Analyte	RL	Result
58-89-9 76-44-8 309-00-2 60-57-1 72-55-9 72-54-8 50-29-3	gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT alpha Chlordane	0.99 0.99 0.99 2.0 2.0 2.0 2.0 2.0 0.99	< 0.99 U < 0.99 U < 0.99 U < 2.0 U < 2.0 U < 2.0 U < 2.0 U < 2.0 U < 0.99 U
5103-71-9	alpha Chlordane	0.99	< 0.99 Ŭ

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	88.2%
	77.0%

SW8081 PESTICIDE SOLID SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Client ID	 DCBP	TCMX	TOT OUT
MB-081607 LCS-081607 SRM SQ-1 13116000025 13116000025 13116000025 13116000033	86.8% 90.5% 101%	73.5% 63.2% 68.5% 77.8%	0 0 0 0 0 0

	LCS/MB LIMITS	QC LIMITS
(DCBP) = Decachlorobiphenyl	(69-121)	(52-137)
(TCMX) = Tetrachlorometaxylene	(60-101)	(48-121)

Prep Method: SW3550B Log Number Range: 07-16421 to 07-16422

Page 1 for LK71

FORM-II SW8081

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/27/07

Date Extracted MS/MSD: 08/16/07

Date Analyzed MS: 08/22/07 19:33 MSD: 08/22/07 19:57 Instrument/Analyst MS: ECD4/YZ MSD: ECD4/YZ GPC Cleanup: No

Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 13116000025 MS/MSD

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount MS: 25.4 g-dry-wt MSD: 25.4 g-dry-wt Final Extract Volume MS: 5.0 mL Dilution Factor MS: 1.00 MSD: 1.00 Silica Gel: Yes pH: 7.7 Percent Moisture: 54.7%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
gamma-BHC (Lindane)	< 2.50	4.84	3.94	123%	4.47	3.94	113%	7.9%
Heptachlor	< 0.985	2.62	3.94	66.5%	2.42	3.94	61.4%	7.9%
Aldrin	< 0.985	2.99	3.94	75.9%	2.56	3.94	65.0%	15.5%
Dieldrin	< 1.97	45.7	7.87	581%	8.36	7.88	106%	138%
4.4'-DDE	< 1.97	4.17	7.87	53.0%	8.22	7.88	104%	65.4%
4,4'-DDD	< 1.97	< 1.97	7.87	NA	7.63	7.88	96.8%	NA
4,4'-DDT	< 1.97	124	7.87	1580%	7.59	7.88	96.3%	1778
alpha Chlordane	< 0.985	3.37	3.94	85.5%	3.13	3.94	79.4%	7.4%

Reported in μ g/kg (ppb) RPD calculated using sample concentrations per SW846.

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/27/07

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 19:33 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000025 MATRIX SPIKE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 25.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	0.98	
76-44-8	Heptachlor	0.98	
309-00-2	Aldrin	0.98	
60-57-1	Dieldrin	2.0	
72-55-9	4,4'-DDE	2.0	
72-54-8	4,4'-DDD	2.0	
50-29-3	4,4'-DDT	2.0	
5103-71-9	alpha Chlordane	0.98	

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	108%
Tetrachlorometaxylene	68.5%

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized:

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 19:57 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: 13116000025 MATRIX SPIKE DUP QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett Date Sampled: 05/09/07 Date Received: 05/17/07 Sample Amount: 25.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	0.98	
76-44-8	Heptachlor	0.98	
309-00-2	Aldrin	0.98	
60-57-1	Dieldrin	2.0	
72-55-9	4,4'-DDE	2.0	
72-54-8	4,4'-DDD	2.0	
50-29-3	4,4'-DDT	2.0	
5103-71-9	alpha Chlordane	0.98	

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	108%
Tetrachlorometaxylene	77.8%

Lab Sample ID: LCS-081607 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/27/07

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 17:06 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-081607 LAB CONTROL

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: NA Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
gamma-BHC (Lindane)	3.58	4.00	89.5%
Heptachlor	3.46	4.00	86.5%
Aldrin	3.50	4.00	87.5%
Dieldrin	7.04	8.00	88.0%
4,4'-DDE	7.04	8.00	88.0%
4,4'-DDD	6.96	8.00	87.0%
4,4'-DDT	6.92	8.00	86.5%
alpha Chlordane	3.44	4.00	86.0%

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	86.8%
Tetrachlorometaxylene	74.28

Reported in $\mu g/kg$ (ppb)

Lab Sample ID: SRM SQ-1 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized:

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 18:44 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: SRM SQ-1 STANDARD REFERENCE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: NA Date Received: NA

Sample Amount: 24.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: NA Percent Moisture: 40.2%

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	1.0	< 1.0 U
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.0	< 1.0 U
60-57-1	Dieldrin	2.1	< 2.1 U
72-55-9	4,4'-DDE	2.1	< 2.1 U
72-54-8	4,4'-DDD	5.4	< 5.4 Y
50-29-3	4,4'-DDT	9.7	< 9.7 Y
5103-71-9	alpha Chlordane	1.0	6.8

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	90.5%
Tetrachlorometaxylene	73.5%

SAMPLE NO.

LK71MBS1

Lab Name: ANALYTICAL RESOURCES, INC	Client: GEOMATRIX	
ARI Job No.: LK71	Project: PORT OF EVERETT	
Lab Sample ID: LK71MBS1	Lab File ID: 0822-14R	
Matrix (soil/water) SOLID	Extraction:(SepF/Cont/Sonc) SW3510C	
Sulfur Cleanup (Y/N) Y	Date Extracted: 08/16/07	
Date Analyzed (1): 08/22/07	Date Analyzed (2): 08/22/07	
Time Analyzed (1): 1641	Time Analyzed (2): 1641	
Instrument ID (1): ECD4	Instrument ID (2): ECD4	
GC Column (1): RTX-440 ID: 0.53(mm)	GC Column (2): STX-CLP2 ID: 0.53(mm)	
THIS METHOD BLANK APPLIES TO T	HE FOLLOWING SAMPLES, MS and MSD:	

EPA SAMPLE	NO. S	LAB AMPLE 1	ID	DATE ANALYZEI) 1	DATI ANALYZI	- 1
====== 01 LK71LCS 02 SQ-1 03 1311600 04 1311600 05 1311600 06 1311600	LK7 0025 LK7 0025 LK7 0025 LK7	1AMS 1AMSD		08/22/0 08/22/0 08/22/0 08/22/0 08/22/0 08/22/0)7)7)7)7	08/22, 08/22, 08/22, 08/22, 08/22, 08/22, 08/22,	/07 /07 /07 /07

Lab Sample ID: MB-081607 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/27/07

Date Extracted: 08/16/07 Date Analyzed: 08/22/07 16:41 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Sample ID: MB-081607 METHOD BLANK

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes pH: NA Percent Moisture: NA

CAS Number	Analyte	RL	Result
58-89-9	gamma-BHC (Lindane)	1.0	< 1.0 U
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.0	< 1.0 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
5103-71-9	alpha Chlordane	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	91.8%
Tetrachlorometaxylene	76.0%

PCBS

ģ

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 20:12 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000025 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 30.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	< 16 U
53469-21-9	Aroclor 1242	16	< 16 U
12672-29-6	Aroclor 1248	16	< 16 U
11097-69-1	Aroclor 1254	16	2,500 E
11096-82-5	Aroclor 1260	16	2,400 E
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	16	< 16 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	83.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/27/07 11:48 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000025 DILUTION

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

Sample Amount: 30.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 50.0 Silica Gel: No pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	820	< 820 U
53469-21-9	Aroclor 1242	820	< 820 U
12672-29-6	Aroclor 1248	820	< 820 U
11097-69-1	Aroclor 1254	820	2,500
11096-82-5	Aroclor 1260	820	2,700
11104-28-2	Aroclor 1221	820	< 820 U
11141-16-5	Aroclor 1232	820	< 820 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	D
Tetrachlorometaxylene	D

1

÷

\$

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LK71B LIMS ID: 07-16422 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 21:03 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000033 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett Date Sampled: 05/14/07 Date Received: 05/17/07

Sample Amount: 30.1 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.6 Percent Moisture: 58.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	17	<pre>< 17 U < 17 U < 21 Y 57 74 < 17 U < 17 U < 17 U < 17 U</pre>
53469-21-9	Aroclor 1242	17	
12672-29-6	Aroclor 1248	21	
11097-69-1	Aroclor 1254	17	
11096-82-5	Aroclor 1260	17	
11104-28-2	Aroclor 1221	17	
11141-16-5	Aroclor 1232	17	

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	85.5%
Tetrachlorometaxylene	78.2%

•

;

and the second second

.

SW8082/PCB SOLIDS SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

	DCBP	DCBP	TCMX	TCMX	
Client ID	% REC	LCL-UCL	% REC	LCL-UCL	TOT OUT
MB-081707	1078	60-125	1128	60-120	0
LCS-081707	1108	60-125	101%	60-120	0
SRM SO-1	102%	42-149	120%	47-127	0
13116000025	88.0%	42-149	83.0%	47-127	0
13116000025 DL	D	42-149	D	47-127	0
13116000025 MS	95.8%	42-149	84.0%	47-127	0
13116000025 MSD	94.08	42-149	81.0%	47-127	0
13116000033	85.5%	42-149	78.2%	47-127	0

Prep Method: SW3550B Log Number Range: 07-16421 to 07-16422

.

