

# **Groundwater Monitoring Report December 2014 Event**

3740 Shelton Springs Road Shelton, Washington

Prepared for: Mason County Transportation Cooperative Attn: Sandi Thompson 700 South First Street Shelton, Washington 98584

January 2015 Project No. 41271.002

## **TABLE OF CONTENTS**

| 1.0 INTRODUCTION                                 | <i>'</i> |
|--------------------------------------------------|----------|
| Site Description and Usage                       |          |
| Site Ownership                                   |          |
| 2.0 BACKGROUND                                   |          |
| 3.0 SITE INVESTIGATIONS                          |          |
| 4.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS |          |
| 5.0 FINDINGS                                     |          |
| Groundwater Analytical Results                   |          |
| Quality Control Samples                          | 4        |
| 6.0 CONCLUSIONS AND RECOMMENDATIONS              |          |
| 7.0 LIMITATIONS                                  |          |

## **SUPPORTING DATA**

#### **FIGURES**

Figure 1 - Vicinity Map Figure 2 - Site Plan

## **TABLES**

Table 1 – Monitoring Well Construction

Table 2 – Groundwater Elevation Data

Table 3 – Groundwater Sampling Analytical Results

#### **APPENDICES**

Appendix I - Soil Boring and Well Construction Logs

Appendix II - Groundwater Sampling Forms

Appendix III - Well Surveyor's Report

Appendix IV - Laboratory Reports and Chain-of-Custody Documentation

i

#### 1.0 INTRODUCTION

PBS Engineering and Environmental Inc. (PBS) completed the December 2014 collection of groundwater samples at the Mason County Transportation Cooperative facility located at 3740 Shelton Springs Road in Shelton, Washington (site or subject property). The work was completed at the request of Sandi Thompson with Mason County Transportation Cooperative. This investigation was conducted to further characterize groundwater quality in conjunction with ongoing monitoring of the 1994 underground storage tank (UST) release at the project site.

The December 2014 groundwater sampling event represents the second consecutive quarterly event for the project site.

## Site Description and Usage

The subject property is the site of Mason County Transportation Cooperative, located at 3740 Shelton Springs Road, Shelton, Washington 98584-9105 in Mason County (Township 20 North, Range 4, Section 12). The triangular-shaped land is identified as Parcel Number 420124160000.

The site building includes bus maintenance bays, wash bays and personal offices. A fueling area is located on the south side of the building and includes a pump island and associated USTs. Buses are parked around the building to the north and west.

## Site Ownership

The property is currently owned by Mason County Transportation.

#### 2.0 BACKGROUND

The property was purchased as a vacant lot by the school district in 1984. Shortly after purchase, the school bus maintenance building and fueling facility were built. In 1994, the USTs were upgraded to conform to EPA standards. During the upgrade, a leaking pipe and contaminated soil were encountered during excavation. Mason County then initiated remedial actions to fulfill Ecology's Model Toxics Control Act (MTCA) requirements to obtain a determination of "no further action" (NFA) for the site.

Mason County removed approximately 600 cubic yards of soil from the excavation and aerated the soil material on-site in 1995. New double-walled fiberglass tanks were installed. Some impacted soils were left in place due to inaccessibility due to site structures. Two groundwater monitoring wells were installed adjacent to the UST system.

As required by Ecology, in June 2007, a total of five borings were drilled with two of the borings completed as groundwater monitoring wells. Subsurface soil samples were collected from the borings, just above the saturated groundwater zone. Analytical results indicated no detections of gasoline-range hydrocarbons in the six soil samples; only one location had any hydrocarbon detection (a heavy oil-range at low concentrations). All subsurface soil concentrations of petroleum hydrocarbons and/or constituents were below the applicable MTCA Method A or Method B levels.

In addition, all four existing on-site monitoring wells developed and sampled. Analytical results indicated no impacts to groundwater from petroleum hydrocarbon related constituents above the laboratory MRLs. Based on the dataset, PBS recommended no further environmental investigation was necessary and that Ecology should issue a determination of NFA. However, Ecology requested additional site characterization data, which was communicated in their May 22, 2009 letter to Mason County.

The October 2009 environmental media monitoring event was then performed specifically to address Ecology's May 22, 2009 request for additional site soils and groundwater data. Soil and groundwater samples from across the site were analyzed for gasoline-range hydrocarbons. Sample analysis indicated no contaminants of concern were above the laboratory method reporting limit (MRL).

Based on the October 2009 additional soil and groundwater data, PBS recommended that Mason County submit the findings to Ecology and request NFA determination for the site. However, the placement of additional monitoring wells and quarterly groundwater sampling was requested by Ecology in a letter dated May 26, 2010 in order to further characterize groundwater quality.

In May 2014, two additional monitoring wells were installed on the project site. The weels were placed to capture the down gradient groundwater flow locations, and a replacement well was near the western portion of the existing underground storage tank basin and dispenser area, to replace MW-1. The well installation and sampling results were presented in the Well Installation and Groundwater Sampling Report, PBS, dated October 10, 2014. (?check dates and revise)

## 3.0 SITE INVESTIGATIONS

## **Groundwater Monitoring Event**

The December 2014 Groundwater Monitoring Event (GME) was conducted on December 10, and included the sampling of four on site groundwater monitoring wells (MW3 through MW6). MW2 was not sampled this quarter, due to low water levels, but will be captured during the next two sampling events. Well locations are presented in Figure 2 - Site Plan. Monitoring well information is summarized in the following Table 1:

Table 1: Summary of Monitoring Well Construction

| Monitoring Well Identification    | Installation Date | Screened Interval (feet bgs) | Well Depth<br>(feet bgs) |
|-----------------------------------|-------------------|------------------------------|--------------------------|
| *MW1 (not used) replaced with MW5 | 1995              | 5-14                         | 14.42                    |
| MW2                               | 1995              | 5 – 15                       | 14.72                    |
| MW3                               | 2007              | 10 – 20                      | 18.91                    |
| MW4                               | 2007              | 10 – 20                      | 19.24                    |
| MW5                               | 2014              | 10 - 25                      | 23.47                    |
| MW6                               | 2014              | 9.6 – 19.6                   | 19.22                    |

<sup>\*</sup> Observation well that has been historically reported as dry and unable to be sampled

Prior to sampling the wells were gauged using an interface probe. Static water levels (SWLs) ranged from 10.55 feet below top of casing (fbTOC) in MW6 to 12.7 fbTOC in MW5.

Groundwater purging and sampling was conducted using a peristaltic pump, employing low flow sampling methodology with pumping rates not exceeding 0.5 liters/minute and creating minimal drawdown in the well. Groundwater field parameters (conductivity, pH, temperature, dissolved

oxygen and oxidation-reduction potential) were recorded during purging using a YSI Model 556MSP water-quality analyzer equipped with a flow-through cell.

Once groundwater parameters stabilized, which indicates groundwater is representative of the aquifer formation and is not well column water, a sample was collected. PBS personnel wore new disposable nitrile gloves when collecting samples. Detailed groundwater sampling information is presented in Attachment II - Groundwater Sampling Forms.

All samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported Fremont Analytical Laboratory in Seattle, Washington, within specified holding times and under chain-of-custody documentation. Analyses were conducted under a 5-day turnaround time and included the following:

- Gasoline range Total Petroleum Hydrocarbons (TPH) by method NWTPH-Gx
- Diesel range TPHs by method NWTPH-Dx
- Benzene, toluene, ethylbenzene and xylenes by EPA method 8021
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270D SIM

## 4.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS

Contaminated site assessment and cleanup is conducted under the MTCA, Chapter 70.105D Revised Code of Washington [RCW]. Chapter 173-340 of the Washington Administrative Code (WAC) provides a workable process for MTCA to accomplish effective and expeditious cleanups in a manner that protects human health and the environment. The applicable standards for this Site are the MTCA Method A groundwater cleanup levels (Table 720-1).

Site assessment and cleanup on Site has been and will continue to be performed in accordance with MTCA regulations.

### 5.0 FINDINGS

#### Groundwater Elevation and Flow Direction

Groundwater elevation was slightly lower in the four well sampled during this monitoring period, as compared to the prior monitoring period. The water elevations, which were approximately 2.5 feet lower, may correspond to decreased rainwater infiltration to the groundwater during this period.

Groundwater flow direction was determined graphically on a scaled site plan, using the tabulated groundwater elevations. Groundwater flow direction was determined to be east southeast. Groundwater elevation data from June and September 2014, calculated groundwater flow direction and hydraulic gradient are presented in Table 2. A copy of the survey report is included in Attachment III.

## **Groundwater Analytical Results**

The analyzed groundwater samples indicated no contaminant concentrations in groundwater were reported above the laboratory MRL or the adopted regulatory cleanup levels.

Groundwater analytical results are presented in Table 3. A copy of laboratory report is included in Attachment IV.

## **Quality Control Samples**

Quality control (QC) sampling conducted during the investigation is described below:

One blind duplicate sample was submitted to the laboratory for analysis without notification to the laboratory which sample was duplicated. The duplicate groundwater sample (DUP\_12.10.2014) from MW1 was analyzed for BTEX. Results from both samples were below the respective laboratory MRLs.

A trip blank sample was shipped with groundwater samples collected during the investigation and analyzed for BTEX. Trip blank results were below the laboratory MRLs.

## 6.0 CONCLUSIONS AND RECOMMENDATIONS

With regard to the findings of GME conducted on site, the following recommendations are made:

- The analyzed groundwater samples indicated no contaminant concentrations in groundwater were reported above the laboratory MRL or the adopted regulatory cleanup levels (i.e. non-detect levels).
- The December 2014 GME represents the second consecutive groundwater sampling with no detected concentrations of contaminants above the MRL in analyzed samples.
- Continue quarter annual GMEs with analysis for contaminants of concern. PBS recommends removing analysis for gasoline range hydrocarbons and BTEX from the analytical suite.
- Submit a copy of this report to Ecology
- Retain a copy of this report.

## 7.0 LIMITATIONS

PBS has prepared this report for use by Mason County Transportation Cooperative. This report is for the exclusive use of the client and is not to be relied upon by other parties. It is not to be photographed, photocopied, or similarly reproduced, in total or in part, without the expressed written consent of the client and PBS.

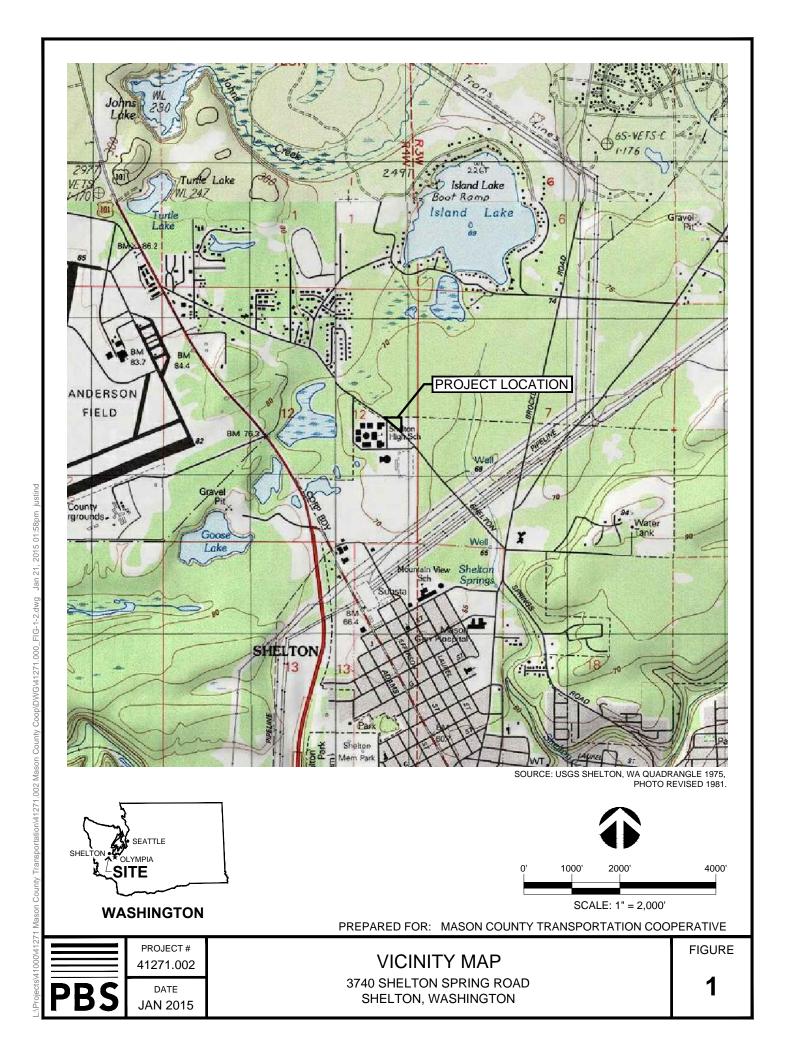
This study was limited to the tests, locations, and depths as indicated to determine the absence or presence of certain contaminants. The site as a whole may have other contamination that was not characterized by this study. The findings and conclusions of this report are not scientific certainties but, rather, are probabilities based on professional judgment concerning the significance of the data gathered during the course of this investigation. PBS is not able to represent that the site or adjoining land contain no hazardous waste, oil or other latent conditions beyond that detected or observed by PBS.

PBS Engineering and Environmental Inc.

