Prepa

PRELIMINARY SOIL AND GROUNDWATER SITE ASSESSMENT REPORT

Precision Engineering

Project No. 0053.01.03

Prep

PRELIMINARY SOIL AND GROUNDWATER SITE ASSESSMENT REPORT

PRECISION ENGINEERING, INC. 1231 S. DIRECTOR STREET SEATTLE, WASHINGTON

Prepared for
Precision Engineering, Inc.
August 5, 2005

Prepared by

Maul Foster & Alongi, Inc. 7223 NE Hazel Dell Avenue, Suite B Vancouver, Washington 98665

Project 0053.01.03

ETRALITA EL ALEMPHILIÓN DO LONG ELLE VIVARIAN MENTE. LA CARLESTA EN ESTA ESTA ESTA LA CARLESTA EN ESTA EL CARLESTA EN ESTA EN ESTA EN ESTA EN ESTA EN ESTA ESTA EN

t d kee sweet

struttade stat

Preliminary Soil and Groundwater Site Assessment Report Precision Engineering, Inc.

The material and data in this report were prepared under the supervision and direction of the undersigned.

Maul Foster & Alongi, Inc.

Janes J. Maul, RG

President/Principal Hydrogeologist

Alistaire W. Clary, PE

Senior Engineer

2498 consed Geo

Alan R. Hughes

Wes7

Alan R. Hughes, RG Project Geologist

ter andre de la grande de la comité de la com La comité de la comité destructions de la comité de la comité de la comité de la comité destruction de la comité destruction de la comité destruction de la comité destructions de la comité destruction de la comité de la comité destruction de la comité de la

ili kalagasik telepada kelaga da mendelek di dida pertebah di belagai dila di mendelah di belagai belagai di d Kanangan di dianggan di diganggan di dianggan di dinanggan di dianggan di dianggan di dianggan di diganggan di

in alciding all benesets a color

CONTENTS

TA	ABLES AND ILLUSTRATIONS	vii
AC	CRONYMS AND ABBREVIATIONS	ix
1	INTRODUCTION	1-1
2	SITE DESCRIPTION	2-1
	2.1 Property Location and Description	2-1
	2.2 Environmental Setting	2-1
	2.3 Features of Interest	2-3
3	ANALYTICAL RESULTS	3-1
	3.1 Data Quality	3-1
	3.2 Soil and Reconnaissance Groundwater Analytical Results	3-2
	3.3 Groundwater Analytical Results (Monitoring Wells)	3-6
LII	MITATIONS	
RE	FERENCES	
TA	BLES	
FIC	GURES	
AP	PENDIX A SITE CHARACTERIZATION PROCEDURES	
AP	PENDIX B BORING LOGS	
AP	PENDIX C LABORATORY ANALYTICAL REPORTS	

APPENDIX D DATA QA/QC MEMORANDUM APPENDIX E FIELD SAMPLING DATA SHEETS SOIL GROUNDWATER

APPENDIX E FIELD SAMPLING DATA SHEETS SOIL

GROUNDWATER

Assessment.doc

CONTENTS (Continued)

APPENDIX F WELL DEVELOPMENT SHEETS

TABLES AND ILLUSTRATIONS

Following Report:

Tables

1	Water Level Elevations
2	Metals in Soil
3	Volatile Organic Compounds in Soil
4	Petroleum Hydrocarbon Identification in Soil
5	Metals in Groundwater
6	Volatile Organic Compounds in Groundwater
7	Petroleum Hydrocarbon Identification in Groundwater
8	Petroleum Hydrocarbons in Groundwater
9	Polycyclic Aromatic Hydrocarbons in Groundwater
10	Polychlorinated Biphenyls in Groundwater

Figures

10

- Site Location 1
- 2 Site and Vicinity Features
- 3 Sample Locations
- Water Level Elevations

- Rogerier in Application III and the state of the first spiritual state of the state

ACRONYMS AND ABBREVIATIONS

bgs below ground surface cis-1,2-DCE cis-1,2-dichloroethene

CUL cleanup level

DRO diesel-range organics

Ecology Washington State Department of Ecology

GRO gasoline-range organics

IHS indicator hazardous substances
MFA Maul Foster & Alongi, Inc.
mg/kg milligrams per kilogram
mg/L milligrams per liter
MRL method reporting limits
MTCA Model Toxics Control Act

Metro Municipality of Metropolitan Seattle

μg/kg micrograms per kilogram μg/L micrograms per liter

PAH polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyl

POTW publicly owned treatment works
Precision Precision Engineering, Inc.
QA/QC quality assurance/quality control

RRO residual-range organics

TCE trichloroethene

TPH total petroleum hydrocarbons

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound

WBZ Water-bearing zone

지 않아 마하는 맛이라면 쉬스 나가서 사고 가는 거야 싶었다.

* * * * * * * * * * * * * * * * * * *				
	tali ta intera			
af gjeneral fra brigger.				
	où kaj k			
 1 * * * * * * * * * * * * * * * * * * *				
		H1 (8,881) E31, H1		
a right filling		in a flow that		a nevertal
		STREET, ST.		
the first state of				
			15/5/	
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2				
			. N. 12	
a 26 p				
. 1 A SAME PRO			17.19"	
	and the			

1 INTRODUCTION

Maul Foster & Alongi, Inc. (MFA) has prepared this Preliminary Soil and Groundwater Assessment Report summarizing site characterization activities conducted in June 2005 at the former Precision Engineering, Inc. (Precision) site at 1231 S. Director Street, in Seattle, Washington (see Figure 1). The scope of work was designed to characterize the following features of interest at the site (see Figure 2):

- Containment vault holding former Plating Tanks 1 and 2
- Former Plating Tanks 3, 4, 5, and 6
- Large containment vault holding former Plating Tank 7 and caustic tanks
- Former floor trenches and drains
- Hydraulic cylinder test vault

Eleven GeoprobeTM borings (GP-1 through GP-11) were advanced at the site to characterize releases of hazardous substances near features of interest (see Figure 3). The site characterization procedures are summarized in Appendix A and were generally consistent with the scope of work described in the RI workplan (MFA, 2005).

GP-1 and GP-4 were advanced adjacent to former Plating Tanks 1 and 2. GP1, GP-2, GP-3, and GP-6 were advanced near former Plating Tanks 3, 4, 5, and 6. GP-7, GP-9, and GP-10 were advanced near the north side of the large containment vault that formerly held Plating Tank 7 and the caustic tanks. GP-11 was advanced in the northeast part of the warehouse near a floor drain. GP-5 was advanced near the hydraulic cylinder test vault near the west wall outside of the building. GP 8 was advanced in the former cylinder shop and west of former Plating Tank 1.

GP-1, GP-3, GP-9, GP-10, and GP-11 were advanced to the water table to collect soil samples only. GP-2, GP-4, GP-5, GP-6, GP-7, and GP-8 were advanced to the water table to collect soil and reconnaissance groundwater samples.

The work completed has identified hexavalent chromium and trivalent chromium in soil near former Plating Tanks 1 through 6 and the former floor trenches and drains at concentrations that exceed the Washington State Department of Ecology (Ecology)

Model Toxics Control Act (MTCA) Method A or Method B cleanup levels (CULs). Trichloroethene (TCE) was identified near former Plating Tanks 1 through 6 and near the floor trenches at concentrations that exceed the MTCA Method A CULs. The horizontal extent of these contaminants has not been fully characterized. Diesel, hexavalent chromium, dissolved total chromium, motor oil, TCE, and cis-1,2-dichloroethene have been detected in groundwater at concentrations that exceed MTCA Method A or Method B CULs. Additional investigation is necessary to fully characterize the extent of chromium, total petroleum hydrocarbons (TPH), and volatile organic compound (VOC) contamination in soil and groundwater.

2 SITE DESCRIPTION

2.1 Property Location and Description

The former Precision facility is located at 1231 S Director Street in Seattle, Washington (see Figure 1). The approximately 3.5-acre site is in King County, Washington, section 32, township 24 north, range 4 east, Willamette Meridian. The site is approximately 1,800 feet (less than 0.5 mile) west of the Duwamish River. The area surrounding the site is characterized by mixed industrial and residential use. The site is zoned I (Industrial). In addition to traditional industrial uses, this zoning classification allows uses that involve unrestricted access by the general public, including children, and that may involve the growing of food. Allowed uses under the Industrial zoning classification include daycares, eating and drinking places, museums, medical office/outpatient clinics, vocational schools, commuter parking lots, veterinary clinics, artist studios, farm product warehousing, growing and harvesting crops, and raising livestock.

A single 62,000-square-foot building is located at the Site. The east side of the building was constructed in 1968, and the west part was added in 1979. The building is surrounded by an asphalt parking lot.

Precision operated continuously at the property between 1968 and 2005. Precision ceased operations on March 1, 2005. Approximately 10,000 square feet of the west side of the building was leased to Baszile Metals Service, an aluminum distributorship, between approximately 1985 and 2003. Precision specialized in the manufacture and repair of large hydraulic cylinders, large rolls used in the manufacture of paper and metal sheet products, and other equipment. Services included precision grinding and polishing, honing, hard-chrome plating, milling, welding, and a large number of flame- and arcapplied metal coatings. Much of Precision's work involved the use of chromic acid.

2.2 Environmental Setting

The Precision facility is located at the base of a hill along S Director Street. The site is generally flat except for the northern and western edges of the property, which consist of an excavated slope. The property is located in the lowland area of the Duwamish River Estuary. The Duwamish River is approximately 1,800 feet (less than 0.5 mile) east of the site and flows north to Elliot Bay.

2.2.1 Geology

The site is underlain by localized fill up to 10 feet thick, alluvium, comprised of silt and sand (from the surface to a depth of approximately 40 feet), and dense, gravelly, sandy silt glacial till. Based on a cross section prepared by Sweet-Edwards/EMCON, Inc. (Precision, 1993), it appears that the silty sand fill and silt-and-sand alluvium are not present in the southwest part of the site. The June 2005 characterization activities generally confirmed the past investigation geologic findings. Figure 3 shows the boring locations in relation to former and current site features. The boring logs from the June 2005 characterization are included in Appendix B.

2.2.2 Hydrogeology

Two groundwater systems are present beneath the project site: (1) an unconfined alluvial water-bearing zone (WBZ) beneath the eastern side of the site that flows northeasterly toward the Duwamish River, and (2) a confined sand and gravel WBZ confined beneath the low permeability glacial till (which is also referred to as the advanced outwash WBZ) (Precision, 1993). East of the facility, the glacial till appears to hydraulically separate the two groundwater systems (Precision, 1993).

Four monitoring wells (MW-1 through MW-4) and two piezometers (P-1 and P-2) were installed at the site in June 1988 (see Figure 2). In past investigations, groundwater levels at the site ranged from 0 to 15.4 feet below ground surface (bgs) (Precision, 1993). The past investigations also indicated that MW-2 and MW-3 are in the alluvial WBZ, which occurs only in the western half of the site, and that MW-1 and MW-4 are in the advanced outwash WBZ. Past flow directions have been shown to be to the west with a slight northern component.

Depth-to-water measurements were collected at monitoring wells MW-1 through MW-4 during the June 2005 work before the start of groundwater sampling at each well (see Table 1). The piezometers could not be located during the June 2005 characterization. Table 1 summarizes static groundwater level elevations.

Figure 4 shows June 2005 water level elevations. Estimated potentiometric contours were not created for the water-bearing zones because only MW-2 and MW-3 were available from the alluvial WBZ, and in the advanced outwash WBZ MW-1 exhibited flowing artesian conditions and the casing for MW-4 was damaged and would not allow measurement.

Based on observations of water infiltrating from the alluvial WBZ into the deep pit around former tank 7, fluctuating tidal conditions affect groundwater levels at the site (Precision, 2005).

2.3 Features of Interest

2.3.1 Containment Vault Holding Former Plating Tanks 1 and 2

Former Plating Tanks 1 and 2 were installed in an in-ground containment vault in the southeast corner of the plating area in 1968, when the building was constructed (see Figure 2).

2.3.2 Former Plating Tanks 3, 4, 5, and 6

Former Plating Tanks 3, 4, 5, and 6 included one aboveground tank with a concrete curb around it and three in-ground tanks located in containment vaults (Neely, 2002). Two concrete-lined trenches penetrated the floor on both sides of the former tanks (see Figure 2).

2.3.3 Large Containment Vault Holding Plating Tank 7 and Caustic Tanks

The largest containment vault at the site was constructed in 1980 on the west side of the chrome-plating shop as part of the building expansion. The vault is approximately 24 feet long, 8 feet wide, and 16 feet deep. The vault held Plating Tank 7, a sodium hydroxide strip tank, and a sodium bicarbonate strip tank (see Figure 2). Tank 7 measured 9 feet long, 7.5 feet wide, and 16 feet deep.

2.3.4 Former Floor Trenches and Drains

Until 1985 or 1986, the floor drains and trenches in the chrome plating shop discharged to the Municipality of Metropolitan Seattle (Metro) publicly owned treatment works (POTW) sanitary sewer system. Precision Engineering was permitted by Metro to discharge chrome-plating rinse water from a small rinse tank to the POTW. By July 1986, Precision Engineering had sealed or otherwise disconnected the floor drains and trenches from the City sanitary sewer system and re-routed them to the containment vaults.

2.3.5 Hydraulic Cylinder Test Vault

A covered in-ground hydraulic cylinder test vault measuring approximately 4 feet in diameter and 25 feet deep is located outside the building, approximately 10 feet from the west wall of the building.

is bright ning bire billion its

s start which is and the start of the second start in the second second in the second second in the second second

era a di Aramanna del Pasco de la compania de la c Real descripción de la capación de la compania de la co

선생님 보는 남자도 , 원생이 없어는 중요하는 얼마는 생각을 하는 것 같

energie führte die entschaften der eine Gebeurg in der der Gebeurgen der Stelle der Schaften eine Gebeurge der Gebeurge Gebeurge der Gebeurg der der der Gebeurge der Gebeurgsbergen der Gebeurge der Gebeurgen der der Gebeurgen der Gebeurgen

adja adil juliyadi. Di landa il kadi il jadadika kinikina il ilikunda, kinigisaki ja tada kadi su di su dik

ont for the second of the second second of the control of the second of the second of the second of the second Second of the sec

ો સમુકારી મોલો ભારત કે તો કહેતું માત્ર કરી છે. માત્રી મોલો મોતા માત્ર કે માને કોઈ જે

De in Scheine Projektion für geneint mit begeben in de Seiten in heit im January in de in de seiten in Projektion in de Seiten in de Seiten de Seiten in de Seiten de Seiten de Seiten in de Seiten de Seiten de Seit De Seiten d

ৰে জুকুই ইছিল প্ৰতিক্ৰিয়াৰ প্ৰতিক্ৰিয়াৰ পৰি ক্ষেত্ৰিক লৈ জনজন কৰিছিল ইনি জন্ত্ৰত চন্দ্ৰী কৰিছিল। বিজ্ঞানি বি কেন্দ্ৰীয়াৰ জিন্দ্ৰীয়াৰ বিজ্ঞানিক বিজ্ঞানিক প্ৰতিক্ৰিয়াৰ জনীয়া কৰিছিল। তথ্য বিজ্ঞানিক বিজ্ঞানিক জনজন বিজ্ঞা কিন্দ্ৰীয়াৰ ইছিল জিন্দ্ৰীয়াৰ বিজ্ঞানিক বিজ্ঞানিক বিজ্ঞানিক জনীয়াৰ জন্ত্ৰীয়াৰ জন্ত্ৰীয়াৰ জন্ত্ৰীয়াৰ কৰিছিল

3 ANALYTICAL RESULTS

Selected soil samples were analyzed for total chromium by U.S. Environmental Protection Agency (USEPA) Method 6010B, for hexavalent chromium by USEPA Method 7195, for petroleum hydrocarbon scan by NWTPH-HCID, and for VOCs by USEPA Method 8260B. If gasoline-range organics (GRO) were detected, the samples were analyzed for lead by USEPA Method 6010B, and TPH concentrations were quantified using NWTPH-Gx. If diesel- or residual-range organics (DRO and RRO) were detected, the samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270C-SIM, and TPH concentrations were quantified using NWTPH-Dx. One sample (with the highest PAH detection) was analyzed for polychlorinated biphenyls (PCBs) by USEPA Method 8082. Trivalent chromium was calculated for the soil samples by subtracting the hexavalent chromium results from the total chromium results.

Reconnaissance groundwater samples were collected from locations GP-2, GP-4, GP-5, GP-6, GP-7, and GP-8 to assess for potential groundwater impacts (see Figure 3). Reconnaissance groundwater samples were analyzed for dissolved total chromium by USEPA Method 6010B, for hexavalent chromium by USEPA Method 7195, for petroleum hydrocarbon scan by NWTPH-HCID, and for VOCs by USEPA Method 8260B. If GRO were detected, the samples were analyzed for dissolved lead by USEPA Method 6010B, and TPH concentrations were quantified using NWTPH-Gx. If DRO or RRO were detected, the samples were analyzed for PAHs by USEPA Method 8270C-SIM and TPH quantified using NWTPH-Dx. One reconnaissance groundwater sample (with the highest PAH detection) was analyzed for PCBs by USEPA Method 8082.

Groundwater samples from monitoring wells were analyzed for dissolved total chromium by USEPA Method 6010B, for hexavalent chromium by USEPA Method 7195, and VOCs by USEPA Method 8260B. Additional groundwater samples were collected from MW-2 for a petroleum hydrocarbon scan by NWTPH-HCID and for possible followup analyses that included lead, gasoline, diesel, motor oil, PAHs, and PCBs.

3.1 Data Quality

Appendix C contains the laboratory analytical reports, and the data quality assurance/quality control (QA/QC) reviews are in Appendix D. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned. Appendix

E contains the soil and groundwater field data sampling sheets from the investigation and Appendix F shows the development records for the monitoring wells.

3.2 Soil and Reconnaissance Groundwater Analytical Results

Tables 2, 3, and 4 summarize soil analytical results for metals, VOCs, and petroleum hydrocarbon analyses. Tables 5 through 10 summarize groundwater analytical results for dissolved total chromium, hexavalent chromium, lead, VOCs, PAHs, petroleum hydrocarbons, and PCB analyses. Sample locations are shown on Figure 3. The soil and groundwater analytical results are compared to the Ecology MTCA Method A soil CULs and MTCA Method B soil CULs (Ecology, 2001). The MTCA Method A and B CULs were used to evaluate site soil and groundwater conditions for the following reasons:

- The MTCA Method A soil CULs for unrestricted land uses are based on the protection of groundwater. Generally if soil concentrations exceed the MTCA Method B leaching to groundwater CULs Ecology will require an evaluation of the vapor intrusion pathway; therefore, the MTCA Method A soil CUL provide leaching to groundwater CULs that (based on experience on other sites) show no substantive difference to the CULs that would be calculated with MTCA Method B.
- The MTCA Method B soil CULs for unrestricted land use are based on the direct contact (ingestion only) pathway.
- The MTCA Method A and B groundwater CULs are based on the protection of potable groundwater uses and the values are generally similar. However, some analytes do not have CULs available in one or the other method, therefore by using both methods a more complete evaluation can be obtained.

The work completed has identified hexavalent chromium, trivalent chromium, and TCE in soil at concentrations that exceed the MTCA Method A or Method B CULs, and are therefore soil indicator hazardous substances (IHSs) for the site. Soil is impacted above MTCA CULs near the following features:

- Former Plating Tanks 1 and 2
- Former Plating Tanks 3, 4, 5, and 6
- Former trench drains
- Former cylinder shop

The work completed has identified hexavalent chromium, dissolved total chromium, cis-1,2-dichloroethene (cis-1,2-DCE), TCE, diesel, and motor oil in reconnaissance groundwater at concentrations that exceed the MTCA Method A or Method B CULs, and are therefore groundwater IHSs for the site. Reconnaissance groundwater is impacted above MTCA CULs near the following features or general areas:

- Former Plating Tanks 1 and 2
- Former Plating Tanks 3, 4, 5, and 6
- Former Plating Tank 7 and the caustic tank vault
- Former trench drains
- Former cylinder shop
- Hydraulic cylinder test vault

3.2.1 Former Plating Tanks 1 and 2

GP-1 and GP-4 were advanced north of former Plating Tanks 1 and 2 and GP-8 was advanced west of former Plating Tank 1 (see Figure 3). Soil samples were collected from the borings ranging in depth from 1.5 feet to 10.0 feet bgs and reconnaissance groundwater samples were collected from GP-4 and GP-8. Only one soil sample was collected and analyzed from each boring at GP-4 and GP-8 because groundwater was encountered at a depth of approximately 5.0 feet bgs in these borings.

Total chromium, trivalent chromium, hexavalent chromium, benzene, and toluene were detected in the soil samples analyzed from near the former Plating Tanks 1 and 2. Hexavalent chromium was detected in soil samples at concentrations ranging from 0.661 milligram per kilogram (mg/kg, GP-8 at 1.5 feet bgs) to 152 mg/kg (GP-1 at 1.5 feet bgs). Three of the four soil samples analyzed from GP-1 and GP-4 detected hexavalent chromium at concentrations that exceeded the MTCA Method A CUL, but are below the MTCA Method B CUL. Hexavalent chromium in the soil sample from GP-8 is below MTCA Method A and B CULs. Total chromium was detected in soil samples at concentrations up to 1,230 mg/kg. There are no MTCA Method A or Method B CULs for total chromium in soil. Trivalent chromium concentrations in soil samples were calculated to be up to 1,176.6 mg/kg, which is below MTCA Method A and Method B CULs. VOC analytes benzene and toluene were detected in a soil sample from GP-1 at 6 feet bgs but were below the MTCA Method A and B CULs. VOCs other than benzene and toluene were not detected at or above method reporting limits (MRLs) in the other soil samples near former Plating Tanks 1 and 2. TPH were not detected in the soil samples.

Analytes detected in the reconnaissance groundwater samples were as follows: dissolved total chromium, hexavalent chromium, cis-1,2-DCE, naphthalene, TCE, gasoline, and diesel. Concentrations of dissolved total chromium were 267 milligram per liter (mg/L, GP-4) and 355 mg/L (GP-8) and the detections in both samples exceeded the MTCA Method A CUL. Concentrations of hexavalent chromium were 236 mg/L (GP-4) and 294 mg/L (GP-8) and in both samples exceeded the MTCA Method B CULs. The concentration of TCE (16.8 microgram per liter [µg/L]) in the reconnaissance groundwater sample from GP-8 exceeded MTCA Method A and Method B CULs. TCE was not detected at or above the MRL in the reconnaissance groundwater sample from GP-4. Diesel was detected in both groundwater samples. The diesel concentration in GP-8 (0.814 mg/L) was above the MTCA Method A CUL of 0.5 µg/L, but the concentration in GP-4 was below the MTCA Method A CUL. Gasoline was detected in one of the samples (GP-8) but was below the MTCA Method A CUL of 0.8 µg/L and motor oil was not detected at or above the MRL. Cis-1,2-DCE and naphthalene were the only other VOC analytes detected at or above the MRLs (in GP-8), but their concentrations were below the MTCA Method A and B CULs. PAHs were not detected in the GP-4 sample at or above the MRL, but were detected in the sample from GP-8. The PAH detections were below the MTCA Method A and B CULs. PCBs were not detected in GP-8 at or above the MRLs.

3.2.2 Former Plating Tanks 3, 4, 5, and 6

Borings GP-1, GP-2, GP-3 and GP-6 were advanced near the former Plating Tanks 3, 4, 5, and 6 (see Figure 3). Soil samples were collected from the borings ranging in depth from 1.5 feet to 14.5 feet bgs and reconnaissance groundwater samples were collected from GP-2 and GP-6.

Total chromium, trivalent chromium, hexavalent chromium, cis-1,2-DCE, and TCE were detected in the soil samples analyzed from near the former Plating Tanks 3, 4, 5, and 6. Hexavalent chromium was detected in 9 of the 10 soil samples at concentrations ranging from 0.181 mg/kg (GP-6 at 14.5 feet bgs) to 627 mg/kg (GP-6 at 1.0 feet bgs). Seven of the nine soil samples with hexavalent chromium detections exceeded the MTCA Method A CUL and two of the concentrations (from GP-2 at 1.0 feet bgs and GP-6 at 1.0 feet bgs) also exceeded the MTCA Method B CUL. Trivalent chromium concentrations in soil samples were calculated to be between 24.9 mg/kg (GP-2 at 10.0 feet bgs) to 2,157 mg/kg (GP-2 at 1.0 feet bgs). One of the calculated trivalent chromium concentrations (from GP-2 at 1.0 feet bgs) exceeded the MTCA Method A CUL, but is below MTCA Method B CUL. TCE was only detected in the two soil samples from GP-6 at concentrations of 40.5 microgram per kilogram (μ g/kg, 1.0 feet bgs) and 1,160 μ g/kg (14.5 feet bgs). The detections of TCE in the GP-6 soil samples exceeded the MTCA Method A CUL, but did not exceed the MTCA Method B CUL. Chromium was detected in soil samples at concentrations up to 2,680 mg/kg (GP-2 at 1.0 feet bgs). There are no MTCA Method A

or Method B CULs for total chromium in soil. Cis-1,2-DCE, benzene, and toluene were the only other VOC analyte detected at or above the MRL; however, the concentrations were below the MTCA Method A and B CULs. TPH were not detected in the soil samples.

Groundwater was observed in borings near former Plating Tanks 3, 4, 5, and 6 at a depth of approximately 16.0 feet bgs. Analytes detected in the reconnaissance groundwater samples were as follows: dissolved total chromium, hexavalent chromium, gasoline, cis-1,2-DCE, and TCE. Dissolved total chromium was detected at concentrations of 37.1 mg/L (GP-2) and 343 (GP-6) and in both samples the concentrations exceeded the MTCA Method A CUL. Hexavalent chromium was detected in both samples at concentrations of 4.72 mg/L (GP-2) and 300 mg/L and both detections exceeded the MTCA Method B CUL of 0.048 mg/L. TCE and cis-1,2-DCE were detected in the GP-6 reconnaissance groundwater sample. The concentration of TCE in the sample from GP-6 is 1,130 μg/L and it exceeded the MTCA Method A and B CULs. The concentration of cis-1,2-DCE in the sample from GP-6 (144 μg/L) exceeded the MTCA Method B CUL. VOCs were not detected at or above the MRLs in the reconnaissance groundwater sample from GP-2. TPH were analyzed in the GP-2 and GP-6 samples but were not detected at or above the MRL. Lead was not detected at or above the MRL in GP-2.

3.2.3 Former Plating Tank 7 and Caustic Tank Vault

GP-7, GP-9 and GP-10 were advanced near the north side of the vault that held former Plating Tank 7 and other caustic tanks (see Figure 3). The depths of the soil samples ranged from 1.5 to 13.5 feet bgs, which is above the depth of the bottom of the vault (16 feet bgs). Deeper soil samples were not collected in borings GP-7 or GP-9 because groundwater was encountered at approximately 10 feet bgs and the soil became moist to saturated around 5 feet bgs in the borings. The soil in boring GP-10 became saturated at approximately 14.0 feet bgs. A reconnaissance groundwater sample was collected from GP-7.

Concentrations of hexavalent chromium and calculated concentrations of trivalent chromium in the soil samples are below MTCA Method A and Method B CULs. Total chromium was detected as high as 43.3 mg/kg (MW-9 at 2.0 feet bgs); however, there are no MTCA Method A or B CULs for total chromium. The only VOC analytes detected were 1,1-dichloroethene and methylene chloride in GP-10 at 1.5 feet bgs; however, the concentrations did not exceed the MTCA Method A or B CULs. TPH were not detected in the soil samples.

One reconnaissance groundwater sample was collected from GP-7. The detected concentration of hexavalent chromium (0.101 mg/L) was above the MTCA Method B CUL of 0.048 mg/L. There is no MTCA Method A CUL for hexavalent chromium in groundwater. Dissolved total chromium was not detected at or above the MRL of 0.02

mg/L. VOCs and TPH were not detected at or above the MRLs in the reconnaissance groundwater sample from GP-7.

3.2.4 Former Trench Drains

Samples collected from GP-1, GP-2, GP-3, and GP-6, which are near the former trench drains, are discussed above in Section 3.2.2. One additional boring (GP-11) was located near the trench drains in the former grinding shop area of the building (see Figure 3). Soil samples were collected at 2.0 feet and 6.5 feet bgs in GP-11.

TCE was detected in both samples at concentrations of 87.2 μ g/kg (2.0 feet bgs) and 281 μ g/kg (6.5 feet bgs). The TCE detections exceeded the MTCA Method A CUL, but were below the MTCA Method B CUL. Chromium compounds were detected in the soil samples but the concentrations were below MTCA Method A and B CULs. TPH were not detected in the soil samples.

3.2.5 Former Cylinder Shop

GP-8 was located in the former cylinder shop. Results from soil and groundwater samples collected from GP-8 are discussed above in Section 3.2.1.

3.2.6 Hydraulic Cylinder Test Vault

Two soil samples were collected and analyzed from depths of 1.5 and 14 feet bgs from boring GP-5, near the hydraulic cylinder test vault. A reconnaissance groundwater sample was also collected and analyzed from boring GP-5.

Total chromium was detected in the soil samples at concentrations up to 20.1 mg/kg; however, there are no MTCA Method A or B CULs available for total chromium. Hexavalent chromium, VOCs, and TPH were not detected in the soil samples at or above their respective MRLs.

The reconnaissance groundwater sample collected from GP-5 contained hexavalent chromium at a concentration of 0.0897 mg/L that exceeded the MTCA Method B CUL. VOCs, TPH, and dissolved total chromium were not detected at or above their respective MRLs.

3.3 Groundwater Analytical Results (Monitoring Wells)

Monitoring wells MW-1 through MW-4 were sampled. Tables 5 through 9summarize dissolved total chromium, hexavalent chromium, TPH, VOC, and PAH analytical results

for groundwater. The groundwater analytical results are compared with Ecology's MTCA Method A and Method B groundwater CULs (Ecology, 2001).

3.3.1 Chromium

Dissolved chromium and hexavalent chromium were not detected at or above the MRLs of 0.02 mg/L (chromium) and 0.01 mg/L (hexavalent chromium), except for hexavalent chromium in MW-1 (see Table 5). Hexavalent chromium was detected at 0.269 mg/L, which exceeds the MTCA Method B CUL. A MTCA Method A CUL for hexavalent chromium is not available.

3.3.2 Volatile Organic Compounds

VOC analytes were not detected at or above the MRLs (see Table 6).

3.3.3 Petroleum Hydrocarbons

The groundwater sample from MW-2 was analyzed using NWTPH-HCID and DRO and RRO were detected (see Table 7). The TPH detections were quantified using NWTPH-Gx and NWTPH-Dx.

Diesel and motor oil were detected in the groundwater sample from MW-2 at concentrations of 0.438 mg/L and 0.512 mg/L, respectively. The motor oil detection exceeded the MTCA Method A CUL of 0.5 mg/L but the diesel detection did not exceed the MTCA Method A CUL but. A generic MTCA Method B CUL is not available for diesel or motor oil. Gasoline was not detected above the MRL of 0.1 mg/L in MW-2 (see Table 8).

3.3.4 Polycyclic Aromatic Hydrocarbons

Followup analysis for PAHs was performed on the MW-2 groundwater sample because diesel and motor oil were detected. PAHs were not detected in the sample at or above the MRLs, except for naphthalene at $0.854~\mu g/L$ (see Table 9). The naphthalene detection did not exceed the MTCA Method A or B CULs.

and the second of the second to be builded as the second of the second of the second second of the second of t The second of the

raminini di Pilipili

atikli bar katinga pi oʻsani (ati, 1911)

is of the Bulletin better a in Evelopical addition on the problem file of the contract of the

mending to the State of the Sta

Pincipsonialization alumply From APSA less of male presentation of the 1929, del UN 1930, so that sales Telebrates standard for less of the 1923 of the few former sense and the less that the less that the 1942 of t Obsains 1924 to 1934 in less of the 1925 of the 1924 of the 19

de france de la completa de la comp La completa de la completa del completa de la completa de la completa del completa de la completa del la completa de la completa del la completa de la completa del la completa

로 맞았다고 보고 있는데 사람들은 Barrier A partie 이 사람들은 사람들은 다른데 없었다.

Richter für der Australia in AV auch für der Australia der Australia der Australia der Australia der Australia Australia der Australia de Australia der Australia de

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

The purpose of an environmental assessment is to reasonably evaluate the potential for or actual impact of past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an exhaustive analysis of each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation is thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not, therefore, be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

Environmental conditions that cannot be identified by visual observation may exist at the site. Where subsurface work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

Except where there is express concern of our client, or where specific environmental contaminants have been previously reported by others, naturally occurring toxic substances, potential environmental contaminates inside buildings, or contaminate concentrations that are not of current environmental concern may not be reflected in this document.

Carlande en la prominación com comunica de trista por aserva se establicamente de la comunicación de trista de comunicación de

ale vall termoning rets minimer of the leaver of most is a secret of fill common viral termonic organisation of the common viral termonic organisation of the leaver of the common viral termonic organisation organisation viral termonic viral termonic organisation viral termonic vira

bid de ensulgistion in physoneri, de english de englishing probabilen, including de english en englishing de e String bloodie half high distribute de englishing de englishing de die dere general half englishen en englishing De end pilm byd munde da light englishing beskelle de englishing de die englishing for hold englisher og en en

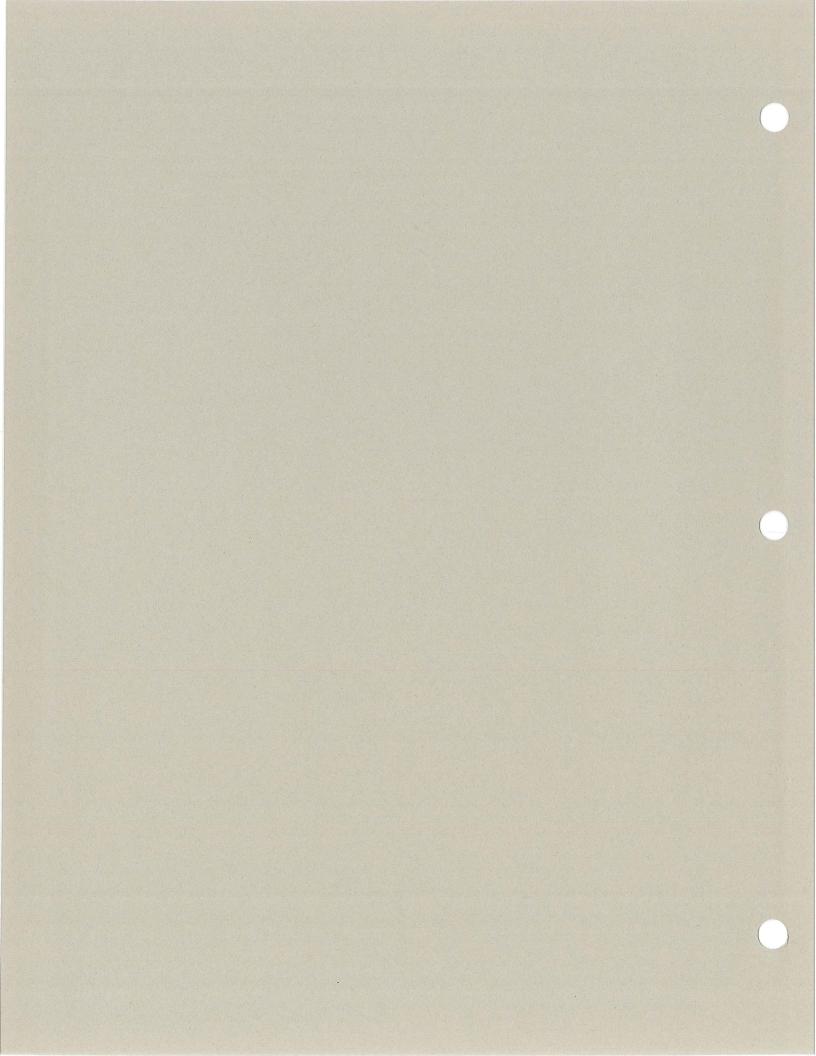
, i di encia de la conspectatione, el loca problemation de la comparte de la comparte de la comparte de la comb Adde de la comparte Constate de la comparte de la compa

trat i encontra primitata e interesta di la contra respondente e especialisti i primeri de la contra en contra organi della productiva di presenta i proporti di la contra e di la contra d

REFERENCES

- Ecology. 2001. Model Toxics Control Act, Cleanup Regulations, Chapter 173-340 WAC. Prepared by Washington State Department of Ecology, Toxics Cleanup Program. February 12.
- MFA. 2005. Scope of work for remedial investigation at Precision Engineering Inc.'s site at 1231 S. Director Street, Seattle, Washington. April 25.
- Neely, J. 2002. Interview of J. Neely, Precision Engineering, Inc., by A. Clary, Maul Foster & Alongi, Inc., Vancouver, Washington, and P. Logan, Stoel Rives, LLP, Portland, Oregon. June 16.
- Precision. 1993. Independent remedial action report. Prepared for the Department of Ecology. Precision Engineering, Inc., Seattle, Washington. Final Report. July 21. Precision. 2005. Personal communications between Jim Okel of Precision Engineering and Alistaire Clary of Maul Foster & Alongi, Inc. July 6.
- Precision 2005. Personal communication between J. Okel from Precision Engineering, Inc., and A. Clary from Maul Foster & Alongi, Inc. (re tidal influence observed in groundwater in the containment vault for former Plating Tank 7). July 6.

. Tak i 1944, P. France, R. Lagisalangus, quanti C. Las Claring, Proc. of Lobr. A. 1948, Expedies S Partir of Change I. Sang V. Pepala P. M. Bernard, C. Rubbe, Partir of C. Sang Mariana. Partir of Change I. Sang V. Pepala P. M. Bernard, C. Rubbe, Partir of C. Sang Mariana.


sherish ng Ngurusaning Hunepapa Pilipe ninggal gipan dalah dipas di Piliper Sangrish Piliper LANAN. Tanggan panggan Sangrish Sangrish ng manggan ng panggan ng pangganggan ng Piliper Sangrish ng Piliper Sangrish

Stagige de 1200 federales de la latera en engres de la latera de la latera de la latera de la latera de la late La latera de la latera de la latera de la medida de la latera della latera

Te done bide is not have been professional motor. Urbailine figuracies, his being activities of the constant Of the configuration of the professional constant and professional figurations. The constant of t

gamen karala a kabanturan. Kabatta kabanturan kabanturan kabanturan kabanturan 12.90 kabanturan kabanturan kab Maranturan kabanturan kabanturan kabanturan kabanturan Maranturan kabanturan kabanturan kabanturan kabanturan Maranturan kabanturan kabanturan kabanturan kabanturan kabanturan kabanturan kabanturan kabanturan kabanturan k

Table Notes Groundwater and Soil Analytical Data Precision Engineering, Inc. Seattle, Washington

Bolding indicates concentrations that exceed one or more of the CULs.

-- = not analyzed.

CUL = cleanup level.

DET = detected using Northwest Total Petroleum Hydrocarbon identification scan.

ft. bgs = feet below ground surface.

mg/kg = milligrams per kilogram.

mg/L = milligrams per liter.

MTCA = Washington Department of Ecology's Model Toxics Control Act.

ug/kg = micrograms per kilogram.

ug/L = micrograms per liter.

NA = not available.

NC = not able to calculate.

ND = not detected using Northwest Total Petroleum Hydrocarbon identification scan.

U = not detected at or above the method reporting limit.

^aTrivalent chromium concentrations were calculated by subtracting the hexavalent chromium value from the total chromium value. If hexavalent chromium was not detected, then the

^bCleanup level is for total 1,3-dichloropropene.

^cCleanup level is for total xylene.

^dCleanup level is for m-xylene.

^eCleanup level is for total naphthalene compounds, including naphthalene, 1-methyl naphthalene, and 2-methyl naphthalene.

Cleanup level is for total polychlorinated biphenyls.

Groundwater Elevations Precision Engineering Seattle, Washington Table 1

. 11	1		o			u Pa		н	į	4.	1	25	E 7
Water Level	Elevation	(feet)	100.97ª	94.32	93.74	94.29 ^b			0 0 0 0 0	se the well		ng	
Depth to	Water	(feet MPE)	09	4.71	. 00.9	6.18 ^b				culated becaes		cause the casi	
Measuring Point	Elevation (MPE)	(feet)	100.97	99.03	99.74	100.47		levation.	levation	= Water elevation could not be accurately calculated becaese the well		= The depth to water may not be accurate because the casing	٦.
	Date		10-May-05	10-May-05	10-May-05	10-May-05		The MPE is an assumed elevation.	MPE = Measuring Point Elevation	evation could	was a flowing artesian.	h to water ma	appeared to be broken.
	Well		MW-1	MW-2	MW-3	MW-4	Notes:	The MPE is	MPE = Mea	= Water ele	was a fle	= The dept	appeare

Table 2 Metals in Soil (mg/kg) Precision Engineering, Inc. Seattle, Washington

Location	Sample ID	Date Depth (ft. bgs)		Chromium	Chromium (Hexavalent)	Chromium (Trivalent) ^a
MTCA N	ethod A CULs for	Unrestricted L	and Use	NA	19	2,000
	lethod B Soil CUL			NA	240	120,000,000
GP1	GP1-S-1.5	6/7/20.05	1.5	205	152	53
	GP1-S-6.0	6/7/2005	6	147	31.8	115.2
	GP1-S-10.0	6/9/2005	10	73.5	14.4	59.1
GP2	GP2-S-1.0	6/7/2005	1	2680	523	2157
	GP2-S-10.0	6/9/2005	10	24.9	0.109 U	24.9
GP3	GP3-S-2.0	6/9/2005	2	915	27.7	887.3
	GP3-S-6.0	6/9/2005	6	1100	49.8	1050.2
	GP3-S-14	6/9/2005	14	941	34.4	906.6
GP4	GP4-S-1.5	6/16/2005	1.5	1230	53.4	1176.6
GP5	GP5-S-1.5	6/16/2005	1.5	18.9	0.111 U	18.9
	GP5-S-14.0	6/16/2005	14	20.1	0.115 U	20.1
GP6	GP6-S-1.0	6/16/2005	1	584	627	NC
	GP6-S-14.5	6/16/2005	14.5	259	0.181	258.819
GP7	GP7-S-2.0	6/16/2005	- 2	23.6	0.119	23.481
	GP7-S-8.0	6/16/2005	8	21	0.113 U	21
GP8	GP8-S-1.5	6/16/2005	1.5	22.2	0.661	21.539
GP9	GP9-S-2.0	6/17/2005	2	43.3	2.97	40.33
GP10	GP10-S-1.5	6/17/2005	1.5	21.8	0.142	21.658
	GP10-S-13.5	6/17/2005	13.5	24.1	0.106 U	24.1
GP11	GP11-S-2.0	6/17/2005	2	21.7	0.573	21.127
	GP11-S-6.5	6/17/2005	6.5	17.3	0.37	16.93

2 -- 1.11.3

(palphysical and sold of a control of a cont

		211 90		
Tid .				
				1924
	Statio '			
			TY LIE Y	
				-
A				
			1 24 × .	
			Dear Line	

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

			11	- 6		11 11					7.9						300							
1,2,3-Trichloro- benzene	AN	NA	0.839 U	1.12 U	38.2 U	0.96 Ù	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,1-Dichloro- propene	ΑΝ	AN	0.839 U	1.12 U	38.2 U	0.96 U	44 U	. 0 5.67	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,1-Dichloro- ethene	NA	1670	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	23.7	7.96 U	8.37 U	8.61 U
1,1-Dichloro- ethane	NA	8000000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,1,2-Trichloro- ethane	NA	17500	0.839 U	1.12 U	38.2 U	0.9è U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,1,2,2-Tetra- chloroethane	NA	. 0009	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	0.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
1,1,1-Trichloro- ethane	2000	72000000	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
1,1,1,2-letra- chloroethane	AN	38500	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	. 51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
(ft. bgs)	d Use		1.5	9	10	-	10	2	9	14	1.5	1.5	80	14	1	14.5	2	80	1.5	2	1.5	13.5	2	6.5
Date	restricted Lan		6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MTCA Method A CULs for Unrestricted Land Use	MTCA Method B Soil CULs	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	MTCA Meth	MTCA Meth	GP1			GP2		GP3			GP4	GP5			GP6		GP7		GP8	GP9	GP10		GP11	1

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

			_		_	-		-			_	_			_		_		_	_	_			
1,2-Dichloro- propane	NA	14700	0.839 U	1.12 U	7.6511	U 96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11211	7 96 11	8.37 1	8.61 U
1,2-Dichloro- ethane	NA	11000	0.839 U	1.12 U	7 65 11	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 Ü	11 96 2	8.37 U	8.61 U
1,2-Dichloro- benzene	AN.	7200000	0.839 U	1.12 U	38.2.11	0.96 U	44 U	79.5 U	44.8 Ü	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.10	55.8 U	39.8 U	41.9 U	43 U
1,2-Dibromo- ethane	AN	11.8	0.839 U	1.12 U	1.4 U	0.96 U	1.61 U	2.91 U	1.64 U	1.41 U	1.89 U	1.3 U	1.29 U	1.48 U	1.56 U	1.51 U	1.43 U	1.62 U	1.8 U	1.36 U	2.04 U	1.46 U	1.53 U	1.58 U
1,2-Dibromo-3- chloropropane	NA	714	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,2,4-Trimethyl- benzene	NA	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,2,4-1 richioro- benzene	NA	800000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,2,3-11Icilloro- propane	NA	143	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 Ų
(ft. bgs)	d Use	**************************************	7.5	9	19	-	10	2	9	14	1.5	1.5	80	14	~	14.5	. 2	80	1.5	2	1.5	13.5	2	6.5
Date	restricted Lan		6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MICA Wethod A CULS for Unrestricted Land Use	M I CA Method B Soil CULS	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5.	GP11-S-2.0	GP11-S-6.5
Location	MICA Meth	M I CA Meth	GP1	2 N		GP2		GP3			GP4	GP5			GP6		GP7		GP8	GP9	GP10		GP11	

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

4-Isopropyl- toluene	AN AN	AN	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
4-Chlorotoluene	AN	AN	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
2-Chlorotoluene	NA	1600000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
2,2-Dichloro- propane	NA	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,4-Dichloro- benzene	NA	41700	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,3-Dichloro- propane	NA	NA	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
1,3-Dichloro- benzene	AN	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
1,3,5-Trimethyl- benzene	NA A	NA	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
Depth (ft. bgs)	d Use		1.5	ဖ	10	-	10	2	9	14	1.5	1.5		14		14.5	7	80	1.5	2	1.5	13.5	2	6.5
Date	restricted Lan		6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MTCA Method A CULs for Unrestricted Land Use	MTCA Method B Soil CULs	. GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	MTCA Meth	MTCA Meth	GP1	, , , , , , , , , , , , , , , , , , ,		GP2		GP3			GP4	GP5		-	GP6		GP7	8.8	GP8	GP9	GP10		GP11	

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

		-	_			_	10	_			1.	_			_		_		_	,	_		_	
Chlorobromo- methane	NA	AN	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Chlorobenzene	AN	1600000	0.839 U	1.12 U	38.2 U	0.96 U	.44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Carbon Tetrachloride	NA	7690	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.10	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
Bromomethane	NA	112000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Bromoform	NA	127000	0.839 U	1.12 U	38.2 U	0.96 U	44 O	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	.41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Bromodichloro- methane	NA	16100	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Bromobenzene	NA A	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Benzene	30	18200	0.839 U	2.55	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
Depth (ft. bgs)	d Use		1.5	9	10	1	10	2	9	14	1.5	1.5	80	14	-	14.5	2	80	1.5	7	1.5	13.5	2	6.5
Date	restricted Lan		6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	M I CA Method A CULs for Unrestricted Land Use	MTCA Method B Soil CULs	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	M I CA Meti	MTCA Met	GP1			GP2	2) U	GP3			GP4	GP5			GP6		GP7		GP8	GP9	GP10		GP11	

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

Dibromo- chloromethane	NA	11900	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
cis-1,3-Dichloro- propene	AN	5560 ^b	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
cis-1,2- Dichloroethene	NA	800000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	149	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	78.8
Chloromethane	NA	76900	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Chloroform	NA.	164000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Chloroethane	NA	NA	0.839 U	1.12 U	76.5 U	0.96 U	88.1 U	159 U	89.6 U	77.1 U	103 U	71.2 U	70.3 U	81 U	85 U	82.8 U	78.1 U	88.4 U	98.6 U	74.2 U	112 U	79.6 U	83.7 U	86.1 U
Depth (ft. bgs)	and Use		1.5	ဖ	10	-	10	2	9	14	1.5	1.5	ω	14	-	14.5	2	8	1.5	2	1.5	13.5	2	6.5
Date			6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MTCA Method A CULs for Unrestricted	MTCA Method B Soil CULs	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	. GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	MTCA Meth	MTCA Meth	GP1			GP2		GP3			GP4	GP5			GP6		GP7		GP8	GP9	GP10		GP11	

												12.70	
					ca Ca								
										in in			

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

	_	_	_			-		_			_	_			_		_		_	-	_		_	<u>, 7</u>
Methylene chloride	20	133000	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	17.9	7.96 U	8.37 U	8.61 U
m,p-Xylene	9000e	1600000000 ^d	1.68 U	2.24 U	76.5 U	1.92 U	88.1 U	159 U	89.6 U	77.1 U	103 U	71.2 U	70.3 U	81 U	85 U	82.8 U	78.1 U	88.4 U	98.6 U	74.2 U	112 U	79.6 U	83.7 U	86.1 U
lsopropyl- benzene	AN	8000000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 ∪
Hexachloro- butadiene	NA	12800	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Ethylbenzene	0009	8000000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Dichloro- difluoromethane	ΑN	16000000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Dibromo- methane	NA	800000	0.839 U	1.12 U	38.2 U	0.96.0	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
(ft. bgs)	nd Use		1.5	9	10	-	10	2	9	14	1.5	1.5	∞	14	-	14.5	7	80	1.5	2	1.5	13.5	7	6.5
Date	restricted Lar		6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MTCA Method A CULs for Unrestricted Land Use	MTCA Method B Soil CULs	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	MTCA Meth	MTCA Meth	GP1	22		GP2	li (Sp.	GP3			GP4	GP5		. ,	GP6		GP7		GP8	GP9	GP10		GP11	

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

87 - 21	3			5	0 1		8 9						6		3		() ()		9.1		e e			
tert-Butyl- benzene	AN	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Styrene	Ā	33300	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
sec-Butyl- benzene	NA	ΑN	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
o-Xylene	₆ 0006	160000000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
n-Propyl- benzene	NA	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 N	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
n-Butyl- benzene	A V	NA	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Naphthalene	5,000 ^e	1600000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 N
(ft. bgs)	and Use		1.5	9	10	-	. 10	7	9	14	1.5	1.5	80	14	-	14.5	7	8	1.5	2	5.	13.5	2	6.5
Date			6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MTCA Method A CULs for Unrestricted L	MTCA Method B Soil CULs	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	MTCA Meth	MTCA Meth	GP1			GP2		GP3			GP4	GP5			GP6		GP7		GP8	GP9	GP10		GP11	

Table 3
Volatile Organic Compounds in Soil (ug/kg)
Precision Engineering, Inc.
Seattle, Washington

			ex.																					
Vinyl	AN	299	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37 U	8.61 U
Trichloro- fluoromethane	AN	24000000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Trichloro- ethene	30	00606	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	40.5	1160	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	87.2	281
trans-1,3-Dichloro- propene	NA	5560 ^b	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
trans-1,2- Dichloroethene	NA	1600000	0.839 U	1.12 U	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Toluene	7000	16000000	0.839 U	1.62	38.2 U	0.96 U	44 U	79.5 U	44.8 U	38.5 U	51.7 U	35.6 U	35.1 U	40.5 U	42.5 U	41.4 U	39 U	44.2 U	49.3 U	37.1 U	55.8 U	39.8 U	41.9 U	43 U
Tetra- chloroethene	. 20	19600	0.839 U	1.12 U	7.65 U	0.96 U	8.81 U	15.9 U	8.96 U	7.71 U	10.3 U	7.12 U	7.03 U	8.1 U	8.5 U	8.28 U	7.81 U	8.84 U	9.86 U	7.42 U	11.2 U	7.96 U	8.37·U	8.61 U
Depth (ft. bgs)	d Use		1.5	9	10	-	10	2	9	14	1.5	1.5	80	14	1	14.5	2	80	1.5	2	1.5	13.5	2	6.5
Date	restricted Lan		6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	MTCA Method A CULs for Unrestricted Land Use	MTCA Method B Soil CULs	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-8.0	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	MTCA Met	MTCA Meti	GP1			GP2		GP3			GP4	. GP5	, 1	2.0	GP6		GP7		GP8	GP9	GP10	2	GP11	

			5										
				i C									
		,											
·													

Petroleum Hydrocarbon Identification in Soil Precision Engineering, Inc. Seattle, Washington Table 4

								-	15												
Residual-Range Organics	ND	QN	QN	QN	QN	QN	QN	ON	QN	QN	Q	ND	Q	ND	QN	ND	QN	QN	QN	QN	QN
Diesel-Range Organics	QN	QN	QN	QN	QN	QN	Q	S	QN	QN	QN	QN	QN	QN	Q	QN	QN	QN	Q	QN	Q
Gasoline-Range Organics	QN	Q	QN	QN	QN	QN	NO.	NO	ΩN	QN	Q N	QN	Q N	ON	Q	QN	QN	QN	QN	QN	QN
Depth (ff. bgs)	1.5	9	10	-	10	2	9	14	1.5	1.5	14	1	14.5	2	ω	1.5	. 2	1.5	13.5	2	6.5
Date	6/7/2005	6/7/2005	6/9/2005	6/7/2005	6/9/2005	6/9/2005	6/9/2005	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005	6/17/2005
Sample ID	GP1-S-1.5	GP1-S-6.0	GP1-S-10.0	GP2-S-1.0	GP2-S-10.0	GP3-S-2.0	GP3-S-6.0	GP3-S-14	GP4-S-1.5	GP5-S-1.5	GP5-S-14.0	GP6-S-1.0	GP6-S-14.5	GP7-S-2.0	GP7-S-8.0	GP8-S-1.5	GP9-S-2.0	GP10-S-1.5	GP10-S-13.5	GP11-S-2.0	GP11-S-6.5
Location	GP1			GP2	4 9 2 2	GP3			GP4	GP5	.5 V	GP6		GP7		GP8	GP9	GP10		GP11	

Table 5 Metals in Groundwater (mg/L) Precision Engineering, Inc. Seattle, Washington

Location	Sample ID	Date	Dissolved Chromium	Chromium (Hexavalent)	Lead
MTCA Me	thod A Groundwater C	ULs	NA	0.048	NA
MTCA Me	thod B Groundwater C	ULs	0.05	NA	0.015
Reconnai	ssance Groundwater				
GP2	GP2-W-17-RECON	6/9/2005	37.1	4.72	0.015 U
GP4	GP4-W-8.0	6/16/2005	267	236	
GP5	GP5-W-18.0	6/16/2005	0.02 U	0.0897	
GP6	GP6-W-18.0	6/16/2005	343	300	
GP7	GP7-W-14.0	6/16/2005	0.02 U	0.101	
GP8	GP8-W-10.0	6/16/2005	355	294	
Monitorin	g Wells				
MW1	MW1-W-35.0	6/16/2005	0.02 U	0.269	
MW2	MW2-W-0605	6/17/2005	0.02 U	0.01 U	
MW3	MW3-0605	6/7/2005	0.02 U	0.01 U	
MW4	MW4-0605	6/9/2005	0.02 U	0.01 U	
v a	MW4-0605-Dup	6/9/2005	0.02 U	0.01 U	

Assista I

The relation of the course of ing/l.)