1. 盖托客户 数字合计 常子名语 医力出生的 医外

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted MS/MSD: 08/17/07

Date Analyzed MS: 08/24/07 20:29 MSD: 08/24/07 20:46 Instrument/Analyst MS: ECD5/PK MSD: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

Date Sampled: 05/09/07 Date Received: 05/17/07	
Sample Amount MS:	30.4 g-dry-wt
MSD:	30.4 g-dry-wt
Final Extract Volume MS:	5.0 mL
MSD:	5.0 mL
Dilution Factor MS:	1.00
MSD:	1.00
Silica Gel:	No
pH:	7.7
Percent Moisture:	54.7%

.

QC Report No: LK71-Geomatrix, Inc.

Project: Port of Everett

Sample ID: 13116000025

MS/MSD

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 16.5 U	77.0	82.3	93.6%	71.1	82.3	86.4%	8.0%
Aroclor 1260	2360 E	147	82.3	NA	136	82.3	NA	7.8%

Results reported in $\mu g/kg$ (ppb)

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

RPD calculated using sample concentrations per SW846.

•••••

.....

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 20:29 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett Date Sampled: 05/09/07

Sample ID: 13116000025

MATRIX SPIKE

Date Received: 05/17/07

Sample Amount: 30.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	<pre>< 16 U < 16 U 74</pre>
53469-21-9	Aroclor 1242	16	
12672-29-6	Aroclor 1248	16	
11097-69-1	Aroclor 1254	16	
11096-82-5	Aroclor 1260	16	
11104-28-2	Aroclor 1221	16	< 16 U
11141-16-5	Aroclor 1232	16	< 16 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	95.8%
Tetrachlorometaxylene	84.08

ģ

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 20:46 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 13116000025 MATRIX SPIKE DUP

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett Date Sampled: 05/09/07

Date Received: 05/17/07

Sample Amount: 30.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: 7.7 Percent Moisture: 54.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	16	<pre>< 16 U < 16 U 82 < 16 U < 16 U</pre>
53469-21-9	Aroclor 1242	16	
12672-29-6	Aroclor 1248	16	
11097-69-1	Aroclor 1254	16	
11096-82-5	Aroclor 1260	16	
11104-28-2	Aroclor 1221	16	
11141-16-5	Aroclor 1232	16	

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	94.0%
Tetrachlorometaxylene	81.0%

.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LCS-081707 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 19:37 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Project: Por	rt of Everett
Date Sampled:	NA
Date Received:	NA

QC Report No: LK71-Geomatrix, Inc.

Sample Amount: 30.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: NA Percent Moisture: NA

Sample ID: LCS-081707

LAB CONTROL

Analyte	Lab Control	Spike Added	Recovery
Aroclor 1016	65.1	83.3	78.2%
Aroclor 1260	90.9	83.3	109%

PCB Surrogate Recovery

Decachlorobiphenyl 110% Tetrachlorometaxylene 101%

Results reported in μ g/kg (ppb)

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: SRM SQ-1 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 19:55 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No STANDARD REFERENCE OC Report No: LK71-Geomatrix, Inc.

Sample ID: SRM SQ-1

Project: Port of Everett Date Sampled: NA Date Received: NA

Sample Amount: 17.9 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: NA Percent Moisture: 40.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	28	< 28 U
53469-21-9	Aroclor 1242	28	< 28 U
12672-29-6	Aroclor 1248	28	< 28 U
11097-69-1	Aroclor 1254	28	140
11096-82-5	Aroclor 1260	28	< 28 U
11104-28-2	Aroclor 1221	28	< 28 U
11141-16-5	Aroclor 1232	28	< 28 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	102%
Tetrachlorometaxylene	120%

4 PCB METHOD BLANK SUMMARY BLANK NO.

LK71MBS1

1

Lab Name: ANALYTICAL RESOURCES, INC	Client: GEOMATRIX, INC.
ARI Job No.: LK71	Project: PORT OF EVERETT
Lab Sample ID: LK71MBS1	Lab File ID: 0824B033
Date Extracted: 08/17/07	Matrix: SOLID
Date Analyzed: 08/24/07	Instrument ID: ECD5
Time Analyzed: 1920	GC Columns: ZB5/ZB35

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
01 02 03 04 05 06 07	======================================	LK71LCSS1 LK71SRM1 LK71A LK71AMS LK71AMS LK71AMSD LK71B LK71A	08/24/07 08/24/07 08/24/07 08/24/07 08/24/07 08/24/07 08/24/07 08/24/07

ALL RUNS ARE DUAL COLUMN

page 1 of 1

FORM IV PCB

ŝ,

ł

.

· · · · · · · · · ·

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: MB-081707 LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized: Reported: 08/28/07

Date Extracted: 08/17/07 Date Analyzed: 08/24/07 19:20 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: MB-081707 METHOD BLANK

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: NA Date Received: NA

Sample Amount: 30.0 g Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No pH: NA Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	17	< 17 U
53469-21-9	Aroclor 1242	17	< 17 U
12672-29-6	Aroclor 1248	17	< 17 U
11097-69-1	Aroclor 1254	17	< 17 U
11096-82-5	Aroclor 1260	17	< 17 U
11104-28-2	Aroclor 1221	17	< 17 U
11141-16-5	Aroclor 1232	17	< 17 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	107%
Tetrachlorometaxylene	112%

METALS

ANALYTICAL RESOURCES

÷

÷

į

:

į.

1.12

į

÷

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized Reported: 08/31/07 QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Sample ID: 13116000025

SAMPLE

Date Sampled: 05/09/07 Date Received: 05/17/07

Percent Total Solids: 44.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
0.05.05	00/00/07	C010D	08/30/07	7440-36-0	Antimony	10	10	U
3050B	08/28/07	6010B			-		40	-
3050B	08/28/07	6010B	08/30/07	7440-38-2	Arsenic	10		
3050B	08/28/07	6010B	08/30/07	7440-43-9	Cadmium	0.4	1.5	
3050B	08/28/07	6010B	08/30/07	7440-47-3	Chromium	1	49	
3050B	08/28/07	6010B	08/30/07	7440-50-8	Copper	0.4	104	
3050B	08/28/07	6010B	08/30/07	7439-92-1	Lead	4	55	
CLP	08/21/07	7471A	08/27/07	7439-97-6	Mercury	0.08	0.37	
3050B	08/28/07	6010B	08/30/07	7440-02-0	Nickel	2	45	
3050B	08/21/07	7740	08/23/07	7782-49-2	Selenium	0.4	0.8	
3050B	08/28/07	6010B	08/30/07	7440-22-4	Silver	0.6	0.6	U
3050B	08/28/07	6010B	08/30/07	7440-66-6	Zinc	2	341	

U-Analyte undetected at given RL RL-Reporting Limit

8

1. 1. J. 1.

:

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: LK71A

Data Release Authorized

LIMS ID: 07-16421 Matrix: Sediment

Reported: 08/31/07

Sample ID: 13116000025 DUPLICATE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
		**					
Antimony	6010B	10 U	10 U	0.0%	+/- 10	\mathbf{L}	
Arsenic	6010B	40	30	28.6%	+/- 10	\mathbf{L}	
Cadmium	6010B	1.5	1.5	0.0%	+/- 0.4	\mathbf{L}	
Chromium	6010B	49	49	0.0%	+/- 20%		
Copper	6010B	104	96.3	7.7%	+/- 20%		
Lead	6010B	55	48	13.6%	+/- 20%		
Mercury	7471A	0.37	0.38	2.78	+/- 0.08	L	
Nickel	6010B	45	47	4.3%	+/- 20%		
Selenium	7740	0.8	0.6	28.6%	+/-0.4	L	
Silver	6010B	0.6 U	0.6 U	0.0%	+/- 0.6	L	
Zinc	6010B	341	264	25.5%	+/- 20%	*	

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

1

į

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: 13116000025 MATRIX SPIKE

Lab Sample ID: LK71A LIMS ID: 07-16421 Matrix: Sediment Data Release Authorized Reported: 08/31/07 QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/09/07 Date Received: 05/17/07

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	ક	
Analyte	Method	Sample	Spike	Added	Recovery	Q
	6010B	10 U	80	430	18.6%	N
Antimony Arsenic	6010B	40	460	430	97.78	
Cadmium	6010B	1.5	99.9	107	92.0%	
Chromium	6010B	49	153	107	97.2%	
Copper	6010B	104	222	107	110%	
Lead	6010B	55	457	430	93.5%	
Mercury	7471A	0.37	1.05	0.769	88.4%	
Nickel	6010B	45	144	107	92.5%	
Selenium	7740	0.8	17.2	20.7	79.2%	
Silver	6010B	0.6 U	106	107	99.1%	
Zinc	6010B	341	447	107	99.1%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

ANALYTICAL RESOURCES ŗ

1022.4.11

÷

ź

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: LK71B LIMS ID: 07-16422 Matrix: Sediment Data Release Authorized: Reported: 08/31/07 Sample ID: 13116000033 SAMPLE

QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Date Sampled: 05/14/07 Date Received: 05/17/07

Percent Total Solids: 39.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
205.05	08/28/07	6010B	08/30/07	7440-36-0	Antimony	10	10	υ
3050B		6010B	08/30/07	7440-38-2	Arsenic	10	10	
3050B	08/28/07	6010B	08/30/07	7440-43-9	Cadmium	0.5	2.1	
3050B	08/28/07	6010B	08/30/07	7440-43-3	Chromium	1	60	
3050B	08/28/07	6010B	08/30/07	7440-50-8	Copper	0.5	84.3	
3050B	08/28/07	6010B	08/30/07	7439-92-1	Lead	5	55	
3050B	08/28/07		08/27/07	7439-92-1	Mercury	0.1	0.3	
CLP	08/21/07	7471A		7440-02-0	Nickel	3	67	
3050B	08/28/07	6010B	08/30/07	7782-49-2	Selenium	0.5	0.6	
3050B	08/21/07	7740	08/23/07		Silver	0.8	0.8	IJ
3050B	08/28/07	6010B	08/30/07	7440-22-4		3	127	0
3050B	08/28/07	6010B	08/30/07	7440-66-6	Zinc	5	127	

U-Analyte undetected at given RL RL-Reporting Limit

ġ.