Megan Nogeire

January 21, 2014

Project Scientist


January 21, 2014

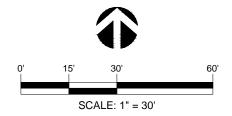
Date

Tom Mergy, LG Senior Geologist










## **LEGEND**

♦ MW-5 MONITORING WELL NUMBER AND LOCATION

→ MW-1 EXISTING MONITORING WELL NUMBER AND LOCATION

XX FENCE



PREPARED FOR: MASON COUNTY TRANSPORTATION COOPERATIVE

PROJECT # 41271.002

PBS DATE JAN 2015

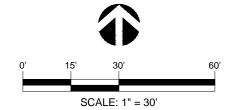
# SITE PLAN

3740 SHELTON SPRING ROAD SHELTON, WASHINGTON

**FIGURE** 

2




♦ MW-5 MONITORING WELL NUMBER AND LOCATION

GROUNDWATER FLOW DIRECTION

GOUNDWATER CONTOUR

(222.72) GOUNDWATER ELEVATION (FEET AMSL)

APPROXIMATE HYDRAULIC GRADIENT - 0.0025 ft/ft



PREPARED FOR: MASON COUNTY TRANSPORTATION COOPERATIVE



## **GROUNDWATER CONTOUR MAP**

3740 SHELTON SPRING ROAD SHELTON, WASHINGTON

**FIGURE** 

3



## **TABLE 2 GROUNDWATER ELEVATION AND FLOW DIRECTION**

Site: Mason County Transportation, Shelton, Washington

Project No: 41271.002

| Monitoring Well Identification | Groundwater Monitoring Event | Top of Casing<br>(TOC) elevation<br>(feet) | Depth to<br>water (feet) | Groundwater<br>Elevation (feet) |
|--------------------------------|------------------------------|--------------------------------------------|--------------------------|---------------------------------|
| MW2                            | September 30, 2014           | 236.2                                      | 13.48                    | 222.72                          |
| MW3                            | September 30, 2014           | 236.21                                     | 13.48                    | 222.73                          |
| WWS                            | December 10, 2014            | 236.21                                     | 10.80                    | 225.41                          |
| MW4                            | September 30, 2014           | 236.35                                     | 13.78                    | 222.57                          |
| 101004                         | December 10, 2014            | 230.33                                     | 11.50                    | 224.85                          |
| N 43 A / C                     | September 30, 2014           | 007.07                                     | 15.32                    | 222.55                          |
| MW5                            | December 10, 2014            | 237.87                                     | 12.70                    | 225.17                          |
| MW6                            | September 30, 2014           | 235.92                                     | 13.21                    | 222.71                          |
| IVIVVO                         | December 10, 2014            | 255.92                                     | 10.55                    | 225.37                          |

## Survey report included in Attachment III

| Date of Depth to<br>Water Measurement | Groundwater Flow Direction | Hydrualic<br>Gradient<br>(feet/feet) |
|---------------------------------------|----------------------------|--------------------------------------|
| September 30, 2014                    | Southeast                  | 0.0025                               |
| December 10, 2014                     | East Southeast             | 0.004                                |

Groundwater flow direction was determined graphically on a scaled site plan, using the tabulated groundwater elevations and survey data

## **TABLE 3 GROUNDWATER ANALYTICAL RESULTS**

**SITE: Mason County Department of Transportation** 

PROJECT NO: 41271.002

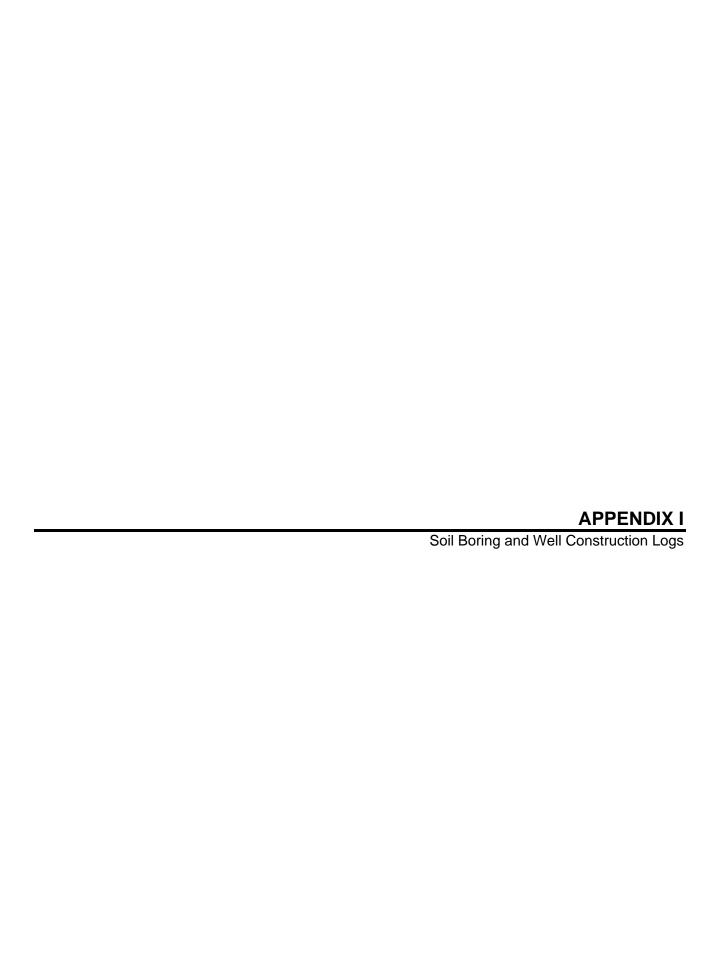
|                  |                                              | R     | esult ug | /L (parts | s per bil | lion)       |                  |        |        |        |                   |
|------------------|----------------------------------------------|-------|----------|-----------|-----------|-------------|------------------|--------|--------|--------|-------------------|
|                  |                                              |       | TPHs     |           | ,         | VOCs by EPA | method 8260      | )1     |        | PAHs   |                   |
|                  | Criteria                                     | Gx    | Dx       | Heavy Oil | Benzene   | Toluene     | Ethyl<br>Benzene | Xylene | B(a)P  | Naph   | Carcinogenic PAHs |
| Adopted Criteria | MTCA Method A Cleanup Levels for Groundwater | 800   | 500      | 500       | 5         | 1,000       | 700              | 1,000  | 0.1    | 160    | 0.1**             |
| Location/ Depth  | Groundwater Monitoring Event                 |       |          | ı         | ī         | 1           | Fahad            |        |        | T      | T                 |
|                  |                                              | Gx    | Dx       | Heavy Oil | Benzene   | Toluene     | Ethyl<br>Benzene | Xylene | B(a)P  | Naph   | Carcinogenic PAHs |
| MW2              | September 30, 2014                           | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW3              | September 30, 2014                           | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW3              | December 10, 2014                            | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW4              | September 30, 2014                           | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW4              | December 10, 2014                            | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW5              | September 30, 2014                           | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW5              | December 10, 2014                            | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW6              | September 30, 2014                           | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |
| MW6              | December 10, 2014                            | <50.0 | <50.0    | <100      | <1.00     | <1.00       | <1.00            | <1.00  | <0.100 | <0.100 | <0.100            |

**BOLD** indicates above MTCA Method A Cleanup Levels for Groundwater

TPH - total petroleum hydrocarbons

Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons


ug/L - micrograms per litre

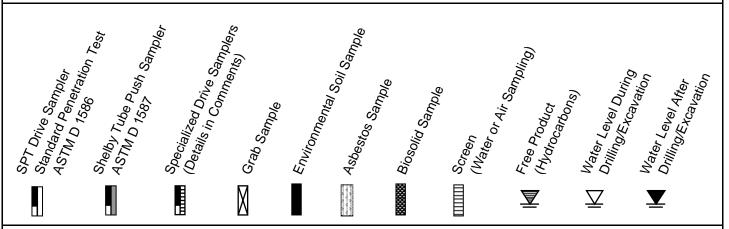
<50 - less than the laboratory method reporting limit

B(a)P - benzo(a)pyrene

Naph - naphthalene

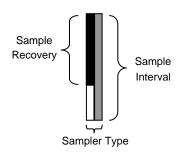
<sup>\*\*</sup> Value for carcinogenic PAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2



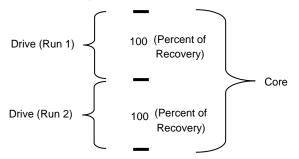

| DC                                      | 1310 Main St.<br>Vancouver, WA 98660<br>Phone: (360) 690-4331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MASON C                                                                                        |                  | LTON,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ION                | BORING TB-4/MW-3                                                                                                                                                                                                                 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D J<br>jineering +<br>rironmental       | Fax: (360) 696-9064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PB:                                                                                            |                  | JECT N<br>7167.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>:</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                  |
| GRAPHIC<br>LOG                          | MATERIAL DESCRIPT<br>AND COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON                                                                                             | GROUND-<br>WATER | HEADSPACE<br>VAPOR (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRIVE/<br>RECOVERY | WELL INSTALLATION Start Card/Tag ID# R65249/APF863                                                                                                                                                                               |
| 10 — 15 — 15 — 15 — 15 — 15 — 15 — 15 — | Loose, light brown, medium to a SAND with some silt and gravel gravels are fine and subrounded.  Loose, light brown, fine SAND vacourse sand, gravels and silts a subrounded.  Loose, light brown, medium to a gravelly SAND with some silt, dand sands range from subangurounded.  Becomes slightly damp.  Loose, light brown, fine to coarse GRAVELS with well graded sand damp.  Loose, brown, silty fine SAND value gravels and medium to coarse gravels. | s; dry, -d with some ire fine and - coarse ry, gravels dar to - se ids and silts, - with trace | AYD<br>Ţ         | 11.0<br>6.5<br>25.0.<br>11.0<br>17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TB4-13-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Expandable locking cap  Hydrated bentonite chips (3/8")  Riser pipe: 1-inch, PVC Schedule 80  Ambient air is approximately 7 ppm 10/20 Silica Sand & Native  Ambient air is 14 ppm  Screen: 0.010" Slots, 1-inch PVC Schedule 80 |
| 20                                      | Final depth 20.0 feet below gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | und surface<br>-<br>-<br>-<br>-<br>-<br>-                                                      |                  | And the state of t | 91/6-MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The state of the s | ,                  |                                                                                                                                                                                                                                  |
| 30 —                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-<br>-<br>-<br>-                                                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                  |
| 35 —                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br><br>-<br>-                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Territoria de la composição de la compos | And the second s |                    |                                                                                                                                                                                                                                  |
| ORILLED BY:E                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BY:C. Johnson<br>TED:6/27/07                                                                   | NOTE<br>PID no   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ning on B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sorings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TB-2, T            | B-3, and TB-5                                                                                                                                                                                                                    |

|                                                     |                                        | 1310 Main St.<br>Vancouver, WA 98660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MASON (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COUNT<br>SHE     | TY TRA                   | NSPOF<br>WA        | RTATI        | ON                                       | BORING TB-5/MW-4                                                                                                                                                     |
|-----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--------------------|--------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS<br>ngineering<br>nvironment                      |                                        | Phone: (360) 690-4331<br>Fax: (360) 696-9064                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | JECT N<br>7167.00        | UMBER<br>10        |              |                                          | DOLYHAO 1 D-2\lange 1 A-4                                                                                                                                            |
| EPTH                                                | GRAPHIC<br>LOG                         | MATERIAL DESCRIPTION<br>AND COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND-<br>WATER | HEADSPACE<br>VAPOR (PPM) | SAMPLE<br>NUMBER   | SAMPLE       | DRIVE/<br>RECOVERY                       | WELL INSTALLATION Start Card/Tag ID# R65249/APF864                                                                                                                   |
| 55 — 10 — 15 — 20 — — — — — — — — — — — — — — — — — | 0.000000000000000000000000000000000000 | ASPHALT with loose, brown, fine is sand and trace gravels, dry Loose, brown, fine to coarse grave with trace silts and cobbles 2" plug of organic - smelling san with trace coarse sand; dry, low Loose, brown, fine SAND with trace medium to coarse gravel and trace dry Loose, brown, sandy GRAVEL wit silt; dry  Loose, brown, sandy fine SAND with sor sand, fine gravel and trace silt; mode with some silt; damp  Loose, brown, sandy fine GRAVE some silts; wet  Loose, brown, fine to medium SAI trace silts; wet | dy SILT plasticity pla | GR ADIA          | HEAL                     | SAI TB-5-12-14 NUM | YS SA        | DI REC                                   | Expandable locking cap Hydrated bentonite chips (3/8")  Riser Pipe: 1-inch PVC Schedule 80  10/20 Silica Sand & Native  Screen: 0.010" Slots, 1-inch PVC Schedule 80 |
| 35 —                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 - 1 - 1        |                          |                    |              | ما الله الله الله الله الله الله الله ال |                                                                                                                                                                      |
| DRILLED                                             | BY:E                                   | HOD:Direct Push LOGGED B'<br>ESN Northwest COMPLETE<br>DIAMETER2-inch                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y:C. Johnson<br>D:6/27/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTE<br>PID n    |                          | oning on E         | L<br>Borings | TB-2, 1                                  | IB-3, and TB-5                                                                                                                                                       |