The confident lengths security the course of th

- 1				
		l Hotel		
	10 1 11		FORC-M-STAVE	
2.00				

Table 6
Volatile Organic Compounds in Groundwater (ug/L)
Precision Engineering, Inc.
Seattle, Washington

-ocation	Sample ID	Date	1,1,1,2-Tetra-	1,1,1-Trichloro-	1,1,2,2-Tetra-	1,1,2-Trichloro-	1,1-Dichloro-	1,1-Dichloro-	1,1-Dichloro-	1,1-Dichloro- 1,1-Dichloro- 1,2,3-Trichloro-
MTCA Me	MTCA Method A Ground Water CULs	CULS	NA	200	NA	NA	NA	NA	NA NA	NA
MTCA Me	MTCA Method B Groundwater CULs	:ULs	1.68	7200	0.219	0.768	800	0.0729	AN	AN
Reconnai	Reconnaissance Groundwater									
GP2	GP2-W-17-RECON	6/9/2005	5 U	5 U	5 U	50	5 U	5 U	5.0	5 U
GP4	GP4-W-8.0	6/16/2005	10	10	10	10	10	10	10	10
GP5	GP5-W-18.0	6/16/2005	10	10	10	10	10	10	10	10
GP6	GP6-W-18.0	6/16/2005	20 U	20 U	20 U	20 Ú	20 U	20 U	20 U	20 U
GP7	GP7-W-14.0	6/16/2005	10	10	10	10	10	10	10	10
GP8	GP8-W-10.0	6/16/2005	10	10	10	10	10	10	10	10
Monitoring Wells	ig Wells	4 2								
MW1	MW1-W-35.0	6/16/2005	10	10	10	10	10	10	10	10
MW2	MW2-W-0605	6/17/2005	10	10	1 U	10	10	10	10	10
MW3	MW3-0605	6/7/2005	10	10	10	10	10	10	10	10
MW4	MW4-0605	6/9/2005	10	10	10	10	10	10	10	10
	MW4-0605-Dup	6/9/2005	10	10	10	10	10	10	10	10

Volatile Organic Compounds in Groundwater (ug/L) Precision Engineering, Inc. Seattle, Washington Table 6

Sample ID	Date	-010	1,2,4-Trichloro-	1,2,4-Trichloro- 1,2,4-Trimethyl-	1 "	1,2-Dibromo-	1,2-Dichloro-	1,2-Dichloro-	1,2-Dichloro-
		propane	penzene	penzene	chloropropane	ethane	benzene	ethane	propane
MTCA Method A Ground Water CULs	CULS	NA	N V	NA	NA	0.01	NA	5	Ϋ́
MTCA Method B Groundwater CULs	ULs	0.00625	80	NA	0.0313	0.000515	720	0.481	0.643
Reconnaissance Groundwater									
GP2-W-17-RECON	6/9/2005	5 U	5 U	5 U	5.0	5 U	5 U	. 5 U	5 U
GP4-W-8.0	6/16/2005	10	10	10	10	10	10	10	10
GP5-W-18.0	6/16/2005	10	10	10	10	10	10	10	10
GP6-W-18.0	6/16/2005	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
GP7-W-14.0	6/16/2005	10	10	10	10	10	10	10	10
GP8-W-10.0	6/16/2005	10	10	10	10	10	1.0	10	10
Monitoring Wells									
MW1-W-35.0	6/16/2005	10	10	10	10	10	1 U	10	10
MW2-W-0605	6/17/2005	10	10	10	10	10	10	10	10
MW3-0605	6/7/2005	1 U	10	10	10	10	10	10	10
MW4-0605	6/9/2005	10	10	10	10	10	10	10	10
MW4-0605-Dup	6/9/2005	10	10	10	10		10	10	. D

Volatile Organic Compounds in Groundwater (ug/L) Precision Engineering, Inc. Seattle, Washington Table 6

Benzene	5	0 795		5.11	110	101	20 11	111	7		10	1) = 1	1 = 1	1 0
4-Isopropyl-	AN	AN		5 U	10	10	20 U	10	111		10	110	1 = 1	1 = 1	, D
4-Chlorotoluene	AN	AN		5 U	10	10	20 U	10	10		10	1.0	10	10)
2-Chlorotoluene	ΑΝ	160		5 U	10	10	20 U	10	10		10	10	10	10) T
2,2-Dichloro-	Ž	×		5 U	10	10	20 U	10	1.0		10	10	10	10	1 C
1,4-Dichloro- 2,2-Dichloro-benzene	NA	1.82		5 U	10	10	20 U	10	10		10	10	10	10	10
1,3-Dichloro- propane	AN	NA		5 U	10	10	20 U.	10	10		10	10	10	10	1 U
1,3-Dichloro- benzene	AN	AN		5 U	1 C	10	20 U	10	10		10	10	10	10	10
1,3,5-Trimethyl- 1,3-Dichloro benzene	AN	NA		5 U	10	10	20 U	10	10	200	10	10	10	10	1 U
Date	CULs	SULS	_	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005		6/16/2005	6/17/2005	6/7/2005	6/9/2005	6/9/2005
Sample ID	MTCA Method A Ground Water CULs	MTCA Method B Groundwater CULs	Reconnaissance Groundwater	GP2-W-17-RECON	GP4-W-8.0	GP5-W-18.0	GP6-W-18.0	GP7-W-14.0	GP8-W-10.0	y Wells	MW1-W-35.0	MW2-W-0605	MW3-0605	MW4-0605	MW4-0605-Dup
Location	MTCA Meti	MTCA Met	Reconnais	GP2	GP4	GP5	GP6	GP7	GP8	Monitoring Wells	MW1	MW2	MW3	MW4	

Table 6
Volatile Organic Compounds in Groundwater (ug/L)
Precision Engineering, Inc.
Seattle, Washington

	-									-,	_	_			
Chlorobromomethane	AN	NA		5 U	10	10	20 U	10	10		10	10	10	10	10
Chlorobenzene	AN	160		5 U	10	10	20 U	10	10		10	10	10	10	10
Carbon Tetrachloride	, VA	0.337		5 U	10	10	20 U	10	10		10	10	10	10	10
Bromomethane	ĄN	11.2		5 U	10	10	20 U	10	10		10	10	10	10	10
Bromoform	ΑN	5.54		50		10	20 U	1 0	10		10	1 U	1 1 1	10	10
Bromodichloro- methane	NA	0.706		20	10	10	20 U	10	10		10	10	1 U	10	10
Bromobenzene	NA	NA		5 U	10	10	20 U	10	10		10	10	10	10	1 U
Date	CULs	:ULs		6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005		6/16/2005	6/17/2005	6/7/2005	6/9/2005	6/9/2005
Sample ID	MTCA Method A Ground Water CULs	MTCA Method B Groundwater CULs	Reconnaissance Groundwater	GP2-W-17-RECON	GP4-W-8.0	GP5-W-18.0	GP6-W-18.0	GP7-W-14.0	GP8-W-10.0	y Wells	MW1-W-35.0	MW2-W-0605	MW3-0605	MW4-0605	MW4-0605-Dup
Location	MTCA Meti	MTCA Met	Reconnais	GP2	GP4	GP5	GP6	GP7	GP8	Monitoring Wells	MW1	MW2	MW3	MW4	eer a

			ľ

Volatile Organic Compounds in Groundwater (ug/L) Precision Engineering, Inc. Seattle, Washington Table 6

	1	1	_	7	_	_	_	_	-	T	T	F	_	_	
Dichloro- difluoromethane	NA	1600		50	10	10	20 U	10	10		10	10	10	10	10
Dibromo- methane	NA	80		5 U	10	10	20 U	10	10		10	10	10	10	10
Dibromo- chloromethane	AN	0.521		5.0	10	10	20 U	10	10		10	10	10	10	10
cis-1,3-Dichloro- propene	Ą	0.243 ^b		5 U	10	10	20 U	10	10		10	10	10	10	10
cis-1,2- Dichloroethene	NA	80		5 U	10	10	144	10	2.26		10	10	10	10	10
Chloromethane	NA	3.37		5 U	10	10	20 U	10	10		10	10	10	10	10
Chloroform	AN	7.17	XI	5 U	10	10	20 U	1 U	10		10	1 C	10	10	10
Chloroethane	NA	NA		5 U	10	10	20 U	10	10		1 U	10	10	10	10
Date	CULs	ULs		6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005		6/16/2005	6/17/2005	6/7/2005	6/9/2005	6/9/2005
Sample ID	MTCA Method A Ground Water CULs	MTCA Method B Groundwater CULs	Reconnaissance Groundwater	GP2-W-17-RECON	GP4-W-8.0	GP5-W-18.0	GP6-W-18.0	GP7-W-14.0	GP8-W-10.0	g Wells	MW1-W-35.0	MW2-W-0605	MW3-0605	MW4-0605	MW4-0605-Dup
Location	MTCA Meti	MTCA Met	Reconnais	GP2	GP4	GP5	GP6	GP7	GP8	Monitoring Wells	MW1	MW2	MW3	MW4	

Table 6
Volatile Organic Compounds in Groundwater (ug/L)
Precision Engineering, Inc.
Seattle, Washington

, A (1)	o-Xylene	16000°	16000		5 U	10	10	20 U	10	10		10	10	10	10	10
	n-Butyl- n-Propyl- benzene benzene	NA	NA	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 U	10	1.0	20 U	10	10		10	10	10	10	1.0
	n-Butyl- benzene	A	AA		50	10	10	20 U	10	10		10	10	10	10	10
	Naphthalene	160	160		5 U	10	10	20 U	10	87		10	10	10	10	1 N
	Methylene chloride	NA	5.83		5 U	10	10	20 U	10	10		10	10	10	10	10
	Methyl tert-butyl ether	20	AN		5 U	10	10	20 U	10	10		10	10	10	10	10
	m,p-Xylene	1000°	16000 ^d	A 20	1 U0	2 U	2 U	40 U	2 U	2 U		2 U	2 U	2.0	2.0	2 U
	Isopropyl- benzene	NA	1600	7	5 U	10	10	20 U	10	10		10	10	10	10	10
	Hexachloro- butadiene	NA	0.561	8	5 U	10	10	20 U	10	10		1 U	10	1 U	10	10
	Ethylbenzene	700	800		5 U	10	10	20 U	10	10		10	10	10	10	10
	Date	CULs	ULs	e ^t	6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005		6/16/2005	6/17/2005	6/7/2005	6/9/2005	6/9/2005
	Sample ID	MTCA Method A Ground Water CULs	MTCA Method B Groundwater CULs	Reconnaissance Groundwater	GP2-W-17-RECON	GP4-W-8.0	GP5-W-18.0	GP6-W-18.0	GP7-W-14.0	GP8-W-10.0	g Wells	MW1-W-35.0	MW2-W-0605	MW3-0605	MW4-0605	MW4-0605-Dup
	Location	MTCA Met	MTCA Met	Reconnais	GP2	GP4	GP5	GP6	GP7	GP8	Monitoring Wells	MW1	MW2	MW3	MW4	

Table 6
Volatile Organic Compounds in Groundwater (ug/L)
Precision Engineering, Inc.
Seattle, Washington

Vinyl	culloride 0.2	0 0292		11.5	12	1 1	2011	1=	7 = 7	}	111		7		7
Trichloro-	NA	2400		511	10	110	20 U	111	110		111	111		111	10
Trichloro-	5	3.98		5.0	10	10	1130	11	16.8		111	101	10	10	1 C
trans-1,3-Dichloro-	NA	0.243 ^b		5 U	10	10	20 U	10	10		10	10	10	10	10
trans-1,2-	NA	160		50	10	10	20 U	10	10		10	10	10	10	J L
Toluene	1000	1600		50	10	10	20 U	10	10		101	10	101	10	10
Tetra-	2	0.858		5 U	10	1 U	20 U	10	10		10	10	10	10	10
tert-Butyl-	¥N.	AN		5 U	10	10	20 U	10	10		10	10	10	1.0	10
Styrene	Ϋ́	1.46		50	10	10	20 U	1 C	10		10	10	10	10	10
sec-Butyl- benzene	NA	NA		5 U	10	10	20 U	10	10		10	10	10	10	1 N
Date	SULS	ULs		6/9/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005	6/16/2005		6/16/2005	6/17/2005	6/7/2005	6/9/2005	6/9/2005
Sample ID	MTCA Method A Ground Water CULs	MTCA Method B Groundwater CULs	Reconnaissance Groundwater	GP2-W-17-RECON	GP4-W-8.0	GP5-W-18.0	GP6-W-18.0	GP7-W-14.0	GP8-W-10.0	y Wells	MW1-W-35.0	MW2-W-0605	MW3-0605	MW4-0605	MW4-0605-Dup
Location	MTCA Met	MTCA Meti	Reconnais	GP2	GP4	GP5	GP6	GP7	GP8	Monitoring Wells	MW1	MW2	MW3	MW4	

Table 7 Petroleum Hydrocarbon Identification in Groundwater Precision Engineering, Inc. Seattle, Washington

Location	Sample ID	Date	Gasoline-Range Organics	Diesel-Range Organics	Residual-Range Organics
Reconnai	ssance Groundwater			Δ,	
GP2	GP2-W-17-RECON	6/9/2005	DET	<u> </u> ND	ND
GP4	GP4-W-8.0	6/16/2005	ND	DET	ND
GP5	GP5-W-18.0	6/16/2005	ND	ND	ND
GP6	GP6-W-18.0	6/16/2005	ND	ND	ND
GP7	GP7-W-14.0	6/16/2005	ND	ND	ND .
GP8	GP8-W-10.0	6/16/2005	DET	DET	DET
Monitorin	g Wells		ux a	У .	The second second
MW2	MW2-W-0605	6/17/2005	ND	DET	DET

Cardon

Pérconcernité de la familia de la companie de la co

				his bala j
I , inn . I				
	9			
			The second of th	

Table 8 Petroleum Hydrocarbons in Groundwater (mg/L) Precision Engineering, Inc. Seattle, Washington

Location	Sample ID	Date	Gasoline	Diesel	Motor Oil
MTCA Me	thod A Groundwater C	ULs	0.8	0.5	0.5
MTCA Me	thod B Groundwater C	ULs	NA ·	NA	NA
Reconnai	ssance Groundwater				J. J. 1
GP2	GP2-W-17-RECON	6/9/2005	0.1 U		
GP4	GP4-W-8.0	6/16/2005		0.325	0.478 U
GP8	GP8-W-10.0	6/16/2005	0.155	0.814	0.479 U
Monitorin	g Well				
MW2	MW2-W-0605	6/17/2005	0.1 U	0.438	0.512

lairas l

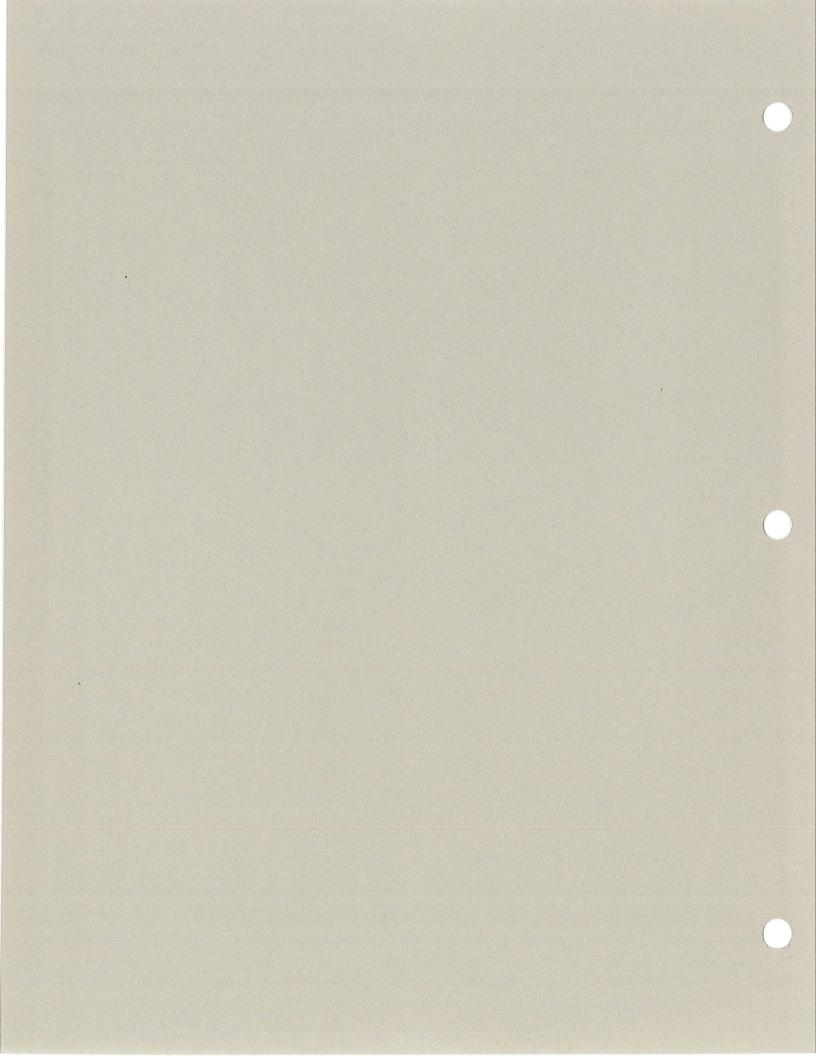
Parapidan Sprinaherrous di Grassato merita Preu ana androinaina lan

protection of the policy A.

		· Francis	
	-137	Fight draws 4-7	
	Tarasana I		

Polycyclic Aromatic Hydrocarbons in Groundwater (ug/L) Precision Engineering, Inc. Seattle, Washington Table 9

	Benzo(b+k)	Tiuoranthene	¥	0.010	4	05411	0.504.0		0.96211
	Benz	TIUOra			5	0	2. 6	3	
	Benzo(a)	pyrene	0.1	0.012	210.0	0 101 11	2.00	0	0 192 11 0 192 11
	Benzo(a)	animacene	AN	0.012	210.0	0 191 11	0.191.0		
	Anthracene		NA	2400		0 191 11	0 194 11		0.192 U
	Acenaphthylene	41.4	NA.	AN		0.191 []	0 19411		0.192 U
	Acenaphthene	V-14	Y.	096		0.191 U	0.328		0.192 U
	2-Methyl-	NIA	72	AN.		0.477 U	8.56	5 063	0.481 U
	2-Chloro-	NA	V.	¥		0.191 U	0.194 U		0.192 U
	Date	pr CIII a	0000	r CULs	ter	6/16/2005	6/16/2005		6/17/2005
2	Sample ID	ITCA Method A Ground Water Cill s		11 CA Method B Groundwater CULs	Reconnaissance Groundwater	GP4-W-8.0	GP8-W-10.0	Wells	MW2-W-0605 6/17/2005
	Location	MTCA Meth		MICA Meth	Reconnais	GP4	GP8	Monitoring Wells	MW2


Table 9
Polycyclic Aromatic Hydrocarbons in Groundwater (ug/L)
Precision Engineering, Inc.
Seattle, Washington

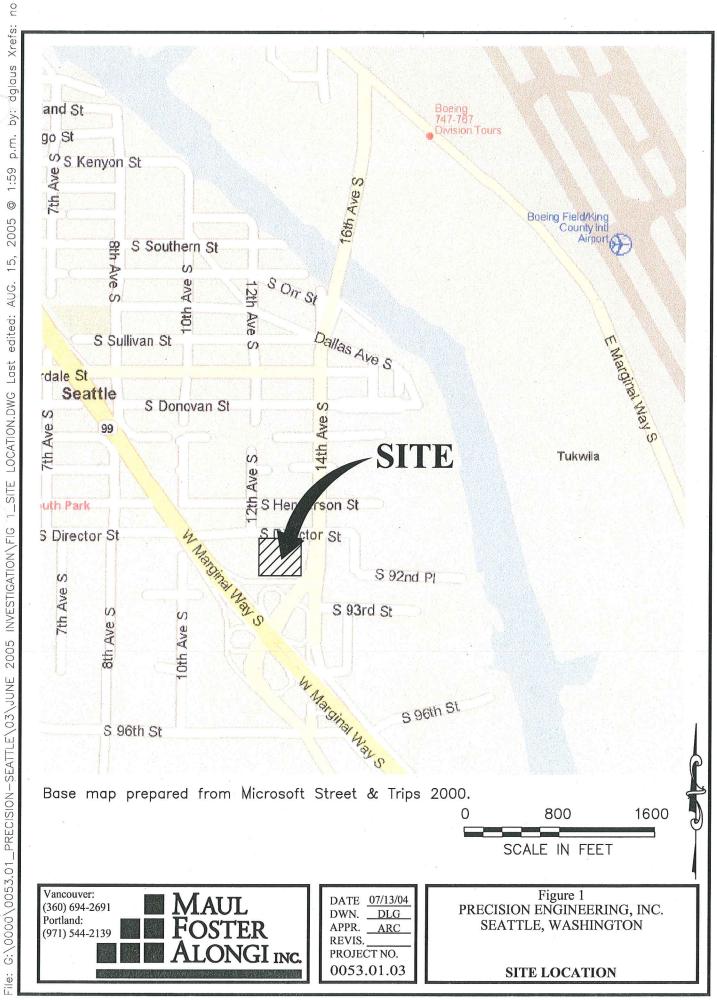
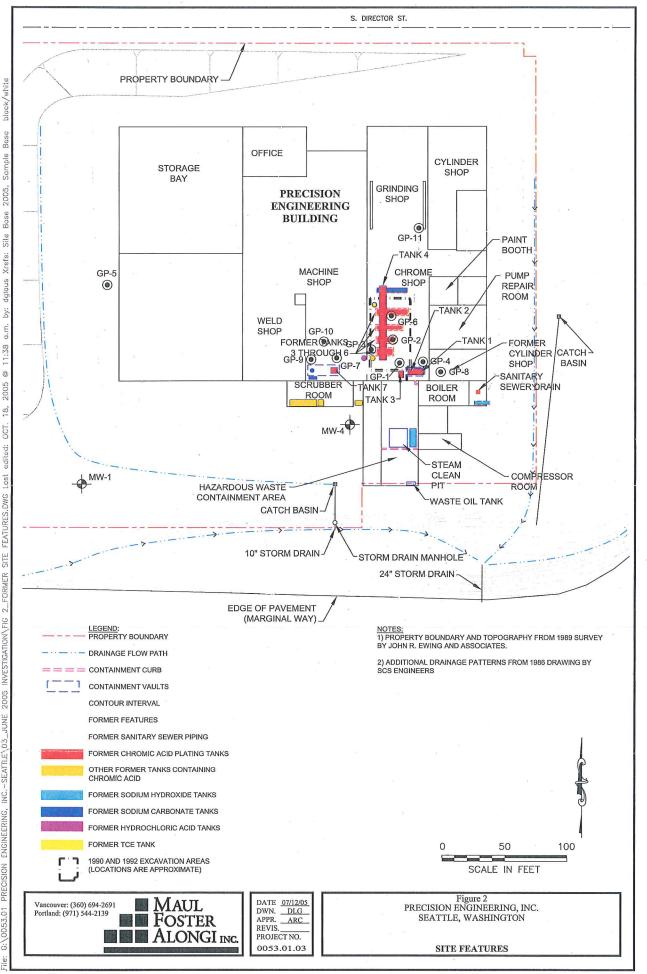

rene Pyrene	AN AN	480		0.19111			J 0.192 U	-
Phenanthrene	AN A	AN		0.191 U	5.54		0.192 U	, []
Naphthalene	160°	160		0.477 U	26.5		0.854	
Indeno(1,2,3-cd) ovrene	NA	0.012		0.191 U	0.194 U		0.192 U	
Fluorene	AN	640		0.191 U	0.298		0.192 U	-
Fluoranthene	AN A	640		0.191 U	0.194 U		0.192 U	
Dibenzo(a,h) anthracene	AN	0.012		0.191 U	0.194 U		0.192 U	
Benzo(ghi) perylene	NA	NA		0.191 U	0.194 U		0.192 U	The state of the s
Date	er CULs	r CULs	iter	6/16/2005	6/16/2005		6/17/2005	
Sample ID	1TCA Method A Ground Water CULs	ATCA Method B Groundwater CULs	Reconnaissance Groundwater	GP4-W-8.0	GP8-W-10.0	Wells	MW2-W-0605 6/17/2005	
Location	MTCA Meth	MTCA Meth	Reconnais	GP4	GP8	Monitoring Wells	MW2	

Table 10
Polychlorinated Biphenyls in Groundwater (ug/L)
Precision Engineering, Inc.
Seattle, Washington

			The second name of the second na						
Location	Sample ID	Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Arocior 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
MTCA Method A Groundwater CULs	A Groundwat€	er CULs	0.1	0.1	0.1	0.1	0.1	0.1	0.1
MTCA Method B Groundwater CU	3 Groundwate	er CULs	AN	NA	NA	NA	AN	NA	VIV
Reconnaissance Groundwater	ce Groundwa	ater						5	CA.
GP8 GF	3P8-W-10.0	6/16/2005	0.0958 U	0.0958 U	0.0958 U	0.0958 U	0.0958 U	0.0958 U	0.0958 U



LAYOUT: 1

edited:

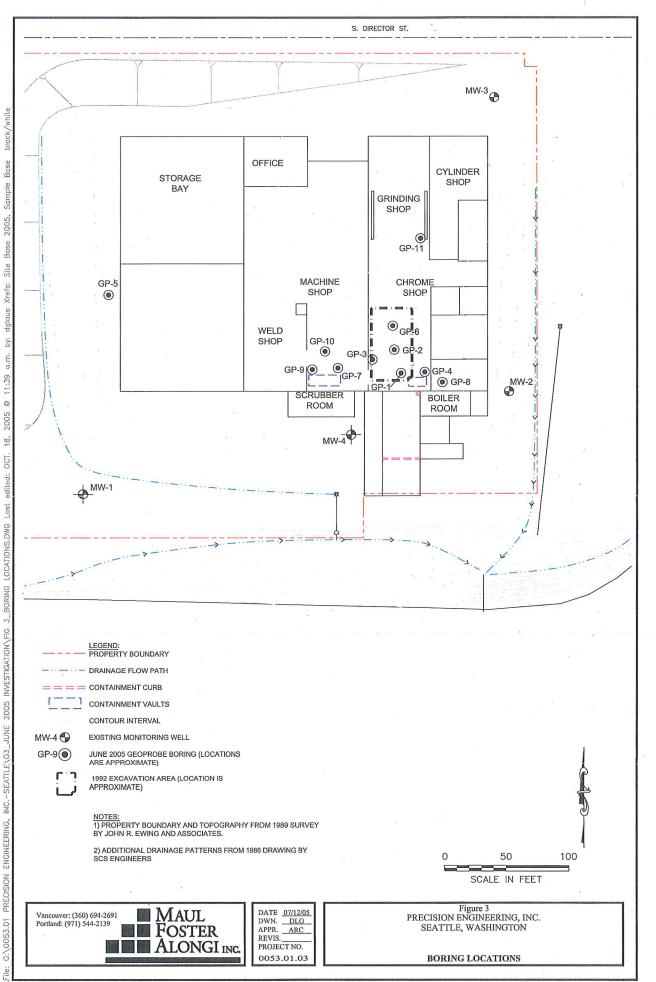
G:\0000\0053.01_PRECISION-SEATTLE\03\JUNE 2005 INVESTIGATION\FIG 1_SITE

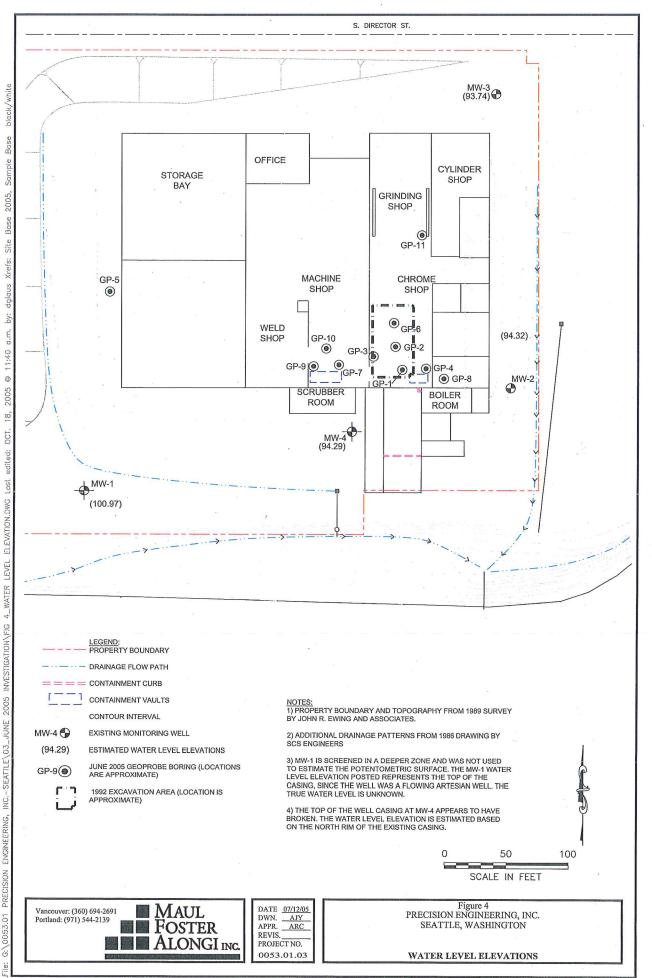
A SERVICE CONTRACTOR AND ADDRESS.

the first of 17% of the first o

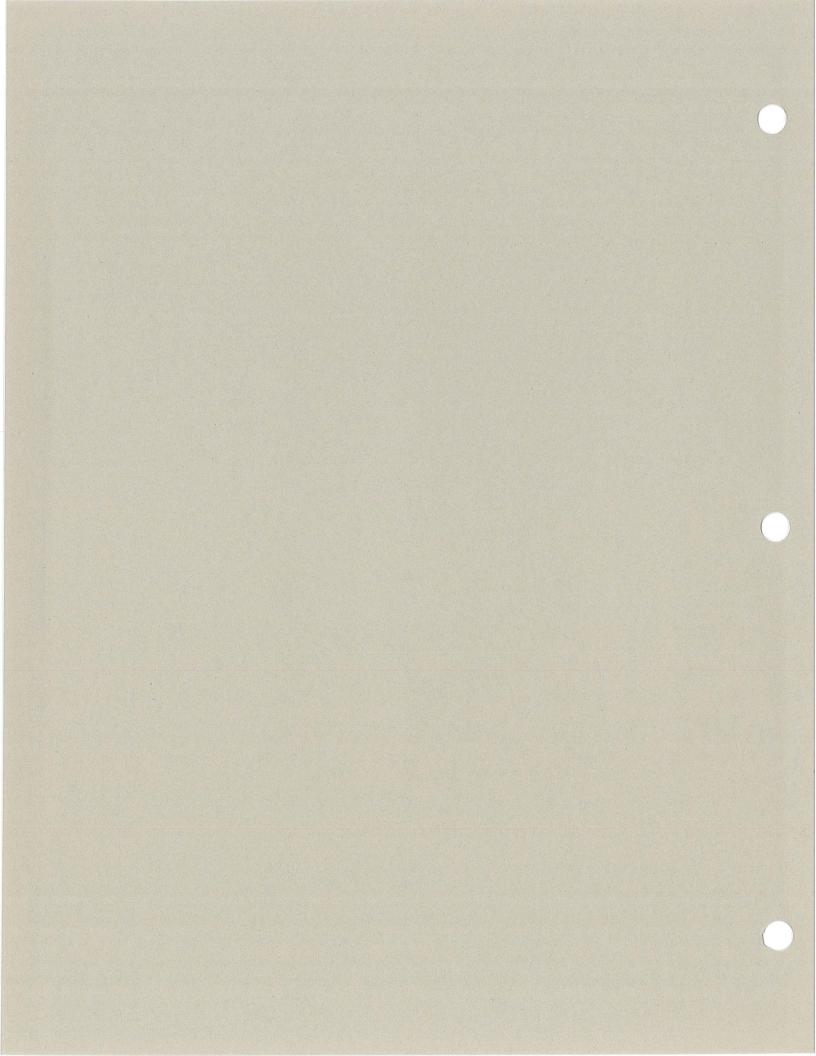
y Tanadan Lihawan di Bula di Tanadan Lihawan di Bula di

y to the true and the true of true of true of the true of true of true of true of true of the true of true


Example of the second of the s


And the second of the second o

and the second of the second o


1 전 1명 1명 2 : 12 전 전 42 명 1 : 2 : 10 : 4 : 12 명 (1

보는 글 시간성하다 이 작업이 없었다. 기가에 어느 병원 전 20일 교육하였다.

APPENDIX A SITE CHARACTERIZATION PROCEDURES

SITE CHARACTERIZATION PROCEDURES

Soil Sampling Procedures

Eleven GeoprobeTM borings (GP-1 through GP-11) were advanced on the Precision facility to investigate the features of interest. The boring locations were selected to evaluate possible releases to soil and groundwater from the features of interest.

Before fieldwork began, drilling locations were cleared by the Underground Utility Notification Center and a private utility locator. Drilling was performed by Holt Drilling, Inc. of Milton, Washington, and Geo-Tech Explorations, Inc. of Tualatin, Oregon (both companies are a division of Boart Longyear), using direct-push drilling units.

Soil sampling was completed as follows: 5-foot-long, stainless steel rods were attached to a 5-foot-long, 1.5-inch inside-diameter, stainless steel core sampler (equipped with a new acetate liner) and were hydraulically advanced from the ground surface. The core sampler was driven 3 feet to 5 feet to collect the sample. An acetate liner with the soil sample was removed from the core sampler and cut open for inspection and possible sample collection. A new liner was placed in the core sampler, and the rod and core sampler were returned to the boring. The rods and sampler were driven to the desired sampling depth. This procedure generally was repeated until the saturated zone was encountered, generally between 5 feet and 20 feet below ground surface (bgs).

Continuous soil samples were collected for lithologic description. Soil samples were described using American Society for Testing and Materials (ASTM) designation D2488-84, Standard Practice for Description and Identification of Soils (Visual-Manual Procedures), including color, texture, and grain size. A log of soil samples from each boring was prepared in the field by a geologist working under the direct supervision of a geologist registered in the state of Oregon. Lithologic information and visual observations were recorded in a field notebook. Sample information was transferred onto field sampling data sheets (FSDSs). As the soil cores were opened, they were field-screened for volatile organic compounds (VOCs), using a photoionization detector (PID). No VOCs were measured using the PID. Subsurface materials generally consisted of sandy silt to silt with varying silty sand to sand lenses to 20 feet bgs, except around the containment vaults, where loose silty sand was generally encountered.

Soil samples were examined for possible contamination (e.g., discoloration, presence of waste materials). Petroleum-hydrocarbon-like odors and visible impacts, including discoloration and iridescent sheen, were not observed. Some greenish discoloration was observed at the base of the concrete cores near former Plating Tanks 3, 4, 5, and 6.

Reconnaissance Groundwater Sampling Procedures

Groundwater samples were collected from near the top of the saturated zone (i.e., between 8.0 feet and 17 feet bgs, depending on the boring location) as follows:

- The boring was advanced to the saturated zone.
- Before the water sample was collected, a depth-to-water measurement was taken and recorded in the field notebook.
- Groundwater samples were collected from GP-2 and from GP-4 through GP-8, using a stainless steel, 2-inch-outside-diameter, 4-foot-long, GeoprobeTM water sampler. The water sampler was advanced to the bottom of the boring where the last soil sample was collected. The casing around the water sampler was pulled back, exposing 4 feet of screen. Water was allowed to flow into the screen.
- Groundwater was purged before sample collection to decrease turbidity, using 0.25-inch disposable polyethylene tubing attached to a peristaltic pump.
- The sample was carefully transferred from the peristaltic tubing to the laboratory-supplied containers having the appropriate preservative. Samples for VOC analyses were collected with a single-use inertia pump consisting of polyethylene tubing with a stainless steel foot valve. The samples were carefully transferred to laboratory-supplied, 40-mL, volatile organic analysis vials containing hydrochloric acid (HCL) as a preservative. Trip blanks were submitted with each cooler transported to the laboratory for VOC analyses.
- Some of the purge water was decanted into a small beaker, and field parameters (pH, specific conductance, temperature, and turbidity) were measured. The information was recorded in the field notebook and transferred onto FSDSs.
- Samples were labeled, preserved, and shipped with ice under standard chain-of-custody procedures.
- Disposable tubing was used for only one groundwater sample and then was disposed of. Other, non-dedicated, equipment used for water-sample collection was decontaminated both before its use at the facility and after each sample was collected.

Well Development and Groundwater Sampling Procedures

The monitoring wells were developed using disposable, double-check valve, weighted bailers and a peristaltic pump. The wells were developed by surging, bailing, and/or pumping to remove sediment that might have accumulated and to improve the hydraulic connection with groundwater. A minimum of four well pore volumes of water were removed during development.

Specific conductance, pH, temperature, and turbidity were measured periodically during well development. The wells were developed until there was no noticeable decrease in turbidity, and until specific conductance and temperature stabilized to within 10 percent of the previous reading and pH standard units stabilized to within 0.1 standard units of the previous reading.

After water levels were measured and recorded, monitoring wells were sampled as follows:

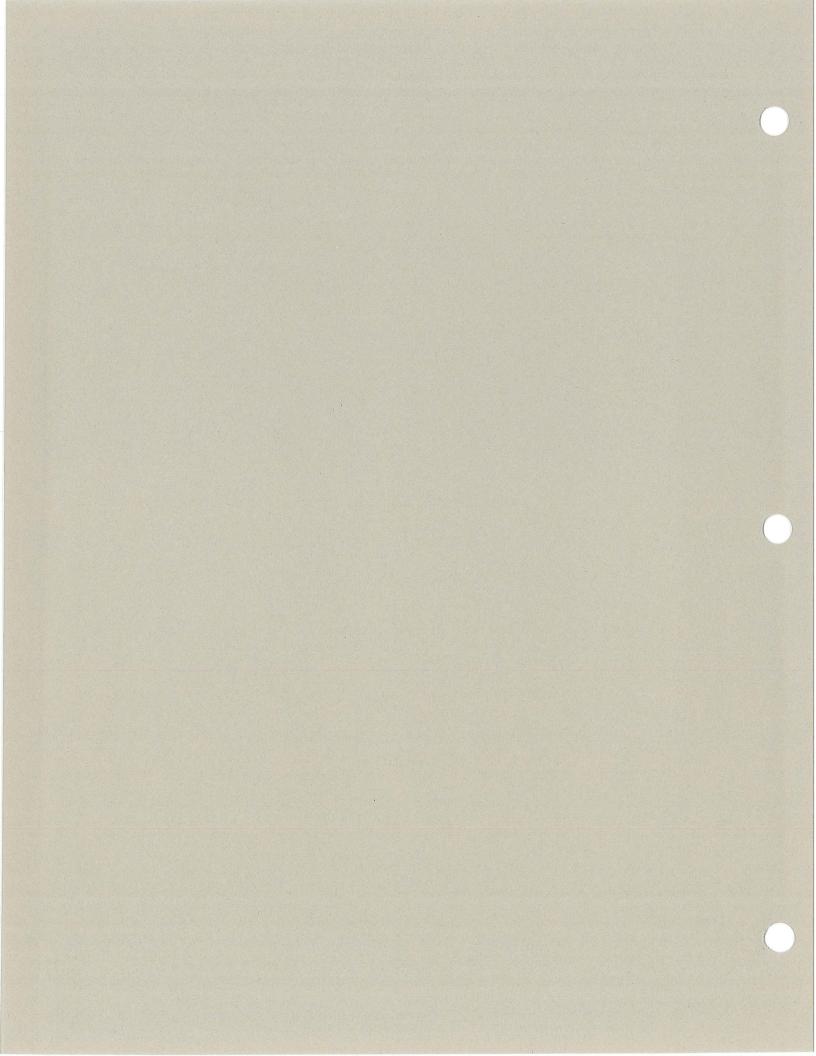
- At least three casing volumes were purged from the top of the water column in the well, using a new, disposable, weighted, double-checked, polyethylene bailer.
- After each well casing volume was removed, temperature, pH, specific conductance, and turbidity were measured with portable meters and recorded on an FSDS. Groundwater samples were collected after there was no noticeable decrease in turbidity, and specific conductance and temperature stabilized to within 10 percent of the previous reading and pH standard units stabilized to within 0.1 standard units of the previous reading.
- Samples were collected and placed in the appropriate labeled, laboratory-supplied containers. Samples for analyses of VOCs were collected from within the well screen, using disposable bailers equipped with a bottom-emptying device, and were carefully transferred to 40-milliliter vials preserved with HCL. Samples for dissolved metals analysis were field-filtered using a peristaltic pump and a 0.45-micron inline filter.
- Field activities and sampling data (e.g., well-purging data, equipment used, sample containers, preservatives used) were documented in the field on FSDSs.

After sampling was completed, groundwater samples were placed on ice in a shipping container with chain-of-custody documentation and transported to Severn Trent Laboratory in Tacoma, Washington, for analysis.

-Spanier evictor (note 101), proper rate, and turbitly were-enough, the holdings in the "Web in the selection of the work who integed have a selection who have selected in the selection of the cold." Instability over raphic specifier personal and the selection personal residence of the selection of the cold. In the cold.

Of the province translation.

ke benganji benjalishkali dentangan dishooner bika paratimen dipagalaset dipaga islamba. Badalas


mangariere caratre caratre en reger en vire qua gracifica en encare en la reger de la regional de la companya Por servicio de la companya de la companya de la caratre en la companya de la companya de la companya de la comp La companya de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del companya de la companya del c

Teller of the extension of the empty sext in which process the description of the process of the process of the extension of

The confidence of the confiden

તાલુક માનુક માણાકાલિક મેટલ માં જો તેમિક લેકિક માનુક માટે કારકોરી મુક્ક સ્ફિટિક કાર્યા પણ કે પોલીક ચિંઘો મેં જ મુખ્યત્વે મેં કાર્યું કાર્યા કરો છે. આજ ના કેન્દ્રિક કાર્યું એક્સ ફેક્ક જેલા કરી તેમફે કે મોર્ટ કોર્ટ ફેકિક કે

ist of including out of completely because the factor of the selection of the selection of the configuration o Liberary of the selection of constitution of the selection of the APPENDIX B
BORING LOGS

	Alongi, Inc.	Project Nu 0053.01	umber	Borehole Log/Well Construction Well Number Sheet GP-1 1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method	Precision Engine 1231 S. Director 6/7/05 to 6/9/05 Boart Longyear/o S. Mauldin Direct Push	Street, Seattle, WA	98108	TOC Elevation (feet NGVD) Surface Elevation (feet NGVD) Northing Easting Hole Depth 15.0- Outer Hole Diam 2-inc
(Veet, BGS) Details	Interval Percent Recovery Collection	ample Data page Name (Type)	Blows/6" Lithologic Column	Soil Description
1 2 3 4 4 5 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100% GP 100% GP 100% GP 100% GP 78% GP	GP1-S-6.0		to 0.5 feet: CONCRETE. 0.5 to 13.0 feet: SANDY SILT with GRAVEL (SM); dark yellowish brown; 50% fines, nonplastic; 40% sand, fine to coarse; 10% gravel, fine, rounded to subrounded; micaceous; stiff; dry.
4	7 100% GP			3.0 to 15.0 feet: SILT (ML); dark gray; 100% fines, nonplastic; ve stiff; dry. otal Depth : 15.0 feet bgs

Mau	ıl Foster &	Alongi, Inc.		Project I	Numbe		Borehole Log/Well Construction Well Number Sheet
Proje Star Drille Geo	iect Name iect Location t/End Date ier/Equipment ologist/Engineer nple Method	Precision Engir 1231 S. Director 6/7/05 to 6/9/05 Boart Longyear S. Mauldin Direct Push	r Stree	t, Seattle, W		08	TOC Elevation (feet NGVD) Surface Elevation (feet NGVD) Northing Easting Hole Depth Outer Hole Diam 1 of 2 30.0-feet
	Well	T :	Sample	Data _.		0.	Soil Description
Depth (feet, BGS)	Details	Interval Percent Recovery Collection Method	Number	Name (Type)	Blows/6"	Lithologic Column	
		69% GP	1 .5			1. 1. 1.	
1 2 3				GP2-S-1.0			0.5 to 7.0 feet: SANDY SILT with GRAVEL (SM); dark yellowish bro 50% fines, nonplastic; 40% sand, fine to coarse; 10% gravel, fir rounded to subrounded; micaceous; stiff; dry.
<i>4 5 6</i>		T 100% GP					
7	1.0	100% GP					7.0 to 30.0 feet: SILT with SAND (ML); gray; 85% fines, nonplastic;
8 9 10							15% sand, fine; trace medium to coarse gravel; very stiff; dry.
11		64% GP		GP2-S-10.0			
12 13							
14 15		76% GP GW			8		@ 15.0 feet; Dark gray; low plasticity; percentages 95% fines and 55 sand.
16 17		76% GP GW					
18 19				GP2-W- 17.5-recon	X , X		
20		HIHRAN	20	0 1			

Geologic Borehole Log/Well Construction Maul Foster & Alongi, Inc. Project Number Well Number Sheet 0053.01.03 GP-3 1 of 1 TOC Elevation (feet NGVD) Project Name Precision Engineering Surface Elevation (feet NGVD) Project Location 1231 S. Director Street, Seattle, WA 98108 Start/End Date 6/9/05 to 6/9/05 Northing Boart Longyear/Geoprobe Driller/Equipment Easting Hole Depth Geologist/Engineer S. Mauldin 15.0-feet Direct Push Outer Hole Diam Sample Method 2-inch Well Sample Data Soil Description BGS) Lithologic Column Details Collection Percent Recovery Blows/6" Depth (feet, E Name (Type) 0 to 0.5 feet: CONCRETE. 70% GP 0.5 to 2.0 feet: SANDY SILT with GRAVEL (SM); dark yellowish brown; 1 50% fines, nonplastic; 40% sand, fine to coarse; 10% gravel, fine, angular; micaceous; stiff; dry. 2 GP3-S-2.0 2.0 to 5.0 feet: SILT (ML); gray; 100% fines, nonplastic; very stiff; dry. 3 5 95% GP 5.0 to 8.0 feet: SANDY SILT with GRAVEL (SM); grayish brown with orangish mottling; 50% fines, nonplastic; 30% sand, fine to coarse; 6 20% gravel, fine, angular; micaceous; stiff; dry. GP3-S-6.0 8 8.0 to 15.0 feet: SILT with GRAVELS (ML); dark gray; 100% fines, 83% GP nonplastic; trace gravel; very stiff; dry. 9 10 11 12 GP 100% @ 12.0 feet: Damp. 13 GP3-S-14.0 15 . W/PROJECTS\0053.01\GP1-GP11.GPJ 8/5/05 Total Depth: 15.0 feet bgs

	Parasit Rangent I and Jenish 2, 194-5 Rangen	
	1 Nome : Freeliden Lings virri * Lockie : 134 S. Likerter Cene Cenediic NV. S. 178	
1964 tilli († 19. arpling – 1 tale Dagar, – 1934 – tont	oua Fair 12 juni 14 - Wasan Tanggéria Raparat 12 juni 18 au Sala Kabuptén Raparat	SPHINE.
	e - Fothod - Direct Rush Vis 2 - Sample Pus - 1	
	(marx) = 100 (marx) = 100 (marx)	
The same of the sa		
h Libe 12 hadr Sutini 1881 i dan 200. Pagahip dasi yakan ungung Sust, Jawa a ya danba 1800 a ya dan bara dan dan dan barata kan danyar, fina. Pa anguka masawa a jabbany		
The state of the s		(
,		
		J

NOTES: 1) Abandon borehole with 3/8-inch bentonite chips hydrated with potable water. 2) GP = geoprobe. 3) Borings were not surveyed. 4) DTW = depth to water in feet (ft) below ground surface (bgs). The water levels are approximate.