ŝ

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: LK71MB LIMS ID: 07-16422 Matrix: Sediment Data Release Authorized Reported: 08/31/07 QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Sample ID: METHOD BLANK

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
		60105	00/00/07	7440-36-0	Antimony	5	5	U
3050B	08/28/07	6010B	08/30/07		-	_	-	-
3050B	08/28/07	6010B	08/30/07	7440-38-2	Arsenic	5	5	U
3050B	08/28/07	6010B	08/30/07	7440-43-9	Cadmium	0.2	0.2	U
3050B	08/28/07	6010B	08/30/07	7440-47-3	Chromium	0.5	0.5	U
3050B	08/28/07	6010B	08/30/07	7440-50-8	Copper	0.2	0.2	U
3050B	08/28/07	6010B	08/30/07	7439-92-1	Lead	2	2	U
CLP	08/21/07	7471A	08/27/07	7439-97-6	Mercury	0.05	0.05	U
3050B	08/28/07	6010B	08/30/07	7440-02-0	Nickel	1	1	U
3050B	08/21/07	7740	08/23/07	7782-49-2	Selenium	0.2	0.2	U
3050B	08/28/07	6010B	08/30/07	7440-22-4	Silver	0.3	0.3	U
3050B 3050B	08/28/07	6010B	08/30/07	7440-66-6	Zinc	1	. 1	U

U-Analyte undetected at given RL RL-Reporting Limit

;.

э

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: LK71LCS LIMS ID: 07-16422 Matrix: Sediment Data Release Authorized Reported: 08/31/07 QC Report No: LK71-Geomatrix, Inc. Project: Port of Everett

Sample ID: LAB CONTROL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
		0.00	000	1008	
Antimony	6010B	203	200	102%	
Arsenic	6010B	205 ·	200	102%	
Cadmium	6010B	49.8	50.0	99.6%	
Chromium	6010B	49.9	50.0	99.88	
Copper	6010B	51.9	50.0	1048	
Lead	6010B	201	200	100%	
Mercury	7471A	1.07	1.00	107%	
Nickel	6010B	50	50	100%	
Selenium	7740	10	10	100%	
Silver	6010B	50.6	50.0	1018	
Zinc	6010B	50	50	100%	

Reported in mg/kg-dry

N-Control limit not met Control Limits: 80-120%

GENERAL CHEMISTRY

Matrix: Sediment Data Release Authorized Reported: 08/22/07 Project: Port of Everett Event: NA Date Sampled: 05/09/07 Date Received: 05/17/07

Client ID: 13116000025 ARI ID: 07-16421 LK71A

Analyte	Date	Method	Units	RL	Sample
Total Solids	08/13/07 081307#1	EPA 160.3	Percent	0.01	43.50
Total Organic Carbon	08/21/07 082107#1	Plumb,1981	Percent	0.020	3.93

RL Analytical reporting limit

U Undetected at reported detection limit

ć,

Matrix: Sediment Data Release Authorized: Reported: 08/22/07

Project: Port of Everett Event: NA Date Sampled: 05/14/07 Date Received: 05/17/07

Client ID: 13116000033 ARI ID: 07-16422 LK71B

Analyte	Date	Method	Units	RL	Sample
Total Solids	08/13/07 081307#1	EPA 160.3	Percent	0.01	41.50
Total Organic Carbon	08/21/07 082107#1	Plumb,1981	Percent	0.020	5.47

RL

Analytical reporting limit Undetected at reported detection limit U

i,

į.

а Д

Matrix: Sediment Data Release Authorized: Reported: 08/22/07 Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	08/13/07	Percent	< 0.01 U
Total Organic Carbon	08/21/07	Percent	< 0.020 U

ł

2

.

;

Matrix: Sediment Data Release Authorized A Reported: 08/22/07 Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Total Organic Carbon	08/21/07	Percent	0.468	0.500	93.6%

.

5

the second second

Matrix: Sediment Data Release Authorized Reported: 08/22/07 Project: Port of Everett Event: NA Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	08/21/07	Percent	2.71	3.35	80.9%

. .

:

Matrix: Sediment	<u> </u>
Data Release Authorize	ed:
Data Release Authorize Reported: 08/22/07	1 Cr

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: LK71A Client ID:	13116000025				
Total Solids	08/13/07	Percent	43.50	49.10 44.50	6.5%
Total Organic Carbon	08/21/07	Percent	3.93	3.73 4.16	5.5%

.

Matrix: Sediment Data Release Authorized: Reported: 08/22/07		Project: Port of Everett Event: NA Date Sampled: 05/09/07 Date Received: 05/17/07				
Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: LK71A Client ID:	13116000025					
Total Organic Carbon	08/21/07	Percent	3.93	8.44	3.99	113.1%

TOTAL SOLIDS

Data I	ctions Total By: Warren P. ed: 8/13/07		ts		Worklist: 2705 Analyst: ALR Comments:	
	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
1	. LK71A 07-16421 13116000025	1.16	13.78	6.88	45.3	7.7
2	. LK71B 07-16422 13116000033		11.72	5.50	41.2	7.6

Solids Data Entry Report Checked by: ESP Date: 08/22/07 Data Analyst: DM

Solids Determination performed on 08/21/07 by DM

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
LK71	A	13116000025	1.008	10.649	5.256	44.06
LK71	B	13116000033	1.036	10.370	4.692	39.17

Appendix I

Data Validation Report

Sayler Data Solutions, Inc.

Port of Everett, Former Mill A MTCA Support Sample Collection Data

DATA VALIDATION REPORT

Prepared for:

Geomatrix Consultants, Inc. 3500 188th Street SW, Ste 600 Lynnwood, WA 98037-4763

October 10, 2007

1.0 Introduction

Data validation was performed on laboratory data packages LA62/4475, LD21, and LK71. These packages included the following data:

	Matrix	Sample			Pest, PCB,	Dioxin/	TOC/
Sample ID		Date	Lab ID	SVOC	& Metals	Furan	TS
13116000004	Sediment	05/07/07	LA62E	Х			х
13116000006	Sediment	05/07/07	LA62F	Х			х
13116000007	Sediment	05/07/07	4475-001-SA			Х	
13116000010	Sediment	05/07/07	LA62G	Х			Х
13116000013	Sediment	05/07/07	4475-002-SA			Х	
13116000014	Sediment	05/07/07	LA62H	Х			Х
13116000015	Sediment	05/07/07	LA62I	Х			х
13116000019	Sediment	05/08/07	4475-003-SA			Х	
13116000021	Sediment	05/08/07	LA62J	Х			х
13116000023	Sediment	05/08/07	LA62K	Х			х
13116000025	Sediment	05/09/07	LK71A	Х	х		х
13116000027	Sediment	05/11/07	LA62L	Х			х
13116000029	Sediment	05/11/07	LA62M	Х			х
13116000031	Sediment	05/11/07	LA62N	Х			х
13116000033	Sediment	05/14/07	LK71B	Х	х		х
13116000037	Sediment	05/14/07	4475-004-SA			Х	
13116000038	Sediment	05/14/07	LA62O	х			х
13116000100	Sediment	05/15/07	LD21A	Х	х		х
13116000101	Sediment	05/15/07	LD21B	Х	х		х
13116000102	Sediment	05/15/07	LD21C	Х	х		х
13116000103	Sediment	05/15/07	LD21D	Х	х		х
13116000104	Sediment	05/15/07	LD21E	Х	х		х
13116000105	Sediment	05/15/07	LD21F	х	х		Х
13116000106	Sediment	05/15/07	LD21G	х	х		Х
13116000107	Sediment	05/15/07	LD21H	х	х		Х
13116000108	Sediment	05/15/07	LD21I	х	х		Х

<u>Validation</u>: A summary validation was performed for these analyses. Validation was performed by Cari Sayler. Data qualifiers are summarized in section 8.0 of this report.

<u>Requested analyses:</u> The QAPP specifies the following methods:

Analysis	Method
Semivolatile Organic Compounds (SVOCs)	8270D
Pesticide	8081/PSEP
Polychlorinated Biphenyls (PCBs)	8082
Dioxin/Furan	1613B
Metals	6010/7471A/7740
Total Organic Carbon (TOC)	Lab SOP 602S
Total Solids (TS)	Lab SOP 639S

QAPP specified methods were utilized with the following exception: Initial semivolatile analyses was performed by GCMS SIM to achieve lower reporting limits. Remaining semivolatile analyses were performed by EPA method 8270D with PSDDA guidelines.

Dioxin/Furan analyses were performed by Frontier Analytical in El Dorado California. All other analyses were performed by Analytical Resources, Inc. in Tukwila, Washington.