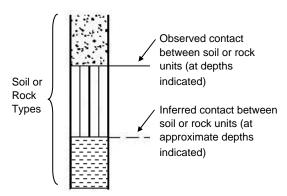



## **Key To Test Pit and Boring Log Symbols**

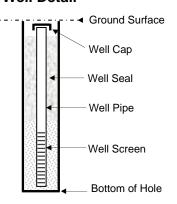
## SAMPLING DESCRIPTIONS




#### **LOG GRAPHICS**


## **Sampling Symbols**




## Direct Push, Geoprobe®, Sonic, Vibracore Drilling



### Soil and Rock



## **Well Detail**



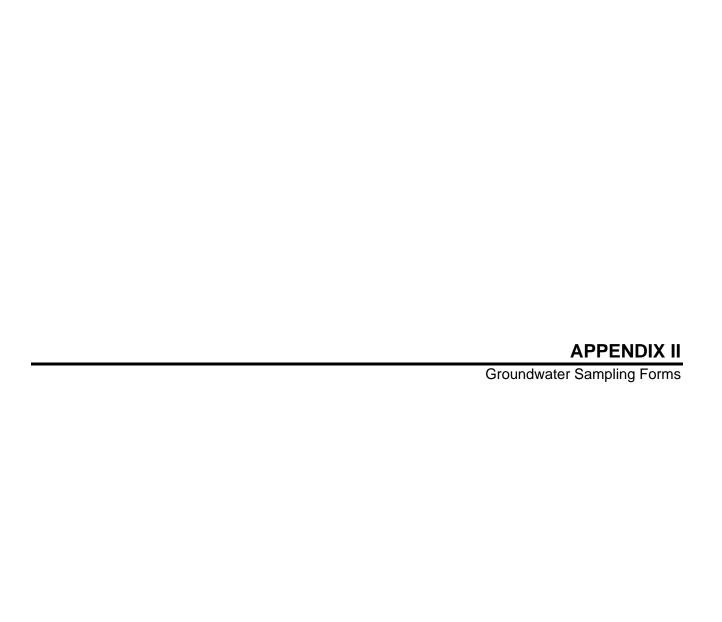
#### **ENVIRONMENTAL TESTING EXPLANATIONS**

ATD At Time of Drilling

BGS Below Ground Surface

MSL Mean Sea Level

MW Monitoring Well (Water Sampling)


NSTPH Cx Coccline Page Patrology Hydrogerbon Testing

NWTPH-Gx Gasoline-Range Petroleum Hydrocarbon Testing SS Slight Sheen
OD Outside Diameter MS Moderate Sheen

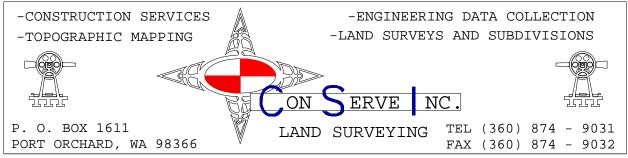
PID Photoionization Detector Headspace Analysis HS High Sheen

MASON COUNTY TRANSPORTATION **BORING MW-5** 2517 Eastlake Avenue East 3740 SHELTON SPRINGS ROAD Suite100 SHELTON, WASHINGTON Seattle, Washington 98102 Phone: 206.233.9639 BORING MW-5 LOCATION: PBS PROJECT NUMBER: (See Site Plan) Engineering + Environmental Fax: 866.727.0140 41271.002 RECOVERY/ SAMPLE/ BLOWS SAMPLE NUMBER GROUND-WATER PID (PPM) **DEPTH** MATERIAL DESCRIPTION **FEET COMMENTS** % 0.0 GRASS Flush-mount monument with 3 feet of concrete backfill Very fine, brown, very fine SAND with some gravel; dry, no odor 2.0 8-24-34 0.2 PVC Pipe 4.0 Loose, brown, gravelly fine to medium SAND; dry, 9-14-15 -Bentonite no odor 0.3 6.0 8.0 Loose, orange-brown, gravelly medium to coarse 0.2 SAND; moist, gravels are subrounded to 10/20 Sand subangular; no odor 10.0 0.3 12.0 becomes gravelly; wet 0.0 14.0 MW5 15-16.5 6-9-12 16.0 0.0 -PVC Screen 18.0 ORING LOG-ENV HSA 41271,002 MW5-6 102014-DRAFT.GPJ DATATMPL.GDT PRINT DATE: 10/21/14:RSD 20.0 22.0 24.0 Final depth 25.0 feet bgs; monitoring well installed 26.0 28.0 BORING METHOD: Hollow-Stem Auger LOGGED BY: M. Nogeire DRILLED BY: Holocene Drilling Inc. COMPLETED: 9/04/14 BORING BIT DIAMETER:

MASON COUNTY TRANSPORTATION **BORING MW-6** 3740 SHELTON SPRINGS ROAD 2517 Eastlake Avenue East Suite100 SHELTON, WASHINGTON Seattle, Washington 98102 Phone: 206.233.9639 **BORING MW-6 LOCATION:** PBS PROJECT NUMBER: (See Site Plan) Engineering + Environmental Fax: 866.727.0140 41271.002 SAMPLE/ BLOWS SAMPLE NUMBER GROUND-WATER PID (PPM) **DEPTH** 9 MATERIAL DESCRIPTION **FEET** COMMENTS ~ 0.0 ASPHALT 2 inches thick Flush-mount monument with 3 feet of concrete backfill **NO RECOVERY** 2.0 PVC Pipe 4.0 Loose, orange-brown, gravelly medium to coarse -Bentonite SAND; damp, gravel is subrounded to subangular 0.0 6.0 (.5 inch to 2 inches), no odor 8.0 0.2 10/20 Sand Loose, blackish-brown, fine to medium SAND; wet, 10.0 no odor grades to moist 0.0 12.0 Final gravel increasing in size (.5 to 3.5 inches); wet 6-9-15 0.1 14.0 PVC Screen 5-5-10 Loose, brown, sandy GRAVEL; wet, gravel is very 0.0 16.0 small to large (up to 3 inches) and subrounded to subangular, no odor 18.0 ORING LOG-ENV HSA 41271.002 MW5-6 102014-DRAFT.GPJ DATATMPL.GDT PRINT DATE: 10/21/14:RSD 0.0 9 20.0 Final depth 20.0 feet bgs; monitoring well installed 22.0 24.0 26.0 28.0 BORING METHOD: Hollow-Stem Auger LOGGED BY: M. Nogeire DRILLED BY: Holocene Drilling Inc. COMPLETED: 9/04/14 BORING BIT DIAMETER:




|                       |                          | PBS Engine | eering and Er      | vironmental                         | Project No:                   | 41271.      | 002           |           |              |
|-----------------------|--------------------------|------------|--------------------|-------------------------------------|-------------------------------|-------------|---------------|-----------|--------------|
|                       |                          |            |                    |                                     | Location:                     | Mason       | County Trans  | portation |              |
| PB.                   | S                        | GROUN      | DWATER SA          | AMPLING                             |                               | 3740 S      | helton Spring | s Road    |              |
|                       |                          |            |                    |                                     | Date:                         | 12/10/2     | 2014          |           |              |
| ield Perso            | onnel:                   | M. Bagley  |                    |                                     | Monitoring                    | Well ID:    |               | М         | W3           |
|                       |                          |            |                    |                                     | Initial DTW                   | (feet bgs)  | :             | 1         | 0.8          |
| Veather Co            | onditions:               | Heavy rain |                    |                                     | Screen Inte                   | rval(feet b | gs):          | Unk       | nown         |
| Time:                 |                          | 1126       |                    |                                     | Well depth                    | (feet bgs): |               | 18        | 3.91         |
| Sampling n            | nethod                   | Low        | flow - peristaltic | pump                                | Depth of pu                   | ımp inlet ( | feet bgs):    | ,         | 15           |
| Purge Rate            | e (L/m)                  |            | 1L/3m              |                                     | Sample ID                     |             |               | М         | W3           |
| SW volume             | e purged (L)             |            | 5.0L               |                                     | QC sample                     | (s)         |               | N         | I/A          |
|                       |                          |            |                    | Purge Rate (                        | L/m)                          |             |               |           |              |
| Elapsed<br>「ime (min) | Volume<br>purged (liters | DTW (feet) | Temperature ( C )  | Specific<br>Conductivity<br>(ms/cm) | Dissolved<br>Oxygen<br>(mg/L) | рН          | ORP (mV)      | Turbity*  | Observations |
| 3                     | 2                        | 10.8       | 11.7               | 0.108                               | 8.04                          | 6.14        | 122.4         | N/A       | N/A          |
| 6                     | 3                        | 10.8       | 11.7               | 0.108                               | 6.36                          | 6.13        | 120.6         | N/A       | N/A          |
| 9                     | 4                        | 10.8       | 11.7               | 0.108                               | 6.40                          | 6.13        | 119.5         | N/A       | N/A          |
| 12                    | 5                        | 10.8       | 11.7               | 0.108                               | 6.30                          | 6.13        | 119.1         | N/A       | N/A          |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             | <u> </u>      |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    |                                     |                               |             |               |           |              |
|                       |                          |            |                    | less than or equ                    | ·                             |             |               | -         |              |


|                       |                          | PBS Engine | eering and En      | vironmental                         | Project No:                   | 41271.      | 002           |            |             |
|-----------------------|--------------------------|------------|--------------------|-------------------------------------|-------------------------------|-------------|---------------|------------|-------------|
|                       |                          |            |                    |                                     | Location:                     | Mason       | County Tran   | sportation |             |
| PB                    | S                        | GROUN      | DWATER SA<br>FORM  | MPLING                              |                               | 3740 S      | helton Spring | gs Road    |             |
|                       |                          |            |                    |                                     | Date:                         | 12/10/2     | 2014          |            |             |
| Field Pers            | onnel:                   | M. Bagley  |                    |                                     | Monitoring                    | Well ID:    |               | М          | W4          |
|                       |                          |            |                    |                                     | Initial DTW                   | (feet bgs)  | :             | 1          | 1.5         |
| Weather C             | onditions:               | Heavy rain |                    |                                     | Screen Inte                   | rval(feet b | gs):          | Unk        | nown        |
| Time:                 |                          | 1158       |                    |                                     | Well depth                    | (feet bgs): |               | 19         | ).24        |
| Sampling              | method                   | Low f      | flow - peristaltic | pump                                | Depth of pu                   | ımp inlet ( | feet bgs):    |            | 16          |
| Purge Rate            | e (L/m)                  |            | 1L/3m              |                                     | Sample ID                     |             |               | М          | W4          |
| GW volum              | e purged (L)             |            | 5L                 |                                     | QC sample                     | (s)         |               | DUP_       | 12.10.14    |
|                       |                          |            |                    | Purge Rate (                        | L/m)                          |             |               |            |             |
| Elapsed<br>Time (min) | Volume<br>purged (liters | DTW (feet) | Temperature ( C )  | Specific<br>Conductivity<br>(ms/cm) | Dissolved<br>Oxygen<br>(mg/L) | рН          | ORP (mV)      | Turbity*   | Observation |
| 3                     | 2                        | 11.5       | 11.8               | 0.103                               | 5.17                          | 6.18        | 132.0         | N/A        | N/A         |
| 6                     | 3                        | 11.5       | 11.8               | 0.103                               | 5.04                          | 6.14        | 131.7         | N/A        | N/A         |
| 9                     | 4                        | 11.5       | 11.8               | 0.103                               | 4.99                          | 6.13        | 131.5         | N/A        | N/A         |
| 12                    | 5                        | 11.5       | 11.8               | 0.103                               | 4.98                          | 6.13        | 131.7         | N/A        | N/A         |
|                       |                          |            |                    |                                     |                               |             |               |            |             |
|                       |                          |            |                    |                                     |                               |             |               |            |             |
|                       |                          |            |                    |                                     |                               |             |               |            |             |
|                       |                          |            |                    |                                     | <b> </b>                      |             | -             | +          |             |

Well head is missing one screw. Water in casing was removed prior to opening well. Groundwater is clear, good recovery, no sediment, no odor.

| PBS                     |                           |                    |                         |                                     |                               | 41271.         |                   |                 |              |
|-------------------------|---------------------------|--------------------|-------------------------|-------------------------------------|-------------------------------|----------------|-------------------|-----------------|--------------|
| PBS                     | -                         |                    |                         |                                     | Location:                     | Mason          | County Trans      | sportation      |              |
|                         |                           | GROUN              | DWATER SA<br>FORM       | AMPLING                             |                               | 3740 S         | helton Spring     | s Road          |              |
|                         |                           |                    | 1 011111                |                                     | Date:                         | 12/10/2        | 2014              |                 |              |
| Field Person            | nnel:                     | M. Bagley          |                         |                                     | Monitoring                    | Well ID:       |                   | М               | W5           |
|                         |                           |                    |                         |                                     | Initial DTW                   | (feet bgs)     | :                 | 1:              | 2.7          |
| Neather Cor             | nditions:                 | Heavy rain         |                         |                                     | Screen Inte                   | erval(feet b   | gs):              | 10              | to 25        |
| Гime:                   |                           | 952                |                         |                                     | Well depth                    | (feet bas):    |                   | 23              | 3.47         |
| Sampling me             |                           |                    | low - peristaltic       | pump                                | Depth of p                    | • • •          |                   |                 | 17           |
| Purge Rate (            |                           |                    | 1L/3m                   | F **** F                            | Sample ID                     |                |                   |                 | W5           |
| GW volume               |                           |                    | 7L                      |                                     | QC sample                     | \(c)           |                   |                 | I/A          |
| 3VV VOIUIIIE            | purgeu (L)                |                    | 76                      |                                     | <u> </u>                      | :(5)           |                   | 1.              | I/A          |
|                         |                           |                    |                         | Purge Rate (                        | L/m)                          |                |                   |                 |              |
| Elapsed<br>Time (min) p | Volume<br>ourged (liters) | DTW (feet)         | Temperature ( C )       | Specific<br>Conductivity<br>(ms/cm) | Dissolved<br>Oxygen<br>(mg/L) | рН             | ORP (mV)          | Turbity*        | Observations |
| 3                       | 2                         | 12.7               | 10.9                    | 0.056                               | 7.35                          | 6.32           | 94.7              | N/A             | N/A          |
| 6                       | 3                         | 12.7               | 10.8                    | 0.055                               | 7.24                          | 6.25           | 84.9              | N/A             | N/A          |
| 9                       | 4                         | 12.7               | 10.9                    | 0.057                               | 7.09                          | 6.20           | 77.7              | N/A             | N/A          |
| 12                      | 5                         | 12.7               | 10.8                    | 0.056                               | 6.88                          | 6.13           | 75.4              | N/A             | N/A          |
| 15                      | 6                         | 12.7               | 10.9                    | 0.057                               | 6.82                          | 6.00           | 75.2              | N/A             | N/A          |
| 18                      | 7                         | 12.7               | 10.8                    | 0.056                               | 6.81                          | 6.05           | 77.4              | N/A             | N/A          |
|                         |                           |                    |                         |                                     |                               |                |                   |                 |              |
|                         |                           |                    |                         |                                     |                               |                |                   |                 |              |
|                         |                           |                    |                         |                                     |                               |                |                   |                 |              |
|                         |                           |                    |                         |                                     |                               |                |                   |                 |              |
|                         |                           |                    |                         |                                     |                               |                |                   |                 |              |
| only needed             |                           | -                  |                         | less than or equ                    |                               |                |                   |                 |              |
|                         | FIELD OBSER               | VATIONS / NOTES (i | .e. well head condition | on, groundwater colo                | r, sediment load,             | recovery, shee | n, odor, equipmer | t functionality |              |