GBLWC W:\GIN

WNPROJECTS\0053.01\GP1-GP11.GPJ 8/5/05

e transference de la companya de la wast of the law municipality of

Mau	l Foster &	Alongi, Inc.	Project Number	gic Borehole Log/Well Construction Well Number Sheet
Proje Start Drille Geol	ect Name ect Location t/End Date er/Equipment logist/Engineer aple Method	Precision Engin 1231 S. Director 6/16/05 to 6/16/0 Boart Longyean A. Hughes Direct Push	Street, Seattle, WA 98108	GP-5 1 of 1 TOC Elevation (feet NGVD) Surface Elevation (feet NGVD) Northing Easting Hole Depth 20.0-feet Outer Hole Diam 2-inch
	Well	1 .	Cample Data	Sail Description
Depth (feet, BGS)	Details	Interval Percent Recovery Collection Method	Numbe Para Number Name (Type) Name (Ty	
_ 1 _ 2 _ 3		98% <i>GP</i>	GP5-S-1.5	0 to 0.3 feet: ASPHALT. 0.3 to 2.5 feet: GRAVELLY SILT (ML): dark grayish brown; 80% fines nonplastic; 20% gravel, fine to coarse, subangular; trace fine said damp. 2.5 to 20.0 feet: SILT with GRAVEL (ML); dark grayish brown; 90 to 95% fines, nonplastic; 5 to 10% gravel, fine; trace fine sand; very stiff; dry to damp.
5 6 7		98% GP		
9		100% GP	GP5-S-8.0	
11 12 13				@ 11.2 to 12.0 feet: Percentages change to 80% fines and 20% gravels.
14 15	Δ	- 100% GP	GP5-S-14.0	@ 14.0 feet: Moist to wet.
16 17		GW		
18 19		6W	GP5-W-18.0	
. 8				Total Depth: 20.0 feet bgs

NOTES: 1) Abandon borehole with 3/8-inch bentonite chips hydrated with potable water. 2) GP = geoprobe. 3) Borings were not surveyed. 4) DTW = depth to water in feet (ft) below ground surface (bgs). The water levels are approximate.

GBLWC W:\GIN

re the collection

Mau	I Foster &	Alongi, Inc.	Project N		Borehole Log/Well Construction	Sheet
mau	ir i Ootel Ot	ravitgi, iiio.	0053.0		GP-6	1 of 1
Proje Start Drille Geol	ect Name ect Location t/End Date er/Equipment logist/Engineer aple Method	Precision Engine 1231 S. Director S 6/16/05 to 6/16/05 Boart Longyear/O A. Hughes Direct Push	Street, Seattle, WA	4 98108	TOC Elevation (feet NGV Surface Elevation (feet N Northing Easting Hole Depth Outer Hole Diam	
	Well	T 0-	mple Data		Soil Description	Z-IIIGII
Depth (feet, BGS)	Details	Interval Percent Recovery Collection Method	Name (Type).	Blows/6" Lithologic Column		
	1. 0. 0. 0.	100% GP		ا ا ا ا ا ا	0 to 0.5 feet: CONCRETE.	2 2
. 1 . 2 . 3 . 4		100% GP	GP6-S-1.0		0.5 to 20.0 feet: SANDY SILT with GRAVEL brown; 65% fines, nonplastic; 20% sand, coarse, subangular to angular; micaceou @ 0.5 to 1.0 feet: Greenish yellow staining.	fine; 15% gravel, fine to
7 8 9		100% GP	GP6-S-8.0		 7.0 feet: Dark gray to dark brownish gray. 8.0 to 11.5 feet: Percentage change to 60.25% gravel. 	% fines, 15% sand, and
11 12 13		100% GP				
15		100% GP	GP6-S-14.5		@ 14.5 to 20.0 feet: Sluff in samplers is moist damp.	to wet while soil is dry to
16	, <u> </u>	GW				
18		100% GP	GP6-W-18.0			
19					Total Depth: 20.0 feet bgs	

NOTES: 1) Abandon borehole with 3/8-inch bentonite chips hydrated with potable water. 2) GP = geoprobe. 3) Borings were not surveyed. 4) DTW = depth to water in feet (ft) below ground surface (bgs). The water levels are approximate.

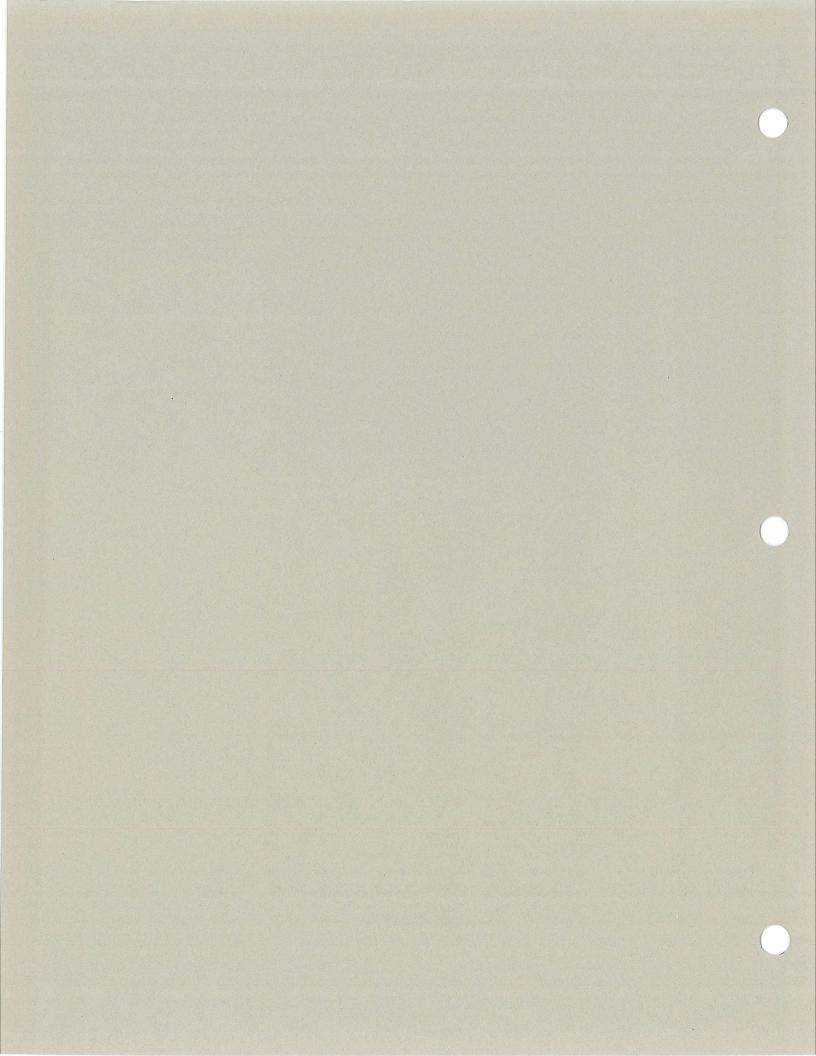
GBLWC W:\GIL

Mau	Il Foster 8	Alo	ngi, I	nc.			Project Number 0053.01.03		Well Number GP-7	Sheet 1 of 1
Proje Star Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer ple Method	123 6/10 Boa A. H	Precision Engine 1231 S. Director S 6/16/05 to 6/16/05 Boart Longyear/G A. Hughes Direct Push		Stree	Street, Seattle, WA 98108		08	TOC Elevation (feet Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam	
(39)	Well Details		>	, 5 Sa	mple	Data		ji i	Soil Description	
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method C	Number	Name (Type)	Blows/6"	Lithologic Column		
			25%	GP				1 0 to	0.5 feet: CONCRETE.	
1								0.5	to 1.5 feet: Void below concrete.	
2						GP7-S-2.0			to 16.0 feet: SILTY SAND (SM); dan fines, low plasticity; 70% sand, fine; subrounded; micaceous; damp.	k yellowish brown; 20 to 25% 5 to 10% gravel, fine,
<i>4 5 6</i>			50%	GP				@ 5	.0 feet: Damp to moist.	
7 8 9						GP7-S-8.0				
11			40%	GP	6. 2			@ 1	0.0 feet: Wet.	
12		Z		GW						
14				x x		GP7-W-14.0				
15			va S							
16									10. // 10.01	
								Tota	Depth : 16.0 feet bgs	

1) Abandon borehole with 3/8-inch bentonite chips hydrated with potable water. 2) GP = geoprobe. 3) Borings were not surveyed. 4) DTW = depth to water in feet (ft) below ground surface (bgs). The water levels are approximate. 5) Becuase of the large void below the concrete the borehole was only abandoned to the top of the soil.

GBLWC W:\GIN

1) Abandon borehole with 3/8-inch bentonite chips hydrated with potable water.
 2) GP = geoprobe.
 3) Borings were not surveyed.
 4) DTW = depth to water in feet (ft) below ground surface (bgs). The water levels are approximate.


WAPROJECTS/0053.01/GP1-GP11.GPJ 8/5/05

W:\GIN

					'I	L jigan	fusite :	
				÷				
				, of the state				
								*
er i state i state i salar								
	in angl							
		A. Co						
	×							
	£							
								5)

			Geologic	Borehole Log/Well Constru	uction
Maul Foster &	Il Foster & Alongi, Inc. Project Number 0053.01.03			Well Number GP-10	Sheet 1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method	Precision Engine 1231 S. Director S 6/17/05 to 6/17/05 Boart Longyear/O A. Hughes Direct Push	Street, Seattle, WA 98	3108	TOC Elevation (feet NG Surface Elevation (feet Northing Easting Hole Depth Outer Hole Diam	(VD) NGVD) 15.0-feet 2-inch
(leet, BGS) Well Details	Interval Percent Recovery Collection Method	mple Data yeq Name (Type) Name (Type)	Lithologic Column	Soil Description	
1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15		GP10-S-7.0 GP10-S-1.5		© 14.0 feet: Moist to wet and percentages 5% gravel. Total Depth: 15.0 feet bgs	d, fine; 15% gravel, fine to

APPENDIX C LABORATORY ANALYTICAL REPORTS

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-Inc.com

TRANSMITTAL MEMORANDUM

DATE: July 25, 2005

TO: Alan Hughes Maul Foster & Alongi, Inc. 7223 NE Hazel Dell Ave., Suite B Vancouver, WA 98665

PROJECT: Precision Engineering/Seattle WA

REPORT NUMBER: 128268

TOTAL NUMBER OF PAGES: _

Enclosed are the test results for five samples received at STL Seattle on June 8, 2005.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Nonconformance Narrative: For SW8260B the Method Blank VOA1371 had Methylene chloride contamination above the RL. Sample 128268-02 was analyzed one day out of holding time. The first run was within holding time but failed to purge and had to be re-run.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely

Project Manager

Sample Identification:

Lab. No.	Client ID	Date/Time Sampled	Matrix
128268-1	GP1-S-1.5	06-07-05 09:30	solid
128268-2	GP1-S-6.0	06-07-05 10:15	solid
128268-3	GP2-S-1.0	06-07-05 11:00	solid
128268-4	MW3-0605	06-07-05 16:10	liquid
128268-5	Trip Blank	06-07-05 *	liquid

^{* -} Sampling time not specified for this sample

Client Name: Maul Foster & Alongi, Inc. Client ID: GP1-S-1.5 Lab ID: 128268-01 Date Received: 6/8/05 Date Prepared: 6/21/05 Date Analyzed: 6/21/05 % Solids 91.77 **Dilution Factor** 1

Volatile Organics by USEPA Method 5030/8260B

				Recove	ery Limits	
Surrogate		% Recovery	Flags	Low	High	
Dibromofluoromethane		87.5	014	75	125	
Fluorobenzene		86.2		75	125	
Toluene-D8		90.1		75	125	
Ethylbenzene-d10	Adalla J.	88		75	125	
Bromofluorobenzene	-888,0	93.1		75	125	
Trifluorotoluene	1980	107		75	125	

	Result		eric archite
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	0.839	
Chloromethane	ND	0.839	
Vinyl chloride	ND	0.839	
Bromomethane	ND	0.839	
Chloroethane	ND	0.839	
Trichlorofluoromethane	ND	0.839	
1,1-Dichloroethene	ND	0.839	
Methylene chloride	ND	0.839	
trans-1,2-Dichloroethene	ND	0.839	
1,1-Dichloroethane	ND	0.839	
2,2-Dichloropropane	ND	0.839	
cis-1,2-Dichloroethene	ND	0.839	
Bromochloromethane	ND	0.839	
Chloroform	ND	0.839	
1,1,1-Trichloroethane	ND	0.839	
Carbon Tetrachloride	ND	0.839	
1,1-Dichloropropene	ND	0.839	
Benzene	ND	0.839	
1,2-Dichloroethane	ND	0.839	
Trichloroethene	ND	0.839	
1,2-Dichloropropane	ND	0.839	
Dibromomethane	ND	0.839	
Bromodichloromethane	ND	0.839	
cis-1,3-Dichloropropene	ND	0.839	
Toluene	ND	0.839	
trans-1,3-Dichloropropene	ND	0.839	

Flags

Volatile Organics by USEPA Method 5030/8260B data for 128268-01 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	0.839
Tetrachloroethene	ND	0.839
1,3-Dichloropropane	ND	0.839
Dibromochloromethane	ND	0.839
1,2-Dibromoethane	ND .	0.839
Chlorobenzene	ND	0.839
Ethylbenzene	ND	0.839
1,1,1,2-Tetrachloroethane	ND	0.839
m,p-Xylene	ND	1.68
o-Xylene	ND	0.839
Styrene	ND	0.839
Bromoform	ND	0.839
Isopropylbenzene	ND	0.839
Bromobenzene	ND	0.839
n-Propylbenzene	ND	0.839
1,1,2,2-Tetrachloroethane	ND	0.839
1,2,3-Trichloropropane	ND	0.839
2-Chlorotoluene	ND	0.839
1,3,5-Trimethylbenzene	ND	0.839
4-Chlorotoluene	ND	0.839
t-Butylbenzene	ND	0.839
1,2,4-Trimethylbenzene	ND	0.839
sec-Butylbenzene	ND	0.839
1,3-Dichlorobenzene	ND	0.839
4-Isopropyltoluene	ND	0.839
1,4-Dichlorobenzene	ND	0.839
n-Butylbenzene	ND	0.839
1,2-Dichlorobenzene	ND	0.839
1,2-Dibromo-3-chloropropane	ND	0.839
1,3,5-Trichlorobenzene	. ND	0.839
1,2,4-Trichlorobenzene	ND	0.839
1,2,3-Trichlorobenzene	ND	0.839
Hexachlorobutadiene	ND	0.839
Naphthalene	ND	0.839

Client Name: Maul Foster & Alongi, Inc. Client ID: GP1-S-6.0 Lab ID: 128268-02 Date Received: 6/8/05 Date Prepared: 6/22/05 Date Analyzed: 6/22/05 % Solids 91.96 Dilution Factor 1

Volatile Organics by USEPA Method 5030/8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	94.9		75	125
Fluorobenzene	91.7		75	125
Toluene-D8	90.7		75	125
Ethylbenzene-d10	87.4		75	125
Bromofluorobenzene	88		75	125
Trifluorotoluene	105	vezi i ziga i	75	125

	Res	ult		
Analyte	(ug/	kg)	RL	Flags
Dichlorodifluoromethane	ND		1.12	
Chloromethane	ND		1.12	, enumaelja
Vinyl chloride	ND		1.12	
Bromomethane	ND		1.12	- I amen'nta
Chloroethane	ND		1.12	
Trichlorofluoromethane	ND		1.12	
1,1-Dichloroethene	ND		1.12	
Methylene chloride	ND		1.12	
trans-1,2-Dichloroethene	ND		1.12	At Main of Colors
1,1-Dichloroethane	ND		1.12	
2,2-Dichloropropane	ND		1.12	
cis-1,2-Dichloroethene	ND		1.12	
Bromochloromethane	ND		1.12	
Chloroform	ND		1.12	
1,1,1-Trichloroethane	ND		1.12	
Carbon Tetrachloride	ND		1.12	
1,1-Dichloropropene	ND		1.12	
Benzene		2.55	1.12	
1,2-Dichloroethane	ND		1.12	
Trichloroethene	ND		1.12	
1,2-Dichloropropane	ND		1.12	
Dibromomethane	ND		1.12	
Bromodichloromethane	ND		1.12	
cis-1,3-Dichloropropene	ND		1.12	
Toluene		1.62	1.12	
trans-1,3-Dichloropropene	ND		1.12	

Flags

Volatile Organics by USEPA Method 5030/8260B data for 128268-02 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	1.12
Tetrachloroethene	ND	1.12
1,3-Dichloropropane	ND	1.12
Dibromochloromethane	ND	1.12
1,2-Dibromoethane	ND	1.12
Chlorobenzene	ND	1.12
Ethylbenzene	ND	1.12
1,1,1,2-Tetrachloroethane	ND	1.12
m,p-Xylene	ND	2.24
o-Xylene	ND	1.12
Styrene	ND	1.12
Bromoform	ND	1.12
Isopropylbenzene	ND	1.12
Bromobenzene	ND	1.12
n-Propylbenzene	ND	1.12
1,1,2,2-Tetrachloroethane	ND	1.12
1,2,3-Trichloropropane	ND	1.12
2-Chlorotoluene	ND	1.12
1,3,5-Trimethylbenzene	ND	1.12
4-Chlorotoluene	ND	1.12
t-Butylbenzene	ND	1.12
1,2,4-Trimethylbenzene	ND	1.12
sec-Butylbenzene	ND	1.12
1,3-Dichlorobenzene	ND	1.12
4-Isopropyltoluene	ND	1.12
1,4-Dichlorobenzene	ND	1.12
n-Butylbenzene	ND	1.12
1,2-Dichlorobenzene	ND	1.12
1,2-Dibromo-3-chloropropane	ND	1.12
1,3,5-Trichlorobenzene	ND	1.12
1,2,4-Trichlorobenzene	ND	1.12
1,2,3-Trichlorobenzene	ND	1.12
Hexachlorobutadiene	ND	1.12
Naphthalene	ND	1.12

Maul Foster & Alongi, Inc.				
GP2-S-1.0 128268-03				
6/8/05				
6/21/05				
6/21/05				
89.78				
194				

Volatile Organics by USEPA Method 5030/8260B

	1000			Recove	ry Limits
Surrogate		% Recovery	Flags	Low	High
Dibromofluoromethane		85.7		75	125
Fluorobenzene		86.2	444	75	125
Toluene-D8		89.2		75	125
Ethylbenzene-d10		86.5		75	125
Bromofluorobenzene		90	the Tuke it	75	125
Trifluorotoluene	bed	112		75	125

	Result		Suracrostly)
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	0.96	
Chloromethane	ND	0.96	
Vinyl chloride	ND	0.96	
Bromomethane	ND	0.96	
Chloroethane	ND	0.96	
Trichlorofluoromethane	ND	0.96	
1,1-Dichloroethene	ND	0.96	
Methylene chloride	ND	0.96	
trans-1,2-Dichloroethene	ND	0.96	
1,1-Dichloroethane	ND	0.96	
2,2-Dichloropropane	ND	0.96	
cis-1,2-Dichloroethene	ND	0.96	
Bromochloromethane	ND	0.96	i pelatit
Chloroform	ND	0.96	
1,1,1-Trichloroethane	ND	0.96	
Carbon Tetrachloride	ND	0.96	
1,1-Dichloropropene	ND	0.96	
Benzene	ND	0.96	
1,2-Dichloroethane	ND	0.96	
Trichloroethene	ND	0,96	
1,2-Dichloropropane	ND	0.96	**
Dibromomethane	ND	0.96	
Bromodichloromethane	ND	0.96	
cis-1,3-Dichloropropene	ND	0.96	
Toluene	ND	0.96	
trans-1,3-Dichloropropene	ND	0.96	

Volatile Organics by USEPA Method 5030/8260B data for 128268-03 continued...

	Result		Contract that
Analyte	(ug/kg)	RL	Flags
1,1,2-Trichloroethane	ND	0.96	Abasiya yan in 1900 a
Tetrachloroethene	. ND	0.96	
1,3-Dichloropropane	ND	0.96	
Dibromochloromethane	ND	0.96	
1,2-Dibromoethane	ND	0.96	
Chlorobenzene	ND	0.96	화생하다 하는 그 아이를 보는 것이다.
Ethylbenzene	ND	0.96	
1,1,1,2-Tetrachloroethane	ND	0.96	
m,p-Xylene	ND	1.92	-operities bey a sectional.
o-Xylene	ND	0.96	
Styrene	ND	0.96	
Bromoform	ND	0.96	
Isopropylbenzene	ND	0.96	enterned applicable
Bromobenzene	ND	0.96	and interpretation of the second
n-Propylbenzene	ND	0.96	
1,1,2,2-Tetrachloroethane	ND	0.96	
1,2,3-Trichloropropane	ND	0.96	
2-Chlorotoluene	ND	0.96	
1,3,5-Trimethylbenzene	ND	0.96	
4-Chlorotoluene	ND	0.96	
t-Butylbenzene	ND	0.96	
1,2,4-Trimethylbenzene	ND	0.96	
sec-Butylbenzene	ND	0.96	
1,3-Dichlorobenzene	ND	0,96	
4-Isopropyltoluene	ND	0.96	
1,4-Dichlorobenzene	ND	0.96	
n-Butylbenzene	ND	0.96	a salii kaannuuniiki
1,2-Dichlorobenzene	ND	0.96	all and a sharp of the same of
1,2-Dibromo-3-chloropropane	ND	0.96	Transitionalitiid 3, Lendi
1,3,5-Trichlorobenzene	- ND	0.96	
1,2,4-Trichlorobenzene	ND	0.96	
1,2,3-Trichlorobenzene	ND	0.96	ากแปรเทศได้เปราสาสะ
Hexachlorobutadiene	ND	0.96	
Naphthalene	ND	0.96	incompany)

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 MW3-0605

 Lab ID:
 128268-04

 Date Received:
 6/8/2005

 Date Prepared:
 6/17/2005

 Date Analyzed:
 6/18/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.1		80	120
Fluorobenzene	104		80	120
Toluene-D8	104		80	120
Ethylbenzene-d10	113		80	120
Bromofluorobenzene	104		80	120
Trifluorotoluene	114		80	120

	Result		
Analyte	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND	1.	3
Chloromethane	ND	1	
Vinyl chloride	ND		· John Walls
Bromomethane	ND	991	
Chloroethane	ND	1	1.00%
Trichlorofluoromethane	ND	1 4 1 1 0 2 1	
1,1-Dichloroethene	ND	1/1	9.40
Methylene chloride	ND		
Methyl tert-butyl ether	ND	100 j	
trans-1,2-Dichloroethene	ND		
1,1-Dichloroethane	ND	111	
2,2-Dichloropropane	ND	1	
cis-1,2-Dichloroethene	ND	1	
Bromochloromethane	ND .	111	
Chloroform	ND	* * 1	
1,1,1-Trichloroethane	ND	1	
Carbon Tetrachloride	ND	1	
1,1-Dichloropropene	ND	1.	
Benzene	ND	1	
1,2-Dichloroethane	ND	1	
Trichloroethene	ND	1	
1,2-Dichloropropane	ND	1	
Dibromomethane	ND		
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND		
Toluene	ND	1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128268-04 continued...

trans-1,3-Dichloropropene ND 1 1,1,2-Trichloroethane ND 1 Tetrachloroethene ND 1 1,3-Dichloropropane ND 1 Dibromochloromethane ND 1 Lipotromochlane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 1 Ethylbenzene ND 1 Th,1,2-Tetrachloroethane ND 1 1,1,1,2-Tetrachloroethane ND 2 0-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 ND 1 1 Isopropylbenzene ND 1 ND 1 1 1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 1,2,3-Trichloropropane ND 1 1,2,4-Trimethylbenzene ND 1 1			Result	
1,1,2-Trichloroethane ND 1 Tetrachloroethene ND 1 1,3-Dichloropropane ND 1 Dibromochloromethane ND 1 1,2-Dibromoethane ND 1 1,2-Dibromoethane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 1 Ithylbenzene ND 1 In,1,1,2-Tetrachloroethane ND 1 In,2-Xylene ND 1 In,2-Y-Tetrachloroethane ND 1 In,2-X-Trichloroethane ND 1 In,2-X-Trimethylbenze	Analyte		(ug/L)	RL
Tetrachloroethene ND 1 1,3-Dichloropropane ND 1 Dibromochloromethane ND 1 1,2-Dibromoethane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 1 Ethylbenzene ND 1 1,1,2-Tetrachloroethane ND 1 m.p-Xylene ND 1 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 Isopropylbenzene ND 1 I-Propylbenzene ND 1 I-Propylbenzene ND 1 I-Propylbenzene ND 1 I-J.2,2-Tetrachloroethane ND 1 I,2,3-Trimethylbenzene ND 1 I-Chlorotoluene ND 1 I-Subrylbenzene ND 1 I-Subrylbenzene <td></td> <td></td> <td></td> <td></td>				
1,3-Dichloropropane ND 1 Dibromochloromethane ND 1 1,2-Dibromoethane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 1 1,1,1,2-Tetrachloroethane ND 1 m,p-Xylene ND 1 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 Isopropylbenzene ND 1 In-Propylbenzene ND 1 In-Sp-Trimethylbenzene ND 1 In-Butylbenzene ND 1 In-Butylbenzene ND 1 In-Butylbenzene ND 1 In-Butylbenzene	The state of the s			
Dibromochloromethane ND 1 1,2-Dibromoethane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 1 1,1,1,2-Tetrachloroethane ND 1 m,p-Xylene ND 1 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 5-CHurly Ibenzene				
1,2-Dibromoethane ND 1 Chlorobenzene ND 1 Ethylbenzene ND 1 1,1,1,2-Tetrachloroethane ND 1 m,p-Xylene ND 2 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 n-Chlorotoluene ND 1 n-Chlorotoluene ND 1 n-Butylbenzene ND				. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Chlorobenzene ND 1 Ethylbenzene ND 1 1,1,1,2-Tetrachloroethane ND 1 m,p-Xylene ND 2 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Isopropylbenzene ND 1 n-Propylbenzene ND 1 n-Styrinchlorobenzene ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND </td <td></td> <td></td> <td></td> <td>TOTAL OF ENDING</td>				TOTAL OF ENDING
Ethylbenzene ND 1 1,1,1,2-Tetrachloroethane ND 1 m,p-Xylene ND 2 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 1,2,3-Trindloropropane ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 1,2,4-Trimethylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 1,3-Dichlorobenzene ND 1 1,4-Dichlorobenzene ND 1				1
1,1,1,2-Tetrachloroethane ND 1 m,p-Xylene ND 2 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 1,2,4-Trimethylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 1,3-Dichlorobenzene ND 1 1,3-Dichlorobenzene ND 1 1,4-Dichlorobenzene ND 1 1,4-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,2-Trichlorobenz				1
m,p-Xylene ND 2 o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo				ovade2 V . v 1.
o-Xylene ND 1 Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 1-2,4-Trimethylbenzene ND 1 1-2,4-Trimethylbenzene ND 1 1-3-Dichlorobenzene ND 1 1-3-Dichlorobenzene ND 1 1-4-Dichlorobenzene ND 1 1-2-Dichlorobenzene ND 1 1-2-Dibromo-3-chloropropane ND 1 1-2,4-Trichlorobenzene ND 1				
Styrene ND 1 Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 1,2,4-Trimethylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 1,3-Dichlorobenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND <td< td=""><td>m,p-Xylene</td><td>ND</td><td></td><td>2</td></td<>	m,p-Xylene	ND		2
Bromoform ND 1 Isopropylbenzene ND 1 Bromobenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 2-Chlorotoluene ND 1 4-Chlorotoluene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND	o-Xylene	ND		1
Isopropylbenzene	Styrene	ND		1
Bromobenzene ND 1 n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 1,3,5-Trimethylbenzene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 t-Butylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene <td< td=""><td>Bromoform</td><td>ND</td><td></td><td>1.</td></td<>	Bromoform	ND		1.
n-Propylbenzene ND 1 1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 1,3,5-Trimethylbenzene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 1-Rexachlorobutadiene ND 1	Isopropylbenzene	ND		1
1,1,2,2-Tetrachloroethane ND 1 1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 1,3,5-Trimethylbenzene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	Bromobenzene	ND		1
1,2,3-Trichloropropane ND 1 2-Chlorotoluene ND 1 1,3,5-Trimethylbenzene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	n-Propylbenzene	ND		.1
2-Chlorotoluene ND 1 1,3,5-Trimethylbenzene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	1,1,2,2-Tetrachloroethane	ND		1
1,3,5-Trimethylbenzene ND 1 4-Chlorotoluene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	1,2,3-Trichloropropane	ND		1
4-Chlorotoluene ND 1 t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	2-Chlorotoluene	ND.		1
t-Butylbenzene ND 1 1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	1,3,5-Trimethylbenzene	ND		1
1,2,4-Trimethylbenzene ND 1 sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	4-Chlorotoluene	ND		1
sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	t-Butylbenzene	ND		1
sec-Butylbenzene ND 1 1,3-Dichlorobenzene ND 1 4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	1,2,4-Trimethylbenzene	ND		1
4-Isopropyltoluene ND 1 1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1		ND		1
1,4-Dichlorobenzene ND 1 n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	1,3-Dichlorobenzene	ND		1.1
n-Butylbenzene ND 1 1,2-Dichlorobenzene ND 1 1,2-Dibromo-3-chloropropane ND 1 1,2,4-Trichlorobenzene ND 1 1,2,3-Trichlorobenzene ND 1 Hexachlorobutadiene ND 1	4-Isopropyltoluene	ND		1
1,2-DichlorobenzeneND11,2-Dibromo-3-chloropropaneND11,2,4-TrichlorobenzeneND11,2,3-TrichlorobenzeneND1HexachlorobutadieneND1	1,4-Dichlorobenzene	ND		1 1
1,2-Dibromo-3-chloropropaneND11,2,4-TrichlorobenzeneND11,2,3-TrichlorobenzeneND1HexachlorobutadieneND1	n-Butylbenzene	ND		1
1,2,4-TrichlorobenzeneND11,2,3-TrichlorobenzeneND1HexachlorobutadieneND1	1,2-Dichlorobenzene	ND		1
1,2,4-TrichlorobenzeneND11,2,3-TrichlorobenzeneND1HexachlorobutadieneND1				
1,2,3-TrichlorobenzeneND1HexachlorobutadieneND1				1
Hexachlorobutadiene ND 1		ND		
				1001
Napritrialerie ND	Naphthalene	ND		1

Maul Foster & Alongi, Inc. Client Name: GP1-S-1.5 Client ID: Lab ID: 128268-01 Date Received: 6/8/2005 6/9/2005 Date Prepared: 6/9/2005 Date Analyzed: 91.77 % Solids Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

SARTH A STORY AND STORY			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	78.9		50	150
o-terphenyl	90.8		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<20	20	
#2 Diesel (>nC12-nC24)	<49.9	49.9	
Motor Oil (>nC24-nC32)	<99.8	99.8	

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP1-S-6.0

 Lab ID:
 128268-02

 Date Received:
 6/8/2005

 Date Prepared:
 6/9/2005

 Date Analyzed:
 6/10/2005

 % Solids
 91.96

 Dilution Factor
 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

		Recovery Limits		
% Recovery	Flags	Low	High	
80.4		50	150	
90.5		50	150	
	80.4	80.4	% Recovery Flags Low 80.4 50	% Recovery Flags Low High 80,4 50 150

	Res	ult		
Analyte	(mg/	(kg)	RL	Flags
Gasoline (Toluene-nC12)	<20.5		20.5	
#2 Diesel (>nC12-nC24)	<51.2		51.2	
Motor Oil (>nC24-nC32)	<102		102	

Maul Foster & Alongi, Inc. Client Name: GP2-S-1.0 Client ID: Lab ID: 128268-03 6/8/2005 Date Received: 6/9/2005 Date Prepared: 6/10/2005 Date Analyzed: % Solids 89.78 Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recov	ery Limits	i
Surrogate	% Recovery	Flags	Low	High	
1-bromo-4-fluorobenzene	75.3		50	150	
o-terphenyl	83,4		50	150	

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<21.3	21.3	
#2 Diesel (>nC12-nC24)	<53.3	53.3	
Motor Oil (>nC24-nC32)	<107	107	

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 MW3-0605

 Lab ID:
 128268-04

 Date Received:
 6/8/05

 Date Prepared:
 6/13/05

 Date Analyzed:
 6/14/05

 Dilution Factor
 1

Dissolved Metals by ICP - USEPA Method 6010

 Result

 Analyte
 (mg/L)
 RL
 Flags

 Chromium
 ND
 0.02

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor
% Solids

Maul Foster & Alongi, Inc.

GP1-S-1.5
128268-01
6/8/05
6/10/05
6/14/05
1
91.77

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

Analyte Chromium Result (mg/kg) 205

RL. 2.01 Flags

Client Name Maul Foster & Alongi, Inc. Client ID: GP1-S-6.0 128268-02 Lab ID: 6/8/05 Date Received: Date Prepared: 6/10/05 Date Analyzed: 6/14/05 1 Dilution Factor 91.96 % Solids

Metals by ICP - USEPA Method 6010

	Result		그 그 병사 보고 경기를 가는 그 것
Analyte	(mg/kg)	RL	Flags
Chromium	147	2	

Maul Foster & Alongi, Inc. Client Name GP2-S-1.0 Client ID: Lab ID: 128268-03 6/8/05 Date Received: 6/10/05 Date Prepared: 6/14/05 Date Analyzed: 1 Dilution Factor 89.78 % Solids

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

 Result
 Result

 Analyte
 (mg/kg)
 RL
 Flags

 Chromium
 2680
 2.17

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor
% Solids

Maul Foster & Alongi, Inc.
GP1-S-1.5
128268-01
6/8/05
6/9/05
6/10/05
1
91.77

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium 152 0.107

Client Name Maul Foster & Alongi, Inc. Client ID: GP1-S-6.0 Lab ID: 128268-02 Date Received: 6/8/05 Date Prepared: 6/9/05 Date Analyzed: 6/10/05 Dilution Factor 1 % Solids 91.96

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	31.8	0.106	Completeles 4

Maul Foster & Alongi, Inc. Client Name GP2-S-1.0 Client ID: Lab ID: 128268-03 6/8/05 Date Received: 6/9/05 Date Prepared: 6/10/05 Date Analyzed: 1 Dilution Factor 89.78 % Solids

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	523	0.111	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor

Maul Foster & Alongi, Inc.

MW3-0605

128268-04

6/8/05

6/10/05

6/10/05

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Analyte Hexavalent Chromium Result (mg/L) ND

RL 0.01 Flags

Lab ID:

Method Blank - VOA1358

Date Received:

Date Prepared: Date Analyzed: % Solids 6/17/2005 6/17/2005

Dilution Factor

Volatile Organics by USEPA Method 5035\8260B

			Recove	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	92.9		80	120	
Fluorobenzene	101		80	120	
Toluene-D8	103		80	120	
Ethylbenzene-d10	102		80	120	
Bromofluorobenzene	99		80	120	
Trifluorotoluene	94.6		80	120	

	Result	. 4 1 <u>. 1</u> 1. 1 1. 1 1. 1	
Analyte	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND	- 1	
Chloromethane	ND		
Vinyl chloride	ND		
Bromomethane	ND		
Chloroethane	ND		
Trichlorofluoromethane	ND		
1,1-Dichloroethene	ND	1.	
Methylene chloride	ND	1	
Methyl tert-butyl ether	ND	1	
trans-1,2-Dichloroethene	ND		
1,1-Dichloroethane	ND	1	
2,2-Dichloropropane	ND	1 1	
cis-1,2-Dichloroethene	ND	1	
Bromochloromethane	ND		
Chloroform	ND	1	
1,1,1-Trichloroethane	ND	, 1	
Carbon Tetrachloride	ND	1	
1,1-Dichloropropene	ND	1	
Benzene	ND	1	
1,2-Dichloroethane	ND	1	
Trichloroethene	ND	1	
1,2-Dichloropropane	ND	1	
Dibromomethane	ND	1	
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Toluene	ND	1	

Volatile Organics by USEPA Method 5035\8260B data for VOA1358 continued...

		Result		haviored alors
Analyte	Ele Fald	(ug/L)	RL	Flags
trans-1,3-Dichloropropene	ND		1	
1,1,2-Trichloroethane	ND		1	하는 당선된 경우하는 것으로 되었다.
Tetrachloroethene	ND		1	
1,3-Dichloropropane	ND		. 1	교생 그들학을 받아 들었다고 하는 것은
Dibromochloromethane	ND		1	
1,2-Dibromoethane	ND		1	열심 경기의 일을 보고하지 않아요.
Chlorobenzene	ND		1	
Ethylbenzene	ND		1	
1,1,1,2-Tetrachloroethane	ND		1	·
m,p-Xylene	ND		2	
o-Xylene	ND		1	
Styrene	ND		1	
Bromoform	ND		1	and spines to the first of
Isopropylbenzene	ND			
Bromobenzene	ND			
n-Propylbenzene	ND		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1,1,2,2-Tetrachloroethane	ND		1	
1,2,3-Trichloropropane	ND		1	
2-Chlorotoluene	ND		3 1	
1,3,5-Trimethylbenzene	ND		1	
4-Chlorotoluene	ND		1	
t-Butylbenzene	ND		1	Distribution of the contraction of the
1,2,4-Trimethylbenzene	ND		100	
sec-Butylbenzene	ND		Get 1	
1,3-Dichlorobenzene	ND		1	
4-Isopropyltoluene	ND		1	
1,4-Dichlorobenzene	ND		1	in Linkspeller (IIII)
n-Butylbenzene	ND		1	ili daylada il
1,2-Dichlorobenzene	ND		1	. A carry and end it be bedien
1,2-Dibromo-3-chloropropane	ND		1	
1,2,4-Trichlorobenzene	ND		1	
1,2,3-Trichlorobenzene	ND			
Hexachlorobutadiene	ND		1	Single of the State of the Stat
Naphthalene	ND		1	

Lab ID:

Method Blank - VOA1371

Date Received: Date Prepared:

6/21/05 6/21/05

1

Flags

Date Analyzed: % Solids Dilution Factor

. (1)

Volatile Organics by USEPA Method 5030/8260B

시민도 그리다 나타는 이 이 바람이 얼마나 하다.			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	87.7		75	125
Fluorobenzene	86.5		75	125
Toluene-D8	89.8		75	125
Ethylbenzene-d10	88.4		75	125
Bromofluorobenzene	89.4		75	125
Trifluorotoluene	124		75	125

Sample results are on an as received basis.

	Re	sult		
Analyte	(uç	g/kg)	RL	
Dichlorodifluoromethane	ND		4	
Chloromethane	ND		1	
Vinyl chloride	ND		1	
Bromomethane	ND		1	
Chloroethane	ND		1	
Trichlorofluoromethane	ND		1	
1,1-Dichloroethene	ND		1	
Methylene chloride		9.75	i data 1	
trans-1,2-Dichloroethene	ND		1	
1,1-Dichloroethane	ND		1-	
2,2-Dichloropropane	ND		1	
cis-1,2-Dichloroethene	ND		1.	
Bromochloromethane	ND		1	
Chloroform	ND		SE 1	
1,1,1-Trichloroethane	ND		1	
Carbon Tetrachloride	ND .		1.	
1,1-Dichloropropene	ND		1	
Benzene	ND		1	
1,2-Dichloroethane	ND		1	
Trichloroethene	ND		1	
1,2-Dichloropropane	ND		1	
Dibromomethane	ND		1	
Bromodichloromethane	ND		1	
cis-1,3-Dichloropropene	ND		1	
Toluene	ND		1	
trans-1,3-Dichloropropene	ND		1	

Volatile Organics by USEPA Method 5030/8260B data for VOA1371 continued...

		Result		DEVIDORE ESS
Analyte		(ug/kg)	RL	Flags
1,1,2-Trichloroethane	ND		1	ChepAlack Mark
Tetrachloroethene	ND		-1	alalind dis
1,3-Dichloropropane	ND			The Telephone of the Parish of
Dibromochloromethane	ND			
1,2-Dibromoethane	ND		ini eletah digutal d	
Chlorobenzene	ND		1	
Ethylbenzene	ND		1	
1,1,1,2-Tetrachloroethane	ND		1	
m,p-Xylene	ND		2	Dilerge plannar agranta
o-Xylene	, ND	· · · · · · · · · · · · · · · · · · ·	1	- and special contracts
Styrene	ND		1	
Bromoform	ND		1	
Isopropylbenzene	ND		1	
Bromobenzene	ND	10	1	· 1000年 - 10000年 - 1000
n-Propylbenzene	ND		- 1	
1,1,2,2-Tetrachloroethane	ND		1	
1,2,3-Trichloropropane	ND		1	
2-Chlorotoluene	ND		1	
1,3,5-Trimethylbenzene	ND		1	
4-Chlorotoluene	ND		1	
t-Butylbenzene	ND		0.1	
1,2,4-Trimethylbenzene	ND		941 1	
sec-Butylbenzene	ND		1	
1,3-Dichlorobenzene	ND		1	The Balletin Consumer of the C
4-Isopropyltoluene	ND		1	
1,4-Dichlorobenzene	ND		1	
n-Butylbenzene	ND		1	
1,2-Dichlorobenzene	ND		1	
1,2-Dibromo-3-chloropropane	ND		1	
1,3,5-Trichlorobenzene	ND		1	
1,2,4-Trichlorobenzene	ND		1	
1,2,3-Trichlorobenzene	ND		1	promise to the contract of the
Hexachlorobutadiene	ND		1	
Naphthalene	ND		1	

Lab ID:

Method Blank - VOA1374

Date Received:

Date Prepared: Date Analyzed: 6/22/05 6/22/05

% Solids Dilution Factor 1

Volatile Organics by USEPA Method 5030/8260B

its
h
5
5
,
1
i A
78.857
0000

Sample results are on an as received basis.

	Result	
Analyte	(ug/kg)	RL
Dichlorodifluoromethane	ND	1
Chloromethane	ND	1.
Vinyl chloride	ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bromomethane	ND	1
Chloroethane	ND	1
Trichlorofluoromethane	ND	9.1
1,1-Dichloroethene	ND	1
Methylene chloride	ND	1
trans-1,2-Dichloroethene	ND	1
1,1-Dichloroethane	ND	
2,2-Dichloropropane	ND	1
cis-1,2-Dichloroethene	ND	1
Bromochloromethane	ND	
Chloroform	ND	, in him in in 1980 (1)
1,1,1-Trichloroethane	ND	1
Carbon Tetrachloride	ND	1
1,1-Dichloropropene	ND	1
Benzene	ND	1
1,2-Dichloroethane	ND	1
Trichloroethene	ND	1
1,2-Dichloropropane	ND	1
Dibromomethane	ND	1
Bromodichloromethane	ND	1
cis-1,3-Dichloropropene	ND	1
Toluene	ND	1
trans-1,3-Dichloropropene	ND	1 1

Volatile Organics by USEPA Method 5030/8260B data for VOA1374 continued...

Result		
(ug/kg)	RL	Flags
ND	1	
ND		
ND		
ND		
ND	1	
ND		
ND		
ND	1	
ND	2	
ND		
ND		
ND	1	
ND	1	
ND	10	
ND	1	
DV	1	
ND	1	
ND	1	
ND	1	
VD.	1	
D	1	
DV	1	
ND		
ND		
ND .	1.0	
1D		
1D		
1D	1	
1D	1	
1D	1	
ID		
		(ug/kg) RL ND 1 ND 1

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA1358 6/17/2005 6/17/2005 VOA1358

Volatile Organics by USEPA Method 5035\8260B

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
1,1-Dichloroethene	0	5	4.65	93.1	4.35	86.9	-6.9	
Benzene	0	5	4.44	88.9	4.53	90.5	1.8	
Trichloroethene	0	5	4.52	90.4	5.03	101	11	
Toluene	0	5	4.64	92.8	4.73	94.5	1.8	
Chlorobenzene	0	5	4.82	96.4	5.03	101	4.7	

Blank Spike/Blank Spike Duplicate Report

 Lab ID:
 VOA1371

 Date Prepared:
 6/21/05

 Date Analyzed:
 6/21/05

 QC Batch ID:
 VOA1371

Volatile Organics by USEPA Method 5030/8260B

		Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name		(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD	Flag
1,1-Dichloroethene		0	4	4.22	105	4.22	105	. 0	indulation in
Benzene		, 0	4	3.74	93,6	3.98	99.5	6.1	
Trichloroethene	e entre	0	4	4.2	105	4.29	107	1.9	
Toluene		0	4	4.06	101	4.29	107	5.8	
Chlorobenzene		0	4	4.12	103	4.9	122	17	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA1374 6/22/05 6/22/05 VOA1374

Volatile Organics by USEPA Method 5030/8260B

		Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD	
Compound Name		(ug/kg)	(ug/kg)	(ug/kg)	% Rec.	(ug/kg)	% Rec.	RPD Flag
1,1-Dichloroethene		0	4	4.21	105	4.14	104	-0.96
Benzene		0	4	4.05	101	4.03	101	0
Trichloroethene	 104	0	4	4.16	104	4.23	106	1.9
Toluene	Yel	0	4	4.14	104	4.24	106	1.9
Chlorobenzene		0	4	4.32	108	4.47	112	3.6

Lab ID:

Method Blank - DS1485

Date Received:

Date Prepared:
Date Analyzed:
% Solids

6/9/2005 6/9/2005

Dilution Factor

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
1-bromo-4-fluorobenzene	78.3		50	150
o-terphenyl	85.5		50	150

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<20	20	
#2 Diesel (>nC12-nC24)	<50	50	
Motor Oil (>nC24-nC32)	<100	100	

Duplicate Report

 Client Sample ID:
 GP2-S-1.0

 Lab ID:
 128268-03

 Date Prepared:
 6/9/2005

 Date Analyzed:
 6/10/2005

 QC Batch ID:
 DS1485

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

	Sample	Duplicate	140	
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Gasoline (Toluene-nC12)	<	<	NC	
#2 Diesel (>nC12-nC24)	. <	<	NC	
Motor Oil (>nC24-nC32)	<	<	NC	

Lab ID: Method Blank - DP1312

Date Received:

Date Prepared: 6/13/05
Date Analyzed: 6/14/05
Dilution Factor 1

Dissolved Metals by ICP - USEPA Method 6010

Result

Analyte (mg/L) RL Flags
Chromium ND 0.02

Matrix Spike Report

 Client Sample ID:
 CW005

 Lab ID:
 128283-01

 Date Prepared:
 6/13/05

 Date Analyzed:
 6/14/05

 QC Batch ID:
 DP1312

Dissolved Metals by ICP - USEPA Method 6010

	Sample	Spike	MS		
	Result	Amount	Result	MS	Floor
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Chromium	0	0.4	0.381	95	

Duplicate Report

 Client Sample ID:
 CW005

 Lab ID:
 128283-01

 Date Prepared:
 6/13/05

 Date Analyzed:
 6/14/05

 QC Batch ID:
 DP1312

Dissolved Metals by ICP - USEPA Method 6010

	Sample	Duplicate		
그래, 그 다 막게 이 하나?	Result	Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Chromium	0	0	NC	

Lab ID:

Method Blank - SP1307

Date Received:

Date Prepared: Date Analyzed: Dilution Factor 6/10/05 6/14/05

1

Metals by ICP - USEPA Method 6010

Sample results are on an as received basis.

Result

Analyte (mg/kg)
Chromium ND

RL

Flags

Matrix Spike Report

Client Sample ID:

Lab ID:

Date Prepared:

Date Analyzed:

QC Batch ID:

MPPR-A1-P 128289-01 6/10/05 6/14/05 SP1307

Metals by ICP - USEPA Method 6010

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name Chromium	(mg/kg) 32.5	(mg/kg) 43.2	(mg/kg) 82.3	% Rec. 116	Flag

Duplicate Report

 Client Sample ID:
 MPPR-A1-P

 Lab ID:
 128289-01

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/14/05

 QC Batch ID:
 SP1307

Metals by ICP - USEPA Method 6010

	Sample	Duplicate		
· Land Albin - Mysrafi	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Chromium	32	30	6.5	

Lab ID: Method Blank - CR214S

Date Received: Date Prepared: 6/9/05

Date Analyzed: 6/10/05

Dilution Factor 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on an as received basis.

	Result				
Analyte	(mg/kg)	- Listandin - C	RL		Flags
Hexavalent Chromium	ND		0.1	After Principal Co.	

Lab ID: Method Blank - CR215W

Date Received: Date Prepared: 6/10/05
Date Analyzed: 6/10/05
Dilution Factor 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result (mg/L) RL Flags
Hexavalent Chromium ND 0.01

Matrix Spike Report

 Client Sample ID:
 GP1-S-1.5

 Lab ID:
 128268-01

 Date Prepared:
 6/9/05

 Date Analyzed:
 6/10/05

 QC Batch ID:
 CR214S

	Sample	Spike	MS		
and the second of the second	Result	Amount	Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Chromium	152	104	275	118	minanal is 13

Matrix Spike Report

 Client Sample ID:
 MW3-0605

 Lab ID:
 128268-04

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/10/05

 QC Batch ID:
 CR215W

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Chromium	0	1	0.233	23	x7

Duplicate Report

 Client Sample ID:
 GP1-S-1.5

 Lab ID:
 128268-01

 Date Prepared:
 6/9/05

 Date Analyzed:
 6/10/05

 QC Batch ID:
 CR214S

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Chromium	150	150	0.0	appirties (

Duplicate Report

 Client Sample ID:
 MW3-0605

 Lab ID:
 128268-04

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/10/05

 QC Batch ID:
 CR215W

		Sample	Duplicate		
		Result	Result	RPD	
Parameter Name	a distribution	(mg/L)	(mg/L)	%	Flag
Chromium		0 004	0	NC	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: CR214S 6/9/05 6/10/05 CR214S

		Blank	Spike	BS		BSD			
		Result	Amount	Result	BS	Result	BSD		
Compound Name		(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Chromium	Q 500 .	0	100	106	106	104	104	-1.9	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: CR215W 6/10/05 6/10/05 CR215W

	Blank	Spike	BS		BSD		
		Amount	Result	BS	Result	BSD	
Compound Name		(mg/L)		% Rec.	(mg/L)	% Rec.	RPD Flag
Chromium	0	1	0.962		0.949		-1.4

STL Seattle 5755 8th Street East Tacoma, WA 98424

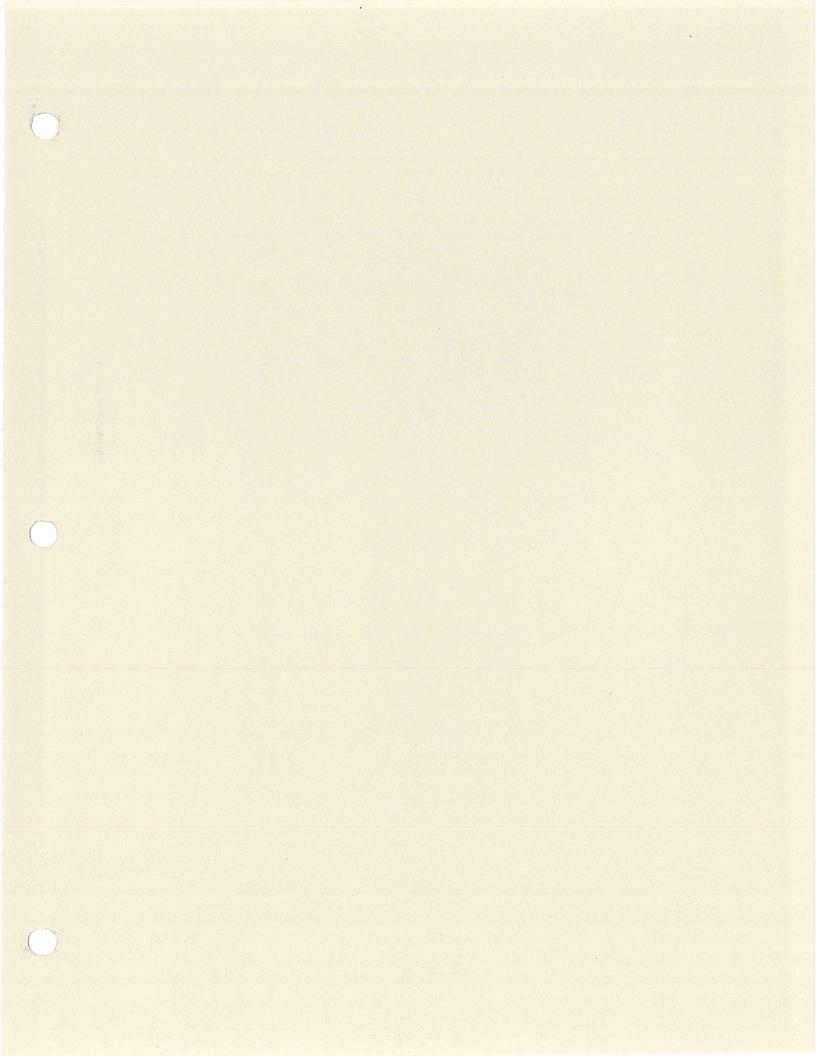
Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

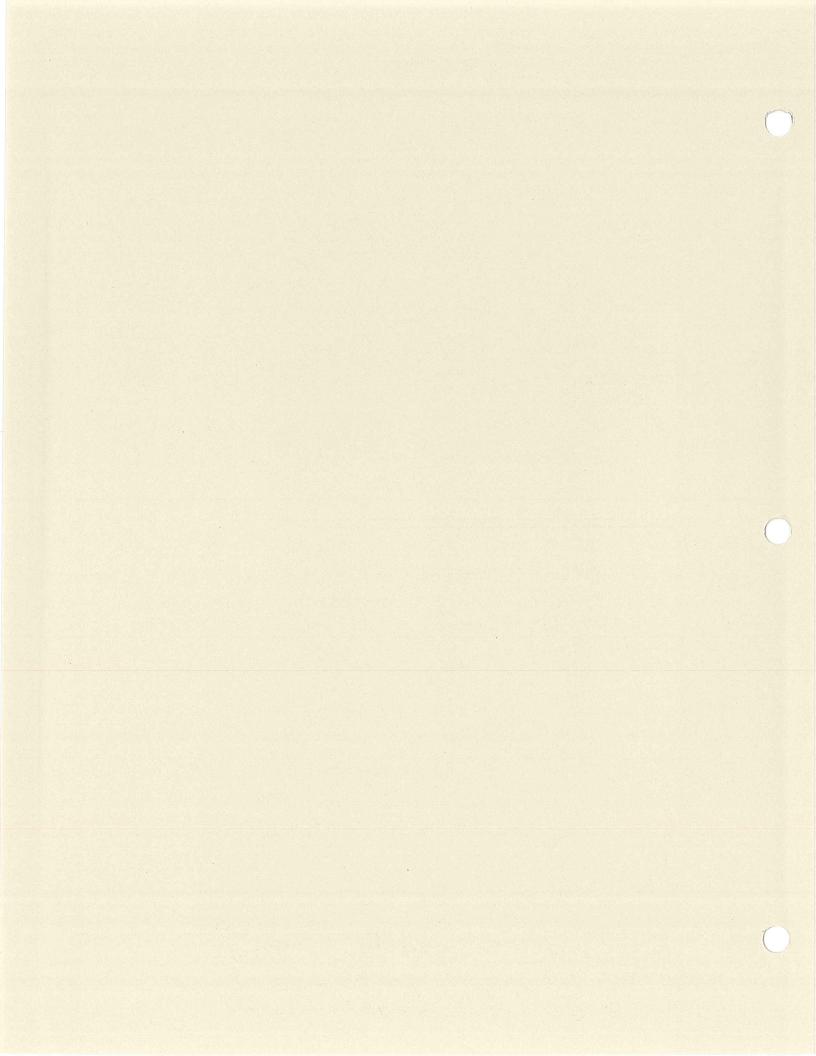
DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 40%.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- C3: Second analysis confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 30%.
- C4: Second analysis confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 30%. The original analysis was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.

