

TECHNICAL MEMORANDUM

RECEIVED

To:

Mr. Ken Groat

From:

Jonathan Horowitz, PE

Date:

September 11, 2015

Subject:

Third Quarter Groundwater Monitoring Results

DEC 242015

WA State Department of Ecology (SWRO)

INTRODUCTION

HydroCon Environmental, LLC (HydroCon) is submitting this technical memorandum to Groat Brothers, Inc. to document the work completed at 608 West Scott Avenue in Woodland, Washington (the site) in August 2015. The work was conducted according to our proposal, dated February 10, 2015 and the work plan submitted to the Washington Department of Ecology (Ecology).

FIELD ACTIVITIES

On August 18, 2015, HydroCon personnel mobilized to the site to collect a round of groundwater levels (MW-1 through MW-7), and perform the second quarterly groundwater monitoring (MW-4 through MW-7).

Upon arrival at the site, the well cap on each well was removed and the water level was allowed to equilibrate prior to measuring the depth to water (DTW). The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north end of the top of the PVC casing) at each well. A table detailing the groundwater levels and elevations and a figure indicating the groundwater flow direction are included in the attachments. Depth to water in the wells ranged from 8.71 to 12.4 feet below top of casing. Groundwater elevations were calculated based on an arbitrary measuring point. Based on the measured groundwater elevations, the groundwater flows towards the southeast at an approximate gradient of 0.0014 feet/foot.

HydroCon purged monitoring wells MW-4 through MW-7 with a low flow peristaltic pump equipped with new length of LDPE tubing attached to a new length of silicone tubing. Field parameters (pH, temperature and specific conductivity) were measured and recorded on a Groundwater Sample Collection field form along with the depth to water measurements (included in the attachment). Purging was completed when the field parameters had stabilized.

Samples were collected immediately after purging and placed in labeled laboratory-prepared sample bottles. The samples were shipped in an iced cooler along with chain-of-custody documentation to the project laboratory for analysis.

A total of four groundwater samples were collected for laboratory analysis. Each sample was analyzed for the following set of parameters:

Diesel Range Organics (DRO) and Motor Oil Range Organics (ORO) by Northwest Method NWTPH-Dx.

SAMPLING RESULTS

DRO and/or ORO were detected at concentrations above the laboratory Method Reporting Limits (MRLs) in all of the samples submitted; however, the detected concentrations were below the applicable MTCA Method. A Cleanup Levels. A summary data table and the laboratory report are included in the attachments.

DISCUSSION

Based on the analytical results, HydroCon recommends the following:

- The next round of monitoring should be conducted during the fourth quarter of 2015.
- Provided that the results from subsequent sampling events remain below the MTCA Method A Cleanup Levels, monitoring well MW-5 should be sampled a fifth time to provide Ecology with four consecutive quarters of compliance monitoring.

QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either express or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **Groat Brothers**, **Inc.** This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or reuse of this document or the findings, conclusions, or recommendations is at the risk of said user.

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

CLOSING

We appreciate the opportunity to perform these services for Groat Brothers, Inc. Please contact the undersigned at (360) 703-6079 if you have any questions regarding the information provided in this letter report.