| Time (min) purged (liters) (C) (ms/cm) (mg/L) (mg/L | PBS   GROUNDWATER SAMPLING   Date: 12/10/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              | PBS Engine | ering and Er      | vironmental  | Project No: | 41271.       | 002           |            |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------|-------------------|--------------|-------------|--------------|---------------|------------|--------------|
| FORM   Date: 12/10/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FORM   Date: 12/10/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |            |                   |              | Location:   | Mason        | County Tran   | sportation |              |
| Monitoring Well ID:   MW6   Monitoring Well ID:   Moni   | Monitoring Well ID:   MW6   MW6   Monitoring Well ID:   MW6   MW | PB         | S            | GROUN      | _                 | AMPLING      |             | 3740 S       | helton Spring | gs Road    |              |
| Initial DTW (feet bgs): 10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.55   10.05   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   10.107   | Initial DTW (feet bgs): 10.55   10.55   10 to 20   20 |            |              |            |                   |              | Date:       | 12/10/2      | 2014          |            |              |
| Weather Conditions:   Heavy rain   Screen Interval(feet bgs):   10 to 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weather Conditions:   Heavy rain   Screen Interval(feet bgs):   10 to 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field Pers | onnel:       | M. Nogeire |                   |              | Monitoring  | Well ID:     |               | М          | W6           |
| Time:   1040     Well depth (feet bgs):   19.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:   1040     Well depth (feet bgs):   19.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              | Initial DTW | (feet bgs):  | 1             | 10         | ).55         |
| Composite   Comp   | Composite   Comp | Weather C  | onditions:   | Heavy rain |                   |              | Screen Inte | rval(feet b  | gs):          | 10         | to 20        |
| Purge Rate (L/m)  GW volume purged (L)  5L  QC sample(s)  N/A  Purge Rate (L/m)  Elapsed Time (min)  3 2 10.55 12.0 0.108 5.75 6.10 103.4 N/A  6 3 10.55 12.0 0.107 5.01 6.09 101.4 N/A  9 4 10.55 12.0 0.107 4.90 6.12 98.4 N/A  N/A  MW6  MW6  ORP (mV)  Turbity* Observ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate (L/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time:      |              | 1040       |                   |              | Well depth  | (feet bgs):  |               | 19         | 9.22         |
| Second   Compute   Compu   | Second   Compute   Compu | Sampling   | method       | Low        | low - peristaltic | pump         | Depth of pu | ımp inlet (1 | eet bgs):     | •          | 15           |
| Purge Rate (L/m)   Volume   Volume   DTW (feet)   Temperature   Conductivity   (C)   Under   (C)   Under   (D)   Under   Under   (D)   Under   (D)   Under   (D)   Under   (D)   Under   Under   (D)   | Purge Rate (L/m)   Volume   Volume   DTW (feet)   Temperature   Conductivity   (C)   Conductivity   (ms/cm)   (mg/L)   DH   ORP (mV)   Turbity*   Observation   Okara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purge Rate | e (L/m)      |            | 1L/3m             |              | Sample ID   |              |               | М          | W6           |
| Elapsed Time (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elapsed Time (min)         Volume purged (liters)         DTW (feet)         Temperature (C)         Specific Conductivity (ms/cm)         Dissolved Oxygen (mg/L)         pH         ORP (mV)         Turbity*         Observation Observation (mg/L)           3         2         10.55         12.0         0.108         5.75         6.10         103.4         N/A         N/A           6         3         10.55         12.0         0.107         5.01         6.09         101.4         N/A         N/A           9         4         10.55         12.0         0.107         4.90         6.12         98.4         N/A         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW volum   | e purged (L) |            | 5L                |              | QC sample   | (s)          |               | Ν          | I/A          |
| Elapsed Time (min)         Volume purged (liters)         DTW (feet)         Temperature ( C )         Conductivity (ms/cm)         Oxygen (mg/L)         pH         ORP (mV)         Turbity*         Observed (mg/L)           3         2         10.55         12.0         0.108         5.75         6.10         103.4         N/A         N/A           6         3         10.55         12.0         0.107         5.01         6.09         101.4         N/A         N/A           9         4         10.55         12.0         0.107         4.90         6.12         98.4         N/A         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elapsed Time (min)         Volume purged (liters)         DTW (feet)         Temperature (C)         Conductivity (ms/cm)         Oxygen (mg/L)         pH         ORP (mV)         Turbity*         Observation           3         2         10.55         12.0         0.108         5.75         6.10         103.4         N/A         N/A           6         3         10.55         12.0         0.107         5.01         6.09         101.4         N/A         N/A           9         4         10.55         12.0         0.107         4.90         6.12         98.4         N/A         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |            |                   | Purge Rate ( | L/m)        |              |               |            |              |
| 6 3 10.55 12.0 0.107 5.01 6.09 101.4 N/A N/A 9 4 10.55 12.0 0.107 4.90 6.12 98.4 N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 3 10.55 12.0 0.107 5.01 6.09 101.4 N/A N/A 9 4 10.55 12.0 0.107 4.90 6.12 98.4 N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |              | DTW (feet) |                   | Conductivity | Oxygen      | рН           | ORP (mV)      | Turbity*   | Observations |
| 9 4 10.55 12.0 0.107 4.90 6.12 98.4 N/A N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 4 10.55 12.0 0.107 4.90 6.12 98.4 N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3          | 2            | 10.55      | 12.0              | 0.108        | 5.75        | 6.10         | 103.4         | N/A        | N/A          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              | -          |                   |              | ł           |              |               |            |              |
| 12 5 10.55 12.0 0.107 4.90 6.12 97.7 N/A N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 5 10.55 12.0 0.107 4.90 6.12 97.7 N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12         | 5            | 10.55      | 12.0              | 0.107        | 4.90        | 0.12         | 97.7          | IN/A       | IN/A         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |                   |              |             |              |               |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | only needed when analyzing for metals - stabalized or less than or equal to 10 NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              |            |                   |              |             |              |               |            |              |





TO: - PBS Engineering,

ATTN: - Megan Nogeire

RE; - Shelton Bus Barn (PBS Project 41271.002)

ENC: - Well Site Survey Data

Site Data collected November 5, 2014

GPS observation (Lat/Long) and ground ties (vertical relationship)

## ON-SITE BENCH MARK (PK nail in pavement) Based on NAVD '88

TBM-North: LAT- 47°14'13.5471" LONG- 123°07'14.7205" ELEV- 236.25'

TBM-South: **LAT-** 47°14'12.9378" **LONG-** 123°07'12.3603" **ELEV-**236.28'

| MONITOR WELL | LATITUDE        | LONGITUDE        | CASING ELEV. | PIPE ELEV. |
|--------------|-----------------|------------------|--------------|------------|
| MW-2         | N47°14'13.2500" | W123°07'13.8725" | 236.66'      | 236.20'    |
| MW-3         | N47°14'13.6161" | W123°07'13.6771" | 236.50'      | 236.21'    |
| MW-4         | N47°14'13.0110" | W123°07'13.2413" | 236.75'      | 236.35'    |
| MW-5         | N47°14'12.2753" | W123°07'13.4236" | 238.18′      | 237.87'    |
| MW-6         | N47°14'13.0765" | W123°07'14.4826" | 236.15'      | 235.92'    |





3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

## **PBS Engineering & Environmental**

Megan Nogeire 2517 Eastlake Ave, E #100 Seattle, WA 98102

RE: 41271.002 Lab ID: 1412129

December 16, 2014

## **Attention Megan Nogeire:**

Fremont Analytical, Inc. received 6 sample(s) on 12/10/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

Date: 12/16/2014



CLIENT: PBS Engineering & Environmental Work Order Sample Summary

**Project:** 41271.002 **Lab Order:** 1412129

| Lab Sample ID | Client Sample ID | Date/Time Collected | Date/Time Received |
|---------------|------------------|---------------------|--------------------|
| 1412129-001   | MW-3             | 12/10/2014 11:26 AM | 12/10/2014 3:45 PM |
| 1412129-002   | MW-4             | 12/10/2014 11:58 AM | 12/10/2014 3:45 PM |
| 1412129-003   | MW-5             | 12/10/2014 9:52 AM  | 12/10/2014 3:45 PM |
| 1412129-004   | MW-6             | 12/10/2014 10:40 AM | 12/10/2014 3:45 PM |
| 1412129-005   | DUP 12.10.14     | 12/10/2014 12:00 AM | 12/10/2014 3:45 PM |
| 1412129-006   | Trip Blank       | 12/08/2014 9:30 AM  | 12/10/2014 3:45 PM |



## **Case Narrative**

WO#: **1412129**Date: **12/16/2014** 

**CLIENT:** PBS Engineering & Environmental

**Project:** 41271.002

#### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### **II. GENERAL REPORTING COMMENTS:**

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 11:26:00 AM

**Project:** 41271.002

Lab ID: 1412129-001 Matrix: Groundwater

Client Sample ID: MW-3

| Analyses                                           | Result | RL       | Qual | Units | DF         | Date Analyzed         |
|----------------------------------------------------|--------|----------|------|-------|------------|-----------------------|
| Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.           |        |          |      | Batc  | h ID: 9557 | Analyst: EC           |
| Diesel (Fuel Oil)                                  | ND     | 50.0     |      | μg/L  | 1          | 12/12/2014 3:07:00 PM |
| Heavy Oil                                          | ND     | 100      |      | μg/L  | 1          | 12/12/2014 3:07:00 PM |
| Surr: 2-Fluorobiphenyl                             | 71.1   | 50-150   |      | %REC  | 1          | 12/12/2014 3:07:00 PM |
| Surr: o-Terphenyl                                  | 77.1   | 50-150   |      | %REC  | 1          | 12/12/2014 3:07:00 PM |
| Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) |        |          |      | Batc  | h ID: 9554 | Analyst: NG           |
| Naphthalene                                        | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| 2-Methylnaphthalene                                | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| 1-Methylnaphthalene                                | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Acenaphthylene                                     | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Acenaphthene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Fluorene                                           | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Phenanthrene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Anthracene                                         | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Fluoranthene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Pyrene                                             | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Benz(a)anthracene                                  | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Chrysene                                           | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Benzo(b)fluoranthene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Benzo(k)fluoranthene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Benzo(a)pyrene                                     | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Indeno(1,2,3-cd)pyrene                             | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Dibenz(a,h)anthracene                              | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Benzo(g,h,i)perylene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 9:44:00 PM |
| Surr: 2-Fluorobiphenyl                             | 65.4   | 23.9-122 |      | %REC  | 1          | 12/15/2014 9:44:00 PM |
| Surr: Terphenyl-d14                                | 79.1   | 33.4-135 |      | %REC  | 1          | 12/15/2014 9:44:00 PM |
| Gasoline by NWTPH-Gx                               |        |          |      | Batc  | h ID: R185 | 83 Analyst: BC        |
| Gasoline                                           | ND     | 50.0     |      | μg/L  | 1          | 12/12/2014 6:32:00 PM |
| Surr: 4-Bromofluorobenzene                         | 99.5   | 65-135   |      | %REC  | 1          | 12/12/2014 6:32:00 PM |
| Surr: Toluene-d8                                   | 98.7   | 65-135   |      | %REC  | 1          | 12/12/2014 6:32:00 PM |

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 11:26:00 AM

**Project:** 41271.002

Lab ID: 1412129-001 Matrix: Groundwater

Client Sample ID: MW-3

| Analyses                      | Result     | RL          | Qual | Units | DF       | Date Analyzed         |
|-------------------------------|------------|-------------|------|-------|----------|-----------------------|
| Volatile Organic Compounds by | EPA Method | <u>8260</u> |      | Batc  | h ID: R1 | 8582 Analyst: BC      |
| Benzene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 6:32:00 PM |
| Toluene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 6:32:00 PM |
| Ethylbenzene                  | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 6:32:00 PM |
| m,p-Xylene                    | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 6:32:00 PM |
| o-Xylene                      | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 6:32:00 PM |
| Surr: Dibromofluoromethane    | 96.5       | 61.7-130    |      | %REC  | 1        | 12/12/2014 6:32:00 PM |
| Surr: Toluene-d8              | 99.6       | 40.1-139    |      | %REC  | 1        | 12/12/2014 6:32:00 PM |
| Surr: 1-Bromo-4-fluorobenzene | 99.5       | 76.2-130    |      | %REC  | 1        | 12/12/2014 6:32:00 PM |