The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- RL: Reporting Limit
- N: See analytical narrative
- ND: Not Detected
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
 - Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.


LI FOSTER + ALON	Fax 253-922-50 www.stl-inc.com	Fax 253-922-5047 www.stl-inc.com	(787	68	TR	TRENT	0	
Client NE HAZEL DEIL AVE	Project	Project Manager	2			- 1		Chain of Custody Number	Del Japer
3000	Telepho	Telephone Number (Area Code)/Fax Number	ode)/Fax Number			Lab Number	>		10001
State Zip Code	59%		Contact	170	5	sis (Attach list if	019B	IDISS, CROMIUM	OM (UM)
Project Name and Location (State) PRECISION ENGINEERING / Seather	9	₹.	1. Ce ruen	KOH	n 7:9 035) NWT!	10) 270)	1	TTE.	FIELD FICTER
		Matrix	Containers & Preservatives		hron	5 (8	Chr	Conditions	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Date	Time	Air Aqueous Sed. Soil	Unpres. H2SO4 HNO3	TNAC/ NAOH MAHSON HOLO	HEXI VOC HICI	PAH	PCB Diss. VOC		
GP1-5-1.5 61716	05 0930	X		X	XXX			FOR SOTI NAMES	TAN TAN
	1015	×	×	X	XXX			IF GROS ARE	ARE DETECT
01-5-7-10	1100	×	×	XXX	XXX		30	AWALYZE FO	0 1
C000 - CMIN	1610	×	×		X		X	will be a want using	+ USING
(RIP BLANK					55/1/4	1922		NWTPH-GX.	X. IF DIESEL
							A.C.	OR RESIDY	100
								petraleum h	petroleum hydro orbanso
ot).								peanaly.	peanalyred asmy box
	10-31 10-31 1741 (Your C					LAHE (8270	HAL (8280224) + LLH
					x - 93 L			White quantitied by	It thed by
	149	125 140 150 150 150				rakja Ti		or to phace	
□ Non-Hazard	mable	Skin Irritant	□ Poison B □ Un	□ Unknown □ Return To Client		Disposal By Lab Archive For	a too the	(A fee may be assessed if samples	essed if samples Cl
Required (business days) 3 48 Hours 5 Days 10 Days 1	15 Days Other		QC Requirements (Specify)	ents (Specify)				and the second of the second o	man I monun
Scot Marker	Date 15/8	7 Time	1. Rescired By	7	77-1	25	V	Pre la	Time 15 (C)
2. Kelinguished by	Date	Time 128	C 2 received B	The	one		1	1 1 C	Time
3. Reimajushed By	Date	Time	3. Received By				0	2/3	Time
Comments			Á						


Chain of

SIL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047

AD SIN

SEVERN

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: July 1, 2005

TO: Alan Hughes

Maul Foster & Alongi, Inc.

7223 NE Hazel Dell Ave., Suite B

Vancouver, WA 98665

PROJECT: Precision Engineering, Seattle WA

REPORT NUMBER: 128318

TOTAL NUMBER OF PAGES: _____

Enclosed are the test results for nine samples received at STL Seattle on June 10, 2005.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

IMMI

Sincerety.

Tom Coyner

Project Manager

Sample Identification:

Lab. No.	Client ID	Date/Time Sampled	<u>Matrix</u>
128318-1	GP2-S-10.0	06-09-05 08:30	solid
128318-2	GP1-S-10.0	06-09-05 15:00	solid
128318-3	GP3-S-2.0	06-09-05 15:00	solid
128318-4	GP3-S-6.0	06-09-05 15:45	solid
128318-5	GP3-S-14	06-09-05 16:15	solid
128318-6	GP2-W-17-RECON	06-09-05 17:00	liquid
128318-7	MW4-0605	06-08-05 11:25	liquid
128318-8	MW4DUP-0605	06-08-05 11:25	liquid
128318-9	Trip Blank		liquid

Client Name: Maul Foster & Alongi, Inc. Client ID: GP2-S-10.0 Lab ID: 128318-01 Date Received: 6/10/05 Date Prepared: 6/23/05 Date Analyzed: 6/23/05 % Solids 91.45 Dilution Factor 0.1

Volatile Organics by USEPA Method 5035\8260B

	a Magazia (A. A.), autorea (A. A.)		Reco	very Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	88.3		75	125
Fluorobenzene	99.9		75	125
Toluene-D8	109		75	125
Ethylbenzene-d10	107	-019	75	125
Bromofluorobenzene	106		75	125
Trifluorotoluene	104		75	125

Sample results are on a dry weight basis.

Result	Result	
(ug/kg) RL Flags	(ug/kg)	Analyte
44	ND	Dichlorodifluoromethane
44	ND	Chloromethane
8.81	ND	Vinyl chloride
44	ND	Bromomethane
88.1	ND	Chloroethane
44	ND	Trichlorofluoromethane
8.81	ND	1,1-Dichloroethene
8.81	ND	Methylene chloride
44 Santagova in the san	ND	trans-1,2-Dichloroethene
44	ND	1,1-Dichloroethane
44	ND	2,2-Dichloropropane
44	ND	cis-1,2-Dichloroethene
44	ND	Bromochloromethane
44	ND	Chloroform
8.81	ND	1,1,1-Trichloroethane
8.81	ND	Carbon Tetrachloride
44	ND	1,1-Dichloropropene
8.81	ND	Benzene
8,81		
8.81		
8.81		
44		
44		
44	ND	
44	ND	
44	ND	trans-1,3-Dichloropropene
8.81 8.81 8.81 44 44 44		1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane cis-1,3-Dichloropropene Toluene trans-1,3-Dichloropropene

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-01 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	44
Tetrachloroethene	ND	8.81
1,3-Dichloropropane	ND	8.81
Dibromochloromethane	ND	44
1,2-Dibromoethane	ND	1.61
Chlorobenzene	ND	44
Ethylbenzene	ND	44
1,1,1,2-Tetrachloroethane	ND	44
m,p-Xylene	ND	88.1
o-Xylene	ND	44
Styrene	ND	44
Bromoform	ND	44
Isopropylbenzene	ND	44
Bromobenzene	ND	44
n-Propylbenzene	ND	44
1,1,2,2-Tetrachloroethane	ND	8.81
1,2,3-Trichloropropane	ND	8.81
2-Chlorotoluene	ND	44
1,3,5-Trimethylbenzene	ND	44
4-Chlorotoluene	ND	44
t-Butylbenzene	ND	44
1,2,4-Trimethylbenzene	ND	44
sec-Butylbenzene	ND	44
1,3-Dichlorobenzene	ND	44
4-Isopropyltoluene	ND	44
1,4-Dichlorobenzene	ND	44
n-Butylbenzene	ND	44
1,2-Dichlorobenzene	ND	44
1,2-Dibromo-3-chloropropane	ND	44
1,2,4-Trichlorobenzene	ND —	44
1,2,3-Trichlorobenzene	ND	44
Hexachlorobutadiene	ND	44
Naphthalene	ND	44

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP1-S-10.0
Lab ID:	128318-02
Date Received:	6/10/05
Date Prepared:	6/23/05
Date Analyzed:	6/23/05
% Solids	93.64
Dilution Factor	0.1

Volatile Organics by USEPA Method 5035\8260B

그게 그렇게 그 아니는 그 그 레이얼하다	하나 사이를 하다 입니다 되었다. 그리는		Reco	very Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.2		75	125
Fluorobenzene	102		75	125
Toluene-D8	107		75	125
Ethylbenzene-d10	107		75	125
Bromofluorobenzene	104		75	125
Trifluorotoluene	115		75	125

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	38.2	
Chloromethane	ND	38.2	
Vinyl chloride	ND	7.65	
Bromomethane	ND	38.2	and a state of the
Chloroethane .	ND	76.5	
Trichlorofluoromethane	ND	38.2	
1,1-Dichloroethene	ND	7.65	
Methylene chloride	ND	7.65	
trans-1,2-Dichloroethene	ND	38.2	
1,1-Dichloroethane	ND	38.2	
2,2-Dichloropropane	ND	38.2	
cis-1,2-Dichloroethene	ND	38.2	
Bromochloromethane	ND	38.2	
Chloroform	ND	38.2	
1,1,1-Trichloroethane	ND	7.65	
Carbon Tetrachloride	ND	7.65	
1,1-Dichloropropene	ND	38.2	
Benzene	ND	7.65	
1,2-Dichloroethane	ND	7.65	
Trichloroethene	ND	7.65	
1,2-Dichloropropane	ND	7.65	
Dibromomethane	ND	38.2	
Bromodichloromethane	ND	38.2	
cis-1,3-Dichloropropene	ND	38.2	
Toluene	ND	38.2	
trans-1,3-Dichloropropene	ND	38.2	
<i>t</i>			

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-02 continued...

	Result
Analyte	(ug/kg) RL
1,1,2-Trichloroethane ND	38.2
Tetrachloroethene ND	7.65
1,3-Dichloropropane ND	7.65
Dibromochloromethane	38.2
1,2-Dibromoethane ND	1.4
Chlorobenzene ND	38.2
Ethylbenzene ND	38.2
1,1,1,2-Tetrachioroethane ND	38.2
m,p-Xylene ND	76.5
o-Xylene ND	38.2
Styrene ND	38.2
Bromoform ND	38.2
Isopropylbenzene ND	38.2
Bromobenzene ND	38.2
n-Propylbenzene ND	38.2
1,1,2,2-Tetrachloroethane ND	7.65
1,2,3-Trichloropropane ND	7.65
2-Chlorotoluene ND	38.2
1,3,5-Trimethylbenzene ND	38.2
4-Chlorotoluene ND	38.2
t-Butylbenzene ND	38.2
1,2,4-Trimethylbenzene ND	38.2
sec-Butylbenzene ND	38.2
1,3-Dichlorobenzene ND	38.2
4-Isopropyltoluene ND	38.2
1,4-Dichlorobenzene ND	38.2
n-Butylbenzene ND	38.2
1,2-Dichlorobenzene ND	38.2
1,2-Dibromo-3-chloropropane ND	38.2
1,2,4-Trichlorobenzene ND	38.2
1,2,3-Trichlorobenzene ND	38.2
Hexachlorobutadiene ND	38.2
Naphthalene	38.2

Client Name: Maul Foster & Alongi, Inc. Client ID: GP3-S-2.0 Lab ID: 128318-03 Date Received: 6/10/05 Date Prepared: 6/23/05 Date Analyzed: 6/23/05 % Solids 92.18 **Dilution Factor** 0.1

Volatile Organics by USEPA Method 5035\8260B

			Recove	ory Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	86.4		75	125
Fluorobenzene	99		75	125
Toluene-D8	109		75	125
Ethylbenzene-d10	107		75	125
Bromofluorobenzene	103		75	125
Trifluorotoluene	108		75	125

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	79.5	
Chloromethane	ND	79.5	
Vinyl chloride	ND	15.9	
Bromomethane	ND	79.5	
Chloroethane	ND	159	
Trichlorofluoromethane	ND	79.5	ili a di Jension'i
1,1-Dichloroethene	ND	15.9	
Methylene chloride	ND	15.9	
trans-1,2-Dichloroethene	ND	79.5	
1,1-Dichloroethane	- ND	79.5	
2,2-Dichloropropane	ND	79.5	
cis-1,2-Dichloroethene	ND	79.5	in a particular of
Bromochloromethane	ND	79.5	
Chloroform	ND	79.5	
1,1,1-Trichloroethane	ND	15.9	
Carbon Tetrachloride	ND	15.9	
1,1-Dichloropropene	ND	79.5	
Benzene	ND	15.9	
1,2-Dichloroethane	ND	15.9	
Trichloroethene	ND	15.9	
1,2-Dichloropropane	ND	15.9	
Dibromomethane	ND	79.5	
Bromodichloromethane	ND	79.5	
cis-1,3-Dichloropropene	ND	79.5	
Toluene	ND	79.5	
trans-1,3-Dichloropropene	ND	79.5	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-03 continued...

		Result	
Analyte		(ug/kg)	RL
1,1,2-Trichloroethane	ND		79.5
Tetrachloroethene	ND	yan a sahiri ya ka	15.9
1,3-Dichloropropane	ND		15.9
Dibromochloromethane	ND		79.5
1,2-Dibromoethane	ND		2.91
Chlorobenzene	ND		79.5
Ethylbenzene	ND		79.5
1,1,1,2-Tetrachloroethane	ND		79.5
m,p-Xylene	ND		159
o-Xylene	ND.		79.5
Styrene	ND		79.5
Bromoform	ND		79.5
Isopropylbenzene	ND		79.5
Bromobenzene	ND		79.5
n-Propylbenzene	ND		79.5
1,1,2,2-Tetrachloroethane	ND		15.9
1,2,3-Trichloropropane	ND		15.9
2-Chlorotoluene	ND		79.5
1,3,5-Trimethylbenzene	ND		79.5
4-Chlorotoluene	ND		79.5
t-Butylbenzene	ND		79.5
1,2,4-Trimethylbenzene	ND		79.5
sec-Butylbenzene	ND		79.5
1,3-Dichlorobenzene	ND		79.5
4-Isopropyltoluene	ND		79.5
1,4-Dichlorobenzene	ND		79.5
n-Butylbenzene	ND		79.5
1,2-Dichlorobenzene	ND		79.5
1,2-Dibromo-3-chloropropane	ND		79.5
1,2,4-Trichlorobenzene	ND		79.5
1,2,3-Trichlorobenzene	ND .		79.5
Hexachlorobutadiene	ND		79.5
Naphthalene	ND		79.5

Client Name: Maul Foster & Alongi, Inc. Client ID: GP3-S-6.0 Lab ID: 128318-04 Date Received: 6/10/05 Date Prepared: 6/23/05 Date Analyzed: 6/23/05 % Solids 91.2 Dilution Factor 0.1

Volatile Organics by USEPA Method 5035\8260B

		The state of	Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	88.1	300	75	125
Fluorobenzene	101	dia -	75	125
Toluene-D8	108		75	125
Ethylbenzene-d10	105		75	125
Bromofluorobenzene	103		75	125
Trifluorotoluene	108		75	125

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	44.8	
Chloromethane	ND	44.8	
Vinyl chloride	ND	8.96	
Bromomethane	ND	44.8	
Chloroethane	ND	89.6	
Trichlorofluoromethane	ND	44.8	
1,1-Dichloroethene	ND	8.96	
Methylene chloride	ND	8.96	
trans-1,2-Dichloroethene	ND	44.8	in a series and a series and
1,1-Dichloroethane	ND	44.8	
2,2-Dichloropropane	ND.	44.8	40.673
cis-1,2-Dichloroethene	ND	44.8	
Bromochloromethane	ND	44.8	
Chloroform	ND	44.8	
1,1,1-Trichloroethane	ND	8.96	
Carbon Tetrachloride	ND	8.96	
1,1-Dichloropropene	ND	44.8	
Benzene	ND	8.96	
1,2-Dichloroethane	ND	8.96	
Trichloroethene	ND	8.96	
1,2-Dichloropropane	ND	8.96	
Dibromomethane	ND	44.8	*
Bromodichloromethane	ND	44.8	
cis-1,3-Dichloropropene	ND	44.8	
Toluene	ND	44.8	
trans-1,3-Dichloropropene	ND	44.8	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-04 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	44.8
Tetrachloroethene	ND	8,96
1,3-Dichloropropane	ND	8.96
Dibromochloromethane	ND	44.8
1,2-Dibromoethane	ND	1.64
Chlorobenzene	ND	44.8
Ethylbenzene	ND	44.8
1,1,1,2-Tetrachloroethane	ND	44.8
m,p-Xylene	ND	89.6
o-Xylene	ND	44.8
Styrene	ND	44.8
Bromoform	ND	44.8
Isopropylbenzene	ND	44.8
Bromobenzene	ND	44.8
n-Propylbenzene	ND	44.8
1,1,2,2-Tetrachloroethane	ND	8.96
1,2,3-Trichloropropane	ND	8.96
2-Chlorotoluene	ND	44.8
1,3,5-Trimethylbenzene	ND	44.8
4-Chlorotoluene	ND	44.8
t-Butylbenzene	ND	44.8
1,2,4-Trimethylbenzene	ND	44.8
sec-Butylbenzene	ND	44.8
1,3-Dichlorobenzene	ND	44.8
4-Isopropyltoluene	ND	44.8
1,4-Dichlorobenzene	ND	44.8
n-Butylbenzene	ND	44.8
1,2-Dichlorobenzene	ND	44.8
1,2-Dibromo-3-chloropropane	ND	44.8
1,2,4-Trichlorobenzene	ND	44.8
1,2,3-Trichlorobenzene	ND	44.8
Hexachlorobutadiene	ND	44.8
Naphthalene	ND	44.8

Client Name: Maul Foster & Alongi, Inc. Client ID: GP3-S-14 Lab ID: 128318-05 Date Received: 6/10/05 Date Prepared: 6/23/05 Date Analyzed: 6/23/05 % Solids 91.68 **Dilution Factor** 0.1

Volatile Organics by USEPA Method 5035\8260B

기계 하는 것이 되었다. 그 살아보는 그 이 없는데 없다.		Recovery Limits	
Surrogate	% Recovery Fla	igs Low High	
Dibromofluoromethane	89.1	75 125	
Fluorobenzene	99.9	75 125	
Toluene-D8	108	75 125	
Ethylbenzene-d10	106	75 125	
Bromofluorobenzene	102	75 125	
Trifluorotoluene	110	75 125	

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	38.5	
Chloromethane	ND	38.5	
Vinyl chloride	ND	7.71	
Bromomethane	ND	38.5	
Chloroethane	ND	77.1	
Trichlorofluoromethane	ND	38.5	
1,1-Dichloroethene	ND	7.71	
Methylene chloride	ND	7.71	
trans-1,2-Dichloroethene	ND	38.5	
1,1-Dichloroethane	ND	38.5	
2,2-Dichloropropane	ND	38.5	
cis-1,2-Dichloroethene	ND	38.5	The state of the s
Bromochloromethane	ND	38.5	
Chloroform	ND	38.5	
1,1,1-Trichloroethane	ND	7.71	
Carbon Tetrachloride	ND	7.71	
1,1-Dichloropropene	ND	38.5	
Benzene	ND	7.71	
1,2-Dichloroethane	ND	7.71	
Trichloroethene	ND	7.71	
1,2-Dichloropropane	ND	7.71	
Dibromomethane	ND	38.5	
Bromodichloromethane	ND	38.5	
cis-1,3-Dichloropropene	ND	38.5	
Toluene	ND	38.5	
trans-1,3-Dichloropropene	ND	38,5	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-05 continued...

	Result
Analyte	(ug/kg) RL
1,1,2-Trichloroethane ND	38.5
Tetrachloroethene ND	7.71
1,3-Dichloropropane ND	7.71
Dibromochloromethane	38.5
1,2-Dibromoethane ND	6/1/6/1
Chlorobenzene	38.5
Ethylbenzene ND	38.5
1,1,1,2-Tetrachloroethane ND	38.5
m,p-Xylene ND	77.1
o-Xylene ND	38.5
Styrene ND	38.5
Bromoform ND	38.5
Isopropylbenzene	38.5
Bromobenzene	38.5
n-Propylbenzene ND	38.5
1,1,2,2-Tetrachloroethane ND	7.71 disher vi
1,2,3-Trichloropropane ND	7.71
2-Chlorotoluene ND	38.5
1,3,5-Trimethylbenzene ND	38.5
4-Chlorotoluene ND	38.5
t-Butylbenzene ND	38.5
1,2,4-Trimethylbenzene ND	38.5
sec-Butylbenzene ND	38.5
1,3-Dichlorobenzene ND	38.5
4-Isopropyltoluene ND	38.5
1,4-Dichlorobenzene ND	38.5
n-Butylbenzene ND	38.5
1,2-Dichlorobenzene ND	38.5
1,2-Dibromo-3-chloropropane ND	38.5
1,2,4-Trichlorobenzene ND	38.5
1,2,3-Trichlorobenzene ND	38.5
Hexachlorobutadiene ND	38.5
Naphthalene	38.5

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids Dilution Factor Maul Foster & Alongi, Inc. GP2-W-17-RECON 128318-06 6/10/2005 6/18/2005 6/19/2005

Volatile Organics by USEPA Method 5035\8260B

			Reco	very Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	96.2		80	120
Fluorobenzene	107		80	120
Toluene-D8	96.8		80	120
Ethylbenzene-d10	101		80	120
Bromofluorobenzene	106		80	120
Trifluorotoluene	106		80	120

	Result		
Analyte	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND	5	
Chloromethane	ND	5	
Vinyl chloride	ND	5	
Bromomethane	ND	5	
Chloroethane	ND	5	
Trichlorofluoromethane	ND	5	
1,1-Dichloroethene	ND	5	
Methylene chloride	ND	5	
trans-1,2-Dichloroethene	ND	5	
1,1-Dichloroethane	ND	5	
2,2-Dichloropropane	ND	5	
cis-1,2-Dichloroethene	ND	5	
Bromochloromethane	ND	5	
Chloroform	ND	5	
1,1,1-Trichloroethane	ND	5	
Carbon Tetrachloride	ND	5	
1,1-Dichloropropene	ND	5	
Benzene	ND	5	
1,2-Dichloroethane	ND	5	
Trichloroethene	ND	5	
1,2-Dichloropropane	ND	5	
Dibromomethane	ND	5	
Bromodichloromethane	ND	5	
cis-1,3-Dichloropropene	ND	5	
Toluene	ND	5	
trans-1,3-Dichloropropene	ND	5	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-06 continued...

	Res	ult	
Analyte	(ug	/L) R	RL.
1,1,2-Trichloroethane	ND		5
Tetrachloroethene	ND		5
1,3-Dichloropropane	ND		5
Dibromochloromethane	ND		5
1,2-Dibromoethane	ND		5
Chlorobenzene	ND		5
Ethylbenzene	ND		5
1,1,1,2-Tetrachloroethane	ND		5
m,p-Xylene	ND		10
o-Xylene	ND		5
Styrene	ND		5
Bromoform	ND		5
Isopropylbenzene	ND		5
Bromobenzene	ND		5
n-Propylbenzene	ND		5
1,1,2,2-Tetrachloroethane	ND		5
1,2,3-Trichloropropane	ND		5
2-Chlorotoluene	ND		5
1,3,5-Trimethylbenzene	ND		5
4-Chlorotoluene	ND		5
t-Butylbenzene	ND		5
1,2,4-Trimethylbenzene	ND		5
sec-Butylbenzene	ND		5
1,3-Dichlorobenzene	ND		5
4-Isopropyltoluene	ND		5
1,4-Dichlorobenzene	ND		5
n-Butylbenzene	ND		5
1,2-Dichlorobenzene	ND		5
1,2-Dibromo-3-chloropropane	ND		5
1,2,4-Trichlorobenzene	ND		5
1,2,3-Trichlorobenzene	ND		5
Hexachlorobutadiene	ND		5
Naphthalene	ND		5

98814

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 MW4-0605

 Lab ID:
 128318-07

 Date Received:
 6/10/2005

 Date Prepared:
 6/18/2005

 Date Analyzed:
 6/19/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	93.9	Objection of the second	80	120	
Fluorobenzene	105		80	120	
Toluene-D8	103		80	120	
Ethylbenzene-d10	101		80	120	
Bromofluorobenzene	103		80	120	
Trifluorotoluene	101		80	120	

	Result		
Analyte	(ug/L)	RL	Flag
Dichlorodifluoromethane	ND .	GM 1	
Chloromethane	ND	CH 1	
Vinyl chloride	ND	1	
Bromomethane	ND	1 1 1 1 1	
Chloroethane	ND	991	
Trichlorofluoromethane	ND	3 4 1 1 1	
1,1-Dichloroethene	ND		
Methylene chloride	ND	0 1	
trans-1,2-Dichloroethene	ND	0.1	
1,1-Dichloroethane	ND		
2,2-Dichloropropane	ND	1	
cis-1,2-Dichloroethene	ND	1 (M 1	
Bromochloromethane	ND	11	
Chloroform	ND	1	
1,1,1-Trichloroethane	ND	1	
Carbon Tetrachloride	ND	1	
1,1-Dichloropropene	ND	1	
Benzene	ND		
1,2-Dichloroethane	ND	1	
Trichloroethene	ND		
1,2-Dichloropropane	ND	1	
Dibromomethane	ND	1	
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND	1	
Toluene	ND	1	
trans-1,3-Dichloropropene	ND	1	

Volatile Organics by USEPA Method 5035\8260B data for 128318-07 continued...

Analyte	Result	DI	bodowe specific
1,1,2-Trichloroethane ND	(ug/L)	RL	Flags
Tetrachloroethene ND			
1,3-Dichloropropane ND		.1	
Dibromochloromethane ND			
1,2-Dibromoethane ND			
Chlorobenzene ND	White out transfers a		
Ethylbenzene ND			
1,1,1,2-Tetrachloroethane ND			
m,p-Xylene ND		1	
o-Xylene ND		2	
Styrene ND		- 101 - 1	
Bromoform ND			
Isopropylbenzene ND			
Bromobenzene ND		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
n-Propylbenzene ND			
1,1,2,2-Tetrachloroethane			
1,2,3-Trichloropropane ND		1	
2-Chlorotoluene ND			
1,3,5-Trimethylbenzene ND			
4-Chlorotoluene ND			14/14/14/57
t-Butylbenzene ND			
1,2,4-Trimethylbenzene ND			
sec-Butylbenzene ND			
1,3-Dichlorobenzene ND			
4-Isopropyltoluene ND			
1,4-Dichlorobenzene ND			present comments that is well
n-Butylbenzene ND			
1,2-Dichlorobenzene ND			ebjord in Military
1,2-Dibromo-3-chloropropane ND		071	See a Course 1980 - S. Carana
1,2,4-Trichlorobenzene ND			waith training of
1,2,3-Trichlorobenzene ND			
Hexachlorobutadiene ND			
Naphthalene ND			

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 MW4DUP-0605

 Lab ID:
 128318-08

 Date Received:
 6/10/2005

 Date Prepared:
 6/18/2005

 Date Analyzed:
 6/19/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	94.1		80	120
Fluorobenzene	113		80	120
Toluene-D8	103		80	120
Ethylbenzene-d10	105		80	120
Bromofluorobenzene	111		80	120
Trifluorotoluene	104		80	120

	Result		
Analyte	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND	· 1	
Chloromethane	ND.	1	in managering dis
Vinyl chloride	ND		
Bromomethane	ND	1 1	
Chloroethane	ND	9 14 1. 11 4 1456 1 10, 57	
Trichlorofluoromethane	ND		
1,1-Dichloroethene	ND		
Methylene chloride	ND	1	
trans-1,2-Dichloroethene	ND	1 - 28 1	
1,1-Dichloroethane	ND		gaaranaaba
2,2-Dichloropropane	ND		
cis-1,2-Dichloroethene	ND	1	
Bromochloromethane	ND		
Chloroform	ND	1	
1,1,1-Trichloroethane	ND		
Carbon Tetrachloride	ND	1	
1,1-Dichloropropene	ND	1	
Benzene	ND	1	
1,2-Dichloroethane	ND		
Trichloroethene	ND	1	
1,2-Dichloropropane	ND		
Dibromomethane	ND	1	
Bromodichloromethane	ND		
cis-1,3-Dichloropropene	ND		
Toluene	ND	1	
trans-1,3-Dichloropropene	ND		
and the second of the second o			

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128318-08 continued...

원생들은 하다면 하다 수가 하는 것들은	Result
Analyte	(ug/L)
1,1,2-Trichloroethane ND	
Tetrachloroethene ND	
1,3-Dichloropropane ND	
Dibromochloromethane	
1,2-Dibromoethane ND	Smill to M. Souters
Chlorobenzene ND	
Ethylbenzene ND	
1,1,1,2-Tetrachloroethane ND	
m,p-Xylene ND	
o-Xylene ND	
Styrene ND	
Bromoform ND	
Isopropylbenzene ND	
Bromobenzene	
n-Propylbenzene ND	
1,1,2,2-Tetrachloroethane ND	
1,2,3-Trichloropropane ND	
2-Chlorotoluene ND	
1,3,5-Trimethylbenzene ND	
4-Chlorotoluene ND	
t-Butylbenzene ND	
1,2,4-Trimethylbenzene ND	
sec-Butylbenzene ND	
1,3-Dichlorobenzene ND	
4-Isopropyltoluene ND	
1,4-Dichlorobenzene ND	
n-Butylbenzene ND	
1,2-Dichlorobenzene ND	
1,2-Dibromo-3-chloropropane ND	
1,2,4-Trichlorobenzene ND	
1,2,3-Trichlorobenzene ND	
Hexachlorobutadiene ND	
Naphthalene	

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP2-W-17-RECON

 Lab ID:
 128318-06

 Date Received:
 6/10/2005

 Date Prepared:
 6/20/2005

 Date Analyzed:
 6/22/2005

 % Solids

 Dilution Factor
 1

Gasoline Range Organics by Method NWTPH-Gx

				Recove	ery Limits
Surrogate	era parti	% Recovery	Flags	Low	High
Trifluorotoluene		123		50	150
1-Chloro-3-fluorobenzene		102		50	150
Bromofluorobenzene		110		50	150
Pentafluorobenzene		89		50	150

			Result		
Analyte			(mg/L)	RL.	Flags
Gasoline by NWTPH-G	- 15	ND		0.1	a Grand State of the Control of the

Client Name: Maul Foster & Alongi, Inc. Client ID: GP2-S-10.0 Lab ID: 128318-01 Date Received: 6/10/2005 Date Prepared: 6/13/2005 Date Analyzed: 6/13/2005 % Solids 91.45 Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	75.7		50	150
o-terphenyl	88.9		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<21	21	7-54-75 mile year
#2 Diesel (>nC12-nC24)	<52.4	52.4	
Motor Oil (>nC24-nC32)	<105	105	

Client Name: Maul Foster & Alongi, Inc. Client ID: GP1-S-10.0 Lab ID: 128318-02 Date Received: 6/10/2005 Date Prepared: 6/13/2005 Date Analyzed: 6/13/2005 % Solids 93.64 Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	80.7		50	150
o-terphenyl	93.5		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<19.3	19.3	ri - recuberi i Ambasas
#2 Diesel (>nC12-nC24)	<48.3	48.3	
Motor Oil (>nC24-nC32)	<96.6	96.6	

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP3-S-2.0

 Lab ID:
 1283 18-03

 Date Received:
 6/10/2005

 Date Prepared:
 6/13/2005

 Date Analyzed:
 6/13/2005

 % Solids
 92.18

 Dilution Factor
 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

Apprilia grazicani			Recove	ry Limits	;
Surrogate	% Recovery	Flags	Low	High	
1-bromo-4-fluorobenzene	80.1		50	150	
o-terphenyl	84.5		50	150	

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<19.5	19.5	
#2 Diesel (>nC12-nC24)	<48.9	48.9	
Motor Oil (>nC24-nC32)	<97.7	97.7	

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP3-S-6.0
Lab ID:	128318-04
Date Received:	6/10/2005
Date Prepared:	6/13/2005
Date Analyzed:	6/13/2005
% Solids	91.2
Dilution Factor	

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	81.1		50	150
o-terphenyl	89.4		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<21.9	21.9	
#2 Diesel (>nC12-nC24)	<54.7	54.7	The Light Control of the Control of
Motor Oil (>nC24-nC32)	<109	109	

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP3-S-14

 Lab ID:
 128318-05

 Date Received:
 6/10/2005

 Date Prepared:
 6/13/2005

 Date Analyzed:
 6/13/2005

 % Solids
 91.68

 Dilution Factor
 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recove	ery Limits	;
Surrogate	% Recovery	Flags	Low	High	
1-bromo-4-fluorobenzene	85.4		50	150	
o-terphenyl	94.4		50	150	

	Result				
Analyte	(mg/kg)	RL			Flags
Gasoline (Toluene-nC12)	<21		21		
#2 Diesel (>nC12-nC24)	<52.6		52.6		
Motor Oil (>nC24-nC32)	<105		105	Unbelai bie	To the Transfer to

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc.
GP2-W-17-RECON
128318-06
6/10/2005
6/13/2005
6/14/2005

NWTPH-HCID - Hydrocarbon Identification Method for Water Modified

	시발을 잃고 하는 것이 살았다. 하고	Supplied by State State	Recov	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
1-bromo-4-fluorobenzene	62.1		50	150	55
o-terphenyl	97.8		50	150	

	Result		
Analyte	(mg/L)	RL	Flags
Gasoline (Toluene-nC12)	>0.0951	0.0951	
#2 Diesel (>nC12-nC24)	<0.238	0.238	
Motor Oil (>nC24-nC32)	< 0.476	0.476	

Client Name Maul Foster & Alongi, Inc. Client ID: GP2-S-10.0 Lab ID: 128318-01 Date Received: 6/10/05 Date Prepared: 6/16/05 Date Analyzed: 6/16/05 Dilution Factor 1 % Solids 91.45

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

 Result

 Analyte
 (mg/kg)
 RL
 Flags

 Chromium
 24.9
 2.11

Client Name (100 A 200 Mass 1 100 Mass	Maul Foster & Alongi, Inc.
Client ID:	GP1-S-10.0
Lab ID:	128318-02
Date Received:	6/10/05
Date Prepared:	6/16/05
Date Analyzed:	6/16/05
Dilution Factor	1. Table i parti G
% Solids	93.64

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

 Result

 Analyte
 (mg/kg)
 RL
 Flags

 Chromium
 73.5
 1.91

Client Name Maul I	Foster & Alongi, Inc.
Client ID:	GP3-S-2.0
Lab ID:	128318-03
Date Received:	6/10/05
Date Prepared:	6/16/05
Date Analyzed:	6/16/05
Dilution Factor	1.1
% Solids	92.18

Metals by ICP - USEPA Method 6010

		Result		
Analyte		(mg/kg)	RL	Flags
Chromium	The state of the s	915	2.05	

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP3-S-6.0
Lab ID:	128318-04
Date Received:	6/10/05
Date Prepared:	6/1,6/05
Date Analyzed:	6/16/05
Dilution Factor	
% Solids	91.2

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	1100	2.12	

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP3-S-14
Lab ID:	128318-05
Date Received:	6/10/05
Date Prepared:	6/16/05
Date Analyzed:	6/16/05
Dilution Factor	
% Solids	91.68

Metals by ICP - USEPA Method 6010

	Result			
Analyte	(mg/kg)	RL	Flags	
Chromium	941	2	The property	

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP2-W-17-RECON

 Lab ID:
 128318-06

 Date Received:
 6/10/05

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/17/05

Metals by ICP - USEPA Method 6010

1

Dilution Factor

Result

Analyte (mg/L) RL Flags

Lead ND 0.015

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP2-S-10.0
Lab ID:	128318-01
Date Received:	6/10/05
Date Prepared:	6/14/05
Date Analyzed:	6/15/05
Dilution Factor	
% Solids	91.45

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	ND ND	0.109	

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP1-S-10.0
Lab ID:	128318-02
Date Received:	6/10/05
Date Prepared:	6/14/05
Date Analyzed:	6/15/05
Dilution Factor	1 delag Friedstill
% Solids	93.64

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result			
Analyte	(mg/kg)		RL.	Flags
Hexavalent Chromium	14.4	4	0.106	

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP3-S-2.0
Lab ID:	128318-03
Date Received:	6/10/05
Date Prepared:	6/14/05
Date Analyzed:	6/15/05
Dilution Factor	
% Solids	92.18

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	27.7	0.101	Apigno in transacti à

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP3-S-6.0
Lab ID:	128318-04
Date Received:	6/10/05
Date Prepared:	6/14/05
Date Analyzed:	6/15/05
Dilution Factor	1 while wearer
% Solids	91.2

Hexavalent Chromium by ICP - USEPA Method 7195/6010

의미국의 교육하게 보고의 제공 경험을 위해 이끌어 보이다.	Result		
Analyte .	(mg/kg)	RL	Flags
Hexavalent Chromium	49.8	0.107	

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	GP3-S-14		
Lab ID:	128318-05		
Date Received:	6/10/05		
Date Prepared:	6/14/05		
Date Analyzed:	6/15/05		
Dilution Factor	1		
% Solids	91.68		

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result				
Analyte	(mg/kg)		RL	Flags	
Hexavalent Chromium	34.	1	0.106		

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP2-W-17-RECON

 Lab ID:
 128318-06

 Date Received:
 6/10/05

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/10/05

 Dilution Factor
 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags

Hexavalent Chromium 4.72 0.01

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	MW4-0605		
Lab ID:	128318-07		
Date Received:	6/10/05		
Date Prepared:	6/10/05		
Date Analyzed:	6/10/05		
Dilution Factor			

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags

Hexavalent Chromium ND 0.01

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 MW4DUP-0605

 Lab ID:
 128318-08

 Date Received:
 6/10/05

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/10/05

 Dilution Factor
 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags

Hexavalent Chromium ND 0.01

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP2-W-17-RECON

 Lab ID:
 128318-06

 Date Received:
 6/10/05

 Date Prepared:
 6/13/05

 Date Analyzed:
 6/14/05

 Dilution Factor
 1

Dissolved Metals by ICP - USEPA Method 6010

| Result | Analyte | (mg/L) | RL | Flags | Chromium | 37.1 | 0.02 |

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 MW4-0605

 Lab ID:
 128318-07

 Date Received:
 6/10/05

 Date Prepared:
 6/13/05

 Date Analyzed:
 6/14/05

 Dilution Factor
 1

Dissolved Metals by ICP - USEPA Method 6010

 Result

 Analyte
 (mg/L)
 RL
 Flags

 Chromium
 ND
 0.02

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

Dilution Factor

Maul Foster & Alongi, Inc.

MW4DUP-0605

128318-08

6/10/05

6/13/05

6/14/05

1

Flags

Dissolved Metals by ICP - USEPA Method 6010

Result

Analyte (mg/L) RL
Chromium ND 0.02

Lab ID:

Method Blank - VOA1364

Date Received:

6/18/2005

Date Prepared: Date Analyzed: % Solids

6/19/2005

Dilution Factor

1

Volatile Organics by USEPA Method 5035\8260B

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	99.4		80	120	
Fluorobenzene	109		80	120	
Toluene-D8	105		80	120	
Ethylbenzene-d10	101		80	120	
Bromofluorobenzene	102		80	120	
Trifluorotoluene	104		80	120	

Analyte	Result (ug/L)	RL	per sijudit.
Dichlorodifluoromethane	ND	KL 1	Flags
Chloromethane	ND		
Vinyl chloride	ND		
Bromomethane	ND		
Chloroethane	ND ND		
Trichlorofluoromethane	ND		
1,1-Dichloroethene	ND	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Methylene chloride	ND		
trans-1,2-Dichloroethene	ND	1	
1,1-Dichloroethane	ND		A Company of the Company
2,2-Dichloropropane	ND		
cis-1,2-Dichloroethene	ND		
Bromochloromethane	ND		
Chloroform	ND		
1,1,1-Trichloroethane	ND		
Carbon Tetrachloride	ND		
1,1-Dichloropropene	ND		
Benzene	ND		
1,2-Dichloroethane	ND		
Trichloroethene	ND		
1,2-Dichloropropane	ND		
Dibromomethane	ND		
Bromodichloromethane	ND		
cis-1,3-Dichloropropene	ND	1	
Toluene	ND		
trans-1,3-Dichloropropene	ND	1	
1			

Flags

Volatile Organics by USEPA Method 5035\8260B data for VOA1364 continued...

		Result	
Analyte		(ug/L)	RL
1,1,2-Trichloroethane	ND		
Tetrachloroethene	ND		1
1,3-Dichloropropane	ND		
Dibromochloromethane	ND		
1,2-Dibromoethane	ND		Asker of court in
Chlorobenzene	ND		
Ethylbenzene	ND		
1,1,1,2-Tetrachloroethane	ND		
m,p-Xylene	ND		2
o-Xylene	ND		1.100
Styrene	ND		4.00 (1)
Bromoform	ND :		1
Isopropylbenzene	ND		1
Bromobenzene	ND		1
n-Propylbenzene	ND		1 1 1 1 1 1
1,1,2,2-Tetrachloroethane	ND		1
1,2,3-Trichloropropane	ND		1
2-Chlorotoluene	ND		1
1,3,5-Trimethylbenzene	ND		484-49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4-Chlorotoluene	ND		1.1000
t-Butylbenzene	ND .		
1,2,4-Trimethylbenzene	ND		1
sec-Butylbenzene	ND		1
1,3-Dichlorobenzene	ND		- 1
4-Isopropyitoluene	ND	. 20,000	1
1,4-Dichlorobenzene	ND		
n-Butylbenzene	ND		97 1
1,2-Dichlorobenzene	ND .		
1,2-Dibromo-3-chloropropane	ND		4.1
1,2,4-Trichlorobenzene	ND		1
1,2,3-Trichlorobenzene	ND		
Hexachlorobutadiene	ND		1
Naphthalene	ND		1

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA1364 6/18/2005 6/19/2005 VOA1364

Volatile Organics by USEPA Method 5035\8260B

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
1,1-Dichloroethene	0	5	4.84	96.9	4.93	98.7	1.8	
Benzene	0	5	4.79	95,8	4.9	98	2.3	
Trichloroethene	0	5	4.67	93.4	4.91	98.2	5	
Toluene	0	5	4.79	95.8	4.42	88.4	-8	
Chlorobenzene	0	5	4.72	94.3	4.81	96.2	2	

Lab ID:

Method Blank - VOA1379

Date Received:

Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

6/23/05 6/23/05

% Solids

0.1

Volatile Organics by USEPA Method 5035\8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.6		75	125
Fluorobenzene	100		75	125
Toluene-D8	107		75	125
Ethylbenzene-d10	105		75	125
Bromofluorobenzene	103		75	125
Trifluorotoluene	116		75	125

Sample results are on an as received basis.

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	40	
Chloromethane	ND	40	
Vinyl chloride	ND	8	
Bromomethane	ND	40	
Chloroethane	ND	80	
Trichlorofluoromethane	ND	40	
1,1-Dichloroethene	ND .	8	
Methylene chloride	ND	8	
trans-1,2-Dichloroethene	ND	40	
1,1-Dichloroethane	ND	40	
2,2-Dichloropropane	ND	40	
cis-1,2-Dichloroethene	ND	40	
Bromochloromethane	ND	40	
Chloroform	ND	40	
1,1,1-Trichloroethane	ND	8	
Carbon Tetrachloride	ND	8	
1,1-Dichloropropene	ND	40	
Benzene	ND	8	
1,2-Dichloroethane	ND	8	
Trichloroethene	ND	8	
1,2-Dichloropropane	ND	8	
Dibromomethane	ND	40	
Bromodichloromethane	ND	40	
cis-1,3-Dichloropropene	ND	40	
Toluene	ND	40	
trans-1,3-Dichloropropene	ND	40	

Volatile Organics by USEPA Method 5035\8260B data for VOA1379 continued...

	Result		
Analyte	(ug/kg)	RL	Flags
1,1,2-Trichloroethane	ND	40	
Tetrachloroethene	ND	- 8	
1,3-Dichloropropane	ND	8	
Dibromochloromethane	ND	40	
1,2-Dibromoethane	ND	1.46	
Chlorobenzene	ND	40	
Ethylbenzene	ND	40	
1,1,1,2-Tetrachloroethane	ND	40	
m,p-Xylene	ND	80	
o-Xylene	ND	40	
Styrene	ND	40	
Bromoform	ND ND	40	
Isopropylbenzene .	ND	40	nasy. , a ma
Bromobenzene	ND IN	40	
n-Propylbenzene	ND	40	
1,1,2,2-Tetrachloroethane	ND	8	
1,2,3-Trichloropropane	ND	8	
2-Chlorotoluene	ND	40	14. 2.2%
1,3,5-Trimethylbenzene	ND	40	
4-Chlorotoluene	ND	40	
t-Butylbenzene	ND	40	
1,2,4-Trimethylbenzene	ND	40	
sec-Butylbenzene	ND	40	
1,3-Dichlorobenzene	ND	40	
4-Isopropyltoluene	ND	40	
1,4-Dichlorobenzene	ND	40	
n-Butylbenzene	ND	40	
1,2-Dichlorobenzene	ND	40	
1,2-Dibromo-3-chloropropane	ND	40	
1,2,4-Trichlorobenzene	ND	40	
1,2,3-Trichlorobenzene	ND	40	
Hexachlorobutadiene	ND	40	
Naphthalene	ND	40	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA1379 6/23/05 6/23/05 VOA1379

Volatile Organics by USEPA Method 5035\8260B

	Blank	Spike	BS		BSD		
Compound Name	Result (ug/kg)	Amount (ug/kg)	Result (ug/kg)	BS % Rec.	Result (ug/kg)	BSD % Rec.	RPD Flag
1,1-Dichloroethene	0	200	243	121	221	111	-8.6
Benzene	0	200	213	106	209	104	-1.9
Trichloroethene	0	200	210	105	202	101	-3.9
Toluene	0	. 200	221	111	222	111	0
Chlorobenzene	0	200	225	112	227	114	1.8

Lab ID:

Method Blank - GB5190

Date Received:

Date Prepared: Date Analyzed: 6/20/2005 6/21/2005

% Solids
Dilution Factor

-

Gasoline Range Organics by Method NWTPH-Gx

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	102	A STATE OF THE STA	50	150
1-Chloro-3-fluorobenzene	90	Litterie	50	150
Bromofluorobenzene	98,3		50	150
Pentafluorobenzene	81.2		50	150

Result
(mg/L) RL Flags
Gasoline by NWTPH-G ND 0.1

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed:

QC Batch ID:

GB5190 6/20/2005 6/21/2005 GB5190

Gasoline Range Organics by Method NWTPH-Gx

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Gasoline by NWTPH-G	0	1.25	1.34	107	0.973	77.8	-32	N

Lab ID:

Method Blank - DS1492

Date Received:

Date Prepared: Date Analyzed: % Solids 6/13/2005 6/13/2005

Dilution Factor

1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

	and the winds and the same		Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	97		50	150
o-terphenyl	102		50	150
이번 살이 살아 내가 되었다.		e entre la	10,000,000,000	

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<20	20	
#2 Diesel (>nC12-nC24)	<50	50	
Motor Oil (>nC24-nC32)	<100	100	

Duplicate Report

 Client Sample ID:
 GP3-S-14

 Lab ID:
 128318-05

 Date Prepared:
 6/13/2005

 Date Analyzed:
 6/13/2005

 QC Batch ID:
 DS1492

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Gasoline (Toluene-nC12)	<	<	NC	
#2 Diesel (>nC12-nC24)	<	<	NC	
Motor Oil (>nC24-nC32)	<	<	NC	

Lab ID: Method Blank - DW0783

Date Received: - 6/13/2005

Date Prepared: 6/14/2005

% Solids - 5

Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Water Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	86.5		50	150
o-terphenyl	111		50	150
	The New York (1994) and			5.1770.0

	Result		
Analyte	(mg/L)	RL	Flags
Gasoline (Toluene-nC12)	<0.1	0.1	
#2 Diesel (>nC12-nC24)	<0.25	0.25	
Motor Oil (>nC24-nC32)	<0.5	0.5	

Lab ID: Method Blank - SP1331

Date Received: Date Prepared: 6/16/05
Date Analyzed: 6/16/05
Dilution Factor 1

Metals by ICP - USEPA Method 6010

Sample results are on an as received basis.

Result
Analyte (mg/kg) RL Flags

Chromium ND 2

Matrix Spike Report

 Client Sample ID:
 GP2-S-10.0

 Lab ID:
 128318-01

 Date Prepared:
 6/16/05

 Date Analyzed:
 6/16/05

 QC Batch ID:
 SP1331

Metals by ICP - USEPA Method 6010

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Chromium	24.9	41.7	66.7	100	

Duplicate Report

 Client Sample ID:
 GP2-S-10.0

 Lab ID:
 128318-01

 Date Prepared:
 6/16/05

 Date Analyzed:
 6/16/05

 QC Batch ID:
 SP1331

Metals by ICP - USEPA Method 6010

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Chromium	25	24	4.1	

Lab ID:

Method Blank - TP1333

Date Received:

Date Prepared:

Date Analyzed: Dilution Factor 6/17/05 6/17/05

1

Metals by ICP - USEPA Method 6010

Result

Analyte Lead (mg/L)

RL 0.015

Flags

U.

