REMEDIAL INVESTIGATION, FEASIBILITY STUDY, AND CLEANUP ACTION PLAN Spic'n Span Cleaners

Prepared for: Spic'n Span Cleaners, Inc.

Project No. 060172-001-03 • November 16, 2011

REMEDIAL INVESTIGATION, FEASIBILITY STUDY, AND CLEANUP ACTION PLAN Spic'n Span Cleaners

Prepared for: Spic'n Span Cleaners, Inc.

Project No. 060172-001-03 • November 16, 2011 Draft

Aspect Consulting, LLC

Jeremy J. Porter, PE Associate Engineer jporter@aspectconsulting.com

earth + water

Steve J. Germiat, LHG Senior Associate Hydrogeologist sgermiat@aspectconsulting.com

V:\060172 Spic 'n Span Cleaners Remediation\RI FS CAP\nov16\RI-FS-CAP.doc

Contents

1	Intr	oduct	ion	1
2	Sur	nmary	/ of Site Conditions	2
	2.1	Locat	tion and Land Use	2
	2.2	Histo	rical Use	2
	2.3	Previ	ous Investigations and Interim Cleanup Actions	2
	2.4	Geolo	ogy and Hydrogeology	4
	2.5	Natur	e and Extent of Contamination	5
	2.	.5.1	Soil	5
	2.	.5.2 .5.3	Soil Vapor	6
3	Rer	nedia	Action Objectives	9
	3.1	Clear	nup Levels	.10
	3.2	Point	s of Compliance	.10
	3.3	Chen	nicals of Concern	10
4	Foo	cused	Feasibility Study	11
	4.1	Poter	ntial Remedial Technologies	.11
	4.2	Reme	edial Alternatives	.13
	4.	.2.1	Alternative 1 – Soil Excavation and Natural Attenuation	.13
	4.	.2.2	Excavation, and Monitored Natural Attenuation	.14
	4. 4.	.2.3 .2.4	Alternative 3 – In Situ Thermal Treatment and Natural Attenuation Alternative 4 – Interim Air Sparging and Soil Vapor Extraction, Soil	.15
	4.	.2.5	Excavation, and Enhanced Natural Attenuation Alternative 5 – In-Situ Thermal Treatment and Enhanced Natural	.16
	4.3	Evalu	lation of Alternatives	18
5	Pro	posed	d Cleanup Action	21
	5.1	Desig	n and Permitting	21
	5.2	Syste	em Construction and Operation	.22
	5.3	Syste	em Performance and Compliance Monitoring	.22
	5.4	Natur	al Attenuation Monitoring	24

References	24
Limitations	

List of Tables

1	Total Organic Carbon in Soil
2	Soil Analytical Results – Detected Analytes Only
3	Groundwater Analytical Results – Detected Analytes Only
4	Soil Gas Analytical Results – Detected Analytes Only
5	MTCA Method A and B Cleanup Levels for Detected Analytes
6	Cleanup Levels for Site Contaminants of Concern
7	Remediation Cost Estimate – Alternative 1
8	Remediation Cost Estimate – Alternative 2
9	Remediation Cost Estimate – Alternative 3
10	Remediation Cost Estimate – Alternative 4
11	Remediation Cost Estimate – Alternative 5

List of Figures

- 1 Site Location Map
- 2 Current Land Use
- 3 Site Plan
- 4 Exploration and Interim Action Location Plan
- 5 Cross Section A-A'
- 6 Cross Section B-B'
- 7 Groundwater Contour Map March 2009
- 8 Soil Analytical Data and Estimated Extent of Contamination
- 9 Groundwater Analytical Data
- 10 Groundwater Analytical Data Site-wide
- 11 Proposed Cleanup Action
- 12 ERH Confirmation Sampling Locations

List of Appendices

- A Data Gaps Investigation Methods and Analytical Results
- B Boring Logs and Well Construction Details
- C Historical Groundwater Elevation Data
- D Historical Soil and Groundwater Data
- E Review of Potential Remediation Technologies
- F MTCA TPH11.1 Workbook
- G Vapor Intrusion Modeling
- H SOPs for Sampling Hot Soil and Groundwater
- I ERH Bench Test Report

1 Introduction

This Remedial Investigation (RI), Feasibility Study (FS), and Cleanup Action Plan (CAP) presents a summary of environmental data, evaluation of remedial alternatives, and a proposed cleanup action at the Spic'n Span Cleaners site, located at 652 South Dearborn Street in Seattle, Washington. Spic'n Span Cleaners, Inc. is conducting environmental investigation and cleanup activities under the Washington State Department of Ecology's (Ecology) Voluntary Cleanup Program. The objective of this work is to obtain an unrestricted No Further Action determination from Ecology. This RI/FS/CAP was prepared in accordance with Washington Administrative Code (WAC) 173-340-350 and 173-340-360.

In a "Further Action Determination" letter dated May 7, 2007, Ecology requested additional characterization and data analysis to complete the site RI. Between July 2008 and January 2009, Aspect Consulting, LLC (Aspect), on behalf of Spic'n Span Cleaners, Inc., conducted a supplemental site investigation to fill data gaps. A description of the work performed is provided in Appendix A. The results of the data gaps investigation are incorporated into the conceptual site model described in Section 2 of this report.

This report is organized as follows:

- Section 2 summarizes site conditions, including site history, setting, geology, hydrogeology, and the nature and extent of contamination.
- Section 3 identifies chemicals of concern, cleanup levels, and remedial action objectives.
- Section 4 identifies potentially applicable remedial technologies and develops and evaluates remedial alternatives.
- Section 5 describes the preferred cleanup action.

2 Summary of Site Conditions

2.1 Location and Land Use

The Spic'n Span Cleaners site, King County tax parcel number 5247802385, is located at 652 South Dearborn Street in Seattle, Washington, as shown on Figure 1. The site is located approximately 2,600 feet east of Elliott Bay. The site and surrounding area are generally flat, with a gradual slope to the west. The site surface is covered with either buildings or pavement. The property size is approximately 13,000 square feet.

The site is located in a mixed residential, commercial, and light industrial area. Adjacent land use includes parking lots to the north and east, a warehouse to the south, and an office building to the west. Properties surrounding the site are shown on Figure 2. The site is within the City of Seattle water service area, and there are no known drinking water wells or use of groundwater in the immediate vicinity.

2.2 Historical Use

The property is located near the historical shoreline of Elliott Bay. The tideflats in this area was filled in the early 1900s. Historical aerial photographs indicate that the site was vacant as of 1938. According to King County assessor records, the two existing one-story structures were built in 1963. Dry cleaning operations have been conducted at the site since 1963.

The southern building is approximately 4,800 square feet and includes the retail counter, clothes racks, offices, and steam presses. The northern building is approximately 1,800 square feet and includes dry cleaning equipment, laundry equipment, a boiler, and a storage room. The two sections are connected by a covered breezeway in which delivery trucks park. A site plan showing locations of various operations is provided on Figure 3.

Site operations have previously used mineral spirits (a petroleum solvent typically quantified in the gasoline hydrocarbon range) and perchloroethene (PCE) as dry cleaning solvents. The site currently uses only PCE for dry cleaning, using a closed-loop machine.

2.3 Previous Investigations and Interim Cleanup Actions

A number of environmental investigation and remediation activities have been conducted at the site. Locations of soil borings, monitoring wells, and remedial activities are summarized on Figure 4. Environmental activities and associated reports (full report references are provided in Section 6) include the following:

• **1997: Environmental Site Assessment** (Hart Crowser, 1997). Site operational history was reviewed and soil and groundwater samples were collected by DLH Environmental Consulting and Hart Crowser in 1997. Soil and/or groundwater samples were collected from 19 borings (B-1 through B-4 and HC-1 through HC-11) and analyzed for mineral spirits and VOCs. Chlorinated ethenes and mineral

spirits were identified at concentrations above MTCA Method A cleanup levels in soil and groundwater.

- **1998: UST Removal** (Hart Crowser, 1998). Two underground storage tanks (1,000 and 1,300 gallons in capacity) were removed from beneath the breezeway in 1998. Confirmation soil sampling around the tanks indicated elevated concentrations of PCE and mineral spirits in the base and sidewalls of the excavation. Additional soil could not be excavated due to the presence of adjacent structures.
- **2000 to 2001: Groundwater Monitoring** (Hart Crowser, 2000). Four monitoring wells were installed at the facility and monitored quarterly for TPH and VOCs for one year. MW-1 was installed to the east of the building (upgradient direction), and MW-2, MW-3, and MW-4 were installed to the west and southwest (downgradient direction). Results indicated exceedances of chlorinated ethenes and mineral spirits in groundwater downgradient of the facility.
- 2001 to 2004: Remediation via Soil Vapor Extraction (SVE) and Air/Ozone Sparging (AOS) (Hart Crowser, 2002a, 2002b, 2002c, 2003a, 2003b, 2004a, 2004b, 2004c). A soil vapor extraction system and air/ozone sparging system was installed in and around the former UST area to remove residual contamination. The system was operated from December 2001 to January 2004, in which time it removed approximately 1,000 pounds of mineral spirits and 48 pounds of PCE. During operation of the SVE/AOS system, groundwater concentrations of mineral spirits decreased to below MTCA Method A cleanup levels. Concentrations of chlorinated ethenes decreased, but vinyl chloride concentrations remained above the MTCA Method A cleanup level of 0.2 μg/L at wells MW-2, MW-3, and MW-4. By January 2004, the rate of contaminant mass removal had dropped greatly to less than 5 pounds of TPH and 0.5 pounds of PCE per month, and no further improvement in groundwater quality was noted, so the system was shut down.
- 2004 to 2005: Groundwater Monitoring (Hart Crowser, 2005). Confirmation groundwater monitoring was performed quarterly for one year after the SVE/AOS system was shut down. Results indicated little rebound in contaminant concentrations, but concentrations of vinyl chloride remained above the MTCA Method A cleanup level. Two new wells (MW-5 and MW-6) were installed in June 2005 in an attempt to determine the downgradient extent of the vinyl chloride plume. Concentrations of vinyl chloride at both wells exceeded the MTCA Method A cleanup level.
- **2005: Engineering Evaluation** (Hart Crowser, 2005). In June 2005, water quality parameters were collected from monitoring wells MW-1 through MW-4 to evaluate the potential effectiveness of applying enhanced bioremediation to remove residual contamination. The evaluation indicated that anaerobic bioremediation of the residual chlorinated ethene plume could likely be accomplished by adding a carbon source such as emulsified oil, but that such an approach could take years to reach cleanup objectives and require repeated applications.

- **2008 to 2009: Data Gaps Investigation.** Between July 2008 and January 2009, Aspect conducted a Data Gaps Investigation that included a sewer camera survey to investigate the potential for historical releases of contaminants of concern (COCs) from the site sewer, and soil, soil gas, and groundwater sampling to better determine the extent of contamination and develop site-specific cleanup levels for site COCs. Sampling methods and laboratory certificates of analysis are provided in Appendix A. A break in the site sanitary sewer line, which services the building restroom and wash room, was identified just west of the building, but no evidence of contamination or elevated concentrations of VOCs were detected in soil adjacent to the break. The sewer line was repaired in January 2010.
- **2011: Thermal Remediation Bench-Scale Study.** In June 2011, Aspect collected soil samples for use in a bench-scale study to evaluate the potential effectiveness of thermal remediation at the site. Additional soil samples and one groundwater sample to further characterize the extent of contamination were collected at the same time. The bench study was performed by Thermal Remediation Services (TRS) and Kemron Environmental in July 2011.

The rest of this section summarizes current site conditions based on the historical characterization work and the recent Aspect investigations.

2.4 Geology and Hydrogeology

Shallow soils at the site consist of heterogeneous fill to a depth of approximately 15 to 20 feet. Fill materials typically consists of gravelly or silty gravelly sand near the surface to a depth between 3 to 5 feet and sandy silt or silt with interbedded sand layers to a depth of 15 to 20 feet. Occasional debris (glass, brick) has been observed in the fill. Soils from 20 to 30 feet in depth are typically native materials consisting of layers of stiff silt and medium dense silty and gravelly sands. Very dense, silty gravelly sand, possibly glacial till, has been observed at depths between 30 to 35 feet. Two geologic cross-sections (locations shown in Figure 3) are provided on Figures 5 and 6. Boring logs for the site are compiled in Appendix B.

The fill and historical marine deposits characterized in the upper 30 feet at the site have a moderately high level of naturally-occurring organic carbon. Naturally-occurring organic carbon affects contaminant fate and transport because it preferentially absorbs hydrocarbons and supports biologically-active environments. The total organic carbon (TOC) content of site soils ranged from 0.05 to 1.7 percent in 10 samples (see Table 1). Because the data are lognormally distributed, the geometric mean (0.39 percent) was used to estimate the average site TOC content. This value is used for site-specific soil-to-groundwater contaminant transport calculations as discussed in Section 3.

Groundwater is encountered approximately 20 to 22 feet deep, near the contact between fill and native soils; however, localized zones of seasonally perched groundwater have been observed at shallower depths in some explorations. Based on the site water level data, the groundwater flow direction is to the west-southwest (toward Elliott Bay), with a typical measured gradient of 0.01 ft/ft. Groundwater elevation contours based on measurements during the most recent round of investigation (January 2009) are shown on Figure 7. Groundwater elevations typically fluctuate 1 to 2 feet throughout the year, with the highest elevations in the winter and early spring. The estimated direction of

groundwater flow in both dry and wet seasons is to the west-southwest. A table of historical groundwater elevation data and previously generated maps of groundwater elevation contours in different seasons are compiled in Appendix C. Monitoring well construction details are included with the soil boring logs in Appendix B.

2.5 Nature and Extent of Contamination

Site investigations have identified mineral spirits and PCE in soil, groundwater, and soil vapor. Chemical analyses have also detected a number of petroleum hydrocarbons (e.g., ethylbenzene and xylenes) that are components of mineral spirits, and several chlorinated compounds that are biological breakdown products of PCE, including trichloroethene (TCE), 1,2-cis-dichloroethene (cis-DCE), and vinyl chloride (VC). Chemical occurrences in each media are described below. For the purposes of this discussion, detected chemical concentrations are compared to site cleanup levels that are developed in Section 3 for protection of direct contact, groundwater, and air pathways under an unrestricted use scenario.

