TECHNICAL MEMORANDUM

TO:

Mark Nadler, Nadler Law Group

FROM:

Larry Beard, P.E. and Erik Gerking, L.G

DATE:

May 5, 2008 (Re-issued January 13, 2010)

RE:

GROUNDWATER MONITORING RESULTS

RIVERSIDE BUSINESS PARK EVERETT, WASHINGTON

This technical memorandum presents the result of a groundwater quality monitoring event conducted at the Port of Everett's Riverside Business Park Property (Property) located in Everett, Washington (Figure 1). The purpose of the groundwater monitoring event was to obtain current arsenic groundwater quality data for the Property. Prior to this investigation, the most recent arsenic groundwater quality data for the Property were obtained in the late 1990's as part of the ASARCO Everett Smelter Lowland remedial investigation (Lowland RI; Hydrometrics 2000).

GROUNDWATER MONITORING ACTIVITIES

Landau Associates conducted groundwater monitoring field activities over a 2-day period on February 18 and 19, 2008. Groundwater quality monitoring was performed for both the shallow and deep groundwater systems present at the property. Field activities consisted of collecting 13 groundwater samples from the shallow groundwater system and 6 groundwater samples from the deep groundwater system, as shown on Figures 2 and 3, for the shallow and deep groundwater systems, respectively. The following sections describe the groundwater monitoring activities.

Sampling Methods

Groundwater monitoring borings were completed using direct-push drilling equipment operated by Cascade Drilling, Inc. of Woodinville, Washington. Continuous soil samples were collected and evaluated in the field for soil type classification. Soil classification was accomplished in the field using the Unified Soil Classification System (USCS). Soil was also field-screened for evidence of contamination using visual and olfactory methods (e.g., soil discoloration, presence of sheen, and odor).

Groundwater samples were collected directly from the borings using a decontaminated temporary well screen placed within the approximate upper 2 ft of the target groundwater system. Prior to sample collection, groundwater was purged from the boring using a peristaltic pump and new polyethylene tubing

until the turbidity dissipated. Each groundwater sample was field-filtered using a 0.45 micron filter and submitted to the laboratory for analysis of dissolved arsenic.

A layer of soil that appeared to be affected by petroleum hydrocarbons was encountered at boring location D-4 in the deep groundwater system at a depth of about 15.5 ft below ground surface (BGS). The soil and groundwater at this location exhibited a sheen and petroleum hydrocarbon-like odor. As a result, soil and groundwater samples were collected from the affected depth interval for characterization purposes. The soil and groundwater samples collected from boring D-4 were submitted to the laboratory for analysis of diesel- and oil-range total petroleum hydrocarbons (TPH-D and TPH-O), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and pentachlorophenol.

Geologic Conditions

Geologic conditions encountered during the investigation consisted of sand fill soil with varying percentages of silt and gravel from the ground surface to 6 to 10 ft BGS. Underlying the surface fill layer is a silt unit about 5 ft to 10 ft thick that functions as the aquitard separating the shallow and deep groundwater flow systems. Underlying the silt layer is a sand deposit with varying percentages of silt. Groundwater was encountered at depth ranging from about 2 to 6 ft BGS. The saturated portion of the shallow fill unit constitutes the shallow groundwater system and the deeper sand deposit constitutes the deep groundwater system. Boring logs are presented in Attachment 1 to this document.

LABORATORY TESTING

Laboratory analyses were performed by Analytical Resources, Inc., of Tukwila, Washington. Dissolved arsenic was analyzed for in groundwater samples using US Environmental Protection Agency (EPA) Method 200.8. Diesel- and oil-range petroleum hydrocarbons were analyzed for in soil and groundwater samples using northwest (NW) Method TPH-D-extended. SVOCs, VOCs, and pentachlorophenol, were analyzed in soil and groundwater samples using EPA Methods 8260B, 8270C, and SW8041, respectively.

Arsenic groundwater analytical results are presented in Table 1. Analytical results for the additional groundwater and soil characterization samples collected from Boring D-4 are presented in Tables 2 and 3, respectively. The laboratory analytical report is presented in Attachment 2.

Upper and lower aquifer dissolved arsenic concentrations are presented on Figures 2 and 3, respectively. Dissolved arsenic concentrations ranged from 0.6 to 70.6 μ g/L in the shallow groundwater system and 2.3 to 1,350 μ g/L in the deep groundwater system. Arsenic concentrations from previous investigations are presented on the figures for comparison purposes.

A number of petroleum hydrocarbon compounds were detected in the additional characterization soil sample collected from Boring D-4. However, no organic compounds were above the laboratory reporting limits in the additional characterization groundwater sample except for bis(2-ethylhexyl)phthalate, a common laboratory contaminant.

QUALITY ASSURANCE/ QUALITY CONTROL

The laboratory analytical report is presented in Attachment 2. A data quality evaluation was conducted for analytical results and laboratory test methods. The data quality evaluation consisted of reviewing data for holding times, method blank results, surrogate spike recovery results, matrix spike/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs), laboratory duplicate samples, and reporting limits.

A blind field duplicate, RBP-DUP, was collected at location D-2 and was tested for dissolved arsenic. The analytical results for the primary and duplicate samples are presented in Table 1. As presented in the table, the primary and duplicate sample exhibit the same concentration of arsenic. Based on this comparison, and the results of the data validation process, no qualifiers were added to the reported data, and all results were determined acceptable without qualification.

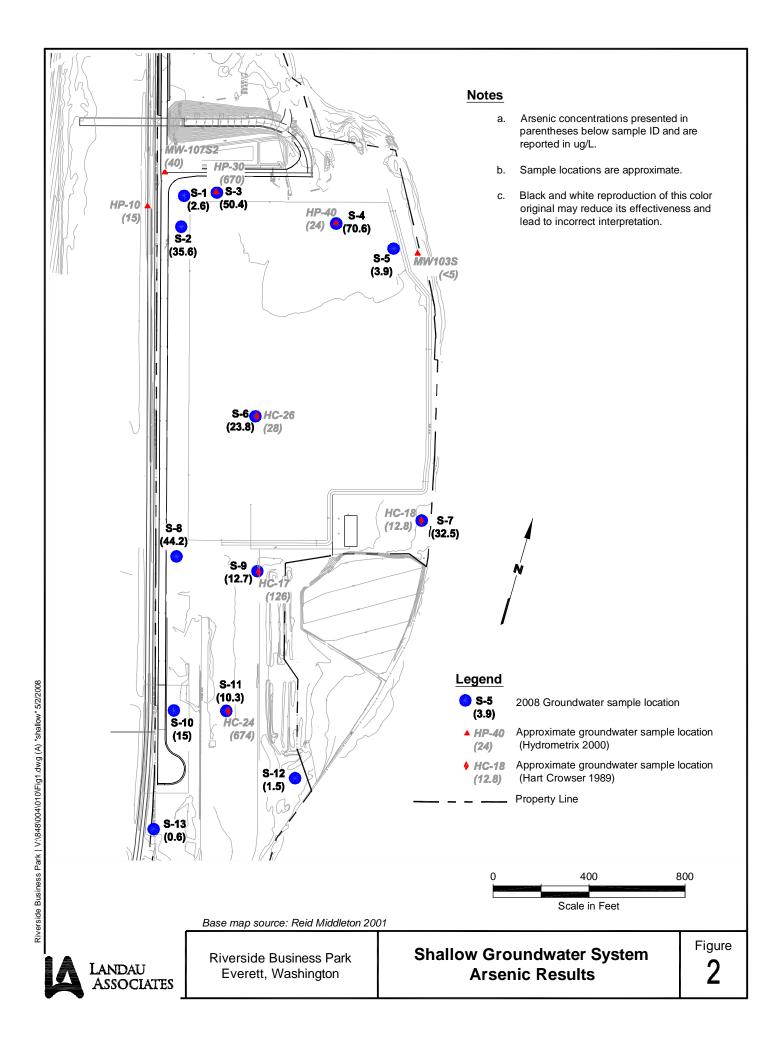

USES OF THIS REPORT

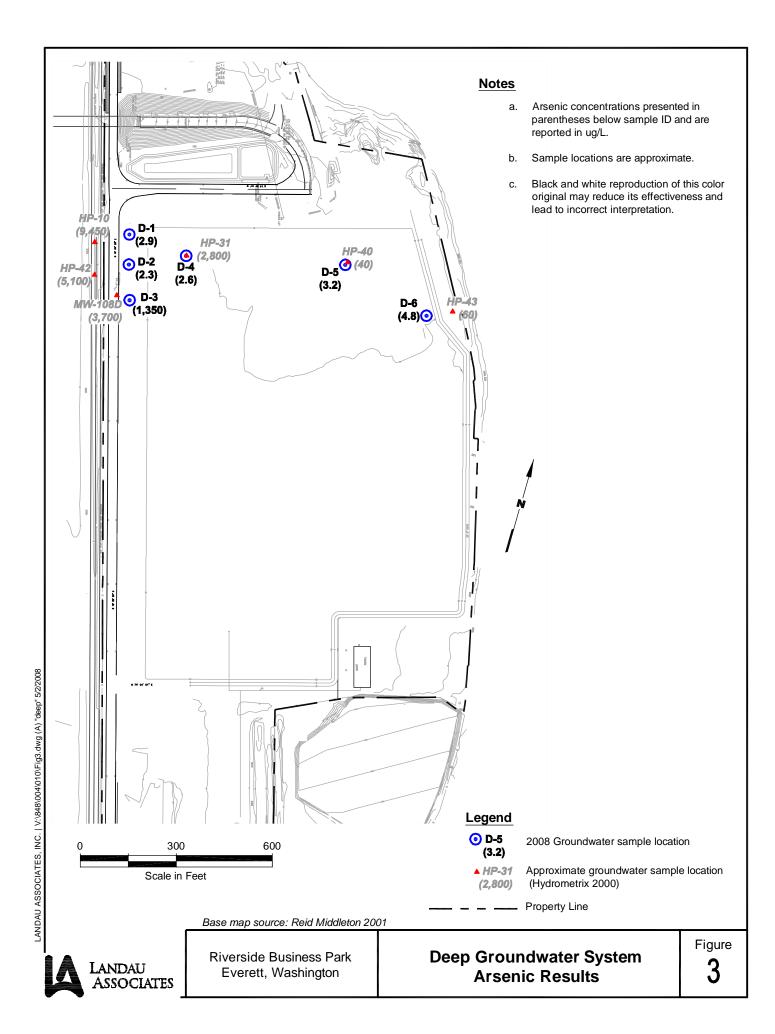
This technical memorandum has been prepared for the exclusive use of the Nadler Law Group for specific application to the Riverside Business Park Property. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

REFERENCES

Hart Crowser. 1989. Site Characterization Report, Weyerhaeuser Old Machine Shop, Everett Mill Site, Everett, Washington, Volume I, Main Text and Appendices A through E. October 27.

Hydrometrics. 2000. Draft Comprehensive Lowland Area Remedial Investigation Report for the Everett Smelter Site, Everett, Washington. January.




Riverside Business Park Everett, Washington

Vicinity Map

Figure 1

Reid Middleton/Riverside Industrial Park/Cleanup Action Report | V:\848\004\010\Fig1.dwg (A) "Figure 1" 5/2/2008

TABLE 1 GROUNDWATER ANALYTICAL RESULTS - ARSENIC RIVERSIDE BUSINESS PARK PORT OF EVERETT, WA

	D-1 MJ68Q 2/19/2008	Dup of D-2 RBP-DUP MJ68K 2/19/2008	D-2 MJ68U 2/19/2008	D-3 MJ68V 2/19/2008	D-4 MJ68N/B 2/19/2008	D-5 MJ68M 2/19/2008	D-6 MJ68I 2/18/2008	S-1 MJ68P 2/19/2008	S-2 MJ68R 2/19/2008	S-3 MJ68O 2/19/2008	S-4 MJ68L 2/19/2008
TOTAL METALS (μg/L) EPA 200.8											
Arsenic	2.9	2.3	2.3	1350	2.6	3.2	4.8	2.6	35.6	50.4	70.6

TABLE 1 GROUNDWATER ANALYTICAL RESULTS - ARSENIC RIVERSIDE BUSINESS PARK PORT OF EVERETT, WA

	S-5 MJ68J	S-6 MJ68H	S-7 MJ68D	S-8 MJ68G	S-9 MJ68E	S-10 MJ68F	S-11 MJ68C	S-12 MJ68A	S-13 MJ68B
	2/18/2008	2/18/2008	2/18/2008	2/18/2008	2/18/2008	2/18/2008	2/18/2008	2/18/2008	2/18/2008
TOTAL METALS (µg/L) EPA 200.8									
Arsenic	3.9	23.8	32.5	44.2	12.7	15.0	10.3	1.5	0.6

TABLE 2

GROUNDWATER ANALYTICAL RESULTS PHENOLS, TPH-DX, VOCS, AND SVOCS RIVERSIDE BUSINESS PARK PORT OF EVERETT, WASHINGTON

D-4 MK13B 2/19/2008

PHENOLS (µg/L) SW8041	
Pentachlorophenol	0.25 UJ
NWTPH-DxSG (mg/kg)	
Diesel Range Hydrocarbons	0.25 UJ
Motor Oil	0.5 UJ
VOLATILE ORGANIC COMPOUNDS (VOCs)	
EPA Method 8260B (µg/L)	
Chloromethane	1 U
Bromomethane	1 U
Vinyl Chloride	1 U
Chloroethane	1 U
Methylene Chloride Acetone	2 U 6.1 U
Carbon Disulfide	1 U
1,1-Dichloroethene	1 U
1,1-Dichloroethane	1 U
trans-1,2-Dichloroethene	1 U
cis-1,2-Dichloroethene	1 U
Chloroform	1 U
1,2-Dichloroethane	1 U
2-Butanone	5 U 1 U
1,1,1-Trichloroethane Carbon Tetrachloride	1 U
Vinyl Acetate	5 U
Bromodichloromethane	1 U
1,2-Dichloropropane	1 U
cis-1,3-Dichloropropene	1 U
Trichloroethene	1 U
Dibromochloromethane	1 U 1 U
1,1,2-Trichloroethane Benzene	1 U
trans-1,3-Dichloropropene	1 U
2-Chloroethylvinylether	5 U
Bromoform	1 U
4-Methyl-2-Pentanone (MIBK)	5 U
2-Hexanone	5 U
Tetrachloroethene 1,1,2,2-Tetrachloroethane	1 U 1 U
Toluene	1 U
Chlorobenzene	1 U
Ethylbenzene	1 U
Styrene	1 U
Trichlorofluoromethane	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane m,p-Xylene	2 U 1 U
o-Xylene	1 U
1,2-Dichlorobenzene	1 U
1,3-Dichlorobenzene	1 U
1,4-Dichlorobenzene	1 U
Acrolein	50 U
Methyl lodide	1 U
Bromoethane Acrylonitrile	2 U 5 U
1,1-Dichloropropene	1 U
Dibromomethane	1 U
1,1,1,2-Tetrachloroethane	1 U
1,2-Dibromo-3-chloropropane	5 U
1,2,3-Trichloropropane	2 U
trans-1,4-Dichloro-2-butene 1,3,5-Trimethylbenzene	5 U 1 U
1,2,4-Trimethylbenzene	1 U
.,_,	

TABLE 2

GROUNDWATER ANALYTICAL RESULTS PHENOLS, TPH-DX, VOCS, AND SVOCS RIVERSIDE BUSINESS PARK PORT OF EVERETT, WASHINGTON

D-4 MK13B

	2/19/2008
Hexachlorobutadiene	5 U
Ethylene Dibromide	1 U
Bromochloromethane	1 U
2,2-Dichloropropane	1 U
1,3-Dichloropropane	1 U
Isopropylbenzene	1 U
n-Propylbenzene	1 U
Bromobenzene	1 U
2-Chlorotoluene	1 U
4-Chlorotoluene	1 U
tert-Butylbenzene	1 U
sec-Butylbenzene	1 U
4-Isopropyltoluene	1 U
n-Butylbenzene	1 U
1,2,4-Trichlorobenzene	5 U
Naphthalene	5 U
1,2,3-Trichlorobenzene	5 U

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

EPA	Method	8270C	(µg/L)

EFA Method 6270C (µg/L)	
Phenol	1 U
Bis-(2-Chloroethyl) Ether	1 U
2-Chlorophenol	1 U
1,3-Dichlorobenzene	1 U
1,4-Dichlorobenzene	1 U
Benzyl Alcohol	5 U
1,2-Dichlorobenzene	1 U
2-Methylphenol	1 U
2,2'-Oxybis(1-Chloropropane)	1 U
4-Methylphenol	1 U
N-Nitroso-Di-N-Propylamine	5 U
Hexachloroethane	1 U
Nitrobenzene	1 U
Isophorone	1 U
2-Nitrophenol	5 U
2,4-Dimethylphenol	1 U
Benzoic Acid	10 U
bis(2-Chloroethoxy) Methane	1 U
2,4-Dichlorophenol	5 U
1,2,4-Trichlorobenzene	1 U
Naphthalene	1 U
4-Chloroaniline	5 U
Hexachlorobutadiene	1 U
4-Chloro-3-methylphenol	5 U
2-Methylnaphthalene	1 U
Hexachlorocyclopentadiene	5 U
2,4,6-Trichlorophenol	5 U
2,4,5-Trichlorophenol	5 U
2-Chloronaphthalene	1 U
2-Nitroaniline	5 U
Dimethylphthalate	1 U
Acenaphthylene	1 U
3-Nitroaniline	5 U
Acenaphthene	1 U
2,4-Dinitrophenol	10 U
4-Nitrophenol	5 U
Dibenzofuran	1 U
2,6-Dinitrotoluene	5 U
2,4-Dinitrotoluene	5 U
Diethylphthalate	1 U
4-Chlorophenyl-phenylether	1 U
	1 U
Fluorene	_
4-Nitroaniline	5 U
4,6-Dinitro-2-Methylphenol	10 U
N-Nitrosodiphenylamine	1 U
4-Bromophenyl-phenylether	1 U

TABLE 2 GROUNDWATER ANALYTICAL RESULTS PHENOLS, TPH-DX, VOCS, AND SVOCS RIVERSIDE BUSINESS PARK PORT OF EVERETT, WASHINGTON

D-4 MK13B 2/19/2008

	2/19/2008
Hexachlorobenzene	1 U
Pentachlorophenol	5 U
Phenanthrene	1 U
Carbazole	1 U
Anthracene	1 U
Di-n-Butylphthalate	1 U
Fluoranthene	1 U
Pyrene	1 U
Butylbenzylphthalate	1 U
3,3'-Dichlorobenzidine	5 U
Benzo(a)anthracene	1 U
bis(2-Ethylhexyl)phthalate	10
Chrysene	1 U
Di-n-Octyl phthalate	1 U
Benzo(b)fluoranthene	1 U
Benzo(k)fluoranthene	1 U
Benzo(a)pyrene	1 U
Indeno(1,2,3-cd)pyrene	1 U
Dibenz(a,h)anthracene	1 U
Benzo(g,h,i)perylene	1 U
1-Methylnaphthalene	1 U

U = The analyte was not detected in the sample at the given reporting limit.