Matrix Spike Report

 Client Sample ID:
 MW-1

 Lab ID:
 128380-01

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/17/05

 QC Batch ID:
 TP1333

Metals by ICP - USEPA Method 6010

	Sample	Spike	MS		
하면 없이 그 이렇게 보이셨다.	Result	Amount	Result	MS	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Lead	0	1	1.02	102	

Duplicate Report

 Client Sample ID:
 MW-1

 Lab ID:
 128380-01

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/17/05

 QC Batch ID:
 TP1333

Metals by ICP - USEPA Method 6010

	Sample	Duplicate		
보다가 되고 있었다. 그는 경우	Result	Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Lead	0	0	NC	

Lab ID:

Method Blank - CR216S

Date Received:

6/14/05

Date Prepared: Date Analyzed:

6/15/05

Dilution Factor

1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on an as received basis.

Result

Analyte

(mg/kg)

RL

Flags

Hexavalent Chromium

ND

0.1

Matrix Spike Report

 Client Sample ID:
 AB-1-35-36.5

 Lab ID:
 128282-01

 Date Prepared:
 6/14/05

 Date Analyzed:
 6/15/05

 QC Batch ID:
 CR216S

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Chromium	0.562	95.4	82.7	86	

Blank Spike/Blank Spike Duplicate Report

Lab ID:
Date Prepared:
Date Analyzed:
QC Batch ID:

CR216S 6/14/05 6/15/05 CR216S

네 . ^^ 열심하고 # . ^ ~ ~ ~	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Chromium	0	100	99	99	97.8	97.8	-1.2	

Duplicate Report

 Client Sample ID:
 AB-1-35-36.5

 Lab ID:
 128282-01

 Date Prepared:
 6/14/05

 Date Analyzed:
 6/15/05

 QC Batch ID:
 CR216S

أيوم فاأأ ألحرف والإراداء	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Chromium	0.56	0.63	-12.0	

Lab ID:

Method Blank - CR217W

Date Received:

6/10/05 6/10/05

Date Prepared: Date Analyzed: Dilution Factor

3/10/05 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Analyte

Result (mg/L)

RL

Flags

Hexavalent Chromium

ND

0.01

Matrix Spike Report

 Client Sample ID:
 MW4DUP-0605

 Lab ID:
 128318-08

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/10/05

 QC Batch ID:
 CR217W

	Sample	Spike	MS	
	Result	Amount	Result	MS
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec. Flag
Chromium	0	2	0.0409	2 x7

Duplicate Report

 Client Sample ID:
 MW4DUP-0605

 Lab ID:
 128318-08

 Date Prepared:
 6/10/05

 Date Analyzed:
 6/10/05

 QC Batch ID:
 CR217W

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Chromium	0	0.01	-200.0	x4a

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: CR217W 6/10/05 6/10/05 CR217W

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Chromium	0	2	1.77	88.6	1.88	94.1	6	

Lab ID: Method Blank - DP1312

Date Received: Date Prepared: 6/13/05

Date Analyzed: 6/14/05

Dilution Factor 1

Dissolved Metals by ICP - USEPA Method 6010

| Result | Analyte | (mg/L) | RL | Flags | Chromium | ND | 0.02 |

Matrix Spike Report

Client Sample ID:		CW005
Lab ID:	o.cassor	128283-01
Date Prepared:	1446)\8	6/13/05
Date Analyzed:		6/14/05
QC Batch ID:		DP1312

Dissolved Metals by ICP - USEPA Method 6010

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Chromium	0	0.4	0.381	95	

Duplicate Report

Client Sample ID:	CW005	
Lab ID:	128283-01	
Date Prepared:	6/13/05	
Date Analyzed:	6/14/05	
QC Batch ID:	DP1312	

Dissolved Metals by ICP - USEPA Method 6010

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Chromium	0	0	NC	

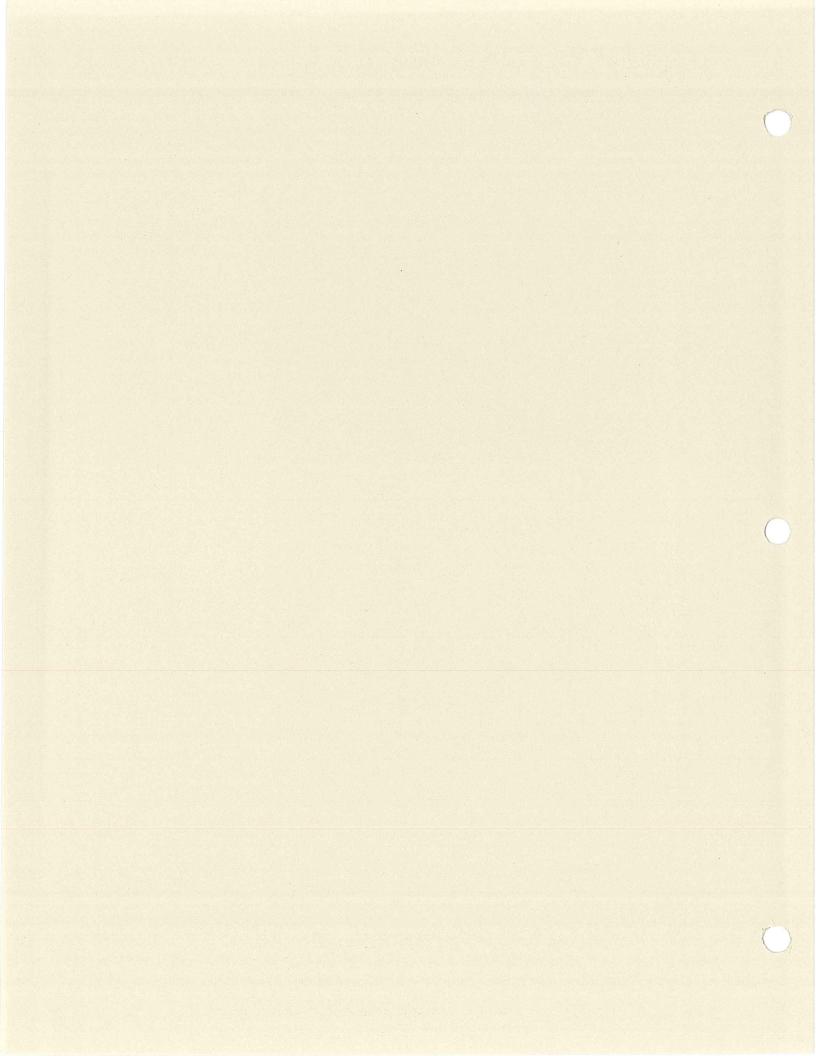
STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 40%.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- C3: Second analysis confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be < 30%.
- C4: Second analysis confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 30%. The original analysis was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- RL: Reporting Limit
- N: See analytical narrative
- ND: Not Detected
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Custody Record Chain of


STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.stl-inc.com

SEVERN

TRENT

MALL FOSTER + ALSNOT		ALTEN	TA TA	(4)			26	(0	1	11.00	U		してころの
		Telephone I	Telephone Number (Area Code)/Fax Number	a Codel/Fax	Number		(Lab Number	ч.	^		01001
HAZEL Dell AUC. Suit		36	360-694	7	621),c	CHO	128	318821	~~	Page	of /
State Zip Co		Site Contact	1112		Lab Contact		9	A A	Analysis (Attach list if	ach list if	-		
VANCOUVER WA 75	180005	G. Cardil	2.11) E	more space is needed	s needed)	. 1	77.7	First Filtingo
Project Name and Location (State)		Carrier/Way	Carrier/Waybill Number) " 1756 	56		4	7	+	
recision Engineering, Seattle WA	. ()					ave Ligi	LOP COP	्र ११७३	nij.	कक	63	Special	Special Instructions/
Contract/Prurchase Order/Quote No. 5			Matrix		Containers & Preservatives	ers &	ייע. ר כאי	رطاره ج	*	-N &		Conditio	Conditions of Receipt
ocation/Description may be combined on one line)	Date	Time	suceuply.	Soil Japres,	HCI HAO3 HS204	HOPA /ovuz	10x9 10x9	प्रमुख भुक्तु	680x	Pak	874 8-14	i V	*
GP2-5-10.0	6/4/65	0830				X ×	X	X		103	Plant	Hyoraca	Horacar bans are franch
GP1-5-10.0		1500		X	124	×						analyted	analysed for 1600 by
603-5-1.6) n	1530		×	#3 9.1	×	XXX		I SA			TPH by A	4 1
0.7-8-80 H		15-45		×	ALM	×	X	X		341		RAN GE	GANGE NYBOCARBONS
CP3-5-14		525	N.	X								THE SAMPLES	SAMPLES FOR PAR
6 GPZ-W-17-RECON	7	1700	×		r iai		X	X			×	+ TPH &	1 1.
For O Grants	ni).				(9 k.l.)	Car.	V	タラ		3	8	Resident	2000
10000 - WMM	960,	78=	×		180		×	×			>	100	garpie (- 14 Wight
8 MW4000-0605		77 1	· ><				×	×			×	TAN	
trip Blance													*
Cooler Possible Hazard Identification Possible Hazard Identifi	dentification		Clin Internal			Sa	Sample Disposal		☐ Disposal By Lab	I By Lab		Briting i	A fee may be assessed if samples
and Time Required (business days)	15 Days				Re	ents (Specify	// // // // // // // // // // // // //		Archive rol	5	Months		are retained longer than 1 month)
			E	11	1. Received By	By	0	0.				Date	Time
2. Relinquished By		Date 0	7 Time	274	2. Received By	à	3	2			0 (5 c	Date Date	Time 135
3. Relinquished By		Date	Time		3. Received By	Py.				i loge di per		Date	Тте
Comments					(
DISTRIBUTION: 1 - Stays with the Samples; CANARY - Returned to Client with Report: PINK - Field Copy	urned to Client	with Renort D	ALL CLAIN										

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: July 13, 2005

TO: Alan Hughes

Maul Foster & Alongi, Inc.

7223 NE Hazel Dell Ave., Suite B

Vancouver, WA 98665

PROJECT: Precision Engineering WA

REPORT NUMBER: 128457

TOTAL NUMBER OF PAGES:

Enclosed are the test results for twenty-three samples received at STL Seattle on June 17, 2005.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Tom Coyner

Project Mariager

Sample Identification:

	Lab. No.	Client ID	Date/Time Sampled	<u>Matrix</u>
	128457-1	GP4-S-1.5	.06-16-05 11:25	solid
	128457-2	GP5-S-1.5	06-16-05 10:00	solid
	128457-3	GP5-S-8.0	06-16-05 10:15	solid
	128457-4	GP5-S-14.0	06-16-05 10:50	solid
	128457-5	GP6-S-1.0	06-16-05 12:45	solid
	128457-6	GP6-S-8.0	06-16-05 13:05	solid
	128457-7	GP6-S-14.5	06-16-05 13:20	solid
	128457-8	GP7-S-2.0	06-16-05 16:00	solid
	128457-9	GP7-S-8.0	06-16-05 16:10	solid
	128457-10	GP8-S-1.5	06-16-05 18:00	solid
	128457-11	GP9-S-2.0	06-16-05 08:10	solid
	128457-12	GP10-S-1.5	06-16-05 08:30	solid
	128457-13	GP10-S-7.0	06-16-05 08:40	solid
	128457-14	GP10-S-13.5	06-16-05 08:50	solid
	128457-15	GP11-S-2.0	06-16-05 09:25	solid
	128457-16	GP11-S-6.5	06-16-05 09:35	solid
	128457-17	GP4-W-8.0	06-16-05 11:50	liquid
	128457-18	GP5-W-18.0	06-16-05 13:45	liquid
	128457-19	GP6-W-18.0	06-16-05 13:40	liquid
	128457-20	GP7-W-14.0	06-16-05 16:30	liquid
	128457-21	GP8-W-10.0	06-16-05 18:20	liquid
	128457-22	MW1-W-35.0	06-16-05 09:15	liquid
8	128457-23	MW2-W-0605	06-16-05 10:50	liquid
			이 그리가 되었어? 그리 튀른 한 집 그리	

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP5-W-18.0

 Lab ID:
 128457-18

 Date Received:
 6/17/2005

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/24/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

		i dili	Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.6		80	120
Fluorobenzene	103		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	101		80	120
Bromofluorobenzene	110	014	80	120
Trifluorotoluene	105		80	120

	Result		enter sendire
Analyte	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND		
Chloromethane	ND	1 ma 1	
Vinyl chloride	ND	1. 1.	
Bromomethane	ND	G 1	
Chloroethane	ND	1	
Trichlorofluoromethane	ND	7	NAMES OF
1,1-Dichloroethene	ND	. 1	
Methylene chloride	ND		eastin.
trans-1,2-Dichloroethene	ND	1	
1,1-Dichloroethane	ND .	1	
2,2-Dichloropropane	ND		
cis-1,2-Dichloroethene	ND	1112.1	
Bromochloromethane	ND	1	
Chloroform	ND	1	a general way
1,1,1-Trichloroethane	ND	1	
Carbon Tetrachloride	ND	1	
1,1-Dichloropropene	ND	1	
Benzene	ND	1	
1,2-Dichloroethane	ND	1	
Trichloroethene	ND	1	
1,2-Dichloropropane	ND	1	
Dibromomethane	ND	1	
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND	1	
Toluene	ND	· 1	
trans-1,3-Dichloropropene	ND	1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-18 continued...

		Result	
Analyte		(ug/L)	RL
1,1,2-Trichloroethane	ND		1
Tetrachloroethene	ND		
1,3-Dichloropropane	ND		1
Dibromochloromethane	ND		
1,2-Dibromoethane	ND		
Chlorobenzene	ND		1
Ethylbenzene	ND		1
1,1,1,2-Tetrachloroethane	ND		1
m,p-Xylene	ND		2
o-Xylene	ND .		1
Styrene	ND		1
Bromoform	ND		.
Isopropylbenzene	, ND		1: 2: 11: 11: 11: 11: 11: 11: 11: 11: 11
Bromobenzene	ND		1
n-Propylbenzene	ND		
1,1,2,2-Tetrachloroethane	ND		· 10 · 1
1,2,3-Trichloropropane	ND		
2-Chlorotoluene	ND		1 1
1,3,5-Trimethylbenzene	ND		1
4-Chlorotoluene	ND		1
t-Butylbenzene	ND		1
1,2,4-Trimethylbenzene	ND		1
sec-Butylbenzene	ND		
1,3-Dichlorobenzene	ND		H-1
4-Isopropyltoluene	ND		
1,4-Dichlorobenzene	ND		1
n-Butylbenzene	ND		1
1,2-Dichlorobenzene	ND		. 1
1,2-Dibromo-3-chloropropane	ND		
1,2,4-Trichlorobenzene	ND		1
1,2,3-Trichlorobenzene	ND		
Hexachlorobutadiene	ND		1 1 1 1 1 1 1
Naphthalene	ND		1 1 1

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP6-W-18.0

 Lab ID:
 128457-19

 Date Received:
 6/17/2005

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/24/2005

 % Solids

 Dilution Factor
 20

Volatile Organics by USEPA Method 5035\8260B

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.3		80	120
Fluorobenzene	104		80	120
Toluene-D8	109		80	120
Ethylbenzene-d10	104		80	120
Bromofluorobenzene	109		80	120
Trifluorotoluene	109		80	120

		Result		
Analyte		(ug/L)	RL	Flags
Dichlorodifluoromethane	ND		20	
Chloromethane	ND		20	
Vinyl chloride	, ND		20	
Bromomethane	ND		20	A PORT
Chloroethane	ND		20	
Trichlorofluoromethane	ND		20	
1,1-Dichloroethene	ND		20	
Methylene chloride	ND		20	
trans-1,2-Dichloroethene	ND		20	
1,1-Dichloroethane	ND		20	
2,2-Dichloropropane	ND		20	
cis-1,2-Dichloroethene		144	20.	
Bromochloromethane	ND		20	
Chloroform	ND		20	
1,1,1-Trichloroethane	ND		20	
Carbon Tetrachloride	ND		20	
1,1-Dichloropropene	ND		20	
Benzene	ND		20	
1,2-Dichloroethane	ND		20	
Trichloroethene		1130	20	
1,2-Dichloropropane	ND		20	
Dibromomethane	ND		20	
Bromodichloromethane	ND		20	
cis-1,3-Dichloropropene	ND		20	
Toluene	ND		20	
rans-1,3-Dichloropropene	ND		20	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-19 continued...

	Result	
Analyte	(ug/L)	RL
1,1,2-Trichloroethane	ND	20
Tetrachloroethene	ND	20
1,3-Dichloropropane	ND	20
Dibromochloromethane	ND	20
1,2-Dibromoethane	ND	20
Chlorobenzene	ND	20
Ethylbenzene	ND	20
1,1,1,2-Tetrachloroethane	ND	20
m,p-Xylene	ND	40
o-Xylene	ND	20
Styrene	ND	20
Bromoform	ND	20
Isopropylbenzene	ND	20
Bromobenzene	ND	20
n-Propylbenzene	ND	20
1,1,2,2-Tetrachloroethane	ND	20
1,2,3-Trichloropropane	ND	20
2-Chlorotoluene	ND	20
1,3,5-Trimethylbenzene	ND	20
4-Chlorotoluene	ND	20
t-Butylbenzene	ND	20
1,2,4-Trimethylbenzene	ND	20
sec-Butylbenzene	ND	20
1,3-Dichlorobenzene	ND	20
4-Isopropyltoluene	ND	20
1,4-Dichlorobenzene	ND	20
n-Butylbenzene	ND	20
1,2-Dichlorobenzene	ND	20
1,2-Dibromo-3-chloropropane	ND	20
1,2,4-Trichlorobenzene	ND	20
1,2,3-Trichlorobenzene	ND	20
Hexachlorobutadiene	ND	20
Naphthalene	ND	20

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP8-W-10.0

 Lab ID:
 128457-21

 Date Received:
 6/17/2005

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/24/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	97.6		80	120
Fluorobenzene	106		80	120
Toluene-D8	108		80	120
Ethylbenzene-d10	108		80	120
Bromofluorobenzene	104		80	120
Trifluorotoluene	110		80	120

		Result		
Analyte		(ug/L)	RL	Flags
Dichlorodifluoromethane	ND		g/ 1	
Chloromethane	ND		1	Selection
Vinyl chloride	ND		1	
Bromomethane	ND		1	
Chloroethane	ND		1	
Trichlorofluoromethane	ND		1	7 15
1,1-Dichloroethene	ND			
Methylene chloride	ND		0.1	
trans-1,2-Dichloroethene	ND		1	
1,1-Dichloroethane	ND		1	
2,2-Dichloropropane	ND		4.04	and the second
cis-1,2-Dichloroethene		2.26	1	
Bromochloromethane	ND		1	
Chloroform	ND		1	
1,1,1-Trichloroethane	ND		1	
Carbon Tetrachloride	ND		1	
1,1-Dichloropropene	ND		1	
Benzene	ND		1	
1,2-Dichloroethane	ND		1	
Trichloroethene		16.8	1	
1,2-Dichloropropane	ND		1	
Dibromomethane	ND		1	
Bromodichloromethane	ND		1	
cis-1,3-Dichloropropene	ND		1	
Toluene	ND		1	
trans-1,3-Dichloropropene	ND		1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-21 continued...

	Re	sult	
Analyte		g/L)	RL
1,1,2-Trichloroethane	ND		5 35 1 1 s
Tetrachloroethene	ND		1
1,3-Dichloropropane	ND		1
Dibromochloromethane	ND		
1,2-Dibromoethane	ND		
Chlorobenzene	ND		1
Ethylbenzene	ND		1
1,1,1,2-Tetrachloroethane	ND		1
m,p-Xylene	ND		2
o-Xylene	ND		1
Styrene	. ND		
Bromoform	ND		1
Isopropylbenzene	ND		1
Bromobenzene	ND		
n-Propylbenzene	ND		1
1,1,2,2-Tetrachloroethane	ND		1
1,2,3-Trichloropropane	ND		1
2-Chlorotoluene	ND		1
1,3,5-Trimethylbenzene	ND		(140)
4-Chlorotoluene	ND		1
t-Butylbenzene	ND		
1,2,4-Trimethylbenzene	ND		1
sec-Butylbenzene	ND		
1,3-Dichlorobenzene	ND		11
4-Isopropyltoluene	ND		1.00
1,4-Dichlorobenzene	ND		4
n-Butylbenzene	ND		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,2-Dichlorobenzene	ND		1
1,2-Dibromo-3-chloropropane	ND		1
1,2,4-Trichlorobenzene	ND		
1,2,3-Trichlorobenzene	ND		101
Hexachlorobutadiene	ND		1
Naphthalene		87	1

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 MW1-W-35.0

 Lab ID:
 128457-22

 Date Received:
 6/17/2005

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/24/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.6		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	107		80	120
Bromofluorobenzene	104		80	120
Trifluorotoluene	105		80	120

	Result		
Analyte	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND	1	
Chloromethane	ND	1	
Vinyl chloride	ND	1	
Bromomethane	ND		
Chloroethane	ND	1	
Trichlorofluoromethane	ND	1	
1,1-Dichloroethene	ND	1	
Methylene chloride	ND		
trans-1,2-Dichloroethene	ND	1	Action and Property of
1,1-Dichloroethane	ND		
2,2-Dichloropropane	ND	1	
cis-1,2-Dichloroethene	ND		
Bromochloromethane	ND	1	
Chloroform	ND		
1,1,1-Trichloroethane	ND	1	
Carbon Tetrachloride	ND		
1,1-Dichloropropene	ND	1	
Benzene	ND	1	
1,2-Dichloroethane	ND	1	
Trichloroethene	ND	1	
1,2-Dichloropropane	ND		
Dibromomethane	ND	1	
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND	1	
Toluene	ND	1	
rans-1,3-Dichloropropene	ND		
	A 8400 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	2 N N 1 A	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-22 continued...

시간을 시작하게 살아가지 않는데?		Result	
Analyte		(ug/L)	RL
1,1,2-Trichloroethane	ND	ADMARIA SA	
Tetrachloroethene	ND		
1,3-Dichloropropane	ND		1
Dibromochloromethane	ND		
1,2-Dibromoethane	ND		1
Chlorobenzene	ND		1
Ethylbenzene	ND		1
1,1,1,2-Tetrachloroethane	ND		1
m,p-Xylene	ND		2
o-Xylene	ND		
Styrene	ND		
Bromoform	ND		1
Isopropylbenzene	ND		1
Bromobenzene	ND		1
n-Propylbenzene	ND		1
1,1,2,2-Tetrachloroethane	ND		1
1,2,3-Trichloropropane	ND		
2-Chlorotoluene	ND		• • • • • • • • • • • • • • • • • • •
1,3,5-Trimethylbenzene	ND		
4-Chlorotoluene	ND		1
t-Butylbenzene	ND		1
1,2,4-Trimethylbenzene	. ND		
sec-Butylbenzene	ND		1
1,3-Dichlorobenzene	ND		
4-Isopropyltoluene	ND		
1,4-Dichlorobenzene	ND		
n-Butylbenzene	ND		. *
1,2-Dichlorobenzene	ND		
1,2-Dibromo-3-chloropropane	ND		11
1,2,4-Trichlorobenzene	ND.		1
1,2,3-Trichlorobenzene	ND		1
Hexachlorobutadiene	ND		1
Naphthalene	ND		1

Client Name;
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc.

MW2-W-0605

128457-23

6/17/2005

6/23/2005

6/24/2005

Volatile Organics by USEPA Method 5035\8260B

			Recove	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	90.7		80	120	
Fluorobenzene	104		80	120	
Toluene-D8	101		80	120	
Ethylbenzene-d10	103		80	120	
Bromofluorobenzene	101		80	120	
Trifluorotoluene	102		80	120	

Analyte	Result		
	(ug/L)	RL	Flags
Dichlorodifluoromethane ND Chloromethane ND		1	
		1	
Vinyl chloride ND		1	
Bromomethane ND		1	
Chloroethane ND			
Trichlorofluoromethane ND		1	
1,1-Dichloroethene ND			
Methylene chloride ND			
trans-1,2-Dichloroethene ND		1	
1,1-Dichloroethane ND		1	- 1 - 2 - 4 - 3 - 30 Res - 376
2,2-Dichloropropane ND		1	
cis-1,2-Dichloroethene ND			
Bromochloromethane		1	
Chloroform		1 1	
1,1,1-Trichloroethane ND		1	
Carbon Tetrachloride ND		1	
1,1-Dichloropropene ND		1	
Benzene ND		1	
1,2-Dichloroethane ND		1	
Trichloroethene		1	
1,2-Dichloropropane ND		1	
Dibromomethane		1	
Bromodichloromethane ND		1	
cis-1,3-Dichloropropene ND		1	
Toluene		1	
trans-1,3-Dichloropropene ND		1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-23 continued...

100	Result	
MD	(ug/L)	RL
		1.30
		1
		1. 7. 1
	Paris Inches	
]
		2
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
		1
		1 1
		. Militaria (m. 1841) 1 de jan - 1
		· (1)
		1
		1
		1
		1
		1
		10 10 10 10 10 10 10 10 10 10 10 10 10 1
(1)		
		1
		1
ND		
ND		1
ND		1
ND		
	ND ND	(ug/L) ND N

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP7-W-14.0

 Lab ID:
 128457-20

 Date Received:
 6/17/2005

 Date Prepared:
 6/24/2005

 Date Analyzed:
 6/25/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

얼마 바람이 되는 사람들은 살아보다 하나 하는데			Recove	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	94.7		80	120	
Fluorobenzene	106	- 196 - 1961	80	120	
Toluene-D8	109		80	120	
Ethylbenzene-d10	105		80	120	
Bromofluorobenzene	111		80	120	
Trifluorotoluene	105		80	120	
imuorotoluene	105		80	120	

	R	lesult		
Analyte	(ug/L)	RL	Flag
Dichlorodifluoromethane	ND		1	
Chloromethane	ND		1	
Vinyl chloride	ND		1	
Bromomethane	ND		1 1 1	
Chloroethane	ND		1	
Trichlorofluoromethane	ND		1	
1,1-Dichloroethene	ND		1	
Methylene chloride	ND		1	
trans-1,2-Dichloroethene	ND		1	
1,1-Dichloroethane	ND		1	
2,2-Dichloropropane	ND			
cis-1,2-Dichloroethene	ND			
Bromochloromethane	ND		1	
Chloroform	ND		1	
1,1,1-Trichloroethane	ND		1	
Carbon Tetrachloride	ND		1	
1,1-Dichloropropene	ND		.	
Benzene	. ND		1	
1,2-Dichloroethane	ND		1	
Trichloroethene	ND		1	
1,2-Dichloropropane	ND		1	
Dibromomethane	ND		1	
Bromodichloromethane	ND		1	
cis-1,3-Dichloropropene	ND		1 1	
Toluene	ND		1	
trans-1,3-Dichloropropene	ND		1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-20 continued...

		Result	
Analyte		(ug/L)	RL
1,1,2-Trichloroethane	ND	vojanje do die je	1
Tetrachloroethene	ND		1
1,3-Dichloropropane	ND		1.1
Dibromochloromethane	ND		
1,2-Dibromoethane	ND		a techulard adala 1 53
Chlorobenzene	ND		1
Ethylbenzene	ND		1
1,1,1,2-Tetrachloroethane	ND		1
m,p-Xylene	ND		2
o-Xylene	ND		1
Styrene	ND		1
Bromoform	ND		1
Isopropylbenzene	ND		1
Bromobenzene	ND		1
n-Propylbenzene	ND		1
1,1,2,2-Tetrachloroethane	ND		1
1,2,3-Trichloropropane	ND		1
2-Chlorotoluene	ND		1
1,3,5-Trimethylbenzene	ND		1
4-Chlorotoluene	ND		1
t-Butylbenzene	ND		0 1
1,2,4-Trimethylbenzene	ND		- thi 1
sec-Butylbenzene	ND		1
1,3-Dichlorobenzene	ND		1
4-Isopropyltoluene	ND		1
1,4-Dichlorobenzene	ND		1
n-Butylbenzene	ND		1
1,2-Dichlorobenzene	ND		1
1,2-Dibromo-3-chloropropane	ND		1 1 1
1,2,4-Trichlorobenzene	ND		1
1,2,3-Trichlorobenzene	ND		1
Hexachlorobutadiene	ND		1
Naphthalene	ND		1

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP4-W-8.0

 Lab ID:
 128457-17

 Date Received:
 6/17/2005

 Date Prepared:
 7/1/2005

 Date Analyzed:
 7/1/2005

 % Solids

 Dilution Factor
 1

Volatile Organics by USEPA Method 5035\8260B

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	93.1		80	120
Fluorobenzene	105		80	120
Toluene-D8	108		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	103		80	120
Trifluorotoluene	112		80	120

Result		
(ug/L)	RL	Flag
ND	1	
ND	1-	
ND	1	
ND	0 1	
ND	1	
ND	1	
ND	1	
ND	1	
ND	1	
ND	1	
ND	. 1	
ND .	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
ND	1	
ND	1 (1) (1) (1) (1)	
ND	1 48 mg/g 2 1 1 1 1 mg/g	
ND		
ND	- 1 ·	
ND	1.	
ND .	1	
ND	1 1	
	(ug/L) ND	ND 1 ND 1

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-17 continued...

	Result	
Analyte	(ug/L)	RL
1,1,2-Trichloroethane	ND .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tetrachloroethene	ND	1
1,3-Dichloropropane	ND	1
Dibromochloromethane	ND	1
1,2-Dibromoethane	ND.	
Chlorobenzene	ND	1
Ethylbenzene	ND	. 1
1,1,1,2-Tetrachloroethane	ND	1
m,p-Xylene	ND	2
o-Xylene	ND	1.
Styrene	ND	1
Bromoform	ND	1
Isopropylbenzene	ND	
Bromobenzene	ND	1
n-Propylbenzene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
1,2,3-Trichloropropane	ND	1
2-Chlorotoluene	ND	1
1,3,5-Trimethylbenzene	ND	1
4-Chlorotoluene	ND	1
t-Butylbenzene	ND	1
1,2,4-Trimethylbenzene	ND	1
sec-Butylbenzene	ND	1
1,3-Dichlorobenzene	ND	1
4-Isopropyltoluene	ND	1
1,4-Dichlorobenzene	ND	1
n-Butylbenzene	ND	1
1,2-Dichlorobenzene	ND	1
1,2-Dibromo-3-chloropropane	ND	1
1,2,4-Trichlorobenzene	ND	1
1,2,3-Trichlorobenzene	ND	
Hexachlorobutadiene	ND	
Naphthalene	ND	1

1999

Client Name: Maul Foster & Alongi, Inc. Client ID: GP4-S-1.5 Lab ID: 128457-01 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 80.65 Dilution Factor 0.1

Volatile Organics by USEPA Method 5035\8260B

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	84.3		75	125
Fluorobenzene	96		75	125
Toluene-D8	107		75	125
Ethylbenzene-d10	104		75	125
Bromofluorobenzene	105		75	125
Trifluorotoluene	106		75	125

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	51.7	
Chloromethane	ND	51.7	- I had a delicated
Vinyl chloride	ND	10.3	
Bromomethane	ND	51.7	
Chloroethane	ND	103	
Trichlorofluoromethane	ND	51.7	A PARTIE
1,1-Dichloroethene	ND	10.3	
Methylene chloride	ND	10.3	
trans-1,2-Dichloroethene	ND	51.7	Transition published to the
1,1-Dichloroethane	ND	51.7	
2,2-Dichloropropane	ND	51.7	
cis-1,2-Dichloroethene	ND	51.7	
Bromochloromethane	ND	51.7	
Chloroform	ND	51.7	
1,1,1-Trichloroethane	ND	10,3	
Carbon Tetrachloride	ND	10.3	
1,1-Dichloropropene	ND	51.7	
Benzene	ND	10.3	
1,2-Dichloroethane	ND	10.3	
Trichloroethene	ND	10.3	
1,2-Dichloropropane	ND	10.3	
Dibromomethane	ND	51.7	
Bromodichloromethane	ND	51.7	
cis-1,3-Dichloropropene	ND	51.7	
Toluene	ND	51.7	
rans-1,3-Dichloropropene	ND	51.7	
		- 1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-01 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	51.7
Tetrachloroethene	ND	10.3
1,3-Dichloropropane	ND	10.3
Dibromochloromethane	ND	51.7
1,2-Dibromoethane	ND	1.89
Chlorobenzene	ND	51.7
Ethylbenzene	ND	51.7
1,1,1,2-Tetrachloroethane	ND	51.7
m,p-Xylene	ND	103
o-Xylene	ND	51.7
Styrene	ND	51.7
Bromoform	ND	51.7
Isopropylbenzene	ND	51.7
Bromobenzene	ND	51.7
n-Propylbenzene	ND	51.7
1,1,2,2-Tetrachloroethane	ND	10.3
1,2,3-Trichloropropane	ND	10.3
2-Chlorotoluene	ND	51.7
1,3,5-Trimethylbenzene	ND .	51.7
4-Chlorotoluene	ND	51.7
t-Butylbenzene	ND	51.7
1,2,4-Trimethylbenzene	ND	51.7
sec-Butylbenzene	ND	51.7
1,3-Dichlorobenzene	ND	51.7
4-Isopropyltoluene	ND	51.7
1,4-Dichlorobenzene	ND	51.7
n-Butylbenzene	ND	51.7
1,2-Dichlorobenzene	ND	51.7
1,2-Dibromo-3-chloropropane	ND	51.7
1,2,4-Trichlorobenzene	ND	51.7
1,2,3-Trichlorobenzene	ND.	51.7
Hexachlorobutadiene	ND .	51.7
Naphthalene	ND	51.7

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP5-S-1.5
Lab ID:	128457-02
Date Received:	6/17/05
Date Prepared:	6/28/05
Date Analyzed:	6/28/05
% Solids	89.57
Dilution Factor	0.1

Volatile Organics by USEPA Method 5035\8260B

					Recov	ery Limits	
	Surrogate	% Re	covery	Flags	Low	High	
	Dibromofluoromethane	8	4.9		75	125	
	Fluorobenzene	9	5.5		75	125	
	Toluene-D8	1	108		75	125	
	Ethylbenzene-d10	1	06		75	125	
	The same transfer of the part of the same transfer	1	06		75	125	
	Trifluorotoluene	1	03		75	125	
		1 1	06 06		75 75	125 125	

		Result		
Analyte		(ug/kg)	RL	Flag
Dichlorodifluoromethane	ND		35.6	
Chloromethane	ND		35.6	
Vinyl chloride	ND		7.12	
Bromomethane	ND		35.6	
Chloroethane	ND		71.2	
Trichlorofluoromethane	ND		35.6	
1,1-Dichloroethene	ND		7.12	
Methylene chloride	ND		7.12	
trans-1,2-Dichloroethene	ND		35.6	Single right
1,1-Dichloroethane	ND		35.6	
2,2-Dichloropropane	ND		35.6	21408
cis-1,2-Dichloroethene	ND		35.6	
Bromochloromethane	ND		35.6	
Chloroform	ND		35.6	
1,1,1-Trichloroethane	ND		7.12	
Carbon Tetrachloride	ND		7.12	
1,1-Dichloropropene	ND		35.6	
Benzene	ND		7.12	
1,2-Dichloroethane	ND		7.12	
Trichloroethene	ND		7.12	
1,2-Dichloropropane	ND		7.12	
Dibromomethane	ND		35.6	
Bromodichloromethane	ND		35.6	Anna Maria
cis-1,3-Dichloropropene	ND		35.6	
Toluene	ND		35.6	
trans-1,3-Dichloropropene	ND		35.6	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-02 continued...

Analyte	Result	
1,1,2-Trichloroethane	(ug/kg) ND	RL
Tetrachloroethene	ND ND	35.6
1,3-Dichloropropane	ND ND	7.12
Dibromochloromethane		7.12
1,2-Dibromoethane	ND ND	35.6
Chlorobenzene	ND ND	1.3
Ethylbenzene	ND ND	35.6
1,1,1,2-Tetrachloroethane	ND ND	35.6
m,p-Xylene	ND ND	35.6
o-Xylene	ND	71.2
Styrene	ND ND	35.6
Bromoform	ND	35.6
Isopropylbenzene	ND	35.6
Bromobenzene	ND	35.6
n-Propylbenzene	ND	35.6 35.6
1,1,2,2-Tetrachloroethane	ND	7.12
1,2,3-Trichloropropane	ND	7.12
2-Chlorotoluene	ND	35.6
1,3,5-Trimethylbenzene	ND	35.6
4-Chlorotoluene	ND	35.6 35.6
t-Butylbenzene	ND	35.6
1,2,4-Trimethylbenzene	ND	35.6
sec-Butylbenzene	ND	35.6
1,3-Dichlorobenzene	ND	35.6
4-Isopropyltoluene	ND	35.6
1,4-Dichlorobenzene	ND	35.6
n-Butylbenzene	ND	35.6
1,2-Dichlorobenzene	ND	35.6
1,2-Dibromo-3-chloropropane	ND	35.6
1,2,4-Trichlorobenzene	ND	35.6
1,2,3-Trichlorobenzene	ND	35.6
Hexachlorobutadiene	ND	35.6
Naphthalene	ND	35.6
		00.0

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP5-S-14.0
Lab ID:	128457-04
Date Received:	6/17/05
Date Prepared:	6/28/05
Date Analyzed:	6/28/05
% Solids	86.12
Dilution Factor	0.1

Volatile Organics by USEPA Method 5035\8260B

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	84.6		75	125
Fluorobenzene	97.1		75	125
Toluene-D8	108		75	125
Ethylbenzene-d10	108		75	125
Bromofluorobenzene	109		75	125
Trifluorotoluene	102		75	125

Apolisto		Result		
Analyte	- 1-0, 51% - 10 1/40	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND		40.5	
Chloromethane	ND		40.5	
Vinyl chloride	ND		8.1	
Bromomethane	ND .		40.5	
Chloroethane	ND		81	E ROSHEN
Trichlorofluoromethane	ND		40.5	
1,1-Dichloroethene	ND		8.1	
Methylene chloride	ND		8.1	
trans-1,2-Dichloroethene	ND		40.5	
1,1-Dichloroethane	ND		40.5	
2,2-Dichloropropane	ND		40.5	
cis-1,2-Dichloroethene	ND		40.5	dne snad
Bromochloromethane	ND		40.5	
Chloroform	ND	fasy vite	40.5	
1,1,1-Trichloroethane	ND		8.1	
Carbon Tetrachloride	ND		8.1	
1,1-Dichloropropene	ND		40.5	
Benzene	ND		8.1	
1,2-Dichloroethane	ND		8.1	
Trichloroethene	ND		8.1	
1,2-Dichloropropane	ND		8.1	
Dibromomethane	ND		40.5	
Bromodichloromethane	ND		40.5	
cis-1,3-Dichloropropene	ND		40.5	
Toluene	ND		40.5	
trans-1,3-Dichloropropene	ND		40.5	

Volatile Organics by USEPA Method 5035\8260B data for 128457-04 continued...

나이다는 그 말으로 그리다면서 것	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	40.5
Tetrachloroethene	ND	8.1
1,3-Dichloropropane	ND	8.1
	ND	40.5
1,2-Dibromoethane	ND	1.48
Chlorobenzene	ND	40.5
	ND	40.5
	ND	40.5
m,p-Xylene	ND	81
e and African in a contract of Market and African Contract of the contract of	ND	40.5
[10] (1.5kg) - 1000 (1.5kg)	ND	40.5
Bromoform	ND	40.5
Isopropylbenzene	ND	40.5
Bromobenzene	ND	40.5
n-Propylbenzene I	ND	40.5
1,1,2,2-Tetrachloroethane	ND	8.1
1,2,3-Trichloropropane	ND	8.1
2-Chlorotoluene	ND	40.5
1,3,5-Trimethylbenzene	VD	40.5
4-Chlorotoluene	ND	40.5
The state of the s	ND	40.5
1,2,4-Trimethylbenzene	ND .	40.5
	ND	40.5
1,3-Dichlorobenzene	ND	40.5
4-Isopropyltoluene	ND	40.5
1,4-Dichlorobenzene	ND	40.5
n-Butylbenzene	ND	40.5
1,2-Dichlorobenzene	ND	40.5
	ND	40.5
1,2,4-Trichlorobenzene	ND	40.5
1,2,3-Trichlorobenzene	ND	40.5
Hexachlorobutadiene	ND	40.5
Naphthalene	ND	40.5

Client Name:	Maul Foster & Alongi, Inc
Client ID:	GP6-S-1.0
Lab ID:	128457-05
Date Received:	6/17/05
Date Prepared:	6/28/05
Date Analyzed:	6/28/05
% Solids	91.51
Dilution Factor	0.1

Volatile Organics by USEPA Method 5035\8260B

<u> 보고면 하다 보고 하는 것들이 모르는 것이다.</u>			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	85.9		75	125
Fluorobenzene	97		75	125
Toluene-D8	108		75	125
Ethylbenzene-d10	107		75	125
Bromofluorobenzene	109		75	125
Trifluorotoluene	111		75	125

		Result		11.60
Analyte		(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND		42.5	
Chloromethane	. ND		42.5	
Vinyl chloride	ND		8.5	
Bromomethane	ND		42.5	
Chloroethane	ND		85	
Trichlorofluoromethane	ND		42.5	
1,1-Dichloroethene	ND		8.5	
Methylene chloride	ND		8.5	
trans-1,2-Dichloroethene	ND		42.5	
1,1-Dichloroethane	ND		42.5	
2,2-Dichloropropane	ND		42.5	
cis-1,2-Dichloroethene	ND		42.5	
Bromochloromethane	ND		42.5	
Chloroform	ND		42.5	
1,1,1-Trichloroethane	ND		8.5	
Carbon Tetrachloride	ND		8.5	
1,1-Dichloropropene	ND		42.5	
Benzene	ND		8.5	
1,2-Dichloroethane	ND		8.5	
Trichloroethene		40.5	8.5	
1,2-Dichloropropane	ND		8.5	
Dibromomethane	ND		42.5	
Bromodichloromethane	ND		42.5	
cis-1,3-Dichloropropene	ND		42.5	
Toluene	ND		42.5	
rans-1,3-Dichloropropene	ND		42.5	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-05 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	42.5
Tetrachloroethene	ND	8.5
1,3-Dichloropropane	ND	8.5
Dibromochloromethane	ND	42.5
1,2-Dibromoethane	ND	1.56
Chlorobenzene	ND	42.5
Ethylbenzene	ND	42.5
1,1,1,2-Tetrachloroethane	ND	42.5
m,p-Xylene	ND	85
o-Xylene	ND	42.5
Styrene	ND	42.5
Bromoform	ND	42.5
Isopropylbenzene	ND	42.5
Bromobenzene	ND	42.5
n-Propylbenzene	ND	42.5
1,1,2,2-Tetrachloroethane	ND	8.5
1,2,3-Trichloropropane	ND	8.5
2-Chlorotoluene	ND	42.5
1,3,5-Trimethylbenzene	ND	42.5
4-Chlorotoluene	ND	42.5
t-Butylbenzene	ND	42.5
1,2,4-Trimethylbenzene	ND	42.5
sec-Butylbenzene	ND	42.5
1,3-Dichlorobenzene	ND	42.5
4-Isopropyltoluene	ND	42.5
1,4-Dichlorobenzene	ND	42.5
n-Butylbenzene	ND	42.5
1,2-Dichlorobenzene	ND	42.5
1,2-Dibromo-3-chloropropane	ND	42.5
1,2,4-Trichlorobenzene	ND	42.5
1,2,3-Trichlorobenzene	ND	42.5
Hexachlorobutadiene	ND	42.5
Naphthalene	ND	42.5
		TL.J

Client Name: Maul Foster & Alongi, Inc. Client ID: GP6-S-14.5 Lab ID: 128457-07 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 91.45 Dilution Factor 0.1

Volatile Organics by USEPA Method 5035\8260B

그림 얼마 가게 하는 그는 가는데 하는데 그들이			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	85.5		75	125
Fluorobenzene	97.8		75	125
Toluene-D8	106		75	125
Ethylbenzene-d10	106		75	125
Bromofluorobenzene	106		75	125
Trifluorotoluene	107		75	125

하다 하고 뭐야요? 그는 밤이라요	R	esult		
Analyte	(u	g/kg)	RL	Flags
Dichlorodifluoromethane	ND		41.4	
Chloromethane	ND		41.4	
Vinyl chloride	ND		8.28	
Bromomethane	ND		41.4	
Chloroethane	ND		82.8	
Trichlorofluoromethane	ND		41.4	
1,1-Dichloroethene	ND		8.28	
Methylene chloride	ND		8.28	
trans-1,2-Dichloroethene	ND		41.4	
1,1-Dichloroethane	ND		41.4	
2,2-Dichloropropane	ND		41.4	
cis-1,2-Dichloroethene		149	41.4	
Bromochloromethane	ND		41.4	
Chloroform	ND		41.4	
1,1,1-Trichloroethane	ND		8.28	
Carbon Tetrachloride	ND		8.28	
1,1-Dichloropropene	ND		41.4	
Benzene	ND		8.28	A.A.
1,2-Dichloroethane	ND		8.28	
Trichloroethene		1160	8.28	
1,2-Dichloropropane	ND		8.28	
Dibromomethane	ND		41.4	
Bromodichloromethane	ND		41.4	
cis-1,3-Dichloropropene	ND		41.4	refer dig .
Toluene	ND ND		41.4	
irans-1,3-Dichloropropene	ND	- A	41.4	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-07 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	41.4
Tetrachloroethene	ND	8.28
1,3-Dichloropropane	ND	8.28
Dibromochloromethane	ND	41.4
1,2-Dibromoethane	ND	1.51
Chlorobenzene	ND	41.4
Ethylbenzene	ND	41.4
1,1,1,2-Tetrachloroethane	ND	41.4
m,p-Xylene	ND	82.8
o-Xylene	ND	41.4
Styrene	ND	41.4
Bromoform	ND	41.4
Isopropylbenzene	ND	41.4
Bromobenzene	ND	41.4
n-Propylbenzene	ND	41.4
1,1,2,2-Tetrachloroethane	ND	8.28
1,2,3-Trichloropropane	ND	8.28
2-Chlorotoluene	ND	41.4
1,3,5-Trimethylbenzene	ND	41.4
4-Chlorotoluene	ND	41.4
t-Butylbenzene	ND	41.4
1,2,4-Trimethylbenzene	ND	41.4
sec-Butylbenzene	ND	41.4
1,3-Dichlorobenzene	ND	41.4
4-Isopropyltoluene	ND	41.4
1,4-Dichlorobenzene	ND	41.4
n-Butylbenzene	ND	41.4
1,2-Dichlorobenzene	ND	41.4
1,2-Dibromo-3-chloropropane	ND.	41.4
1,2,4-Trichlorobenzene	ND	41.4
1,2,3-Trichlorobenzene	ND	41.4
Hexachlorobutadiene	ND	41.4
Naphthalene	ND	41.4
v Brain in a company of the company		

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP7-S-2,0
Lab ID:	128457-08
Date Received:	6/17/05
Date Prepared:	6/28/05
Date Analyzed:	6/28/05
% Solids	87.18
Dilution Factor	0.1

Volatile Organics by USEPA Method 6035\8260B

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	84		75	125
Fluorobenzene	96.4		75	125
Toluene-D8	106		75	125
Ethylbenzene-d10	106		75	125
Bromofluorobenzene	108		75	125
Trifluorotoluene	106		75	125

	Result	
Analyte	(ug/kg)	RL
Dichlorodifluoromethane	ND	39
Chloromethane	ND ,	39
Vinyl chloride	ND	7.81
Bromomethane	ND .	39
Chloroethane	ND	78.1
Trichlorofluoromethane	ND .	39
1,1-Dichloroethene	ND	7.81
Methylene chloride	ND	7.81
trans-1,2-Dichloroethene	ND	39
1,1-Dichloroethane	ND	39
2,2-Dichloropropane	ND	39
cis-1,2-Dichloroethene	ND	39
Bromochloromethane	ND	39
Chloroform	ND	39
1,1,1-Trichloroethane	ND	7.81
Carbon Tetrachloride	ND	7.81
1,1-Dichloropropene	ND	39
Benzene	ND	7.81
1,2-Dichloroethane	ND	7.81
Trichloroethene	ND	7.81
1,2-Dichloropropane	ND	7.81
Dibromomethane	ND	39
Bromodichloromethane	ND	39
cis-1,3-Dichloropropene	ND	39
Toluene	ND	39
.rans-1,3-Dichloropropene	ND	39

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-08 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	39
Tetrachloroethene	ND	7.81
1,3-Dichloropropane	ND	7.81
Dibromochloromethane	ND	39
1,2-Dibromoethane	ND	1.43
Chlorobenzene	ND .	39
Ethylbenzene	ND	39
1,1,1,2-Tetrachloroethane	ND	39
m,p-Xylene	ND	78.1
o-Xylene	ND	39
Styrene	ND	39
Bromoform	ND	39
Isopropylbenzene	ND	39
Bromobenzene	ND	39
n-Propylbenzene	ND	39
1,1,2,2-Tetrachloroethane	ND	7.81
1,2,3-Trichloropropane	ND	7.81
2-Chlorotoluene	ND	39
1,3,5-Trimethylbenzene	ND	39
4-Chlorotoluene	ND	39
t-Butylbenzene	ND	39
1,2,4-Trimethylbenzene	ND	39
sec-Butylbenzene	ND	39
1,3-Dichlorobenzene	·ND	39
4-Isopropyltoluene	ND	39
1,4-Dichlorobenzene	ND	39
n-Butylbenzene	ND	39
1,2-Dichlorobenzene	ND	39
1,2-Dibromo-3-chloropropane	ND	39
1,2,4-Trichlorobenzene	ND	39
1,2,3-Trichlorobenzene	ND	39
Hexachlorobutadiene	ND	39
Naphthalene	ND	39

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP7-S-8.0
Lab ID:	128457-09
Date Received:	6/17/05
Date Prepared:	6/28/05
Date Analyzed:	6/28/05
% Solids	87.02
Dilution Factor	0.1

Volatile Organics by USEPA Method 5035\8260B

		au au	Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	82.1		75	125
Fluorobenzene	95.9		75	125
Toluene-D8	107		75	125
Ethylbenzene-d10	106		75	125
Bromofluorobenzene	106		75	125
Trifluorotoluene	100		75	125

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	44.2	
Chloromethane	ND	44.2	
Vinyl chloride	ND	8.84	
Bromomethane	ND	44.2	SAME N
Chloroethane	ND	88.4	
Trichlorofluoromethane	ND	44.2	
1,1-Dichloroethene	ND	8.84	
Methylene chloride	ND	8.84	
trans-1,2-Dichloroethene	ND	44.2	
1,1-Dichloroethane	ND	44.2	i ngayan
2,2-Dichloropropane	ND	44.2	
cis-1,2-Dichloroethene	ND	44.2	
Bromochloromethane	ND	44.2	
Chloroform	ND	44.2	
1,1,1-Trichloroethane	ND	8.84	
Carbon Tetrachloride	ND	8.84	
1,1-Dichloropropene	ND	44.2	
Benzene	ND	8.84	
1,2-Dichloroethane	ND	8.84	
Trichloroethene	ND	8.84	
1,2-Dichloropropane	ND	8.84	
Dibromomethane	ND	44.2	
Bromodichloromethane	ND	44.2	
cis-1,3-Dichloropropene	ND	44.2	
Toluene	ND	44.2	
.rans-1,3-Dichloropropene	ND	44.2	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 1.28457-09 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	44.2
Tetrachloroethene	ND	8.84
1,3-Dichloropropane	ND	8.84
Dibromochloromethane	ND	44.2
1,2-Dibromoethane	ND	1.62
Chlorobenzene	ND	44.2
Ethylbenzene	ND	44.2
1,1,1,2-Tetrachloroethane	ND	44.2
m,p-Xylene	ND	88.4
o-Xylene	ND	44.2
Styrene	ND	44.2
Bromoform	ND	44.2
Isopropylbenzene	ND	44.2
Bromobenzene	ND	44.2
n-Propylbenzene	ND	44.2
1,1,2,2-Tetrachloroethane	ND	8.84
1,2,3-Trichloropropane	ND	8.84
2-Chlorotoluene	ND	44.2
1,3,5-Trimethylbenzene	ND	44.2
4-Chlorotoluene	ND	44.2
t-Butylbenzene	ND	44.2
1,2,4-Trimethylbenzene	ND	44.2
sec-Butylbenzene	ND	44.2
1,3-Dichlorobenzene	ND	44.2
4-Isopropyltoluene	ND	44.2
1,4-Dichlorobenzene	ND	44.2
n-Butylbenzene	ND	44.2
1,2-Dichlorobenzene	ND	44.2
1,2-Dibromo-3-chloropropane	ND	44.2
1,2,4-Trichlorobenzene	ND	44.2
1,2,3-Trichlorobenzene	ND	44.2
Hexachlorobutadiene	ND	44.2
Naphthalene	ND	44.2

Client Name: Maul Foster & Alongi, Inc. Client ID: GP8-S-1.5 Lab ID: 128457-10 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 80.93 Dilution Factor 0.1

Volatile Organics by USEPA Method 5035\8260B

its
1

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	49.3	
Chloromethane	ND	49.3	
Vinyl chloride	ND	9.86	
Bromomethane	ND	49.3	
Chloroethane	ND	98.6	0.00
Trichlorofluoromethane	ND	49.3	
1,1-Dichloroethene	ND	9.86	
Methylene chloride	ND	9.86	
trans-1,2-Dichloroethene	ND	49.3	Area Stription
1,1-Dichloroethane	ND	49.3	
2,2-Dichloropropane	ND	49.3	
cis-1,2-Dichloroethene	ND	49.3	
Bromochloromethane	ND	49.3	
Chloroform	ND	49.3	
1,1,1-Trichloroethane	ND	9.86	
Carbon Tetrachloride	ND	9.86	
1,1-Dichloropropene	ND	49.3	
Benzene	ND	9.86	
1,2-Dichloroethane	ND	9.86	
Trichloroethene	ND	9.86	
1,2-Dichloropropane	ND	9,86	
Dibromomethane	ND	49.3	
Bromodichloromethane	ND	49.3	
cis-1,3-Dichloropropene	ND	49.3	
Toluene	ND	49.3	
trans-1,3-Dichloropropene	ND	49.3	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-10 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	49.3
Tetrachloroethene	ND	9.86
1,3-Dichloropropane	ND	, 9.86
Dibromochloromethane	ND	49.3
1,2-Dibromoethane	ND	1.8
Chlorobenzene	ND	49.3
Ethylbenzene	ND .	49.3
1,1,1,2-Tetrachloroethane	ND	49.3
m,p-Xylene	ND	98.6
o-Xylene	ND	49.3
Styrene	ND	49.3
Bromoform	ND	49.3
Isopropylbenzene	ND	49.3
Bromobenzene	ND	49.3
n-Propylbenzene	ND	49.3
1,1,2,2-Tetrachloroethane	ND	9.86
1,2,3-Trichloropropane	ND	9.86
2-Chlorotoluene	ND	49.3
1,3,5-Trimethylbenzene	ND	49.3
4-Chlorotoluene	ND	49.3
t-Butylbenzene	ND	49.3
1,2,4-Trimethylbenzene	ND	49.3
sec-Butylbenzene	ND	49.3
1,3-Dichlorobenzene	ND	49.3
4-Isopropyltoluene	ND	49.3
1,4-Dichlorobenzene	ND	49.3
n-Butylbenzene	ND	49.3
1,2-Dichlorobenzene	ND	49.3
1,2-Dibromo-3-chloropropane	ND	49.3
1,2,4-Trichlorobenzene	ND	49.3
1,2,3-Trichlorobenzene	ND	49.3
Hexachlorobutadiene	ND	49.3
Naphthalene	ND	49.3

Client Name: Maul Foster & Alongi, Inc. Client ID: GP9-S-2.0 Lab ID: 128457-11 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 87.84 **Dilution Factor** 0.1

Volatile Organics by USEPA Method 5035\8260B

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	82.4		75	125
Fluorobenzene	96.8		75	125
Toluene-D8	106		75	125
Ethylbenzene-d10	105	7 .	75	125
Bromofluorobenzene	107		75	125
Trifluorotoluene	105		75	125

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	37.1	
Chloromethane	ND	37.1	
Vinyl chloride	ND	7.42	a of the section
Bromomethane	ND	37.1	
Chloroethane	ND	74.2	
Trichlorofluoromethane	ND	37.1	
1,1-Dichloroethene	ND	7.42	
Methylene chloride	ND	7.42	
trans-1,2-Dichloroethene	ND	37.1	
1,1-Dichloroethane	ND	37.1	
2,2-Dichloropropane	ND	37.1	
cis-1,2-Dichloroethene	ND	37.1	
Bromochloromethane	ND	37.1	
Chloroform	ND	37.1	
1,1,1-Trichloroethane	ND	7.42	
Carbon Tetrachloride	ND	7.42	
1,1-Dichloropropene	ND	37.1	
Benzene	ND	7.42	
1,2-Dichloroethane	ND	7.42	
Trichloroethene	ND	7.42	
1,2-Dichloropropane	ND	7,42	
Dibromomethane	ND	37.1	
Bromodichloromethane	ND	37.1	
cis-1,3-Dichloropropene	ND	37.1	
Toluene	ND	37.1	
trans-1,3-Dichloropropene	ND	37.1	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-11 continued...