To best represent current site conditions, data presented in this section include those collected after the interim remedial action was shut down in 2004. This includes soil and groundwater data collected by Hart Crowser in 2005 and soil, groundwater, and soil gas data collected by Aspect in 2008, 2009, and 2011. Selected soil data collected prior to 2004 outside the area treated by the interim action have also been included on the figures to assist in delineating the extent of contamination. Tables of all historical soil and groundwater data collected prior to 2005 are compiled in Appendix D for reference.

2.5.1 Soil

Concentrations of analytes detected in soil are summarized in Table 2. Chemical occurrences exceeding cleanup levels since 2004 are discussed below.

Note that, in its Further Action Determination letter (Ecology, 2007), Ecology had requested maps showing the extent of several hydrocarbons (ethylbenzene, toluene, xylenes, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene) exceeding cleanup levels. Because these compounds have not been detected above cleanup levels this data has not been included in the maps presented below.

2.5.1.1 Petroleum Hydrocarbons

Petroleum hydrocarbons that have been detected in soil above cleanup levels are displayed on Figure 8 and summarized as follows:

• **Mineral Spirits,** quantified as total petroleum hydrocarbons in the gasoline range (TPH-G), has been detected at maximum concentration of 13,000 mg/kg. The highest concentrations detected were located in the vicinity of the former USTs.

The lateral extent of mineral spirits exceedances in soil occurs in the vicinity of the former USTs, as shown in red on Figure 8. The maximum depth of petroleum contamination above screening levels is approximately 26 feet (approximately 4 feet below the seasonal low water table), based on data collected in the center of the petroleum hotspot at PP-5/B-14. TPH concentrations measured in soil are included on the

geologic cross-sections (Figures 5 and 6) to illustrate the vertical distribution of mineral spirits contamination.

The estimated volume of soil containing TPH above cleanup levels is 1,200 cubic yards. The estimated mass of TPH in soil, based on the average detected concentration in the area shown in red on Figure 8, is 5,800 pounds.

2.5.1.2 Chlorinated Hydrocarbons

Chlorinated hydrocarbons that have been detected in soil above cleanup levels are displayed on Figure 8. Estimated lateral boundaries of exceedances are also shown in green on Figure 8. PCE concentrations measured in soil are also included on the geologic cross-sections (Figures 5 and 6). Occurrences exceeding cleanup levels are summarized as follows:

- **PCE** has been detected at a maximum concentration of 4.8 mg/kg. The highest concentrations detected were located in the vicinity of the former USTs. Elevated concentrations were also detected in the southwest corner of the property.
- **TCE** has been detected at a maximum concentration of 1.3 mg/kg, and except for one sample from boring B-9, has been detected only in samples that have contained the highest concentrations of PCE.
- **Cis-DCE** has been detected at a maximum concentration of 2.3 mg/kg, and is generally co-located with PCE and TCE occurrences.

The extent of chlorinated hydrocarbon occurrences in soil indicate two 'lobes' of contamination: one surrounding the former UST area (where the highest concentrations of PCE have been detected), and one to the southwest of this area. Around the UST area, chlorinated hydrocarbons were detected at the highest concentrations in shallow soil, with concentrations exceeding screening levels at depths from 0.5 to 12 feet. In the southwest portion of the property, concentrations exceeding screening levels were detected at depths from 8 to 24 feet. PCE was not detected in shallow soil in the southwest area. One potential explanation for the observed pattern of occurrences is the migration of contamination via perched water in the vadose zone. The two lobes of PCE occurrences are connected by the site sewer line, which cuts through shallow, low-permeability soils to connect to the sewer main in Maynard Avenue at a depth of about 18 feet. Perched water may preferentially migrate along the more permeable backfill along this line, mobilizing contamination from the UST area into deeper soils. The concentration of PCE in soil detected at a depth of 16 feet at boring B-5 (2.1 mg/kg) occurred in a soil sample containing a wet sand layer, although it was located 4 feet above the water table (i.e., in a lens of perched groundwater).

The estimated total volume of soil in the two areas of PCE exceeding cleanup levels is 2,900 cubic yards. The estimated mass of PCE in soil, based on the average concentration detected in the areas of contamination, is approximately 7 pounds.

2.5.2 Groundwater

Concentrations of analytes detected in groundwater in the most recent sampling event are summarized in Table 3. The occurrence of analytes detected above cleanup levels is discussed below.

In its Further Action Determination letter (Ecology, 2007), Ecology had requested maps showing the extent of hydrocarbons above cleanup levels, including ethylbenzene, xylenes, 1,1,2,2-tetrachloroethane, and chloroform. 1,1,2,2-Tetrachloroethane has not been detected in groundwater at the site since 2000. Since 2002, chloroform has only been detected in the background well (MW-1) upgradient of the site, at a maximum concentration of 8.4 μ g/L (compared to the cleanup level of 7 μ g/L), and this chemical is a common byproduct of chlorine disinfection in municipal water supplies. Because these chemicals have not been detected above cleanup levels at the site since implementation of the interim cleanup action, this data has not been included in the discussion presented below and the accompanying maps.

2.5.2.1 Petroleum Hydrocarbons

Petroleum hydrocarbons have not been detected above cleanup levels in groundwater since 2001. Locations of groundwater samples analyzed for mineral spirits and VOCs in 2008/2009 are shown on Figure 9 with the chlorinated hydrocarbon data (discussed below).

2.5.2.2 Chlorinated Hydrocarbons

Chlorinated hydrocarbons that have been detected in groundwater above cleanup levels are shown on Figure 9 (detail of the subject property) and Figure 10 (site-wide). Occurrences detected since 2004 are summarized as follows:

- PCE has not been detected above its 5 µg/L cleanup level at the site but has been included in this discussion as it is the source of the biodegradation products discussed below. PCE has been detected at a maximum concentration of 2.8 µg/L, at MW-1.
- **TCE** has also not been detected above its $5 \mu g/L$ cleanup level at the site but has been included in this discussion as it is an intermediate degradation product of PCE to other biodegradation products DCE and VC discussed below. TCE has been detected at a maximum concentration of 3.7 $\mu g/L$, at boring B-6.
- **Cis-DCE** has also not been detected above its 80 μ g/L cleanup level at the site but has been included in this discussion as it is an intermediate degradation product of PCE to the biodegradation product VC discussed below. DCE has been detected at a maximum concentration of 80 μ g/L, at its cleanup level, at monitoring well MW-4.
- Vinyl Chloride (VC) has been detected at a maximum concentration of 57 μg/L at MW-4, downgradient of the former UST area. The extent of vinyl chloride in groundwater above the cleanup level (0.2 μg/L) is bounded by monitoring wells MW-7, MW-8, and MW-9, located west, south, and southwest of the property (see Figure 10).

As discussed in the Engineering Evaluation Report (Hart Crowser, 2005), subsurface conditions at the site are highly reducing as a result of elevated levels of naturally-occurring organic carbon and the released petroleum products. These levels are most conducive to biodegradation of the higher chlorinated ethenes (PCE, TCE), whereas vinyl

chloride is degraded at a slower rate. The pattern of vinyl chloride occurrences in site groundwater is consistent with the pattern of PCE occurrences in site soil.

2.5.3 Soil Vapor

Four soil vapor samples were collected in October 2008 from two locations, as follows:

- At B-13 adjacent to MW-4 (where the highest concentrations of vinyl chloride have been detected in groundwater), at two discrete depths, just above the water table (19 feet) and slightly below ground surface (3 feet); and
- At B-14 in the UST area, at the two depth intervals of the highest detected soil concentrations of PCE (3 feet and 11 feet).

The soil vapor data is summarized in Table 4. Both chlorinated and petroleum hydrocarbons were detected in soil gas samples. The highest concentration detected was of PCE, at a concentration of 190,000 μ g/m³ in shallow soil near the former UST area. A VC concentration of 380 μ g/m³ was detected near the water table at MW-4 but was not detected in shallower soil at the same location.

3 Remedial Action Objectives

The objective of remediation activities at the Spic'n Span site is to address potentially complete contaminant exposure pathways and allow unrestricted use of the site. Based on our experience with similar sites in the area, for the chemicals identified at this site, such a cleanup action will need to address the following potential exposure pathways:

- Direct contact with contaminated soil;
- Protection of groundwater for drinking water use; and
- Protection of indoor air.

Under current site use, direct contact with contaminated soil is prevented by asphalt or concrete pavement that covers the area of contamination. No drinking water wells have been identified (or are likely to be present) at or downgradient of the site. As previously indicated, there is no known use of groundwater within the immediate vicinity.

Elevated concentrations of PCE were detected in soil vapor on site. However, since the site is an active dry cleaner that uses PCE, it is unlikely that the potential migration of PCE from soil vapor into the site building represents a risk to site workers, particularly when compared to normal operating conditions.

The groundwater plume of VC extends west underneath an office building that is constructed as slab-on-grade (no basement or crawl space). Boring B-13 was located directly upgradient of this building, where the highest concentrations of VC were detected in groundwater. However ,the concentrations of hydrocarbons and VC in soil vapor from the 3-foot depth interval at B-13 (representing the depth beneath the building slab) were generally below Ecology's draft soil gas screening levels for unrestricted use (Ecology 2009: see Table 4), except for benzene. The potential for benzene intrusion into indoor air was further evaluated, in accordance with Ecology guidance using the Johnson-Ettinger model (model input and output is provided in Appendix G). The model predicted an indoor air concentration of $0.15 \,\mu g/m^3$, below the unrestricted use indoor air cleanup level of $0.32 \,\mu g/m^3$, indicating that vapor intrusion into this building is not likely a pathway of concern under current site conditions.

In summary, no completed exposure pathways have been identified under current site conditions and use. However, COC concentrations in soil and groundwater exceed potential cleanup levels. This RI/FS/CAP evaluates cleanup actions to address COCs and identifies a final remedy that allows unrestricted use of the site.

Chemicals of concern, cleanup levels, and points of compliance for potential exposure pathways, are identified below.

3.1 Cleanup Levels

Cleanup levels for groundwater are based on MTCA Method A cleanup levels (when available) or MTCA Method B cleanup levels (for drinking water use). Cleanup levels for all analytes historically detected in site groundwater are summarized in Table 5.

Cleanup levels for soil are based on MTCA Method B levels for unrestricted use. Two potential cleanup levels were compared, one for the direct contact pathway and one for protection of groundwater for drinking water beneficial use (soil leaching). The more restrictive of the two was chosen as the site cleanup level. Cleanup levels calculated for protection of groundwater as drinking water are also assumed to be protective of the vapor pathway¹.

For mineral spirits, a site-specific soil cleanup level was calculated using Ecology's VPH petroleum fraction analysis and worksheet (see Appendix F). Of two samples analyzed by VPH, only one had detectable levels of petroleum hydrocarbons; therefore, the results from this sample were used for the cleanup level calculation.

MTCA Method B soil cleanup levels for protection of groundwater were calculated in accordance with WAC 173-340-747(4) using drinking water cleanup levels and the default MTCA parameters, except that the geometric mean site-specific soil organic content (0.39 percent) was used. The MTCA Method B equation and default parameters are shown in Table 5. Soil cleanup levels for the direct contact and groundwater protection pathways are summarized in Table 5.

3.2 Points of Compliance

The standard points of compliance for cleanup of groundwater and soil under MTCA are as follows:

- **Groundwater**: extending vertically from the uppermost level of the saturated zone to the lowest most depth potentially affected by the site.
- Soil for protection of groundwater: throughout the site.
- Soil for protection of direct contact: from ground surface to a depth of 15 feet.
- Air: ambient air throughout the site.

3.3 Chemicals of Concern

The following chemicals of concern (COCs) have been identified at the site above cleanup levels during post-interim action monitoring:

- Soil: PCE, TCE, cis-DCE, and mineral spirits
- Groundwater: VC.

Table 6 summarizes site COCs and their cleanup levels in soil and groundwater.

¹ In Ecology's draft vapor intrusion guidance document (Ecology, 2009), the groundwater screening levels for PCE and TCE that are potentially of concern for the vapor pathway under residential exposure assumptions are slightly less than the drinking water cleanup level for these compounds. However, these screening levels are acknowledged by Ecology to be conservative under most circumstances. For the purposes of this report, we have assumed that soil and groundwater concentrations that are protective of drinking water are also protective of the soil vapor pathway

4 Focused Feasibility Study

4.1 Potential Remedial Technologies

There are a number of potentially applicable remedial technologies for addressing occurrences of COCs at the Spic'n Span site, including:

- Monitored Natural Attenuation;
- Enhanced *In-Situ* Bioremediation;
- Soil Vapor Extraction;
- Air Sparging;
- In-Situ Chemical Oxidation;
- Dual-Phase Extraction;
- In-Situ Permeable Reactive Barriers;
- In-Situ Thermal Treatment; and
- Soil Excavation.

All of these technologies have been applied at sites with similar conditions and chemical occurrences. Three of these technologies – air sparging, *in-situ* oxidation (using ozone), and soil vapor extraction – were implemented at the site from 2001 to 2004. The potential effectiveness of enhanced *in-situ* bioremediation was evaluated by Hart Crowser in 2005 (Hart Crowser, 2005). Appendix E provides a description and evaluation of each of these technologies and their applicability to the site. Based on that screening of technologies, the technologies retained for inclusion in remedial alternatives are as follows:

- **Natural attenuation** of petroleum hydrocarbons and chlorinated hydrocarbons is on-going at the site, but is a relatively slow process. Over the five years since the interim action was halted, concentrations of vinyl chloride detected in site groundwater have been fairly stable, and elevated concentrations of chlorinated and petroleum hydrocarbons remain in soil around the source area.
- Conditions at the site are favorable for **enhanced bioremediation**, but this is similarly a slow process. Enhanced bioremediation is primarily effective below the water table. The Engineering Evaluation (Hart Crowser, 2005) suggested several methods of enhancing bioremediation, including injection of emulsified vegetable oil and biosparging (using air sparging to stimulate aerobic degradation of VC).
- Air sparging (with in-situ oxidation using ozone) and soil vapor extraction were applied at the site from 2001 to 2004, and removed or destroyed a significant portion of contaminant mass. However, confirmation sampling in the

area of treatment indicated that elevated concentrations of mineral spirits and PCE remained in soil even after 2.5 years of operation.