Sample chain of custodies and additional analysis request emails were reviewed. All requested analyses were performed.

<u>Sample number transcription:</u> Sample IDs in the electronic data deliverable (EDD) were compared to the chain of custody for each sample and field duplicate. All sample IDs matched the chain of custody.

2.0 Semivolatile Organic Analyses

Laboratory quality control analysis frequencies: The method specifies that the following quality control samples be analyzed one per analytical batch or one per twenty samples, whichever is more frequent: Method blank, laboratory control sample (LCS), matrix spike (MS), and either matrix spike duplicate (MSD) or laboratory duplicate. In addition, surrogate compounds must be measured in each field and quality control sample.

Each batch included a method blank, LCS, MS, MSD, and appropriate surrogates. Additionally, RRM SQ-1 was analyzed with each batch.

<u>Holding times:</u> Refrigerated sediment samples must be extracted within 14 days of collection. Frozen sediment samples must be extracted within one year of collection. Extracts must be analyzed within 40 days of extraction. All samples were extracted and analyzed within holding time.

<u>Instrument calibration</u>: Functional guidelines criteria for calibrations include minimum response factors of 0.05, initial calibration maximum relative standard deviations (RSDs) of 30%, and continuing calibration maximum % differences of $\pm 25\%$. These criteria were met with the following exceptions:

Standard	Analyte	Result
6/13/07 Initial Calibration	Benzoic Acid	38.5% RSD
6/14/07 Continuing Calibration	Pentachlorophenol	-39.8 % Difference

I:\Project\Port of Everett\13116-000 Former Mill A MTCA Support\3000 Pare REPORT\Data Report\Appendix I DV Report\GMC-POE_FMA_DVRpt_2007-10.doc

Standard	Analyte	Result
6/15/07 Continuing Calibration	Benzoic Acid	43.4 % Difference
6/19/07 Continuing Calibration	Benzoic Acid	43.0 % Difference

Associated positive and negative results for benzoic acid are qualified as estimated. Associated results for pentachlorophenol are not detected and are considered unaffected.

<u>Laboratory blank results:</u> Laboratory performance criteria for method blanks are that analyte concentrations must be below the RL, or below 5% of the lowest associated sample concentration. The following analytes were detected in the method blanks:

Blank ID	Analyte	Blank Concentration (ug/Kg)	RL
07-10243-LA62MB	Phenol	6.2	6.2
07-10243-LA62MB	Diethylphthalate	5 J	6.2
07-10243-LA62MB	Di-n-Butylphthalate	10	6.2
07-10243-LA62MB	Bis(2-ethylhexyl)phthalate	6.2	6.2

Positive sample results with concentrations below five times the associated blank concentration are qualified "U" and should be considered not detected at the reported level. Positive sample results with concentrations between five and ten times the associated blank concentration are qualified as estimated. Positive sample results with concentration are considered blank concentration are considered blank concentration are considered blank concentration.

<u>Surrogate recoveries:</u> Surrogates were not recovered or were outside of limits in samples 1311600006RE, 13116000010DL, 13116000010RE, 13116000023DL 13116000031RE, and 13116000038DL due to dilution. No qualifiers are necessary.

Remaining surrogate recoveries were within the QAPP specified limits of 40-140% with the following exceptions:

Sample ID	Surrogate	Recovery (%)	Laboratory Control Limit
13116000004	d14-p-Terphenyl	25.2	30.0 - 160
13116000004DL	d14-p-Terphenyl	22.0	30.0 - 160
13116000006	d5-Nitrobenzene	12.0	30.0 - 160
13116000010	d5-Nitrobenzene	259	30.0 - 160
13116000015	d5-Nitrobenzene	32.0	30.0 - 160
13116000015	d14-p-Terphenyl	34.4	30.0 - 160
13116000015DL	d14-p-Terphenyl	31.2	30.0 - 160
13116000021	2,4,6-Tribromophenol	34.9	30.0 - 160
13116000021	d14-p-Terphenyl	20.8	30.0 - 160
13116000021DL	d14-p-Terphenyl	22.0	30.0 - 160
13116000029	2-Fluorobiphenyl	31.6	30.0 - 160
13116000029	d14-p-Terphenyl	29.2	30.0 - 160
13116000029DL	d14-p-Terphenyl	24.0	30.0 - 160

In instances where three of the four acid and three of the four base-neutral surrogates are within limits, functional guidelines criteria are met and no qualifiers are assigned. Base neutral compounds in samples 13116000015 and 13116000029 are qualified as estimated.

<u>LCS recoveries:</u> LCS and LCSD recoveries were within the QAPP specified limits of 50-130% with the following exceptions:

QC ID	Analyte	Recovery (%)	Laboratory Control Limit
07-10243-LA62LCS	Benzyl Alcohol	45.1	30.0 - 160

Benzyl alcohol is qualified as estimated in the associated samples.

<u>RRM recoveries:</u> RRM results were within 2 standard deviations of the average detected concentration with the following exceptions:

QC ID	Analyte	Result (ug/kg)	Average	Standard Deviation
07-10243-LA62SRM	Fluorene	47	98	23.65
07-10243-LA62SRM	Acenaphthene	42	95	23.09

These results are only slightly low, and these analytes are within limits in the LCS. No qualifiers are assigned.

<u>MS recoveries:</u> Native concentrations of Acenaphthene and Pyrene in 13116000038 exceeded 4 times the spike amount, and control limits do not apply.

Remaining MS and MSD recoveries were within the QAPP specified limits of 45-135% with the following exceptions:

QC ID	Analyte	Recovery (%)	Laboratory Control Limit
13116000025MS	Acenaphthene	43.1	25.0 - 96.0
13116000025MS	Benzo(g,h,i)perylene	15.1	30.0 - 160
13116000025MSD	Benzo(g,h,i)perylene	18.3	30.0 - 160
13116000025MS	Pyrene	-12.5	21.0 - 96.0
13116000025MSD	Pyrene	10.1	21.0 - 96.0
13116000038MS	1,2,4-Trichlorobenzene	42.5	30.0 - 160
13116000038MS	1,4-Dichlorobenzene	40.9	30.0 - 160
13116000038MS	Benzo(g,h,i)perylene	-59.6	30.0 - 160
13116000038MSD	Benzo(g,h,i)perylene	43.4	30.0 - 160
13116000038MS	Phenol	36.2	30.0 - 160
13116000038MSD	Phenol	44.5	30.0 - 160

Results for these analytes in the native sample are qualified as estimated.

<u>MS/MSD RPDs</u>: MS/MSD RPDs were below the QAPP limit of 50% with the following exceptions:

QC ID	Analyte	RPD	Laboratory Control Limit
13116000038MS/MSD	Benzo(g,h,i)perylene	111	30
13116000038MS/MSD	Acenaphthene	50.3	30

Results for these analytes in the native sample are qualified as estimated.

<u>Field Duplicates</u>: Criteria for field duplicate include maximum RPDs of 60% for analyte with concentrations above 5 times the RL and maximum absolute differences of +/-2 x the reporting limit (RL) for analytes with concentrations below 5 times the RL. Field duplicate results were within these criteria with the following exceptions:

FD ID	Analyte	FD Result (ug/kg)	Sample Result (ug/kg)	Exceedance
13116000101 /				Diff = 3.2 x
13116000100	Dimethylphthalate	65	20 U	RL

FD ID	Analyte	FD Result (ug/kg)	Sample Result (ug/kg)	Exceedance
13116000101 / 13116000100	Fluoranthene	170	330	RPD = 64.0

Results for dimethylphthalate and fluoranthene in the sample and field duplicate are qualified as estimated.

<u>Multiple reported results:</u> Samples were reanalyzed due to compounds exceeding the calibration range, low surrogate recoveries, internal standards outside of limits, and calibrations outside of criteria.

Unless quality control results warrant the rejection of one result, multiple reported results are evaluated according to the following guidelines

- (1) If both results are non-detects, the lower reporting limit was selected.
- (2) If one result was not detected and the other detected, the detection was selected.
- (3) If both results were detections, the following additional criteria were applied:
 - (a) If one result was off-scale and one was on-scale, the on-scale result was selected.
 - (b) If associated QC results indicated high bias, the lower concentration result was selected.
 - (c) If associated QC results indicated no, low, or mixed biases, the higher concentration result was selected.

This approach is conservative, and is considered most protective of the environment. The results not selected as the best result to report are qualified R1, rejected due to the availability of better results.

Laboratory narrative and qualifiers: The laboratory narratives states that internal standard areas were outside control limits in the initial analysis of samples 13116000006, 1311600010, 13116000031, 13116000100, 13116000101, 13116000102, 13116000103, 13116000104, 13116000105, 13116000106, 13116000107, and 13116000108. Analytes associated with the failing internal standards are qualified as estimated.

Various results are flagged M to indicate poor spectral match. The corresponding validation qualifier, "N" is assigned.

Various results are flagged Y to indicate elevated reporting limits. These results are qualified "UY" to clarify that the analyte was not detected.

<u>Reporting limits</u>: Reporting limits in the following analyses exceeded the project goals:

			Exceedance
Client ID	Analyte	Reason	factor
13116000025DL	All Non-detects	Dilution	3
13116000004	All Non-detects	Smaller sample size	1.2
13116000006	N-Nitrosodiphenylamine	Interference	3.55
13116000010	N-Nitrosodiphenylamine	Interference	9
13116000029	All Non-detects	Smaller sample size	1.4

			Exceedance
Client ID	Analyte	Reason	factor
13116000031DL	N-Nitrosodiphenylamine	Interference	50
13116000038	N-Nitrosodiphenylamine	Interference	2.1

Although some of these elevated detection limits exceed SMS criteria, each sample has other exceedances and impact is considered minimal. Qualifiers are not added on the basis of elevated reporting limits.