UJ = The analyte was not detected in the sample; the given reporting limit is an estimate.

TABLE 3 SOIL ANALYTICAL RESULTS PHENOLS, TPH-DX, VOCS, AND SVOCS RIVERSIDE BUSINESS PARK PORT OF EVERETT, WASHINGTON

D-4 MK13A 2/19/2008

	2/19/2008
NWTPH-DxSG (mg/kg)	
Diesel Range Hydrocarbons	1,900
Motor Oil	130 U
PHENOLS (μg/kg)	
SW8041	
Pentachlorophenol	83
VOLATILE ORGANIC COMPOUNDS (VOCs) EPA Method 8260B (µg/kg)	
Chloromethane	80 U
Bromomethane	80 U
Vinyl Chloride	80 U
Chloroethane	80 U
Methylene Chloride	160 U
Acetone	400 U
Carbon Disulfide	80 U
1,1-Dichloroethene	80 U
1,1-Dichloroethane	80 U
trans-1,2-Dichloroethene	80 U
cis-1,2-Dichloroethene	80 U
Chloroform	80 U
1,2-Dichloroethane	80 U
2-Butanone	400 U
1,1,1-Trichloroethane	80 U
Carbon Tetrachloride	80 U
Vinyl Acetate	400 U
Bromodichloromethane	80 U
1,2-Dichloropropane	80 U
cis-1,3-Dichloropropene	80 U
Trichloroethene	80 U
Dibromochloromethane	80 U
1,1,2-Trichloroethane	80 U
Benzene	80 U 80 U
trans-1,3-Dichloropropene	400 U
2-Chloroethylvinylether Bromoform	80 U
4-Methyl-2-Pentanone (MIBK)	400 U
2-Hexanone	400 U
Tetrachloroethene	80 U
1,1,2,2-Tetrachloroethane	80 U
Toluene	80 U
Chlorobenzene	80 U
Ethylbenzene	80 U
Styrene	80 U
Trichlorofluoromethane	80 U
1,1,2-Trichloro-1,2,2-trifluoroethane	160 U
m,p-Xylene	220
o-Xylene	100
1,2-Dichlorobenzene	80 U
1,3-Dichlorobenzene	80 U
1,4-Dichlorobenzene	80 U
Acrolein	4,000 U
Methyl Iodide	80 U
Bromoethane	160 U
Acrylonitrile	400 U
1,1-Dichloropropene	80 U
Dibromomethane	80 U

TABLE 3 SOIL ANALYTICAL RESULTS PHENOLS, TPH-DX, VOCS, AND SVOCS RIVERSIDE BUSINESS PARK PORT OF EVERETT, WASHINGTON

D-4 MK13A 2/19/2008

	2/19/2008
1,1,1,2-Tetrachloroethane	80 U
1,2-Dibromo-3-chloropropane	400 U
1,2,3-Trichloropropane	160 U
trans-1,4-Dichloro-2-butene	400 U
1,3,5-Trimethylbenzene	550
1,2,4-Trimethylbenzene	2,300
Hexachlorobutadiene	400 U
Ethylene Dibromide	80 U
Bromochloromethane	80 U
2,2-Dichloropropane	80 U
1,3-Dichloropropane	80 U
Isopropylbenzene	83
n-Propylbenzene	190
Bromobenzene	80 U
2-Chlorotoluene	80 U
4-Chlorotoluene	80 U
tert-Butylbenzene	80 U
sec-Butylbenzene	130
4-Isopropyltoluene	240
n-Butylbenzene	640 M
1,2,4-Trichlorobenzene	400 U
Naphthalene	4,000
1,2,3-Trichlorobenzene	400 U

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

EPA Method 82700	(µg/kg)
------------------	---------

Phenol	65 U
Bis-(2-Chloroethyl) Ether	65 U
2-Chlorophenol	65 U
1,3-Dichlorobenzene	65 U
1,4-Dichlorobenzene	65 U
Benzyl Alcohol	320 U
1,2-Dichlorobenzene	65 U
2-Methylphenol	65 U
2,2'-Oxybis(1-Chloropropane)	65 U
4-Methylphenol	65 U
N-Nitroso-Di-N-Propylamine	320 U
Hexachloroethane	65 U
Nitrobenzene	65 U
Isophorone	65 U
2-Nitrophenol	320 U
2,4-Dimethylphenol	65 U
Benzoic Acid	650 U
bis(2-Chloroethoxy) Methane	65 U
2,4-Dichlorophenol	320 U
1,2,4-Trichlorobenzene	65 U
Naphthalene	1,700
4-Chloroaniline	320 U
Hexachlorobutadiene	65 U
4-Chloro-3-methylphenol	320 U
2-Methylnaphthalene	24,000
Hexachlorocyclopentadiene	320 U
2,4,6-Trichlorophenol	320 U
2,4,5-Trichlorophenol	320 U
2-Chloronaphthalene	65 U
2-Nitroaniline	320 U
Dimethylphthalate	65 U
Acenaphthylene	65 U

TABLE 3 SOIL ANALYTICAL RESULTS PHENOLS, TPH-DX, VOCS, AND SVOCS RIVERSIDE BUSINESS PARK PORT OF EVERETT, WASHINGTON

D-4 MK13A

	2/19/2008
3-Nitroaniline	320 U
Acenaphthene	1,400
2,4-Dinitrophenol	650 U
4-Nitrophenol	320 U
Dibenzofuran	570
2,6-Dinitrotoluene	320 U
2,4-Dinitrotoluene	320 U
Diethylphthalate	65 U
4-Chlorophenyl-phenylether	65 U
Fluorene	2,100
4-Nitroaniline	320 U
4,6-Dinitro-2-Methylphenol	650 U
N-Nitrosodiphenylamine	720 U
4-Bromophenyl-phenylether	65 U
Hexachlorobenzene	65 U
Pentachlorophenol	320 U
Phenanthrene	6,500
Carbazole	65 U
Anthracene	240
Di-n-Butylphthalate	65 U
Fluoranthene	350
Pyrene	630
Butylbenzylphthalate	65 U
3,3'-Dichlorobenzidine	320 U
Benzo(a)anthracene	65 U
bis(2-Ethylhexyl)phthalate	180
Chrysene	65 U
Di-n-Octyl phthalate	65 U
Benzo(b)fluoranthene	65 U
Benzo(k)fluoranthene	65 U
Benzo(a)pyrene	65 U
Indeno(1,2,3-cd)pyrene	65 U
Dibenz(a,h)anthracene	65 U
Benzo(g,h,i)perylene	65 U
1-Methylnaphthalene	14,000

U = The analyte was not detected in the sample at the given reporting limit.

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

Boring Logs

Soil Classification System

USCS

GRAPHIC LETTER MAJOR SYMBOL SYMBOL (1) **DIVISIONS**

TYPICAL DESCRIPTIONS (2)(3)

				-	
	GRAVEL AND	CLEAN GRAVEL	00000	GW	Well-graded gravel; gravel/sand mixture(s); little or no fines
SOIL arial is e size)	GRAVELLY SOIL	(Little or no fines)		GP	Poorly graded gravel; gravel/sand mixture(s); little or no fines
COARSE-GRAINED SOIL (More than 50% of material is larger than No. 200 sieve size)	(More than 50% of coarse fraction retained	GRAVEL WITH FINES (Appreciable amount of		GM	Silty gravel; gravel/sand/silt mixture(s)
GRAIN 50% of 1 No. 200	on No. 4 sieve)	fines)		GC	Clayey gravel; gravel/sand/clay mixture(s)
E-GF an 50' in No.	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines
ARS ore tha	SANDY SOIL	(Little or no fines)		SP	Poorly graded sand; gravelly sand; little or no fines
	(More than 50% of coarse fraction passed	SAND WITH FINES		SM	Silty sand; sand/silt mixture(s)
	through No. 4 sieve)	(Appreciable amount of fines)		sc	Clayey sand; sand/clay mixture(s)
OIL terial sieve	SILT A	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity
SOIL materi 200 sie		t less than 50)		CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay
AINED 50% of 1 an No. 2 size)	, , ,	,		OL	Organic silt; organic, silty clay of low plasticity
GRA Dan 5(SILT A	ND CLAY	ШШШ	МН	Inorganic silt; micaceous or diatomaceous fine sand
FINE-GRAINED SOIL (More than 50% of material is smaller than No. 200 sieve size)	(Liquid limit (greater than 50)		СН	Inorganic clay of high plasticity; fat clay
∏ ≶ <u>⊗</u>		,		ОН	Organic clay of medium to high plasticity; organic silt
	HIGHLY ORGA	ANIC SOIL		PT	Peat; humus; swamp soil with high organic content

OTHER MATERIALS

GRAPHIC LETTER SYMBOL SYMBOL

TYPICAL DESCRIPTIONS

PAVEMENT	AC or PC	Asphalt concrete pavement or Portland cement pavement
ROCK	RK	Rock (See Rock Classification)
WOOD	WD	Wood, lumber, wood chips
DEBRIS	DB	Construction debris, garbage

Notes: 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g. SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.

- Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
- 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

Primary Constituent: $^{>}$ 50% - "GRAVEL," "SAND," "SILT," "CLAY," etc. Secondary Constituents: $^{>}$ 30% and $^{<}$ 50% - "very gravelly," "very sandy," "very silty," etc. $^{>}$ 15% and $^{<}$ 30% - "gravelly," "sandy," "silty," etc. Additional Constituents: $^{>}$ 5% and $^{<}$ 15% - "with gravel," "with sand," "with silt," etc.

≤ 5% - "trace gravel," "trace sand," "trace silt," etc., or not noted.

Drilling and Sampling Key SAMPLER TYPE

SAMPLE NUMBER & INTERVAL

Code Description

3.25-inch O.D., 2.42-inch I.D. Split Spoon

- b 2.00-inch O.D., 1.50-inch I.D. Split Spoon
- Shelby Tube
- Grab Sample d
- Single-Tube Core Barrel
- Double-Tube Core Barrel
- Other See text if applicable
- 300-lb Hammer, 30-inch Drop
- 140-lb Hammer, 30-inch Drop 2
- 3 Pushed
- 4 Rotosonic
- Air Rotary (Rock)
- Wash Rotary (Rock) Other - See text if applicable

Sample Identification Number Recovery Depth Interval

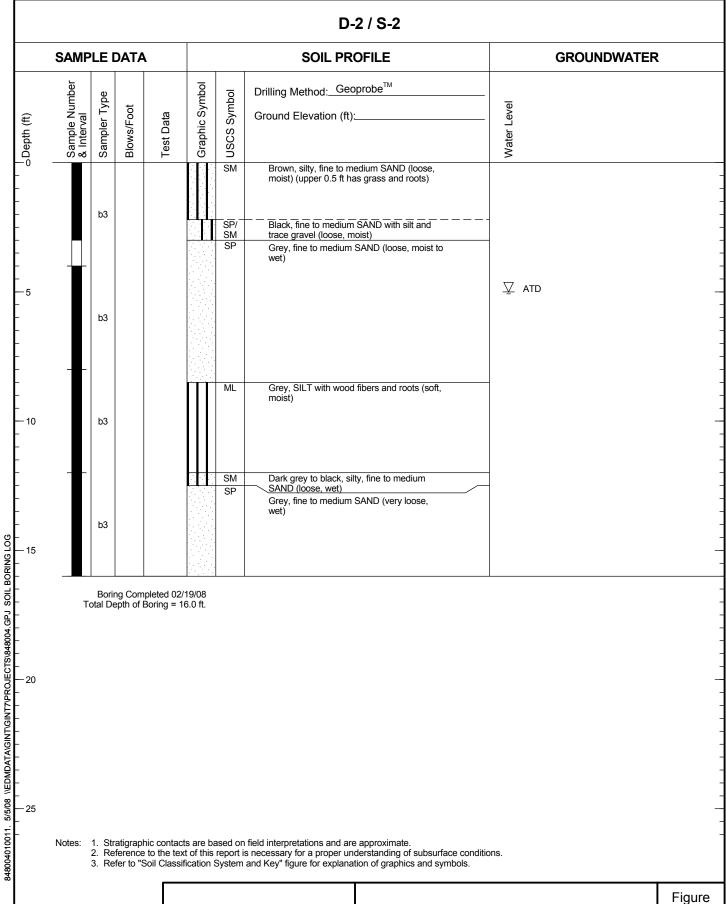
Sample Depth Interval Portion of Sample Retained for Archive or Analysis

Field and Lab Test Data

Code	Description
PP = 1.0	Pocket Penetrometer, tsf
TV = 0.5	Torvane, tsf
PID = 100	Photoionization Detector VOC screening, ppm
W = 10	Moisture Content, %
D = 120	Dry Density, pcf
-200 = 60	Material smaller than No. 200 sieve, %
GS	Grain Size - See separate figure for data
AL	Atterberg Limits - See separate figure for data
GT	Other Geotechnical Testing
CA	Chemical Analysis

Groundwater

Approximate water elevation at time of drilling (ATD) or on date noted. Groundwater levels can fluctuate due to precipitation, seasonal conditions, and other factors. ATD


Riverside Business Park Everett, WA

Soil Classification System and Key

Figure

SAMPLE DATA	SOIL PROFILE	GROUNDWATER
Sample Number & Interval Sampler Type Blows/Foot	Orilling Method: Geoprobe™ Ground Elevation (ft): Ground Elevation (ft):	Water Level
b3	SP Tan, fine to medium SAND with grass roots (loose, moist) Brown, silty, fine to medium SAND (lo	/~ 7
b3	with gravel geotextile membrane no data Grey and white, crushed GRAVEL (d wet) (clean, no fines) SP Grey, fine to medium SAND (loose, w	
	ML Grey, SILT with wood fibers and root moist) (wood fibers decrease with de	s (soft, hth)
b3		
- b3		
- b3	SM Grey, silty, fine SAND with wood deb (loose, wet) SM Dark grey, fine to medium SAND (loowet)	
b3		
Boring Completed Total Depth of Boring		
Reference to the	ntacts are based on field interpretations and are approximate. • text of this report is necessary for a proper understanding of sassification System and Key" figure for explanation of graphics	

Everett, WA

Riverside Business Park Everett, WA

Log of Boring D-2 / S-2

1 **2**

								D-3			
	SAMP	LE I	DATA				SOIL PR	OFILE		GROUNDWATER	
Depth (ft)	Sample Number & Interval	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: Geo		Water Level		
- - - - - - - - - - -		b3				SM SP SP	Brown, silty, fine to me wood fibers and roots Tan, fine to medium Smosit) Black, fine to medium gravel (medium dense Grey, fine to medium sand (loose, wet)	SAND with silt (loose, SAND with silt and e, moist)			-
- - - - - - - - 10		b3				ML	Grey, SILT with wood moist)	fibers and roots (soft,			-
104. GFJ SOIL BORING LOG		b3									_
848004010011, 5/5/08 NEDMDALANGIN NGIN I APKOLECI SI848004, GPJ	1					SP	Grey, fine to medium	SAND (loose, wet)			-
848004010011.	Notes:	2. Re	ference to	the text	t of this	report i		e approximate. derstanding of subsurface con tion of graphics and symbols.	ditions.		
	LANI ASSO	DAU OCL	ATES		River		Business Park erett, WA	Log	of Boring	D-3	Figure 1-4 (1 of 2)

SAMPL	E DA	TA			SOIL PRO	FILE	GR	OUNDWATER
Sample Number & Interval	Sampler Type	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: Geop		Water Level	
Tot	Boring (al Depth	Completed 02 of Boring = 2	/19/08 26.0 ft.					
Notes: 1 2 3	l Stratig Refere Refer	raphic contac ence to the te to "Soil Class	ts are bact of this	l ased or report i System	 n field interpretations and are a is necessary for a proper und and Key" figure for explanation	approximate. erstanding of subsurface cor on of graphics and symbols.	l nditions.	