- **In-Situ Chemical Oxidation.** In-situ chemical oxidation is potentially effective for site COCs and was previously applied (using ozone injection) at the site. However, confirmation sampling in the area of treatment indicated that elevated concentrations of mineral spirits and PCE remained in soil after 2.5 years of operation. Alternatives to ozone include liquid solutions such as Fenton's reagent and sodium persulfate.
- **In-Situ Thermal Treatment** using electric resistive heating (ERH) is an aggressive in-situ technology that is potentially effective for site COCs in low permeability soils. The ERH technology applies high voltages to a network of subsurface electrodes to heat soil to close to the boiling point of water. Vapor containing volatile contaminants (including TPH-G and PCE) is then collected and treated.
- Soil excavation and off-site disposal is capable of meeting remedial objectives and doing so in a reasonable timeframe. At this site, soil containing PCE is potentially a listed hazardous waste, which could result in very high disposal costs. However, in our experience at similar sites, Ecology can issue a "contained-out" determination for soil in which PCE concentrations are below the MTCA Method B cleanup level for direct contact under unrestricted use (1.9 mg/kg). The majority of site soil is below this level, and thus may be able to be disposed of as a non-hazardous waste at a permitted facility. The main limitation of soil excavation is that contaminated soils underlying structures or street right-of-ways may not be accessible.

Although conducting SVE and air sparging for 2.5 years did not achieve cleanup levels in the area of treatment, the effectiveness of other in-situ treatment methods such as dualphase extraction or injection of liquid-phase oxidants would be similarly limited by the low-permeability, heterogeneous site soils. Despite these limitations, SVE, air sparging, in-situ oxidation, and enhanced bioremediation were retained for further assessment as possible supplements to other technologies based on their potential ability to remove contaminant mass, limit off-site migration, and reduce restoration timeframe.

In-situ permeable barriers can be installed to treat groundwater contamination and prevent further migration. These barriers can be constructed of zero-valent iron to treat chlorinated hydrocarbons or using absorbent materials such as GAC to remove petroleum hydrocarbons. Permeable barriers can achieve cleanup levels in groundwater at the location they are installed. However, they do not treat contamination in the vadose zone or hydraulically upgradient from their installed location. Rather, they are typically implemented when removal of the source is not practicable.

Because each potentially applicable technology has limitations, remedial alternatives were developed that combine multiple technologies to achieve remedial objectives. Development of remedial alternatives, and their evaluation relative to MTCA criteria, is described below.

4.2 Remedial Alternatives

Four remedial alternatives were developed for comparison with MTCA criteria for cleanup actions (WAC 173-340-350(8)). Because elevated contaminant concentrations remain in soil on the property 10 years after removal of the former USTs and 5 years after 2.5 years of aggressive *in-situ* treatment using air/ozone sparging and soil vapor extraction, further *in-situ* treatment of the source area using sparging, soil vapor extraction, in-situ oxidation, or enhanced bioremediation was not included in any of these alternatives. Rather, each alternative addresses the source area with either excavation of soil exceeding site cleanup levels or in-situ thermal treatment as the only practicable methods for achieving cleanup levels on the property in a reasonable restoration time frame. In some alternatives, we have included other in-situ technologies as either potential interim measures or as contingency actions in areas that cannot be treated by either excavation or in-situ thermal treatment.

Cost estimates provided below are feasibility-level (-30/+50%) and based on Net Present Value calculations for future costs incurred after the first year.

4.2.1 Alternative 1 – Soil Excavation and Natural Attenuation

Excavation would require removal of the building and temporary shoring along adjacent property boundaries and street rights-of-way. To allow excavation below the water table, temporary dewatering would be implemented, with water treated and disposed to the sanitary sewer.

Soil containing PCE above cleanup levels has been identified in the Maynard Street South and South Dearborn Street rights-of-way (see Figure 8). We anticipate that contaminated soil in the adjacent street rights-of-way would not be removed due to the high cost of securing permits and protecting or relocating utilities in the right-of-way. Groundwater containing VC above cleanup levels has been detected in these rights-ofway and likely extends beneath properties located across the street to the west and southwest of the site (see Figure 9). These occurrences represent potential exposure pathways or remedial action costs if future development work on adjacent properties or utility work in the street includes subsurface excavation or dewatering.

According to the property owner, the neighborhood development agency will not approve a demolition permit until a design for a new site development is approved. Because of the potential duration of this process, removal of the building and excavation of contaminated soil may not occur for several years. Therefore, this alternative includes interim monitoring of natural attenuation to be conducted for approximately 5 years before soil excavation occurs.

This alternative involves the following elements:

- Conducting interim groundwater monitoring quarterly for one year, then annually for four years, prior to source removal.
- Excavation of soil on the Spic'n Span Cleaners property exceeding site cleanup levels. Soil would be segregated, characterized, and disposed of at an appropriate

facility based on the concentration of PCE. The site would be backfilled with clean fill.

- Implementation of soil vapor controls in any future site buildings to address potential vapor intrusion from contamination in the street rights-of-way.
- Conducting confirmation groundwater monitoring quarterly for one year, then annually, until cleanup levels are achieved at all wells.

The cost and exact scope of work for this action may depend on development plans and the ability to coordinate work with development activities. For instance, backfilling may not be necessary if the future development includes a subgrade structure. Because of the uncertainty associated with future development options, for the purposes of this feasibility study, we have assumed that the majority of contaminated soil is acceptable for disposal as non-hazardous waste (i.e., that a contained-out determination allowing disposal of PCE-contaminated soil at a Subtitle D landfill will be obtained) and the site will be returned to existing grade following the soil removal. The estimated cost of this alternative is \$1.4 million. Details of the remediation cost estimate are provided in Table 7.

4.2.2 Alternative 2 – Interim Air Sparging and Soil Vapor Extraction, Soil Excavation, and Monitored Natural Attenuation

This alternative is similar to Alternative 1, but provides additional active treatment to prevent off-site migration of contamination above cleanup levels during the interim period prior to source removal. To accomplish this, either SVE/air sparging or in-situ chemical oxidation could be implemented along the downgradient property boundary. Although AS/SVE when previously applied was not effective in reducing soil concentrations to below cleanup levels, it was successful in reducing groundwater concentrations in the treatment area during operation. In addition, SVE would remove some of the contamination in unsaturated soil beneath the street right-of-way. Although it would likely not achieve cleanup levels during the period of interim operation, removing some contamination would likely reduce the restoration time frame for natural attenuation.

For the interim action, the existing air sparging/SVE system could be modified by installing a curtain of AS wells along the downgradient property boundary. As an alternative to AS/SVE, in-situ chemical oxidation could be implemented along the property boundary and in the street right-of-way. The main advantage of chemical oxidation would be that a greater area of treatment is possible, assuming injection using a direct-push drill rig. A disadvantage of in-situ chemical oxidation is that it would not likely effectively remove PCE from the unsaturated zone beneath the sidewalk. Additionally, pilot testing of chemical oxidation would be required to assess potential effectiveness and determine design parameters such as frequency and volume of oxidant injection.

To better evaluate an appropriate interim remedy, we have included in this alternative a pilot test for chemical oxidation. For the purposes of developing the scope and cost estimate for this Alternative 2, we have assumed AS/SVE would be implemented; however, if a cost-benefit analysis of both potential technologies following pilot testing

indicates that chemical oxidation is more cost-effective, chemical oxidation could be substituted.

This alternative involves the following elements:

- Installation of a curtain of air sparging/soil vapor extraction wells in the area along the western property boundary where COCs exceed groundwater cleanup levels (including well MW-5 and borings B-5 and B-6). The purpose of these wells would be to remove contamination under the sidewalk and prevent further off-site migration of contamination above cleanup levels.
- Excavation of soil on the Spic'n Span Cleaners property exceeding site cleanup levels. Soil would be segregated, characterized, and disposed of at an appropriate facility based on the concentration of PCE. The site would be backfilled with clean fill.
- Implementation of soil vapor controls in any future site buildings to address potential vapor intrusion for contamination in the street rights-of-way.
- Conducting confirmation groundwater monitoring quarterly for one year, then annually, until cleanup levels are achieved at off-property wells.

Based on operating data from the previous AS/SVE system, the estimated radii-ofinfluence for air sparging and vapor extraction wells are 8 feet and 25 feet, respectively. The curtain would consist of approximately seven wells along the downgradient property boundary extending from MW-5 to boring B-6. Existing monitoring wells MW-2 and MW-3 would be used for vapor extraction. Existing equipment (blower, compressor, GAC vessels, knockout pot, and control panel) would be inspected and, if operable, be used to operate the interim groundwater treatment system. For the purposes of this cost estimate, we have assumed continuous operation for two years and pulsed operation (3 months on, 3 months off) for 3 years, prior to soil excavation.

Similar to Alternative 1, we have assumed that the majority of contaminated soil is acceptable for disposal as non-hazardous waste (i.e., that a contained-out determination will be obtained) and the site will be returned to existing grade following the soil removal. The estimated cost of this alternative is \$1.7 million (Table 8).

4.2.3 Alternative 3 – In Situ Thermal Treatment and Natural Attenuation

In this alternative, in-situ thermal treatment would be implemented in areas of soil exceeding site cleanup levels. In-situ thermal treatment would be implemented without demolishing the existing building, and so this alternative does not include interim remedial actions prior to source removal.

Conceptual design criteria for this alternative were provided by TRS Group, Inc., a vendor for the technology. This alternative involves the following elements:

• Rerouting heat-sensitive subsurface utilities in the treatment area (e.g., power lines in plastic conduit).

- Installing a network of co-located electrodes and vapor recovery (VR) wells using a hollow-stem auger drill rig. Approximately 29 electrodes/wells would be installed, spaced an average of 13 feet apart.
- Applying power to heat the subsurface while recovering vapors from the VR wells. Vapors would be treated with activated carbon prior to discharging to the atmosphere.
- The area occupied by the thermal and vapor treatment equipment is estimated to be approximately 1,500 square feet. This does not include the treatment area.
- Operating the thermal treatment system for approximately 6 months. Once mass removal drops to a point suggesting cleanup is nearing completion, soil and groundwater samples would be collected in the treatment area to evaluate performance. Operation would be continued in areas on the property exceeding soil and groundwater cleanup levels until additional confirmation sampling indicates cleanup goals are met.
- After the subsurface cools to ambient temperature, confirmation groundwater monitoring would be conducted quarterly for one year to confirm cleanup levels are met on the property and to monitor natural attenuation of contamination downgradient of the property. Groundwater monitoring at wells downgradient of the property would continue annually until cleanup levels are met.

Based on the results of a bench study (see Appendix I), the technology vendor indicated that in-situ treatment using electrically resistive heating (ERH) could achieve cleanup levels for site COCs. The technology vendor estimated that the equipment compound would take up approximately 1,500 square feet of space on site. Some equipment, such as carbon vessels, can be staged on the roof of the structure. Equipment staged on the ground will consume some of the area west of the building that is currently used for parking. This area is part of the property that is leased by the dry cleaning operator, and use of this area for remediation would require negotiating with the tenant. We have not discussed with the tenant potential impacts to their business; rather, for purposes of this cost estimate, we have assumed that the tenant would be reimbursed for inconveniences to their business (deliveries and customers) and for employee parking in a nearby lot.

The estimated cost of this alternative is \$2.2 million. Details of the remediation cost estimate are provided in Table 9.

4.2.4 Alternative 4 – Interim Air Sparging and Soil Vapor Extraction, Soil Excavation, and Enhanced Natural Attenuation

Alternative 4 is similar to Alternative 2, in which interim actions are conducted to limit off-site contaminant migration until soil exceeding cleanup levels can be excavated. This alternative also provides treatment of off-site contamination after source removal, in the event that natural attenuation following source removal does not meet cleanup levels within a reasonable restoration time frame. To accomplish this, either enhanced bioremediation or in-situ chemical oxidation could be implemented in the street rights-of-way downgradient of the site. Selection of a contingency action in the street rights-of-way would be based on monitoring data following source removal and may require pilot

testing of one or more potential technologies. For the purposes of developing the scope and cost estimate for this alternative, we have assumed that AS/SVE would be implemented as an interim action prior to source removal, and enhanced bioremediation would be implemented as a contingency action after source removal.

This alternative involves the following elements:

- Installing a curtain of air sparging/soil vapor extraction wells along the western property boundary to remove contamination under the sidewalk and prevent offsite migration of contamination above cleanup levels. Existing mechanical equipment and GAC treatment vessels would be used.
- Excavation of soil on the Spic'n Span Cleaners property exceeding site cleanup levels. Soil would be segregated, characterized, and disposed of at an appropriate facility based on the concentration of PCE. The site would be backfilled with clean fill.
- Implementation of soil vapor controls in any future site buildings to address potential vapor intrusion for contamination in the street rights-of-way.
- Injecting amendments in affected street rights-of-way to enhance reductive dechlorination of residual contamination.
- Conducting confirmation groundwater monitoring quarterly for one year, then annually, until cleanup levels are achieved at off-property wells.

Similar to Alternative 2, we have assumed continuous operation for two years and pulsed operation (3 months on, 3 months off) for 3 years, prior to soil excavation, that the majority of contaminated soil is acceptable for disposal as non-hazardous waste (i.e., that a contained-out determination will be obtained), and the site will be returned to existing grade following the soil removal. Prior to implementing enhanced natural attenuation, pilot testing would be performed to determine a suitable amendment and delivery method. For the purposes of this feasibility study, we have assumed that emulsified vegetable oil would be injected using a direct-push drill rig. The estimated cost of this alternative is \$1.8 million (Table 10).

4.2.5 Alternative 5 – In-Situ Thermal Treatment and Enhanced Natural Attenuation

Alternative 5 is similar to Alternative 3, in which soil exceeding cleanup levels on the property is treated using in-situ thermal heating. This alternative also provides treatment of off-site contamination after source removal, in the event that natural attenuation following source removal does not meet cleanup levels within a reasonable restoration time frame. To accomplish this, either enhanced bioremediation or in-situ chemical oxidation could be implemented in the street rights-of-way downgradient of the site. Selection of a contingency action in the street rights-of-way would be based on monitoring data following source removal and may require pilot testing of one or more potential technologies. For the purposes of developing the scope and cost estimate for this alternative we have assumed that enhanced bioremediation would be implemented after source removal. This alternative involves the following elements:

- Implementing in-situ thermal treatment, as described in Alternative 3.
- Conducting confirmation groundwater monitoring quarterly for one year, then annually for two years, to evaluate the need for contingency actions.
- Injecting amendments in affected street rights-of-way to enhance reductive dechlorination of residual contamination.
- Conducting confirmation groundwater monitoring quarterly for one year, then annually, until cleanup levels are achieved at off-property wells.