<u>Overall assessment:</u> Documentation was found to be clear and complete. Multiple reported results were reduced to the most appropriate to report. Low level blank contamination resulted in some elevated detection limits and estimated concentrations. Instrument calibration, internal standard areas, surrogate recoveries, LCS recoveries and MS recoveries, as well as MS/MSD and Field duplicate variability resulted in estimated concentrations.

Semivolatile organic data, as qualified, are acceptable for use.

3.0 Pesticide Analyses

<u>Quality control analysis frequencies:</u> The method specifies that the following quality control samples be analyzed one per analytical batch or one per twenty samples, whichever is more frequent: method blank, laboratory control sample (LCS), matrix spike (MS), and either MS duplicate (MSD) or laboratory duplicate. In addition, surrogate compounds must be measured in each field and quality control sample.

Each batch included a method blank, LCS, MS, MSD, and appropriate surrogates. Additionally, RRM SQ-1 was analyzed with each batch and an LCSD was analyzed with batch LD21.

<u>Holding times:</u> Refrigerated sediment samples must be extracted within 14 days of collection. Frozen sediment samples must be extracted within 1 year of collection. Extracts must be analyzed within 40 days of extraction. These holding times were met.

<u>Instrument calibration</u>: Data usability criteria for calibrations include minimum correlation coefficients of 0.990 or maximum RSDs of $\pm 20\%$ for each initial calibration, and maximum % differences of $\pm 25\%$ for each continuing calibration. All initial calibration compound RSDs were within 20%. Continuing calibration % differences were within $\pm 25\%$.

<u>Laboratory blank results:</u> Criteria for blanks are that analyte concentrations must be below the RL, or below 5% of the lowest associated sample concentration. These criteria were met.

<u>Surrogate recoveries:</u> Surrogate recoveries were within the QAPP specified limits of 40-140%.

LCS recoveries: LCS recoveries were within the QAPP specified limits of 50-130%.

<u>RRM recoveries:</u> RRM results were within 2 standard deviations of the average detected concentration with the following exceptions:

		Result		Standard
QC ID	Analyte	(ug/kg)	Average	Deviation
07-11961-LD21SRM	Alpha Chlordane	6.5	4	1.10
07-16421-LK71SRM	Alpha Chlordane	6.8	4	1.10

These results represent 77% and 80% recoveries. No qualifiers are assigned.

<u>MS recoveries:</u> Spike recoveries were within limits QAPP specified limits of 40-140% with the following exceptions:

QC ID	Analyte	Recovery (%)	Laboratory Control Limit
13116000025MS	gamma-BHC (Lindane)	123	39.0 - 91.0
13116000025MS	Dieldrin	581	39.0 - 129
13116000025MS	4,4'-DDD	NA	30.0 - 160
13116000025MS	4,4'-DDT	1580	23.0 - 163
13116000025MSD	gamma-BHC (Lindane)	113	39.0 - 91.0

According to the laboratory narrative, these recoveries were affected by interferences from PCBs. These compounds were not detected in the associated samples, and no qualifiers are required.

<u>MS/MSD RPDs:</u> RPDs were within laboratory and QAPP specified limits of 50%.with the following exceptions:

QC ID	Analyte	RPD	Laboratory Control Limit
13116000025MSD	Dieldrin	138	30
13116000025MSD	4,4'-DDE	65.4	30
13116000025MSD	4,4'-DDT	177	30

According to the laboratory narrative, these results were affected by interferences from PCBs. These compounds were not detected in the associated samples, and no qualifiers are required.

<u>Field duplicate RPDs:</u> No pesticides were detected in the field duplicate or its associated sample, and could not be evaluated.

Multiple reported results: No multiple results were reported with this analysis.

<u>Laboratory qualifiers and narrative:</u> Various results are flagged Y to indicate elevated reporting limits. These results are qualified "UY" to clarify that the aroclor was not detected.

<u>Reporting limits</u>: Reporting limits in the following analysis exceeded the project goals:

Client ID	Analyte	Reason	Exceedance factor
13116000025	gamma-BHC (Lindane)	Interference	2.5
13116000100	All Non-detects	Dilution	2
13116000102	All Non-detects	Dilution	2
13116000103	All Non-detects	Dilution	2
13116000104	All Non-detects	Dilution	2
13116000105	All Non-detects	Dilution	2

13116000107	All Non-detects	Dilution	2
-------------	-----------------	----------	---

Qualifiers are not added on the basis of elevated reporting limits.

<u>Overall assessment:</u> Documentation was found to be clear and complete. Calibration data demonstrate acceptable instrument performance. Quality control results indicate acceptable accuracy and precision.

PCB data, as qualified, are acceptable for use.

4.0 PCB Analyses

<u>Quality control analysis frequencies:</u> The method specifies that the following quality control samples be analyzed one per analytical batch or one per twenty samples, whichever is more frequent: method blank, laboratory control sample (LCS), matrix spike (MS), and either MS duplicate (MSD) or laboratory duplicate. In addition, surrogate compounds must be measured in each field and quality control sample.

Each batch included a method blank, LCS, MS, MSD, and appropriate surrogates. Additionally, RRM SQ-1 was analyzed with each batch.

<u>Holding times:</u> Refrigerated sediment samples must be extracted within 14 days of collection. Frozen sediment samples must be extracted within 1 year of collection. Extracts must be analyzed within 40 days of extraction. These holding times were met.

<u>Instrument calibration</u>: Data usability criteria for calibrations include minimum correlation coefficients of 0.990 or maximum RSDs of $\pm 20\%$ for each initial calibration, and maximum % differences of $\pm 25\%$ for each continuing calibration. All initial calibration compound RSDs were within 20%. Continuing calibration % differences were within $\pm 25\%$.

<u>Laboratory blank results:</u> Criteria for blanks are that analyte concentrations must be below the RL, or below 5% of the lowest associated sample concentration. These criteria were met.

<u>Surrogate recoveries:</u> Surrogates were not recovered or were outside of limits in sample 13116000025 due to dilution. No qualifiers are necessary.

Remaining surrogate recoveries were within the QAPP specified limits of 40-140%.

LCS recoveries: LCS recoveries were within the QAPP specified limits of 50-130%.

<u>RRM recoveries:</u> RRM recoveries were from 76.5% and 82.4% and were well within the advisory limits of 19-112%.

<u>MS recoveries:</u> The native concentration of aroclor 1260 exceeded 4 times the spike amount in 13116000025 MS and MSD, and control limits do not apply. Matrix effects on accuracy could not be evaluated for aroclor 1260 in these samples.

All of the remaining spike recoveries were within the QAPP specified limits of 40-140%.

MS/MSD RPDs: All RPDs were within laboratory and QAPP specified limit of 50%.

<u>Field duplicate RPDs:</u> The RPD for one detected aroclor was within the QAPP specified limit of 60%.

<u>Multiple reported results:</u> One sample was reanalyzed due to compounds exceeding the calibration range. Multiple reported results are evaluated according to the guidelines listed in section 2.0.

<u>Laboratory qualifiers:</u> Various results are flagged Y to indicate elevated reporting limits. These results are qualified "UY" to clarify that the aroclor was not detected.

<u>Reporting limits</u>: The RLs were at or below the QAPP specified 40 ug/Kg for all nondetect results selected as the best to report.

<u>Overall assessment:</u> Documentation was found to be clear and complete. Calibration data demonstrate acceptable instrument performance. Multiple analysis results were reduced to the most reliable value. Quality control results indicate acceptable accuracy and precision.

PCB data, as qualified, are acceptable for use.

5.0 Dioxin/Furan Analyses

<u>Quality control analysis frequencies:</u> The method specifies that method blank and ongoing precision and recovery (OPR) samples must be analyzed with each batch. In addition, carbon-13 labeled isotope dilution standards and a chlorine-37 labeled cleanup standard must be measured in each field and quality control sample.

A method blank and OPR sample was analyzed. Appropriate isotope dilution and cleanup standards were included.

<u>Analysis holding times:</u> Method 1613B specifies a 40 day holding time between extraction and analysis, but does not specify a holding time from sampling to extraction for sediments. The PSEP holding time for organic extraction is 14 days for refrigerated sediment samples and one year for frozen sediment samples. All samples were extracted and analyzed within these holding times.

Instrument calibration: Initial calibration criteria include maximum percent relative standard deviations (%RSD) of less than or equal to 20% for unlabeled compounds with an isotopically labeled analog and less than or equal to 35% for 1,2,3,7,8,9-HxCDD, OCDF, and labeled compounds. Continuing calibration criteria include maximum percent differences (%D) between the initial calibration and the continuing calibration of less than or equal to 20% for unlabeled compounds with an isotopically labeled analog and less than or equal to 35% for 1,2,3,7,8,9-HxCDD, OCDF, and labeled compounds for unlabeled compounds with an isotopically labeled analog and less than or equal to 35% for 1,2,3,7,8,9-HxCDD, OCDF, and labeled compounds. These criteria were met.

<u>Laboratory blank results:</u> Criteria for method blanks are that analyte concentrations must be below the PQL, or below 5% of the lowest associated sample concentration. No target analytes were detected in the method blank.