Everett, WA

Log of Boring D-3

1-4 (2 of 2)

Band Band Band Band Band Band Band Band	SP Light tan with greenish motities, gravelly, fine to medium SAND with strange texture and coloring. Light trans, fine to medium SAND with sit (medium derise, moist) (doose, wet)	SAMPLE DATA	SOIL PROFILE	GROUNDWATER
b3 SP/ Light tan with greenish mottles, gravelly, fine to medium sAND with silt (medium dense, moist) (odd concrete waste type appearance with strange texture and coloring) Light trown, fine to medium SAND with trace gravel and wood debris (medium dense, moist) Dark grey to black, fine to course SAND (loose, wet) MIL Grey, SILT with trace wood fibers (soft, moist) color change to brown b3 SW Crey, fine to course SAND with wood fibers and trace silt (loose, wet) SW Strong petroleum odor and sheen present in 15.5 - 17 ft interval	b3 SP/ Light tan with greenish motites, gravelly, fine to medium SAND with silt (medium dense, moist) (odd concrete waste type appearance with strange texture and coloring) Light brown, fine to medium SAND with trace gravel and wood debris (medium dense, moist) Dark grey to black, fine to course SAND (loose, wet) ML Grey, SILT with trace wood fibers (soft, moist) color change to brown b3 SW Grey, fine to course SAND with wood fibers and trace silt (loose, wet) SW Grey, fine to course SAND with wood fibers and trace silt (loose, wet) Strong petroleum odor and sheen present in 15.5 - 17 ft interval	Sample Number & Interval Sampler Type Blows/Foot Test Data	Graphic Synt Ground Elevation (ft):	Water Level
b3 ML Grey, SILT with trace wood fibers (soft, moist) color change to brown b3 color change to grey with increasing wood fibers SW Grey, fine to course SAND with wood fibers and trace silt (loose, wet) Strong petroleum odor and sheen present in 15.5 - 17 ft interval	b3 ML Grey, SILT with trace wood fibers (soft, moist) color change to brown b3 color change to grey with increasing wood fibers SW Grey, fine to course SAND with wood fibers and trace silt (loose, wet) Strong petroleum odor and sheen present in 15.5 - 17 ft interval	b3	(top 0.5 ft has grass and roots) SP/ Light tan with greenish mottles, gravelly, fine to medium SAND with silt (medium dense, moist) (odd concrete waste type appearance with strange texture and coloring) Light brown, fine to medium SAND with trace gravel and wood debris (medium dense, moist) Dark grey to black, fine to course SAND	∑ ATD
SW Grey, fine to course SAND with wood fibers and trace silt (loose, wet) Strong petroleum odor and sheen present in 15.5 - 17 ft interval	SW Grey, fine to course SAND with wood fibers and trace silt (loose, wet) Strong petroleum odor and sheen present in 15.5 - 17 ft interval		ML Grey, SILT with trace wood fibers (soft, moist)	
15.5 - 17 ft interval	15.5 - 17 ft interval	b3	fibers SW Grey, fine to course SAND with wood fibers	
		b3	Strong petroleum odor and sheen present in 15.5 - 17 ft interval	

Riverside Business Park Everett, WA

Log of Boring D-4

		DATA	\			SOIL PROFILE	GROUNDWATER
Sample Number	& Interval Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method:_Geoprobe [™] Ground Elevation (ft):	Water Level
_	b3		<u>'</u>		SP	Brown, fine to medium SAND with grass and roots (loose, moist) (top 1.5 ft has grass and roots)	∑ ATD
	b3				SW	Grey, fine to couse SAND (loose, wet)	
_	b3						
-	b3				ML	Grey, SILT with trace wood fibers (soft, moist)	
	b3				SM/ ML / SP WD SP	Grey, fine sandy, SILT with trace medium SAND (soft, moist) Grey, fine to medium SAND (loose, wet) Wood debris Grey, fine to medium SAND (loose, wet)	
-	b3				3F	Grey, line to medium SAND (loose, well)	
	Bor Total D	ing Com	ipleted 02/ Boring = 1	/19/08 8.5 ft.			

Riverside Business Park Everett, WA

Log of Boring D-5 / S-4

Figure 1-6

	SAMP	LE	DATA				SOIL PRO	OFILE		GROUNDWATER
	Sample Number & Interval	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: George Ground Elevation (ft):		Water Level	
		b3				SP	Tan, fine to medium SA (top 5.0 ft has gass and	AND (loose, moist) d roots)		
	-1-	b3							V	
	l	b3				ML	color change to light br Grey, SILT with wood f moist)	ibers and roots (soft,		
		b3				SP	Grey, fine to medium S sand (loose, wet) 1" thick layer of wood of thick layer of wood of the same same same same same same same sam	lebris		
	To	Borir otal De	ng Comp epth of B	pleted 02/1 foring = 16	18/08 5.0 ft.					
5										
		 Re 	ference	to the text	of this i	report i	i field interpretations and are s necessary for a proper und and Key" figure for explanation	erstanding of subsurface	conditions.	

Riverside Business Park Everett, WA

Log of Boring D-6

1 7

b3 Down Dow
Brown, silty, fine to medium SAND (loose, wet) RK Arsenic slag (shiny black color, similiar appearance to obsidian) Tan, fine to medium SAND with trace silt (loose, moist) color change to grey WD Wood debris
Brown, silty, fine to medium SAND (loose, wet) RK Arsenic slag (shiny black color, similiar appearance to obsidian) Tan, fine to medium SAND with trace silt (loose, moist) color change to grey WD Wood debris
SP appearance to obsidian) Tan, fine to medium SAND with trace silt (loose, moist) color change to grey
b3 WD Wood debris
Wood debris
b3 ML Grey, SILT (soft, moist)

Everett, WA

Log of Boring S-01

SAMI	PLE I	DATA				SOIL PROFILE	GROU	JNDWATER
Sample Number	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft):	Water Level	
	b3				SP	Light brown to tan, fine to medium SAND with silt (loose, moist) (upper 0.5 ft has grass and roots)		
_					SP	Grey, fine to medium SAND with gravel (loose, wet)	 <u>∑</u> atd	
6	b3				WD SP	Wood debris Grey, fine to medium SAND (loose, wet)		
8	Bori Total D	ng Com Depth of	oleted 02/ ⁻ Boring = 8	19/08 3.0 ft.	ML	Grey, SILT (soft, moist)		
-10								
12 Notes:	1. Str 2. Re 3. Re	ratigraph	ic contact	s are ba	sed on	field interpretations and are approximate. s necessary for a proper understanding of subsurface co	nditions.	

Riverside Business Park Everett, WA

Log of Boring S-03

Figure

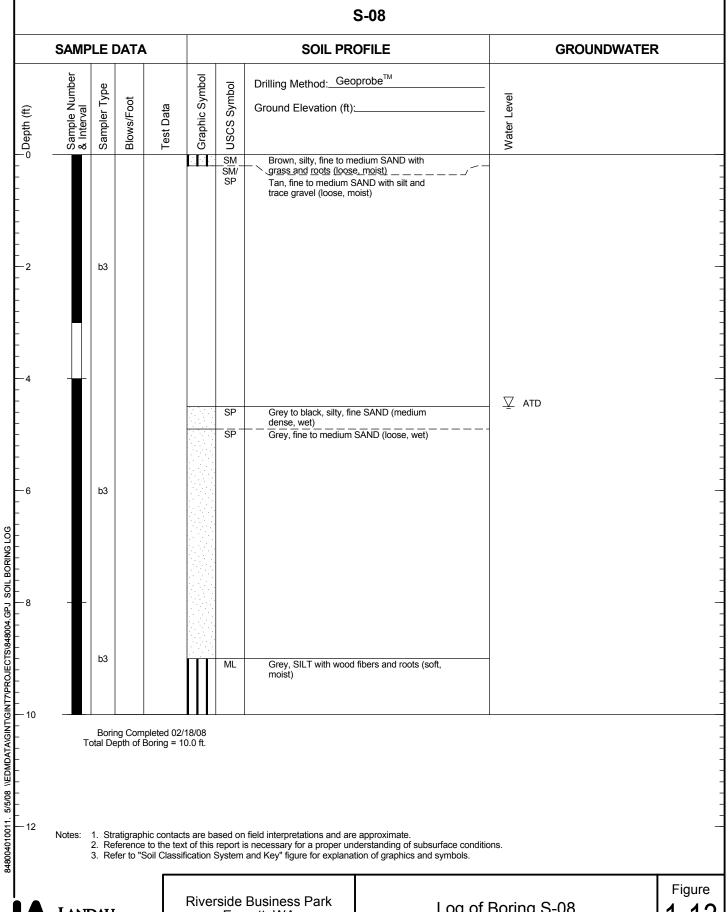
SAM	PLE I	DATA				SOIL PROFILE	GROUNDWATER
mber	,pe			loqui	loqu	Drilling Method: Geoprobe [™]	
Sample Number	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Ground Elevation (ft):	Water Level
					SP	Tan, fine to medium SAND with trace silt (loose, moist) (top 0.5 ft has organics)	
-	b3						
	b3				WD	Creosote treated wood debris (creosote sheen and odor)	
	-				SP	Grey, fine to medium SAND with trace silt (loose, wet)	—
	b3				NAL	Grey, SILT with wood debris (soft, moist)	
10				Ш	ML	Grey, Sill with wood debits (Soit, moist)	

Riverside Business Park Everett, WA

Log of Boring S-05

Figure **1_1**0

Drilling Method: Geoprobe TM Ground Elevation (ft): SP Tan, fine to medium SAND (loose, moist) (upper 0.8 ft has grass and roots) b3	Water Level
SP Tan, fine to medium SAND (loose, moist) (upper 0.8 ft has grass and roots)	
b3 SW Grey, fine to course SAND (loose, moist to wet)	
Notes: 1. Stratigraphic contacts are based on field interpretations and are approximate. 2. Reference to the text of this report is necessary for a proper understanding of subsurface co. 3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols	


Riverside Business Parl Everett, WA

Log of Boring S-06

SAME	LE I	DATA				SOIL PRO	FILE	GRO	UNDWATER
Sample Number & Interval	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: Geop		Water Level	
	b3				SM	Brown, silty, fine to cou gravel, grass, moss, ar dense, moist) Tan, fine to medium SA	d roots (medium		
	b3				WD	Wood debris (solid log) Tan, fine to medium SA	AND (loose, moist)	<u> </u>	
	Borii Total C	ng Compi Depth of E	leted 02/ Boring = 7	18/08 7.0 ft.	MLML	Dark grey, SILT (soft, r Tan with orange mottle (soft, moist) Dark grey, SILT with fir	s, fine sandy, SILT		
0									
2 Notes:	1. Str	atigraphi	c contact	s are ba	sed on	field interpretations and are as secessary for a proper undeand Key" figure for explanation	approximate.	and the second s	

Riverside Business Park Everett, WA

Log of Boring S-07

Everett, WA

Log of Boring S-08

SAMPLE [DATA				SOIL PROFILE	GROUNDWATER
Sample Number & Interval Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method:Geoprobe [™] Ground Elevation (ft):	Water Level
				SM	Brown, silty, fine to medium SAND with gravel and small roots (medium dense, moist)	
		-		SM/ SP	Dark grey, fine to medium SAND with silt and trace gravel (loose, moist)	
b3			•	SM/ SP	Grey, fine to medium SAND with silt (loose, wet)	∑ ATD
		:		SM/ ML	Grey, fine sandy, SILT (very soft, wet) ("slop")	
b3		<u>-</u>		ML	Grey, SILT with wood fibers and roots (soft, moist)	
Borir Total D	ng Compleepth of E	leted 02/18 Boring = 7.0	3/08 0 ft.			

Riverside Business Park Everett, WA

Log of Boring S-09

SM Tan, silty, fine SAND with grass and roots with trace gravel (medium dense, moist) SM Tan to grey, silty, fine to medium SAND with gravel (loose, moist) SM Grey, silty, fine to medium SAND with trace gravel (loose, moist) SM Grey, silty, fine to medium SAND with trace gravel (loose, moist)	
b3 SM Grey, silty, fine to medium SAND with trace gravel (loose, moist) SM Grey, silty, fine to medium SAND with trace gravel (loose, moist) ATD Black, GRAVEL (dense, moist) (shiny, irridescent appearance) (Arsenic slag debris)	
gravel (loose, moist)	
b3 O O GP Black, GRAVEL (dense, moist) (shiny, irridescent appearance) (Arsenic slag debris)	
Black, GRAVEL (dense, moist) (shiny, irridescent appearance) (Arsenic slag debris)	
Grey, fine to medium SAND with course sand and very trace wood debris (loose, wet)	
B b3	
ML Grey, SILT (soft, moist)	

Riverside Business Park Everett, WA

Log of Boring S-10

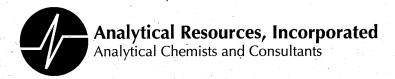
SAMI	PLE DA	TA		SOIL PROFILE	GROUNDWATER
Sample Number & Interval	Sampler Type	Test Data	Graphic Symbol	Drilling Method: Geoprobe™ Ground Elevation (ft):	Water Level
	b3		S	Brown, silty, fine to medium SAND with grass and grass roots (loose, moist) Brown, fine to medium SAND with grass roots (loose, moist) Grey, fine to course SAND with trace silt (loose, moist to wet)	
	b3			Grey, fine sandy, SILT (soft, moist) Grey, SILT with wood fibers (soft, moist)	<u></u>
1	Boring C Total Depti	Completed 02 h of Boring =	7/18/08 7.0 ft.		
0					
Notes:	Stratign Refere Refer to	raphic contac nce to the te o "Soil Class	cts are base xt of this rep ification Sys	d on field interpretations and are approximate. oort is necessary for a proper understanding of subsurface tem and Key" figure for explanation of graphics and symb	conditions. ols.

Riverside Business Park Everett, WA

Log of Boring S-11

SAMPLE DATA	\	SOIL PR	OFILE	GROUNDWATER
lber e	lodi	Drilling Method: Geo	pprobe™	
Sample Number & Interval Sampler Type Blows/Foot	Test Data Graphic Symbol	Drilling Method: Geo	·	
Sample Nur & Interval Sampler Ty Blows/Foot	Test Data Graphic S	8 2 2		
		C Asphalt	>	
		Grey, gravelly, fine to	medium SAND with	
		silt (dense, damp)		
b3		Dark grey to black, fir with crushed gravel a damp to moist)	ne to medium SAND nd trace silt (dense,	
		color change to black Grey, silty, fine to me	dium SAND with trace	
		gravel (medium dens Dark black, fine to me		
-		Dark grey, fine to med silt (loose, wet)	dium SAND with trace	
		Siit (10030, Wet)	$ar{ abla}$	ATD
b3				
		ML Brown, fine sandy, SI	LT (soft, moist)	
		IL Grey, SILT with trace	wood fibers and roots	
		(soft, moist)		
Boring Com Total Depth of	pleted 02/18/08 f Boring = 8.0 ft.			
Notes: 1. Stratigrap	hic contacts are base to the text of this re	d on field interpretations and are	e approximate. derstanding of subsurface conditions.	

Riverside Business Park Everett, WA


Log of Boring S-12

SAMF	LE I	DATA				SOIL PROFILE	GROUNDWAT
Sample Number & Interval	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method:Geoprobe [™] Ground Elevation (ft):	Water Level
					AC SP/ GP	Asphalt Brown, gravelly, fine to medium SAND (dense, damp)	
	b3				PT	Black, PEAT with trace gravel (soft, moist) decreasing gravel Grey, fine to medium SAND with course sand (very loose, moist to wet)	
							∑ atd
	b3				ML	Grey, SILT with trace wood fibers and roots	
	Borii Total C	ng Comp Depth of	oleted 02 Boring =	/18/08 7.0 ft.		(soft, moist)	
0							
2 Notes:	1. Str	atigraph	ic contac	its are ba	sed on	field interpretations and are approximate. s necessary for a proper understanding of subsurface co	nditions

Riverside Business Park Everett, WA

Log of Boring S-13

Laboratory Analytical Reports

February 27, 2008

Larry Beard Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Project No: 848004.010

Project Name: Riverside Business Park

ARI Job No: MK13

Dear Larry:

Please find enclosed the chain of custody (COC) documentation and the final results from the project referenced above. Analytical Resources, Inc. accepted one soil sample and twenty one water samples in good condition on February 20, 2008. Two samples were placed on hold pending further instructions.