Prior to implementing enhanced natural attenuation, pilot testing would be performed to determine a suitable amendment and delivery method. For the purposes of this feasibility study, we have assumed that emulsified vegetable oil would be injected using a direct-push drill rig. The estimated cost of this alternative is \$2.3 million (Table 11).

4.3 Evaluation of Alternatives

Each of the five alternatives would address contamination to control the potential exposure routes (direct contact, leaching to groundwater, and vapor generation) on the property by excavating or treating soil containing contamination above cleanup levels. However, it is likely impracticable to excavate contaminated soil located beyond the property boundary. Although there is no identified complete exposure pathway for offsite contamination under current site conditions, potential exposure pathways could be created under future activities or development of adjacent properties.

Alternative 1 soil removal would be conducted after obtaining appropriate local approvals. Implementation of soil removal on the property may not be possible for several years due to neighborhood development policies that prevent demolition of the existing building prior to development of the property. As previously indicated, it is likely impractical to excavate contaminated soil located beyond the property boundary. Groundwater monitoring would have to take place to evaluate whether Alternative 1 would likely achieve cleanup levels off the property through natural attenuation in a reasonable restoration time frame.

Alternative 2 is similar to Alternative 1 but includes additional groundwater treatment at the property boundary prior to on-site soil excavation, which would limit off-property migration of groundwater contamination. Monitoring the plume downgradient of the treatment area during interim treatment may help estimation of the rate of natural attenuation following future soil excavation, to determine if monitored natural attenuation alone following soil excavation is likely to achieve groundwater cleanup levels in a reasonable restoration timeframe. The interim measures employed in Alternative 2 would further reduce contamination levels in soil immediately adjacent to the property that would not be removed during the soil excavation.

Alternative 3 (in-situ thermal treatment) controls further off-site migration of contamination in the near-term. It also has the following advantages when compared with excavation:

• Source removal is accomplished more quickly;

- Source removal may include removing contamination beneath the sidewalk², which may be inaccessible under excavation options, and would likely only be partially addressed by the interim AS/SVE system in Alternative 2. Removing contamination beneath the sidewalk reduces the probability that additional offsite actions (as described in Alternatives 4 and 5) would be necessary in the future; and
- Contamination is permanently removed and destroyed, which is more preferred under MTCA than excavation and off-site disposal at a landfill (Alternative 2).

On the other hand, potential drawbacks associated with Alternative 3 compared to soil excavation discussed in Alternative 1 and Alternative 2 include the following:

- Excavation has been more widely applied than in-situ thermal treatment. However, in-situ thermal treatment using ERH has been successfully implemented at over 120 sites nationwide, including three in Washington and one in Oregon. The thermal technology vendor has indicated that, based on benchscale testing results and their experience at other sites, ERH can reduce concentrations of all site COCs to below cleanup levels; and
- The effectiveness (and required duration of heating) for in-situ thermal treatment are sensitive to site conditions such high groundwater flow rate and TOC content of the soil, including the presence of heavy petroleum compounds. During excavation it is easier to assess performance (via confirmation sampling of excavation sidewalls and base) and adjust the scope (i.e., continue excavating if additional contamination is identified) during the work than in-situ thermal treatment. However, the uncertainty with evaluating ERH effectiveness can be at least partially addressed with more thorough baseline soil sampling during design and installation of the in-situ thermal treatment system and performance sampling during and after operation.

Excavation provides more certainty than in-situ treatment in achieving cleanup levels for soil that is removed; compliance sampling consists of soil sampling the boundaries of the excavation to confirm the limits of contamination have been reached. Thermal treatment includes confirmation sampling of treated soil to evaluate if cleanup levels are obtained. If confirmation soil sampling indicates that there are areas of soil where COC concentrations remain above cleanup levels, the thermal remediation system could be operated longer to achieve further treatment or, if more cost effective (e.g., if easily accessible and limited in area), residual contaminated soil could be excavated.

Alternatives 4 and 5 include additional actions if the performance of identified remedial technologies is not sufficient to achieve cleanup levels in the off-site plume within a reasonable restoration time frame. However, the need for additional actions will not be known until the performance of source removal is evaluated. Further in-situ treatment following soil excavation may be appropriate as a contingency action, but is not clearly necessary at this time.

² The extent to which thermal remediation can be used to address contamination beyond the property boundary would be evaluated during design and permitting of the thermal system.

In summary, both excavation and in-situ thermal treatment are potentially viable approaches to achieving remedial action objectives. In-situ thermal treatment has several advantages including quicker implementation and a potentially greater area of treatment than excavation, both of which should result in a faster restoration time frame than excavation and reduce the risk of needing contingency actions. The ability of in-situ thermal treatment to achieve cleanup levels within the treatment/removal area is more uncertain but its performance can be evaluated and additional actions taken if needed.

Therefore, Alternative 3 (in-situ thermal treatment and monitored natural attenuation) is proposed as the site cleanup action.

5 Proposed Cleanup Action

The proposed cleanup action (in-situ thermal treatment using ERH and monitored natural attenuation) includes four phases of work: 1) design and permitting of the ERH treatment system; 2) system construction; 3) system operation and performance monitoring; and 4) monitored natural attenuation. Each phase is described below.

5.1 Design and Permitting

Additional site characterization data is needed to complete the design of the ERH remediation system. The design data investigation will include:

- Collecting additional soil and groundwater samples beneath the building footprint, to more closely determine the treatment area;
- Replacing the three existing PVC monitoring wells in the potential treatment area with stainless steel-cased monitoring wells. The new wells should not be damaged by elevated temperatures and will be used for performance monitoring during and after treatment.
- Sampling groundwater from all existing and proposed wells for site COCs to establish baseline conditions for treatment. Samples would also be analyzed for total dissolved solids for use in the ERH design.
- Conducting slug tests on the three new wells and a pumping test at one well, to estimate groundwater flow rates and the potential rate of cooling during treatment due to the influx of groundwater into the treated area.

A utility survey will be performed to identify utilities in the treatment area that are heat sensitive and may need to be relocated, replaced, or abandoned during the work, and determine the extent to which treatment can extend past the property boundary (i.e., beneath the sidewalk and Maynard Avenue South right-of-way). The City of Seattle and Seattle City Light will be contacted to identify the source of power (if sufficient power is not already on site) and permits that may be required. Anticipated permits include:

- Electrical permit, to supply power to the ERH system;
- Street use permit, for any work (such as well or piping installation) that extends into the street right-of-way;
- Puget Sound Clean Air Agency (PSCAA) air emissions permit, for treatment and post-treatment discharge of recovered vapors; and
- Sewer discharge permit from King County Metro, for treatment and discharge of condensate.

Based on the vendor's experience installing a similar system in the City of Seattle, coordinating with Seattle City Light to supply power to the site may take up to six months.

An engineering design report (EDR) will be prepared which identifies the layout and specifications for subsurface electrodes, vapor collection wells, temperature monitoring points, and above-ground equipment. The EDR will also describe protocols for safely constructing, operating, and monitoring the system. The ERH technology applies high voltages to a series of electrodes to heat subsurface soil to close to the boiling point of water. Safety concerns from high voltages and elevated subsurface temperatures will be addressed by 1) limiting access to the treatment area; 2) designing and constructing the system in such a manner to protect site personnel or an unauthorized intruder from any potential electrical or temperature hazards; and 3) adhering to the thermal vendor standard operating procedures for sampling hot media (discussed below).

5.2 System Construction and Operation

A preliminary conceptual layout of the thermal treatment system, including electrodes and equipment compound, is shown on Figure 11. The layout will be refined during the design phase discussed above.

Electrodes, extraction wells, and temperature monitoring points will be installed using a limited access hollow-stem auger drill rig. To install electrodes inside the building may require modifying doorways to gain access with the drill rig. Piping from wells to the treatment system will be placed underground. Any heat-sensitive utilities within the treatment area will be relocated, replaced with heat-resistant materials, or abandoned.

Prior to startup, in-place soil resistivity will be measured to determine actual power inputs. This *in-situ* resistivity measurement provides confirmation of the required voltage level to apply the estimated energy for treatment. The testing is conducted using a portable electrical variac. A low voltage is applied between a pair of electrodes and the current measured. Resistivity is calculated from this data and evaluated against full-scale requirements.

5.3 System Performance and Compliance Monitoring

The system will be operated by applying voltage to the subsurface. Air, steam, and soil vapors are recovered using a vacuum blower and cooled to condense moisture. Air and contaminated vapors will be treated using granular activated carbon (GAC) and discharged to the atmosphere. Condensate will be treated and discharged to the sanitary sewer.

Performance and confirmation monitoring would be performed during remediation to ensure that the remedial measures perform as designed and that remedial action objectives are achieved. Performance monitoring during system operation will include the following:

- Weekly power application rate;
- Cumulative energy applied;

- Subsurface temperatures;
- Vapor flowrate and vacuum;
- Contaminant concentrations in extracted and treated vapors;
- Contaminant concentrations in extracted and treated condensate;
- Condensate production and water discharge volume; and
- Days of operation.

The technology vendor's preliminary estimate, based on bench-scale testing, was for treatment to take 5 months at an average power input of 305 kilowatts. After subsurface temperatures have leveled off and the rate of contaminant removal drops significantly, soil sampling to evaluate remediation progress would be completed. The areas that are confirmed clean would be turned off, and the energy would be redirected into areas that have not achieved cleanup levels. The areas still exceeding cleanup levels would continue to be heated and re-sampled at a later time.

For performance monitoring, soil and groundwater samples would be collected from the treatment area to evaluate compliance with cleanup levels. Soil samples will be collected from four depth intervals at approximately 12 boring locations (approximately 48 samples), including in areas where the highest levels of contamination have been detected. Groundwater samples will be collected from existing well locations on the property (MW-1, MW-2, MW-3, and VE-1) and from a new well, MW-10, to be installed at the location of boring B-6 (where the highest on-property concentrations of COCs have been detected). A preliminary layout of soil and groundwater monitoring locations is shown on Figure 12. Compliance will be evaluated in accordance with the methods described in WAC 173-340-740(7) for soil and WAC 173-340-720(9) for groundwater. In accordance with WAC 173-340-(7)(e) and 173-34, no single sample concentration shall be greater than two times the soil cleanup level, and less than 10 percent of the sample concentrations shall exceed the cleanup level.

After monitoring indicates soil and groundwater cleanup levels have been achieved in the treatment area, the system will be turned off and the ground allowed to cool to ambient temperature (predicted to take approximately 1 year). Once soil temperatures have stabilized, groundwater monitoring will be conducted quarterly at the site wells for one year to confirm compliance with groundwater cleanup levels, and three soil vapor samples will be collected at locations shown on Figure 12. Soil vapor concentrations will be compared to the Ecology's draft screening levels for soil gas (Ecology 2009). If groundwater or soil gas within the treatment area is not in compliance, potential contingency actions will be evaluated at that time.

The thermal vendor, in conjunction with the USEPA, has developed standard operating procedures (SOPs) for sampling of hot soil and groundwater. These are provided in Appendix H.

5.4 Natural Attenuation Monitoring

It is likely that COC concentrations downgradient of the treatment area will remain above cleanup levels following treatment, but that with removal of the source, these concentrations will decline over time due to natural processes. Monitored natural attenuation of the plume would be implemented as follows:

- **Groundwater Monitoring.** After thermal treatment is complete and the subsurface has cooled down, groundwater samples will be collected from site monitoring wells quarterly for one year, and then annually for 5 years (unless cleanup levels are achieved in less than 5 years).
- Natural Attenuation Monitoring and Restoration Time Frame Evaluation. If cleanup levels are still exceeded after 5 years, one round of natural attenuation monitoring (including nitrate, sulfate, iron, manganese, alkalinity) will be conducted at site monitoring wells. Groundwater modeling will be performed to estimate restoration time frame of remaining contamination.

If confirmation monitoring data and groundwater modeling indicate that off-property groundwater will not achieve cleanup levels in a reasonable restoration time frame, then potential contingency actions will be evaluated at that time. If the modeling suggests that cleanup levels may be achieved within a reasonable restoration time frame, annual groundwater monitoring will continue until cleanup levels are achieved and a No Further Action determination is received from Ecology.

6 References

- Hart Crowser, 1997, Environmental Site Assessment Report, Spic'n Span Cleaners, July 31, 1997.
- Hart Crowser, 1998, Mineral Spirit UST Closure Report, Spic'n Span Cleaners, December 11, 1998.
- Hart Crowser, 2000, Well Installation and Groundwater Monitoring Report, Spic'n Span Cleaners, June 15, 2000.
- Hart Crowser, 2002a, Construction Startup, and First Quarter of Operation Monitoring Report, Spic'n Span Remediation System, April 11, 2002.
- Hart Crowser, 2002b, Second Quarter of Operation Monitoring Report, Spic'n Span Remediation System, August 21, 2002.
- Hart Crowser, 2002c, Third Quarter of Operation Monitoring Report and Planning Level Cost for Next Year, Spic'n Span Remediation System. August 21, 2002.
- Hart Crowser, 2003a, Operation and Monitoring Report for October 2002 through May 2003, Spic'n Span Remediation System, June 25, 2003.

- Hart Crowser, 2003b, Operation and Monitoring Report for September through November 2003, Spic'n Span Remediation System, December 2, 2003.
- Hart Crowser, 2004a, Operation and Monitoring Report for December 2003 through January 2004, Spic'n Span Remediation System, March 12, 2004.
- Hart Crowser, 2004b, Confirmation Monitoring Report for April and July 2004 Monitoring Events, Spic'n Span Cleaners, Dearborn Facility, August 26, 2004.
- Hart Crowser 2004c, Confirmation Monitoring Report for October 2004, Spic'n Span Cleaners, November 4, 2004.
- Hart Crowser, 2005, 2005 Soil and Groundwater Sampling and Analysis, and Preliminary Engineering Evaluation Report, Spic'n Span Cleaners, December 12, 2005.