 $\underline{C_{13}}$ labeled isotope dilution standard recoveries: Isotope dilution standard recoveries were within laboratory and QAPP control limits.

<u>Cl₃₇ labeled cleanup standard recoveries:</u> Cleanup standard recoveries were within laboratory and QAPP control limits.

OPR recoveries: OPR recoveries were within laboratory and QAPP control limits.

Field Duplicates: Field duplicates were not submitted for dioxin analysis.

Multiple reported results: No multiple results were reported with this analysis.

<u>Laboratory qualifiers:</u> Several results are flagged J by the laboratory indicating a concentration below the calibration range. These results are qualified as estimated.

Several results are flagged DM by the laboratory indicating the presence of diphenyl ethers and a maximum possible concentration. These results are qualified as estimated.

<u>Overall assessment:</u> Instrument calibration information was not included in the original report. Information was requested and submitted. Remaining documentation was found to be clear and complete. Calibration data demonstrate acceptable instrument performance. Quality control results indicate acceptable accuracy. Concentrations below the calibration range and interferences resulted in some estimated concentrations.

Dioxin and furan data, as qualified, are acceptable for use.

6.0 Metals Analyses

<u>Quality control analysis frequencies:</u> The methods specify that the following quality control samples be analyzed one per analytical batch or one per twenty samples, whichever is more frequent: method blank, LCS, MS and either MSD or laboratory duplicate.

A method blank, MS, LCS, and laboratory duplicate were analyzed with each batch. Additionally, SRM ERA D044540 was analyzed with batch LD21.

<u>Holding times:</u> Refrigerated ICP and GFAA metals samples must be analyzed within 6 months of collection. Frozen ICP and GFAA metals samples must be analyzed within 2 years of collection. Refrigerated and frozen Mercury samples must be analyzed within 28 days of collection. Samples were prepared and analyzed within the holding time with the following exceptions:

Sample ID	Analyte	Days, Sample to Analysis
13116000108	Mercury	31
13116000106	Mercury	31
13116000107	Mercury	31

I:\Project\Port of Everett\13116-000 Former Mill A MTCA Support\3000 Page 1 REPORT\Data Report\Appendix I DV Report\GMC-POE_FMA_DVRpt_2007-10.doc

13116000104	Mercury	31
13116000025	Mercury	110
13116000033	Mercury	105
13116000100	Mercury	31
13116000101	Mercury	31
13116000103	Mercury	31
13116000105	Mercury	31
13116000102	Mercury	31

Mercury results in samples 13116000025 and 13116000033 are rejected as unusable. The remaining mercury results with exceeded holding times are qualified as estimated.

<u>Instrument calibration</u>: Functional guidelines criterion for calibration verifications is a maximum % difference of $\pm 10\%$ for ICP metals and $\pm 20\%$ for mercury. Functional guidelines criterion for detection limit standard recovery is 70-130%. All instrument calibration criteria were met.

<u>Laboratory blank results:</u> Criteria for calibration and method blanks are that analyte concentrations must be below the PQL, or below 5% of the lowest associated sample concentration. These criteria were met.

LCS results: LCS recoveries were within laboratory and project limits.

<u>SRM results:</u> SRM results with within the certified range.

<u>MS recoveries</u>: MS recoveries were within the laboratory and project limits with the following exceptions:

			Laboratory Control
QC ID	Analyte	Recovery (%)	Limit
13116000100MS	Antimony	21.0	75 - 125
13116000025MS	Antimony	18.6	75 - 125

These recoveries are also below the function guidelines action level or 40%. Antimony results in all samples are rejected as unusable.

<u>Laboratory duplicate RPDs</u>: Laboratory duplicate RPDs were within the QAPP limit of 20% with the following exceptions.

			Laboratory Control
QC ID	Analyte	RPD	Limit
13116000025LR	Arsenic	28.6	20
13116000025LR	Zinc	25.5	20
13116000025LR	Selenium	28.6	20

These results are qualified as estimated in the associated sample.

<u>Field duplicate RPDs</u>: The RPDs for detected metals were within the QAPP specified limit of 20%.

<u>Multiple reported results:</u> No multiple results were reported with this analysis.

goals:			
Client ID	Analyte	RL	Exceedance factor
13116000025	Silver	0.6	2
13116000033	Silver	0.8	2.67
13116000100	Arsenic	7	1.4
13116000100	Cadmium	0.3	1.5

Silver

Selenium

Silver

Selenium

Arsenic

Silver

Selenium

Silver

Silver

Arsenic

Silver

Selenium

Arsenic

Silver

Arsenic

Silver

0.4

0.3

0.6

0.4

9

0.6

0.4

0.6

0.6

10

0.6

0.4

9 0.6

6

0.4

1.33

1.5

2

2

1.8

2

2

2

2

2

2

2

1.8

2

1.2

1.33

Reporting limits: Reporting limits in the following analysis exceeded the project

However, each of these results is below the SMS level.	Qualifiers are not added on
the basis of elevated reporting limits.	

Overall assessment: Documentation was found to be clear and complete. Missed mercury holding times resulted in estimated concentrations and two rejected results. Very low spike recoveries resulted in rejected antimony detection limits. Laboratory duplicate variability resulted in some estimated arsenic, selenium, and zinc concentrations. Quality control results demonstrate acceptable levels of accuracy and precision for remaining results.

With the exception of rejected mercury and antimony data, metals data, as qualified, are acceptable for use.

7.0 **General Chemistry Analyses**

13116000100

13116000100

13116000102

13116000102

13116000103

13116000103

13116000103

13116000104

13116000105

13116000106

13116000106

13116000106

13116000107

13116000107

13116000108

13116000108

Quality control analysis frequencies: For TOC, PSDDA guidelines specifies that the following quality control samples be analyzed one per analytical batch or one per twenty samples, whichever is more frequent: method blank and laboratory triplicate. In addition, one SRM per major survey is recommended.

For total solids, PSDDA guidelines specifies that a laboratory triplicate be analyzed one per analytical batch or one per twenty samples, whichever is more frequent.

For TOC, each batch included a method blank, LCS, and SRM NIST #8704. Three of the four batches also included a MS and laboratory triplicate. No qualifiers are assigned based on the missing laboratory triplicate.

For TS, each batch included a method blank and laboratory triplicate.

<u>Holding times:</u> Samples were stored frozen and were analyzed within the 180 day holding time.

<u>Instrument calibration</u>: Calibration verification standard recovery values were within the 90-110% criterion for TOC and standard weights were accurate to .001 grams for total solids.

<u>Laboratory blank results:</u> Criteria for method blanks are that analyte concentrations must be below the PQL, or below 10% of the lowest associated sample concentration. This criterion was met.

LCS recoveries: LCS recoveries for TOC were within the QAPP limit of 80-120%.

SRM recoveries: SRM recoveries for TOC were within the QAPP limit of 80-120%.

MS recoveries: The MS recovery for TOC was within the 75-125% limit.

Laboratory triplicate results: The RSDs were within the QAPP limits of 20%.

<u>Field Duplicates</u>: The field duplicate RPD for total solids was within the 20% QAPP limit. The field duplicate RPD for TOC exceeded the 20% QAPP limit as follows:

FD ID	Analyte	FD Result (%)	Sample Result (%)	RPD
13116000101 / 13116000100	Total Organic Carbon	1.14	1.45	23.9

The TOC result for the sample and field duplicate are qualified as estimated.

<u>Reporting limits</u>: TOC and TS were detected in each sample and reporting limit evaluation was not necessary.

<u>Overall assessment:</u> Documentation was found to be clear and complete. Quality control results demonstrate acceptable levels of accuracy and precision.

General chemistry data, as qualified, are acceptable for use.

8.0 Qualifier Summary Table

Sample ID	Analyte	Qualifier	Reason
Semivolatile Organi	c Analyses	-	
13116000004	Benzoic Acid	J	High initial calibration RSD
13116000004	2-Methylnaphthalene, 4-Methylphenol, Acenaphthene, Acenaphthylene, Butylbenzylphthalate, Dibenzofuran, Fluoranthene, Fluorene, Naphthalene, Phenanthrene, Phenol	R1	Another result available
13116000004	Benzyl Alcohol	UJ	Low LCS recovery
13116000004	Bis(2-ethylhexyl)phthalate, Di-n-Butylphthalate	J	Blank contamination
13116000004 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, 2,4-Dimethylphenol, 2- Methylphenol, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Benzoic Acid, Benzyl Alcohol, Bis(2-eth	R1	Another result available

I:\Project\Port of Everett\13116-000 Former Mill A MTCA Support\3000 Page 13 of 19 REPORT\Data Report\Appendix I DV Report\GMC-POE_FMA_DVRpt_2007-10.doc 10/10/07 9:19 AM