The samples were analyzed for Dissolved Metals, as requested on the COC.

On February 25, 2008 select samples were removed from hold and analyzed for NWTPH-Dx, VOCs, SVOCs and Pentachlorophenol by method SW8041.

The sample **D-4** water was originally analyzed within method recommended holding time for NWTPH-Dx and re-analyzed outside of the method recommended holding time to confirm low surrogate recoveries. The surrogate recoveries were in control for the re-analysis and both sets of data were non-detect.

The surrogate TBP for sample **D-4** water is out of control low for the PCP analysis. All sample volume was consumed during the original analysis; therefore no further corrective action was taken. The compound PCP is reported for the 8270 analysis with an elevated RL.

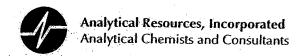
The method blank for the 8260 water analysis contained Acetone at greater than 1/2/ the RL. All associated samples have been flagged with a "B" qualifier.

There were no other anomalies associated with the sample. A copy of this report and all corresponding raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

ANALYTICAL RESOURCES, INC.

Kelly Bottem Client Services Manager (206) 695-6211 kellyb@arilabs.com

Dissolved metal water samples field filtered Allow water samples to settle, collect **Turnaround Time** ☐ Standard run acid wash/silica gel cleanup preserved w/sodium bisulfate Observations/Comments Analyze for EPH if no specific run samples standardized to preserved w/methanol product aliquot from clear portion Freeze upon receipt VOC/BTEX/VPH (soil): non-preserved product identified Received by Printed Name Method of HCL Shipment NWTPH-Dx: Signature Company Date **Testing Parameters** * Comments Time Chain-of-Custody Record Relinquished by Printed Name Signature Company Date Time //44 Project No. 818 col. 010 No. of Matrix Containers Buch Anne Halveson これの 50 1 Date 2/20/09 Signature Received by Company Seattle (Edmonds) (425) 778-0907 0751 2/19/08 0950 1430 Time 1600 LANDAU Dortland (Tigard) (503) 443-6010 Natha Moxla ☐ **Tacoma** (253) 926-2493 Project Location/Event Ewath WA Project Name Ciwrisk Bushuss Park Sampler's Name Nithu Moxley Project Contact Enth Certin 0)6 Time Wexter) Asis! Special Shipment/Handling or Storage Requirements Sample I.D. Relinquished by Send Results To_ Date 2/19/68 Printed Name 0-3 7-0 70


PINK COPY - Client Representative

YELLOW COPY - Laboratory

WHITE COPY - Project File

Rev 4/01

Time

Cooler Receipt Form

ARI Client: LANDAU	Project Name: <u>Project Business</u>	PARK	1.
COC No:	Delivered by: EC		
Assigned ARI Job No: M J 168	Tracking No:		-
Preliminary Examination Phase:			
Were intact, properly signed and dated custody s	eals attached to the outside of to cooler?	YES	NO
Were custody papers included with the cooler?			NO
Were custody papers properly filled out (ink, signe	ed, etc.)	YES	NO
Record cooler temperature (recommended 2.0-6.	0 °C for chemistry	35	<u>5_</u> ℃
Cooler Accepted by: FC	Date: <u>2/20/0</u> 8	Time: 1/	44
Complete custody forms	s and attach all shipping documents		
Log-In Phase:			
Was a temperature blank included in the cooler?		YES	(NO)
What kind of packing material was used?		105	
Was sufficient ice used (if appropriate)?			NO
Were all bottles sealed in individual plastic bags?		YES	(10)
Did all bottle arrive in good condition (unbroken)?	****	YES)	NO
Were all bottle labels complete and legible?			NO
Did all bottle labels and tags agree with custody pa			NO
Were all bottles used correct for the requested and	alyses?	Œŝ	NO
Do any of the analyses (bottles) require preservation	on? (attach preservation checklist)	YES;	NO
Were all VOC vials free of air bubbles?		YES	NO
Was sufficient amount of sample sent in each bottl	e?	(E)	NO
Samples Logged by: 😢	Date: <u>2 20 08</u>	306	
** Notify Project Manage	er of discrepancies or concerns **		_
Evoluio di correspondino			
Explain discrepancies or negative responses:			
			1
			1
		•	
· ·			
	By: Date:		

Volatiles by Purge & Trap GC/MS-Method SW8260B

1 of 2 Page

Sample ID: D-4 SAMPLE

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

Lab Sample ID: MK13A LIMS ID: 08-3487

Matrix: Soil

Data Release Authorized: Reported: 03/04/08

848004.010 Date Sampled: 02/19/08 Date Received: 02/20/08

Instrument/Analyst: FINN1/PAB Date Analyzed: 02/29/08 10:20

Sample Amount: 62.2 mg-dry-wt

Purge Volume: 5.0 mL Moisture: 23.3%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	80	< 80	U
74-83-9	Bromomethane	80	< 80	U
75-01-4	Vinyl Chloride	80	. < 80	U
75-00-3	Chloroethane	80	< 80	υ
75-09-2	Methylene Chloride	160	< 160	υ
67-64-1	Acetone	400	< 400	U
75-15-0	Carbon Disulfide	80	< 80	U
75-35-4	1,1-Dichloroethene	80	< 80	U
75-34-3	1,1-Dichloroethane	80	< 80	υ
156-60-5	trans-1,2-Dichloroethene	80	< 80	U
156-59-2	cis-1,2-Dichloroethene	80	< 80	U
67-66-3	Chloroform	80	< 80	U
107-06-2	1,2-Dichloroethane	80	< 80	Ω
78-93-3	2-Butanone	400	< 400	U
71-55-6	1,1,1-Trichloroethane	80	< 80	U
56-23-5	Carbon Tetrachloride	80	< 80	U
108-05-4	Vinyl Acetate	400	< 400	U
75-27-4	Bromodichloromethane	80	< 80	U
78-87-5	1,2-Dichloropropane	80	< 80	U
10061-01-5	cis-1,3-Dichloropropene	80	< 80	U
79-01-6	Trichloroethene	80	< 80	U
124-48-1	Dibromochloromethane	80	< 80	U
79-00-5	1,1,2-Trichloroethane	80	< 80	U
71-43-2	Benzene	80	< 80	U
10061-02-6	trans-1,3-Dichloropropene	80	< 80	U
110-75-8	2-Chloroethylvinylether	400	< 400	U
75-25-2	Bromoform	80	< 80	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	400	< 400	U
591-78-6	2-Hexanone	400	< 400	Ū
127-18-4	Tetrachloroethene	80	< 80	U
79-34-5	1,1,2,2-Tetrachloroethane	80	< 80	U
108-88-3	Toluene	80	< 80	U
108-90-7	Chlorobenzene	80	< 80	U
100-41-4	Ethylbenzene	80	< 80	U
100-42-5	Styrene	80	< 80	U
75-69-4	Trichlorofluoromethane	80	< 80	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoro	e 160	< 160	U
1330-20-7	m,p-Xylene	80	220	
95-47 - 6	o-Xylene	80	100	
95-50-1	1,2-Dichlorobenzene	80	< 80	U
541-73-1	1,3-Dichlorobenzene	80	< 80	U
106-46-7	1,4-Dichlorobenzene	80	< 80	U
107-02-8	Acrolein	4,000	< 4,000	U
74-88-4	Methyl Iodide	80	< 80	U
74-96-4	Bromoethane .	160	< 160	U
107-13-1	Acrylonitrile	400	< 400	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: D-4 SAMPLE

Lab Sample ID: MK13A

QC Report No: MK13-Landau Associates, Inc.

LIMS ID: 08-3487

Project: Riverside Business Park

848004.010

Matrix: Soil

Date Analyzed: 02/29/08 10:20

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	80	< 80	U
74-95-3	Dibromomethane	80	< 80	U
630-20-6	1,1,1,2-Tetrachloroethane	80	< 80	U
96-12-8	1,2-Dibromo-3-chloropropane	400	< 400	U
96-18-4	1,2,3-Trichloropropane	160	< 160	U
110-57-6	trans-1,4-Dichloro-2-butene	400	< 400	U
108-67-8	1,3,5-Trimethylbenzene	80	550	
95-63-6	1,2,4-Trimethylbenzene	80	2,300	
87-68-3	Hexachlorobutadiene	400	< 400	U
106-93-4	Ethylene Dibromide	80	< 80	U
74-97-5	Bromochloromethane	80	< 80	U
594-20-7	2,2-Dichloropropane	80	< 80	U
142-28-9	1,3-Dichloropropane	80	< 80	U
98-82-8	Isopropylbenzene	80	83	
103-65-1	n-Propylbenzene	80	190	
108-86-1	Bromobenzene	80	< 80	U
95-49-8	2-Chlorotoluene	80	< 80	U
106-43-4	4-Chlorotoluene	80	< 80	Ŭ
98-06-6	tert-Butylbenzene	80	< 80	U
135-98-8	sec-Butylbenzene	80	130	
99-87-6	4-Isopropyltoluene	80	240	
104-51-8	n-Butylbenzene	80	640	M
120-82-1	1,2,4-Trichlorobenzene	400	< 400	U
91-20-3	Naphthalene	400	4,000	
87-61-6	1,2,3-Trichlorobenzene	400	< 400	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	99.9%
d8-Toluene	101%
Bromofluorobenzene	96.8%
d4-1,2-Dichlorobenzene	98.7%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: D-4
Page 1 of 2 SAMPLE

Lab Sample ID: MK13B LIMS ID: 08-3488

Matrix: Water
Data Release Authorized:
Reported: 03/04/08

Instrument/Analyst: FINN1/PAB
Date Analyzed: 02/29/08 11:19

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010
Date Sampled: 02/19/08
Date Received: 02/20/08

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	6.1	В
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	υ
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	Ū
56-23-5	Carbon Tetrachloride	1.0	< 1.0	Ŭ
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ŭ
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	Ŭ
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0 < 5.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0 < 5.0	U U
591-78-6	2-Hexanone	5.0 1.0	< 1.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ŭ
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	Ū
100-41-4	Ethylbenzene	1.0	< 1.0	Ū
100-42-5	Styrene Trichlorofluoromethane	1.0	< 1.0	ΰ
75-69-4 76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	υ
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	ΰ
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	Ū
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	Ū
107-02-8	Acrolein	50	< 50	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	2.0	< 2.0	Ū
107-13-1	Acrylonitrile	5.0	< 5.0	Ū
563-58-6	1,1-Dichloropropene	1.0	< 1.0	Ū
74-95-3	Dibromomethane	1.0	< 1.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	< 5.0	Ū
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	Ū
20 20 2	_,_,_			-

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: D-4 SAMPLE

Lab Sample ID: MK13B LIMS ID: 08-3488

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Matrix: Water

Date Analyzed: 02/29/08 11:19

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	5.0	< 5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.0	< 5.0	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	U
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	U
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1	n-Propylbenzene	1.0	< 1.0	U
108-86-1	Bromobenzene	1.0	< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0	U
91-20-3	Naphthalene	5.0	< 5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	< 5.0	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	95.5%
d8-Toluene	98.7%
Bromofluorobenzene	92.8%
d4-1,2-Dichlorobenzene	97.8%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: MB-022908 METHOD BLANK

Lab Sample ID: MB-022908

LIMS ID: 08-3487

Matrix: Soil

Data Release Authorized: Reported: 03/04/08

Reported: 03/04/08

trument/Analyst, FINN1/DAR

Instrument/Analyst: FINN1/PAB
Date Analyzed: 02/29/08 09:40

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 100 mg-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	50	< 50	Ū
74-83-9	Bromomethane	50	< 50	υ
75-01-4	Vinyl Chloride	50	< 50	U
75-00-3	Chloroethane	50	< 50	Ū
75-09-2	Methylene Chloride	100	< 100	Ü
67-64-1	Acetone	250	< 250	ΰ
75-15-0	Carbon Disulfide	50	< 50	Ū
75-35-4	1,1-Dichloroethene	50	< 50	Ü
75-34-3	1,1-Dichloroethane	50	< 50	Ū
156-60-5	trans-1,2-Dichloroethene	50	< 50	Ū
156-59-2	cis-1,2-Dichloroethene	50	< 50	Ü
67-66-3	Chloroform	50	< 50	Ū
107-06-2	1,2-Dichloroethane	50	< 50	Ū
78-93-3	2-Butanone	250	< 250	ΰ
71-55-6	1,1,1-Trichloroethane	50	< 50	Ū
56-23-5	Carbon Tetrachloride	50	< 50	Ū
108-05-4	Vinyl Acetate	250	< 250	Ū
75-27-4	Bromodichloromethane	50	< 50	Ū
78-87-5	1,2-Dichloropropane	50	< 50	Ū
10061-01-5	cis-1,3-Dichloropropene	50	< 50	Ū
79-01-6	Trichloroethene	50	< 50	Ū
124-48-1	Dibromochloromethane	50	< 50	Ū
79-00-5	1,1,2-Trichloroethane	50	< 50	Ū
71-43-2	Benzene	50	< 50	Ū
10061-02-6	trans-1,3-Dichloropropene	50	< 50	Ū
110-75-8	2-Chloroethylvinylether	250	< 250	Ū
75-25-2	Bromoform	50	< 50	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	250	< 250	U
591-78-6	2-Hexanone	250	< 250	U
127-18-4	Tetrachloroethene	50	< 50	U
79-34-5	1,1,2,2-Tetrachloroethane	50	< 50	U
108-88-3	Toluene	50	< 50	U
108-90-7	Chlorobenzene	50	< 50	υ
100-41-4	Ethylbenzene	50	< 50	υ
100-42-5	Styrene	50	< 50	U
75-69-4	Trichlorofluoromethane	50	< 50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluo	roe 100	< 100	U
1330-20-7	m,p-Xylene	50	< 50	U
95-47-6	o-Xylene	50	< 50	Ū
95-50-1	1,2-Dichlorobenzene	50	< 50	U
541-73-1	1,3-Dichlorobenzene	50	< 50	U
106-46-7	1,4-Dichlorobenzene	50	< 50	U
107-02-8	Acrolein	2,500	< 2,500	υ
74-88-4	Methyl Iodide	50	< 50	U
74-96-4	Bromoethane	100	< 100	U
107-13-1	Acrylonitrile	250	< 250	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: MB-022908 METHOD BLANK

Lab Sample ID: MB-022908

QC Report No: MK13-Landau Associates, Inc.