Limitations

Work for this project was performed and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Spic'n Span Cleaners, Inc. for specific application to the referenced property. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

Table 1 - Total Organic Carbon in Soil

Spic 'n Span Cleaners

	PP-3A	PP-3A	PP-3A	PP-5	PP-5	PP-5	PP-8	PP-8	B5-12	B6-12
	06/16/05	06/16/05	06/16/05	06/16/05	06/16/05	06/16/05	06/17/05	06/17/05	07/26/08	07/26/08
	(0.5-4 ft)	(8-12 ft)	(20-24 ft)	(0-3 ft)	(8-12 ft)	(20-24 ft)	(8-11 ft)	(20-22 ft)	(12 ft)	(12 ft)
Total Organic Carbon	0.73%	0.70%	0.37%	1.7%	0.65%	0.38%	0.23%	0.25%	<.05 %	0.40%

Table 2 - Soil Analytical Results - Detected Analytes Only Spic 'n Span Cleaners

	MTCA Screening	PP-1 06/16/05	PP-1 06/16/05	PP-2 06/16/05	PP-2 06/16/05	PP-3A 06/16/05	PP-3A 06/16/05	PP-3A 06/16/05	PP-4 06/16/05	PP-4 06/16/05	PP-4 06/16/05	PP-5 06/16/05	PP-5 06/16/05	PP-5 06/16/05
Chemical Name	Levels in mg/kg	(0.5-3.5 ft)	(20-24 ft)	(8-12 ft)	(16-20 ft)	(0.5-4 ft)	(8-12 ft)	(20-24 ft)	(0.5-4 ft)	(8-11 ft)	(15-20 ft)	(0-3 ft)	(8-12 ft)	(20-24 ft)
Total Petroleum Hydrocarbons														
Mineral Spirits/Stoddard Solvent in mg/kg	86	5 U	5 U	5 U	1,400	10	5 U	28	5 U	5 U	210	5 U	5 U	13,000
Chlorinated Volatile Organics														
Tetrachloroethene in mg/kg	0.13	1	0.05 U	4.8	0.05 U	1.5	1.4	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.79	0.05 U
Trichloroethene in mg/kg	0.061	0.02 U	0.02 U	0.52	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Cis-1,2-dichloroethene in mg/kg	0.57	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U				
2-Chloro-toluene in mg/kg	1,600	0.05 U	0.05 U	0.05 U	0.21	0.05 U	0.05 U	0.11	0.05 U	0.48				
Non-Chlorinated Volatile Organics														
Ethylbenzene in mg/kg	14	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U				
Xylenes (total) in mg/kg	2.3	0.05 U	0.05 U	0.05 U	0.11	0.05 U	0.05 U	0.12	0.05 U	0.05 U	0.06	0.05 U	0.05 U	0.34
Isopropyl-benzene in mg/kg	8,000	0.05 U	0.05 U	0.05 U	0.85	0.068	0.05 U	0.24	0.05 U	0.05 U	0.14	0.05 U	0.05 U	0.1
N-propyl-benzene in mg/kg		0.05 U	0.05 U	0.05 U	1.9	0.19	0.076	1	0.05 U	0.05 U	0.57	0.05 U	0.05 U	0.62
1,3,5-trimethyl-benzene in mg/kg	4,000	0.05 U	0.05 U	0.05 U	2.3	0.05 U	0.05 U	1	0.05 U	1.2				
1,2,4-trimethyl-benzene in mg/kg	4,000	0.05 U	0.05 U	0.05 U	1.3	0.14	0.065	3.6	0.05 U	0.05 U	0.12	0.05 U	0.05 U	0.23
Tert-butyl-benzene in mg/kg		0.05 U	0.05 U	0.05 U	0.34	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.094
Sec-butyl-benzene in mg/kg		0.05 U	0.05 U	0.05 U	2.2	0.24	0.088	0.42	0.05 U	0.05 U	0.41	0.05 U	0.05 U	0.78
N-butyl-benzene in mg/kg		0.05 U	0.05 U	0.05 U	1.3	0.076	0.05 U	0.32	0.05 U	0.05 U	0.44	0.05 U	0.05 U	0.72
Styrene in mg/kg	0.11	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U				

Table 2 - Soil Analytical Results - Detected Analytes Only

Spic 'n Span Cleaners

		PP-6	PP-6	PP-7	PP-7	PP-8	PP-8	PP-9	PP-9	MW-5	MW-6	B-1	B-2	B-2
	MTCA Screening	06/16/05	06/16/05	06/16/05	06/16/05	06/17/05	06/17/05	06/17/05	06/17/05	06/24/05	06/24/05	07/26/08	07/26/08	07/26/08
Chemical Name	Levels in mg/kg	(8-12 ft)	(20-24 ft)	(8-12 ft)	(16-18 ft)	(8-11 ft)	(20-22 ft)	(8-11 ft)	(20-24 ft)	(15-25 ft)	(15-31.5 ft)	(24 ft)	(15 ft)	(24 ft)
Total Petroleum Hydrocarbons														
Mineral Spirits/Stoddard Solvent in mg/kg	86	5 U	43	5 U	5 U	5 U	5 U	21	5 U			5 U	5 U	5 U
Chlorinated Volatile Organics														
Tetrachloroethene in mg/kg	0.13	0.05 U	0.05 U	0.05 U	0.05 U	0.96	0.05 U	1.1	0.1	0.012	0.0014 U	0.05 U	0.05 U	0.05 U
Trichloroethene in mg/kg	0.061	0.02 U	0.02 U	0.012	0.0014 U	0.02 U	0.02 U	0.02 U						
Cis-1,2-dichloroethene in mg/kg	0.57	0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.21						
2-Chloro-toluene in mg/kg	1,600	0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U						
Non-Chlorinated Volatile Organics														
Ethylbenzene in mg/kg	14	0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U						
Xylenes (total) in mg/kg	2.3	0.05 U	0.085	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U
Isopropyl-benzene in mg/kg	8,000	0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U						
N-propyl-benzene in mg/kg		0.05 U	0.12	0.05 U	0.05 U	0.05 U	0.05 U	0.12	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U
1,3,5-trimethyl-benzene in mg/kg	4,000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.12	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U
1,2,4-trimethyl-benzene in mg/kg	4,000	0.05 U	0.24	0.05 U	0.05 U	0.05 U	0.05 U	0.088	0.05 U	0.0013 U	0.0014 U	0.05 U	0.065	0.05 U
Tert-butyl-benzene in mg/kg		0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U						
Sec-butyl-benzene in mg/kg		0.05 U	0.082	0.05 U	0.05 U	0.05 U	0.05 U	0.16	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U
N-butyl-benzene in mg/kg		0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U						
Styrene in mg/kg	0.11	0.05 U	0.05 U	0.0013 U	0.0014 U	0.05 U	0.05 U	0.05 U						

Table 2 - Soil Analytical Results - Detected Analytes Only

Spic 'n Span Cleaners

		B-3	B-3	B-4	B-4	B-5	B-5	B-6	B-6	B-7	B-8	B-8	B-9	B-9
	MTCA Screening	07/26/08	07/26/08	07/26/08	07/26/08	07/26/08	07/26/08	07/26/08	07/26/08	10/11/08	10/11/08	10/11/08	10/11/08	10/11/08
Chemical Name	Levels in mg/kg	(12 ft)	(24 ft)	(20 ft)	(24 ft)	(16 ft)	(24 ft)	(23 ft)	(28 ft)	(9 ft)	(9 ft)	(24 ft)	(15 ft)	(22 ft)
Total Petroleum Hydrocarbons														
Mineral Spirits/Stoddard Solvent in mg/kg	86	190	710	94	1,700	7.1	5 U	290	5 U					
Chlorinated Volatile Organics														
Tetrachloroethene in mg/kg	0.13	0.05 U	0.05 U	0.05 U	0.05 U	2.1	0.097	0.05 U	0.082	0.05 U				
Trichloroethene in mg/kg	0.061	0.02 U	0.02 U	0.02 U	0.02 U	1	0.02 U	1.3						
Cis-1,2-dichloroethene in mg/kg	0.57	0.18	0.05 U	0.05 U	0.05 U	0.53	0.058	0.05 U	2.3					
2-Chloro-toluene in mg/kg	1,600	0.05 U												
Non-Chlorinated Volatile Organics														
Ethylbenzene in mg/kg	14	0.05 U	0.05 U	0.05 U	0.05 U	0.071	0.05 U							
Xylenes (total) in mg/kg	2.3	0.05 U	0.05 U	0.05 U	0.05 U	0.068	0.05 U							
Isopropyl-benzene in mg/kg	8,000	0.05 U	0.076	0.05 U	0.05 U	0.13	0.05 U							
N-propyl-benzene in mg/kg		0.05 U	0.25	0.051	0.05 U	0.05	0.05 U							
1,3,5-trimethyl-benzene in mg/kg	4,000	0.05 U												
1,2,4-trimethyl-benzene in mg/kg	4,000	0.05 U	0.05 U	0.059	0.05 U	0.094	0.05 U							
Tert-butyl-benzene in mg/kg		0.05 U												
Sec-butyl-benzene in mg/kg		0.05 U												
N-butyl-benzene in mg/kg		0.05 U	0.32	0.05 U	0.05 U	0.088	0.05 U							
Styrene in mg/kg	0.11	0.05 U	0.076	0.05 U										

Table 2 - Soil Analytical Results - Detected Analytes Only

Spic 'n Span Cleaners

	MTCA Screening	B-10 10/11/08	B-10 10/11/08	B-10 10/11/08	B-11 10/11/08	B-11 10/11/08	B-12 10/11/08	B-12 10/11/08	B-13 10/11/08	B-13 10/11/08	B-14 10/11/08	B-14 10/11/08	B-14 10/11/08	B-14 10/11/08
Chemical Name	Levels in mg/kg	(12 ft)	(18 ft)	(24 ft)	(15 ft)	(24 ft)	(12 π)	(22 ft)	(3π)	(19 ft)	(3 π)	(11 π)	(17 ft)	(23 ft)
Total Petroleum Hydrocarbons														
Mineral Spirits/Stoddard Solvent in mg/kg	86			5 U		5 U		5 U					5 U	6,700
Chlorinated Volatile Organics														
Tetrachloroethene in mg/kg	0.13	1.2	1.3	0.065	0.12	0.24	0.059	0.05 U	0.05 U	0.05 U	1.1	1.3	0.05 U	0.05 U
Trichloroethene in mg/kg	0.061	0.02 U	0.12	0.02 U										
Cis-1,2-dichloroethene in mg/kg	0.57	0.11	0.05 U											
2-Chloro-toluene in mg/kg	1,600	0.05 U												
Non-Chlorinated Volatile Organics														
Ethylbenzene in mg/kg	14	0.05 U												
Xylenes (total) in mg/kg	2.3	0.05 U												
Isopropyl-benzene in mg/kg	8,000	0.05 U												
N-propyl-benzene in mg/kg		0.05 U												
1,3,5-trimethyl-benzene in mg/kg	4,000	0.05 U												
1,2,4-trimethyl-benzene in mg/kg	4,000	0.05 U												
Tert-butyl-benzene in mg/kg		0.05 U												
Sec-butyl-benzene in mg/kg		0.05 U												
N-butyl-benzene in mg/kg		0.05 U												
Styrene in mg/kg	0.11	0.05 U												

Notes

¹ Any analyte detected in one or more of the samples. Blank Cell - Not Analyzed Bold and Shaded Values - Detected Value Exceeds Screening Level See Table 5 for derivation of MTCA Screening Levels U - Analyte was no detected above the reporting limit
Table 2 - Soil Analytical Results - Detected Analytes Only Spic 'n Span Cleaners

		B-14	B-15	B-15	B-16	B-16	B-18	B-17	B-17	B-17	B-17
	MTCA Corooning	10/11/08	12/06/08	12/06/08	12/06/08	12/06/08	12/06/08	06/12/11	06/12/11	06/12/11	06/12/11
Chomical Namo	I ovols in ma/ka	(27 ft)	(2 ft)	(4 ft)	(18 ft)	(22 ft)	(22 ft)	(10 ft)	(15 ft)	(23 ft)	(24 ft)
Total Potroloum Hydrogarbons	Levels III IIIg/kg	(2710)	(210)	(+ 10)	(1011)	(22 11)	(22 11)	(1010)	(1011)	(2011)	(2411)
Mineral Spirite/Steddord Solvent in malka	96	5.11						5.11	5.11	5.11	5.11
Wineral Spirits/Stoudard Solvent in hig/kg	00	50						50	5 0	50	50
Chlorinated Volatile Organics											
Tetrachloroethene in mg/kg	0.13	0.05 U									
Trichloroethene in mg/kg	0.061	0.02 U									
Cis-1,2-dichloroethene in mg/kg	0.57	0.12	0.05 U								
2-Chloro-toluene in mg/kg	1,600	0.05 U									
Non-Chlorinated Volatile Organics											
Ethylbenzene in mg/kg	14	0.05 U									
Xylenes (total) in mg/kg	2.3	0.05 U									
Isopropyl-benzene in mg/kg	8,000	0.05 U									
N-propyl-benzene in mg/kg		0.05 U									
1,3,5-trimethyl-benzene in mg/kg	4,000	0.05 U									
1,2,4-trimethyl-benzene in mg/kg	4,000	0.05 U									
Tert-butyl-benzene in mg/kg		0.05 U									
Sec-butyl-benzene in mg/kg		0.05 U									
N-butyl-benzene in mg/kg		0.05 U									
Styrene in mg/kg	0.11	0.05 U									

Table 3 - Groundwater Analytical Results - Detected Analytes Since 2004 Only¹

Spic 'n Span Cleaners

Data from Monitoring Wells

Chemical Name	MTCA Screening Levels in ug/L	VE-1 7/12/2008	MW-1 7/12/2008	MW-2 7/12/2008	MW-3 7/12/2008	MW-4 7/12/2008	MW-5 7/12/2008	MW-6 7/12/2008	MW-7 1/19/2009	MW-8 1/19/2009	MW-9 1/19/2009
Total Petroleum Hydrocarbons											
Mineral Spirits/Stoddard Solvent in mg/L	1,000	0.1 U									
Volatile Organics											
Tetrachloroethene in ug/L	5	1 U	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene in ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-dichloroethene in ug/L	80	11	1 U	1.9	1.3	80	5.4	1 U	1 U	1 U	1 U
Vinyl Chloride in ug/L	0.2	0.2 U	0.2 U	0.2 U	0.2 U	57	2.4	4.3	0.02 U	0.02 U	0.02 U
Chloroform in ug/L	7.2	1 U	8.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Groundwater Grab Samples

Chemical Name	MTCA Screening Levels in ug/L	B-1 07/26/08	B-2 07/26/08	B-3 07/26/08	B-4 07/26/08	B-5 07/26/08	B-6 07/26/08	B-17 06/12/11	B-18 12/06/08	B-19 12/06/08	B-20 12/06/08	B-21 12/06/08	B-22 12/06/08
Total Petroleum Hydrocarbons													
Mineral Spirits/Stoddard Solvent in mg/L	1,000	0.1 U											
Chlorinated Volatile Organics													
Tetrachloroethene in ug/L	5	1 U	1 U	1 U	1 U	1 U	2	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene in ug/L	5	1 U	1 U	1 U	1 U	1 U	3.7	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-dichloroethene in ug/L	80	13	9.1	1 U	1 U	1 U	24	1 U	1	1 U	1 U	1 U	1 U
Vinyl Chloride in ug/L	0.2	27	24	0.2 U	0.2 U	1	2.3	0.2 U	4.7	6.8	7.6	0.2 U	0.2 U

Notes

¹ Any analyte detected in one or more of the samples. Mineral spirits is also included, although not detected, because it is a COC.