강화되다 이 어어지다 하다.	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	37.1
Tetrachloroethene	ND	7.42
1,3-Dichloropropane	ND	7.42
Dibromochloromethane	ND	37.1
1,2-Dibromoethane	ND	1.36
Chlorobenzene	ND	37.1
Ethylbenzene	ND	37.1
1,1,1,2-Tetrachloroethane	ND	37.1
m,p-Xylene	ND	74.2
o-Xylene	ND	37.1
Styrene	ND	37.1
Bromoform	ND	37.1
Isopropylbenzene	ND	37.1
Bromobenzene	ND	37.1
n-Propylbenzene	ND	37.1
1,1,2,2-Tetrachloroethane	ND	7.42
1,2,3-Trichloropropane	ND	7.42
2-Chlorotoluene	ND	37.1
1,3,5-Trimethylbenzene	ND	37.1
4-Chlorotoluene	ND	37.1
t-Butylbenzene	ND	37.1
1,2,4-Trimethylbenzene	ND	37.1
sec-Butylbenzene	ND	37.1
1,3-Dichlorobenzene	ND	37.1
4-Isopropyltoluene	ND	37.1
1,4-Dichlorobenzene	ND	37.1
n-Butylbenzene	ND	37.1
1,2-Dichlorobenzene	ND	37.1
1,2-Dibromo-3-chloropropane	ND	37.1
1,2,4-Trichlorobenzene	ND	37.1
1,2,3-Trichlorobenzene	ND	37.1
Hexachlorobutadiene	ND	37.1
Naphthalene	ND	37.1

Client Name: Maul Foster & Alongi, Inc. Client ID: GP10-S-1.5 Lab ID: 128457-12 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 89.62 **Dilution Factor** 0.1

Volatile Organics by USEPA Method 5035\8260B

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	84.6	- Min	75	125
Fluorobenzene	96.3		75	125
Toluene-D8	106		75	125
Ethylbenzene-d10	106		75	125
Bromofluorobenzene	106		75	125
Trifluorotoluene	109	List of the	75	125

	F	Result		Some snede
Analyte	(1	ıg/kg)	RL	Flags
Dichlorodifluoromethane	ND		55.8	
Chloromethane	ND		55.8	
Vinyl chloride	ND -		11.2	
Bromomethane	ND		55.8	
Chloroethane	ND		112	
Trichlorofluoromethane	ND		55.8	
1,1-Dichloroethene		23.7	11.2	
Methylene chloride		17.9	11.2	
trans-1,2-Dichloroethene	ND		55.8	
1,1-Dichloroethane	ND		55.8	
2,2-Dichloropropane	ND		55.8	
cis-1,2-Dichloroethene	ND ·		55.8	
Bromochloromethane	ND		55.8	
Chloroform	ND		55.8	
1,1,1-Trichloroethane	ND		11.2	
Carbon Tetrachloride	ND		11.2	
1,1-Dichloropropene	ND		55.8	
Benzene	ND		11.2	
1,2-Dichloroethane	ND		11.2	
Trichloroethene	ND		11.2	
1,2-Dichloropropane	ND		11.2	
Dibromomethane	ND		55.8	
Bromodichloromethane	ND		55.8	
cis-1,3-Dichloropropene	ND		55.8	
Toluene	ND		55.8	
trans-1,3-Dichloropropene	ND		55.8	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-12 continued...

	Result	
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	55.8
Tetrachloroethene	ND	11.2
1,3-Dichloropropane	ND	11.2
Dibromochloromethane	ND	55.8
1,2-Dibromoethane	ND	2.04
Chlorobenzene	ND	55.8
Ethylbenzene	ND	55.8
1,1,1,2-Tetrachloroethane	ND	55,8
m,p-Xylene	ND	112
o-Xylene	ND	55.8
Styrene	ND	55.8
Bromoform	ND	55.8
Isopropylbenzene	ND	55.8
Bromobenzene	ND	55.8
n-Propylbenzene	ND	55.8
1,1,2,2-Tetrachloroethane	ND	11.2
1,2,3-Trichloropropane	ND	11.2
2-Chlorotoluene	ND	55.8
1,3,5-Trimethylbenzene	ND	55.8
4-Chlorotoluene	ND	55.8
t-Butylbenzene	ND	55.8
1,2,4-Trimethylbenzene	ND	55.8
sec-Butylbenzene	ND	55.8
1,3-Dichlorobenzene	ND	55.8
4-Isopropyltoluene	ND	55.8
1,4-Dichlorobenzene	ND	55.8
n-Butylbenzene	ND	55.8
1,2-Dichlorobenzene	ND	55.8
1,2-Dibromo-3-chloropropane	ND	55.8
1,2,4-Trichlorobenzene	ND	55.8
1,2,3-Trichlorobenzene	ND	55.8
Hexachlorobutadiene	ND	55.8
Naphthalene	ND	55.8

Client Name: Maul Foster & Alongi, Inc. Client ID: GP10-S-13.5 Lab ID: 128457-14 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 92.42 **Dilution Factor** 0.1

Volatile Organics by USEPA Method 5035\8260B

			Recov	Recovery Limits	
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	84.7		75	125	
Fluorobenzene	96.7	rust	75	125	
Toluene-D8	108		75	125	
Ethylbenzene-d10	106		75	125	
Bromofluorobenzene	108		75	125	
Trifluorotoluene	112		75	125	

	Result		
Analyte	(ug/kg)	RL	Flags
Dichlorodifluoromethane	ND	39.8	
Chloromethane	ND	39.8	
Vinyl chloride	ND	7.96	
Bromomethane	ND	39.8	
Chloroethane	ND	79.6	in P. Santa
Trichlorofluoromethane	ND	39.8	
1,1-Dichloroethene	ND	7.96	
Methylene chloride	ND	7.96	
trans-1,2-Dichloroethene	ND	39.8	
1,1-Dichloroethane	ND	39.8	m m
2,2-Dichloropropane	ND	39.8	
cis-1,2-Dichloroethene	ND	39.8	. Andrew
Bromochloromethane	ND	39.8	
Chloroform	ND	39.8	
1,1,1-Trichloroethane	ND	7.96	
Carbon Tetrachloride	ND	7.96	
1,1-Dichloropropene	ND	39.8	
Benzene	ND	7.96	
1,2-Dichloroethane	ND	7.96	
Trichloroethene	ND	7.96	
1,2-Dichloropropane	ND	7.96	
Dibromomethane	ND	39.8	
Bromodichloromethane	ND	39.8	
cis-1,3-Dichloropropene	ND	39.8	
Toluene	ND	39.8	
trans-1,3-Dichloropropene	ND	39.8	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-14 continued...

	Resu	lt
Analyte	(ug/k	g) RL
1,1,2-Trichloroethane	ND	39.8
Tetrachloroethene	ND	7.96
1,3-Dichloropropane	ND	7.96
Dibromochloromethane	ND	39.8
1,2-Dibromoethane	ND	1.46
Chlorobenzene	ND	39.8
Ethylbenzene	ND	39.8
1,1,1,2-Tetrachloroethane	ND	39.8
m,p-Xylene	ND	79.6
o-Xylene	ND	39.8
Styrene	ND	39.8
Bromoform	ND	39.8
Isopropylbenzene	ND	39.8
Bromobenzene	ND	39.8
n-Propylbenzene	ND	39.8
1,1,2,2-Tetrachloroethane	ND	7.96
1,2,3-Trichloropropane	ND	7.96
2-Chlorotoluene	ND	39.8
1,3,5-Trimethylbenzene	ND	39.8
4-Chlorotoluene	ND.	39.8
t-Butylbenzene	ND	39.8
1,2,4-Trimethylbenzene	ND	39.8
sec-Butylbenzene	ND	39.8
1,3-Dichlorobenzene	ND	39.8
4-Isopropyltoluene	ND	39.8
1,4-Dichlorobenzene	ND	39.8
n-Butylbenzene	ND	39.8
1,2-Dichlorobenzene	ND	39.8
1,2-Dibromo-3-chloropropane	ND	39.8
1,2,4-Trichlorobenzene	ND.	39.8
1,2,3-Trichlorobenzene	ND	39.8
Hexachlorobutadiene	ND	39.8
Naphthalene	ND	39.8

Client Name: Maul Foster & Alongi, Inc. Client ID: GP11-S-2.0 Lab ID: 128457-15 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 91.15 Dilution Factor 0.1

Volatile Organics by USEPA Method 5035\8260B

			Reco	very Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	84.4		75	125
Fluorobenzene	97		75	125
Toluene-D8	108		75	125
Ethylbenzene-d10	107		75	1.25
Bromofluorobenzene	110		75	125
Trifluorotoluene	112		75	125

		Result		
Analyte		ug/kg)	RL	Flags
Dichlorodifluoromethane	ND		41.9	
Chloromethane	ND		41.9	
Vinyl chloride	ND		8.37	
Bromomethane	ND		41.9	
Chloroethane	ND		83.7	
Trichlorofluoromethane	ND		41.9	
1,1-Dichloroethene	ND		8.37	
Methylene chloride	ND		8.37	
trans-1,2-Dichloroethene	ND		41.9	
1,1-Dichloroethane	ND		41.9	
2,2-Dichloropropane	ND		41.9	
cis-1,2-Dichloroethene	ND		41.9	
Bromochloromethane	ND		41.9	
Chloroform	ND		41.9	
1,1,1-Trichloroethane	ND		8.37	
Carbon Tetrachloride	ND		8.37	
1,1-Dichloropropene	ND		41.9	
Benzene	. ND		8.37	
1,2-Dichloroethane	ND		8.37	
Trichloroethene		87.2	8.37	
1,2-Dichloropropane	ND		8.37	
Dibromomethane	ND		41.9	
Bromodichloromethane	ND		41.9	
cis-1,3-Dichloropropene	ND		41.9	
Toluene	ND		41.9	
rans-1,3-Dichloropropene	ND		41.9	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-15 continued...

	Result	요. 일본 시민에게 제계 존속하다
Analyte	(ug/kg)	RL
1,1,2-Trichloroethane	ND	41.9
Tetrachloroethene	ND	8.37
1,3-Dichloropropane	ND 0	8.37
Dibromochloromethane	ND	41.9
1,2-Dibromoethane	ND	1.53
Chlorobenzene	ND	41.9
Ethylbenzene	ND	41.9
1,1,1,2-Tetrachloroethane	ND	41.9
m,p-Xylene	ND	83.7
o-Xylene	ND	41.9
Styrene	ND	41.9
Bromoform	ND	41.9
Isopropylbenzene	ND	41.9
Bromobenzene	ND	41.9
n-Propylbenzene	ND	41.9
1,1,2,2-Tetrachloroethane	ND	8.37
1,2,3-Trichloropropane	ND	8.37
2-Chlorotoluene	ND	41.9
1,3,5-Trimethylbenzene	ND	41.9
4-Chlorotoluene	ND	41.9
t-Butylbenzene	ND	41.9
1,2,4-Trimethylbenzene	ND	41.9
sec-Butylbenzene	ND	41.9
1,3-Dichlorobenzene	ND.	41.9
4-Isopropyltoluene	ND	41.9
1,4-Dichlorobenzene	ND	41.9
n-Butylbenzene	ND	41.9
1,2-Dichlorobenzene	ND	41.9
1,2-Dibromo-3-chloropropane	ND	41.9
1,2,4-Trichlorobenzene	ND	41.9
1,2,3-Trichlorobenzene	ND	41.9
Hexachlorobutadiene	ND	41.9
Naphthalene	ND	41.9

Client Name: Maul Foster & Alongi, Inc. Client ID: GP11-S-6.5 Lab ID: 128457-16 Date Received: 6/17/05 Date Prepared: 6/28/05 Date Analyzed: 6/28/05 % Solids 91.5 **Dilution Factor** 0.1

Volatile Organics by USEPA Method 5035\8260B

			Recove	ry Limits	Ò
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	84.7		75	125	
Fluorobenzene	98.6		75	125	
Toluene-D8	108		75	125	
Ethylbenzene-d10	107		75	125	
Bromofluorobenzene	110		75	125	
Trifluorotoluene	112		75	125	

	Re	sult		
Analyte	(uç	g/kg)	RL	Flags
Dichlorodifluoromethane	ND		43	
Chloromethane	ND		43	
Vinyl chloride	ND		8.61	
Bromomethane	ND		43	
Chloroethane	ND		86.1	
Trichlorofluoromethane	ND		43	The Santa
1,1-Dichloroethene	ND		8.61	
Methylene chloride	ND		8.61	
trans-1,2-Dichloroethene	ND		43	Tuesdona (val.)
1,1-Dichloroethane	ND		43	
2,2-Dichloropropane	ND		43	
cis-1,2-Dichloroethene		78.8	43	
Bromochloromethane	ND		43	
Chloroform	ND	Land of the	43	
1,1,1-Trichloroethane	ND		8.61	
Carbon Tetrachloride	ND		8.61	
1,1-Dichloropropene	ND		43	× 2
Benzene	ND		8.61	
1,2-Dichloroethane	ND		8.61	
Trichloroethene		281	8.61	
1,2-Dichloropropane	ND		8.61	Angel englist
Dibromomethane	ND		43	
Bromodichloromethane	ND		43	
cis-1,3-Dichloropropene	ND		43	
Toluene	ND		43	
rans-1,3-Dichloropropene	ND		43	

Flags

Volatile Organics by USEPA Method 5035\8260B data for 128457-16 continued...

Analyte	Result
1,1,2-Trichloroethane ND	(ug/kg) RL
Tetrachloroethene ND	8.61
1,3-Dichloropropane ND	8.61
Dibromochloromethane ND	43
1,2-Dibromoethane ND	1.58
Chlorobenzene ND	43
Ethylbenzene ND	43 43
1,1,1,2-Tetrachloroethane ND	43 43
m,p-Xylene ND	86.1
o-Xylene ND	43
Styrene	43
Bromoform	43
Isopropylbenzene	43
Bromobenzene	43
n-Propylbenzene ND	43
1,1,2,2-Tetrachloroethane ND	8.61
1,2,3-Trichloropropane ND	8.61
2-Chlorotoluene ND	43
1,3,5-Trimethylbenzene ND	43
4-Chlorotoluene ND	43
t-Butylbenzene ND	43
1,2,4-Trimethylbenzene ND	43
sec-Butylbenzene ND	43
1,3-Dichlorobenzene ND	43
4-Isopropyttoluene ND	43
1,4-Dichlorobenzene ND	43
n-Butylbenzene ND	43
1,2-Dichlorobenzene ND	43
1,2-Dibromo-3-chloropropane ND	43
1,2,4-Trichlorobenzene ND	43
1,2,3-Trichlorobenzene ND	43
Hexachlorobutadiene ND	43
Naphthalene ND	43

Client Name:	Maul Foster & Alongi, Inc.				
Client ID:		GP4-W-8.0			
Lab ID:		128457-17			
Date Received:		6/17/2005			
Date Prepared:		6/23/2005	Le mara sign		
Date Analyzed:		6/24/2005	Established		
% Solids					
Dilution Factor			Drawer Parking		

Semivolatile Organics by EPA Method 8270

		Recov	ery Limits	
Surrogate	% Recovery	Flags Low	High	
Nitrobenzene - d5	104	34	146	
2 - Fluorobiphenyl	99.1	35	143	
p - Terphenyl - d14	99.1	35	166	

Result		
(ug/L)	RL	Flags
ID	0.477	yao a amuki
ID .	0.477	e stalenom policinia in t
ID	0.191	
D	0.954	
D	0.191	 William Interpretation read.
D	0.191	
D	0.191	
D	0.191	
		(ug/L) RL ID 0.477 ID 0.191 ID 0.191

Client Name:		Maul Foster & Alongi, Inc.
Client ID:		GP8-W-10.0
Lab ID:	STATE OF THE STATE	128457-21
Date Received:	COURTER CO	6/17/2005
Date Prepared:		6/23/2005
Date Analyzed:		6/24/2005
% Solids		
Dilution Factor		4 14 0 1 6 1 6 6

Semivolatile Organics by EPA Method 8270

en all reserve est		Recovery Limits		
Surrogate	% Recovery	Flags	Low	High
이 보셨다면요. 그는 생각을 가장				
Nitrobenzene - d5	48.5	Marin Print 198	34	146
2 - Fluorobiphenyl	44		35	143
p - Terphenyl - d14	45.1		35	166

	R	lesult		
Analyte	(1	ug/L)	RL	Flags
Naphthalene		26.5	0.485	
2-Methylnaphthalene		8.56	0.485	
2-Chloronaphthalene	ND		0.194	
Acenaphthylene	ND		0.194	
Acenaphthene		0.328	0.194	A september 1994
Fluorene		0.298	0.194	
Phenanthrene		5.54	0.194	
Anthracene	ND		0.194	
Fluoranthene	ND		0.194	
Pyrene	ND		0.194	
Benzo(a)anthracene	ND		0.194	
Chrysene	ND		0.194	
Benzofluoranthenes	ND		0.97	
Benzo(a)pyrene	ND		0.194	
Indeno(1,2,3-cd)pyrene	ND		0.194	
Dibenz(a,h)anthracene	ND		0.194	
Benzo(g,h,i)perylene	, ND		0.194	

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 MW2-W-0605

 Lab ID:
 128457-23

 Date Received:
 6/17/2005

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/24/2005

 % Solids

 Dilution Factor
 1

Semivolatile Organics by EPA Method 8270

Surrogate	% Recovery	Flags	Recove Low	ry Limits High
Guirogato				
Nitrobenzene - d5	99		34	146
2 - Fluorobiphenyl	96.3		35	143
p - Terphenyl - d14	96.2		35	166

	Res	ult		
Analyte	(ug/	'L)	RL	Flags
Naphthalene		0.854	0.481	
2-Methylnaphthalene	ND		0.481	
2-Chloronaphthalene	ND		0.192	
Acenaphthylene	ND		0.192	
Acenaphthene	ND		0.192	
Fluorene	ND		0.192	
Phenanthrene	ND		0.192	
Anthracene	ND		0,192	
Fluoranthene	ND	The state of	0.192	
Pyrene	ND		0.192	
Benzo(a)anthracene	ND		0.192	
Chrysene	ND		0.192	
Benzofluoranthenes	ND		0.962	
Benzo(a)pyrene	ND		0.192	
Indeno(1,2,3-cd)pyrene	ND .		0.192	
Dibenz(a,h)anthracene	ND		0.192	
Benzo(g,h,i)perylene	ND		0.192	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dilution Factor

Maul Foster & Alongi, Inc. GP8-W-10.0 128457-21 6/17/2005 6/23/2005 6/24/2005

Flags

PCBs by EPA Method 8082

					i i
Surrogate	% Recovery	Flags	Low	High	
Tetrachloro-m-xylene	108		32	134	
Decachlorobiphenyl	79.7		55	128	5

	Result	
Analyte	(ug/L)	RL
Aroclor 1016	ND	0.0958
Aroclor 1221	ND	0.0958
Aroclor 1232	ND	0.0958
Aroclor 1242	ND	0.0958
Aroclor 1248	ND	0.0958
Aroclor 1254	ND	0.0958
Aroclor 1260	ND	0.0958

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP8-W-10.0

 Lab ID:
 128457-21

 Date Received:
 6/17/2005

 Date Prepared:
 6/24/2005

 Date Analyzed:
 6/24/2005

 % Solids

 Dilution Factor
 1

Gasoline Range Organics by Method NWTPH-Gx

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	144		50	150
1-Chloro-3-fluorobenzene	112		50	150
Bromofluorobenzene	121		50	150
Pentafluorobenzene	95.8		50	150

	Result			
Analyte	(mg/L)	RL	Flags	i adaldad
Gasoline by NWTPH-G	0.155	0.1		eral enthantie.

시장으로 하는 그런 그렇게 다시고 하는 그리고 얼마나 하는 그리고 가를 가져 있었다.	
Client Name:	Maul Foster & Alongi, Inc.
Client ID:	MW2-W-0605
Lab ID:	128457-23
Date Received:	6/17/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/24/2005
% Solids	
Dilution Factor	

Gasoline Range Organics by Method NWTPH-Gx

	이 사상 다시겠다. 이 나는 얼마를 보는다.	Recove	ry Limits
Surrogate	% Recovery Flags	Low	High
Trifluorotoluene	72.2	50	150
1-Chloro-3-fluorobenzene	65.2	50	150
Bromofluorobenzene	67.9	50	150
Pentafluorobenzene	68.7	50	150

			Meanir			
•	alyte		(mg/L)	RL		Flags
Ga	soline by NWTPH-G	ND			0.1	

Client Name:

Maul Foster & Alongi, Inc.

Client ID: Lab ID: GP4-W-8.0 128457-17

Date Received:

128457-17 6/17/2005

Date Prepared: Date Analyzed: 6/22/2005

% Solids

6/30/2005

Dilution Factor

1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recover	y Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	101	Mendael, A.	50	150

 Result

 Analyte
 (mg/L)
 RL
 Flags

 #2 Diesel
 0.325
 0.239
 X2

 Motor Oil
 ND
 0.478

Client Name:

Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed:

% Solids
Dilution Factor

Maul Foster & Alongi, Inc.

GP8-W-10.0 128457-21 6/17/2005 6/22/2005

1

6/30/2005

Diesel and Motor Oil by NWTPH-Dx Modified

Surrogate % Recovery Flags Low High 50 150

Analyte #2 Diesel Motor Oil Result (mg/L)

ND

0.814

RL

0.24 0.479 Flags X2

Client Name: Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed: % Solids

% Solids
Dilution Factor

Maul Foster & Alongi, Inc.

MW2-W-0605 128457-23 6/17/2005 6/22/2005 6/30/2005

1

Diesel and Motor Oil by NWTPH-Dx Modified

		Recover	y Linns
Surrogate % Recovery 97.3	Flags	Low 50	High 150
o-terphenyl			

Analyte #2 Diesel Motor Oil Result (mg/L) RL 0.438 0.241 0.512 0.482 Flags X1

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP4-S-1.5 128457-01 6/17/2005 6/23/2005 6/29/2005 80.65

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recove	ery Limits	,
Surrogate	% Recovery	Flags	Low	High	
	85.3		50	150	
1-bromo-4-fluorobenzene o-terphenyl	79.6		50	150	

Sample results are on a dry weight basis.

	Result (mg/kg)	RL
Analyte	<24.2	24.2
Gasoline (Toluene-nC12) #2 Diesel (>nC12-nC24)	<60.4	60.4
Motor Oil (>nC24-nC32)	<121	121

Flags

Client Name:

Client ID:

Maul Foster & Alongi, Inc. Lab ID:

Date Received:

Date Prepared: Date Analyzed: % Solids Dilution Factor

GP4-S-1.5 - dup 128457R01

> 6/23/2005 6/29/2005 80.65 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	86.1		50	150
o-terphenyl	92.2		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<24	24	
#2 Diesel (>nC12-nC24)	<59.9	59.9	
Motor Oil (>nC24-nC32)	<120	120	

Maul Foster & Alongi, Inc. Client Name: GP5-S-1.5 Client ID: 128457-02 Lab ID: 6/17/2005 Date Received: 6/23/2005 Date Prepared: 6/23/2005 Date Analyzed: 89.57 % Solids 1 **Dilution Factor**

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Kecove	TY LIIIII
	% Recovery	Flags	Low	High
Surrogate	56.8		50	150
1-bromo-4-fluorobenzene	61.7		50	150
o-terphenyl	VIII			

Analyte	Result (mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<19.4	19.4	
#2 Diesel (>nC12-nC24)	<48.4	48.4	
Motor Oil (>nC24-nC32)	<96.9	96.9	

Maul Foster & Alongi, Inc. Client Name: GP5-S-14.0 Client ID: 128457-04 Lab ID: 6/17/2005 Date Received: 6/23/2005 Date Prepared: 6/23/2005 Date Analyzed: 86.12 % Solids 1 Dilution Factor

NWTPH-HCID - Hydrocarbon Identification Method for Soll Modified

			Recove	ery Limits
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 51.1 57.8	Flags	Low 50 50	High 150 150
0-terprierry	the first of the first passes of the Marketine All			

Analyte	Result (mg/kg)	R	L	Flags
Gasoline (Toluene-nC12)	<20.1		20.1	
	<50.3		50.3	. E. T. da a bash o Tu bhite
#2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	<101		101	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP6-S-1.0 128457-05 6/17/2005 6/23/2005

> 6/30/2005 91.51 1

> > Flags

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recove	ery Limits
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 110 123	Flags	50 50	High 150 150

	Result (mg/kg)	RL
Analyte Gasoline (Toluene-nC12)	<21	21 52.4
#2 Diesel (>nC12-nC24)	<52.4 <105	105

 Client Name:
 Maul Foster & Alongi, Inc.

 Client ID:
 GP6-S-14.5

 Lab ID:
 128457-07

 Date Received:
 6/17/2005

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/23/2005

 % Solids
 91.45

 Dilution Factor
 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

Light infinite grandstaffer in se			Recove	ry Limits
Surrogate	% Recove	ry Flags	Low	High
1-bromo-4-fluorobenzene	76.6		50	150
o-terphenyl	89.1		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<19.6	19.6	
#2 Diesel (>nC12-nC24)	<49	49	with early like 18 and the
Motor Oil (>nC24-nC32)	<98	98	CHIEF STATE OF BUILDING

Client Name:	Maul Foster & Alongi, Inc.
Client ID:	GP7-S-2.0
Lab ID:	128457-08
Date Received:	6/17/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/23/2005
% Solids	87.18
Dilution Factor	1 1000 1 0000

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

	###이다. 그리다 전에고시 등 시대는 그리다 그 때까요?			Recovery Limits		
Surrogate		% Recovery	Flags	Low	High	
1-bromo-4-fluorobenzene		58.6		50	150	
o-terphenyl		82.3		50	150	

	Result	
Analyte	(mg/kg)	RL Flags
Gasoline (Toluene-nC12)	<19.7	19.7
#2 Diesel (>nC12-nC24)	<49.2	49.2
Motor Oil (>nC24-nC32)	<98.5	98.5

Client Name: Maul Foster & Alongi, Inc. Client ID: GP7-S-8.0 Lab ID: 128457-09 Date Received: 6/17/2005 Date Prepared: 6/23/2005 Date Analyzed: 6/30/2005 % Solids 87.02 Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Soll Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
1-bromo-4-fluorobenzene	66.8		50	150	
o-terphenyl	75.3		50	150	

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<22.8	22.8	
#2 Diesel (>nC12-nC24)	<57	57	
Motor Oil (>nC24-nC32)	<114	114	a distribution de la compa

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:

Maul Foster & Alongi, Inc. GP8-S-1.5

GP8-S-1.5 128457-10 6/17/2005

Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

6/17/2005 6/23/2005 6/23/2005 80.93

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

- WALL SPECIONS			Recove	ery Limits
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 58.5 60.2	Flags	Low 50 50	High 150 150

	Result	RL	Flags
Analyte Gasoline (Toluene-nC12) #2 Diesel (>nC12-nC24) Meter Oil (>nC24-nC32)	(mg/kg) <20.8 <51.9 <104	20.8 51.9 104	

Maul Foster & Alongi, Inc. Client Name: GP9-S-2.0 Client ID: 128457-11 Lab ID: 6/17/2005 Date Received: 6/23/2005 Date Prepared: 6/30/2005 Date Analyzed: 87.84 % Solids 1 Dilution Factor

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

SHATE ADMINISTRA			Recov	ery Limits
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 76 81.6	Flags	Low 50 50	High 150 150
O to promi				

	Result (mg/kg)	RL	Flags
Analyte Gasoline (Toluene-nC12)	<20.6 <51.5	20.6 51.5	
#2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	<103	103	

Client Name: Maul Foster & Alongi, Inc. Client ID: GP10-S-1.5 Lab ID: 128457-12 Date Received: 6/17/2005 Date Prepared: 6/23/2005 Date Analyzed: 6/24/2005 % Solids 89.62 Dilution Factor 1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	67		50	150
o-terphenyl	78.3		50	150

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<21	21	
#2 Diesel (>nC12-nC24)	<52.6	52.6	
Motor Oil (>nC24-nC32)	<105	105	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP10-S-13.5 128457-14 6/17/2005 6/23/2005 6/24/2005 92.42

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Kecove	TY LITTLE
Surrogate	% Recovery	Flags	Low	High 150
1-bromo-4-fluorobenzene	. 80.4		50	150
o-terphenyl	90		50	130

	Result (mg/kg)	RL	Flags
Analyte	<21.3	21.3	
Gasoline (Toluene-nC12)	<53.4	53.4	- [SIC solve let] continu
#2 Diesel (>nC12-nC24)		107	
Motor Oil (>nC24-nC32)	<107	101	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dilution Factor

Maul Foster & Alongi, Inc. GP11-S-2.0 128457-15 6/17/2005 6/23/2005 6/24/2005 91.15

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

하는 사람들은 사람들은 사람들이 되었다면 하는 사람들이 되었다면 하는데 보고 있다면 하는데 살아 있다면 하는데 하는데 다른 Re	and the second of	
Surrogate % Recovery Flags Lov 1-bromo-4-fluorobenzene 73.8 50 o-terphenyl 84.2 50	150	

Allah da	Result (mg/kg)	RL		Flags
Analyte Gasoline (Toluene-nC12) #2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	<21.1 <52.8 <106		21.1 52.8 106	er versender sig er och setter (1884 more sig

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP11-S-6.5 128457-16 6/17/2005 6/23/2005 6/24/2005 91.5

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recove	ery Limits
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 64.2 74.5	Flags	Low 50 50	High 150 150

경기를 보고 있다. 	Result (mg/kg)	RL	Flags
Analyte	<19.5	19.5	
Gasoline (Toluene-nC12)	<48.7	48.7	
#2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	<97.4	97.4	

GP4-W-8.0

128457-17

6/17/2005

6/22/2005

6/22/2005

Maul Foster & Alongi, Inc. Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor

			Recove	ery Limits	
Surrogate 1-bromo-4-fluorobenzene	% Recovery 86.4	Flags	Low 50 50	High 150 150	
o-terphenyl	110			s de l'huisi	

		sult a/I \ RL	Flags
Analyte	(m <0.0957	g/L) RL 0.0957	
Gasoline (Toluene-nC12) #2 Diesel (>nC12-nC24)	>0,239	0.239	x2
Motor Oil (>nC24-nC32)	<0.478	0.478	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP5-W-18.0 128457-18 6/17/2005 6/22/2005

1

NWTPH-HCID - Hydrocarbon Identification Method for Water Modified

er is a sealer of year book in the control of			Recove	ry Limits	١
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 62.1 82.3	Flags	Low 50 50	High 150 150	

Analyte Gasoline (Toluene-nC12) #2 Diesel (>nC12-nC24)	Result (mg/L) <0.0972 <0.243	RL 0.0972 0.243
#2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	<0.486	0.486

Flags

Client Name: Client ID: Lab ID: Maul Foster & Alongi, Inc. GP6-W-18.0

Date Received:
Date Prepared:
Date Analyzed:

128457-19 6/17/2005 6/22/2005 6/22/2005

% Solids
Dilution Factor

1

				Recove	ery Limits
Surrogate	% F	Recovery	Flags	Low	High
1-bromo-4-fluorobenzene		53.4		50	150
o-terphenyl		84.1		50	150

	Result		
Analyte	(mg/L)	RL	Flags
Gasoline (Toluene-nC12)	<0.0962	0.0962	
#2 Diesel (>nC12-nC24)	<0.241	0.241	
Motor Oil (>nC24-nC32)	<0.481	0,481	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP7-W-14.0 128457-20 6/17/2005 6/22/2005 6/23/2005

ger alimet verve in a			Recove	ery Limits
Surrogate 1-bromo-4-fluorobenzene o-terphenyl	% Recovery 64 87.3	Flags	Low 50 50	High 150 150

	Result (mg/L)	RL	Flags
Analyte Gasoline (Toluene-nC12)	<0.0978 <0.245	0.0978	argar Salar Pendukan
#2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	<0.489	0.489	a partitur di Pario. Santana

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. GP8-W-10.0 128457-21 6/17/2005 6/22/2005 6/23/2005

and the state of t		Recover	y Limits
Surrogate 1-bromo-4-fluorobenzene	% Recovery Flags	Low	High
	74.8	50	150
	97.9	50	150

	Result (mg/L)	RL	Flags
Analyte Gasoline (Toluene-nC12) #2 Diesel (>nC12-nC24) Motor Oil (>nC24-nC32)	>0.0959 >0.24 >0.479	0.0959 0.24 0.479	

Client Name:
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids
Dilution Factor

Maul Foster & Alongi, Inc. MW2-W-0605 128457-23 6/17/2005 6/22/2005

6/23/2005

1

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	66.3		50	150
o-terphenyl	85.1		50	150

	Result		
Analyte	(mg/L)	RL	Flags
Gasoline (Toluene-nC12)	< 0.0964	0.0964	•
#2 Diesel (>nC12-nC24)	>0.241	0.241	x2
Motor Oil (>nC24-nC32)	>0.482	0.482	

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP4-S-1.5
Lab ID:	128457-01
Date Received:	6/17/05
Date Prepared:	6/22/05
Date Analyzed:	6/22/05
Dilution Factor	1
% Solids	80.65

Metals by ICP - USEPA Method 6010

	Result		Section of the sectio
Analyte	(mg/kg)	RL	Flags
Chromium	1230	2.2	

Client Name	Maul Foster & Alongi, Inc.	
Client ID:	GP5-S-1.5	
Lab ID:	128457-02	
Date Received:	6/17/05	
Date Prepared:	6/22/05	
Date Analyzed:	6/22/05	
Dilution Factor		
% Solids	89.57	

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	18.9	2.09	id - Project Grandwich

Client Name Maul Foster & Alongi, Inc. Client ID: GP5-S-14.0 Lab ID: 128457-04 Date Received: 6/17/05 Date Prepared: 6/22/05 Date Analyzed: 6/22/05 **Dilution Factor** 1 % Solids 86.12

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	20.1	2.22	

Client Name Maul Foster & Alongi, Inc. Client ID: GP6-S-1.0 Lab ID: 128457-05 Date Received: 6/17/05 Date Prepared: 6/22/05 Date Analyzed: 6/22/05 Dilution Factor 1 % Solids 91.51

Metals by ICP - USEPA Method 6010

		Result		
Analyte		(mg/kg)	RL	Flags
Chromium		584	2.03	

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	GP6-S-14.5		
Lab ID:	128457-07		
Date Received:	6/17/05		
Date Prepared:	6/22/05		
Date Analyzed:	6/22/05		
Dilution Factor	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
% Solids	91.45		

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	259	1.79	· 1-1 lynabin (u.

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	GP7-S-2.0		
Lab ID;	128457-08		
Date Received:	6/17/05		
Date Prepared:	6/22/05		
Date Analyzed:	6/22/05		
Dilution Factor	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
% Solids	87.18		

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	23.6	1.99	in the name

GP7-S-8.0

128457-09

6/17/05

6/22/05

6/22/05

1

87.02

Client Name Maul Foster & Alongi, Inc. Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: **Dilution Factor** % Solids

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

Result Analyte (mg/kg) RL Flags Chromium 21 1.95

GP8-S-1.5

128457-10

6/17/05

6/22/05

6/22/05

1

80.93

Client Name Maul Foster & Alongi, Inc. Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor % Solids

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

Result Analyte (mg/kg) RL Flags Chromium 22.2 2.31

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor
% Solids

Maul Foster & Alongi, Inc.

GP9-S-2.0

128457-11

6/17/05

6/22/05

6/22/05

1

87.84

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

Analyte Chromium Result (mg/kg) 43.3

RL 1.95

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	GP10-S-1.5		
Lab ID:	128457-12		
Date Received:	6/17/05		
Date Prepared:	6/22/05		
Date Analyzed:	6/22/05		
Dilution Factor			
% Solids	89.62		

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	21.8	2.06	

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	GP10-S-13.5		
Lab ID:	128457-14		
Date Received:	6/17/05		
Date Prepared:	6/22/05		
Date Analyzed:	6/22/05		
Dilution Factor	(1) A La Company of the company of t		
% Solids	92.42		

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	24.1	1.73	

Client Name	Maul Foster & Alongi, Inc.		
Client ID:	GP11-S-2.0		
Lab ID;	128457-15		
Date Received:	6/17/05		
Date Prepared:	6/22/05		
Date Analyzed:	6/22/05		
Dilution Factor	1		
% Solids	91.15		

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/kg)	RL	Flags
Chromium	21.7	1.78	

Client Name Maul Foster & Alongi, Inc. Client ID: GP11-S-6.5 Lab ID: 128457-16 Date Received: 6/17/05 Date Prepared: 6/22/05 Date Analyzed: 6/22/05 Dilution Factor 1 % Solids 91.5

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

Result
Analyte (mg/kg) RL Flags
Chromium 17.3 1.87

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP4-W-8.0

 Lab ID:
 128457-17

 Date Received:
 6/17/05

 Date Prepared:
 6/22/05

 Date Analyzed:
 6/22/05

 Dilution Factor
 100

Dissolved Metals by ICP - USEPA Method 6010

 Result

 Analyte
 (mg/L)
 RL
 Flags

 Chromium
 267
 2

Client Name

Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed: Dilution Factor Maul Foster & Alongi, Inc.

GP5-W-18.0 128457-18 6/17/05

6/22/05 6/22/05 1

Dissolved Metals by ICP - USEPA Method 6010

Result

Analyte Chromium (mg/L)

RL 0.02

Client Name Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed: Dilution Factor Maul Foster & Alongi, Inc.

GP6-W-18.0 128457-19 6/17/05 6/22/05 6/22/05 100

Dissolved Metals by ICP - USEPA Method 6010

Result

Analyte Chromium (mg/L) 343 RL

2

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor

Maul Foster & Alongi, Inc.

GP7-W-14.0

128457-20

6/17/05

6/22/05

6/22/05

1

Dissolved Metals by ICP - USEPA Method 6010

Analyte Chromium Result (mg/L) ND

RL 0.02

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP8-W-10.0

 Lab ID:
 128457-21

 Date Received:
 6/17/05

 Date Prepared:
 6/22/05

 Date Analyzed:
 6/22/05

 Dilution Factor
 100

Dissolved Metals by ICP - USEPA Method 6010

| Result | Analyte | (mg/L) | RL | Flags | Chromium | 355 | 2

Client Name Client ID: Lab ID: Date Received: Date Prepared:

Date Analyzed: **Dilution Factor**

Maul Foster & Alongi, Inc.

MW1-W-35.0 128457-22 6/17/05 6/22/05 6/22/05

1

Dissolved Metals by ICP - USEPA Method 6010

Analyte Chromium

Result (mg/L) ND

RL 0.02

Client Name Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed: Dilution Factor Maul Foster & Alongi, Inc. MW2-W-0605

128457-23 6/17/05

> 6/22/05 6/22/05 1

Dissolved Metals by ICP - USEPA Method 6010

Analyte Chromium Result (mg/L) ND

RL 0.02

Client Name Maul Foster & Alongi, Inc. Client ID: GP4-S-1.5 Lab ID: 128457-01 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 **Dilution Factor** 1 % Solids 80.65

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	53.4	0.122	FREITFLERS

Client Name Maul Foster & Alongi, Inc. Client ID: GP5-S-1.5 128457-02 Lab ID: Date Received: 6/17/05 6/29/05 Date Prepared: 6/29/05 Date Analyzed: **Dilution Factor** 1 % Solids 89.57

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium ND 0.111

Client Name Maul Foster & Alongi, Inc. Client ID: GP5-S-14.0 Lab ID: 128457-04 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 **Dilution Factor** 1 % Solids 86.12

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium ND 0.115

Client Name Maul Foster & Alongi, Inc. Client ID: GP6-S-1.0 Lab ID: 128457-05 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 Dilution Factor 1 % Solids 91.51

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	627	0.107	. Topper 179 Pedaysy

Client Name Maul Foster & Alongi, Inc. Client ID: GP6-S-14.5 Lab ID: 128457-07 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 Dilution Factor 1 % Solids 91.45

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	0.181	0.108	

Client Name		Maul	Maul Foster & Alongi, Inc.	
	Client ID:		GP7-S-2.0	
	Lab ID:		128457-08	
	Date Received:		6/17/05	
	Date Prepared:		6/29/05	
	Date Analyzed:		6/29/05	
	Dilution Factor		1	
	% Solids		87.18	

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	0.119	0.114	

Client Name Maul Foster & Alongi, Inc. Client ID: GP7-S-8.0 Lab ID: 128457-09 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 Dilution Factor 1 % Solids 87.02

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium ND 0.113

Client Name Maul Foster & Alongi, Inc. Client ID: GP8-S-1.5 Lab ID: 128457-10 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 **Dilution Factor** 1 % Solids 80.93

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	0.661	0.123	do hanting is

Client Name Maul Foster & Alongi, Inc. Client ID: GP9-S-2.0 Lab ID: 128457-11 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 Dilution Factor 1 % Solids 87.84

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result
(mg/kg) RL Flags
Hexavalent Chromium 2.97 0.113

Client Name Maul Foster & Alongi, Inc. Client ID: GP10-S-1.5 Lab ID: 128457-12 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 **Dilution Factor** 1 % Solids 89.62

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium 0.142 0.11

Client Name Maul Foster & Alongi, Inc. Client ID: GP10-S-13.5 Lab ID: 128457-14 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 **Dilution Factor** 1 % Solids 92.42

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium ND 0.106

Client Name Maul Foster & Alongi, Inc. Client ID: GP11-S-2.0 Lab ID: 128457-15 Date Received: 6/17/05 Date Prepared: 6/29/05 Date Analyzed: 6/29/05 **Dilution Factor** 1 % Solids 91.15

Hexavalent Chromium by ICP - USEPA Method 7195/6010

시간을 하는데 그러나 있다. 그리다 하는 그렇다	Result		
Analyte	(mg/kg)	RL	Flags
Hexavalent Chromium	0.573	0.109	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor

Maul Foster & Alongi, Inc.
GP11-S-6.5
128457-16
6/17/05
6/29/05
1
91.5

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on a dry weight basis.

% Solids

Analyte Hexavalent Chromium Result (mg/kg) 0.37

RL 0.107

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP4-W-8.0

 Lab ID:
 128457-17

 Date Received:
 6/17/05

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/20/05

 Dilution Factor
 100

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags

Hexavalent Chromium 236 1

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP5-W-18.0

 Lab ID:
 128457-18

 Date Received:
 6/17/05

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/20/05

 Dilution Factor
 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags
Hexavalent Chromium 0.0897 0.01

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP6-W-18.0

 Lab ID:
 128457-19

 Date Received:
 6/17/05

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/20/05

 Dilution Factor
 100

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags

Hexavalent Chromium 300 1

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 GP7-W-14.0

 Lab ID:
 128457-20

 Date Received:
 6/17/05

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/20/05

 Dilution Factor
 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result
Analyte (mg/L) RL Flags
Hexavalent Chromium 0.101 0.01

Client Name	Maul Foster & Alongi, Inc.
Client ID:	GP8-W-10.0
Lab ID:	128457-21
Date Received:	6/17/05
Date Prepared:	6/17/05
Date Analyzed:	6/20/05
Dilution Factor	100

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result
Analyte (mg/L) RL Flags
Hexavalent Chromium 294 1

 Client Name
 Maul Foster & Alongi, Inc.

 Client ID:
 MW1-W-35.0

 Lab ID:
 128457-22

 Date Received:
 6/17/05

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/20/05

 Dilution Factor
 1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Result

Analyte (mg/L) RL Flags

Hexavalent Chromium 0.269 0.01

Client Name Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed: Dilution Factor Maul Foster & Alongi, Inc. MW2-W-0605

128457-23

6/17/05 6/17/05 6/20/05

Hexavalent Chromium by ICP - USEPA Method 7195/6010

| Result | Analyte | (mg/L) | RL | Flags | Hexavalent Chromium | ND | 0.01 |

Lab ID:

Method Blank - VOA1380

Date Received: Date Prepared: Date Analyzed:

6/23/2005 6/24/2005

% Solids Dilution Factor

1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	93.4		80	120
Fluorobenzene	110		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	104		80	120
Bromofluorobenzene	105		80	120
Trifluorotoluene	91.8		80	120

		Result	DI	Elaca
Analyte	NID	(ug/L)	RL	Flags
Dichlorodifluoromethane	ND			
Chloromethane	ND			
Vinyl chloride	ND			
Bromomethane	ND			
Chloroethane	ND		1	
Trichlorofluoromethane	ND			
1,1-Dichloroethene	ND		1	
Methylene chloride	ND		1	
trans-1,2-Dichloroethene	ND		1	
1,1-Dichloroethane	ND		1 1	
2,2-Dichloropropane	ND		1	
cis-1,2-Dichloroethene	ND			
Bromochloromethane	ND		1	
Chloroform	ND		1	
1,1,1-Trichloroethane	ND .		1	
Carbon Tetrachloride	ND		1	
1,1-Dichloropropene	ND		1	
Benzene	ND		1	
1,2-Dichloroethane	ND		1	
Trichloroethene	ND		1	
1,2-Dichloropropane	ND .		1	
Dibromomethane	ND		1	
Bromodichloromethane	ND		1	
cis-1,3-Dichloropropene	ND		1	
Toluene	ND		1	
trans-1,3-Dichloropropene	ND		1	
and the second s				

Volatile Organics by USEPA Method 5035\8260B data for VOA1380 continued...

"도막하면 하나니면 방학 나쁜"	Result		
Analyte	(ug/L)	RL	Flags
1,1,2-Trichloroethane	ND		a bawlan Assalati
Tetrachloroethene	ND	1.0	
1,3-Dichloropropane	ND		
Dibromochloromethane	ND	1	
1,2-Dibromoethane	ND	100 at 100 at	
Chlorobenzene	ND	1	
Ethylbenzene	ND	1	
1,1,1,2-Tetrachloroethane	ND		
m,p-Xylene	ND	2	L Toda Alfada anti-a-aidit
o-Xylene	ND	1	
Styrene	ND	1	80-AA7-10
Bromoform	ND	1	
Isopropylbenzene	ND	1	
Bromobenzene	ND		
n-Propylbenzene	ND		
1,1,2,2-Tetrachloroethane	ND		
1,2,3-Trichloropropane	ND		
2-Chlorotoluene	ND		
1,3,5-Trimethylbenzene	ND	100	
4-Chlorotoluene	ND	1	
t-Butylbenzene	ND	1	
1,2,4-Trimethylbenzene	ND		
sec-Butylbenzene	ND	. 1	
1,3-Dichlorobenzene	ND		
4-Isopropyltoluene	ND		
1,4-Dichlorobenzene	ND	1	
n-Butylbenzene	ND	1	
1,2-Dichlorobenzene	ND	591	
1,2-Dibromo-3-chloropropane	ND	1	
1,2,4-Trichlorobenzene	ND		
1,2,3-Trichlorobenzene	ND	1	Ada a thransfill (A)
Hexachlorobutadiene	ND	1	
Naphthalene	ND		

Lab ID:

Method Blank - VOA1382

1

Date Received:

Date Prepared: 6/24/2005
Date Analyzed: 6/24/2005
% Solids

Dilution Factor

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	96		80	120
Fluorobenzene	104		80	120
Toluene-D8	109		80	120
Ethylbenzene-d10	107		80	120
Bromofluorobenzene	107		80	120
Trifluorotoluene	112		80	120

	Result		
Analyte	(ug/L)	RL	Flag
Dichlorodifluoromethane	ND	1. 10. 20. 41	
Chloromethane	ND		
Vinyl chloride	ND		
Bromomethane	ND		
Chloroethane	ND	1	
Trichlorofluoromethane	ND		
1,1-Dichloroethene	ND		
Methylene chloride	ND	1	
trans-1,2-Dichloroethene	ND	1	
1,1-Dichloroethane	ND		
2,2-Dichloropropane	ND	1	
cis-1,2-Dichloroethene	ND		
Bromochloromethane	ND		
Chloroform	ND		
1,1,1-Trichloroethane	ND		
Carbon Tetrachloride	ND	- 10	
1,1-Dichloropropene	ND	1	
Benzene	ND	1. 2	
1,2-Dichloroethane	ND	1	
Trichloroethene	ND		
1,2-Dichloropropane	ND		
Dibromomethane	ND		
Bromodichloromethane	ND	1	
cis-1,3-Dichloropropene	ND		
Toluene	ND		
trans-1,3-Dichloropropene	ND		

Volatile Organics by USEPA Method 5035\8260B data for VOA1382 continued...