Sincerely,

Hydro Con

Jonathan Horowitz, PE

Project Engineer

Figures

Figure 1 - Site Location Map

Figure 2 - Site Features Map

Figure 3 - Groundwater Analytical Results

Figure 4 – Groundwater Elevations and Contour Map

Tables

Table 1 – Summary of Groundwater Elevations

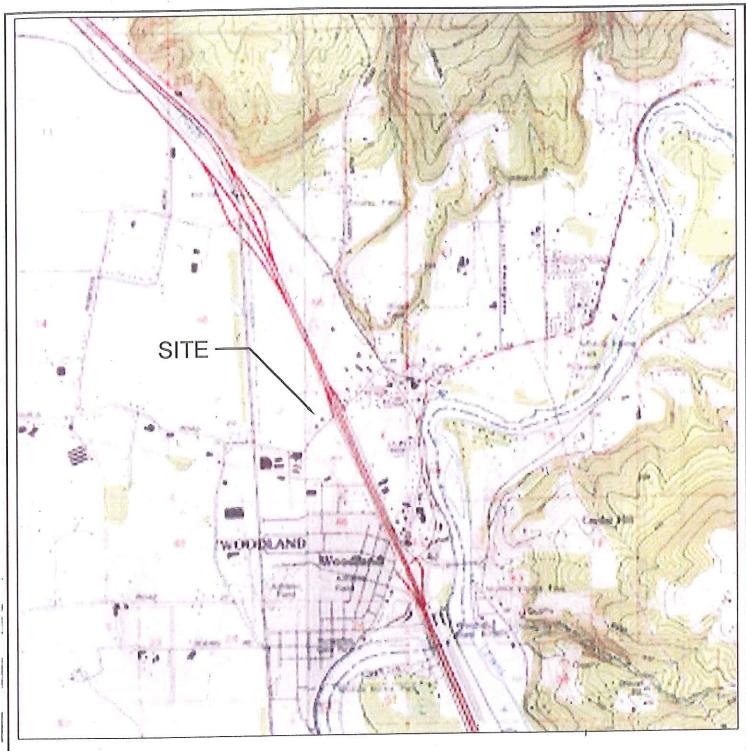

Table 2 – Summary of 3rd Quarter Groundwater Analytical Results

Table 3 – Summary of Historical Groundwater Analytical Results

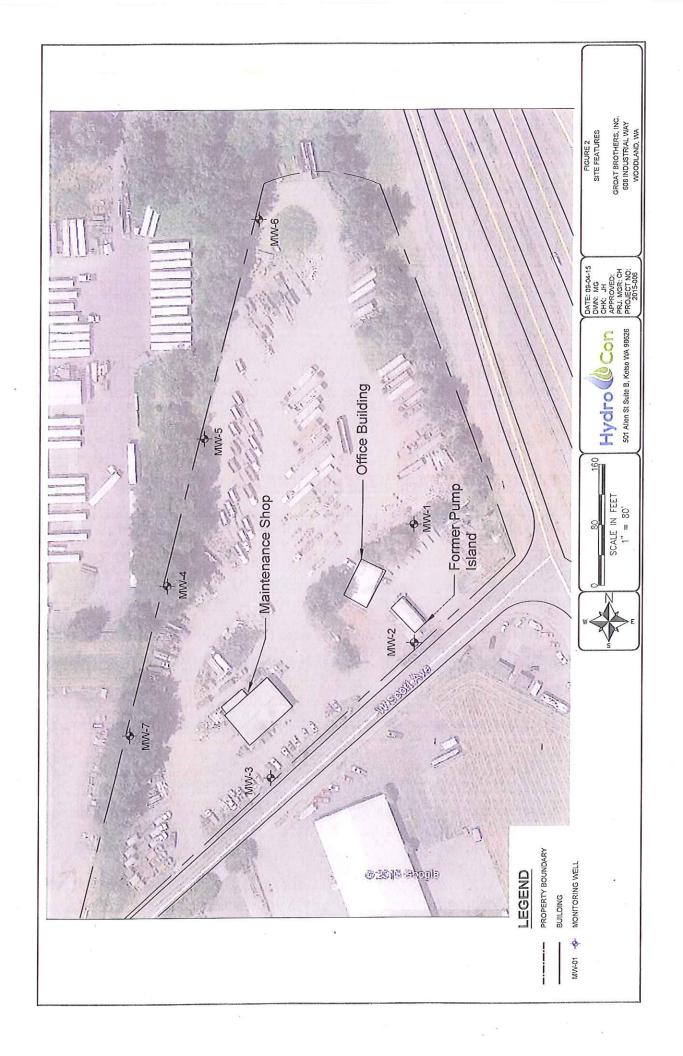
Attachments

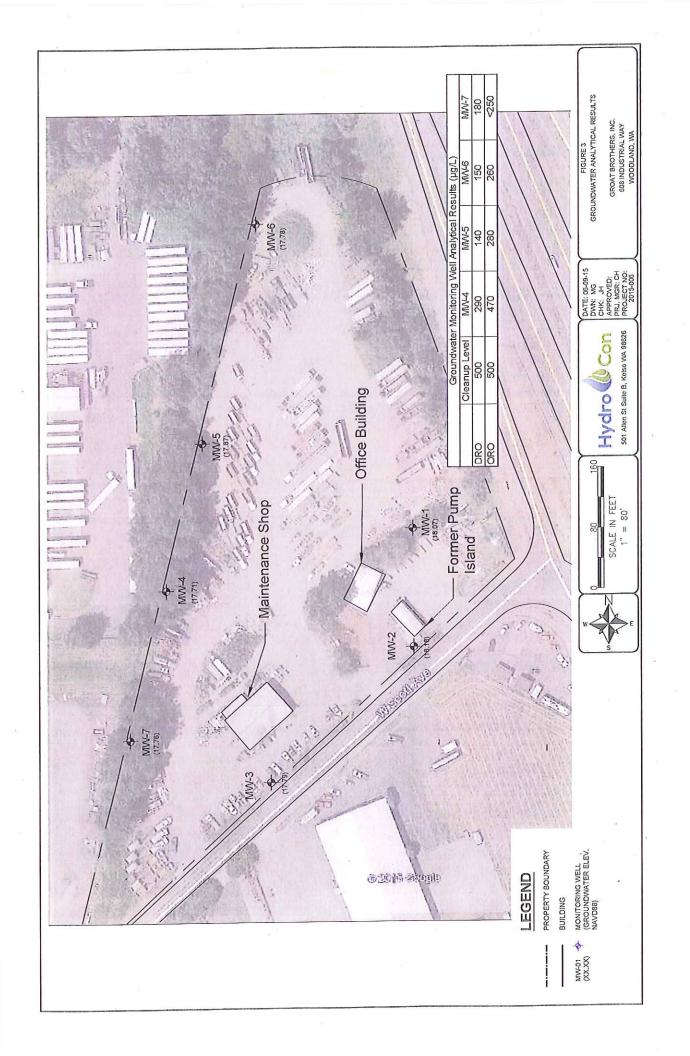