LIMS ID: 08-3487

Project: Riverside Business Park

848004.010

Matrix: Soil Date Analyzed: 02/29/08 09:40

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	50	< 50	υ
74-95-3	Dibromomethane	50	< 50	U
630-20-6	1,1,1,2-Tetrachloroethane	50	< 50	U
96-12-8	1,2-Dibromo-3-chloropropane	250	< 250	U
96-18-4	1,2,3-Trichloropropane	100	< 100	U
110-57-6	trans-1,4-Dichloro-2-butene	250	< 250	U
108-67-8	1,3,5-Trimethylbenzene	50	< 50	Ω
95-63-6	1,2,4-Trimethylbenzene	50	< 50	U
87-68-3	Hexachlorobutadiene	250	< 250	U
106-93-4	Ethylene Dibromide	50	< 50	U
74-97-5	Bromochloromethane	50	< 50	U
594-20-7	2,2-Dichloropropane	50	< 50	U
142-28-9	1,3-Dichloropropane	50	< 50	U
98-82-8	Isopropylbenzene	50	< 50	U
103-65-1	n-Propylbenzene	50	< 50	U
108-86-1	Bromobenzene	50	< 50	U
95-49-8	2-Chlorotoluene	50	< 50	U
106-43-4	4-Chlorotoluene	50	< 50	U
98-06-6	tert-Butylbenzene	50	< 50	U
135-98-8	sec-Butylbenzene	50	< 50	U
99-87-6	4-Isopropyltoluene	50	< 50	U
104-51-8	n-Butylbenzene	50	< 50	Ū
120-82-1	1,2,4-Trichlorobenzene	250	< 250	U
91-20-3	Naphthalene	250	< 250	U
87-61-6	1,2,3-Trichlorobenzene	250	< 250	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	97.3%
Bromofluorobenzene	93.7%
d4-1.2-Dichlorobenzene	97.9%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: MB-022908 METHOD BLANK

Lab Sample ID: MB-022908

LIMS ID: 08-3488 Matrix: Water

Data Release Authorized:

Reported: 03/04/08

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Instrument/Analyst: FINN1/PAB Sample Amount: 5.00 mL Date Analyzed: 02/29/08 09:40 Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ū
75-01-4	Vinyl Chloride	1.0	< 1.0	Ū
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	3.2	J
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ū
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ų
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	υ
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	U
107-02-8	Acrolein	50	< 50	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	2.0	< 2.0	U
107-13-1	Acrylonitrile	5.0	< 5.0	U
563-58-6	1,1-Dichloropropene	1.0	< 1.0	U
74-95-3	Dibromomethane	1.0	< 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	< 5.0	U
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: MB-022908 METHOD BLANK

Lab Sample ID: MB-022908

LIMS ID: 08-3488

Matrix: Water

Date Analyzed: 02/29/08 09:40

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	5.0	< 5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.0	< 5.0	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	U
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	U
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1	n-Propylbenzene	1.0	< 1.0	U
108-86-1	Bromobenzene	1.0	< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0	U
91-20-3	Naphthalene	5.0	< 5.0	Ū
87-61-6	1,2,3-Trichlorobenzene	5.0	< 5.0	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	97.3%
Bromofluorobenzene	93.7%
d4-1,2-Dichlorobenzene	97.9%

ANALYTICAL RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-022908 LCS-022908 LCSD-022908 MK13A	Method Blank Lab Control Lab Control Dup D-4	Med Med Med Med	100% 98.7% 98.5% 99.9%	97.3% 100% 97.4% 101%	93.7% 101% 103% 96.8%	97.9% 99.7% 96.1% 98.7%	0 0 0
		LCS	/MB LIM	ITS		QC LIMI	TS
(TOL) = d8-TC (BFB) = Bromc	2-Dichloroethane luene fluorobenzene 2-Dichlorobenzene	Low 75-12 80-12 79-12 80-12	0 2 0	Med 76-120 80-120 80-120 80-120	Lov 72 - 3 78 - 3 66 - 3 79 - 3	134 124 120	Med 69-120 80-120 76-128 80-120

Log Number Range: 08-3487 to 08-3487

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-022908	Method Blank	5	100%	97.3%	93.7%	97.9%	0
LCS-022908	Lab Control	5	98.7%	100%	101%	99.7%	0
LCSD-022908	Lab Control Dup	5	98.5%	97.4%	103%	96.1%	0
MK13B	D-4	5	95.5%	98.7%	92.8%	97.8%	0
		LCS	/MB LIM	ITS		QC LIMIT	rs
SW8260B							
(DCE) = d4-1	,2-Dichloroethane		79-120			80-120)
(TOL) = d8-Toluene		80-120		80-120)	
(BFB) = Bromo	ofluorobenzene		80-120			72-120)
(DCB) = d4-1	,2-Dichlorobenzene		80-120			80-124	1

Prep Method: SW5030B

Log Number Range: 08-3488 to 08-3488

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: LCS-022908
LAB CONTROL SAMPLE

Lab Sample ID: LCS-022908

LIMS ID: 08-3487 Matrix: Soil

Data Release Authorized:

Reported: 03/04/08

Instrument/Analyst LCS: FINN1/PAB LCSD: FINN1/PAB

Date Analyzed LCS: 02/29/08 08:37

LCSD: 02/29/08 09:18

Sample Amount LCS: 100 mg-dry-wt LCSD: 100 mg-dry-wt

848004.010

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

Moisture: NA

Date Sampled: NA

Date Received: NA

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Chloromethane	1870	2500	74.8%	1970	2500	78.8%	5.2%
Bromomethane	2150	2500	86.0%	2200	2500	88.0%	2.3%
Vinyl Chloride	2240	2500	89.6%	2230	2500	89.2%	0.4%
Chloroethane	2370	2500	94.8%	2360	2500	94.4%	0.4%
Methylene Chloride	2320	2500	92.8%	2340	2500	93.6%	0.9%
Acetone	11900	12500	95.2%	11700	12500	93.6%	1.7%
Carbon Disulfide	2520	2500	101%	2430	2500	97.2%	3.6%
1,1-Dichloroethene	2390	2500	95.6%	2310	2500	92.4%	3.4%
1,1-Dichloroethane	2460	2500	98.4%	2470	2500	98.8%	0.4%
trans-1,2-Dichloroethene	2420	2500	96.8%	2400	2500	96.0%	0.8%
cis-1,2-Dichloroethene	2450	2500	98.0%	2450	2500	98.0%	0.0%
Chloroform	2450	2500	98.0%	2450	2500	98.0%	0.0%
1,2-Dichloroethane	2390	2500	95.6%	2450	2500	98.0%	2.5%
2-Butanone	11000	12500	88.0%	11100	12500	88.8%	0.9%
1,1,1-Trichloroethane	2520	2500	101%	2460	2500	98.4%	2.4%
Carbon Tetrachloride	2620	2500	105%	2590	2500	104%	1.2%
Vinyl Acetate	2440	2500	97.6%	2470	2500	98.8%	1.2%
Bromodichloromethane	2710	2500	108%	2700	2500	108%	0.4%
1,2-Dichloropropane	2410	2500	96.4%	2500	2500	100%	3.7%
cis-1,3-Dichloropropene	2200	2500	88.0%	2190	2500	87.6%	0.5%
Trichloroethene	2510	2500	100%	2510	2500	100%	0.0%
Dibromochloromethane	2070	2500	82.8%	2070	2500	82.8%	0.0%
1,1,2-Trichloroethane	2460	2500	98.4%	2470	2500	98.8%	0.4%
Benzene	2600	2500	104%	2630	2500	105%	1.1%
trans-1,3-Dichloropropene	2180	2500	87.2%	2190	2500	87.6%	0.5%
2-Chloroethylvinylether	1840	2500	73.6%	2050	2500	82.0%	10.8%
Bromoform	2060	2500	82.4%	2010	2500	80.4%	2.5%
4-Methyl-2-Pentanone (MIBK)	10300	12500	82.4%	10600	12500	84.8%	2.9%
2-Hexanone	12700	12500	102%	12900	12500	103%	1.6%
Tetrachloroethene	2500	2500	100%	2370	2500	94.8%	5.3%
1,1,2,2-Tetrachloroethane	2400	2500	96.0%	2370	2500	94.8%	1.3%
Toluene	2530	2500	101%	2490	2500	99.6%	1.6%
Chlorobenzene	2530	2500	101%	2440	2500	97.6%	3.6%
Ethylbenzene	2760	2500	110%	2750	2500	110%	0.4%
Styrene	2460	2500	98.4%	2440	2500	97.6%	0.8%
Trichlorofluoromethane	2260	2500	90.4%	2090	2500	83.6%	7.8%
1,1,2-Trichloro-1,2,2-trifluoroetha		2500	96.8%	2350	2500	94.0%	2.9%
m,p-Xylene	5520	5000	110%	5500	5000	110%	0.4%
o-Xylene	2160	2500	86.4%	2170	2500	86.8%	0.5%
1,2-Dichlorobenzene	2470	2500	98.8%	2410	2500	96.4%	2.5%
1,3-Dichlorobenzene	2610	2500	104%	2560	2500	102%	1.9%
1,4-Dichlorobenzene	2630	2500	105%	2500	2500	100%	5.1%
Acrolein	11300	12500	90.4%	11600	12500	92.8%	2.6%
Methyl Iodide	2540	2500	102%	2610	2500	104%	2.7%
Bromoethane	2370	2500	94.8%	2390	2500	95.6%	0.8%
Acrylonitrile	2260	2500	90.4%	2290	2500	91.6%	1.3%
-							

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-022908

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-022908

LIMS ID: 08-3487 Matrix: Soil QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
1,1-Dichloropropene	2560	2500	102%	2520	2500	101%	1.6%
Dibromomethane	2380	2500	95.2%	2400	2500	96.0%	0.8%
1,1,1,2-Tetrachloroethane	2090	2500	83.6%	2100	2500	84.0%	0.5%
1,2-Dibromo-3-chloropropane	2440	2500	97.6%	2380	2500	95.2%	2.5%
1,2,3-Trichloropropane	2290	2500	91.6%	2270	2500	90.8%	0.9%
trans-1,4-Dichloro-2-butene	2490	2500	99.6%	2400	2500	96.0%	3.7%
1,3,5-Trimethylbenzene	2810	2500	112%	2720	2500	109%	3.3%
1,2,4-Trimethylbenzene	2880	2500	115%	2710	2500	108%	6.1%
Hexachlorobutadiene	2630	2500	105%	2450	2500	98.0%	7.1%
Ethylene Dibromide	2120	2500	84.8%	2120	2500	84.8%	0.0%
Bromochloromethane	2330	2500	93.2%	2340	2500	93.6%	0.4%
2,2-Dichloropropane	2610	2500	104%	2560	2500	102%	1.9%
1,3-Dichloropropane	2390	2500	95.6%	2430	2500	97.2%	1.7%
Isopropylbenzene	2890	2500	116%	2750	2500	110%	5.0%
n-Propylbenzene	2970	2500	119%	2870	2500	115%	3.4%
Bromobenzene	2430	2500	97.2%	2400	2500	96.0%	1.2%
2-Chlorotoluene	3130	2500	125%	2630	2500	105%	17.4%
4-Chlorotoluene	2480	2500	99.2%	2670	2500	107%	7.4%
tert-Butylbenzene	2680	2500	107%	2650	2500	106%	1.1%
sec-Butylbenzene	3010	2500	120%	2890	2500	116%	4.1%
4-Isopropyltoluene	2980	2500	119%	2860	2500	114%	4.1%
n-Butylbenzene	3220	2500	129%	2940	2500	118%	9.1%
1,2,4-Trichlorobenzene	2580	2500	103%	2380	2500	95.2%	8.1%
Naphthalene	2170	2500	86.8%	2140	2500	85.6%	1.4%
1,2,3-Trichlorobenzene	2350	2500	94.0%	2210	2500	88.4%	6.1%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	98.7%	98.5%
d8-Toluene	100%	97.4%
Bromofluorobenzene	101%	103%
d4-1,2-Dichlorobenzene	99.7%	96.1%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: LCS-022908 Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-022908

LIMS ID: 08-3488 Matrix: Water

Data Release Authorized: Reported: 03/04/08

Instrument/Analyst LCS: FINN1/PAB LCSD: FINN1/PAB

Date Analyzed LCS: 02/29/08 08:37 LCSD: 02/29/08 09:18 QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 mL LCSD: 5.00 mL

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LC	Recovery	LCSD	Added-LCSD	Recovery	RPD
Chloromethane	37.5	50.0	75.0%	39.4	50.0	78.8%	4.9%
Bromomethane	42.9	50.0	85.8%	43.9	50.0	87.8%	2.3%
Vinyl Chloride	44.8	50.0	89.6%	44.6	50.0	89.2%	0.4%
Chloroethane	47.5	50.0	95.0%	47.1	50.0	94.2%	0.8%
Methylene Chloride	46.3	50.0	92.6%	46.8	50.0	93.6%	1.1%
Acetone	239	250	95.6%	234	250	93.6%	2.1%
Carbon Disulfide	50.5	50.0	101%	48.5	50.0	97.0%	4.0%
1,1-Dichloroethene	47.7	50.0	95.4%	46.2	50.0	92.4%	3.2%
1,1-Dichloroethane	49.2	50.0	98.4%	49.3	50.0	98.6%	0.2%
trans-1,2-Dichloroethene	48.4	50.0	96.8%	47.9	50.0	95.8%	1.0%
cis-1,2-Dichloroethene	49.0	50.0	98.0%	49.0	50.0	98.0%	0.0%
Chloroform	49.0	50.0	98.0%	49.0	50.0	98.0%	0.0%
1,2-Dichloroethane	47.7	50.0	95.4%	48.9	50.0	97.8%	2.5%
2-Butanone	219	250	87.6%	222	250	88.8%	1.4%
1,1,1-Trichloroethane	50.4	50.0	101%	49.1	50.0	98.2%	2.6%
Carbon Tetrachloride	52.4	50.0	105%	51.7	50.0	103%	1.3%
Vinyl Acetate	48.7	50.0	97.4%	49.4	50.0	98.8%	1.4%
Bromodichloromethane	54.2	50.0	108%	54.0	50.0	108%	0.4%
1,2-Dichloropropane	48.3	50.0	96.6%	49.9	50.0	99.8%	3.3%
cis-1,3-Dichloropropene	44.1	50.0	88.2%	43.9	50.0	87.8%	0.5%
Trichloroethene	50.3	50.0	101%	50.2	50.0	100%	0.2%
Dibromochloromethane	41.3	50.0	82.6%	41.3	50.0	82.6%	0.0%
1,1,2-Trichloroethane	49.3	50.0	98.6%	49.4	50.0	98.8%	0.2%
Benzene	52.0	50.0	104%	52.5	50.0	105%	1.0%
trans-1,3-Dichloropropene	43.6	50.0	87.2%	43.9	50.0	87.8%	0.7%
2-Chloroethylvinylether	36.8	50.0	73.6%	41.0	50.0	82.0%	10.8%
Bromoform	41.1	50.0	82.2%	40.2	50.0	80.4%	2.2%
4-Methyl-2-Pentanone (MIBK)	207	250	82.8%	212	250	84.8%	2.4%
2-Hexanone	254	250	102%	257	250	103%	1.2%
Tetrachloroethene	50.0	50.0	100%	47.4	50.0	94.8%	5.3%
1,1,2,2-Tetrachloroethane	48.1	50.0	96.2%	47.5	50.0	95.0%	1.3%
Toluene	50.6	50.0	101%	49.8	50.0	99.6%	1.6%
Chlorobenzene	50.6	50.0	101%	48.9	50.0	97.8%	3.4%
Ethylbenzene	55.3	50.0	111%	54.9	50.0	110%	0.7%
Styrene	49.1	50.0	98.2%	48.7	50.0	97.4%	0.8%
Trichlorofluoromethane	45.2	50.0	90.4%	41.8	50.0	83.6%	7.8%
1,1,2-Trichloro-1,2,2-trifluoroetha		50.0	97.0%	47.1	50.0	94.2%	2.9%
m,p-Xylene	110	100	110%	110	100	110%	0.0%
o-Xylene	43.1	50.0	86.2%	43.3	50.0	86.6%	0.5%
1,2-Dichlorobenzene	49.3	50.0	98.6%	48.2	50.0	96.4%	2.3%
1,3-Dichlorobenzene	52.3	50.0	105%	51.2	50.0	102%	2.1%
1,4-Dichlorobenzene	52.6	50.0	105%	50.1	50.0	100%	4.9%
Acrolein	226	250	90.4%	232	250	92.8%	2.6%
Methyl Iodide	50.9	50.0	102%	52.2	50.0	104%	2.5%
Bromoethane	47.5	50.0	95.0%	47.9	50.0	95.8%	0.8%
· · · · · · · · · · · · · · · · · · ·		~~.~					

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: LCS-022908 Page 2 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-022908

LIMS ID: 08-3488 Matrix: Water

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Acrylonitrile	45.1	50.0	90.2%	45.8	50.0	91.6%	1.5%
1,1-Dichloropropene	51.2	50.0	102%	50.4	50.0	101%	1.6%
Dibromomethane	47.6	50.0	95.2%	48.0	50.0	96.0%	0.8%
1,1,1,2-Tetrachloroethane	41.9	50.0	83.8%	42.0	50.0	84.0%	0.2%
1,2-Dibromo-3-chloropropane	48.8	50.0	97.6%	47.7	50.0	95.4%	2.3%
1,2,3-Trichloropropane	45.8	50.0	91.6%	45.4	50.0	90.8%	0.9%
trans-1,4-Dichloro-2-butene	49.7	50.0	99.4%	48.0	50.0	96.0%	3.5%
1,3,5-Trimethylbenzene	56.2	50.0	112%	54.4	50.0	109%	3.3%
1,2,4-Trimethylbenzene	57.5	50.0	115%	54.2	50.0	108%	5.9%
Hexachlorobutadiene	52.6	50.0	105%	49.1	50.0	98.2%	6.9%
Ethylene Dibromide	42.5	50.0	85.0%	42.4	50.0	84.8%	0.2%
Bromochloromethane	46.7	50.0	93.4%	46.9	50.0	93.8%	0.4%
2,2-Dichloropropane	52.2	50.0	104%	51.3	50.0	103%	1.7%
1,3-Dichloropropane	47.8	50.0	95.6%	48.6	50.0	97.2%	1.7%
Isopropylbenzene	57.8	50.0	116%	55.1	50.0	110%	4.8%
n-Propylbenzene	59.3	50.0	119%	57.4	50.0	115%	3.3%
Bromobenzene	48.6	50.0	97.2%	48.0	50.0	96.0%	1.2%
2-Chlorotoluene	62.7	50.0	125%	52.6	50.0	105%	17.5%
4-Chlorotoluene	49.7	50.0	99.4%	53.4	50.0	107%	7.2%
tert-Butylbenzene	53.6	50.0	107%	52.9	50.0	106%	1.3%
sec-Butylbenzene	60.2	50.0	120%	57.8	50.0	116%	4.1%
4-Isopropyltoluene	59.6	50.0	119%	57.2	50.0	114%	4.1%
n-Butylbenzene	64.4	50.0	129%	58.9	50.0	118%	8.9%
1,2,4-Trichlorobenzene	51.6	50.0	103%	47.5	50.0	95.0%	8.3%
Naphthalene	43.4	50.0	86.8%	42.7	50.0	85.4%	1.6%
1,2,3-Trichlorobenzene	47.0	50.0	94.0%	44.2	50.0	88.4%	6.1%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	98.7%	98.5%
d8-Toluene	100%	97.4%
Bromofluorobenzene	101%	103%
d4-1,2-Dichlorobenzene	99.7%	96.1%