Blank Cell - Not Analyzed

Bold and Shaded Values - Detected Value Exceeds Cleanup Level

U - Analyte was no detected above the reporting limit

Table 4 - Soil Gas Analytical Results - Detected Analytes Only¹

Spic 'n Span Cleaners

	Air, Method B,	Air, Method B, Non-	Sail Cas Carooning	5 4 5 4 5	5 4 6 6		
Chamical Name	Carcinogen, Standard	Carcinogen, Standard	Soli Gas Screening	B-13-19	B-13-3	B-14-11	B-14-3
Chemical Name	Formula Value (µg/m3)	Formula value (µg/m3)	Level (µg/m3)	10/11/08	10/11/08	10/11/08	10/11/08
Chlorinated Volatile Organic Compounds in Soil	Gas						
1,1-Dichloroethane in µg/m3		320	3200	4.7	4.4 U	4.7 U	310 U
1,1-Dichloroethene in µg/m3		91	910	11	4.4 U	4.6 U	300 U
cis-1,2-Dichloroethene in µg/m3		16	160	680	4.4 U	4.6 U	300 U
Tetrachloroethene in µg/m3	0.42	16	4.2	7.9 U	17	1,800	190,000
trans-1,2-Dichloroethene in µg/m3		32	320	5.7	4.4 U	4.6 U	300 U
Trichloroethene in µg/m3	0.1	16	1	42	5.9 U	27	410 U
Vinyl Chloride in µg/m3	0.28	46	2.8	380	2.8 U	3.0 U	200 U
Methylene Chloride in µg/m3	5.3	1,400	53	4.0 U	4.3	4.0 U	260 U
Non-Chlorinated Volatile Organic Compounds in	Soil Gas						
1,2,4-Trimethylbenzene in µg/m3		2.7	27	6.9	14	7.5	380 U
1,3-Butadiene in µg/m3	0.08	0.91	0.8	18	2.4 U	13	170 U
2,2,4-Trimethylpentane in µg/m3				8.4	5.1 U	5.4 U	360 U
2-Butanone (Methyl Ethyl Ketone) in µg/m3		460	4600	38	5.9	61	220 U
2-Propanol in µg/m3				11 U	11 U	12	750 U
4-Ethyltoluene in µg/m3				5.7	12	6.5	380 U
4-Methyl-2-pentanone in µg/m3		32		4.8 U	4.5 U	5.7	310 U
Acetone in µg/m3				170	37	200	730 U
Benzene in µg/m3	0.32	14	3.2	870	120	29	240 U
Carbon Disulfide in µg/m3		320	3200	6.3	3.4 U	6.5	240 U
Cyclohexane in µg/m3				22	3.8 U	10	260 U
Ethanol in µg/m3				31	16	67	580 U
Ethyl Benzene in µg/m3		460	4600	7.7	15	10	330 U
Heptane in µg/m3				15	5.4	53	310 U
Hexane in µg/m3		320	3200	23	5.8	65	270 U
m,p-xylene in µg/m3		46	460	24	84	31	330 U
o-Xylene in µg/m3		46	460	9.7	63	11	330 U
Styrene in µg/m3	4.4	460	44	5.0 U	5.1	5.3	320 U
Toluene in µg/m3		2,200	22,000	60	45	45	290 U

Notes

¹ Any analyte detected in one or more of the samples.

² Lower of the carcinogenic or non-carcinogenic values. Screening levels provided for soil shallower than 15 feet. For screening levels for soil deeper than 15 feet, multiply by 10.

U - Analyte was no detected above the reporting limit

Table 5 - Summary of MTCA Method A or B Cleanup Levels for Detected Analytes

Spic 'n Span Cleaners

	GROUNDWATER	SC	DIL
		MTCA Clea	nup Levels
	MTCA	in m	g/kg
	Cleanup Levels	Direct Contact ²	Groundwater
Chemical Name	in ug/L ¹		Protection ³
Total Petroleum Hydrocarbons			
Mineral Spirits/Stoddard Solvent	1,000		86
Chlorinated Volatile Organics			
Tetrachloroethene	5	1.9	0.13
Trichloroethene	5	11	0.061
Cis-1,2-dichloroethene	80	800	0.57
Vinyl Chloride	0.2	0.67	0.05 ⁽⁴⁾
Chloroform	7.2	160	0.061
2-Chloro-toluene	160	1,600	
Non-Chlorinated Volatile Organics			
Benzene	5	18	0.046
Toluene	1,000	6,400	16
Ethylbenzene	700	8,000	14
Xylenes (total)	100	16,000	2.3
lsopropyl-benzene	800	8,000	
N-propyl-benzene			
1,3,5-trimethyl-benzene	400	4,000	
1,2,4-trimethyl-benzene	400	4,000	
Tert-butyl-benzene			
Sec-butyl-benzene			
N-butyl-benzene			
Styrene	1.5	16,000	0.11

Notes

Proposed cleanup levels are in **bold**.

- ¹ Cleanup levels based on MTCA Method A table values (WAC 173-340-900, Table 720-1). When Method A values are not available, Method B Standard Formula Values are listed, as provided in Ecology's CLARC database.
- ² Cleanup levels based on MTCA Method Method B Standard Formula Values for Unrestricted Land Use, as provided in Ecology's CLARC database.
- ³ The soil cleanup level for TPH as Mineral Spirits is calculated using the MTCATPH 11.1 workbook. The worksheet is provided in Appendix F. The soil cleanup level for the volatile organics is calculated based on the equation below (WAC 173-340-747, Equation 747-1). If no MTCA cleanup level for groundwater, Henry's law constant, and/or Koc value are available for a given compound, the calculation is not completed.

$$C_{s} = C_{w}(UCF)DF\left[K_{d} + \frac{(\theta_{w} + \theta_{a}H_{cc})}{\rho_{b}}\right]$$

Where:

- Cs= Soil cleanup level in mg/kg
- Cw= Groundwater cleanup level as listed above in ug/L
- UCF= Unit conversion factor (0.001 g/ug)
- DF= Dilution factor (dimensionless; MTCA default value is 20 for unsaturated soils)
- Kd= Koc x foc
 - Koc as listed in the Ecology's CLARC database
 - foc = 0.0039 (geometric mean of values in Table 1 of this report)
- Ow= Water-filled soil porosity in ml water/ ml soil (MTCA default value is 0.3 for unsaturated soils)
- $\Theta \alpha$ = Air-filled soil porosity in ml air/ml soil (MTCA default value is 0.13 for unsaturated soils)
- Hcc= Henry's law constant as listed in Ecology's CLARC database
- ρb= Dry soil bulk density in kg/L (MTCA default value is 1.5 kg/L)

4 Based on PQL.

Table 6 - Cleanup Levels for Site Contaminants of Concern Spic 'n Span Cleaners

	Groundwater	
	Cleanup Levels	Soil Cleanup Levels
Chemical Name	in ug/L	in mg/kg
Total Petroleum Hydrocarbons		
Mineral Spirits/Stoddard Solvent	1,000	86
Chlorinated Volatile Organics		
Tetrachloroethene	5	0.13
Trichloroethene	5	0.061
Cis-1,2-dichloroethene	80	0.57
Vinyl Chloride	0.2	0.05

Table 7 - Remediation Cost Estimate - Alternative 1

Spic 'n Span Cleaners

Item	Quantity	Unit	U	Init Cost	Т	Total Cost	Notes
Excavation Design and Permitting							
design/permitting investigation	1	ls	\$	35,000	\$	35,000	for shoring wall and waste characterization/segregation letter
engineering design report and bid specs	1	ls	\$	60,000	\$	60,000	includes engineering of shoring, geotech report to support remediation
permitting	1	ls	\$	50,000	\$	50,000	sewer discharge authorization; shoring; grading
contingency	25%		\$	145,000	\$	36,250	_
Subtotal					\$	181,250	
Subtotal, NPV					\$	161,038	Year 4
Excavation Construction							
pre-con submittals, mobilization, TESC	1	ls	\$	20,000	\$	20,000	
shoring	3980	sf	\$	60	\$	238,800	soldier pile/lagging w/tiebacks
utility protection/decommissioning	1	ls	\$	5,000	\$	5,000	remove subsurface utilities in excavation area; cap stubs
excavation and handling	4200	су	\$	6	\$	25,200	
analytical sampling	53	ea	\$	250	\$	13,200	characterization and confirmation samples for VOCs, TPH
Hazardous soil - trucking and disposal	150	ton	\$	175	\$	26,250	Arlington, OR landfill
Contaminated soil - trucking and disposal	6570	ton	\$	55	\$	361,350	Roosevelt landfill
extraction pumps, piping	4	wk	\$	800	\$	3,200	materials and labor
settling tanks and sand filters	4	wk	\$	2,800	\$	11,200	Two 20,000 gallon tanks and sand filtration unit- rental; includes cleaning
discharge fee	604800	gal	\$	0.01	\$	6,048	to sanitary sewer; assumes settling only required treatment
import fill	4200	су	\$	30	\$	126,000	
backfill and compaction	4200	су	\$	5	\$	21,000	
monitoring well replacement	3	ea	\$	2,500	\$	7,500	MW-2, MW-3, MW-5
tax	9.5%		\$	443,500	\$	42,133	contractor items
contingency	25%		\$	906,881	\$	226,720	
Subtotal					\$	1,133,601	-
Subtotal, NPV					\$	1,007,189	Year 4
Consulting Support for Construction							
construction oversight	4	week		\$5,500	\$	22,000	full time shoring and excavation oversight, sampling
contractor and construction management	6	week	\$	1,500	\$	9,000	includes pre-con coordination and submittals
reporting	1	ls	\$	20,000	\$	20,000	construction as-built report
contingency	25%		\$	51,000	\$	12,750	_
Subtotal					\$	63,750	
Subtotal, NPV					\$	56,641	Year 4
Confirmation Monitoring							
monitoring and reporting - years 0 through 3	4	year	\$	7,940	\$	30,399	annual monitoring at 9 wells; NPV
groundwater monitoring - year 5	4	events	\$	2,940	\$	10,144	quarterly at 9 wells for one year - Year 5
reporting and project management	1	ea	\$	5,000	\$	4,313	annual groundwater monitoring report - Year 5
monitoring and reporting - years 6 through 9	4	year	\$	7,940	\$	23,352	annual monitoring at 9 wells; NPV
monitoring and reporting - years 10 though 19	10	year	\$	7,940	\$	44,032	annual monitoring at 9 wells; NPV
Closure report and Ecology review	1	ls	\$	15,000	\$	6,864	NPV - Year 20
contingency	25%		\$	88,706	\$	22,176	_
Subtotal (NPV)					\$	141,282	
Total Estimated Cost (Net Present Value)					\$	1,366,150	

Notes and Assumptions: Building demolition costs not included. Average dewatering flowrate 15 gpm

Average dewateling inwrate Assumes all soil excavated requires disposal at a permitted landfill Cost estimates are feasibility-study level (+50/-30%) Cost estimates are based on Net Present Value (NPV) using the following discount rates: year 0 0%

years 1 through 5

average nominal rate years 3 and 5, OMB circular A-94 Appendix C, Revised Dec 2008
 average nominal rate years 7, 10, and 20, OMB circular A-94 Appendix C, Revised Dec 2008