Attachment A - Groundwater Sample Collection Field Forms

Attachment B - Laboratory Report and Chain-of-Custody Documentation

NOTE(S):

1. USGS, DEER ISLAND/WOODLAND QUADRANGLE WASHINGTON 7.5 MINUTE SERIES (TOPOGRAPHIC)





DATE:09-04-15 DWN: MG CHK: JH APPROVED: PRJ. MGR: DB PROJECT NO: 2015-006

SITE LOCATION GROAT BROTHERS, INC. 608 WEST SCOTT AVE WOODLAND, WA

FIGURE 1

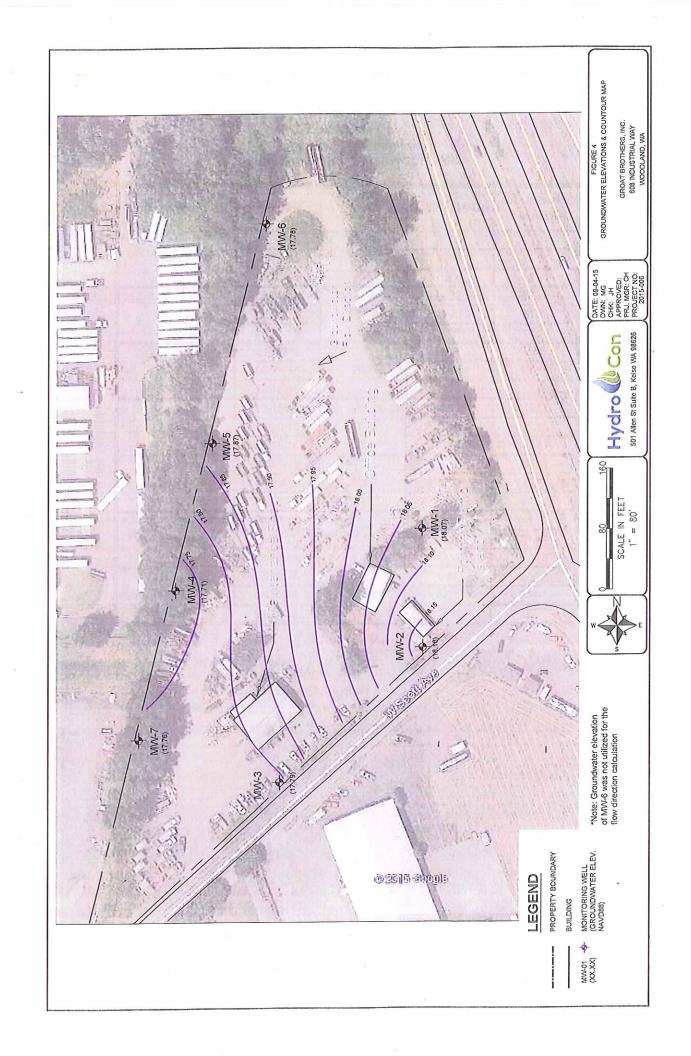


Table 1
Summary of Groundwater Elevations
Groat Brothers, Inc.
Woodland, Washington
HydroCon Project Number 2015-006