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041 Page 1 of 1

Lab Sample ID: MK13A LIMS ID: 08-3487

Matrix: Soil

Data Release Authorized:

Reported: 02/29/08

Date Extracted: 02/26/08 Date Analyzed: 02/29/08 00:50

Instrument/Analyst: ECD1/AAR

Sample ID: D-4 SAMPLE

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Sample Amount: 7.69 g-dry-wt

Final Extract Volume: 25 mL Dilution Factor: 1.00

Percent Moisture: 23.3%

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	8.1	83

Reported in $\mu g/kg$ (ppb)

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol 78.0%

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041 Page 1 of 1

Sample ID: MB-022608 METHOD BLANK

Lab Sample ID: MB-022608

LIMS ID: 08-3487 Matrix: Soil

Data Release Authorized:

Date Extracted: 02/26/08

Date Analyzed: 02/28/08 23:05

Instrument/Analyst: ECD1/AAR

Reported: 02/29/08

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g

Final Extract Volume: 25 mL
Dilution Factor: 1.00
Percent Moisture: NA

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	6.2	< 6.2 U

Reported in $\mu g/kg$ (ppb)

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol 87.6%

SW8041 CHLOROPHENOLICS SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Client ID	TBP	TOT OUT
MB-022608	87.6%	0
LCS-022608	91.2%	0
LCSD-022608	87.2%	0
D-4	78.0%	0

LCS/MB LIMITS QC LIMITS

(TBP) = 2,4,6-Tribromophenol

(42-139)

(10-155)

Prep Method: SW3550B

Log Number Range: 08-3487 to 08-3487

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041 Page 1 of 1

Sample ID: LCS-022608 LCS/LCSD

Lab Sample ID: LCS-022608

LIMS ID: 08-3487

Matrix: Soil

Data Release Authorized:

Reported: 02/29/08

Date Extracted LCS/LCSD: 02/26/08

Date Analyzed LCS: 02/28/08 23:40

LCSD: 02/29/08 00:15

Instrument/Analyst LCS: ECD1/AAR

LCSD: ECD1/AAR

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Final Extract Volume LCS: 25 mL

LCSD: 25 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Pentachlorophenol	38.0	62.5	60.8%	36.2	62.5	57.9%	4.9%

Chlorophenols Surrogate Recovery

LCS LCSD

2,4,6-Tribromophenol 91.2% 87.2%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041

Page 1 of 1

Sample ID: D-4 SAMPLE

Lab Sample ID: MK13B LIMS ID: 08-3488

Matrix: Water

Data Release Authorized:

Date Extracted: 02/25/08

Date Analyzed: 02/29/08 03:10

Instrument/Analyst: ECD1/AAR

Reported: 02/29/08

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Sample Amount: 500 mL Final Extract Volume: 50 mL Dilution Factor: 1.00

CAS Number RLResult Analyte 87-86-5 Pentachlorophenol 0.25 < 0.25 U

Reported in μ g/L (ppb)

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol 0.6%

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041 Page 1 of 1

Lab Sample ID: MB-022508

LIMS ID: 08-3488 Matrix: Water

Data Release Authorized:

Reported: 02/29/08

Date Extracted: 02/25/08 Date Analyzed: 02/29/08 01:25

Instrument/Analyst: ECD1/AAR

Sample ID: MB-022508 METHOD BLANK

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL

Final Extract Volume: 50 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
87-86-5	Pentachlorophenol	0.25	< 0.25 U

Reported in μ g/L (ppb)

Chlorophenol Surrogate Recovery

2,4,6-Tribromophenol 90.4%

SW8041 CHLOROPHENOLICS SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Client ID	TBP	TOT OUT
MB-022508	90.4%	0
LCS-022508	84.4%	0
LCSD-022508	86.4%	0
D-4	0.6%	* 1

LCS/MB LIMITS QC LIMITS

(TBP) = 2,4,6-Tribromophenol

(48-129)

(38-131)

Prep Method: SW3510C

Log Number Range: 08-3488 to 08-3488

ORGANICS ANALYSIS DATA SHEET PCP by GC/ECD Method SW8041

Page 1 of 1

Sample ID: LCS-022508

LCS/LCSD

Lab Sample ID: LCS-022508

LIMS ID: 08-3488 Matrix: Water

Data Release Authorized: Reported: 02/29/08

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Date Extracted LCS/LCSD: 02/25/08

Date Analyzed LCS: 02/29/08 02:00

LCSD: 02/29/08 02:35

Instrument/Analyst LCS: ECD1/AAR

LCSD: ECD1/AAR

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 50 mL

LCSD: 50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	<u> </u>
Pentachlorophenol	1.52	2.50	60.8%	1.50	2.50	60.0%	1.3%	

Chlorophenols Surrogate Recovery

LCSD LCS

2,4,6-Tribromophenol 84.4% 86.4%

Results reported in μ g/L RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1

Matrix: Water

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Received: 02/20/08

Data Release Authorized:

Reported: 03/04/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-022508 08-3488	Method Blank HC ID:	02/25/08	02/27/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 65.1%
MK13B 08-3488	D-4 HC ID:	02/25/08	02/27/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U NS
MB-022808 08-4016	Method Blank HC ID:	02/28/08	02/28/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 80.9%
MK13B 08-4016	D-4 HC ID:	02/28/08	02/28/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 79.8%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Client ID	OTER	TOT OUT
MB-022508	65.1%	0
LCS-022508	70.4%	0
LCSD-022508	78.0%	0
D-4	NS	0
MB-022808	80.9%	0
LCS-022808	83.8%	0
D-4	79.8%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(58-114)

(45-121)

Prep Method: SW3510C

Log Number Range: 08-3488 to 08-4016

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-022508 LCS/LCSD

Lab Sample ID: LCS-022508

LIMS ID: 08-3488 Matrix: Water

Data Release Authorized: Reported: 03/04/08

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 02/25/08

Date Analyzed LCS: 02/27/08 20:46

LCSD: 02/27/08 21:02 Instrument/Analyst LCS: FID3A/MS

LCSD: FID3A/MS

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	1.99	3.00	66.3%	2.25	3.00	75.0%	12.3%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

70.4% 78.0%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Lab Sample ID: LCS-022808

LIMS ID: 08-4016 Matrix: Water

Data Release Authorized:

Reported: 03/04/08

Date Extracted: 02/28/08 Date Analyzed: 02/28/08 16:24

Instrument/Analyst: FID3A/MS

Sample ID: LCS-022808

LAB CONTROL

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL

Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery	
Diesel	2.40	3.00	80.0%	

TPHD Surrogate Recovery

o-Terphenyl

83.8%

Results reported in mg/L

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: MK13

Matrix: Water Project: Riverside Business Park

Date Received: 02/20/08 848004.010

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
08-3488-022508MB1	Method Blank	500 mL	1.00 mL	02/25/08
08-3488-022508LCS1	Lab Control	500 mL	1.00 mL	02/25/08
08-3488-022508LCSD1	Lab Control Dup	500 mL	1.00 mL	02/25/08
08-3488-MK13B	D-4	500 mL	1.00 mL	02/25/08
08-4016-022808MB1	Method Blank	500 mL	1.00 mL	02/28/08
08-4016-022808LCS1	Lab Control	500 mL	1.00 mL	02/28/08
08-4016-MK13BRE	D-4	360 mL	1.00 mL	02/28/08

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1

Matrix: Soil

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Received: 02/20/08

Data Release Authorized:

Reported: 02/29/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-022608 08-3487	Method Bla		02/27/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 86.4%
MK13A 08-3487	D-4 HC ID: DIE	02/26/08 ESEL	02/28/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	65 130	1,900 < 130 U NR

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Client ID	OTER	TOT OUT
000 C00MDC	86.48	0
022608MBS	00.46	U
022608LCS	79.3%	0
D-4	≥NR >	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(46-116)

(42-112)

Prep Method: SW3550B

Log Number Range: 08-3487 to 08-3487

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-022608 LAB CONTROL

Lab Sample ID: LCS-022608

LIMS ID: 08-3487 Matrix: Soil

Data Release Authorized:

Date Extracted: 02/26/08

Date Analyzed: 02/27/08 18:58

Instrument/Analyst: FID3A/MS

Reported: 02/29/08

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery	
Diesel	115	150	76.7%	

TPHD Surrogate Recovery

o-Terphenyl

79.3%

Results reported in mg/kg

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: MK13

Matrix: Soil

Project: Riverside Business Park

Date Received: 02/20/08

848004.010

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
08-3487-022608MB1	Method Blank	10.0 g	1.00 mI		02/26/08
08-3487-022608LCS1 08-3487-022608LCSD1	Lab Control Lab Control Dup	10.0 g 10.0 g	1.00 mI 1.00 mI		02/26/08 02/26/08
08-3487-MK13A	D-4	7.69 g	1.00 mI	ı D	02/26/08

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 2

Sample ID: D-4 SAMPLE

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

Lab Sample ID: MK13B LIMS ID: 08-3488

Matrix: Water Data Release Authorized: Reported: 03/03/08

848004.010 Date Sampled: 02/19/08 Date Received: 02/20/08

Date Extracted: 02/25/08 Date Analyzed: 02/27/08 21:03 Instrument/Analyst: NT6/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: D-4 SAMPLE

Lab Sample ID: MK13B LIMS ID: 08-3488

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

Matrix: Water

848004.010

Date Analyzed: 02/27/08 21:03

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	10
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	60.4%	2-Fluorobiphenyl	50.8%
d14-p-Terphenyl	44.8%	d4-1,2-Dichlorobenzene	42.8%
d5-Phenol	59.2%	2-Fluorophenol	57.3%
2.4.6-Tribromophenol	64.0%	d4-2-Chlorophenol	60.5%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: MB-022508 METHOD BLANK

Lab Sample ID: MB-022508

LIMS ID: 08-3488 Matrix: Water

Data Release Authorized: Reported: 03/03/08

Date Extracted: 02/25/08 Date Analyzed: 02/27/08 16:25 Instrument/Analyst: NT6/LJR

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-022508 METHOD BLANK

Lab Sample ID: MB-022508 QC Report No: MK13-Landau Associates, Inc. LIMS ID: 08-3488

Project: Riverside Business Park

848004.010

Matrix: Water Date Analyzed: 02/27/08 16:25

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 Ư
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	67.6%	2-Fluorobiphenyl	56.8%
d14-p-Terphenyl	67.2%	d4-1,2-Dichlorobenzene	44.0%
d5-Phenol	68.0%	2-Fluorophenol	64.3%
2.4.6-Tribromophenol	74.7%	d4-2-Chlorophenol	68.8%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	TUO TC
MB-022508	67.6%	56.8%	67.2%	44.0%	68.0%	64.3%	74.7%	68.8%	0
LCS-022508	74.0%	68.4%	66.8%	57.2%	63.7%	66.1%	85.3%	72.5%	0
LCSD-022508	73.6%	66.0%	67.6%	56.0%	70.7%	69.6%	78.1%	71.5%	0
D-4	60.4%	50.8%	44.8%	42.8%	59.2%	57.3%	64.0%	60.5%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
(FBP)	=	2-Fluorobiphenyl	(47-99)	(35-98)
		d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	==	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
(TBP)	=	2,4,6-Tribromophenol	(49-117)	(37-120)
(2CP)	=	d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C

Log Number Range: 08-3488 to 08-3488

Page 1 of 2

Sample ID: LCS-022508

LCS/LCSD

Lab Sample ID: LCS-022508

LIMS ID: 08-3488

Matrix: Water
Data Release Authorized:

Reported: 03/03/08

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Date Extracted LCS/LCSD: 02/25/08

Sample Amount LCS: 500 mL LCSD: 500 mL

Date Analyzed LCS: 02/29/08 12:19

Final Extract Volume LCS: 0.50 mL

LCSD: 02/29/08 12:54

LCSD: 0.50 mL

Instrument/Analyst LCS: NT6/LJR

Dilution Factor LCS: 1.00

LCSD: NT6/LJR

LCSD: 1.00

GPC Cleanup: NO

LCSD Spike Spike LCS LCSD Added-LCSD Recovery RPD LCS Added-LCS Recovery Analyte 16.8 25.0 67.2% 10.7% 25.0 60.4% 15.1 Phenol 25.0 70.4% 1.1% 17.6 Bis-(2-Chloroethyl) Ether 17.8 25.0 71.2% 0.6% 25.0 69.2% 17.4 25.0 69.6% 17.3 2-Chlorophenol 2.1% 28.8% 7.3 25.0 29.2% 7.2 25.0 1,3-Dichlorobenzene 7.6 25.0 30.4% 3.9% 7.3 25.0 29.2% 1,4-Dichlorobenzene 57.6% 8.7% 52.8% 28.8 50.0 26.4 50.0 Benzyl Alcohol 32.4% 8.4 25.0 33.6% 4.7% 8.1 25.0 1,2-Dichlorobenzene 25.0 69.2% 0.6% 17.3 69.6% 2-Methylphenol 17.4 25.0 2,2'-Oxybis(1-Chloropropane)17.6 25.0 70.4% 17.6 25.0 70.48 0.0% 2.5% 72.0% 50.0 4-Methylphenol 35.1 50.0 70.2% 36.0 18.0 25.0 72.0% 4.3% 25.0 75.2% N-Nitroso-Di-N-Propylamine 18.8 25.0 22.4% 0.7% Hexachloroethane 5.6 25.0 22.4% 5.6 2.3% 67.6% 17.3 25.0 69.2% 16.9 25.0 Nitrobenzene 25.0 78.0% 19.2 25.0 76.8% 1.6% Isophorone 19.5 1.2% 68.0% 17.2 25.0 68.8% 17.0 25.0 2-Nitrophenol 58.0% 2.7% 14.5 25.0 14.9 25.0 59.6% 2,4-Dimethylphenol 56.1% 46.9 75.0 62.5% 10.8% 75.0 Benzoic Acid 42.1 1.1% bis(2-Chloroethoxy) Methane 17.7 70.8% 17.5 25.0 70.0% 25.0 70.4% 0.6% 17.6 25.0 17.5 25.0 70.0% 2,4-Dichlorophenol 25.0 30.4% 2.8% 25.0 29.6% 7.6 7.4 1,2,4-Trichlorobenzene 48.0% 25.0 5.1% 11.4 25.0 45.6% 12.0 Naphthalene 39.7% 30.0% 32.2 60.0 53.7% 4-Chloroaniline 23.8 60.0 25.0 20.4% 5.0 25.0 20.0% 0.8% Hexachlorobutadiene 5.1 69.68 1.1% 17.4 25.0 17.6 25.0 70.4% 4-Chloro-3-methylphenol 25.0 43.2% 11.2 25.0 44.8% 3.6% 10.8 2-Methylnaphthalene 4.4% Hexachlorocyclopentadiene 33.7% 24.2 75.0 32.3% 25.3 75.0 18.5 25.0 74.0% 4.7% 77.6% 2,4,6-Trichlorophenol 19.4 25.0 25.0 71.6% 5.4% 75.6% 17.9 18.9 25.0 2,4,5-Trichlorophenol 2.5% 47.6% 12.2 25.0 48.8% 11.9 25.0 2-Chloronaphthalene 17.8 25.0 71.2% 4.4% 25.0 74.4% 2-Nitroaniline 18.6 16.9 25.0 67.6% 6.3% 25.0 72.0% 18.0 Dimethylphthalate 61.6% 1.9% 15.7 25.0 62.8% 15.4 25.0 Acenaphthylene 72.7% 64.0 73.9% 1.7% 64.0 47.3 3-Nitroaniline 46.5 14.5 58.0% 25.0 56.8% 2.1% 25.0 14.2 Acenaphthene 76.8% 6.4% 57.6 75.0 2,4-Dinitrophenol 61.4 75.0 81.9% 17.0 25.0 68.0% 8.0% 62.8% 15.7 25.0 4-Nitrophenol 62.0% 62.4% 0.6% 15.6 25.0 15.5 25.0 Dibenzofuran 70.4% 5.5% 74.4% 25.0 17.6 25.0 2,6-Dinitrotoluene 18.6 72.0% 5.4% 25.0 76.0% 18.0 25.0 19.0 2,4-Dinitrotoluene 70.4% 6.68 Diethylphthalate 75.2% 17.6 25.0 18.8 25.0 63.6% 15.8 25.0 63.2% 0.6% 4-Chlorophenyl-phenylether 15.9 25.0 25.0 66.8% 2.9% 68.8% 16.7 Fluorene 17.2 25.0 5.6% 69.2% 73.2% 17.3 25.0 18.3 25.0 4-Nitroaniline 75.0 73.3% 6.5% 55.0 4,6-Dinitro-2-Methylphenol 58.7 75.0 78.3% 25.0 82.0% 4.3% 25.0 85.6% 20.5 21.4 N-Nitrosodiphenylamine

Page 2 of 2

Sample ID: LCS-022508 LCS/LCSD

Lab Sample ID: LCS-022508

QC Report No: MK13-Landau Associates, Inc.