Analyte		Result		
1,1,2-Trichloroethane	ND	(ug/L)	RL	Flags
Tetrachloroethene	ND			
1,3-Dichloropropane	ND			
Dibromochloromethane	ND			
1,2-Dibromoethane	ND			
Chlorobenzene	ND			
Ethylbenzene *	ND			그는 그리다 하나 아니는 그리고 하나 살아 다른데 없다.
1,1,1,2-Tetrachloroethane	ND			
m,p-Xylene	ND			The second secon
o-Xylene	ND		2	
Styrene	ND			
Bromoform	ND		1	
Isopropylbenzene	ND			
Bromobenzene	ND		1	A CONTRACTOR OF THE PROPERTY O
n-Propylbenzene	ND			
1,1,2,2-Tetrachloroethane	ND			
1,2,3-Trichloropropane	ND			
2-Chlorotoluene	ND			
1,3,5-Trimethylbenzene	ND		1	
4-Chlorotoluene	ND		The Cartesian Area of	
t-Butylbenzene	ND			and a state over the Weitherlands are w
1,2,4-Trimethylbenzene	ND			randomini a randomini
sec-Butylbenzene	ND		4	e Salda ikili
1,3-Dichlorobenzene	ND			Ambut Damilini
4-Isopropyltoluene	ND			
1,4-Dichlorobenzene	ND			h San Inner in Francisch in
n-Butylbenzene	ND			et a la l
1,2-Dichlorobenzene	ND		11	
1,2-Dibromo-3-chloropropane	ND			the section of the CD 2. Promise
1,2,4-Trichlorobenzene	ND			
1,2,3-Trichlorobenzene	ND		4	
Hexachlorobutadiene	ND			
Naphthalene	ND			
	1,10			

Lab ID:

Method Blank - VOA1390

Date Received: Date Prepared:

6/28/05 6/28/05

Date Analyzed: % Solids

0.1

Flags

Dilution Factor

Volatile Organics by USEPA Method 5035\8260B

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	86		75	125
Fluorobenzene	96.3		75	125
Toluene-D8	109		75	125
Ethylbenzene-d10	108		75	125
Bromofluorobenzene	109		75	125
Trifluorotoluene	121	(A)	75	125

Sample results are on an as received basis.

	Result	
Analyte	(ug/kg)	RL
Dichlorodifluoromethane	ND	40
Chloromethane	ND	40
Vinyl chloride	ND	8
Bromomethane	ND	40
Chloroethane	ND	80
Trichlorofluoromethane	ND	40
1,1-Dichloroethene	ND	8
Methylene chloride	ND	8
trans-1,2-Dichloroethene	ND	40
1,1-Dichloroethane	ND	40
2,2-Dichloropropane	ND	40
cis-1,2-Dichloroethene	ND	40
Bromochloromethane	ND	40
Chloroform	ND	40
1,1,1-Trichloroethane	ND	8
Carbon Tetrachloride	ND	8
1,1-Dichloropropene	ND	40
Benzene	ND	8
1,2-Dichloroethane	ND	8
Trichloroethene	ND	8
1,2-Dichloropropane	ND	8
Dibromomethane	ND	40
Bromodichloromethane	ND	40
cis-1,3-Dichloropropene	ND	40
Toluene	ND	40
trans-1,3-Dichloropropene	ND .	40

Volatile Organics by USEPA Method 5035\8260B data for VOA1390 continued...

	Result		
Analyte	(ug/kg)	RL	Flags
1,1,2-Trichloroethane	ND	40	
Tetrachloroethene	ND	8	
1,3-Dichloropropane	ND	8	revenue Paradite (12 1 1 1 1 1 1
Dibromochloromethane	ND	40	
1,2-Dibromoethane	ND	1.46	
Chlorobenzene	ND	40	
Ethylbenzene	ND	40	
1,1,1,2-Tetrachloroethane	ND	40	
m,p-Xylene	ND	80	
o-Xylene	ND	40	
Styrene	ND	40	
Bromoform	ND	40	
Isopropylbenzene	ND	40	
Bromobenzene	ND	40	in the second control of the second control
n-Propylbenzene	ND	40	
1,1,2,2-Tetrachloroethane	ND	8	
1,2,3-Trichloropropane	ND	8	
2-Chlorotoluene	ND	40	
1,3,5-Trimethylbenzene	ND	40	
4-Chlorotoluene	ND	40	
t-Butylbenzene	ND	40	emadai estan didakalerak
1,2,4-Trimethylbenzene	ND	40	า การเกาะสาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราช
sec-Butylbenzene	ND	40	
1,3-Dichlorobenzene	ND	40	- A Company of the contract of
4-Isopropyltoluene	ND	40	· The second
1,4-Dichlorobenzene	ND	40	
n-Butylbenzene	ND	40	the second of th
1,2-Dichlorobenzene	ND	40	
1,2-Dibromo-3-chloropropane	ND	40	where I P Dichero attended
1,2,4-Trichlorobenzene	ND	40	Tarettectornucki
1,2,3-Trichlorobenzene	ND	40	2,2 Objection agreement.
Hexachlorobutadiene	ND	40	
Naphthalene	ND .	40	anenformer old verricht

Lab ID:

Method Blank - VOA1401

Date Received: Date Prepared:

7/1/2005 7/1/2005

Date Analyzed: % Solids Dilution Factor

-1

				Recov	ery Limits
Surrogate	1. 1. 1. 1. 1.	% Recovery	Flags	Low	High
Dibromofluoromethane		91.8		80	120
Fluorobenzene		103		80	120
Toluene-D8		118		80	120
Ethylbenzene-d10		116		80	120
Bromofluorobenzene		109		80	120
Trifluorotoluene		97		80	120

	Re	sult	The second second
Analyte		g/L) R	L Flag
Dichlorodifluoromethane	ND		. 1941 1
Chloromethane	ND		- 041 1 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Vinyl chloride	ND		
Bromomethane	ND		1
Chloroethane	ND		
Trichlorofluoromethane	ND		1 1
1,1-Dichloroethene	ND		1944 1
Methylene chloride	ND		
trans-1,2-Dichloroethene	ND		
1,1-Dichloroethane	ND		
2,2-Dichloropropane	ND		1
cis-1,2-Dichloroethene	ND		W 1
Bromochloromethane	ND		
Chloroform	ND		
1,1,1-Trichloroethane	ND		
Carbon Tetrachloride	ND		
1,1-Dichloropropene	ND		
Benzene	ND		1
1,2-Dichloroethane	ND		1
Trichloroethene	ND		. 1
1,2-Dichloropropane	ND		1
Dibromomethane	ND		1
Bromodichloromethane	ND		1
cis-1,3-Dichloropropene	ND		., 1
Toluene	ND		1 1
trans-1,3-Dichloropropene	ND		1

Volatile Organics by USEPA Method 5035\8260B data for VOA1401 continued...

	Result		Flore
Analyte	(ug/L)	RL	Flags
1,1,2-Trichloroethane	ND		
Tetrachloroethene	ND		in the state of th
1,3-Dichloropropane	ND	과 선생하는 그렇지?	
Dibromochloromethane	ND		
1,2-Dibromoethane	ND		
Chlorobenzene	ND	r eli alipa (nº cultire).	
Ethylbenzene	ND	. 1	
1,1,1,2-Tetrachloroethane	ND		
m,p-Xylene	ND	2	
o-Xylene	ND	Des Automobile 1esto	
Styrene	ND	1 1	
Bromoform	ND	트로 하고 중요하고 1 . 2007	
Isopropylbenzene	ND		
Bromobenzene	ND	4 1 1 1 1 V	
n-Propylbenzene	ND	1.4	
1,1,2,2-Tetrachloroethane	ND	1	
1,2,3-Trichloropropane	ND	24 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	
2-Chlorotoluene	ND	1	
1,3,5-Trimethylbenzene	ND	1	
4-Chlorotoluene	ND	1	
t-Butylbenzene	ND	1 .	
1,2,4-Trimethylbenzene	ND	1	
sec-Butylbenzene	ND	1	
1,3-Dichlorobenzene	ND	1	
4-Isopropyltoluene	ND	. 1	
1,4-Dichlorobenzene	ND	1	•
n-Butylbenzene	ND	1	
1,2-Dichlorobenzene	ND	1	
1,2-Dibromo-3-chloropropane	ND	1	
1,2,4-Trichlorobenzene	ND		
1,2,3-Trichlorobenzene	ND	1	
Hexachlorobutadiene	ND	1	
Naphthalene	ND	1	
Ναρπαιαιοπο			

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA1380 6/23/2005 6/24/2005 VOA1380

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS Of Boo	Result	BSD % Rec.	RPD	Flag
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	a a mark an arrest to the		гюу
1,1-Dichloroethene	0	5	4.56	91.2	4.59	91.7	0,55	
Benzene	0	5	4.6	92	5.12	102	10	
Trichloroethene	0	5	5.15	103	4.57	91.3	-12	
Toluene	0	5	4.64	92.7	4.52	90.4	-2.5	
Chlorobenzene	0	5	4.78	95.7	4.67	93.4	-2.4	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID:

VOA1382 6/24/2005 6/24/2005 VOA1382

Compound Name 1,1-Dichloroethene	Blank Result (ug/L) 0	Spike Amount (ug/L)	Result (ug/L) 5.06	BS % Rec. 101	BSD Result (ug/L) 4.77	BSD % Rec. 95.4	RPD -5.7	Flag
Benzene Trichloroethene	0	5	5.17	103	5.01	100	-3	a lang
Toluene	0	5 5	4.65	93	5	99.9	7.2	
Chlorobenzene	o o	5	4.79 4.96	95.7 99.1	4.96 4.74	99.3 94.8	3.7 -4.4	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID; VOA1390 6/28/05 6/28/05 VOA1390

	Blank	Spike	BS		BSD			
Compound Name 1,1-Dichloroethene	Result (ug/kg)	Amount (ug/kg) 200	Result (ug/kg)	BS % Rec.	Result (ug/kg)	% Rec.	RPD	Flag
Benzene	0	200	226 207	113 104	205 189	102 94.6	-10 -9,5	ericansk Ovilski skilik
Trichloroethene Toluene	0	200	209	105	201	101	-3.9	
Chlorobenzene	0	200 200	226 234	113 117	211 216	106 108	-6.4 -8	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA1401 7/1/2005 7/1/2005 VOA1401

Flag
n ·

Lab ID:

Method Blank - SW1151

Date Received: Date Prepared: Date Analyzed:

6/23/2005 6/24/2005

% Solids Dilution Factor

. .

Semivolatile Organics by EPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	54.2		34	146
2 - Fluorobiphenyl	54.4		35	143
p - Terphenyl - d14	51.5		35	166

	Result		
Analyte	(ug/L)	RL	Flags
Naphthalene	ND	0.5	
2-Methylnaphthalene	ND	0.5	
2-Chloronaphthalene	ND	0.2	
Acenaphthylene	ND	0.2	
Acenaphthene	ND	0.2	
Fluorene	ND	0.2	
Phenanthrene	ND	0.2	
Anthracene	ND	0.2	
Fluoranthene	ND	0.2	
Pyrene	- ND	0.2	
Benzo(a)anthracene	ND	0.2	
Chrysene	ND	0.2	
Benzofluoranthenes	ND	1	
Benzo(a)pyrene	ND	0.2	
Indeno(1,2,3-cd)pyrene	ND	0.2	
Dibenz(a,h)anthracene	ND	0.2	
Benzo(g,h,i)perylene	ND	0.2	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SW1151 6/23/2005 6/24/2005 SW1151

Semivolatile Organics by EPA Method 8270

	Blank	Spike	BS	ar soll is	BSD			dintell.
	Result	Amount	Result	BS	Result	BSD	ng a siji degil	
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
Naphthalene	0	10	10.3	103	8.29	82.9	-22	
2-Methylnaphthalene	0	10	8.69	86.9	9.17	91.7	5.4	
Acenaphthylene	0	10	10.7	107	10.3	103	-3.8	
Acenaphthene	0	10	10.5	105	9,3	93	-12	
Fluorene	0	10	11.7	117	11.3	113	-3.5	
Phenanthrene	0	10	11.3	113	11.4	114	0.88	
Anthracene	0	10	12.1	121	10.6	106	-13	
Fluoranthene	0	10	7.81	78.1	7.54	75.4	-3.5	
Pyrene	0	10	10.5	105	9.57	95.7	-9.3	
Benzo(a)anthracene	0	10	10.3	103	11.2	112	8.4	
Chrysene	0	10	9.54	95.4	9.84	98.4	3.1	
enzofluoranthenes	0	20	21.4	107	21	105	-1.9	
anzo(a)pyrene	0	10	10.8	108	10.2	102	-5.7	A CONTRACT
Indeno(1,2,3-cd)pyrene	0	10	15.1	151	14.5	145	-4.1	N
Dibenz(a,h)anthracene	0	10	12.8	128	11	110	-15	
Benzo(g,h,i)perylene	0	10	10.6	106	12.7	127	18	

Lab ID:

Date Received: Date Prepared: Date Analyzed: % Solids

Dilution Factor

Method Blank - PBW0345

6/23/2005 6/23/2005

1

PCBs by EPA Method 8082

	그렇게 있으기까지 않는		Recove	ery Limits	3
Surrogate	% Recovery	Flags	Low	High	
Tetrachloro-m-xylene	77.1		32	134	
Decachlorobiphenyl	79.4		55	128	

			Result			
Analyte	1004		(ug/L)		RL	Flags
Aroclor 1016		ND	Lynn		0.01	
Aroclor 1221		ND			0.01	
Aroclor 1232	4 84	ND		Name of P	0.01	
Aroclor 1242		ND			0.01	isi at in An
Aroclor 1248		ND			0.01	
Aroclor 1254		ND			0.01	
Aroclor 1260		ND			0.01	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PBW0345 6/23/2005 6/24/2005 PBW0345

PCBs by EPA Method 8082

	Blank	Spike	BS	akaja B W	BSD			
Compound Name	Result (ug/L)	Amount (ug/L)	Result (ug/L)	BS % Rec.	Result (ug/L)	BSD % Rec.	RPD	Flag
Aroclor 1242	0	0.1	0.112	112	0.0982	98.2	-13	Hally Caro
Aroclor 1260	0	0.1	0.106	106	0.104	104	-1.9	

Lab ID:

Method Blank - GB5195

Date Received:

Date Prepared: Date Analyzed:

6/24/2005

% Solids

6/24/2005

Dilution Factor

Gasoline Range Organics by Method NWTPH-Gx

이미니 보니 이번 그녀들은 마리 얼마나요?			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	206	N	50	150
1-Chloro-3-fluorobenzene	169	Ν	50	150
Bromofluorobenzene	188	N	50	150
Pentafluorobenzene	115		50	150

	Kesuit		
Analyte	(mg/L)	RL	Flags
Gasoline by NWTPH-G	ND	0.1	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: GB5195 6/24/2005 6/24/2005 GB5195

Gasoline Range Organics by Method NWTPH-Gx

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Gasoline by NWTPH-G	0	1.25	1.19	95.1	1.16	92.4	-2.9	

Lab ID:

Method Blank - DW0788

Date Received: Date Prepared:

6/22/2005 6/30/2005

Date Analyzed: % Solids Dilution Factor

-1

Diesel and Motor Oil by NWTPH-Dx Modified

				Recove	ry Limits
Surrogate		% Recovery	Flags	Low	High
o-terphenyl		54.1		50	150

		Result		
Analyte		(mg/L)	RL	Flags
#2 Diesel	ND		0.25	
Motor Oil	ND		0.5	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: DW0788 6/22/2005 6/30/2005 DW0788

Diesel and Motor Oil by NWTPH-Dx Modified

	Blank Spik	ce BS	BSD			
얼마나 얼마나 얼마를 다시다.	Result Amou	int Result BS	Result	BSD		
Compound Name	(mg/L) (mg/l	L) (mg/L) % Rec.	(mg/L)	% Rec.	RPD	Flag
#2 Diesel	0 5	5.49 110	5.18	103	-6.6	,
Motor Oil	0 5	5.36 107	5.11	102	-4.8	

Lab ID:

Method Blank - DS1512

Date Received:

Date Prepared:
Date Analyzed:

6/23/2005 6/23/2005

% Solids Dilution Factor

1

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	94.1		50	150
o-terphenyl	95.2		50	150

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	RL	Flags
Gasoline (Toluene-nC12)	<20	20	
#2 Diesel (>nC12-nC24)	<50	50	
Motor Oil (>nC24-nC32)	<100	100	

Duplicate Report

Client Sample ID:	GP4-S-1.5
Lab ID:	128457-01
Date Prepared:	6/23/2005
Date Analyzed:	6/29/2005
QC Batch ID:	DS1512

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Gasoline (Toluene-nC12)	<	<	NC	
#2 Diesel (>nC12-nC24)	<	<	NC	o teonial sh
Motor Oil (>nC24-nC32)	<	<	NC	

Duplicate Report

 Client Sample ID:
 GP11-S-6.5

 Lab ID:
 128457-16

 Date Prepared:
 6/23/2005

 Date Analyzed:
 6/24/2005

 QC Batch ID:
 DS1512

NWTPH-HCID - Hydrocarbon Identification Method for Soil Modified

	Sample	Duplicate	
	Result	Result	RPD
Parameter Name	(mg/kg)	(mg/kg)	% Flag
Gasoline (Toluene-nC12)	<	<	NC 10
#2 Diesel (>nC12-nC24)	<	< (NC
Motor Oil (>nC24-nC32)	<	<	NC

Lab ID:

Method Blank - DW0788

Date Received: Date Prepared: Date Analyzed:

6/22/2005 6/22/2005

% Solids Dilution Factor

1

NWTPH-HCID - Hydrocarbon Identification Method for Water Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	37	N	50	150
o-terphenyl	40.9	N	50	150

	Result		
Analyte	(mg/L)	RL	Flags
Gasoline (Toluene-nC12)	<0.1	0.1	
#2 Diesel (>nC12-nC24)	<0.25	0.25	
Motor Oil (>nC24-nC32)	<0.5	0.5	

Date Received: Date Prepared: Date Analyzed: Dilution Factor 1	Lab ID:	Method Blank - SP1347
Date Analyzed: 6/22/05	Date Received:	하고 보는 그 연극 사고 이 사람들이 없다.
	Date Prepared:	6/22/05
Dilution Factor	Date Analyzed:	6/22/05
Dilation 1 dotor	Dilution Factor	

Metals by ICP - USEPA Method 6010

Sample results are on an as received basis.

 Result

 Analyte
 (mg/kg)
 RL
 Flags

 Chromium
 ND
 2

Matrix Spike Report

Client Sample ID:	GP4-S-1.5
Lab ID:	128457-01
Date Prepared:	6/22/05
Date Analyzed:	6/22/05
QC Batch ID:	SP1347

Metals by ICP - USEPA Method 6010

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Chromium	1230	45.3	949	-611	x7

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP1347 6/22/05 6/22/05 SP1347

Metals by ICP - USEPA Method 6010

	Blank	Splke	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Chromium	0	40	38.6	96.5	36.9	92.4	-4.3	

Duplicate Report

 Client Sample ID:
 GP4-S-1.5

 Lab ID:
 128457-01

 Date Prepared:
 6/22/05

 Date Analyzed:
 6/22/05

 QC Batch ID:
 SP1347

Metals by ICP - USEPA Method 6010

Sample Duplicate
Result Result RPD

Parameter Name (mg/kg) (mg/kg) % Flag
Chromium 1200 1400 -15.0

Lab ID:

Method Blank - DP1346

Date Received:

Date Prepared: Date Analyzed:

6/22/05 6/22/05

1

Dilution Factor

Dissolved Metals by ICP - USEPA Method 6010

Result

Analyte

(mg/L)

RL

Flags

Chromium 0.02 ND

Matrix Spike Report

 Client Sample ID:
 INFLUENT

 Lab ID:
 128480-01

 Date Prepared:
 6/22/05

 Date Analyzed:
 6/22/05

 QC Batch ID:
 DP1346

Dissolved Metals by ICP - USEPA Method 6010

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Chromium	0	0.4	0.404	101	

Duplicate Report

 Client Sample ID:
 INFLUENT

 Lab ID:
 128480-01

 Date Prepared:
 6/22/05

 Date Analyzed:
 6/22/05

 QC Batch ID:
 DP1346

Dissolved Metals by ICP - USEPA Method 6010

選助 名詞 httparent	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Chromium	0	0	NC	

Lab ID: Method Blank - CR224S
Date Received:

Date Received:

Date Prepared:

Date Analyzed:

Dilution Factor

6/29/05

6/29/05

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Sample results are on an as received basis.

Result

Analyte (mg/kg) RL Flags

Hexavalent Chromium ND 0.1

Matrix Spike Report

 Client Sample ID:
 GP4-S-1.5

 Lab ID:
 128457-01

 Date Prepared:
 6/29/05

 Date Analyzed:
 6/29/05

 QC Batch ID:
 CR224S

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Chromium	53.4	12.4	56.5	25	x7

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: CR224S 6/29/05 6/29/05 CR224S

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Chromium	0	100	94.4	94.4	99.8	99.8	5.6	

Duplicate Report

 Client Sample ID:
 GP4-S-1.5

 Lab ID:
 128457-01

 Date Prepared:
 6/29/05

 Date Analyzed:
 6/29/05

 QC Batch ID:
 CR224S

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Chromium	53	52	1.9	

Lab ID:

Method Blank - CR220W

Date Received:

Date Prepared: Date Analyzed: Dilution Factor

6/17/05 6/20/05

1

Hexavalent Chromium by ICP - USEPA Method 7195/6010

Analyte

Result (mg/L)

RL

Flags

Hexavalent Chromium

ND

0.01

STL Seattle

Matrix Spike Report

Client Sample ID:
Lab ID:
Date Prepared:
Date Analyzed:
QC Batch ID:

GP5-W-18.0 128457-18 6/17/05 6/20/05 CR220W

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Sample	Spike	MS		
	Result	Amount	Result	MS	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Chromium	0.0897	1	0.901	81	

STL Seattle

Duplicate Report

 Client Sample ID:
 GP5-W-18.0

 Lab ID:
 128457-18

 Date Prepared:
 6/17/05

 Date Analyzed:
 6/20/05

 QC Batch ID:
 CR220W

Hexavalent Chromium by ICP - USEPA Method 7195/6010

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Chromium	0.09	0.093	-3.3	

Chain of Custody Number (A fee may be assessed if samples are retained longer than 1 month) Special Instructions/ Conditions of Receipt 200 Time CE CE Page SEVERN TRENT Months Date 6/17/65 XO/HOZMA Analysis (Attach list if more space is needed) A Disposal By Lab
Archive For 5900 Lab Number X X × XX X 10C* × × ☐ Unknown ☐ Return To Client Sample Disposal × 7 >< TOTAL تج ANGOH NaOH × QC Requirements (Specify) 1888 Containers & Preservatives X 5 × HOPN X × の出力 36.90 Beel I. Recorved By 2. Received By 3. Received By × HCI D. 20 C Lab Contact EONH) 4520¢ ☐ Poison B 182m ٧ Unpres X × × Telephone Number (Area Code CACALE 20. 644.2691 يح × Carrier/Waybill Number Time Time Time Matrix Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 Skin Irritant pes. STL Seattle 5755 8th Street E. くせな 0 Project Manager www.stl-inc.com ydneona × R 2 × Cooper Site Contact ΉA K119 □ Other 840 S 1340 1630 028/ 228 935 1345 1050 880 151 Time Date ☐ Flammable ☐ 15 Days Possible Hazard Identification S0/±1/9 1 Zip Code 50/9//9 6/16/05 6/17/08 Sold R Date □ Non-Hazard □ 10 Days Sample I.D. and Location/Description (Containers for each sample may be combined on one line) 7 4 AIE. Arong. State いろろうの何をなる □ 5 Days 7225 NE HAZEL DELL Turn Around Time Required (business days) Contract/Purchase Order/Quote No. 35.0 Project Name and Location (State) 0053,01,03 0.01 **Custody Record** 0.01 14.0 MAU- FOSTER ☐ No Cooler Temp: 2.0 ☐ 48 Hours 6.5 GP10-5-7.0 9P4 - W-8,0 1/4からかん MWIN MW2-W-4P5-W-PRECISION 1 GP10-5-1. Relinquished By Chain of 2. Relinquished By 3. Relinguished By 5 P6 - w 7-E 618-W GP11-5 5-1175 □ 24 Hours Comments □ Yes ---1

Stays with the Samples; CANARY - Returned to Client with Report, PINK - Field Copy

DASTABLITION: 1

JR8274580 (12/02)

Custody ...cord Chain of

STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.stl-Inc.com

82°C SEVERN

TRENT

MAUL FOSTER & ALONE		Project Manager	Manager	Hughes	3					Date 17 105	6	Chain of Custody Number
Harry Dan	Ave Sures	Telephone Number (Area Godd) ax Number \$20. 694. 2691	Stor. 694. 2691	269 1	2014	360 906.1958	1.90	958		Lab Number		Page 1 of 2
State WA	Zip Code (5)	Site Contact	CARDINE	in Lab	Lab Conflact Tom Covered	MEK			Anic	Analysis (Attach list if more space is needed)	if id)	Drsieved Rec F
ate) イルシロらん ンタ	43	Carrier/Waybill Number	2							0		
Contract/Purchase Order/Quote No.			Matrix		Conta	Containers & Preservatives	00	70 0V	Qı	LBA.	54	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Date	Time Air	Aqueous Sed. Soil	Unpres.	HSSO4	ZING/ HCI	ZnAc/	HEX 100	140	100 100 100 100 100 100	grd .	
GP4-S-1,5	6/16/05	1125	Se	~		×	×	><	×			FACE SOIL AND AND SAMPLE
6P5-5-1.5	/	10:00	×	χ_{\parallel}		~	×	大	ヤベ			If GROS ANE BETECTED, SAME
605-5-8.0		10:15	×	<u>بر</u>		×	×					14 0205 as 2263, the
GPS-5-14.0	/	65:0/	×	×		×	X	X X X	X			ANTOH-OX AND PANS
- 416-5-1.0		Sh21	×	.×		×	×	×	×			irwowther
696-5-8.0)	(305)	×	と		نح	×					PAT DE
6P6-5-14.5		(320)	×	×		×	×	X X X	*			
697-5-2.0	1	0091	X	X		٧	×	X	×			LOSSE TO RUNNING AND
417-5-8.0		(670	×	Χ		×	× ×	X	×			OHER WALAN
6P8-5-1,5	1 1	180	X	X		×	×	X X	×			HOWARS W/ MFA
GP9-5- 2,0	6/17/05 8	810	<u>×</u>	×	lates:	×	X	× ×	×			F1125T.
-AP10-5- 1.5	2	830	×	×		×	×	×	×		- 474	
Cooler Possible Hazard Yes No Cooler Temp: Non-Hazard	Possible Hazard Identification Non-Hazard Flammable	ble 🗌 Skin Irritant	Irritant	□ Poison B	1.1.1.1	□ Unknown		Sample Disposal Return To Client	1	Do Disposal By Lab	b Months	(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required (business days) 24 Hours		0			OC Requir	OC Requirements (Specify)	secify)	1	3 5			
1. Relinguished By Company			Hart Time	786	1. Received By	Ed By	1/1	Mi		S		1900 Jake 1705 130
2. Relipedished By Leven		Oute 1 C	Time / 2/2	X	2. Recei	The state of the s	M	10	1 4	3		Date Time 325
3. Rowhalished By		Date	Time		3. Received By	ed By						Date Time
Comments								٠,				

Custody Record Chain of

Тасотпа, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 5755 8th Street E. www.stl-inc.com STL Seattle

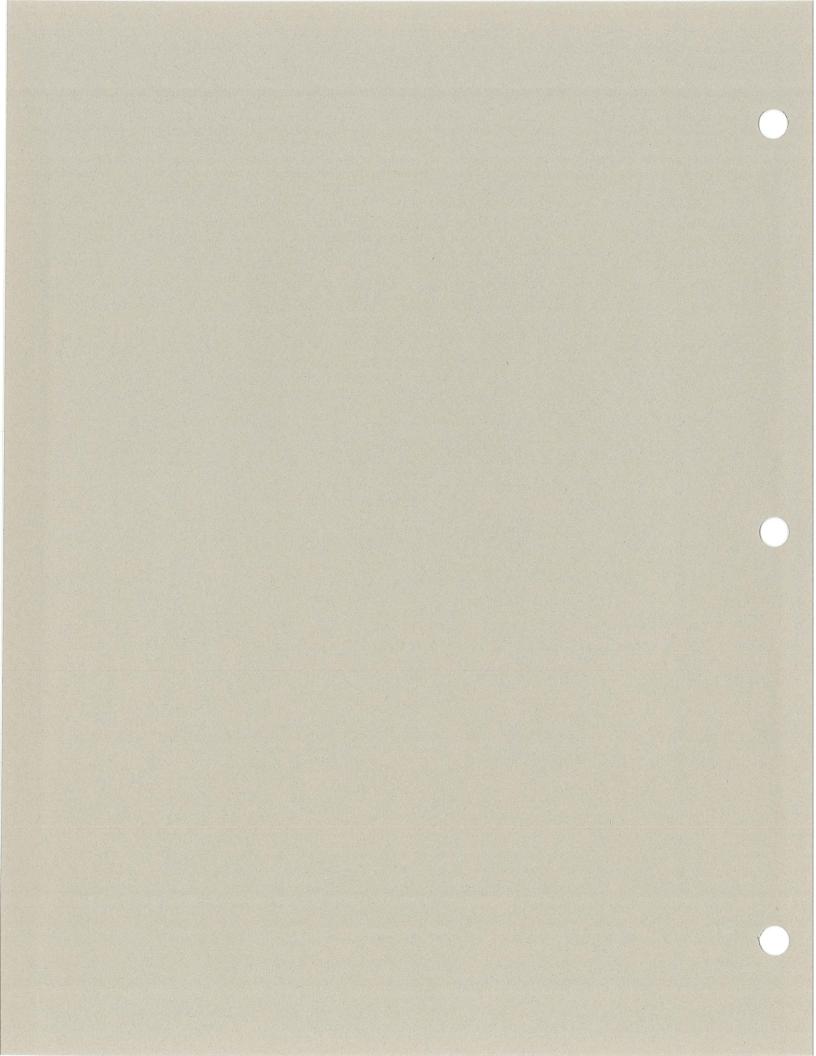
2.7.8 U(F)/0

SEVERN

TRENT

14 640, ALE DETECTO, MA for MITTHERY FOR DIS. LA 16 9205 de Reds, ARE DETECTED ANALY FE NWTP H- DX A.NO PAHS. Forciou-up gnarysis WERE FISH FUTTHER fee soil AND AN SAMPL Sample with THE MAR TO RUNNING AND (A fee may be assessed if samples are retained longer than 1 month) * DRSGIVES MEDICS 2 FA Chain of Custody Number EXCEPT MWI - W-35.6 OHER WALAN Conditions of Receipt Special Instructions, ARONNO WITTER 444 2016 of HUNTES 11/ Will BR. 419498T F1 R57 山土山 O Ste Page Months 7 P S01 119 Analysis (Attach list if more space is needed) Disposal By Lab SHAG .80 0487 '510 Date DX XXX メメ とくて ヤ ヌ × XXX メ メ メ ス ス ス \<u>X</u> \ X 1000 ☐ Return To Client × 906.195B Sample Disposal HEX 17 10 اهامد X × VOANZ HOAN HOAN THAN OC Requirements (Specify) □ Unknown 360. Ton Consex Containers & Preservatives × HOWN I. Received By 3. Received By 2. Recentation Harry HCI EONH Lab Confact Telephone Number (Area Cods) Dax Number Hushes **FOSZH** ☐ Paison B 360.694.2691 saudun CHOW 105 X Time Carrier/Waybill Number Matrix Skin Pritant 子如 pag FAL Project Manager Aqueous GEOPLE 8 Site Contact ñΑ Oute Cot Other 1125 10:00 10:01 10:50 Sh21 (305) (350 0091 1610 Date Time 833 180 870 ☐ Flammable Sures ☐ 15 Days 50/91/9 Possible Hazard Identification 6/17/05 Zip Code 7 Date AUR 22 □ Non-Hazard □ 10 Days MAUL FOSTER & GRONA Sample I.D. and Location/Description (Containers for each sample may be combined on one line) 34 3 State とうならろうとなっているのとうと □ 5 Days 7525 NE HASE Turn Around Time Required (business days) Contract/Purchase Order/Quote No. 50.10-5500 Project Name and Location (State) ☐ No Cooler Temp:_ City VANCOUVER 2.0 0 ľ 800 00 足ら 0 ☐ 48 Hours 0.41-0: 18-GP 4-S-1 ١ 1 1 1 619-5-1 1. Relinguished By Remindrished By 2. Relipedished By 4910-5 5 S 5-904 5-944 5-804 ☐ 24 Hours 6.P5-GPS Comments □ Yes

Chain of Custody Number 15558 Special Instructions/ Conditions of Receipt 200. 7 Page SEVERN TRENT 165 Date 6 (17) Analysis (Attach list if more space is needed) 5401 Lab Number 510 10 012 XXX XXX X XV XXX 10Cs × × וסנייו 汉 HOWN HOWN ZUNC/ / 26.90 (158 Lab Contact Containers & Preservatives × × X X 义 HO₽N as tila 2000 1CL FONF +052h × X × .serduU X Carrier/Waybill Number 20. 644.2691 nos Telephone Number (Area Matrix Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 .bec STL Seattle 5755 8th Street E. > Project Manager snoanby R 2 × www.stl-Inc.com Site Contact ΊĀ 23 0h 21 840 1345 028/ 0501 |50/21/9 935 029/ 326 15 889 Тіте 6/16/05 50/9//9 State Zip Code 6/17/00 SiBB Date Sample I.D. and Location/Description Containers for each sample may be combined on one line) A20061 DRECISION ENGINERAINE FRS NE HAS DE Contract/Purchase Order/Quote No. 35,8 MAUL FOSTER S MW2-W-0605 COS 3,01,03 10.01 Project Name and Location (State) Custody Record 14.0 6P5-W-18.0 0.01 200 GP10-5- 13.5 6.5 GP16-5-7.0 9P4-W-8,0 14んのひが死人 MWINE ſ -Chain of 6P6-W 4PZW 6P11-5 S-1175 S-815


1.1

Cooler	Possible Hazard Identification	entification				Sample Disposal	Disposal By Lab		(A fee may be seeseed if complete	loloc
☐ Yes ☐ No Cooler Temp:	☐ Non-Hazard	□ Flammable	Skin Prritant	□ Polson B	□ Unknown	Skin hritant	Archive For	Months	are retained longer than I month)	iff)
Turn Around Time Required (business days)				2001	QC Requirements (Specify)	scify)	+			
☐ 24 Hours ☐ 48 Hours ☐ 5 Days [☐ 10 Days □	□ 10 Days □ 15 Days □ Other		1						
1. Relinquished By		Date	,	PO J.R	1. Received By	110	1		Date , , Time	_
the rith		9	20/4119	<u> </u>	Lash	ball	しょう	<u>_v</u>	11-16-12230	_
2. Relinguished By	1	Date	te Time	1	Received By	1	(Date, Time	(
Carl Hoole	{	E	10/01/8	1 Alice	The state of the s	Mon	M	<u> </u>	0/1/4 /325	52
3. Relinguished By		Date	te / Time		3. Received By				Date Time	Ì.
Lehrments										

10

																1
											14					
								De.								
						3.										
										1						
			3 5													
												3				
															7	
																100
																/

APPENDIX D DATA QA/QC MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PRECISION ENGINEERING Groundwater Monitoring, June 2005 8128.01.03

This report reviews the analytical results for groundwater samples collected by the Maul Foster & Alongi, Inc. (MFA) project team on the Precision Engineering, Inc. site at 1231 S. Director Street in Seattle, Washington. The samples were collected in June 2005.

Severn Trent Laboratories (STL) in Tacoma, Washington, performed the analyses. STL report numbers 128318, 128268, and 128457 were reviewed. The analyses performed are listed below.

Analysis	Reference
Semivolatile Organic Compounds	USEPA 8270
Volatile Organic Compounds (VOCs)	USEPA 5030/8260B
Polychlorinated Biphenyls	USEPA 8082
Total and Dissolved Metals	USEPA 6000/7000 Series
Hydrocarbon Identification	NWTPH-HCID
Gasoline Range Organics	NWTPH-Gx
Diesel and Motor Oil	NWTPH-Dx

USEPA = U.S. Environmental Protection Agency NWTPH = Northwest Total Petroleum Hydrocarbons

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable parts of USEPA procedures (USEPA, 1994, 1999), and appropriate laboratory and method-specific guidelines (STL, 2004; USEPA, 1986). Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods not specifically addressed by the functional guidelines (i.e. NWTPH).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

Holding Times, Preservation, and Sample Storage

Holding Times

Extractions and analyses were performed within the recommended holding time criteria with the following exception. For the analyses of VOCs, sample GP1-S-6.0 was analyzed one day past the recommended 14-day holding time constraint. The reviewer took no action based on this exceedance. All other holding times were met.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

Blanks

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. No target analytes were detected above the STL method reporting limits (MRLs) with the following exception. Methlyene Chloride was detected in a method blank associated with data package 128628. However, since methylene chloride was not detected in any associated samples, the reviewer took no action. No other target analytes were detected above MRLs in the method blanks.

Surrogate Recovery Results

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. The reviewer took no action based on minor surrogate outliers or surrogate percent recoveries that were outside of acceptance limits due to dilutions necessary to quantify high concentrations of target analytes present in the samples.

Matrix Spike/Matrix Spike Duplicate Results

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency. Except for minor outliers, all percent recoveries and relative percent differences were acceptable. The reviewer took no action based on the outliers being minor.

Blank Spike/Blank Spike Duplicate Results

A blank spike/blank spike duplicate (BS/BSD) is spiked with target analytes to provide information on laboratory accuracy. The BS/BSD samples were extracted and analyzed at the required frequency. Except for minor outliers, all percent recoveries and relative percent differences were acceptable. The reviewer took no action based on the outliers being minor.

Laboratory Duplicate Results

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. All RPDs were within acceptance limits.

Field Duplicate Results

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis (MW4-0605/MW4-0605-Dup). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the reporting limit (RL), or 50 percent RPD for results that are greater than five times the RL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

Reporting Limits

STL used routine MRLs to quantify results, except where necessary due to dilution.

Data Package

The data packages were reviewed for transcription errors, omissions, or anomalies. None was found.

And the art of the state of the state of the

arter officer be make "Acall Hell in tribus and a large round and drive by tribus due to bright of proving the The agreement of the wilder of the Medical Constraints of the result of the American Berlin Society and a second of the American Society of the American Societ

Table delt er de file ut blad i

ter de la completa d La completa de la completa del completa de la completa del completa de la completa del completa del completa de la completa del completa del completa del completa de la completa del com

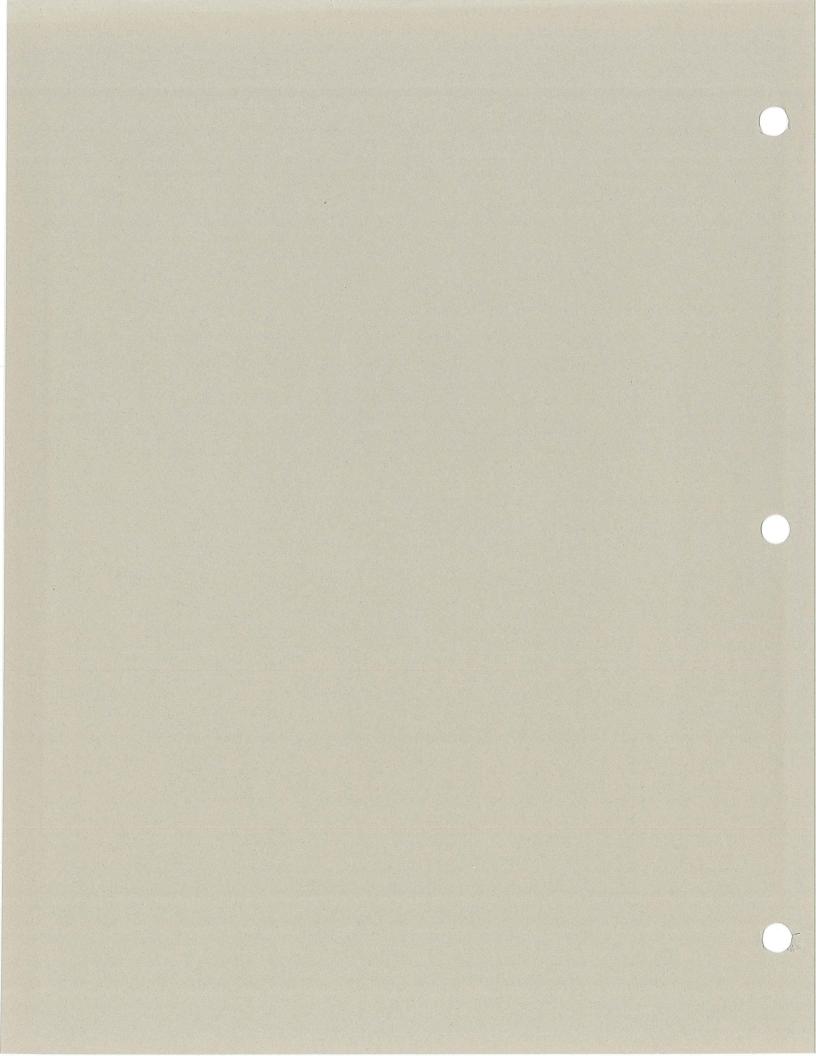
polymoral for the state of the

likaniki kelengati perangan antikan pintikan pintikan pelangan pelangan pelangan kelikar salah melangan kelik

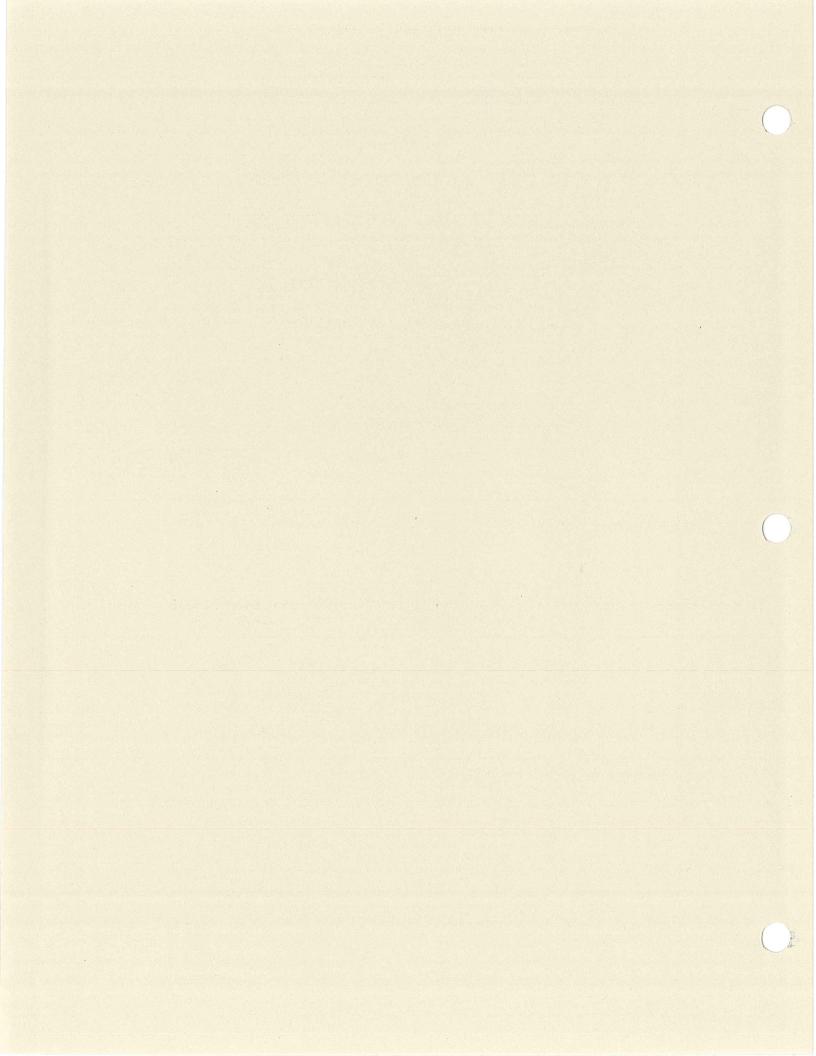
and the first of the second

Palled Could policy of the Tennan Palled, indepting the finish players of characting is this obtained. The

REFERENCES


- STL. 2004. Quality assurance manual. Severn Trent Laboratories, Tacoma Washington. March.
- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA-530/SW-846. September (update 1, July 1992; update 2a, August 1993; update 2, September 1994; update 2b, January 1995).
- USEPA. 1994. USEPA contract laboratory program, national functional guidelines for inorganics data review. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA 540/R-94/013. February.
- USEPA. 1999. USEPA contract laboratory program, national functional guidelines for organics data review. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. EPA 540/R-99/008. October.

- geografickW, megase Tenfijoontopie), turkilli graff in Thumbing op it til ett militike Tulking op it. Tenfin
- ults af A., 1985. The straight halfs and exact mainting will be tracked present the form of the C. C. C.


 in the manifest of the compared superiors of the straight straight of the compared tracked and the form of the compared superiors of the compared superiors of the compared superiors of the compared superiors and the compared superiors of the compared
- ndrukenin opulla kappetilisek ilde konk lateka eraj kirin bestik nes irrigid. Affilia i filiker la filosof Partu jiki Grafing kong partu da filosofiskoji kapitali ka kirji aksistrom alber ikolografist Tarih kapitali kapitali (1904) affilia kapitali kapitali kapitali berki kapitali kapitali.
- use in district in the first of the factories of the factories of the factories of the first interest of the f The factories of the first of the factories of t

er a francische Sagalasse eige der Daglig beginnt beginnt beginne bei gannemen. 30 platfighet meteration Banker

APPENDIX E FIELD SAMPLING DATA SHEETS

SOIL

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-1	
Project Number	0053.01.03	Sampler	SLM	
Project Name	Remedial Investigation	Sampling Date	06/07/2005	
Sampling Event	June 2005	Sample Name	GP1-S-1.5	
Sub Area		Sample Depth	1.5	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC	

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.3 ppm	9:30:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Other	3
					Total Containers	4

		Other	3
		Total Containers	4
Sample Description:			
			7
General Sampling Comments	"Other" sample containers were preserved VOA vials fo extraction method 5035A.	r VOC analysis using	
Sampling Method Code:			, ge 0.5
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) C	Other (Specify)	
Signature			

Maya Haster & Albaşı, lan.

PRINCE TO A PROCESS OF THE PROPERTY OF THE PRO

Soil Ejet.P' gmulipe bett Skeet

172		
		r-tizest/A to facility
36404 1945		p

and to my on Aleksan w

A Commission of the second of

andel

ta en and I have

of the property of the

da zeringt. Kospordieringen om ber 11 Modfform mit kingerinnet vinnt ferden vert. Vind vin ibs 14 king er und e Her ber 12 kinger i helper vinnte ber vinntere i den verte kinger verte ferden verte vinde i be 14 kinger er und e

Talle 11 adot galle

ന്റെ ആയുടെ നാളിയ് പ്രസ്ത്രമായുള്ളത് സ്വാധം നിയ്യിയ് പ്രത്യേഷം ഒരു തുന്ന് ഈ സ്ത്രീല് പ്രധിവാശങ്ങൾ വിധാവം ത്രിന്വ

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-1
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/07/2005
Sampling Event	June 2005	Sample Name	GP1-S-6.0
Sub Area		Sample Depth	6
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.3 ppm	10:15:00 AM	2 oz. soil	0
	a figure a		of all House I for		4 oz. soil	0
					8 oz. soil	1
					Other	3
		*			Total Containers	4.