years 6 thorugh 20 Assumes 2012 is year 0

Table 8 - Remediation Cost Estimate - Alternative 2

Spic 'n Span Cleaners

Item	Quantity	Unit	U	nit Cost	Т	otal Cost	Notes
Interim Groundwater Treatment							
isco pilot study	1	ls	\$	20,000	\$	20,000	evaluate isco vs. SVE/AS
new wells	7	ea	\$	2,500	\$	17,500	Direct push/pre-pack screens
Trenching to new wells	110	lf	\$	60	\$	6,600	2-foot wide; includes removal and replacement of asphalt and concrete
SVE and air sparging piping	720	lf	\$	5	\$	3,600	2"PVC for SVE, 1" HDPE for air sparging - up to roof
Maintenance/repair of existing equipment	1	ls	\$	10,000	\$	10,000	inspect; replace compressor vanes; test piping/fittings for leaks
Annual monitoring and maintenance	5	ea	\$	15,000	\$	75,000	air monitoring, electricity, annual compressor maintenance
condensate and purge water removal - year 0	200	gal	\$	3	\$	600	transportation and disposal
groundwater monitoring - year 0	4	events	\$	2,940	\$	11,760	9 wells quarterly for one year, VOCs only
reporting and project management- year 0	1	year	\$	5,000	\$	5,000	annual report and project management
Ecology review - year 0	1	yr	\$	1,000	\$	1,000	VCP
monitoring and maintenance - years 1 through 4	4	vear	\$	26,880	\$	99,916	NPV
tax	9.5%	J	\$	37,700	\$	3,582	contractor items
contingency	25%		\$	254.557	\$	63,639	
Subtotal, NPV					\$	318,196	-
,						,	
Excavation Design and Permitting							
design/permitting investigation	1	ls	\$	35,000	\$	35,000	for shoring wall and waste characterization/segregation letter
engineering design report and bid specs	1	ls	\$	60,000	\$	60,000	includes engineering of shoring, geotech report to support remediation
permitting	1	ls	\$	50.000	\$	50,000	sewer discharge authorization; shoring; grading
contingency	25%		\$	145.000	\$	36,250	
Subtotal			•	,	\$	181,250	-
Subtotal. NPV					Ŝ	161.038	Year 4
						- ,	
Excavation Construction							
pre-con submittals, mobilization, TESC	1	ls	\$	20.000	\$	20.000	
shoring	3980	sf	\$	60	\$	238,800	soldier pile/lagging w/tiebacks
utility protection/decommissioning	1	ls	Ŝ	5.000	\$	5.000	remove subsurface utilities in excavation area: cap stubs
excavation and handling	4200	CV	ŝ	6	ŝ	25 200	······································
analytical sampling	53	ea	ŝ	250	ŝ	13 200	characterization and confirmation samples for VOCs TPH
Hazardous soil - trucking and disposal	150	ton	ŝ	175	ŝ	26 250	Arlington OR landfill
Contaminated soil - trucking and disposal	6570	ton	ŝ	55	ŝ	361 350	Roosevelt landfill
extraction numps ining	4	wk	ç	800	¢ ¢	3 200	materials and labor
settling tanks and sand filters	4	wk	ŝ	2 800	ŝ	11 200	Two 20 000 gallon tanks and sand filtration unit- rental: includes cleaning
discharge fee	604800	nal	φ ¢	2,000	φ	6 048	to sanitary sever: assumes settling only required treatment
import fill	4200	ov	¢	30	¢	126,000	to building bewei, about the betaining only required area and the
hackfill and compaction	4200	CV	φ ¢	5	Ψ ¢	21 000	
monitoring well replacement	4200	0y	φ	2 500	φ ¢	7 500	MW 2 MW 3 MW 5
tay	0.5%	ca	φ	443 500	φ ¢	1,500	contractor items
contingency	25%		φ	006 881	φ	226 720	
Subtotal	2370		φ	300,001	φ φ	1 122 601	-
Subtotal NDV					¢	1,133,001	Voor 4
Subiolal, INF V					φ	1,007,189	fear 4
Consulting Support for Construction							
construction oversight	4	week		\$5 500	\$	22 000	full time shoring and excavation oversight sampling
contractor and construction management	4	wook	¢	φ3,500 1 500	φ φ	22,000 Q 000	includes pre-con coordination and submittals
roporting	1	WCCK	φ	20,000	φ ¢	3,000	construction on built report
contingonov	250/	15	φ	£1,000	φ ¢	12 750	construction as-built report
Subtotal	23%		φ	51,000	- 0	62 750	-
Subtotal NDV					¢ ¢	56 641	Voor 4
Subiolal, INF V					φ	50,047	fear 4
Confirmation Monitoring							
aroundwater monitoring first vr after construction	4	ovente	¢	2 0/0	¢	10 144	quarterly at 9 wells for one year - Year 5
reporting and project management	4	010110	ę	5 000	φ Φ	10,144	annual groundwater monitoring report. Vear 5
monitoring and reporting - years 6 through 9	1	vear	φ ¢	7 0/10	φ φ	23 350	annual monitoring at 0 wells: NPV
monitoring and reporting - years 0 though 9	10	vear	ę	7 0/0	φ Φ	20,002	annual monitoring at 9 wells, NPV
Closure report and Ecology review	10	ycai lo	¢ ¢	15 000	ф Ф	-++,UJZ	
	050/	15	¢	10,000	ф Ф	20,000	INFV - TEAL 20
Subtotol	∠5%		ф	00,429	\$	22,107	-
รมมเงเลเ					ф	110,537	
Total Estimated Cost (Not Present Value)					¢	1 652 602	
Total Estimated Cost (Net Present Value)					φ	1,003,002	

Notes and Assumptions:

Building demolition costs not included.

Average dewatering flowrate 15 gpm

 Average dewatering flowrate
 15 gpm

 Assumes all soil excavated requires disposal at a permitted landfill

 Cost estimates are feasibility-study level (+50/-30%)

 Cost estimates are based on Net Present Value (NPV) using the following discount rates:

 year 1
 0%

 years 2 through 5
 3% average nominal rate years 3 and 5, OMB circular A-94 Appendix C, Revised Dec 2008

 years 6 thorugh 20
 4.20% average nominal rate years 7, 10, and 20, OMB circular A-94 Appendix C, Revised Dec 2008

Table 9 - Remediation Cost Estimate - Alternative 3

Spic 'n Span Cleaners

Item	Quantity U	Init	Unit Cost	Total Cost	Notes
ERH Design and Permitting				• • • • • •	
Design, work plans, permits	1 IS	\$	68,000	\$ 68,000	IRS estimate
Design investigation	1 IS	\$	60,000	\$ 60,000	Soil and groundwater sampling and hydraulic testing
Subtotal				\$ 128,000	
EBH Construction and Operation					
Trenching and restoration	1 le	¢	42 000	\$ 42.000	TRS estimate
drilling and soil sampling	1 le	¢ ¢	84,000	\$ 84,000	TRS estimate
drill cuttings and waste disposal	1 i3 1 ie	¢ ¢	5 000	\$ 5,000	TRS estimate
electrical connection	1 i3 1 ie	¢ ¢	100 000	\$ 100.000	TRS estimate
carbon usage transport regeneration	1 13	¢ ¢	84,000	\$ 100,000	TPS estimate
electrical operav usage	1 15	φ ¢	79,000	\$ 79,000	TRS estimate
electrical energy usage	1 15	ې م	15,000	\$ 76,000	TRS estimate
oliner cosis	1 15	ې م	194 000	\$ 194,000	TRS estimate
electrode materials mobilization	1 15	ý	70,000	\$ 184,000	TRS estimate
subsurface installation	1 15	ý	78,000	\$ 78,000	TRS estimate
surface installation and startup	1 15	ý	258,000	\$ 258,000	TRS estimate
remediation system operation	1 15	ý	317,000	\$ 317,000	TRS estimate
demobilization and linal report	1 15	ý	64,000	\$ 64,000	
utility relocation - known	1 IS	. >	30,000	\$ 30,000	underground power and gas lines in treatment area
use of tenant leased area for equipment	9 mon	tn ş	2,100	\$ 18,900	8 parking spaces @ \$200/month, plus \$500/mo inconvenience
exclusion area extending onto adjacent property	1 IS	\$	15,000	\$ 15,000	estimate of legal fees for access and reimbursement for inconvenience
contingency	25%	\$	1,372,900	\$ 343,225	
tax	9.5%	\$	1,716,125	\$ 163,032	
Subtotal				\$ 1,879,157	
Confirmation Monitoring					
groundwater monitoring - first vr after construction	4 ever	nts \$	4.000	\$ 15.082	Year 2: NPV
soil and soil vapor sampling	1 ls	ŝ	16.000	\$ 14,736	Year 2: NPV
reporting and project management - Year 2	1 ea	ŝ	5 000	\$ 4713	annual groundwater monitoring report: NPV
monitoring and reporting - years 3 through 5	3 vear	Ś	8,000	\$ 21,330	annual monitoring at 10 wells: NPV
monitoring and reporting - years 6 though 15	10 year	Ś	8,000	\$ 52,301	annual monitoring at 10 wells: NPV
Closure report and Ecology review - Year 16	1 ls	ŝ	15,000	\$ 7,766	NPV
contingency	25%	¢ ¢	115 027	\$ 28.082	
Subtotal	2370	Ψ	110,027	\$ 144 900	$\frac{1}{2}$
oubiolai				φ 144,000	
Total Estimated Cost				\$ 2,152,066	
Notes and Assumptions:					

 Integration of the system o

Table 10 - Remediation Cost Estimate - Alternative 4

Spic 'n Span Cleaners

Item	Quantity Unit	Unit Cost	Total Cost	Notes
Interim Groundwater Treatment				
isco pilot study	1 ls	\$ 20,000	\$ 20,000	evaluate isco vs. SVE/AS
new wells	/ ea	\$ 2,500	\$ 17,500	Direct push/pre-pack screens
I renching to new wells	110 If	\$ 60	\$ 6,600	2-foot wide; includes removal and replacement of asphalt and concrete
SVE and air sparging piping	720 lf	\$ 5	\$ 3,600	2"PVC for SVE, 1" HDPE for air sparging - up to root
Maintenance/repair of existing equipment	1 IS	\$ 10,000	\$ 10,000	inspect; replace compressor vanes; test piping/fittings for leaks
Annual monitoring and maintenance	5 ea	\$ 15,000	\$ 75,000	air monitoring, electricity, annual compressor maintenance
aroundwater monitoring water removal - year o	200 yai	\$ 3040	\$ 000	a wells quarterly for one year. VOCs only
groundwater monitoring - year o	4 events	\$ 2,940 ¢ 5,000	\$ 11,700	9 wells qualiterly for one year, vocs only
Ecology roviow year 0	1 year	\$ 3,000	\$ 3,000	
monitoring and maintonance, years 1 through 4	1 yı 4 yoar	\$ 1,000	\$ 1,000	
tax	4 year	\$ 20,000	\$ 3303	contractor items
contingency	25%	\$ 254 369	\$ 63.502	
Subtotal	2070	φ 204,000	\$ 317,961	-
oubloa,			¢ 011,001	
Excavation Design and Permitting				
design/permitting investigation	1 ls	\$ 35,000	\$ 35,000	for shoring wall and waste characterization/segregation letter
engineering design report and bid specs	1 ls	\$ 60,000	\$ 60,000	includes engineering of shoring, geotech report to support remediation
permitting	1 ls	\$ 50,000	\$ 50,000	sewer discharge authorization; shoring; grading
contingency	25%	\$ 145,000	\$ 36,250	
Subtotal			\$ 181,250	=
Subtotal, NPV			\$ 161,038	Year 4
Excavation Construction				
pre-con submittals, mobilization, TESC	1 ls	\$ 20,000	\$ 20,000	
shoring	3980 sf	\$ 60	\$ 238,800	soldier pile/lagging w/tiebacks
utility protection/decommissioning	1 ls	\$ 5,000	\$ 5,000	remove subsurface utilities in excavation area; cap stubs
excavation and handling	4200 cy	\$6	\$ 25,200	
analytical sampling	53 ea	\$ 250	\$ 13,200	characterization and confirmation samples for VOCs,TPH
Hazardous soil - trucking and disposal	150 ton	\$ 175	\$ 26,250	Arlington, OR landfill
Contaminated soil - trucking and disposal	6570 ton	\$ 55	\$ 361,350	Roosevelt landfill
extraction pumps, piping	4 wk	\$ 800	\$ 3,200	materials and labor
settling tanks and sand filters	4 wk	\$ 2,800	\$ 11,200	Two 20,000 gallon tanks and sand filtration unit- rental; includes cleaning
discharge fee	604800 gal	\$ 0.01	\$ 6,048	to sanitary sewer; assumes settling only required treatment
import fill	4200 cy	\$ 30	\$ 126,000	
backfill and compaction	4200 cy	\$ 5	\$ 21,000	
monitoring well replacement	3 ea	\$ 2,500	\$ 7,500	MW-2, MW-3, MW-5
tax	9.5%	\$ 443,500	\$ 42,133	contractor items
contingency	25%	\$ 906,881	\$ 226,720	-
			\$ 1,133,601	V 4
Subtotal, NPV			\$ 1,007,189	Year 4
Consulting Support for Construction				
construction eversight	4 wook	\$5,000	\$ 20.000	full time shoring and execution eversight sampling
contractor and construction management	4 week	\$3,000 ¢ 1,500	\$ 20,000	includes pro concoordination and submittals
reporting	1 le	\$ 20,000	\$ 20,000	construction as-built report
contingency	25%	\$ 20,000	\$ 12,000	construction as-built report
Subtotal	2070	φ 43,000	\$ 61.250	-
Subtotal NPV			\$ 54.420	Vear 4
			φ 34,420	1641 4
Enhanced Natural Attenuation				
UIC authorization/work plan/street use permit	1 ls	\$ 15.000	\$ 15.000	
Pilot test	1 ls	\$ 50,000	\$ 50,000	localized injection and monitoring
Driller	6 dav	\$ 2,500	\$ 15.000	direct-push driller for injection
Amendments	1200 gal	\$ 30	\$ 36.000	EOS
Injection equipment	6 dav	\$ 1.000	\$ 6.000	pump, mixing tank, field supplies
field oversight	6 dav	\$ 1.100	\$ 6,600	labor and supplies
performance monitoring	3 ea	\$ 1.500	\$ 4,500	quarterly after injection for one year
groundwater analysis	27 ea	\$ 500	\$ 13.500	9 wells, three events - VOCs and MNA parameters
reporting and project management	1 ls	\$ 20.000	\$ 20,000	construction report and project management
Ecology review	1 ls	\$ 2,000	\$ 2,000	VCP
tax	9.5%	\$ 57,000	\$ 5,415	contractor items
contingency	25%	\$ 174,015	\$ 43,504	
Subtotal			\$ 217,519	=
Subtotal, NPV			\$ 144,152	Year 10
Confirmation Monitoring				
groundwater monitoring - first year	4 events	\$ 3,750	\$ 12,211	quarterly at 9 wells for one year - Year 5
reporting and project management	1 ea	\$ 5,000	\$ 4,070	annual groundwater monitoring report - Year 5
monitoring and reporting - years 6 through 9	4 year	\$ 8,750	\$ 25,735	annual monitoring at 9 wells; NPV
monitoring and reporting - years 10 though 19	10 year	\$ 8,750	\$ 48,524	annual monitoring at 9 wells; NPV
Closure report and Ecology review	1 ls	\$ 15,000	\$ 6,588	NPV - Year 20
contingency	25%	\$ 97,128	\$ 24,282	_
Subtotal (NPV)			\$ 121,409	
Total Estimated Cost			\$ 1,806,169	

Notes and Assumptions:

Building demolition costs not included.

 Ides and resolution costs not included.