Sample ID	Analyte	Qualifier	Reason
13116000006	1,2,4-Trichlorobenzene, Hexachlorobutadiene	UJ	IS out
13116000006	N-Nitrosodiphenylamine	UY	Clarification of Y flag
13116000006	Bis(2-ethylhexyl)phthalate, Phenol	U	Blank contamination
13116000006	All except 1,2,4-Trichlorobenzene, 1,2- Dichlorobenzene, 1,4-Dichlorobenzene, 2,4- Dimethylphenol, 2-Methylnaphthalene, 2- Methylphenol, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene,	R1	Another result available
13116000006	Benzyl Alcohol	J	Low LCS recovery
13116000006	2,4-Dimethylphenol	J	IS out
13116000006	Benzoic Acid	J	High initial calibration RSD
13116000006 DL	All except 4-Methylphenol, Pyrene	R1	Another result available
13116000010	Bis(2-ethylhexyl)phthalate	J	Blank contamination
13116000010	Benzoic Acid	J	Exceeded calibration range, high initial calibration RSD
13116000010	1,2,4-Trichlorobenzene, Di-n-Butylphthalate, Hexachlorobenzene, Hexachlorobutadiene	J	IS out
13116000010	Benzyl Alcohol	J	Low LCS recovery
13116000010	All except 1,2,4-Trichlorobenzene, 1,2- Dichlorobenzene, 1,4-Dichlorobenzene, 2,4- Dimethylphenol, 2-Methylnaphthalene, 2- Methylphenol, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Benzoic Acid, B	R1	Another result available
13116000010	Diethylphthalate	U	Blank contamination
13116000010	N-Nitrosodiphenylamine	UJY	Clarification of Y flag, IS out
13116000010 DL	All except 4-Methylphenol, Acenaphthylene, Benzo(b)fluoranthene, Dibenz(a,h)Anthracene	R1	Another result available
13116000014	Benzoic Acid	UJ	High initial calibration RSD
13116000014	Diethylphthalate, Di-n-Butylphthalate	U	Blank contamination
13116000014	2,4-Dimethylphenol, 2-Methylnaphthalene, 2- Methylphenol, 4-Methylphenol, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Chrysene, Indeno(1,2,3- cd)pyrene, Naphthalene, Phenanthrene, Phenol	R1	Another result available
13116000014	Benzyl Alcohol	J	Low LCS recovery
13116000014 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)pyrene, Benzo(k)fluoranthene, Benzoic Acid, Benzyl Alcohol, Dibenz(a,h)Anthracene, Dibenzofuran, Diethylphthalate, Dimethylphthalate, Di-n-	R1	Another result available
I3116000014 DL	Bis(2-ethylhexyl)phthalate	U	Blank contamination
13116000015	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, Dimethylphthalate, Di-n-Octyl phthalate, Hexachlorobenzene, Hexachlorobutadiene, N-Nitrosodiphenylamine	ŬJ	Low surrogate recovery
13116000015	Benzyl Alcohol	J	Low LCS recovery
13116000015	Acenaphthene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Butylbenzylphthalate, Chrysene, Dibenz(a,h)Anthracene, Pyrene	J	Low surrogate recovery
13116000015	2,4-Dimethylphenol, 2-Methylnaphthalene, 2- Methylphenol, 4-Methylphenol, Acenaphthylene, Anthracene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Dibenzofuran, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Naphthalene, Phenanthrene, Phenol	R1	Another result available
13116000015	Bis(2-ethylhexyl)phthalate, Diethylphthalate, Di-n- Butylphthalate	UJ	Blank contamination, Lor surrogate recovery

I:\Project\Port of Everett\13116-000 Former Mill A MTCA Support\3000 REPORT\Data Report\Appendix I DV Report\GMC-POE_FMA_DVRpt_2007-10.doc 10/10/07 9:19 AM Page 14 of 19

Sample ID	Analyte	Qualifier	Reason
13116000015	Benzoic Acid	UJ	High initial calibration RSD
13116000015 DL	Phenol	J	Blank contamination
I3116000015 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, Acenaphthene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzoic Acid, Benzyl Alcohol, Bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Chrysene, Dibenz(a,h)Anthracene, Diet	R1	Another result available
13116000021	Benzoic Acid	J	High initial calibration RSD
13116000021	Benzyl Alcohol	J	Low LCS recovery
13116000021	2-Methylnaphthalene, 2-Methylphenol, 4- Methylphenol, Acenaphthene, Butylbenzylphthalate, Dibenzofuran, Fluoranthene, Naphthalene, Phenanthrene, Phenol, Pyrene	R1	Another result available
13116000021	Bis(2-ethylhexyl)phthalate, Di-n-Butylphthalate	U	Blank contamination
13116000021 DL	Phenol	J	Blank contamination
13116000021 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, 2,4-Dimethylphenol, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Benzoic Acid, Benzyl Alcohol, Bis(2-eth	R1	Another result available
13116000023	Benzoic Acid	J	High initial calibration RSD
13116000023	Benzyl Alcohol	UJ	Low LCS recovery
13116000023	Bis(2-ethylhexyl)phthalate, Diethylphthalate, Di-n- Butylphthalate	U	Blank contamination
13116000023	Phenol	J	Blank contamination
13116000023	4-Methylphenol, Fluoranthene, Naphthalene, Phenanthrene	R1	Another result available
13116000023 DL	All except 4-Methylphenol, Fluoranthene, Naphthalene, Phenanthrene	R1	Another result available
13116000025	Acenaphthene	J	Low MS recovery
13116000025	Benzo(a)anthracene, Benzo(g,h,i)perylene, Chrysene, Di-n-Butylphthalate, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, Pyrene	R1	Another result available
13116000025 DL	Benzo(g,h,i)perylene, Pyrene	J	Low MS and MSD recoveries
13116000025 DL	Di-n-Butylphthalate	Ν	Poor spectral match
13116000025 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, 2,4-Dimethylphenol, 2- Methylnaphthalene, 2-Methylphenol, 4- Methylphenol, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzoic Acid,	R1	Another result available
13116000027	Benzoic Acid	J	High initial calibration RSD
13116000027	Benzyl Alcohol	J	Low LCS recovery
13116000027	2,4-Dimethylphenol, 2-Methylnaphthalene, 4- Methylphenol, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Chry	R1	Another result available
13116000027 DL	Di-n-Butylphthalate, Phenol	J	Blank contamination
13116000027 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, 2-Methylphenol, Benzoic Acid, Benzyl Alcohol, Dibenz(a,h)Anthracene, Diethylphthalate, Dimethylphthalate, Di-n-Octyl phthalate, Hexachlorobenzene, Hexachlorobutadiene, Indeno(1,2,3-cd)pyren	R1	Another result available
13116000027 DL	Bis(2-ethylhexyl)phthalate	U	Blank contamination

I\Project\Port of Everett\13116-000 Former Mill A MTCA Support\3000 REPORT\Data Report\Appendix I DV Report\GMC-POE_FMA_DVRpt_2007-10.doc 10/10/07 9:19 AM Page 15 of 19

Sayler Data Solutions, Inc. DV Report

Sample ID	Analyte	Qualifier	Reason
13116000029	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, Benzo(a)pyrene,	UJ	Low surrogate recovery
	Benzo(b)fluoranthene, Benzo(g,h,i)perylene,		
	Benzo(k)fluoranthene, Dibenz(a,h)Anthracene,		
	Diethylphthalate, Dimethylphthalate, Di-n-Octyl phthalate, Hexachlorobenzene, Hexach		
13116000029	Bis(2-ethylhexyl)phthalate	J	Blank contamination, Low
10110000020	Dio(2 curyinexy)printiate	Ũ	surrogate recovery
13116000029	Benzoic Acid	J	High initial calibration RSD
13116000029	2-Methylnaphthalene, Benzo(a)anthracene, Chrysene, Phenanthrene	J	Low surrogate recovery
13116000029	4-Methylphenol, Acenaphthene, Acenaphthylene,	R1	Another result available
	Anthracene, Butylbenzylphthalate, Dibenzofuran,		
	Di-n-Butylphthalate, Fluoranthene, Fluorene, Naphthalene, Phenol, Pyrene		
13116000029	Benzyl Alcohol	UJ	Low LCS recovery
13116000029 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4-	R1	Another result available
	Dichlorobenzene, 2,4-Dimethylphenol, 2-		
	Methylnaphthalene, 2-Methylphenol,		
	Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene,		
	Benzo(k)fluoranthene, Benzoic Acid, Benzyl		
	Alcohol,		
13116000031	Hexachlorobenzene	UJ	IS out
13116000031	Phenol	J	Blank contamination
13116000031	Benzoic Acid	J	High initial calibration
13116000031	Di-n-Butylphthalate	J	RSD IS out
13116000031	Benzyl Alcohol	J	Low LCS recovery
13116000031	All except 1,2,4-Trichlorobenzene, 1,2-	R1	Another result available
10110000001	Dichlorobenzene, 1,4-Dichlorobenzene, 2-		
	Methylnaphthalene, 2-Methylphenol,		
	Acenaphthene, Acenaphthylene, Anthracene,		
	Benzo(a)anthracene, Benzoic Acid, Benzyl		
	Alcohol, Bis(2-ethylhexyl)phthalate, Chrysene, Dibenzofura		
13116000031	Diethylphthalate	U	Blank contamination
13116000031 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4-	R1	Another result available
	Dichlorobenzene, 2-Methylnaphthalene, 2-		
	Methylphenol, Acenaphthene, Acenaphthylene,		
	Anthracene, Benzo(a)anthracene, Benzoic Acid,		
	Benzyl Alcohol, Bis(2-ethylhexyl)phthalate,		
13116000031 DL	Chrysene, Dibenzofuran, Diethylp N-Nitrosodiphenylamine	UY	Clarification of Y flag
13116000033	Di-n-Butylphthalate	N	Poor spectral match
13116000038	Benzoic Acid	UJ	High initial calibration
			RSD
13116000038	1,4-Dichlorobenzene	UJ	Low MS recovery
13116000038	1,2,4-Trichlorobenzene	UJ	Low MS recovery, IS out
13116000038	Benzyl Alcohol	UJ	Low LCS recovery
13116000038	Di-n-Butylphthalate, Hexachlorobenzene, Hexachlorobutadiene	UJ	IS out
13116000038	Phenol	UJ	Blank contamination, low MS and MSD Recovery
13116000038	Bis(2-ethylhexyl)phthalate, Diethylphthalate	U	Blank contamination
13116000038	2-Methylnaphthalene, Acenaphthene, Anthracene,	R1	Another result available
	Benzo(a)anthracene, Chrysene, Dibenzofuran,		
	Fluoranthene, Fluorene, Naphthalene,		
4044000000	Phenanthrene, Pyrene		IC aut
13116000038 13116000038	2,4-Dimethylphenol	J UJY	IS out Clarification of Y flag, IS
13110000038	N-Nitrosodiphenylamine	UJY	out
13116000038	Benzo(g,h,i)perylene	J	Low MS and MSD
			Recovery, high MS/MSD
			RPD
13116000038 DL	Acenaphthene	J	High MS/MSD RPD