		8 OZ. SOII	1
		Other	3
		Total Containers	4.
Sample Description:			e ear
			* * * * * * * * * * * * * * * * * * *
General Sampling Comments	"Other" sample containers were preserved VOA vials fextraction method 5035A.	or VOC analysis using	
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cuttir	ng Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8)	Other (Specify)	

Signature

ugi jirkoj Auškarktok, ki ur

en menere a mentral a compression a compression a compression de la compression de la compression de la compre Antonio de la compression de la compre

Seel Head Specific Data Sheet

		make the first the product of the contract of	
	Constitution of the mortification of the constitution of the const		
proceedings of the second			
		Me . J. Hariff T. Yangari	

tagar ay ambin fall i se sk

The control of the figure of the first of the control of the contr

to to the second second

on a property of the second

nom to and to the Massacra for the Alphylic bag move implies mando in the filter of propagations of propagation for the time of the contraction of

· Solid ration will be made

ing figure 1 to the profession of modern the expension of the control of the control of the control of the

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-1
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/09/2005
Sampling Event	June 2005	Sample Name	GP1-S-10.0
Sub Area		Sample Depth	10
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.0 ppm	3:00:00 PM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

	8 oz. soil	1
	Other	3
	Total Containers	4
Sample Description:		
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analysis using extraction method 5035A.	
Sampling Method Code:		
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)	
Signature		

ond lepack A of a teple brail/fi

ang padagaga da 1969 da 1969 (6 m. da 1969) And Abaran and Standard da Garanda and Stanf

Soft biell Sampling Data Theer

2 .	v Jay granamini	
Transler I		

motive of the structural.

i dentro control o mattro colonia i i se tris dell'illo della mandell'entito della di più catalata a l'agricol Il rico accordina e l'astronia a saggio di la compactio di 1880, il altro colonia della gi

Ly- s 4

green grant in the state of

"prodagi costil ci yani

Course of Sampling Charlenger - Otter amakerining were expense Who vink participation in a

Act to the Carl

regions they are supply and the supply the supply of the supply the supply of the supp

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-2
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/06/2005
Sampling Event	June 2005	Sample Name	GP2-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.3 ppm	11:00:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

이렇게 많은 이번 사람들이 가장 살아 없는 사람들이 살아 있다면 살아 있다면 살아 없다.	8 oz. soil	1
	Other	. 3
	Total Containers	4
Sample Description:		derig
General Sampling Comments "Other" sample containers were preserved VOA vials for extraction method 5035A.	VOC analysis using	
Sampling Method Code:		
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Or	ther (Specify)	

Signature

Porté cuell entrants i chi i finis

	a first a first to the souls.	
	52 190	

a entrope de mais de la composición de la La composición de la

tion of the complete property of something of the confidence of th

n de la companya de la co

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-2
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/09/2005
Sampling Event	June 2005	Sample Name	GP2-S-10.0
Sub Area		Sample Depth	10
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.0 ppm	8:30:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	. 4

		4 oz. soil	0
	회사를 깨워 그 경기생들으로 하는 것으로 모르는데	8 oz. soil	1
		Other	3
	어디었다. 기계 회사 회사학	Total Containers	4
Sample Description:			
			0.0
General Sampling Comments	"Other" sample containers were preserved VC extraction method 5035A.	A vials for VOC analysis using	e d
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7	Grah (8) Other (Specify)	
(-)	rube, (7	Grad, (8) Other (Specify)	
Signature			

	และอยู่แนก และ สมโดยการย์ อาการย์ (โรคมูลานี)

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-3
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/09/2005
Sampling Event	June 2005	Sample Name	GP3-S-2.0
Sub Area		Sample Depth	2
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

	Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
	(4) GeoProbe	Soil	Discrete	0.0 ppm	3:30:00 PM	2 oz. soil	0
-		V 10 N 0 1				4 oz. soil	0
						8 oz. soil	1
						Other	3
						Total Containers	4

				Other	. 3
			Y-	Total Containers	4
Sample Description:			- 21		
		* * * * * * * * * * * * * * * * * * * *			
General Sampling Comments	"Other" sample container extraction method 5035A		A vials fo	or VOC analysis using	5
Sampling Method Code:					
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spli	poon, (6) Shelbey Tube, (7)	Grab, (8)	Other (Specify)	

Signature

sod Pad Sampling Dale Welci

	Lawrence Signar	
* 28F 5		F0.10.8200 radiem 7 1 raises

walter to be of other 18

PALLER COMPANY OF A LANGEST MEMBER OF A CASE O

(jus 776 a

garen akayuna 100 Tudo te v 400 to releve romanno skonaz frad 01 - processo 1, jeda, gegat emme Karel Datonian entre

for a constitute gail fire 2

i kuragija sa salahari silah kadang da geraji dajiba da dangan sa kala panda danda salah gi salah gi salah da

2.3

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-3
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/09/2005
Sampling Event	June 2005	Sample Name	GP3-S-6.0
Sub Area		Sample Depth	6
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.0 ppm	3:45:00 PM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	- 4
				and the second second	0 0Z. 3011	- I
					Other	3

		8 oz. soil	1
		Other	3
		Total Containers	4
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	or VOC analysis using	
			7 (A)
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8)	Other (Specify)	

Signature

logi kandik si bayak it divid

निरामि के हिन्दी है जिस है जो के कार्य के किया है जो है जो है जो है जो के लिए हैं है है है है है है है है जो क

donatik basa Lemi Unimbak basa Hilibik

	nell Talge A		
Marketine April 19 19 19 19 19 19 19 19 19 19 19 19 19		Turk to at # 1.1.	
· · · · · · · · · · · · · · · · · · ·			

The trapert had a least a 2

regin i

* np . * in * (30.4)

e de l'Albert 200 mais al my 200 mais per l'armété

and the second s

in the goal

the state of the s

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-3
Project Number	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	06/09/2005
Sampling Event	June 2005	Sample Name	GP3-S-14
Sub Area		Sample Depth	14
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Signature

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	# #
(4) GeoProbe	Soil	Discrete	0.0 ppm	4:15:00 PM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

	Other	3
	Total Containers	4
Sample Description:		
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analysis using extraction method 5035A.	8
Sampling Method Code:		, * % . K
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)	

rangan Alaman Kanakan K

and the state of the control of the state of

double with contracted that it is a

			*			
						respections to
						Describer of American State
				9		
						do and principal office

re ben collected and the

An Ababa na mana ming salah mustan 1919-1916 na program dingga dili provinsi pendigi di sampisa pendigi di di Tanah salah di di di dipendi di di menganan na mengangan di di di salah salah di pendigi di dipendigi di diber

has a

Sense to Like !

. overagins as librarian

a especial transpling it taken to the first and province and recommendation of the first and the confect and confect and the c

states of SAA gardenary

a Berlind of Limited Co. (1917) is a property of the control of the property of the control of t

March 1995

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-4
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP4-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.0 ppm	11:25:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

		Other	3
		Total Containers	4
Sample Description:			
			7 .
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	r VOC analysis using	
Sampling Method Code:		××	
1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) O	ther (Specify)	

Signature

Marel Postey it etteragi, bec

Was table office, when the attractions, it is a to be up indigent at a material and a fact a restarious.

Seed and Sampling Data Shed

	as our destant of the properties of the second seco	
	Captinitati	
	the the Command and the control of t	
10.0		

nathumeta et gest

- Cultage Washard Sancta Paper Ada again to a paper of the Contract Contrac

eanignos (Peril

anilyi mellelgiri

oOmini pi Sanapii ng i Daspaya ng mitalikah unuk kesabukau inu unuk sid veng diga laj vratji kalekik kengu. Zaprima kamani kamani ja kaman maka musaka

in the street of the street

Kapangroup op fant i er i okad og magembaldreken fan it te it dit inder i kander i kein fan de fan f

570 (10)

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-5
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP5-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	0.0 ppm	10:00:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

	하는 사람들은 사람들은 그렇게 하는 사람들이 되었다.	8 oz. soil	1
	성용 경기 위한 기반 기반 보고 있는 사람들이 하는데	Other	3
		Total Containers	4
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	· VOC analysis using	(
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) On	ther (Specify)	

2223 dC cc 2 De Levenir Hale 2 Ng 222 (1995 Y 1994 265) 1 mg 222) 236-1955

Route Field Singuished Store Trions

			Septimization of	
				pro .

and a second and a beautiful

omo de la militar de la completa de la co

e sa s Catar

ali en augenia Tubi no de en 2000, che au menolimento peragnica de la "tenta", les competatos de la cidade de Sanc

and its professional and its and the company of the

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-5
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP5-S-8.0
Sub Area		Sample Depth	8
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	1	10:15:00 AM	2 oz. soil	0
	V 11 120				4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

		8 0Z. S011	1
		Other	3
		Total Containers	4
Sample Description:			
			2 2 2
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	VOC analysis using	
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) O	ther (Specify)	

Signature		· 'ear -	6.	1 1 1	

greet Horizott Atomic

Sell Miller Concession Plants Street

Security to Engranting

nak kilomonan kilomot yang yanti. <mark>Ostonot yang mulanto penti mot tida</mark> nati. Di belengika nati. Kini kilomonan kilomot pungan

The Market Area also

and the state of t

Sent described to the control of the

and the state of t

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-5
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP5-S-14.0
Sub Area		Sample Depth	14
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC TOC

Sample Information

	Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
ľ	(4) GeoProbe	Soil	Discrete		10:50:00 AM	2 oz. soil	0
		7 - 12 - 2 × 2				4 oz. soil	0
						8 oz. soil	1
						Other	3
						Total Containers	4

		Other	3
		Total Containers	4
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	VOC analysis using	3
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Ot	her (Specify)	

. Na til Hestaria de Alberge, hide

River and Mark part (Philipper Mark) and the graduation of the and many the deposition of

heridadski williamski herin i h

		ered majorif
	Paul real	Sampline Deep
[] [animath]		

ecites of element

Same of the first of the control of

vi maleo de il 1

arged or opinion a great

age of the Secretary gardeness.

والأستان التاميب فيجها والوارا فيحار الهوالية والمراجع والمهامية والمتاب والمتاب والانتهاج والمسالية والمراجع

and the second s

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-6
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP6-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

ſ	Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
	(4) GeoProbe	Soil	Discrete	0.0 ppm	12:45:00 PM	2 oz. soil	0
_						4 oz. soil	0
						8 oz. soil	1
						Other	3
						Total Containers	4

		Other	3
	교회에는 얼마나 가장 맛이 그렇게 하셨습니?	Total Containers	4
		San Cara	. =
Sample Description:			
			e a frank
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	r VOC analysis using	
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) C	Other (Specify)	

Harida internalization during India

and the commence of

ျပည်။ မေးမေရို ရေသိ မြန်လို သည်။ အသည် သို့ ကို မြန်မြေသည် သည်များကိုသည်။ မြန်လို သည်မေသိ သွေးမေးဆိုသည်။ သည်မျာ သည်။ သည် မေးမေသည် မေးမေသည်။ မေးကိုများ သည် မေးမေးကို သို့ သည်မေးကို သည် သည်မေသည်။ သည်များသည် မြန်များသည်။ သို့ မြန်များသည်။

and a control

, and he had always

est a structure. By wat the last and an engineer of contribution to the contribution of the contribution of the

rgalanggan berait drift (1924) dan barahan barahan geberapagan dibabangan balah bangga belah bili balga bibilib

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-6	
Project Number	0053.01.03	Sampler	ARH	
Project Name	Remedial Investigation	Sampling Date	06/16/2005	
Sampling Event	June 2005	Sample Name	GP6-S-8.0	
Sub Area		Sample Depth	8	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC	

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete		1:05:00 PM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

		8 OZ. SOII	1
		Other	3
		Total Containers	4
Sample Descriptions			9
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	VOC analysis using	
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) O	ther (Specify)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V-F	

Maril Moston & Alongs, len.

nga pagbaranga, Tirk it sa sa ng ikilika aky sayaa na Vulta mis sambar Mastinaad didira

inaditant gajlama bisiT liet i

		gradenica i nel lucal le en a dimenta
		CO. to scool in diese to your
		min invest pressell out it here if
	uskeri sim sa 1	

aparo, " paro" de aparo de

and the state of t

50 Jac 1

A stall Clutt. see-

Salatan Cont. Av

graph and have the fields of the section of provinces and in constitution. The section is gained as the compa-

and the second party of the Alberta

.

A STATE OF THE STA

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	G-P6
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP6-S-14.5
Sub Area		Sample Depth	14.5
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete		1:20:00 PM	2 oz. soil	0
				The same of the same	4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

	+ 0Z.	3011	0
	8 oz.	soil	1
	Othe	er	3
	'Total Cor	ıtainers	4
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analy		
General Sampling Comments	extraction method 5035A.	ysis using	\$
	ontaction monitor 505571.		
		4	-5 1
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)		
Signature			
2 3 5 5 2 5 2 5 3 3 5 5 5 5 5 5 5 5 5 5			

and Hestor & Library Inc.

Let with the Bell on the Sugar A. You comes. Why value is also bell as it is a large trade value of the

record and trait, phays Data Sincer

	*	
		pen predict
Walk		
the property of the property o		Vallet 1 120 to 1
		85.00

will more that the con-

real minute a south quinteres. The first is a manufacture of the south and the south a

tina un le Nove de la

Service (Prog.

treating Products of garden

in - professe from an analyst same and a second for the second for the second of the second second for a second

t in the second of the second or contact in th

naki uga sulping mengenggi jelan pedaga mengengapi penganakan mengangan umuntan bi pengah bersam mendulu medi

. STANGE

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-7
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP7-S-2.0
Sub Area		Sample Depth	2
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	· · ·	4:00:00 PM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

	8 oz. so	oil	1
	Other	r	3
	Total Cont	ainers	4
Sample Description:			
	# 마스트 : 사람들 : 사람들 : He : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	<u>내려오고</u> 맛있다고 하는데 이 보다 하는데 있는데 다리 되었다.	•	
		en e	
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analyse extraction method 5035A.	sis using	* # # # # # # # # # # # # # # # # # # #
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)		
Signature			

daga Master da Alongg Kao.

Bed Field comit a treat Short

in displaying the mark of the family of the

Cault 1 2 - 2 - 3

e dang papaken sorow e ong a Ason papan selig araw sepadanen mode Mediligot i mga anasiya. Sega atga dot Riji mada

and resolve described the second of the seco

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-7
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP7-S-8.0
Sub Area		Sample Depth	8
FSDS QA:	ARH Júly 22, 2005	Easting	Northing TOC

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete		4:10:00 PM	2 oz. soil	0
		, m		I The Area	4 oz. soil	0
					8 oz. soil	1
					Other	3

	4 0Z. S0II	0
	8 oz. soil	1
	Other	3
	Total Containers	4
		1 7
Sample Description:		
		10.7
	O4-	
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analysis using	ng
	extraction method 5035A.	
Sampling Method Code:		
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)	
, , , , , , , , , , , , , , , , , , , ,	(1) Grad, (1) Grad, (2) Spire Speeds, (0) Shelloy Table, (1) Grad, (3) Other (Speedify)	
G:		
Signature		

eroiA pă poizo il just-l

If and it is secured buy it. Various var. 2nd 9806 - Taken of a learner. California value is secured.

result and Confinence Identification

	the second of the second of the second	
	and the same and the same	

increased distinguish

ും പ്രത്യാക്കുന്നു. ഇതുക്കുന്നു പ്രത്യാക്കുന്നു. വിവര്യ വ്യാര്യാക്ക് അവര്യിയാക്കുന്നു. പ്രത്യാക്ക് പ്രത്യാക്ക് പ്രത്യാക്ക് പ്രത്യാക്ക് പ്രത്യാക്ക് പ്രത്യാക്ക് പ്രത്യാക്ക് വിവര്യ പ്രത്യാക്ക്ക് വിവര്

Tarkette to the first

HURBERT STEEL

o despit Speciescopy i september 1960 at editor vicence me explosed (1974), vices particles in pay in refine Commission in the explosion of the commission of the editor.

Should hould by Stein and

ngo and one on the many waters of the magnetic magnetic transfer for the first of the first of the state of the

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-8
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/16/2005
Sampling Event	June 2005	Sample Name	GP8-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

L	Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
	(4) GeoProbe	Soil	Discrete		6:00:00 PM	2 oz. soil	0
			, company of			4 oz. soil	0
						8 oz. soil	1
						Other	3
						Total Containers	4

		0 021 0011	
		Other	3
		Total Containers	4
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for vextraction method 5035A.	VOC analysis using	,
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Oth	er (Specify)	
Signature			

Maud Pedeck Algagi, buc

P. E. Hou Hill Average Faire in Famoury ... V.A. SAL L.S. Citato 694-16 consecution from Evolutional Paper.

Sed Held Sampling Park block

de a sua camera e e e e e e e e e e e e e e e e e e	
	The composite to the special s
	THE LETTER THE STATE OF

and the second of the second o

and the second of the second s

10.2 St. 8

e alian d'Adama'i a

salah germen delah production (

Colore i Bosongilang et elegen "tollos" omigle conferención paparet CMO y collar of Moloca y operationes y oper A conferencia

January Marine da

prompty endformation and the part of the transport of the specific copies from the district of the first of the

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-9
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/17/2005
Sampling Event	June 2005	Sample Name	GP9-S-2.0
Sub Area		Sample Depth	2
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete		8:10:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3 ·
	, a				Total Containers	4

	· 사용 :		
	. [1] . [25] : [1]	8 oz. soil	1
	하다 사람이 걸어 되었다. 등 하고 있었다는 없다고 살	Other	3 ·
		Total Containers	4
Sample Description:			
General Sampling Comments	"Other" sample containers were preserved VOA vials for extraction method 5035A.	· VOC analysis using	5
			1 2
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) O	ther (Specify)	

Main Peater S. Alongi, bac

Part Trial by the recognition of Warrance of WA Water Conference of the State of th

sanfi) malleginge i bert jed

and all all a secondarions and the secondarion		
	the aniquel re-signed	
	1.00%	
	the state of the s	H Dan b

in Progress Markettanage

an anna semble for the self-country of the first of the self-country of the self-count

Langua California

Jan Jan Harling

, and an excel size is stated

rdisurga isang panggalan dan Makampanggalang pangkan ang makiling pangganggalang ang miling kang asang Makampanganggalang kanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggal

of Florinald our

i transfer og ser eg endre grændet som til fra fregjerer er enganet væget at 150 f. gaf bildet gig finner i s

The Property of

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-10
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/17/2005
Sampling Event	June 2005	Sample Name	GP10-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sa	mpling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
2.76	(4) GeoProbe	Soil	Discrete		8:30:00 AM	2 oz. soil	0
	1 2 2 2 2 2 2 2 2				to property and	4 oz. soil	0
						8 oz. soil	1
					ya i kanya, ili d	Other	3
						Total Containers	4

		0 UZ. SUII	1
		Other	3
		Total Containers	4
		100 00	
Sample Description:			
			2
General Sampling Comments	"Other" sample containers were preserved VOA vials fo extraction method 5035A.	r VOC analysis using	er and go
			- P
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) C	Other (Specify)	

val je rotA 3. rains i firet

s ration compared to the parameter configuration of the state of the s

to de en 1 gard, en 25/57 fac

BLED LIVE of a		
		. 6015 1.0
	m tak	

in something styring?

67.50 I

armin D of

ambgliasis James

odnikom 1901 ili kurtu da iku teksembangan kalamban baha 1919 - Haman 1990, pelikir sesili manalis Pelikuman 1901 ili kurtu da iku teksembangan kalamban baha 1919 - Haman 1990, pelikir sesili manalis

station of anymes

The Livington and 1875 come graph out the space of the first and beautiful beautiful and beautiful and the first

i adjet je

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-10
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/17/2005
Sampling Event	June 2005	Sample Name	GP10-S-7.0
Sub Area		Sample Depth	7
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete		8:40:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	-1
					Other	3
					Total Containers	4 ·

			2 02. 0011	
			4 oz. soil	0
			8 oz. soil	1
			Other	3
	되는 사람들이 사람이 하는 사람이 없는데 없다.		Total Containers	4 ·
				-
Sample Description:				
			ay a sasa ya	E
Conoral Compling Comments	"Other" sample containers were preserved VO	A viola for	. VOC	<u> </u>
General Sampling Comments	extraction method 5035A.	A viais io	voc analysis using	
	situation memora 505511.			
	41 - 이번 20 : 이 나타스스 1911년 19 : 1			
		1 a 1 g 1/v		
Sampling Method Code:	하는데 그렇게 된 이번 아니를 하셨다면 된			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7)	Grab, (8) O	ther (Specify)	
Signature				

Marel Restor & Alexad, last

soil Field Sameling Days Stept

Tamile restribute, 3	Provincia Engana e la g	
	- ZOUT TEST TO SE	

relative and a first out of the

Real of Carridge and

Anorth Resultation

a digresser strugg

gelgigia la gige tia glassigis acti

ුදුරක සම්පතිය කර ද වන්සු සමුදුම් වීම සා ලක්තී එකු තුන ද ද නිලද යන මාර්ග සාර්ල කාලය ලංක්ව විශව කති. මාර්ග සාර්ල

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-10
Project Number	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	06/17/2005
Sampling Event	June 2005	Sample Name	GP10-S-13.5
Sub Area		Sample Depth	13.5
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	<u>-</u>	8:50:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
					Total Containers	4

	The state of the s	U
	8 oz. soil	1
	Other	3
	Total Containe	rs 4
Sample Description:	김 교계 전 프로젝트 시교 후에는 모르는 이번째까지	
	일 시민 그리고 있는 이번 이번 그런 어디는 반으라면데	
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analysis u extraction method 5035A.	sing
	기업을 맞는 그 이번 이번 없는 하였다.	
	그는 경기에서 보이는 걸어 내고 주었어요? 하는다.	
	시하 생기는 여름이 되었다. 그렇게 되었다고 하다던데 되었다. 모나다	
mpling Method Code:	요즘 하다 그 아이들 아이들 그렇게 되었다. 그는 그는 그들은 그들은 그들은 그들은 그를 보는 것이 없다.	

manufactured configuration of Shrift and

· · · · · · · · · · · · · · · · · · ·		
	The Frank Wa	

The second secon

Paul Silverian Charles Communication of the Communi

na kanada. Na sanada jari ni basa kanga kanasang agresion na ing hiti menggapang na ding igga ning mener

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-11	
Project Number	0053.01.03	Sampler	ARH	
Project Name	Remedial Investigation	Sampling Date	06/17/2005	
Sampling Event	June 2005	Sample Name	GP11-S-2.0	
Sub Area		Sample Depth	2	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC	

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(4) GeoProbe	Soil	Discrete	<u>-</u>	9:25:00 AM	2 oz. soil	0
					4 oz. soil	0
					8 oz. soil	1
					Other	3
				*	Total Containers	4

				8 OZ. SO11	-1
				Other	3
				Total Containers	4
Sample Description:					
			- 4		
General Sampling Comments	"Other" sample conta	iners were preserved V	OA vials for	VOC analysis using	
General Sampling Comments	extraction method 503				
	1 No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	No.				
	1 2 2 2				. 4.
Sampling Method Code:					
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	Head, (4) Geoprobe, (5) Spl	it Spoon, (6) Shelbey Tube,	(7) Grab, (8) O	ther (Specify)	
Signature					

Vin is Postor & Monigi, lac

and high to a child in the

	germalget de local	
	cano e d	4. (1.44)
	Spris re mas Abarri	

And Lawrence Confidence R

group and a repeated.

race pinanci di pesa

and the second s

Faz fundienten i , ess.

and promising graderies

in the fight again. The property of second sufficiency in the residency of the first interest in the

ાં જ્યારતોનું

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-11	
Project Number	0053.01.03	Sampler	ARH	
Project Name	Remedial Investigation	Sampling Date	06/17/2005	
Sampling Event	June 2005	Sample Name	GP11-S-6.5	
Sub Area		Sample Depth	6.5	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC	

Sample Information

	Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
5 52	(4) GeoProbe	Soil	Discrete		9:35:00 AM	2 oz. soil	0
						4 oz. soil	0
						8 oz. soil	1
						Other	. 3
					* m	Total Containers	4

	8 oz. soil	1
	Other	. 3
	Total Containers	4
Sample Description:		
Sample Description.		
General Sampling Comments	"Other" sample containers were preserved VOA vials for VOC analysis usin extraction method 5035A.	g
	[- 하시 ^^ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Sampling Method Code:		
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)	

Mad Peylor & Alongi, Inc.

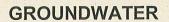
[223] N. Haral Ly H. A. F. Bu, M. Hondows, W. F. Wand. (Apr) 594, 281 C. S. Front and L. S. S.

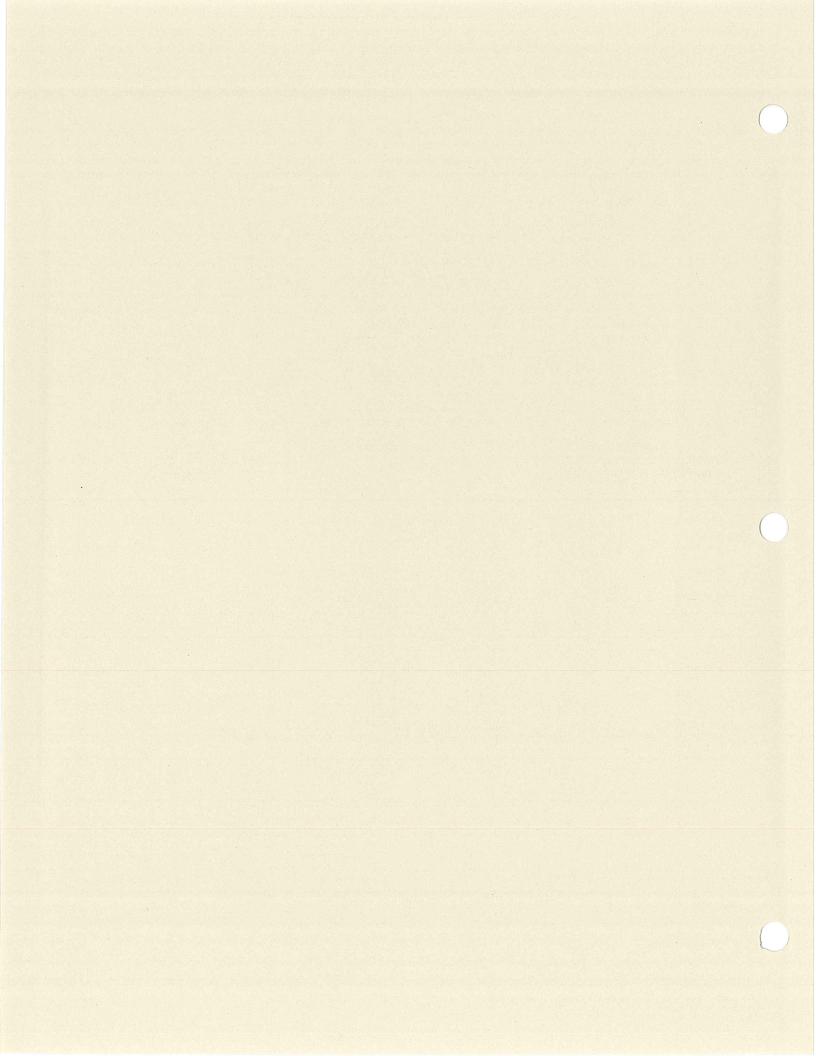
ve't Field Sampling Dana Sherr

The second of a second	
30878.1-1	
	अधिकाम् हावः अधिका । उन्हें

and permutative of good 3

t de la company de la company


· State State


applety to see all quee

gervald Julia (1998) Tre C É byvar mapak kur isztákol March (1997) Sej pajak B gyébbyyar i merete S King bakka a tatan

randa bishir Vişiadomed

of april 1. The parametric strategies of the object of the strategies of the second strategies o

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-2
Project #	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	6/9/2005
Sampling Event	June 2005	Sample Name	GP2-W-17-RECON
Sub Area		Sample Depth	17
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements

nn) (Gallons/ft x Water Column	(Water Column)	(Product Thickness)									
W Pore Volume	DTB-DTW	DTP-DTW	DT-Water	DT-Product	DT-Bottom	Time	Date				
2010	The second second					7					
	, "v + , - = -										

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	2.5		sa di mana di mana					, na *	8 Tg 8
									ii .
		n, a		8 7		8		2	20 kg 2
		0 x 2 1 1, 2				200 E 200 C			
		8 1	п — в			,			
- 12 - 13 - 12 - 12 - 12 - 12 - 12 - 12		2 0	7 F 2			V u / + + =		12.5	
Final Field Parameters	17:00			7.21	23.1	986			420

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Very yellow color observed.

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	# 6	Filtered
(2) Peristaltic Pump	Groundwater	5:00:00 PM	VOA-Glass		·No
			Amber Glass	3	No
			White Poly	1	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly	-1	Yes
			Total Bottles	12	

General	Sampling	Comments

Reconna	issance groundwa	ater sample. Screen s	set from 15	feet to 19 f	feet bg	S.			

Signature		
10matura		
Digitature		

Verta rödd San pryg Oats Sh.

*				
			- deglesynt m²-ja E	Toma the test
		Takin diga 14		

			ent and another in the second control of	
	77 - 178	ys na egra i i excerci		
		rane Lat. (D) quo? The		
		*		
	9.2 v - 4. v - 4. v - 4.			

January 180 Art. Julya . 11. 1. 1. 1.

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-4
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/16/2005
Sampling Event	June 2005	Sample Name	GP4-W-8.0
Sub Area		Sample Depth	8
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements

14			to the second	a 2.4	(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
0 25 0 1 31 8	2 2 2 2 1 2			2° 5 3			

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft)$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump		*		75 × 1			, &	-	2 2 2
	5	, , ,	N N		a = " = " ;	, - 1, 2			
		Ti a a s	*		8 m	a y a	× * .		
* <u>*</u> * * * * * * * * * * * * * * * * *	0 0 0 0 0	Tel Ex S Re el		= × ****		on the second		= " «	
* H		1 4 2			- 1 A				
			v 2 22						
Final Field Parameters	11:50	1.2		6.72	22.1	544			328

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Opague yellowish orange tint observed.

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered	
(2) Peristaltic Pump	Groundwater	11:50:00 AM	VOA-Glass	6	No	
		and a second sec	Amber Glass	3	No	
			White Poly	1	No	
			Yellow Poly	a 0.0		
			Green Poly			
			Red Total Poly	1	No	
			Red Dissolved Poly	1	Yes	
			Total Bottles	12	7 ° a	

General	Sampling	Comments
---------	----------	----------

Reconnaissance	groundwater	sample.	Screen	set	from	6	feet	to	10	feet	bg	S
----------------	-------------	---------	--------	-----	------	---	------	----	----	------	----	---

~:			
Signature			
Dignature	4		

tenii met i subigurii i bisaanwi

· by.			
			What and
		dennes d'il prepliquique	
	There is not		0.00 0.00
**		Andrew States	
on the second	200 93 may	TO PARKET OF A SEC. OF	
The first was to be a realist			
ayo a Pengeral and a			
y the second strain or		Trusherse moveld by direct with a first or ignored to a direct with a surgest of the surgest of	aliang in which The more office assessment surface

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-5
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/16/2005
Sampling Event	June 2005	Sample Name	GP5-W-18.0
Sub Area		Sample Depth	18
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	e e e e e e e e e e e e e e e e e e e		1	* * *	15	The state of the s			
		7 , 1							
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 80	x-							
		a = *			200				
	В	2 2 2							
en far far		7, 8	8 6			3 52 2 3		- 6	
Final Field Parameters	11:15	0.75	· ',	7.56	20.0	224			52.2

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water	Quality	Observation	6.
vv alci	Quality	Obsci vation	19.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:45:00 PM	VOA-Glass	6	No
1			Amber Glass	3	No
			White Poly	1	No
			Yellow Poly	2 2 2	3 1 11
			Green Poly	*	
			Red Total Poly	1	No
			Red Dissolved Poly	1 .	Yes
			Total Bottles	12	

- Table 1991	0.000 m m	in the C	to the second se	
General	Samn	ling	Commer	nte
General	Dump	5	COMMIC	ILO

Reconnaissance	groundwater	sample.	Screen	set	from	16	feet	to	20	feet	bg	S
----------------	-------------	---------	--------	-----	------	----	------	----	----	------	----	---

Signature		
Nightine		
Digitatuic		

	a dies il dquide	e - o ign. i robito il	
			Comments of
		ocean bayesegai	
		2005	

STATE OF THE STATE				
		r		
Security Care at 199				

				_ :	
				60	

		a page 5 dell			
- 1V. 1			PO L		
				¥Ī	
			9 9		(K) - 2)
		ui Cu	·		

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-6
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/16/2005
Sampling Event	June 2005	Sample Name	GP6-W-18.0
Sub Area		Sample Depth	18
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC TOC

Hydrology/Level Measurements

	7 77		2 4		(Product Thickness)	(Water Column)	(Gallons/ft x Water Column
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
				a 1			

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	V 4		H				3 2		
* * * * * * * * * * * * * * * * * * * *	8.55						a 1		
		al 85	8	1	1. 14				
	4					h.			
	* 1 5	5						Fill	100
	1 10		ag s y a ag						,
Final Field Parameters	13:40	0.75		23.7	6.42	659			428

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water	Quality	Observ	ations
-------	---------	--------	--------

Vall	0117	tint	obcer	her

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:40:00 PM	VOA-Glass	6	No
		a da sajara at a	Amber Glass	3	No
			White Poly	1	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly	1	Yes
			Total Bottles	12	

General Sampling Comments

Reconnaissance groun	dwater sample.	Screen set from	n 16 feet t	o 20 feet b	gs
----------------------	----------------	-----------------	-------------	-------------	----

Cianatana						
Signature	*	20	 		13	

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-7
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/16/2005
Sampling Event	June 2005	Sample Name	GP7-W-14.0
Sub Area		Sample Depth	14
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements.

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump		- w 1						N 1 2	
	1					N. 11. 50 N. 11.	= = ^5 =		
			0 0	9		2 m m m			11
		* * *						1	*,
	, a							- 11	
	3 - 7	5 ,		7 A = _			9 9 E 8		
Final Field Parameters	16:30	2.0		6.17	22.5	421	-		679

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

W W 7.	24000	Omalita	Observat	
VV	aler.	UJHAHIV	Inserval	IOHS:
	HUUL	A creery	CODEL I III	TOTIO

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater 4:30:00 PM		VOA-Glass	6	No
			Amber Glass	3	No
			White Poly	. 1	No
			Yellow Poly	., x: = 0 ¹⁷ = 0.1 F	
			Green Poly		a 244
			Red Total Poly	1	No
			Red Dissolved Poly	1	Yes
			Total Bottles	12	* , **

General Sampling Comments	General	Sampling	Comments
---------------------------	---------	----------	-----------------

Reconnaissance groundwater sam	le. Screen set	from 12 f	feet to 1	6 feet bg	35
--------------------------------	----------------	-----------	-----------	-----------	----

α·	*	8	
Signature			

post in principal principal for the principal of the prin

ALL I (ALL I) A LA CALLA CALLA

e to the first of the first of

ancelles. Sea

an digital and the control of the co

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	GP-8
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/16/2005
Sampling Event	June 2005	Sample Name	GP8-W-10.0
Sub Area		Sample Depth	10
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
	The second of the second	3	8 K			v 2 2	

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	2 2 7								
								W u	
		0 8		1.5				4 12	
u w _ w w				g es			1 - E × .	5 4.55	5 7
	2 got 2 s		5 39					10	N .
					8	64 × 5		- Y	80 gr 1
Final Field Parameters	18:20	2.0		6.79	21.7	631		71	241

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water	Ouality	Observation	ns
-------	----------------	-------------	----

Yellow tint observed.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	6:20:00 PM	VOA-Glass	6	No
		a grand to the second	Amber Glass	3	No
			White Poly	1	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly	1	Yes
			Total Bottles	12	

General Sampling Comments

Reconnaissance groundwater samp	le. Screen set from	8 feet to	12 feet	bgs
---------------------------------	---------------------	-----------	---------	-----

Signature		
Signature		

Nieji Poster & Alongi, Jec

ingéla nastigragosafé nlocher ac Williams

N 10	ratheral sugremant		
Pipe	e set pribingel	e de aux cad h	
		The Country	
	į	23	
CONTROL PAR			

and the street of the street o

z – tyrký part manga sagat (existen) je ause a sa čipazina – svagot pře sutomacina – se sustoucial – san

a climate and the second of th

്ട്രിയ പ്രത്യായ അതിക്കുന്നു. പ്രത്യാത്ത് വരുന്നു വര് വായാക്ട്രി വരുന്നു. ഇത് സ്ഥാര്യ സ്ഥാര്യ സ്ഥാര്യ വര്യ വരുന്നു. ഇത് വരുന്നു വര്യ വരുന്നു വരുന്നു. ഇത് വരുന്നു വരുന്നു വര്യ വരുന്നു വ

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	MW-1
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/16/2005
Sampling Event	June 2005	Sample Name	MW1-W-35.0
Sub Area		Sample Depth	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements

	es. 150	4 11	s ,	je ja Yrv	(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
06/08/2005	12:50	40.2		0		40.2	6.5

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft)$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	07:30	6	0.5	7.88	16.3	270			27.0
	08:07	9	0.3		15.7	283		·	11.3
	08:20	12	0.5	7.27	15.7	296			-10.8
	08:42	14	0.25	7.36	15.8	234		-	6.56
				- 31 . T	H 6			P	*
Final Field Parameters	09:15	18	0.25	7.43	15.8	229	* ** ₂ ,		5.41

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Clear. Flowing artesian well.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	(2) Peristaltic Pump Groundwater		VOA-Glass	3	No
			Amber Glass		
			White Poly		(a
			Yellow Poly	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 11 3
			Green Poly		0 g
			Red Total Poly	1	No
			Red Dissolved Poly	1	Yes
			Total Bottles	5 ·	8 No. 124

General Sampling Comments

Collected VOCs using a disposable bailer with a bottom emptying device. Developed well by surging with a disposible, weighted bailer and purging with a peristaltic pump. Also purged 30 gallons on 6/8/05.

Signature

Water calls being any Dem Short

		- 1500 seal 1,500	
	40% 2		
7 John 3			
			with the selection of t

e des alla

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	MW-2
Project #	0053.01.03	Sampler	ARH
Project Name	Remedial Investigation	Sampling Date	6/17/2005
Sampling Event	June 2005	Sample Name	MW2-W-0605
Sub Area		Sample Depth	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC TOC

Hydrology/Level Measurements

		MF			(Product Thickness)	(Water Column)	(Gallons/ft x Water Column
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
06/08/2005	07:40	19:00		4.71		14.29	2.33

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	×,							2 3 .	
	io .			0 0			* * n * *		22 7
				2 0		ASS			**
1.1	2 8 A	8 x 200 205 X 8 3	e de son de	1 2	* 0 0	20 No. 1		n	-
	2 2 2		a a a a	= 5445					
	¥	· · · · · · · · · · · · · · · · · · ·		* 227 0	3 0 VS 2 3	a :-: 7 a		76	
Final Field Parameters	10:50	0.5	0.2	6.20	20.4	1698			47.9

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Slight yellowish orange tint. Field parameters shown above are from just prior to sampling on the 17th, while developing the field parameters were similar.

Sample Information

Sampling Method	pling Method Sample Type Sampling Time Container Code/Preserve		Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	10:50:00 AM	VOA-Glass	3	No
		28 18 18 18 18	Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		. 7
			Red Total Poly	1	No
			Red Dissolved Poly	1	Yes
			Total Bottles	5	

General Sampling Comments

Collected VOCs using a disposable bailer with a bottom emptying device. Developed well on 6/8/05 and 6/15/05, purged well dry both days. Sampled well on the morning of the 6/17/05.

a.		
1	gnature	
171	PHAILIC	

faction i padar difficie surè

	Adja of opposit	
		to the state of th
		No chi santanile and
		Mile or appoint the entroise in
		20 C 2 C 20 C 20 C 20 C 20 C 20 C 20 C
		ting glocate acad
ST SHEROLOGY ST. Fire policy to con-	ment plays things	The war was a many many as a second state of the same was
		in all that the second
	eminaria ang ang ang ang ang ang ang ang ang an	
	4 1	ing the second of the second o
global section	e S	

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	MW-3
Project #	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	6/7/2005
Sampling Event	June 2005	Sample Name	MW3-0605
Sub Area		Sample Depth	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC

Hydrology/Level Measurements

			(Product Thickness)	(Water Column)	(Gallons/ft x Water Column		
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
06/08/2005		18.2	·	6	· · · · · · · · · · · · · · · · · · ·	12.2	2.0

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	15:11	25.0	0.35	6.69	17.2	427			14.7
	15:25	27.0	0.35	6.51	17.2	419		,	8.3
	15:45	29.0	0.35	6.46	17.0	404			6.2
		- Sa - Jaja -	2		a _a = 0 a	- 8 - 2, 2 - V Acc	an i c a	14.	n1 Y
	84	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 2 4 1 5	21 H	* 6 a ^y *	4 4 7	
						- a =	2 0 5 1		
Final Field Parameters	16:07	31.0	0.35	6.50	17.0	390	:		5.8

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Clear with suspended orange particulates.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered	
(2) Peristaltic Pump	Groundwater	4:10:00 PM	VOA-Glass	3	No	
			Amber Glass	1 A	* * * =	
			White Poly			
			Yellow Poly			
			Green Poly			
			Red Total Poly	1	No	
			Red Dissolved Poly	1	Yes	
			Total Bottles	5	2 2	

General Sampling Comments

Collected VOCs using a disposable bailer with a bottom emptying device. Developed well by surging with a disposible, weighted bailer and purging with a peristaltic pump.

Signature

Mart Postor & Afongi, Inc.

Water Timi Sampling Dass Struct

		MAN I DANISH SERIE	
		Tolqimusi	Conjects 100
(lognog i i m f. i . lovoč Olive Opky) =			
		Att Mace	
	i w	nal Talan rama Majasa	
y Property and Piller Land			
	e y sala		
	ar i sur		

aparen galaria da kantari kantari kantari da kantari da kantari kantari kantari kantari da kantari da kantari

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	MW-4
Project #	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	6/8/2005
Sampling Event	June 2005	Sample Name	MW4-0605
Sub Area		Sample Depth	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
06/08/2005	9:30	25.57		6.18		19.39	3.2

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft)$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	10:21	4	0.50	6.02	18.0	509		0,00	22.0
	10.45	6.5	0.45	6.19	17.8	497			17.4
	11:05	8.5	0.45	6.28	17.7	501	/* - , 1		4.0
		F 72 12 1 1	81 × 1 × 1	. F		n gran ng h	"* -		
			-, -1		1, 2,				
					•		· .	Fig. and g	
Final Field Parameters	11:25	11.0	0.45	6.26	17.7	504	,		2.6

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Clear with small particles of orange particulates.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:25:00 AM	VOA-Glass	3	No
			Amber Glass		
			White Poly		* 11. 3.
			Yellow Poly		4
			Green Poly		1
			Red Total Poly	1	No
			Red Dissolved Poly	1	Yes
			Total Bottles	5	35

General Sampling Comments

Collected VOCs using a disposable bailer with a bottom emptying device. Field duplicate sample taken at this location. Sample ID- GW4-Dup-0605.

Signature

Levid greet herbyn. Zifth it egane

April 1998 A Section 1998

7223 NE Hazel Dell Avenue, Suite B, Vancouver, WA 98665 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	Precision Engineering	Sample Location	MW-4
Project #	0053.01.03	Sampler	SLM
Project Name	Remedial Investigation	Sampling Date	6/8/2005
Sampling Event	June 2005	Sample Name	MW4Dup-0605
Sub Area		Sample Depth	
FSDS QA:	ARH July 22, 2005	Easting	Northing TOC TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
06/08/2005	06/08/05	25.57	* .	6.18	*	19.39	3.2

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (2" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.092 \; gal/ft)$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	10:21	4.0	0.50	6.02	18.0	509	×	'	22.0
	10:45	6.5	0.45	6.19	17.8	497	-		17.4
	11:05	8.5	0.45	6.28	17.7	501	į		4.0
	9 8 x x					- 4 2 40 5 ³		i	- "
			e i g	9 . ×	1 1	100° A			
		1 1 1						* see of a	N III
Final Field Parameters	11:25	11.0	0.45	6.26	17.7	504			2.6

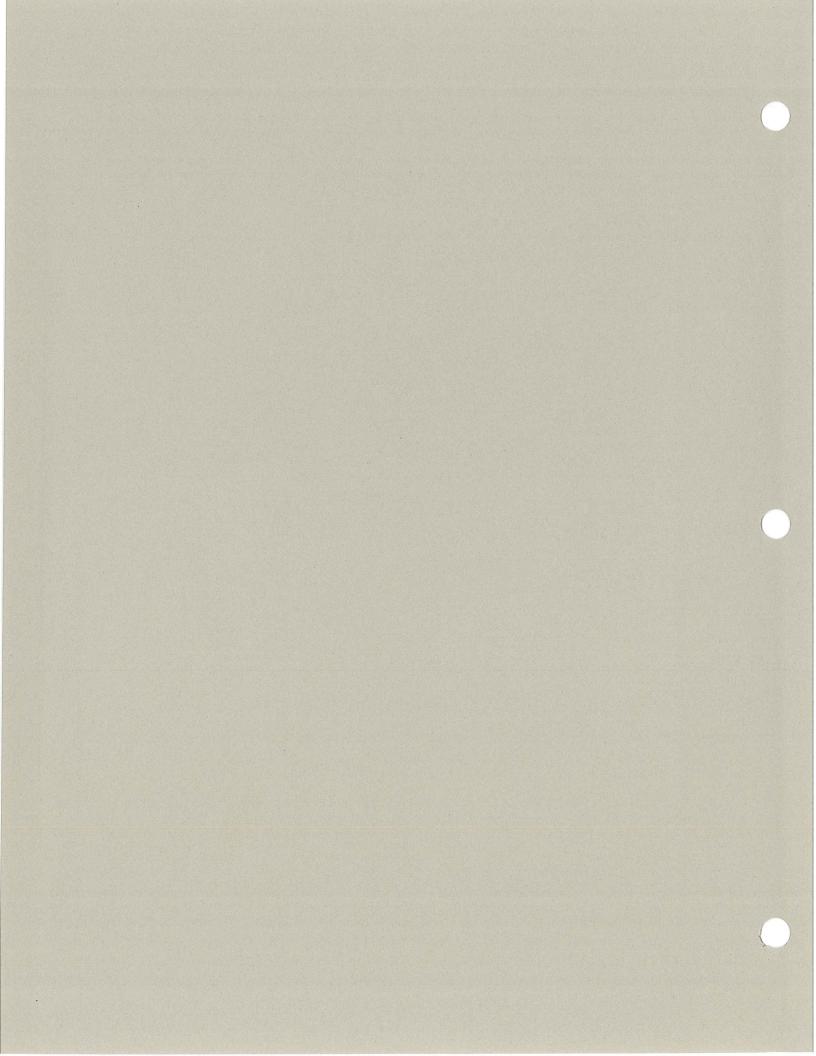
Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Clear with suspended orange particulates.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	# , .	Filtered	
(2) Peristaltic Pump	Groundwater	11:25:00 AM	VOA-Glass	3		
y N. J. S. J. Sas T. S.			Amber Glass			
			White Poly	, i		
			Yellow Poly		X	
			Green Poly			
			Red Total Poly	1	No	
			Red Dissolved Poly	1	Yes	
			Total Bottles	5		


General Sampling Comments

Collected VOCs using a disposable bailer with a bottom emptying device. Duplicae sample of MW4-0605.

a			
Vianatiire			
Signature			

Second Carle in 20 America

APPENDIX F WELL DEVELOPMENT SHEETS

Well Development Form

Project No. 0053.01.03 Site Location: Precision Engineering, Seattle, Wa

Name: Scout Mauldin/Alan Hughes

Development Method: Peristaltic and surge

Total Water Removed 48 gallons

Water Contained Yes

Estimated Specific Capacity

Date 06/08/05 and 06/15/05

Well: MW-1

Initial DTB 40.2

Final DTB:

Initial DTW: Artesian

Final DTW: 18.5

Pore Volume: 6.5 (flowing artesian)

Casing Diameter: 2 inches

Meter No.

	Cum. Vol	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/		EC	-04 H ² 1 − 1		k 5 (2 ll						
Time	Removed	Turbidity	рН	(µhos)	Temp	DO	Eh	Comments					
12:50	2 gal			*				Grey and silty					
13:27		Surge with weighted disposible bailer for 15 minutes.											
14:00	6	680	6.96	301	14.6			Grey and silty					
14:37	10	449	6.88	296	14.6			Grey and silty, clearing, 0.65L/min					
15:16	14	513	6.88	292	15.2			Grey and silty, clearing, 0.65L/min					
15:48	20	306	6.96	289	15.2			Grey and silty, clearing, 0.65L/min					
16:13	26	204	6.94	289	15.2		1	Grey and silty, clearing, 0.65L/min					
16:29	30	137	6.92	288	15.2			Grey and silty, clearing, 0.65L/min					
6/15/2005				5 0 0	, -								
7:30	6	27.0	7.88	270	16.3	* o os		0.5 L/min					
8:07	9	11.3		283	15.7								
8:20	12	10.8	7.27	296	15.7			0.3 L/min					
8:42	14	6.56	7.36	234	15.8			0.5 L/min					
9:15	18	5.41	7.43	229	15.8			0.25 L/min					
	ž.												
= -													
· · · · · · · · · · · · · · · · · · ·								2 2 12 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15					
				2 2	7								
			· · · · · ·										
13		0	2										

PEGIL INCOMPRESS 1 494/W

And the second s

Well Development Form

Project No. 0053.01.03 Date 06/08/05 and 06/15/05 Site Location: Precision Engineering, Seattle, Wa Well: MW-2 Name: Scout Mauldin/Alan Hughes Initial DTB: 19.0 Final DTB: 19.29 Development Method: Peristaltic and surge 4.71 Final DTW: Initial DTW: Pore Volume: 2.33 Total Water Removed 4.5 gallons Water Contained Yes Casing Diameter: 2 inches Estimated Specific Capacity Meter No.

	Cum. Vol			EC	7 25-12		100	
Time	Removed	Turbidity	рН	(µhos)	Temp	DO	Eh	Comments
8:21	0					·	-	Slight yellowish tint, 0.35 L/min
8:45	2.0							Well dry
6/15/2005								
14:31	1.0	32.8	7.42	1906	19.8			10.72 TOC
14:45	2.0	34.7	NM	NM	NM			Pump at bottom. WLE falls quickly
15:01	2.5	45.8	6.8	1312	20.2	-		Slight yellowish tint. DTW 18.21
7		6			3 7			
E 90		107				3		
					* * * *	1		
- 18 m					4	=		
		д и с	-			, V.E.		
			10					
1 1				7 / B		h		
		a gartig			4			
					20 1			1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N
	n 2.	U.V.			, ×	- a	a 5 p	net to
NO 5 2 2 4				V	* × *	- b	** * * * *	
					z.			
" = "			1 /		2			
							ll a	8 g 1 6

and the green to be the MA

			jancing .				Aleman Santa A
							i i i i i i i i i i i i i i i i i i
				returne to a second			
- (
							8= = =
					2		

Well Development Form

Project No. 0053.01.03

Site Location: Precision Engineering, Seattle, Wa

Name: Scout Mauldin/Alan Hughes

Development Method: Peristaltic and surge

Total Water Removed

31 gallons

Water Contained Yes

Estimated Specific Capacity

Date 06/08/05 and 06/15/05

Well: MW-3

Initial DTB: 18.2

Final DTB: 19.29

Initial DTW: 6.0

Final DTW:

Pore Volume: 2.0

Casing Diameter: 2 inches

Meter No.

	Cum. Vol			EC			5. H	
Time	Removed	Turbidity	рН	(µhos)	Temp	DO	Eh	Comments
12:49	3.0		7.14	489	16.5			Grey silty sand, purged off bottom
13:16	9.0	243	7.31	542	17.0			Grey silty sand, purged off bottom
13:25	Surged wit	h wieghted	disposible	bailer for tv	venty minu	tes.	11	
13:55	13.0	355	7.32	556	17.0			Grey silty sand, purged off bottom
14:16	17.0	168	7.34	536	17.0		- 1	Grey silty sand, purged off bottom
14:27	19.0	106	7.36	539	17.0	· _1		0.55 L/min, moved into screen
14:47	22.0	102	7.39	540	17.0			0.45 L/min, clearing w/ orange particles
15:11	25.0	14.7	6.69	427	17.2	:		0.35 L/min, clearing w/ orange particles
15:25	27.0	8.3	6.51	419	17.2		·	0.35 L/min, clearing w/ orange particles
15:45	29.0	6.2	6.46	404	17.0			0.35 L/min, clearing w/ orange particles
16:07	31.0	5.8	6.50	390	17.0			0.35 L/min, clearing w/ orange particles
	, X			,	* 1			
				7 4 2	" "			
N 27								* * * * * * * * * * * * * * * * * * *
		. "				8	9 - 7 - 8	
	11.10		1 ()					2
·				4				
	9 9	- 1	V 10					
		* 3			- in-	-		
				-,-			_ `	
		,"					-	

mi wit insungificusti it ust

				miles a	
the state of the state of the state of					
•					
		Para opo gojelo i s			
Amother to the Address of the Control					
·					
The second secon	• == =				
					c 20 0 0

Well Development Form

Project No. 0053.01.03 Date 06/08/05 Well: MW-4 Site Location: Precision Engineering, Seattle, Wa Name: Scout Mauldin Initial DTB: 25.57 Final DTB 25.57 Development Method: Peristaltic and surge Initial DTW: 6.18 Final DTW 19.5 **Total Water Removed** 11 gallons Pore Volume:3.2 Water Contained Yes Casing Diameter: 2 inches Estimated Specific Capacity Meter No.

4 4 4 4	Cum. Vol			EC				
Time	Removed	Turbidity	рН	(µhos)	Temp	DO	Eh	Comments
10:06	0							Began purging
10:21	4.0	. 22	6.02	509	18			Slight tint with flocculent, 0.5 L/min
10:45	6.5	17.4	6.19	497	17.8			Clearing with slight flocculent, 0.45 L/min
11:05	8.5	4.0	6.28	501	17.7			Clearing with slight flocculent, 0.45 L/min
11:25	11.0	2.6	6.26	504	17.7			Clearing with slight flocculent, 0.45 L/min
a " a "			* 0	2 2	*			
			1 3 2					
_	= >							
* = x			2			40	Ø ,	
	···							- 42 A A A A A A A A A A A A A A A A A A
		,	X					
				0			* 1	
	H 9	10 8					•	
				3 90 V				
	· · · · · · · · · · · · · · · · · · ·			le a	¥	+		
		1				¥ ×		
3	22							
=								
2								

ADDING MEMORIAL STREET

Perjoration of the control of the co

' to the street to the						
						1.01-1
					11.0	* o%, //
				2		
	,					
						l
			-= >=-			