Monitoring Well ID	Date	MPE*	Depth to Water	Groundwater Elevation
	03/19/15		7.06	23.41
MW-1	05/20/15	30.47	7.87	22.60
	08/18/15		12.4	18.07
	03/19/15		4.82	23.25
MW-2	05/20/15	28.07	6.43	21.64
	08/18/15		9.92	18.15
3	03/19/15		NM	NA
MW-3	05/20/15	26.5	4.98	21.52
	08/18/15	-	8.71	17.79
	03/19/15	l l	4.81	24.15
MW-4	05/20/15	28.96	7.40	21.56
	08/18/15		11.25	17.71
	03/19/15		3.55	24.35
MW-5	05/20/15	27.90	6.13	1 21.77
	08/18/15		10.03	17.87
	03/19/15		3.66	24.31
MW-6	05/20/15	27.97	6.26	21.71
	08/18/15		10.19	17.78
	03/19/15		5.85	24.21
MW-7	05/20/15	30.06	8.99	21.07
	08/18/15		12.30	17.76

Notes:

MPE = Measuring Point Elevation

* = Elevation measured relative to MPE

NM = Well not measured dues to inability to locate it

NA = Not applicable

Summary of 3rd Quarter Groundwater Analytical Results HydroCon Project Number 2015-006 Woodland, Washington Groat Brothers, Inc. Table 2

						D 1010 a		S IVIV		77/1/17	
Sample ID				MW4	_	C-VVIVI	93	0-1/1/1		/ - A A I A I	1
Campic in				00000	<u> </u>	00 00000		50 505000		E02222 04	_
I ah Sample ID			*	508323-01	_	508323-02		200222-02		0000000	-
Las Campio in				1770010	-	T 27 001 0		SUBCIA	_	2176/15	
Collection Date	g.		ng s	3/26/15		2/20/12	-	2/20/13	+	01/07/0	T
		The same of the same of	Foology MTCA Level				_				
Parameter	Method	Unit	4	Value	a	Value	Ø	Value	ø	Value	Q
		Total	Total Petroleum Hydrocarbons (TPH)	ns (TPH)							
		יסומי	The second secon		-		-				
TPH Diesel Range (DRO)	NWTPH-Dx	hg/L	200	290	×	140	×	150	×	180	×
וו וו בוספו וימוופס (ב.יב)				O.E.		000	-	000	,	1250	
TPH Motor Oil Range (ORO)	NWTPH-Dx	hg/L	200	4/0	×	780	×	7007	×	7230	
() - 6											

Notes and Qualifiers: (Q; only shown in Table if reported by laboratory)

< = Compound not detected above the laboratory Method Reporting Limits (MRLs).</p>

ug/L = micrograms per liter (parts per billion)

x =The sample chromatographic pattern does no resemble the fuel standard used for quantitation. Color highlighted cells indicate reported concentration exceeds corresponding MTCA Level A Cleanup Value.

Table 3 Summary of Historical Groundwater Analytical Results Groat Brothers Inc.

Woodland, Washington HydroCon Project Number 2015-006

Monitoring Well ID	Sample Date	Diesel	Motor Oil
	10/16/2014	130	<325
MW-4	3/26/2015	s 350	490
74	8/18/2015	290	470
	4/16/2015	70	550
MW-5	3/26/2015	240	410
	8/18/2015	140	280
	1/14/2015	<50	<250
MVV-6	3/26/2015	120	<250
	8/18/2015	150	260
	10/16/2014	260	330
MVV-7	3/26/2015	240	360
	8/18/2015	180	<250
Ecology MTCA Method	l A Cleanup Level	500	500

Notes:

TPH as Diesel and Oil by NWTPH-Dx.

< = Compound not detected above the laboratory Method Reporting Limits (MRLs). μ g/L = micrograms per liter (parts per billion)

Color highlighted cells indicate reported concentration exceeds corresponding MTCA Level A Cleanup Value.