L'Aroject/Port of Everett/13116-000 Former Mill A MTCA Support/3000 REPORT/Data Report/Appendix I DV Report/GMC-POE_FMA_DVRpt_2007-10.doc 10/10/07 9:19 AM

Sayler Data Solutions, Inc. DV Report

Sample ID	Analyte	Qualifier	Reason	
13116000038 DL	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4- Dichlorobenzene, 2,4-Dimethylphenol, 2- Methylphenol, 4-Methylphenol, Acenaphthylene,	R1	Another result available	
	Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene,			
10110000100	Benzoic Acid, Benzyl Alcohol, Bis(2-eth	<u> </u>	The late share the state special billing	
13116000100	Fluoranthene	J	Field duplicate variability IS out	
13116000100 13116000100	Bis(2-ethylhexyl)phthalate Benzo(a)anthracene, Benzo(a)pyrene,	R1	Another result available	
13110000100	Benzo(k)fluoranthene, Chrysene, Phenanthrene, Pyrene			
13116000100	Dimethylphthalate	UJ	Field duplicate variability	
13116000100	Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out	
13116000100	Benzoic Acid	UJ	Low continuing calibration	
13116000100 DL	All except Benzo(a)anthracene, Benzo(a)pyrene, Benzo(k)fluoranthene, Chrysene, Phenanthrene, Pyrene	R1	Another result available	
13116000101	Benzo(a)anthracene	J	IS out	
13116000101	Benzoic Acid	UJ	Low continuing calibration	
13116000101	Chrysene, Dimethylphthalate, Phenanthrene, Pyrene	R1	Another result available	
13116000101	Fluoranthene	J	Field duplicate variability	
13116000101	Bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out	
13116000101 DL	Dimethylphthalate	J	Field duplicate variability	
13116000101 DL	All except Chrysene, Dimethylphthalate, Phenanthrene, Pyrene	R1	Another result available	
13116000102	Bis(2-ethylhexyl)phthalate, Chrysene, Pyrene	J	IS out	
13116000102	Benzo(a)anthracene, Phenanthrene	R1	Another result available	
13116000102	Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out	
13116000102	Benzoic Acid	UJ	Low continuing calibration	
13116000102 DL	All except Benzo(a)anthracene, Phenanthrene	R1	Another result available	
<u>13116000103</u> 13116000103	Benzoic Acid	UJ UJ	Low continuing calibration	
13116000103	Butylbenzylphthalate, Dibenz(a,h)Anthracene, Di- n-Octyl phthalate	R1	Another result available	
	Acenaphthene, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene, Phenanthrene, Pyrene			
13116000103	Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Bis(2-ethylhexyl)phthalate, Chrysene	J	IS out	
13116000103 DL	All except Acenaphthene, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene, Phenanthrene, Pyrene	R1	Another result available	
13116000104	Benzo(a)anthracene, Bis(2-ethylhexyl)phthalate, Chrysene, Pyrene	J	IS out	
13116000104	Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene, Phenanthrene	R1	Another result available	
13116000104	Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out	
13116000104	Benzoic Acid	UJ	Low continuing calibration	
13116000104 DL	All except Benzo(g,h,i)perylene, Indeno(1,2,3- cd)pyrene, Phenanthrene	R1	Another result available	
13116000105	Acenaphthene, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene	R1	Another result available	
13116000105	Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out	
13116000105	Benzo(a)anthracene, Bis(2-ethylhexyl)phthalate, Chrysene, Pyrene	J	IS out	
13116000105	Benzoic Acid	UJ	Low continuing calibration	
13116000105 DL	All except Acenaphthene, Benzo(g,h,i)perylene, Indeno(1,2,3-cd)pyrene	R1	Another result available	
13116000106	Benzo(a)anthracene, Bis(2-ethylhexyl)phthalate, Chrysene, Pyrene	J	IS out	
13116000106	Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene, Naphthalene	R1	Another result available	
13116000106	Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out	
13116000106	Benzoic Acid	UJ	Low continuing calibration	

Sample ID	Analyte	Qualifier	Reason
13116000106 DL	All except Benzo(g,h,i)perylene,	R1	Another result available
	Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene,		
	Naphthalene		
13116000107	Benzo(g,h,i)perylene, Pyrene	R1	Another result available
13116000107	Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out
13116000107	Benzoic Acid	UJ	Low continuing calibration
13116000107	Benzo(a)anthracene, Bis(2-ethylhexyl)phthalate, Chrysene	J	IS out
13116000107 DL	All except Benzo(g,h,i)perylene, Pyrene	R1	Another result available
13116000108	Benzo(a)anthracene, Chrysene	J	IS out
13116000108	Pyrene	R1	Another result available
13116000108	Bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Di-n-Octyl phthalate	UJ	IS out
13116000108	Benzoic Acid	UJ	Low continuing calibration
13116000108 DL	All except Pyrene	R1	Another result available
Pesticide Analyses			
13116000025	gamma-BHC (Lindane)	UY	Clarification of Y flag
PCB Analyses			. <u> </u>
13116000025	Aroclor 1254, Aroclor 1260	R1	Another result available
13116000025 DL	Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1242, Aroclor 1248	R1	Another result available
13116000033	Aroclor 1248	UY	Clarification of Y flag
13116000102	Aroclor 1232	UY	Clarification of Y flag
13116000103	Aroclor 1232	UY	Clarification of Y flag
Metals Analyses		0.	0.4.1004.1011 01 1 1.4g
13116000025	Arsenic, Zinc	J	High Lab Dup RPD
13116000025	Antimony	R	Very low MS recovery
13116000033	Antimony	R	Very low MS recovery
13116000100	Antimony	R	Very low MS recovery
13116000101	Antimony	R	Very low MS recovery
13116000102	Antimony	R	Very low MS recovery
13116000103	Antimony	R	Very low MS recovery
13116000104	Antimony	R	Very low MS recovery
13116000105	Antimony	R	Very low MS recovery
13116000106	Antimony	R	Very low MS recovery
13116000107	Antimony	R	Very low MS recovery
13116000108	Antimony	R	Very low MS recovery
13116000025	Selenium	J	High Lab Dup RPD
13116000025	Mercury	R	Holding time grossly exceeded
13116000033	Mercury	R	Holding time grossly
	moroury		exceeded
13116000100	Mercury	J	Holding time exceeded
13116000101	Mercury	UJ	Holding time exceeded
13116000102	Mercury	J	Holding time exceeded
13116000103	Mercury	J	Holding time exceeded
13116000104	Mercury	J	Holding time exceeded
13116000105	Mercury	J	Holding time exceeded
13116000106	Mercury	J	Holding time exceeded
13116000107	Mercury	J	Holding time exceeded
13116000108	Mercury	UJ	Holding time exceeded
Dioxin/Furan Analy		•	· · · · · · · · · · · · · · · · · · ·
13116000007	1,2,3,4,7,8,9-HpCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD	J	Below calibration range
13116000007	Total PeCDF, Total TCDF	J	Interference
13116000013	Total PeCDF, Total TCDF	J	Interference
13116000019	1,2,3,4,7,8,9-HpCDF	J	Below calibration range
13116000019	Total HxCDF, Total PeCDF, Total TCDF	J	Interference

9.0 Abbreviations and Definitions

DV Qualifier Definition

DV Qualifier	Definition
U	The material was analyzed for, but was not detected above the level of
	the associated value.
J	The analyte was positively identified. The associated numerical value is
	the approximate concentration of the analyte in the sample.
Ν	The analysis indicates the presence of an analyte for which there is
	presumptive evidence to make a tentative identification.
UJ	The material was analyzed for, but was not detected. The associated
	value is an estimate and may be inaccurate or imprecise.
R	The sample result is rejected. The presence or absence of the analyte
	cannot be verified and data are not usable.
R1	This sample result has been rejected in favor of a more accurate and/or
	precise result. The other result should be used.

RSDRelative standard deviationsSIMSelective ion monitoringSRMStandard reference materialMDLMethod detection limitRLReporting limit	SRM MDL	Standard reference material Method detection limit
--	------------	--

10.0 References

- USEPA Contract Laboratory Program National Functional Guidelines For Organic Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, October 1999, EPA540/R-99/008.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, July 2002, EPA540/R-01/008.
- Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, March 1986.
- Recommended Guidelines For Measuring Organic Compounds In Puget Sound Water, Sediment And Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- Recommended Guidelines For Measuring Metals In Puget Sound Marine Water, Sediment And Tissue Samples, Puget Sound Water Quality Authority, April 1997.