LIMS ID: 08-3488

Project: Riverside Business Park

Matrix: Water

848004.010

Date Analyzed: 02/29/08 12:19

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
4-Bromophenyl-phenylether	17.6	25.0	70.4%	16.6	25.0	66.4%	5.8%
Hexachlorobenzene	17.6	25.0	70.4%	16.9	25.0	67.6%	4.1%
Pentachlorophenol	20.4	25.0	81.6%	19.0	25.0	76.0%	7.1%
Phenanthrene	18.3	25.0	73.2%	17.1	25.0	68.4%	6.8%
Carbazole	20.4	25.0	81.6%	19.0	25.0	76.0%	7.1%
Anthracene	18.5	25.0	74.0%	17.6	25.0	70.4%	5.0%
Di-n-Butylphthalate	20.7	25.0	82.8%	19.1	25.0	76.4%	8.0%
Fluoranthene	21.2	25.0	84.8%	19.6	25.0	78.4%	7.8%
Pyrene	16.0	25.0	64.0%	16.2	25.0	64.8%	1.2%
Butylbenzylphthalate	18.9	25.0	75.6%	17.9	25.0	71.6%	5.4%
3,3'-Dichlorobenzidine	41.4	64.0	64.7%	39.0	64.0	60.9%	6.0%
Benzo(a)anthracene	18.2	25.0	72.8%	17.3	25.0	69.2%	5.1%
bis(2-Ethylhexyl)phthalate	19.2	25.0	76.8%	18.8	25.0	75.2%	2.1%
Chrysene	17.8	25.0	71.2%	17.3	25.0	69.2%	2.8%
Di-n-Octyl phthalate	18.2	25.0	72.8%	17.8	25.0	71.2%	2.2%
Benzo(b)fluoranthene	18.2	25.0	72.8%	18.6	25.0	74.4%	2.2%
Benzo(k)fluoranthene	20.5	25.0	82.0%	18.3	25.0	73.2%	11.3%
Benzo(a)pyrene	18.5	25.0	74.0%	18.0	25.0	72.0%	2.7%
Indeno(1,2,3-cd)pyrene	18.2	25.0	72.8%	18.5	25.0	74.0%	1.6%
Dibenz(a,h)anthracene	18.5	25.0	74.0%	19.0	25.0	76.0%	2.7%
Benzo(g,h,i)perylene	17.8	25.0	71.2%	18.7	25.0	74.8%	4.9%
1-Methylnaphthalene	11.4	25.0	45.6%	11.9	25.0	47.6%	4.3%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	74.0%	73.6%
2-Fluorobiphenyl	68.4%	66.0%
d14-p-Terphenyl	66.8%	67.6%
d4-1,2-Dichlorobenzene	57.2%	56.0%
d5-Phenol	63.7%	70.7%
2-Fluorophenol	66.1%	69.6%
2,4,6-Tribromophenol	85.3%	78.1%
d4-2-Chlorophenol	72.5%	71.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: D-4 SAMPLE

Lab Sample ID: MK13A LIMS ID: 08-3487

Matrix: Soil

Data Release Authorized:

Reported: 03/05/08

Date Extracted: 02/28/08 Date Analyzed: 03/05/08 08:30 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010 Date Sampled: 02/19/08 Date Received: 02/20/08

Sample Amount: 7.72 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 23.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	< 65 U
111-44-4	Bis-(2-Chloroethyl) Ether	65	< 65 U
95-57-8	2-Chlorophenol	65	< 65 Ŭ
541-73-1	1,3-Dichlorobenzene	65	< 65 U
106-46-7	1,4-Dichlorobenzene	65	< 65 U
100-51-6	Benzyl Alcohol	320	< 320 U
95-50-1	1,2-Dichlorobenzene	65	< 65 U
95-48-7	2-Methylphenol	65	< 65 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	< 65 U
106-44-5	4-Methylphenol	65	< 65 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	65	< 65 Ŭ
98-95-3	Nitrobenzene	65	< 65 U
78-59-1	Isophorone	65	< 65 U
88-75-5	2-Nitrophenol	320	< 320 U
105-67-9	2,4-Dimethylphenol	65	< 65 U
65-85-0	Benzoic Acid	650	< 650 U
111-91-1	bis(2-Chloroethoxy) Methane	65	< 65 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	65	< 65 U
91-20-3	Naphthalene	65	1,700
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	65	< 65 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	65	19,000 E
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	65	< 65 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	65	< 65 U
208-96-8	Acenaphthylene	65	< 65 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	65	1,400
51-28-5	2,4-Dinitrophenol	650	< 650 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	65	570
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Sample ID: D-4 SAMPLE

Lab Sample ID: MK13A LIMS ID: 08-3487

Pr

Matrix: Soil
Date Analyzed: 03/05/08 08:30

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	< 65 U
7005-72-3	4-Chlorophenyl-phenylether	65	< 65 U
86-73-7	Fluorene	65	2,100
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	650	< 650 U
86-30-6	N-Nitrosodiphenylamine	720	< 720 Y
101-55-3	4-Bromophenyl-phenylether	65	< 65 U
118-74-1	Hexachlorobenzene	65	< 65 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	65	5,400 E
86-74-8	Carbazole	65	< 65 U
120-12-7	Anthracene	65	240
84-74-2	Di-n-Butylphthalate	65	< 65 U
206-44-0	Fluoranthene	65	350
129-00-0	Pyrene	65	630
85-68-7	Butylbenzylphthalate	65	< 65 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a) anthracene	65	< 65 U
117-81-7	bis(2-Ethylhexyl)phthalate	65	180
218-01-9	Chrysene	65	< 65 U
117-84-0	Di-n-Octyl phthalate	65	< 65 U
205-99-2	Benzo(b)fluoranthene	65	< 65 U
207-08-9	Benzo(k)fluoranthene	65	< 65 U
50-32-8	Benzo(a)pyrene	65	< 65 U
193-39-5	Indeno(1,2,3-cd)pyrene	65	< 65 U
53-70-3	Dibenz(a,h)anthracene	65	< 65 U
191-24-2	Benzo(g,h,i)perylene	65	< 65 U
90-12-0	1-Methylnaphthalene	65	12,000 E

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	61.2%	2-Fluorobiphenyl	57.6%
d14-p-Terphenyl	60.8%	d4-1,2-Dichlorobenzene	60.0%
d5-Phenol	65.9%	2-Fluorophenol	46.4%
2,4,6-Tribromophenol	76.3%	d4-2-Chlorophenol	64.5%

Sample ID: D-4 DILUTION

Lab Sample ID: MK13A LIMS ID: 08-3487

Matrix: Soil

Data Release Authorized:

Reported: 03/05/08

Date Extracted: 02/28/08 Date Analyzed: 03/05/08 12:00 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: MK13-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Sample Amount: 7.72 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 5.00 Percent Moisture: 23.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	320	< 320 U
111-44-4	Bis-(2-Chloroethyl) Ether	320	< 320 U
95-57-8	2-Chlorophenol	320	< 320 Ŭ
541-73-1	1,3-Dichlorobenzene	320	< 320 U
106-46-7	1,4-Dichlorobenzene	320	< 320 U
100-51-6	Benzyl Alcohol	1,600	< 1,600 U
95-50-1	1,2-Dichlorobenzene	320	< 320 U
95-48-7	2-Methylphenol	320	< 320 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	320	< 320 U
106-44-5	4-Methylphenol	320	< 320 U
621-64-7	N-Nitroso-Di-N-Propylamine	1,600	< 1,600 U
67-72-1	Hexachloroethane	320	< 320 U
98-95-3	Nitrobenzene	320	< 320 U
78-59-1	Isophorone	320	< 320 U
88-75-5	2-Nitrophenol	1,600	< 1,600 U
105-67-9	2,4-Dimethylphenol	320	< 320 U
65-85-0	Benzoic Acid	3,200	< 3,200 U
111-91-1	bis(2-Chloroethoxy) Methane	320	< 320 U
120-83-2	2,4-Dichlorophenol	1,600	< 1,600 U
120-82-1	1,2,4-Trichlorobenzene	320	< 320 U
91-20-3	Naphthalene	320	1,600
106-47-8	4-Chloroaniline	1,600	< 1,600 U
37-68-3	Hexachlorobutadiene	320	< 320 U
59-50-7	4-Chloro-3-methylphenol	1,600	< 1,600 U
91-57-6	2-Methylnaphthalene	320	24,000
77-47-4	Hexachlorocyclopentadiene	1,600	< 1,600 U
38-06-2	2,4,6-Trichlorophenol	1,600	< 1,600 U
95-95-4	2,4,5-Trichlorophenol	1,600	< 1,600 U
91-58-7	2-Chloronaphthalene	320	< 320 U
38-74-4	2-Nitroaniline	1,600	< 1,600 U
131-11-3	Dimethylphthalate	320	< 320 U
208-96-8	Acenaphthylene	320	< 320 U
99-09-2	3-Nitroaniline	1,600	< 1,600 U
33-32-9	Acenaphthene	320	1,400
51-28-5	2,4-Dinitrophenol	3,200	< 3,200 U
100-02-7	4-Nitrophenol	1,600	< 1,600 U
L32-64-9	Dibenzofuran	320	520
506-20-2	2,6-Dinitrotoluene	1,600	< 1,600 U
00-20-2	2,4-Dinitrotoluene	1,600	< 1,600 U

Page 2 of 2

LIMS ID: 08-3487

Sample ID: D-4 DILUTION

Lab Sample ID: MK13A QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Matrix: Soil
Date Analyzed: 03/05/08 12:00

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	320	< 320 U
7005-72-3	4-Chlorophenyl-phenylether	320	< 320 U
86-73-7	Fluorene	320	2,000
100-01-6	4-Nitroaniline	1,600	< 1,600 U
534-52-1	4,6-Dinitro-2-Methylphenol	3,200	< 3,200 U
86-30-6	N-Nitrosodiphenylamine	1,400	< 1,400 Y
101-55-3	4-Bromophenyl-phenylether	320	< 320 U
118-74-1	Hexachlorobenzene	320	< 320 U
87-86-5	Pentachlorophenol	1,600	< 1,600 U
85-01-8	Phenanthrene	320	6,500
86-74-8	Carbazole	320	< 320 U
120-12-7	Anthracene	320	380
84-74-2	Di-n-Butylphthalate	320	< 320 U
206-44-0	Fluoranthene	320	< 320 U
129-00-0	Pyrene	320	610
85-68-7	Butylbenzylphthalate	320	< 320 U
91-94-1	3,3'-Dichlorobenzidine	1,600	< 1,600 U
56-55-3	Benzo(a) anthracene	320	< 320 U
117-81-7	bis(2-Ethylhexyl)phthalate	320	< 320 U
218-01-9	Chrysene	320	< 320 U
117-84-0	Di-n-Octyl phthalate	320	< 320 U
205-99-2	Benzo(b)fluoranthene	320	< 320 U
207-08-9	Benzo(k) fluoranthene	320	< 320 U
50-32-8	Benzo(a)pyrene	320	< 320 U
193-39-5	Indeno(1,2,3-cd)pyrene	320	< 320 U
53-70-3	Dibenz(a,h)anthracene	320	< 320 U
191-24-2	Benzo(g,h,i)perylene	320	< 320 U
90-12-0	1-Methylnaphthalene	320	14,000

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	54.4%	2-Fluorobiphenyl	56.6%
d14-p-Terphenyl	58.2%	d4-1,2-Dichlorobenzene	55.0%
d5-Phenol	56.0%	2-Fluorophenol	56.3%
2,4,6-Tribromophenol	66.7%	d4-2-Chlorophenol	57.9%

Sample ID: MB-022808 METHOD BLANK

Lab Sample ID: MB-022808

LIMS ID: 08-3487

Data Release Authorized:

Matrix: Soil Reported: 03/05/08

Date Extracted: 02/28/08 Date Analyzed: 03/04/08 18:06 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 U
541-73-1	1,3-Dichlorobenzene	67	< 67 Ü
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	330	< 330 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 U
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 U
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	330	< 330 U
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 T
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 U
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Sample ID: MB-022808 METHOD BLANK

Lab Sample ID: MB-022808

LIMS ID: 08-3487

Matrix: Soil

Date Analyzed: 03/04/08 18:06

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 U
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 U
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 U
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 U
117-84-0	Di-n-Octyl phthalate	67	< 67 U
205-99-2	Benzo(b)fluoranthene	67	< 67 U
207-08-9	Benzo(k)fluoranthene	67	< 67 ปั
50-32-8	Benzo(a)pyrene	67	< 67 ปั
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	66.4%	2-Fluorobiphenyl	64.8%
d14-p-Terphenyl	65.2%	d4-1,2-Dichlorobenzene	64.8%
d5-Phenol	69.6%	2-Fluorophenol	50.4%
2.4.6-Tribromophenol	69.3%	d4-2-Chlorophenol	68.8%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-022808	66.4%	64.8%	65.2%	64.8%	69.6%	50.4%	69.3%	68.8%	0
LCS-022808	68.0%	66.8%	63.6%	66.8%	76.8%	54.4%	74.1%	68.5%	0
LCSD-022808	66.8%	66.0%	64.8%	63.2%	72.3%	48.3%	76.3%	66.1%	0
D-4	61.2%	57.6%	60.8%	60.0%	65.9%	46.4%	76.3%	64.5%	0
D-4 DL	54.4%	56.6%	58.2%	55.0%	56.0%	56.3%	66.7%	57.9%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)		d5-Nitrobenzene	(45-87)	(34-91)
(FBP)	=	2-Fluorobiphenyl	(44-91)	(37-94)
(TPH)	=	d14-p-Terphenyl	(50-111)	(33-106)
(DCB)	=	d4-1,2-Dichlorobenzene	(38-84)	(35-85)
(PHL)	=	d5-Phenol	(10-115)	(31-91)
(2FP)	=	2-Fluorophenol	(45-111)	(11-106)
(TBP)	=	2,4,6-Tribromophenol	(45-111)	(25-117)
(2CP)	=	d4-2-Chlorophenol	(46-88)	(32-91)

Prep Method: SW3550B

Log Number Range: 08-3487 to 08-3487

Page 1 of 2

Lab Sample ID: LCS-022808

LIMS ID: 08-3487 Matrix: Soil

Data Release Authorized:

Reported: 03/05/08

Date Extracted LCS/LCSD: 02/28/08

Date Analyzed LCS: 03/04/08 18:41 LCSD: 03/04/08 19:16

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

GPC Cleanup: NO

Sample ID: LCS-022808

LCS/LCSD

QC Report No: MK13-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Sample Amount LCS: 7.50 g

LCSD: 7.50 g

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	1200	1670	71.9%	1130	1670	67.7%	6.0%
Bis-(2-Chloroethyl) Ether	1130	1670	67.7%	1060	1670	63.5%	6.4%
2-Chlorophenol	1120	1670	67.1%	1060	1670	63.5%	5.5%
1,3-Dichlorobenzene	1020	1670	61.1%	973	1670	58.3%	4.7%
1,4-Dichlorobenzene	1010	1670	60.5%	952	1670	57.0%	5.9%
Benzyl Alcohol	1360	3330	40.8%	767	3330	23.0%	55.8%
1,2-Dichlorobenzene	1060	1670	63.5%	1010	1670	60.5%	4.8%
2-Methylphenol	1150	1670	68.9%	1060	1670	63.5%	8.1%
2,2'-Oxybis(1-Chloropropane)	1150	1670	68.9%	1090	1670	65.3%	5.4%
4-Methylphenol	2280	3330	68.5%	2140	3330	64.3%	6.3%
N-Nitroso-Di-N-Propylamine	1150	1670	68.9%	1080	1670	64.7%	6.3%
Hexachloroethane	1030	1670	61.7%	972	1670	58.2%	5.8%
Nitrobenzene	1120	1670	67.1%	1080	1670	64.7%	3.6%
Isophorone	1200	1670	71.9%	1140	1670	68.3%	5.1%
2-Nitrophenol	1090	1670	65.3%	1060	1670	63.5%	2.8%
2,4-Dimethylphenol	1050	1670	62.9%	999	1670	59.8%	5.0%
Benzoic Acid	3940	5000	78.8%	4030	5000	80.6%	2.3%
bis(2-Chloroethoxy) Methane	1120	1670	67.1%	1080	1670	64.7%	3.6%
2,4-Dichlorophenol	1140	1670	68.3%	1080	1670	64.7%	5.4%
1,2,4-Trichlorobenzene	1030	1670	61.7%	1020	1670	61.1%	1.0%
Naphthalene	1060	1670	63.5%	1040	1670	62.3%	1.9%
4-Chloroaniline	2330	4000	58.2%	2240	4000	56.0%	3.9%
Hexachlorobutadiene	1050	1670	62.9%	1020	1670	61.1%	2.9%
4-Chloro-3-methylphenol	1150	1670	68.9%	1100	1670	65.9%	4.4%
2-Methylnaphthalene	1140	1670	68.3%	1120	1670	67.1%	1.8%
Hexachlorocyclopentadiene	3300	5000	66.0%	3260	5000	65.2%	1.2%
2,4,6-Trichlorophenol	1130	1670	67.7%	1060	1670	63.5%	6.4%
2,4,5-Trichlorophenol	1180	1670	70.7%	1240	1670	74.3%	5.0%
2-Chloronaphthalene	1060	1670	63.5%	1040	1670	62.3%	1.9%
2-Nitroaniline	1160	1670	69.5%	1150	1670	68.9%	0.9%
Dimethylphthalate	1090	1670	65.3%	1070	1670	64.1%	1.9%
Acenaphthylene	1130	1670	67.7%	1110	1670	66.5%	1.8%
3-Nitroaniline	2740	4270	64.2%	2780	4270	65.1%	1.4%
Acenaphthene	1050	1670	62.9%	1030	1670	61.7%	1.9%

Page 2 of 2

Sample ID: LCSD-022808

LCS/LCSD

Lab Sample ID: LCS-022808

QC Report No: MK13-Landau Associates, Inc.