ATTACHMENTS

GROUNDWATER MONITORING FIELD FORMS

1-1

Sampling Comments:

GROUNDWATER PURGE AND SAMPLE COLLECTION

			4000-00100			OLINIC.	Wel	I I.D. Number	MW-4
Project Na Hydrocon Date:	me (Numbe Project Nu	er):(mber: } \ \ \	10015	₿%. -006		Sample I.D.:_ Field Duplica Personnel:_	Mw-Y 2014	TT	ime: <u> 20</u> 'ime:
Monumen Well cap of Headspace	e reading:[2	:	easured nch	PID Readi	ng] 4-inch	ppm6	nt □ Surfa □ Odor:_ -inch □ C	Other:	
Total well Depth to po Depth to w	GINFORM depth: roduct: vater:\\ lume: onversion I	-	ft Bot ft ft /	tom: [k] Ha Intake Dej) X <u>0 [6</u> 2 gal/ft 1'	ard	Not measu = 2"=0.16 gal,	red Screen Ir Begin Pu gal. X 3 = /ft 4"=0.65 gal,	nterval(s): rging Well: gal /ft 6"= 1.47 g	l. al/ft
	G/DISPOS e Peris e:			ugal 🔲 D r Disposal:	edicated Blac	lder 🗌 Non I 🔲 Remedia	-Dedicated Bladation System] Otner	
FIELD PA	ARAMETE	RS		Office of Action to the	T	Dissolved	Odor and/on	Sheen:	
Time	Water Level (BTOC)		e Rate min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1.15	11.25			16.1 17.8 14.6	0.145 0.146 0.147		9:39 9:89 5:80	91- 98	
			1						
Stabilization	achieved if t	hree succ	essive meas	surements fo	or pH, Conductiv	ity and Turbidit	; y and/or Dissolved	l d Oxygen are reco	orded within
Purging Co	inments:		ia. A immii	Idili oi six ile	ensurements on	ould be recorde			
	er Type	Bottle	Preservat	ive Field	Filtered?		Analy	rsis	RADA KANDAN
	- Amber	Count	nove	No C	0.45 0.10 0.45 0.10)χ			
					0.45 0.10				

Sampling Comments:

GROUNDWATER PURGE AND SAMPLE COLLECTION

Project Nar Hydrocon Date:	ne (Number Project Nur): God nber: 1015 8/13/15	3.65. 1.056		Sample I.D.:_ Field Duplica Personnel:_	Mw-S ate I.D.:		Time: 12:55 Time:
Monument Well cap of Headspace Well diame	reading:[\	⊠ Good ⊠ Good Not measu 2-inch	Needs replaced Replaced PID Read	oair: 1	s Replacemer ppm	nt Surl Odor:_ -inch		in Monument Il Infiltration
Total well Depth to pr Depth to we Casing volume Co PURGING	oduct:	ft f	Intake De 1 ₂ 0) X 0.02 gal/ft 1	epth (BTOC):gal/ft "=0.04 gal/ft	=	Begin P gal. X 3 = /ft 4"=0.65 ga -Dedicated Bl	Interval(s): urging Well: gal/ft 6"= 1.47 gal/ft 6"= 1.4	al. gal/ft
Bailer type	RAMETE	W	ater Disposal:	区 Drummed	Remedia	ation System	Other	
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
12:40	10.03		16.5	0.132		5.86	92	
12:45	10 05	V V	15.5	0.128	,	5.78	96	
						1		
their respect Purging Cor	ive stabilization	on criteria. A m	neasurements f inimum of six m	ieasurements sho	ity and Turbidit ould be recorde	y and/or Dissolv d.	ed Oxygen are rec	orded within
Contain	er Type		rvative Field	I Filtered?		Anal	ysis	any (Zwal)
500ml- a		1 nas		0.45 0.10				
				0.45 0.10				

No 0.45 0.10

GROUNDWATER PURGE AND SAMPLE COLLECTION

u	(W Cor			MPLE CO		wei	H.D. Number:	MV-B_
Project Nan Hydrocon I Date:	ne (Number): Project Num 8/18/15	Groat 1.00	ý. 506	S	ample I.D.: Field Duplicat Personnel:_T	5.7} odnØ	TinTi	ne:_ <u>12:3</u> p_ me:
Headspace Well diame Comments	ereading:[2] eter: 	2-inch		4-inch	6-1	nch 🔲	_ □ Water in ace Water Well Other:	
PURGING Total well Depth to pr Depth to w Casing vol Volume Co	depth: depth: roduct: ater:\0.\0 ume: onversion Fa	TION ft Boftftft (H ₂ Octors: 3/4"=0.	ottom: 区 Ha Intake Dep O) X <u>の.し</u> 02 gal/ft 1'	oth (BTOC):gal/ft '=0.04 gal/ft	Not measur =	ed Screen I Begin Pi gal. X 3 = ft 4"=0.65 ga	nterval(s): urging Well: gal l/ft 6"= 1.47 ga	al/ft
PURGING Pump type Bailer typ	G/DISPOSA e 😡 Perista e:	L METHOD iltic ☐ Centri Wat	fugal 🔲 D er Disposal:	edicated Blad 区 Drummed	lder 🔲 Non- Remedia		adder Other Other	
FIELD PA	ARAMETER	RS				Odor and/o	or Sheen:	
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (su) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
12:15	10.19		16.3	0.115		5.61	93	
12:20	10:25		16.1	0.119		5.55	90	
12.25	10.26		15.7	0.116		5:53	87.	
12:30	10.26		17'4					

Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within their respective stabilization criteria. A minimum of six measurements should be recorded.