**Qualifiers:** B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 11:58:00 AM

**Project:** 41271.002

Lab ID: 1412129-002 Matrix: Groundwater

Client Sample ID: MW-4

| Analyses                                           | Result | RL       | Qual | Units | DF         | Date Analyzed          |
|----------------------------------------------------|--------|----------|------|-------|------------|------------------------|
| Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.           |        |          |      | Bato  | h ID: 9557 | Analyst: EC            |
| Diesel (Fuel Oil)                                  | ND     | 50.0     |      | μg/L  | 1          | 12/12/2014 3:39:00 PM  |
| Heavy Oil                                          | ND     | 100      |      | μg/L  | 1          | 12/12/2014 3:39:00 PM  |
| Surr: 2-Fluorobiphenyl                             | 59.2   | 50-150   |      | %REC  | 1          | 12/12/2014 3:39:00 PM  |
| Surr: o-Terphenyl                                  | 68.0   | 50-150   |      | %REC  | 1          | 12/12/2014 3:39:00 PM  |
| Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) |        |          |      | Bato  | h ID: 9554 | Analyst: NG            |
| Naphthalene                                        | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| 2-Methylnaphthalene                                | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| 1-Methylnaphthalene                                | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Acenaphthylene                                     | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Acenaphthene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Fluorene                                           | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Phenanthrene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Anthracene                                         | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Fluoranthene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Pyrene                                             | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Benz(a)anthracene                                  | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Chrysene                                           | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Benzo(b)fluoranthene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Benzo(k)fluoranthene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Benzo(a)pyrene                                     | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Indeno(1,2,3-cd)pyrene                             | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Dibenz(a,h)anthracene                              | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Benzo(g,h,i)perylene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:09:00 PM |
| Surr: 2-Fluorobiphenyl                             | 74.6   | 23.9-122 |      | %REC  | 1          | 12/15/2014 10:09:00 PM |
| Surr: Terphenyl-d14                                | 90.7   | 33.4-135 |      | %REC  | 1          | 12/15/2014 10:09:00 PM |
| Gasoline by NWTPH-Gx                               |        |          |      | Bato  | h ID: R185 | 83 Analyst: BC         |
| Gasoline                                           | ND     | 50.0     |      | μg/L  | 1          | 12/12/2014 7:25:00 PM  |
| Surr: 4-Bromofluorobenzene                         | 101    | 65-135   |      | %REC  | 1          | 12/12/2014 7:25:00 PM  |
| Surr: Toluene-d8                                   | 98.5   | 65-135   |      | %REC  | 1          | 12/12/2014 7:25:00 PM  |

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 11:58:00 AM

**Project:** 41271.002

Lab ID: 1412129-002 Matrix: Groundwater

Client Sample ID: MW-4

| Analyses                      | Result     | RL          | Qual | Units | DF       | Date Analyzed         |
|-------------------------------|------------|-------------|------|-------|----------|-----------------------|
| Volatile Organic Compounds by | EPA Method | <u>8260</u> |      | Batc  | h ID: R1 | 8582 Analyst: BC      |
| Benzene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:25:00 PM |
| Toluene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:25:00 PM |
| Ethylbenzene                  | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:25:00 PM |
| m,p-Xylene                    | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:25:00 PM |
| o-Xylene                      | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:25:00 PM |
| Surr: Dibromofluoromethane    | 98.8       | 61.7-130    |      | %REC  | 1        | 12/12/2014 7:25:00 PM |
| Surr: Toluene-d8              | 100        | 40.1-139    |      | %REC  | 1        | 12/12/2014 7:25:00 PM |
| Surr: 1-Bromo-4-fluorobenzene | 101        | 76.2-130    |      | %REC  | 1        | 12/12/2014 7:25:00 PM |

**Qualifiers:** B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 9:52:00 AM

**Project:** 41271.002

Lab ID: 1412129-003 Matrix: Groundwater

Client Sample ID: MW-5

| Analyses                                           | Result | RL       | Qual | Units | DF         | Date Analyzed          |
|----------------------------------------------------|--------|----------|------|-------|------------|------------------------|
| Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.           |        |          |      | Batc  | h ID: 9557 | Analyst: EC            |
| Diesel (Fuel Oil)                                  | ND     | 50.0     |      | μg/L  | 1          | 12/12/2014 4:10:00 PM  |
| Heavy Oil                                          | ND     | 100      |      | μg/L  | 1          | 12/12/2014 4:10:00 PM  |
| Surr: 2-Fluorobiphenyl                             | 66.8   | 50-150   |      | %REC  | 1          | 12/12/2014 4:10:00 PM  |
| Surr: o-Terphenyl                                  | 73.5   | 50-150   |      | %REC  | 1          | 12/12/2014 4:10:00 PM  |
| Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) |        |          |      | Batc  | h ID: 9554 | Analyst: NG            |
| Naphthalene                                        | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| 2-Methylnaphthalene                                | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| 1-Methylnaphthalene                                | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Acenaphthylene                                     | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Acenaphthene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Fluorene                                           | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Phenanthrene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Anthracene                                         | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Fluoranthene                                       | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Pyrene                                             | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Benz(a)anthracene                                  | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Chrysene                                           | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Benzo(b)fluoranthene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Benzo(k)fluoranthene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Benzo(a)pyrene                                     | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Indeno(1,2,3-cd)pyrene                             | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Dibenz(a,h)anthracene                              | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Benzo(g,h,i)perylene                               | ND     | 0.100    |      | μg/L  | 1          | 12/15/2014 10:33:00 PM |
| Surr: 2-Fluorobiphenyl                             | 82.9   | 23.9-122 |      | %REC  | 1          | 12/15/2014 10:33:00 PM |
| Surr: Terphenyl-d14                                | 92.2   | 33.4-135 |      | %REC  | 1          | 12/15/2014 10:33:00 PM |
| Gasoline by NWTPH-Gx                               |        |          |      | Batc  | h ID: R185 | 83 Analyst: BC         |
| Gasoline                                           | ND     | 50.0     |      | μg/L  | 1          | 12/12/2014 7:52:00 PM  |
| Surr: 4-Bromofluorobenzene                         | 100    | 65-135   |      | %REC  | 1          | 12/12/2014 7:52:00 PM  |
| Surr: Toluene-d8                                   | 99.0   | 65-135   |      | %REC  | 1          | 12/12/2014 7:52:00 PM  |

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 9:52:00 AM

**Project:** 41271.002

Lab ID: 1412129-003 Matrix: Groundwater

Client Sample ID: MW-5

| Analyses                      | Result     | RL          | Qual | Units | DF       | Date Analyzed         |
|-------------------------------|------------|-------------|------|-------|----------|-----------------------|
| Volatile Organic Compounds by | EPA Method | <u>8260</u> |      | Batc  | h ID: R1 | 8582 Analyst: BC      |
| Benzene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:52:00 PM |
| Toluene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:52:00 PM |
| Ethylbenzene                  | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:52:00 PM |
| m,p-Xylene                    | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:52:00 PM |
| o-Xylene                      | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 7:52:00 PM |
| Surr: Dibromofluoromethane    | 98.1       | 61.7-130    |      | %REC  | 1        | 12/12/2014 7:52:00 PM |
| Surr: Toluene-d8              | 103        | 40.1-139    |      | %REC  | 1        | 12/12/2014 7:52:00 PM |
| Surr: 1-Bromo-4-fluorobenzene | 101        | 76.2-130    |      | %REC  | 1        | 12/12/2014 7:52:00 PM |

**Qualifiers:** B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014 10:40:00 AM

**Project:** 41271.002

Lab ID: 1412129-004 Matrix: Groundwater

Client Sample ID: MW-6

| Analyses                      | Result       | RL        | Qual | Units | DF         | Date Analyzed          |  |  |
|-------------------------------|--------------|-----------|------|-------|------------|------------------------|--|--|
| Diesel and Heavy Oil by NWTPI | H-Dx/Dx Ext. |           |      | Batc  | h ID: 9557 | Analyst: EC            |  |  |
| Diesel (Fuel Oil)             | ND           | 50.0      |      | μg/L  | 1          | 12/12/2014 4:41:00 PM  |  |  |
| Heavy Oil                     | ND           | 100       |      | μg/L  | 1          | 12/12/2014 4:41:00 PM  |  |  |
| Surr: 2-Fluorobiphenyl        | 70.5         | 50-150    |      | %REC  | 1          | 12/12/2014 4:41:00 PM  |  |  |
| Surr: o-Terphenyl             | 76.7         | 50-150    |      | %REC  | 1          | 12/12/2014 4:41:00 PM  |  |  |
| Polyaromatic Hydrocarbons by  | EPA Method 8 | 270 (SIM) |      | Batc  | h ID: 9554 | Analyst: NG            |  |  |
| Naphthalene                   | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| 2-Methylnaphthalene           | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| 1-Methylnaphthalene           | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Acenaphthylene                | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Acenaphthene                  | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Fluorene                      | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Phenanthrene                  | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Anthracene                    | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Fluoranthene                  | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Pyrene                        | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Benz(a)anthracene             | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Chrysene                      | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Benzo(b)fluoranthene          | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Benzo(k)fluoranthene          | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Benzo(a)pyrene                | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Indeno(1,2,3-cd)pyrene        | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Dibenz(a,h)anthracene         | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Benzo(g,h,i)perylene          | ND           | 0.100     |      | μg/L  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Surr: 2-Fluorobiphenyl        | 73.9         | 23.9-122  |      | %REC  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Surr: Terphenyl-d14           | 90.1         | 33.4-135  |      | %REC  | 1          | 12/15/2014 10:57:00 PM |  |  |
| Gasoline by NWTPH-Gx          |              |           |      | Batc  | h ID: R185 | 83 Analyst: BC         |  |  |
| Gasoline                      | ND           | 50.0      |      | μg/L  | 1          | 12/12/2014 8:19:00 PM  |  |  |
| Surr: 4-Bromofluorobenzene    | 96.7         | 65-135    |      | %REC  | 1          | 12/12/2014 8:19:00 PM  |  |  |
| Surr: Toluene-d8              | 97.8         | 65-135    |      | %REC  | 1          | 12/12/2014 8:19:00 PM  |  |  |

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
  - S Spike recovery outside accepted recovery limits



Collection Date: 12/10/2014 10:40:00 AM

WO#: **1412129** Date Reported: **12/16/2014** 

**Client:** PBS Engineering & Environmental **Project:** 41271.002

Lab ID: 1412129-004 Matrix: Groundwater

Client Sample ID: MW-6

| Analyses                      | Result     | RL          | Qual | Units | DF       | Date Analyzed         |
|-------------------------------|------------|-------------|------|-------|----------|-----------------------|
| Volatile Organic Compounds by | EPA Method | <u>8260</u> |      | Batc  | h ID: R1 | 8582 Analyst: BC      |
| Benzene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 8:19:00 PM |
| Toluene                       | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 8:19:00 PM |
| Ethylbenzene                  | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 8:19:00 PM |
| m,p-Xylene                    | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 8:19:00 PM |
| o-Xylene                      | ND         | 1.00        |      | μg/L  | 1        | 12/12/2014 8:19:00 PM |
| Surr: Dibromofluoromethane    | 97.9       | 61.7-130    |      | %REC  | 1        | 12/12/2014 8:19:00 PM |
| Surr: Toluene-d8              | 102        | 40.1-139    |      | %REC  | 1        | 12/12/2014 8:19:00 PM |
| Surr: 1-Bromo-4-fluorobenzene | 96.7       | 76.2-130    |      | %REC  | 1        | 12/12/2014 8:19:00 PM |

**Qualifiers:** B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/10/2014

**Project:** 41271.002

Lab ID: 1412129-005 Matrix: Groundwater

Client Sample ID: DUP 12.10.14

| Analyses                      | Result     | Result RL Qual |  |      | DF       | Date Analyzed         |
|-------------------------------|------------|----------------|--|------|----------|-----------------------|
| Volatile Organic Compounds by | EPA Method | <u>8260</u>    |  | Batc | h ID: R1 | 8582 Analyst: BC      |
| Benzene                       | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 8:46:00 PM |
| Toluene                       | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 8:46:00 PM |
| Ethylbenzene                  | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 8:46:00 PM |
| m,p-Xylene                    | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 8:46:00 PM |
| o-Xylene                      | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 8:46:00 PM |
| Surr: Dibromofluoromethane    | 96.1       | 61.7-130       |  | %REC | 1        | 12/12/2014 8:46:00 PM |
| Surr: Toluene-d8              | 96.9       | 40.1-139       |  | %REC | 1        | 12/12/2014 8:46:00 PM |
| Surr: 1-Bromo-4-fluorobenzene | 102        | 76.2-130       |  | %REC | 1        | 12/12/2014 8:46:00 PM |

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit



WO#: **1412129** Date Reported: **12/16/2014** 

Client: PBS Engineering & Environmental Collection Date: 12/8/2014 9:30:00 AM

**Project:** 41271.002

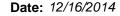
Lab ID: 1412129-006 Matrix: Groundwater

Client Sample ID: Trip Blank

| Analyses                      | Result     | Result RL Qual |  |      | DF       | Date Analyzed         |
|-------------------------------|------------|----------------|--|------|----------|-----------------------|
| Volatile Organic Compounds by | EPA Method | <u>8260</u>    |  | Batc | h ID: R1 | 8582 Analyst: BC      |
| Benzene                       | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 5:38:00 PM |
| Toluene                       | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 5:38:00 PM |
| Ethylbenzene                  | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 5:38:00 PM |
| m,p-Xylene                    | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 5:38:00 PM |
| o-Xylene                      | ND         | 1.00           |  | μg/L | 1        | 12/12/2014 5:38:00 PM |
| Surr: Dibromofluoromethane    | 99.4       | 61.7-130       |  | %REC | 1        | 12/12/2014 5:38:00 PM |
| Surr: Toluene-d8              | 102        | 40.1-139       |  | %REC | 1        | 12/12/2014 5:38:00 PM |
| Surr: 1-Bromo-4-fluorobenzene | 96.4       | 76.2-130       |  | %REC | 1        | 12/12/2014 5:38:00 PM |