LIMS ID: 08-3487

Project: Riverside Business Park

Matrix: Soil

848004.010

Date Analyzed LCS: 03/04/08 18:41 LCSD: 03/04/08 19:16

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
	2010	5000	_	2700	5000	75.69	2.4%
2,4-Dinitrophenol	3910	5000	78.2%	3780	5000	75.6%	3.4% 30.7%
4-Nitrophenol	721	1670	43.2%	529	1670	31.7%	0.9%
Dibenzofuran	1100	1670	65.9%	1090	1670	65.3%	0.9%
2,6-Dinitrotoluene	1130	1670	67.7%	1120	1670	67.1%	
2,4-Dinitrotoluene	1190	1670	71.3%	1190	1670	71.3%	0.0%
Diethylphthalate	1130	1670	67.7%	1130	1670	67.7%	0.0%
4-Chlorophenyl-phenylether	1100	1670	65.9%	1090	1670	65.3%	0.9%
Fluorene	1130	1670	67.7%	1120	1670	67.1%	0.9%
4-Nitroaniline	1170	1670	70.1%	1190	1670	71.3%	1.7%
4,6-Dinitro-2-Methylphenol	3550	5000	71.0%	3540	5000	70.8%	0.3%
N-Nitrosodiphenylamine	1410	1670	84.4%	1410	1670	84.4%	0.0%
4-Bromophenyl-phenylether	1070	1670	64.1%	1060	1670	63.5%	0.9%
Hexachlorobenzene	1090	1670	65.3%	1070	1670	64.1%	1.9%
Pentachlorophenol	1110	1670	66.5%	1190	1670	71.3%	7.0%
Phenanthrene	1110	1670	66.5%	1110	1670	66.5%	0.0%
Carbazole	1260	1670	75.4%	1260	1670	75.4%	0.0%
Anthracene	1130	1670	67.7%	1120	1670	67.1%	0.9%
Di-n-Butylphthalate	1260	1670	75.4%	1260	1670	75.4%	0.0%
Fluoranthene	1330	1670	79.6%	1340	1670	80.2%	0.7%
Pyrene	977	1670	58.5%	979	1670	58.6%	0.2%
Butylbenzylphthalate	1110	1670	66.5%	1120	1670	67.1%	0.9%
3,3'-Dichlorobenzidine	2110	4270	49.4%	2140	4270	50.1%	1.4%
Benzo(a) anthracene	1090	1670	65.3%	1090	1670	65.3%	0.0%
bis(2-Ethylhexyl)phthalate	1290	1670	77.2%	1300	1670	77.8%	0.8%
Chrysene	1080	1670	64.7%	1090	1670	65.3%	0.9%
Di-n-Octyl phthalate	1130	1670	67.7%	1140	1670	68.3%	0.9%
Benzo(b) fluoranthene	1260	1670	75.4%	1200	1670	71.9%	4.9%
Benzo(k) fluoranthene	1180	1670	70.7%	1280	1670	76.6%	8.1%
Benzo(a) pyrene	1170	1670	70.1%	1200	1670	71.9%	2.5%
Indeno(1,2,3-cd)pyrene	1010	1670	60.5%	1020	1670	61.1%	1.0%
Dibenz(a,h)anthracene	1010	1670	60.5%	1020	1670	61.1%	1.0%
Benzo(g,h,i)perylene	923	1670	55.3%	941	1670	56.3%	1.9%
1-Methylnaphthalene	1110	1670	66.5%	1080	1670	64.7%	2.7%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	68.0%	66.8%
2-Fluorobiphenyl	66.8%	66.0%
d14-p-Terphenyl	63.6%	64.8%
d4-1,2-Dichlorobenzene	66.8%	63.2%
d5-Phenol	76.8%	72.3%
2-Fluorophenol	54.4%	48.3%
2,4,6-Tribromophenol	74.1%	76.3%
d4-2-Chlorophenol	68.5%	66.1%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

February 27, 2008

Larry Beard Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Project No: 848004.010

Project Name: Riverside Business Park

ARI Job No: MJ68

Dear Larry:

Please find enclosed the chain of custody (COC) documentation and the final results from the project referenced above. Analytical Resources, Inc. accepted one soil sample and twenty one water samples in good condition on February 20, 2008. Two samples were placed on hold pending further instructions.

The samples were analyzed for Dissolved Metals, as requested on the COC.

There were no anomalies associated with the sample. A copy of this report and all corresponding raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely

ANALYTICAL RESOURCES, INC.

Kelly Bottem Project Manager (206) 695-6211 kellyb@arilabs.com

Enclosures

Seattle (Edmonds) (425) 778-0907

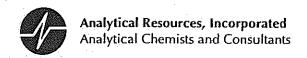
LANDAU Spokane (509) 327-9737
ASSOCIATES Portland (Tigard) (503) 443-6010

Chain-of-Custody Record

	7
80/8	_ of
Date 2	Page

MJCB

									_	_	_																			
rs Turnaround Time	Standard	Accelerated Accelerated			Observations/Comments	Allow water samples to settle collect	aliquot from clear portion	XWTPH-Dx:	run acid wash/silica gel cleanup	run samples standardized to	product	Analyze for EPH if no specific	product identified	VOC/BTEX/VPH (soll):	non-preserved	preserved w/sodium bisulfate	Freeze upon receipt	Dissolved metal water samples field filtered	i de C	- International Parties		196660		od of ARI Pichy	Received by	Signature Signature	Drinted Name		Company	Date Time
/ Testing Parameters																								Method of Shipment	Relinquished by	Signature	Printed Name		Company	Time
Parkproject No. 848004,010			D Color	Abithan Maxley / Hane H.	Time Matrix Containers	1 1 Carlo	0425	(00)	(<i>o</i> 2)	11,20	072)	(255	57.21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15-35- V V V	ぎ obo With I X I	0830	0850	(((૦)	(10	الرما	(300)	>		Received by Reli		Printed Name	2 -		Date 2/20/08 Time 1144 Date
Project Name Riverside Guiness Paleproject No.	Project Location/Event Every WA	-3		でがし	- e	80/51/2 71-5	5-13)- <u>\</u>	5-7	5-5	5-10	8-5	3-5	0-6	S-5-	12-BP-D-P 2/19/08	8-4	0-5-	P-Q	5-3	5-1	1-0)-2	Special Shipment/Handling or Storage Requirements	Relinquished by	Signature M. M. 13.		Conda Assoc.		Date 2//7/08 Time (1/10


| Seattle (Edmonds) (425) 778-0907 | Tacoma (253) 926-2493 | Spokane (509) 327-9737 | ASSOCIATES | Portland (Tigard) (503) 443-6010 |

19 (08	2 of 2
Date 2	Page

Chain-of-Custody Record

											٠							· · · · · · · · ·) ı	1	ţ 1	 		1	E	- 1		
Turns	Standard Standard	X 5 dey			Observations/Comments	Allow water samples to settle, collect	aliquot from clear portion	NWTPH-Dx:	nun acid wash/silica gel cleanup	run samples standardized to product	Application for 10 Hill 16 and applicable	— Analyze for Eirth if no specific product identified	VOC/BTEX/VPH (soil):	non-preserved preserved w/methanol	preserved w/sodium bisulfate	Freeze upon receipt	Dissolved metal water samples field filtered	Other & Pass Chart City	 } .[marghes they sayole		and ARL Dichies	Received by	Signature	Printed Name	Onmonent	Company	Date Time
eters			\													:., _		:				Method of Shipment						Like Marie Control
Param	ZZ.	NOT .	<u>)</u>	7	24)						_							-				 						and the second second second
Testing Parameters		NAS .	(4)O.	2 26		ン ×	X						 					-										Тіпе
Te			\		** (文 (2)							 										ed by		0			atticities and a second
	\		/2/	(2) 2)		(3)		+			 										Relinquished by	Signature	Printed Name		Company	
1		\$	か	30/2/20/20/20/20/20/20/20/20/20/20/20/20/	'S' 		X						 	:		-							Rel	Sign	Prin	C	<u></u>	Date
•		1		37/0	×.		本	X	×														;				,	4.0
Project No. SYS w.Y. 010				Leson	No. of Containers	_	/		_														, 4 7		Charles S			me //4/4
818 co'					Matrix Co	7.	Water		>														Sign		3			Time
ect No.				Ame Ha			3										:						E by	Į,	2 m	77		20,02
Proj					Time	0,920	1430	०५५।	1600										:		į		Received by	Signature	Printed Name	122	oringany ,	Date 2/20/
محمر	₹3	3	_	Mos	Date	2/19/08		44	>														Œ 	 	<u> </u>	C	<u> </u>	<u>~</u>
کر کزی	\$	Mex	ر ئز	la the	L.	2																	والمستعمدة المراد المرازة المراد			202	٥/د	5
800	(C)	the	7	1	-					ŀ												ding ts		100	100.100	1813	2	Time 75
2 waid	n/Event	JA 9	<u>ئ</u>	A	Sample I.D.															-		ent/Hand Juiremer	1			5		
Project Name Birthe Bushess Park	Project Location/Event Ewwh WA	¥′s Nam	Contac	Send Results To & Mathe Mokley,	Sami	h-0	1-0	7-9	~											-		Special Shipment/Handling or Storage Requirements	Relinquished by		Name,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7(2) (2)
Project	Project	Sample	Project	Send F		0	0	4	D													Special or Store	Reling	Signature	Printed Name	Land Comment	i de la compa	Date 🕢

YELLOW COPY - Laboratory PINK

Cooler Receipt Form

ARI Client: LANDAU	Project Name: RIVERSIDE BUSINESS	PARK '	٠.
COC No:	Delivered by: EC	*	
Assigned ARI Job No: MJ68	Tracking No:		
Preliminary Examination Phase:			
Were intact, properly signed and dated custody	v seals attached to the outside of to cooler?	YES NO	
Were custody papers included with the cooler?			
Were custody papers properly filled out (ink, sig			
Record cooler temperature (recommended 2.0-	the state of the s		
Cooler Accepted by: <u>FC</u>	Date: <u>2/20/0</u> 8	Time: 1/11/1	
	ms and attach all shipping documents	_ mne. <u>7744</u>	 -
Complete custous for	ms and attach an shipping documents		
Log-In Phase:			*
Was a temperature blank included in the cooler	· · · · · · · · · · · · · · · · · · ·	YES (NO	
What kind of packing material was used?)
Was sufficient ice used (if appropriate)?			
Were all bottles sealed in individual plastic bags			
Did all bottle arrive in good condition (unbroken	·	_	
Were all bottle labels complete and legible?		$\overline{\mathcal{L}}$	
Did all bottle labels and tags agree with custody		_	•
Were all bottles used correct for the requested			
Do any of the analyses (bottles) require preserv			
Were all VOC vials free of air bubbles?	•	YES NO	
Was sufficient amount of sample sent in each b			
	Date: <u>2/20/08</u> Time:	1306	
** Notify Project Man	ager of discrepancies or concerns **		
			
Explain discrepancies or negative responses:			
	•		
*			
		*	
	By: Dat	e:	

Page 1 of 1

Lab Sample ID: MJ68MB

LIMS ID: 08-3196

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: METHOD BLANK

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	0.2	U

Page 1 of 1

Lab Sample ID: MJ68A

LIMS ID: 08-3195

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: S-12

DUPLICATE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	200.8	1.5	1.6	6.5%	+/- 20%	

Reported in µg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Sample ID: S-12

MATRIX SPIKE

Lab Sample ID: MJ68A

LIMS ID: 08-3195

Matrix: Water

Data Release Authorized: Reported: 02/26/08

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	용	
Analyte	Method	Sample	Spike	Added	Recovery	Q
		·····				
Arsenic	200.8	1.5	28.8	25.0	109%	

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: MJ68LCS

LIMS ID: 08-3196

Matrix: Water

Data Release Authorized

Reported: 02/26/08

Sample ID: LAB CONTROL

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	₹ Recovery	Q
Arsenic	200.8	27.0	25.0	108%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: MJ68A

LIMS ID: 08-3195

Matrix: Water

Data Release Authorized

Reported: 02/26/08

Sample ID: S-12

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	1.5	

Page 1 of 1

Lab Sample ID: MJ68B

LIMS ID: 08-3196

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: S-13

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	0.6	

Page 1 of 1

Lab Sample ID: MJ68C

LIMS ID: 08-3197

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: S-11

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	10.3	

Page 1 of 1

Lab Sample ID: MJ68D

LIMS ID: 08-3198

Matrix: Water

Data Release Authorized: Reported: 02/26/08

Sample ID: S-7

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	32.5	

Page 1 of 1

Lab Sample ID: MJ68E

LIMS ID: 08-3199

Matrix: Water

Data Release Authorized

Reported: 02/26/08

Sample ID: S-9

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	12.7	

Page 1 of 1

Lab Sample ID: MJ68F

LIMS ID: 08-3200

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: S-10

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	15.0	

Page 1 of 1

Lab Sample ID: MJ68G

LIMS ID: 08-3201

Matrix: Water

Data Release Authorized: Reported: 02/26/08

Sample ID: S-8

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	44.2	

Page 1 of 1

Lab Sample ID: MJ68H

LIMS ID: 08-3202

Matrix: Water

Data Release Authorized: Reported: 02/26/08

Sample ID: S-6

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	23.8	

Page 1 of 1

Lab Sample ID: MJ68I

LIMS ID: 08-3203

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: D-6

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	4.8	

Page 1 of 1

Lab Sample ID: MJ68J

LIMS ID: 08-3204

Matrix: Water

Data Release Authorized: Reported: 02/26/08

Sample ID: S-5

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/18/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	3.9	

Page 1 of 1

Lab Sample ID: MJ68K

LIMS ID: 08-3205

Matrix: Water

Data Release Authorized

Reported: 02/26/08

Sample ID: RBP-DUP

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	2.3	

Page 1 of 1

Lab Sample ID: MJ68L

LIMS ID: 08-3206

Matrix: Water

Data Release Authorized: Reported: 02/26/08

Sample ID: S-4

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	70.6	

Page 1 of 1

Lab Sample ID: MJ68M

LIMS ID: 08-3207

Matrix: Water

Data Release Authorized

Reported: 02/26/08

Sample ID: D-5

SAMPLE

QC Report No: MJ68-Landau Associates, Inc. Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	3.2	

Page 1 of 1

Lab Sample ID: MJ68N

LIMS ID: 08-3208

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: D-4

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	2.6	

Page 1 of 1

Lab Sample ID: MJ680

LIMS ID: 08-3209

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: S-3

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	50.4	

Page 1 of 1

Lab Sample ID: MJ68P

LIMS ID: 08-3210

Matrix: Water Data Release Authorized

Reported: 02/26/08

Sample ID: S-1 SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	2.6	

Page 1 of 1

Sample ID: D-1 SAMPLE

Lab Sample ID: MJ68Q

LIMS ID: 08-3211

Matrix: Water

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Data Release Authorized Reported: 02/26/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	2.9	

Page 1 of 1

Lab Sample ID: MJ68R

LIMS ID: 08-3212

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: S-2

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	35.6	

Page 1 of 1

Lab Sample ID: MJ68U

LIMS ID: 08-3215

Matrix: Water

Data Release Authorized Reported: 02/26/08

Sample ID: D-2

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Fark

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	02/21/08	200.8	02/25/08	7440-38-2	Arsenic	0.2	2.3	

Page 1 of 1

Lab Sample ID: MJ68V

LIMS ID: 08-3216

Matrix: Water

Data Release Authorized:

Reported: 02/26/08

Sample ID: D-3

SAMPLE

QC Report No: MJ68-Landau Associates, Inc.

Project: Riverside Business Park

848004.010

Date Sampled: 02/19/08 Date Received: 02/20/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	02/21/08	200.8	02/26/08	7440-38-2	Arsenic	2	1,350	