Purging Comments:_

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered? © 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10	Dx
			NO 0.43 0.10	

GROUNDWATER PURGE AND SAMPLE COLLECTION

oject Na	me (Number	1: Great B	85.		Sample I.D.:_	W/2-3	i i	Time:
ydrocon ate:	Project Num): <u>Groat Br</u> nber: <u>2019</u> 3/18/15	5-006		Field Duplica Personnel:	ate I.D.:	·	Time:
Monumer Well cap Ieadspac Vell dian	e reading: <u> X</u> neter:	☑ Good ☐	d PID Read	oair: l Need: ling] 4-inch	s Replacemer ppm	nt	□ Water face Water We Other:	in Monument Il Infiltration
URGIN otal wel lepth to p lepth to v	G INFORMA I depth: oroduct: vater:12	ATIONft Bft f .30ft ft ft	ottom: 📈 H Intake De O) X	ard Soft[ppth (BTOC):_ gal/ft	Not measu	Begin P	Interval(s): urging Well: :g	al. gal/ft
'olume C	onversion Fa	actors: 3/4"=0	,02 gal/ft 1	"=0.04 gal/ft	2"=0.16 gal,	/it 4"=0.65 ga	11/11 0 - 1.47	gai/it
PURGIN Pump typ Bailer typ	G/DISPOSA pe Perista pe:	AL METHOD altic	ifugal 🗆 r	Nadicated Blad	dder 🗆 Non	-Dedicated Bl ation System	adder Other Other	gai/it
PURGIN Pump typ Bailer typ	G/DISPOSA De Perista De: ARAMETEI Water Level	AL METHOD altic	ifugal 🗆 r	Sp. Cond.	dder 🗆 Non	-Dedicated Blation System Odor and/c pH (su)	adder Other Other	
Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC)	AL METHOD altic Centr Wa RS Purge Rate	ifugal	Sp. Cond. (mS/cm) (±3%)	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	adder Other	Turbidity (NTU)
URGIN ump typ ailer typ IELD P	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC)	AL METHOD altic Centr Wa RS Purge Rate	ifugal	Sp. Cond.	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	or Sheen:ORP	Turbidity (NTU)
PURGIN Jump typ Jailer typ TIELD P. Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC)	AL METHOD altic Centr Wa RS Purge Rate	ifugal	Sp. Cond. (mS/cm) (±3%)	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	adder Other	Turbidity (NTU)
URGIN ump typ ailer typ IELD P. Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC) 12:35	AL METHOD altic Centr Wa RS Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.282	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	or Sheen:ORP	Turbidity (NTU)
URGIN ump typ ailer typ IELD P. Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC) 12:35	AL METHOD altic Centr Wa RS Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.282	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	or Sheen:ORP	Turbidity (NTU)
Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC) 12:35	AL METHOD altic Centr Wa RS Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.282	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	or Sheen:ORP	Turbidity (NTU)
PURGIN Jump typ Jailer typ TIELD P. Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC) 12:35	AL METHOD altic Centr Wa RS Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.282	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	or Sheen:ORP	Turbidity (NTU)
PURGIN Pump typ Bailer typ	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC) 12:35	AL METHOD altic Centr Wa RS Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.282	dder Non Remedia Dissolved Oxygen (±10% or	Odor and/o	or Sheen:ORP	Turbidity (NTU)
PURGIN Fump typ Bailer typ TIELD P Time	G/DISPOSA De Perista De: ARAMETER Water Level (BTOC) 12.36 12.35	AL METHOD altic Centr Wa RS Purge Rate	Temp. (°C)	Sp. Cond. (mS/cm) (±3%) 0.282 0.239	dder ☐ Non Remedia Dissolved Oxygen (±10% or ≤1.00 ±0.2)	-Dedicated Blation System Odor and/o pH (SU) (±0.1) 5.62 5.60	adder Other	Turbidity (NTU) (± 10% or ≤10)

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered? 0.45 0.10 No 0.45 0.10	D_{χ}
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	