**Qualifiers:** B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit





Work Order: 1412129

# **QC SUMMARY REPORT**

#### **CLIENT:** PBS Engineering & Environmental

### Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

| <b>Project:</b> 41271.002         | _                    |      |           |             |      |              | Diesel a          | and Heavy   | Oil by NW  | TPH-Dx/[ | Ox Ext. |
|-----------------------------------|----------------------|------|-----------|-------------|------|--------------|-------------------|-------------|------------|----------|---------|
| Sample ID: MB-9557                | SampType: MBLK       |      |           | Units: µg/L |      | Prep Dat     | e: <b>12/11/2</b> | 2014        | RunNo: 18  | 562      |         |
| Client ID: MBLKW                  | Batch ID: 9557       |      |           |             |      | Analysis Dat | e: <b>12/12/2</b> | 2014        | SeqNo: 370 | 0195     |         |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Diesel (Fuel Oil)                 | ND                   | 50.0 |           |             |      |              |                   |             |            |          |         |
| Heavy Oil                         | ND                   | 100  |           |             |      |              |                   |             |            |          |         |
| Surr: 2-Fluorobiphenyl            | 50.0                 |      | 80.00     |             | 62.5 | 50           | 150               |             |            |          |         |
| Surr: o-Terphenyl                 | 54.6                 |      | 80.00     |             | 68.2 | 50           | 150               |             |            |          |         |
| Sample ID: LCS-9557               | SampType: <b>LCS</b> |      |           | Units: µg/L |      | Prep Dat     | e: <b>12/11/2</b> | 2014        | RunNo: 18  | 562      |         |
| Client ID: LCSW                   | Batch ID: 9557       |      |           |             |      | Analysis Dat | e: <b>12/12/2</b> | 2014        | SeqNo: 370 | 0347     |         |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Diesel (Fuel Oil)                 | 908                  | 50.0 | 1,000     | 0           | 90.8 | 65           | 135               |             |            |          |         |
| Surr: 2-Fluorobiphenyl            | 52.4                 |      | 80.00     |             | 65.5 | 50           | 150               |             |            |          |         |
| Surr: o-Terphenyl                 | 53.4                 |      | 80.00     |             | 66.8 | 50           | 150               |             |            |          |         |
| Sample ID: <b>1412140-001BDUP</b> | SampType: <b>DUP</b> |      |           | Units: µg/L |      | Prep Dat     | e: <b>12/11/2</b> | 2014        | RunNo: 18  | 562      |         |
| Client ID: BATCH                  | Batch ID: 9557       |      |           |             |      | Analysis Dat | e: <b>12/12/2</b> | 2014        | SeqNo: 370 | 0603     |         |
| Analyte                           | Result               | RL   | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual    |
| Diesel (Fuel Oil)                 | ND                   | 50.0 |           |             |      |              |                   | 0           |            | 30       |         |
| Heavy Oil                         | ND                   | 100  |           |             |      |              |                   | 0           |            | 30       |         |
| Surr: 2-Fluorobiphenyl            | 49.1                 |      | 80.00     |             | 61.4 | 50           | 150               |             | 0          |          |         |
| Surr: o-Terphenyl                 | 51.5                 |      | 80.00     |             | 64.4 | 50           | 150               |             | 0          |          |         |

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range Е

ND Not detected at the Reporting Limit



41271.002

Work Order: 1412129

Project:

# **QC SUMMARY REPORT**

**CLIENT:** PBS Engineering & Environmental

### Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

| Sample ID: <b>1412103-031BMS</b> | SampType: MS          |       |           | Units: µg/L |      | Prep Date     | 12/11/2   | 014         | RunNo: <b>186</b>  | 620      |      |
|----------------------------------|-----------------------|-------|-----------|-------------|------|---------------|-----------|-------------|--------------------|----------|------|
| Client ID: BATCH                 | Batch ID: 9554        |       |           |             |      | Analysis Date | 12/15/2   | 014         | SeqNo: <b>371</b>  | 1389     |      |
| Analyte                          | Result                | RL    | SPK value | SPK Ref Val | %REC | LowLimit H    | HighLimit | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Naphthalene                      | 3.36                  | 0.100 | 4.000     | 0.8690      | 62.2 | 31.2          | 104       |             |                    |          |      |
| 2-Methylnaphthalene              | 2.72                  | 0.100 | 4.000     | 0.1454      | 64.5 | 33.9          | 109       |             |                    |          |      |
| 1-Methylnaphthalene              | 2.64                  | 0.100 | 4.000     | 0.09782     | 63.7 | 33.2          | 110       |             |                    |          |      |
| Acenaphthylene                   | 2.49                  | 0.100 | 4.000     | 0           | 62.2 | 40.5          | 98.7      |             |                    |          |      |
| Acenaphthene                     | 3.19                  | 0.100 | 4.000     | 0.5970      | 64.9 | 30.6          | 117       |             |                    |          |      |
| Fluorene                         | 2.95                  | 0.100 | 4.000     | 0           | 73.6 | 35.2          | 99.1      |             |                    |          |      |
| Phenanthrene                     | 2.97                  | 0.100 | 4.000     | 0           | 74.2 | 42.7          | 111       |             |                    |          |      |
| Anthracene                       | 2.09                  | 0.100 | 4.000     | 0           | 52.2 | 43.9          | 103       |             |                    |          |      |
| Fluoranthene                     | 3.05                  | 0.100 | 4.000     | 0           | 76.2 | 56.1          | 115       |             |                    |          |      |
| Pyrene                           | 2.92                  | 0.100 | 4.000     | 0           | 72.9 | 44.2          | 134       |             |                    |          |      |
| Benz(a)anthracene                | 2.53                  | 0.100 | 4.000     | 0           | 63.2 | 50.4          | 128       |             |                    |          |      |
| Chrysene                         | 2.71                  | 0.100 | 4.000     | 0           | 67.7 | 41.4          | 118       |             |                    |          |      |
| Benzo(b)fluoranthene             | 2.95                  | 0.100 | 4.000     | 0           | 73.8 | 50.8          | 121       |             |                    |          |      |
| Benzo(k)fluoranthene             | 2.35                  | 0.100 | 4.000     | 0           | 58.8 | 43.4          | 113       |             |                    |          |      |
| Benzo(a)pyrene                   | 2.54                  | 0.100 | 4.000     | 0           | 63.5 | 40.8          | 128       |             |                    |          |      |
| Indeno(1,2,3-cd)pyrene           | 2.47                  | 0.100 | 4.000     | 0           | 61.7 | 29.5          | 126       |             |                    |          |      |
| Dibenz(a,h)anthracene            | 2.56                  | 0.100 | 4.000     | 0           | 63.9 | 31.4          | 120       |             |                    |          |      |
| Benzo(g,h,i)perylene             | 2.52                  | 0.100 | 8.000     | 0           | 31.5 | 30            | 116       |             |                    |          |      |
| Surr: 2-Fluorobiphenyl           | 1.44                  |       | 2.000     |             | 71.8 | 23.9          | 122       |             |                    |          |      |
| Surr: Terphenyl-d14              | 1.56                  |       | 2.000     |             | 78.2 | 33.4          | 135       |             |                    |          |      |
| Sample ID: MB-9554               | SampType: <b>MBLK</b> |       |           | Units: µg/L |      | Prep Date     | : 12/11/2 | 014         | RunNo: <b>186</b>  | 620      |      |
| Client ID: MBLKW                 | Batch ID: 9554        |       |           |             |      | Analysis Date | 12/13/2   | 014         | SeqNo: <b>37</b> 1 | 1401     |      |
| Analyte                          | Result                | RL    | SPK value | SPK Ref Val | %REC | LowLimit I    | HighLimit | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Naphthalene                      | ND                    | 0.100 |           |             |      |               |           |             |                    |          |      |
| 2-Methylnaphthalene              | ND                    | 0.100 |           |             |      |               |           |             |                    |          |      |
| 1-Methylnaphthalene              | ND                    | 0.100 |           |             |      |               |           |             |                    |          |      |

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

Analyte detected below quantitation limits

Reporting Limit

ND Not detected at the Reporting Limit



41271.002

Work Order: 1412129

Project:

# **QC SUMMARY REPORT**

**CLIENT:** PBS Engineering & Environmental

### Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

| Sample ID: MB-9554     | SampType: MBLK |       |           | Units: µg/L |      | Prep Dat     | e: <b>12/11/2</b> | 2014        | RunNo: 186 | 620      |      |
|------------------------|----------------|-------|-----------|-------------|------|--------------|-------------------|-------------|------------|----------|------|
| Client ID: MBLKW       | Batch ID: 9554 |       |           |             |      | Analysis Dat | e: <b>12/13/2</b> | 2014        | SeqNo: 37  | 1401     |      |
| Analyte                | Result         | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Acenaphthylene         | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Acenaphthene           | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Fluorene               | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Phenanthrene           | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Anthracene             | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Fluoranthene           | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Pyrene                 | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Benz(a)anthracene      | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Chrysene               | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Benzo(b)fluoranthene   | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Benzo(k)fluoranthene   | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Benzo(a)pyrene         | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Indeno(1,2,3-cd)pyrene | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Dibenz(a,h)anthracene  | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Benzo(g,h,i)perylene   | ND             | 0.100 |           |             |      |              |                   |             |            |          |      |
| Surr: 2-Fluorobiphenyl | 1.52           |       | 2.000     |             | 76.2 | 23.9         | 122               |             |            |          |      |
| Surr: Terphenyl-d14    | 1.70           |       | 2.000     |             | 85.2 | 33.4         | 135               |             |            |          |      |

| Sample ID: LCS-9554 | SampType: LCS  |       |           | Units: µg/L               |      | Prep Dat | e: <b>12/11/2014</b>  | RunNo: <b>1862</b> |                      |      |  |
|---------------------|----------------|-------|-----------|---------------------------|------|----------|-----------------------|--------------------|----------------------|------|--|
| Client ID: LCSW     | Batch ID: 9554 |       |           | Analysis Date: 12/13/2014 |      |          |                       |                    | SeqNo: <b>371402</b> |      |  |
| Analyte             | Result         | RL    | SPK value | SPK Ref Val               | %REC | LowLimit | HighLimit RPD Ref Val | %RPD               | RPDLimit             | Qual |  |
| Naphthalene         | 2.45           | 0.100 | 4.000     | 0                         | 61.4 | 13.7     | 121                   |                    |                      |      |  |
| 2-Methylnaphthalene | 2.46           | 0.100 | 4.000     | 0                         | 61.4 | 35.4     | 110                   |                    |                      |      |  |
| 1-Methylnaphthalene | 2.44           | 0.100 | 4.000     | 0                         | 61.0 | 37.5     | 116                   |                    |                      |      |  |
| Acenaphthylene      | 2.54           | 0.100 | 4.000     | 0                         | 63.6 | 39.2     | 114                   |                    |                      |      |  |
| Acenaphthene        | 2.68           | 0.100 | 4.000     | 0                         | 67.1 | 37       | 113                   |                    |                      |      |  |
| Fluorene            | 2.78           | 0.100 | 4.000     | 0                         | 69.4 | 40.3     | 117                   |                    |                      |      |  |

Analyte detected below quantitation limits

Analyte detected in the associated Method Blank Qualifiers:

R

Dilution was required D

Value above quantitation range Е ND Not detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Reporting Limit



41271.002

Work Order: 1412129

Project:

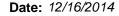
# **QC SUMMARY REPORT**

**CLIENT:** PBS Engineering & Environmental

## Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

| Sample ID: LCS-9554    | SampType: L | .cs   |       |           | Units: µg/L |      | Prep Da     | te: <b>12/11/2</b> | 014         | RunNo: <b>18620</b> |          |      |
|------------------------|-------------|-------|-------|-----------|-------------|------|-------------|--------------------|-------------|---------------------|----------|------|
| Client ID: LCSW        | Batch ID: 9 | 554   |       |           |             |      | Analysis Da | te: <b>12/13/2</b> | 014         | SeqNo: <b>371</b>   |          |      |
| Analyte                | Res         | sult  | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD                | RPDLimit | Qual |
| Phenanthrene           | 2.          | .83 ( | 0.100 | 4.000     | 0           | 70.7 | 35.1        | 118                |             |                     |          |      |
| Anthracene             | 2           | .77 ( | 0.100 | 4.000     | 0           | 69.2 | 45.4        | 115                |             |                     |          |      |
| Fluoranthene           | 2           | .93 ( | 0.100 | 4.000     | 0           | 73.4 | 49.7        | 126                |             |                     |          |      |
| Pyrene                 | 2           | .89 ( | 0.100 | 4.000     | 0           | 72.3 | 48.1        | 123                |             |                     |          |      |
| Benz(a)anthracene      | 2           | .94 ( | 0.100 | 4.000     | 0           | 73.4 | 48.7        | 126                |             |                     |          |      |
| Chrysene               | 2           | .94 ( | 0.100 | 4.000     | 0           | 73.5 | 45.1        | 114                |             |                     |          |      |
| Benzo(b)fluoranthene   | 3           | .17 ( | 0.100 | 4.000     | 0           | 79.2 | 52.2        | 126                |             |                     |          |      |
| Benzo(k)fluoranthene   | 3           | .17 ( | 0.100 | 4.000     | 0           | 79.2 | 45.5        | 121                |             |                     |          |      |
| Benzo(a)pyrene         | 3           | .14 ( | 0.100 | 4.000     | 0           | 78.5 | 38.4        | 121                |             |                     |          |      |
| Indeno(1,2,3-cd)pyrene | 2           | .87 ( | 0.100 | 4.000     | 0           | 71.8 | 23.9        | 143                |             |                     |          |      |
| Dibenz(a,h)anthracene  | 2           | .92 ( | 0.100 | 4.000     | 0           | 73.0 | 24.9        | 141                |             |                     |          |      |
| Benzo(g,h,i)perylene   | 2           | .64 ( | 0.100 | 4.000     | 0           | 66.0 | 35.9        | 139                |             |                     |          |      |
| Surr: 2-Fluorobiphenyl | 1.          | .41   |       | 2.000     |             | 70.6 | 23.9        | 122                |             |                     |          |      |
| Surr: Terphenyl-d14    | 1.          | .66   |       | 2.000     |             | 83.1 | 33.4        | 135                |             |                     |          |      |

| Sample ID: 1412103-030BDUP | SampType: <b>DUP</b> |       |           | Units: µg/L |      | Prep Da     | te: <b>12/11/2</b> | 014         | RunNo: <b>186</b>  | 520      |      |
|----------------------------|----------------------|-------|-----------|-------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: BATCH           | Batch ID: 9554       |       |           |             |      | Analysis Da | te: <b>12/13/2</b> | 2014        | SeqNo: <b>37</b> 1 | 404      |      |
| Analyte                    | Result               | RL    | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Naphthalene                | 2.39                 | 0.100 |           |             |      |             |                    | 2.287       | 4.33               | 30       |      |
| 2-Methylnaphthalene        | 0.532                | 0.100 |           |             |      |             |                    | 0.5053      | 5.08               | 30       |      |
| 1-Methylnaphthalene        | 0.328                | 0.100 |           |             |      |             |                    | 0.3177      | 3.33               | 30       |      |
| Acenaphthylene             | ND                   | 0.100 |           |             |      |             |                    | 0           |                    | 30       |      |
| Acenaphthene               | 0.414                | 0.100 |           |             |      |             |                    | 0.4059      | 1.93               | 30       |      |
| Fluorene                   | 0.286                | 0.100 |           |             |      |             |                    | 0.2769      | 3.19               | 30       |      |
| Phenanthrene               | 0.512                | 0.100 |           |             |      |             |                    | 0.4126      | 21.5               | 30       |      |
| Anthracene                 | ND                   | 0.100 |           |             |      |             |                    | 0           |                    | 30       |      |
| Fluoranthene               | 0.208                | 0.100 |           |             |      |             |                    | 0.1096      | 62.2               | 30       |      |


Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits





41271.002

Work Order: 1412129

### **QC SUMMARY REPORT**

**CLIENT:** PBS Engineering & Environmental

### Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

|                      |                                                      | •                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                     |                                                                                   |                                                                                          |                                                                                                     |
|----------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| SampType: <b>DUP</b> |                                                      |                                                                                                                                                                                                              | Units: µg/L                                                                                                                                                                                    |                                                                                                                                                                                                  | Prep Da                                                                                                                                                                                                    | te: <b>12/11/2</b>                                                                                                                                                                                                                 | 014                                                                 | RunNo: <b>186</b>                                                                 | 620                                                                                      |                                                                                                     |
| Batch ID: 9554       |                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  | Analysis Da                                                                                                                                                                                                | te: <b>12/13/2</b>                                                                                                                                                                                                                 | 014                                                                 | SeqNo: <b>37</b> 1                                                                | 404                                                                                      |                                                                                                     |
| Result               | RL                                                   | SPK value                                                                                                                                                                                                    | SPK Ref Val                                                                                                                                                                                    | %REC                                                                                                                                                                                             | LowLimit                                                                                                                                                                                                   | HighLimit                                                                                                                                                                                                                          | RPD Ref Val                                                         | %RPD                                                                              | RPDLimit                                                                                 | Qual                                                                                                |
| 0.193                | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0.08120                                                             | 81.4                                                                              | 30                                                                                       | R                                                                                                   |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| ND                   | 0.100                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 0                                                                   |                                                                                   | 30                                                                                       |                                                                                                     |
| 1.44                 |                                                      | 2.000                                                                                                                                                                                                        |                                                                                                                                                                                                | 72.2                                                                                                                                                                                             | 23.9                                                                                                                                                                                                       | 122                                                                                                                                                                                                                                |                                                                     | 0                                                                                 |                                                                                          |                                                                                                     |
| 1.50                 |                                                      | 2.000                                                                                                                                                                                                        |                                                                                                                                                                                                | 75.2                                                                                                                                                                                             | 33.4                                                                                                                                                                                                       | 135                                                                                                                                                                                                                                |                                                                     | 0                                                                                 |                                                                                          |                                                                                                     |
|                      | Result  0.193  ND  ND  ND  ND  ND  ND  ND  ND  ND  N | Batch ID: 9554  Result RL  0.193 0.100  ND 0.100  1.44 | Batch ID: 9554  Result RL SPK value  0.193 0.100  ND 0.100  1.44 2.000 | Batch ID: 9554  Result RL SPK value SPK Ref Val  0.193 0.100  ND 0.100  1.44 2.000 | Batch ID: 9554  Result RL SPK value SPK Ref Val %REC  0.193 0.100  ND 0.100  1.44 2.000 72.2 | Batch ID: 9554  Result RL SPK value SPK Ref Val %REC LowLimit  0.193 0.100  ND 0.100  1.44 2.000 72.2 23.9 | Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit | Result   RL   SPK value   SPK Ref Val   %REC   LowLimit   HighLimit   RPD Ref Val | Result   RL   SPK value   SPK Ref Val   WREC   LowLimit   HighLimit   RPD Ref Val   WRPD | Result   RL   SPK value   SPK Ref Val   WREC   LowLimit   HighLimit   RPD Ref Val   WRPD   RPDLimit |

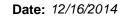
NOTES:

Project:

R - High RPD observed. The method is in control as indicated by the Laboratory Control Sample (LCS).

Holding times for preparation or analysis exceeded

D Dilution was required


J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits





Work Order: 1412129

**QC SUMMARY REPORT** 

**CLIENT:** PBS Engineering & Environmental

| <b>Project:</b> 41271.002  | <b>3</b>              |      |           |             |      |               |                      | Gasoline by NWT      | PH-G |
|----------------------------|-----------------------|------|-----------|-------------|------|---------------|----------------------|----------------------|------|
| Sample ID: 1412129-001CDUP | SampType: <b>DUP</b>  |      |           | Units: µg/L |      | Prep Date     | e: 12/12/2014        | RunNo: <b>18583</b>  |      |
| Client ID: MW-3            | Batch ID: R18583      |      |           |             |      | Analysis Date | e: <b>12/12/2014</b> | SeqNo: <b>370658</b> |      |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Va | l %RPD RPDLimit      | Qual |
| Gasoline                   | ND                    | 50.0 |           |             |      |               |                      | 30                   |      |
| Surr: Toluene-d8           | 49.1                  |      | 50.00     |             | 98.2 | 65            | 135                  | 0 0                  |      |
| Surr: 4-Bromofluorobenzene | 50.9                  |      | 50.00     |             | 102  | 65            | 135                  | 0 0                  |      |
| Sample ID: MB-R18583       | SampType: <b>MBLK</b> |      |           | Units: µg/L |      | Prep Date     | e: 12/12/2014        | RunNo: <b>18583</b>  |      |
| Client ID: MBLKW           | Batch ID: R18583      |      |           |             |      | Analysis Date | e: 12/12/2014        | SeqNo: <b>370673</b> |      |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Va | l %RPD RPDLimit      | Qual |
| Gasoline                   | ND                    | 50.0 |           |             |      |               |                      |                      |      |
| Surr: Toluene-d8           | 49.6                  |      | 50.00     |             | 99.1 | 65            | 135                  |                      |      |
| Surr: 4-Bromofluorobenzene | 50.2                  |      | 50.00     |             | 100  | 65            | 135                  |                      |      |
| Sample ID: LCS-R18583      | SampType: <b>LCS</b>  |      |           | Units: µg/L |      | Prep Date     | e: 12/12/2014        | RunNo: <b>18583</b>  |      |
| Client ID: LCSW            | Batch ID: R18583      |      |           |             |      | Analysis Date | e: <b>12/12/2014</b> | SeqNo: <b>370674</b> |      |
| Analyte                    | Result                | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit RPD Ref Va | l %RPD RPDLimit      | Qual |
| Gasoline                   | 368                   | 50.0 | 500.0     | 0           | 73.6 | 65            | 135                  |                      |      |
| Surr: Toluene-d8           | 48.4                  |      | 50.00     |             | 96.8 | 65            | 135                  |                      |      |
| Surr: 4-Bromofluorobenzene | 49.4                  |      | 50.00     |             | 98.7 | 65            | 135                  |                      |      |

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range E

ND Not detected at the Reporting Limit



Work Order: 1412129

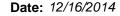
# **QC SUMMARY REPORT**

#### **CLIENT:** PBS Engineering & Environmental

H Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

### **Volatile Organic Compounds by EPA Method 8260**


ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

| Sample ID: 1412129-001CDUP                                                                                                | SampType: <b>DUP</b>                                                      |      |                                           | Units: µg/L      |                                    | Prep Dat                                         | e: <b>12/12/2</b>                                                         | 014         | RunNo: <b>185</b>                      | 82       |      |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|-------------------------------------------|------------------|------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|-------------|----------------------------------------|----------|------|
| Client ID: MW-3                                                                                                           | Batch ID: <b>R18582</b>                                                   |      |                                           |                  |                                    | Analysis Dat                                     |                                                                           |             | SeqNo: <b>370</b>                      | 640      |      |
| Analyte                                                                                                                   | Result                                                                    | RL   | SPK value                                 | SPK Ref Val      | %REC                               | LowLimit                                         | HighLimit                                                                 | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Benzene                                                                                                                   | ND                                                                        | 1.00 |                                           |                  |                                    |                                                  |                                                                           | 0           |                                        | 30       |      |
| Toluene                                                                                                                   | ND                                                                        | 1.00 |                                           |                  |                                    |                                                  |                                                                           | 0           |                                        | 30       |      |
| Ethylbenzene                                                                                                              | ND                                                                        | 1.00 |                                           |                  |                                    |                                                  |                                                                           | 0           |                                        | 30       |      |
| m,p-Xylene                                                                                                                | ND                                                                        | 1.00 |                                           |                  |                                    |                                                  |                                                                           | 0           |                                        | 30       |      |
| o-Xylene                                                                                                                  | ND                                                                        | 1.00 |                                           |                  |                                    |                                                  |                                                                           | 0           |                                        | 30       |      |
| Surr: Dibromofluoromethane                                                                                                | 49.2                                                                      |      | 50.00                                     |                  | 98.3                               | 61.7                                             | 130                                                                       |             | 0                                      |          |      |
| Surr: Toluene-d8                                                                                                          | 49.6                                                                      |      | 50.00                                     |                  | 99.3                               | 40.1                                             | 139                                                                       |             | 0                                      |          |      |
| Surr: 1-Bromo-4-fluorobenzene                                                                                             | 51.0                                                                      |      | 50.00                                     |                  | 102                                | 76.2                                             | 130                                                                       |             | 0                                      |          |      |
| Sample ID: <b>1412129-005AMS</b>                                                                                          | SampType: <b>MS</b>                                                       |      |                                           | Units: µg/L      |                                    | Prep Dat                                         | e: <b>12/12/2</b>                                                         | 014         | RunNo: 185                             | 82       |      |
| Client ID: <b>DUP 12.10.14</b>                                                                                            | Batch ID: <b>R18582</b>                                                   |      |                                           |                  |                                    | Analysis Dat                                     | e: <b>12/12/2</b>                                                         | 014         | SeqNo: <b>370</b>                      | 645      |      |
| Analyte                                                                                                                   | Result                                                                    | RL   | SPK value                                 | SPK Ref Val      | %REC                               | LowLimit                                         | HighLimit                                                                 | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Benzene                                                                                                                   | 17.0                                                                      | 1.00 | 20.00                                     | 0                | 84.8                               | 65.4                                             | 138                                                                       |             |                                        |          |      |
| Toluene                                                                                                                   | 18.4                                                                      | 1.00 | 20.00                                     | 0                | 92.2                               | 64                                               | 139                                                                       |             |                                        |          |      |
| Ethylbenzene                                                                                                              | 17.6                                                                      | 1.00 | 20.00                                     | 0                | 87.8                               | 64.5                                             | 136                                                                       |             |                                        |          |      |
|                                                                                                                           |                                                                           | 1.00 | _0.00                                     |                  | 07.0                               | 04.5                                             | 100                                                                       |             |                                        |          |      |
| m,p-Xylene                                                                                                                | 35.3                                                                      | 1.00 | 40.00                                     | 0                | 88.2                               | 63.3                                             | 135                                                                       |             |                                        |          |      |
|                                                                                                                           |                                                                           |      |                                           | 0<br>0           |                                    |                                                  |                                                                           |             |                                        |          |      |
| m,p-Xylene<br>o-Xylene<br>Surr: Dibromofluoromethane                                                                      | 35.3                                                                      | 1.00 | 40.00                                     | _                | 88.2                               | 63.3                                             | 135                                                                       |             |                                        |          |      |
| o-Xylene                                                                                                                  | 35.3<br>17.0                                                              | 1.00 | 40.00<br>20.00                            | _                | 88.2<br>85.0                       | 63.3<br>65.4                                     | 135<br>134                                                                |             |                                        |          |      |
| o-Xylene<br>Surr: Dibromofluoromethane                                                                                    | 35.3<br>17.0<br>50.3                                                      | 1.00 | 40.00<br>20.00<br>50.00                   | _                | 88.2<br>85.0<br>101                | 63.3<br>65.4<br>61.7                             | 135<br>134<br>130                                                         |             |                                        |          |      |
| o-Xylene<br>Surr: Dibromofluoromethane<br>Surr: Toluene-d8                                                                | 35.3<br>17.0<br>50.3<br>50.7                                              | 1.00 | 40.00<br>20.00<br>50.00<br>50.00          | _                | 88.2<br>85.0<br>101<br>101         | 63.3<br>65.4<br>61.7<br>40.1<br>76.2             | 135<br>134<br>130<br>139                                                  | 014         | RunNo: <b>185</b>                      | 82       |      |
| o-Xylene<br>Surr: Dibromofluoromethane<br>Surr: Toluene-d8<br>Surr: 1-Bromo-4-fluorobenzene                               | 35.3<br>17.0<br>50.3<br>50.7<br>49.8                                      | 1.00 | 40.00<br>20.00<br>50.00<br>50.00          | 0                | 88.2<br>85.0<br>101<br>101<br>99.7 | 63.3<br>65.4<br>61.7<br>40.1<br>76.2             | 135<br>134<br>130<br>139<br>130                                           |             | RunNo: <b>185</b><br>SeqNo: <b>370</b> |          |      |
| o-Xylene Surr: Dibromofluoromethane Surr: Toluene-d8 Surr: 1-Bromo-4-fluorobenzene  Sample ID: LCS-R18582                 | 35.3<br>17.0<br>50.3<br>50.7<br>49.8                                      | 1.00 | 40.00<br>20.00<br>50.00<br>50.00<br>50.00 | 0                | 88.2<br>85.0<br>101<br>101<br>99.7 | 63.3<br>65.4<br>61.7<br>40.1<br>76.2<br>Prep Dat | 135<br>134<br>130<br>139<br>130<br>e: <b>12/12/2</b><br>e: <b>12/12/2</b> |             | SeqNo: 370                             |          | Qual |
| o-Xylene Surr: Dibromofluoromethane Surr: Toluene-d8 Surr: 1-Bromo-4-fluorobenzene  Sample ID: LCS-R18582 Client ID: LCSW | 35.3<br>17.0<br>50.3<br>50.7<br>49.8<br>SampType: LCS<br>Batch ID: R18582 | 1.00 | 40.00<br>20.00<br>50.00<br>50.00<br>50.00 | Ο<br>Units: μg/L | 88.2<br>85.0<br>101<br>101<br>99.7 | 63.3<br>65.4<br>61.7<br>40.1<br>76.2<br>Prep Dat | 135<br>134<br>130<br>139<br>130<br>e: <b>12/12/2</b><br>e: <b>12/12/2</b> | 014         | SeqNo: 370                             | 654      | Qual |

J Analyte detected below quantitation limits

RL Reporting Limit





Work Order: 1412129

# **QC SUMMARY REPORT**

#### **CLIENT:** PBS Engineering & Environmental

### **Volatile Organic Compounds by EPA Method 8260**

| Sample ID: LCS-R18582         | SampType: LCS    |      |           | Units: µg/L |      | Prep Da     | te: <b>12/12/2</b> | 2014        | RunNo: 185 | 582      |      |
|-------------------------------|------------------|------|-----------|-------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: LCSW               | Batch ID: R18582 |      |           |             |      | Analysis Da | te: <b>12/12/2</b> | 2014        | SeqNo: 370 | 0654     |      |
| Analyte                       | Result           | RL   | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Ethylbenzene                  | 20.0             | 1.00 | 20.00     | 0           | 100  | 72          | 130                |             |            |          |      |
| m,p-Xylene                    | 39.4             | 1.00 | 40.00     | 0           | 98.6 | 73          | 131                |             |            |          |      |
| o-Xylene                      | 18.9             | 1.00 | 20.00     | 0           | 94.6 | 72.1        | 131                |             |            |          |      |
| Surr: Dibromofluoromethane    | 49.1             |      | 50.00     |             | 98.2 | 61.7        | 130                |             |            |          |      |
| Surr: Toluene-d8              | 50.7             |      | 50.00     |             | 101  | 40.1        | 139                |             |            |          |      |
| Surr: 1-Bromo-4-fluorobenzene | 50.2             |      | 50.00     |             | 100  | 76.2        | 130                |             |            |          |      |
| Sample ID: MB-R18582          | SampType: MBLK   |      |           | Units: ua/L |      | Prep Da     | te: 12/12/2        | 2014        | RunNo: 185 |          |      |

| Sample ID: MB-R18582          | SampType: <b>MBLK</b>   |      |           | Units: µg/L |      | Prep Date     | e: <b>12/12/2</b> | 014         | RunNo: <b>185</b> | 582      |      |
|-------------------------------|-------------------------|------|-----------|-------------|------|---------------|-------------------|-------------|-------------------|----------|------|
| Client ID: MBLKW              | Batch ID: <b>R18582</b> |      |           |             |      | Analysis Date | e: <b>12/12/2</b> | 014         | SeqNo: 370        | 0655     |      |
| Analyte                       | Result                  | RL   | SPK value | SPK Ref Val | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Benzene                       | ND                      | 1.00 |           |             |      |               |                   |             |                   |          |      |
| Toluene                       | ND                      | 1.00 |           |             |      |               |                   |             |                   |          |      |
| Ethylbenzene                  | ND                      | 1.00 |           |             |      |               |                   |             |                   |          |      |
| m,p-Xylene                    | ND                      | 1.00 |           |             |      |               |                   |             |                   |          |      |
| o-Xylene                      | ND                      | 1.00 |           |             |      |               |                   |             |                   |          |      |
| Surr: Dibromofluoromethane    | 48.0                    |      | 50.00     |             | 96.1 | 61.7          | 130               |             |                   |          |      |
| Surr: Toluene-d8              | 49.0                    |      | 50.00     |             | 98.1 | 40.1          | 139               |             |                   |          |      |
| Surr: 1-Bromo-4-fluorobenzene | 50.2                    |      | 50.00     |             | 100  | 76.2          | 130               |             |                   |          |      |

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range E

ND Not detected at the Reporting Limit



# Sample Log-In Check List

| С   | lient Name:    | PBS                                               | Work Order Numb | oer: <b>1412129</b> |                |  |
|-----|----------------|---------------------------------------------------|-----------------|---------------------|----------------|--|
| Lo  | ogged by:      | Erica Silva                                       | Date Received:  | 12/10/201           | 4 3:45:00 PM   |  |
| Cha | ain of Cust    | <u>ody</u>                                        |                 |                     |                |  |
| 1.  | Is Chain of C  | ustody complete?                                  | Yes 🗹           | No $\square$        | Not Present    |  |
| 2.  | How was the    | sample delivered?                                 | Client          |                     |                |  |
| Log | <u>ı In</u>    |                                                   |                 |                     |                |  |
|     | Coolers are p  | present?                                          | Yes 🗸           | No 🗌                | NA $\square$   |  |
| 4.  | Shipping con   | tainer/cooler in good condition?                  | Yes 🗹           | No 🗌                |                |  |
| 5.  | Custody seal   | s intact on shipping container/cooler?            | Yes             | No $\square$        | Not Required 🗹 |  |
| 6.  | Was an atter   | npt made to cool the samples?                     | Yes 🗹           | No 🗌                | NA $\square$   |  |
| 7.  | Were all cool  | lers received at a temperature of >0°C to 10.0°C  | Yes 🗹           | No 🗌                | NA 🗆           |  |
| 8.  | Sample(s) in   | proper container(s)?                              | Yes 🗹           | No 🗌                |                |  |
| 9.  | Sufficient sar | mple volume for indicated test(s)?                | Yes 🗸           | No $\square$        |                |  |
| 10. | Are samples    | properly preserved?                               | Yes 🗹           | No 🗌                |                |  |
| 11. | Was preserva   | ative added to bottles?                           | Yes             | No 🗹                | NA 🗌           |  |
| 12. | Is the headsp  | pace in the VOA vials?                            | Yes             | No 🗸                | NA 🗆           |  |
| 13. | Did all sampl  | es containers arrive in good condition(unbroken)? | Yes 🗸           | No $\square$        |                |  |
| 14. | Does paperw    | ork match bottle labels?                          | Yes 🗸           | No $\square$        |                |  |
| 15. | Are matrices   | correctly identified on Chain of Custody?         | Yes 🗸           | No 🗌                |                |  |
|     |                | at analyses were requested?                       | Yes 🗹           | No 🗌                |                |  |
| 17. | Were all hold  | ling times able to be met?                        | Yes 🗸           | No 🗌                |                |  |
| Spe | cial Handl     | ing (if applicable)                               |                 |                     |                |  |
| 18. | Was client no  | otified of all discrepancies with this order?     | Yes             | No 🗌                | NA 🗹           |  |
|     | Person         | Notified: Date:                                   |                 |                     |                |  |
|     | By Who         | om: Via:                                          | eMail Ph        | one 🗌 Fax [         | ☐ In Person    |  |
|     | Regardi        | ing:                                              |                 |                     |                |  |
|     | Client Ir      | nstructions:                                      |                 |                     |                |  |
| 10  | Additional rer | marks:                                            |                 |                     |                |  |

#### **Item Information**

| Item #     | Temp ⁰C | Condition |
|------------|---------|-----------|
| Cooler     | 8.8     | Good      |
| Sample     | 11.2    |           |
| Temp Blank | 11.1    |           |

| dinate with the lab in advance           | *Please coordinate with                             |                                     | X                                                                                    |                             |                |                                        |                       | ×                                        |
|------------------------------------------|-----------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|----------------|----------------------------------------|-----------------------|------------------------------------------|
| TAT -> SameDay^ NextOay^ 2 Day 3 Day STD |                                                     | 7                                   | ReyKed                                                                               |                             |                | Date/Time *                            |                       | Kelinguished                             |
| )                                        | Seen 12/10/14 3:45-PM                               | Meen                                | " force                                                                              |                             | 3.45           | 12/10/14/3:45                          | PUS                   | · ころ                                     |
|                                          | Date/Time                                           | ogafter 30 days.)                   | Disposal by Lab (A for may as assessed if supples are retained.)                     | al by Lab (A fee may        | Dispos         | Date/Time                              |                       | Relinquished                             |
| narks:                                   | Nitrate+Nitrite Special Remarks:                    | upride                              | O-Phosphate                                                                          | te Bromide                  | le Sulfate     | 1 3                                    | cie): Nitrate         | Anions (Circle):                         |
| Sr Sn Ti Ti U V Zn                       | CO CF CG FE HE K ME MIN NO NO NO NO                 | 0 88 86 03 08                       | TO Be supposed to the second                                                         |                             | 1              | 200                                    |                       | 1                                        |
|                                          |                                                     | B Do Do Co Co                       | An L                                                                                 | TAI MARK                    | Priority Polls | MICA-S RCRA-R                          |                       | **Metals Analysis (Circle):              |
|                                          |                                                     |                                     |                                                                                      |                             |                |                                        |                       | do.                                      |
|                                          |                                                     |                                     |                                                                                      |                             |                |                                        |                       | 9                                        |
|                                          |                                                     |                                     |                                                                                      |                             |                |                                        |                       | 00                                       |
|                                          |                                                     |                                     |                                                                                      |                             |                |                                        |                       | 7                                        |
|                                          |                                                     |                                     |                                                                                      | £.                          | 12 # 09:50     | 2                                      | Trip Blank            | 8 1416 B                                 |
|                                          |                                                     |                                     | *                                                                                    | 5                           | 1              |                                        | Dup 12,10,14          | 5 Dup                                    |
|                                          |                                                     | *                                   | ナメ                                                                                   | 'n                          | 10,40          | 12/10                                  | 9-1                   | 4 MW-6                                   |
|                                          |                                                     | +                                   | 4                                                                                    | 2                           | 15%            | 4/1/1                                  | 5                     | 5-MM E                                   |
|                                          |                                                     | *                                   | メメ                                                                                   | 7                           | 85,11          | 17/0                                   | 4                     | ころとよ                                     |
|                                          |                                                     |                                     | 1000                                                                                 | MA                          | 11/26          | 12/10                                  | ئ                     | S-MM I                                   |
| Comments/Depth                           |                                                     |                                     | CO 107 CO                                                                            | Sample<br>Type<br> Matrix)* | Sample<br>Time | Sample<br>Date                         | me                    | Sample Name                              |
|                                          | Disnking Water, GW = Ground Water, WW = Waste Water | id, W = Water, DW = Drinking Water, | AQ = Aqueous, 8 = 8ulk, O = Other, P = Product, S = Soil, SD = Sediment, St = Soild, | oduct, S=Soil, S            | ther, P=Pro    | ueous, 8 = Bulk, 0 = 0                 |                       | *Matrix Codes: A = Air,                  |
|                                          | Email: M May , noge; rea on Scon , comproject No:   | Email: M Gan, in                    | 239                                                                                  | Fax:                        |                | M. Noge: re                            | -                     | Reports To (PM):                         |
|                                          | M, B=9 Cu                                           | Collected by:                       | 206.733.0639                                                                         | Tel: 206,7                  |                | Seattle, wA 99102                      |                       | City, State, Zip                         |
|                                          | 4                                                   | Location:                           |                                                                                      |                             | N. N.          | 7 Eastline                             | 751                   | Address:                                 |
|                                          | 1271.002                                            | Project Name:                       | ,                                                                                    |                             |                | 9.                                     | 689                   | Cllent:                                  |
|                                          | Page: of:                                           | 2                                   | Date: 12/10/14                                                                       | Da                          | 88             | Tel: 206-352-3790<br>Fax: 206-352-7178 | ont Ave N.<br>A 98103 | 3600 Fremont Ave N.<br>Seattle, WA 98103 |
| H19199                                   |                                                     |                                     |                                                                                      |                             | TOTAL          | BLINDERS ROLLS TOWN                    |                       | -                                        |
| cilalii oi custody Necord                | Clair                                               |                                     |                                                                                      |                             | 2              | remonu                                 | 77                    |                                          |
| Custody Bosond                           | Chain of                                            |                                     |                                                                                      |                             |                |                                        | 1                     | No. of the last                          |