 Average dewatering flowrate
 15 gpm

 Assumes all soil excavated requires disposal at a permitted landfill

 Cost estimates are feasibility-study level (+50/-30%)

 Cost estimates are based on Net Present Value (NPV) using the following discount rates:

 year 1
 0%

 years 6 thorugh 20
 3% average nominal rate years 3 and 5, OMB circular A-94 Appendix C, Revised Dec 2008

 years 6 thorugh 20
 4.20% average nominal rate years 7, 10, and 20, OMB circular A-94 Appendix C, Revised Dec 2008

Table 11 - Remediation Cost Estimate - Alternative 5 Spic 'n Span Cleaners

Item	Quantity Unit	Unit Cost	Total Cost	Notes
ERH Design and Permitting				
Design, work plans, permits	1 ls	\$ 68,000	\$ 68,000	TRS estimate
Design investigation	1 ls	\$ 60,000	\$ 60,000	Soil and groundwater sampling and hydraulic testing
Subtotal			\$ 128,000	
ERH Construction and Operation				
Trenching and restoration	1 ls	\$ 42,000	\$ 42,000	TRS estimate
drilling and soil sampling	1 ls	\$ 84,000	\$ 84,000	TRS estimate
drill cuttings and waste disposal	1 ls	\$ 5,000	\$ 5,000	TRS estimate
electrical connection	1 ls	\$ 100,000	\$ 100,000	TRS estimate
carbon usage, transport, regeneration	1 ls	\$ 84,000	\$ 84,000	TRS estimate
electrical energy usage	1 ls	\$ 78,000	\$ 78,000	
other costs	1 ls	\$ 15,000	\$ 15,000	TRS estimate
electrode materials mobilization	1 ls	\$ 184,000	\$ 184,000	TRS estimate
subsurface installation	1 ls	\$ 78,000	\$ 78,000	TRS estimate
surface installation and startup	1 ls	\$ 258,000	\$ 258,000	TRS estimate
remediation system operation	1 ls	\$ 317,000	\$ 317,000	TRS estimate
demobilization and final report	1 ls	\$ 64,000	\$ 64,000	TRS estimate
utility relocation - known	1 ls	\$ 30,000	\$ 30,000	underground power and gas lines in treatment area
use of tenant leased area for equipment	9 month	\$ 2,100	\$ 18,900	8 parking spaces @ \$200/month, plus \$500/mo inconvenience
exclusion area extending onto adjacent property	1 ls	\$ 15,000	\$ 15,000	estimate of legal fees for access and reimbursement for inconvenience
contingency	25%	\$1,372,900	\$ 343,225	
tax	9.5%	\$1,716,125	\$ 163,032	-
Subtotal			\$ 1,879,157	
Enhanced Natural Attenuation				
UIC authorization/work plan/street use permit	1 Is	\$ 15,000	\$ 15,000	
Pilot test	1 Is	\$ 50,000	\$ 50,000	localized injection and monitoring
Driller	6 day	\$ 2,500	\$ 15,000	direct-push driller for injection
Amendments	1200 gal	\$ 30	\$ 36,000	EOS
Injection equipment	6 day	\$ 1,000	\$ 6,000	pump, mixing tank, field supplies
field oversight	6 day	\$ 1,100	\$ 6,600	labor and supplies
performance monitoring	3 ea	\$ 1,500	\$ 4,500	quarterly after injection for one year
groundwater analysis	27 ea	\$ 500	\$ 13,500	9 wells, three events - VOCs and MNA parameters
reporting and project management	1 IS	\$ 20,000	\$ 20,000	construction report and project management
Ecology review	1 ls	\$ 2,000	\$ 2,000	VCP
tax	9%	\$ 57,000	\$ 5,130	contractor items
contingency	25%	\$ 173,730	\$ 43,433	-
Subtotal			\$ 217,163	
Subtotal, NPV			\$ 181,870	Year 5
Confirmation Monitoring				
groundwater monitoring - first yr after construction	4 events	\$ 4,000	\$ 13,802	quarteriy at 10 wells for one year - Year 2
soil and soil vapor sampling	1 IS	\$ 16,000	\$ 14,736	Year 2; NPV
reporting and project management - Year 2	1 ea	\$ 5,000	\$ 4,713	annual groundwater monitoring report; NPV
monitoring and reporting - years 3 through 5	3 year	\$ 8,000	\$ 21,330	annual monitoring at 10 wells; NPV
monitoring and reporting - years 6 though 15	10 year	\$ 8,000	\$ 52,301	annual monitoring at 10 wells; NPV
Closure report and Ecology review - Year 16	1 ls	\$ 15,000	\$ 7,766	NPV
contingency	25%	\$ 114,648	\$ 28,662	-
Subtotal (NPV)			\$ 143,310	
			* • • • • • • •	
Total Estimated Cost			\$ 2,332,337	
L				
Natas and Assumptions.				
Cost optimates are face bits study level (150/ 000	1			
Cost estimates are leasibility-study level (+50/-30%) DV/) using the fellouin			
Losi esimates are based on Net Present Value (N	using the followin	y discount rate	35.	
year 1 years 2 through 5	3%	ominal rate	are 3 and 5 Of	IP circular & 04 Appendix C. Poviced Dec 2009
years 2 through 20	4 20% average n	ominal rate ye	ars 3 anu 3, UN	AD ONE circular A 94 Appendix C. Revised Dec 2000
years o thorugh 20	+.20% average f	uninal rate ye	ais /, iu, and z	u, Unib urunar A-34 Appendix U, Revised Dec 2000

Legend

	Sewer Line (Approximate location based on City of Seattle side sewer card)
	Catch Basin
	Former UST Location
н <mark>Ф</mark> н	Fire Hydrant
	Property Boundary (Estimated location based on King County records)

	Site Plan					
Spic 'n Span Cleaners Site 652 South Dearborn Street, Seattle, Washington						
	Asnect	NOV-2011		FIGURE NO.		
	CONSULTING	PROJECT NO.	REV BY: SCC	3		

40

MW-1

Exploration and Interim Action Location Plan

Spic 'n Span Cleaners Site 652 South Dearborn Street, Seattle, Washington

Asnect	NOV-2011	DLC/PMB	FIGURE NO.
CONSULTING	PROJECT NO. 060172P	REV BY: SCC	4

290/0.24	Mineral Spirits/PCE Concentrations in Soil (mg/Kg)
1310/0.002	Mineral Spirits/PCE/Vinyl Chloride Concentrations in Groundwater (μ g/L)
NM ND Bold	Not Measured Not Detected Indicates Detected Concentration Exceeds Cleanup Level
T	Groundwater Level Measured on 3/4/2009
∇	Groundwater Level Observed at Time of Drilling
	Monitoring Well Screened Interval

Scale:	1" = 20' Horizontal
	1" = 5' Vertical

1:4 Exaggeration

Cross Section A-A'				
Spic 'n Span Cleaners Site 652 South Dearborn Street, Seattle, Washington				
Aspect	NOV-2011 PROJECT NO. 060172	BY: DFR/SCC REV BY: SCC	FIGURE NO. 5	

Legend				
<u>Site</u> I	Features & Exploration Focus Areas			
	Sewer Line (Approximate location based on City of Seattle side sewer card)			
	Catch Basin			
B-2 ⊕	Push Probe (Aspect, July 2008)			
MW-1	Monitoring Well			
Remedi	ation System Well Location & Number			
VE-1 $_{\oplus}$				
77.49	Groundwater Elevation Data (Measured 3/4/09)			
78 — —	Groundwater Elevation Contour			
	Generalized Direction of Groundwater Flow			

Groundwater Contour Map - March 2009
Spic 'n Span Cleaners Site
652 South Dearborn Street, Seattle, Washington

Aspect	NOV-2011		FIGURE NO.
CONSULTING	PROJECT NO. 060172P	REV BY: SCC	7

Б	PP-1	PCF	TOP	T	ы			
	0.5 to 3.5	1000	20 U		5 U			
	20 to 24	50 U	20 U		5 U			
[]	PP-3A	PCE	TCE	TF	ч			
	0.5 to 4	1500	20 U	1	0			
	8 to 12	1400	20 U	1	5 U			
	20 to 24	50 U	20 U	2	8			
		НС	-1 P(CF	TCF	трн	1	
		0 to	3 50		50 U		1	
	Δ'	9 to	11 50	<u> </u>	50 U	-	1	
	Ň	21 to	23 50	υ	50 U	10 U	1	
_							-	
\sim		aonc	4					
		yene	-	- _	·	_	-	
		Site Fea	atures a	ξ Ex	ploratic	on Focus /	Areas	
	_		Sewe	r Line	e (Appi	roximate l	ocation b	based
				y or	Seame	SILE SEW	er caru)	
			Catch	Bas	in			
		Evoloro	tonlo	- otio	0 NI.	mhor		
		Explora	tion Lu	catio	n & ivu	mper		
	HC-1 $_{igodold P}$ Push Probe (Hart Crowser, 1997)							
	B-2 							
	PP-5 Push Probe (Hart Crowser, June 2005)							
		A A'	Subsu	Irface	e Cross	s Section		
		Cleanup	Levels	s (pro	otection	of GW)		
			PCE	131	ug/kg			
			TCE	61	ug/kg			
			cis-D0	CE 5	571 ug/	'kg		
			TPH	86	mg/kg	c		
					/ka 11	~%~ 10	~~~ n	~~///~
		Г	D A	uy/	Ky u	g/kg ut		пд/ку
	Samo	ble	20	50		DE CIS-L		PH .
	Dep	oth L	20	50	1 1 2	20 11 5	0 0 1	700
		BOI U	d indication indication	ites a ates n	etectea. ot detec	cted at indic	ated dete	ection limit.
		-	indica	ates n	ot analy	zed.		
		Yello	w shadii	ng ind	dicates e	exceedance	e in cleanu	up level.
			Evtor	nt of I		CE or cis	DCE	
			above	e cle	≃o⊏, i anun le	vels	DCE	
			4507	5 010				
		5	Exter	it of	TPH ab	ove clear	nup level	S

Asnect	NOV-2011		FIGURE NO.
CONSULTING	PROJECT NO. 060172P	REV BY: SCC	8

Groundwater Analytical Data					
650.0	Spic 'n Span Cleaners Site				
052 5	652 South Dearborn Street, Seattle, Washington				
Aspect	NOV-2011		FIGURE NO.		
CONSULTING	PROJECT NO.	REV BY:	9		

Groundwater Analytical Data-Sitewide					
	Spic 'n Span	Cleaners Site			
652 South Dearborn Street, Seattle, Washington					
Aspect	NOV-2011	DLC/PMB	FIGURE NO.		
CONSULTING	PROJECT NO. 060172P	REV BY: SCC	10		

Legend	I
<u>Site Fea</u>	atures & Exploration Focus Areas
	Sewer Line (Approximate location based on City of Seattle side sewer card)
	Catch Basin
\mathcal{O}	Treatment Area
\boxtimes	Electrode Vapor Recovery Well
\sim	Extent of PCE, TCE or cis-DCE Above Cleanup Levels
\sim	Extent of TPH Above Cleanup Levels

	Proposed Cl	eanup Action	
652 S	Spic 'n Span outh Dearborn Str	Cleaners Site reet, Seattle, Wasl	hington
Aspect	NOV-2011 PROJECT NO. 060172P	BY: DLC/PMB REV BY: SCC	FIGURE NO. 11

South Dearborn Street

Legend

	Former UST Location
B-2 ⊕	Push Probe (Aspect, July 2008)
PP-5	Push Probe (Hart Crowser, June 2005
HC-1	Push Probe (Hart Crowser, 1997)
B-3 🔘	Push Probe (DLM, 1997)
MW-1	Existing Monitoring Well
SP-5 👦	Sparge Point Location
$^{\rm VE-1}\oplus$	Vapor Extraction Location
MW-10 🕞	Proposed Monitoring Well
СВ-2 ∰	Proposed Confirmation Soil Boring
SV-2	Proposed Confirmation Soil Vapor Sample
\sim	Estimated ERH Treatment Area

ERH Confirmation Sampling Locations

Spic 'n Span Cleaners Site 652 South Dearborn Street, Seattle, Washington

Aspect	NOV-2011	DLC/PMB	FIGURE NO.
CONSULTING	PROJECT NO. 060172P	REV BY: SCC	12

APPENDIX A

Data Gaps Investigation

Data Gaps Investigation

Aspect conducted a data gaps investigation between July 2008 and January 2009 to complete characterization of the Spic'n Span Cleaners site. The data gaps investigation included a sewer survey to investigate the potential for releases from the site sewer line, and collecting soil, groundwater, and soil gas samples for analysis for site COCs. Soil and groundwater samples were collected in several sequenced mobilizations to allow receipt of analytical data prior to determining subsequent sample locations, so that the extent of contamination could be identified in each direction. Data collection methods and analytical results are provided below. Boring logs and well construction details are provided in Appendix B.

Sewer Survey

A video camera survey of the site sewer system was performed by APS, Inc. on July 12, 2008. The survey consisted of inserting a video camera into sewer lines via cleanouts or catch basins and recording the condition of the line. Only certain sections of the site sewer system could be accessed in this way; bends or P-traps in the sewer in several areas did not allow insertion of the camera.

A summary of the sewer survey results is provided in Figure A-1. Highlighted areas show sections of the sewer that were accessible to the survey. A number of small cracks were noted (identified 'C' on Figure A-1) that were unlikely to be significant locations for leakage. One break (identified 'B' on Figure A-1) was noted from which water could likely leak. The line this was noted in was connected to the site sanitary sewer line that appears connected to the wash room and the restroom.

Locations of cracks and the break were noted on the ground surface. Soil borings in the data gaps investigation were located adjacent to the identified break and cracks to evaluate if past releases of site COCs may have occurred at these locations.

Soil Sampling

Continuous soil samples were collected from 21 soil borings (B-1 through B-16 and B-22) that were advanced using a direct-push drill rig. B-1 through B-6 were advanced on July 26, 2008; B-7 through B-14 were advanced on October 11, 2008; and B-15 through B-22 were advanced on December 6, 2008. Samples were logged and screened for the presence of VOCs using a photoionization detector (PID). Selected samples were submitted for chemical analysis, as follows:

- 17 samples were collected using EPA Method 5035A techniques, and submitted for analysis of VOCs by EPA Method 8260B. These data were collected to characterize and bound the extent of VOC contamination in soil at the site.
- 35 samples were collected using EPA Method 5035A techniques, and submitted for analysis of TPH-G (mineral spirits) by Ecology Method NWTPH-G. These data were collected to characterize and bound the extent of mineral spirits contamination in soil at the site.

- Two samples were collected and submitted for analysis of Total Organic Carbon (TOC). These data were collected to identify the average organic carbon content of site soils for soil-to-groundwater leaching calculations.
- Two samples were collected and submitted for analysis of petroleum fractions by Ecology Method VPH. These data were collected to identify a site-specific cleanup level for mineral spirits.

Laboratory certificates of analysis are attached.

Field observations indicated diesel odor, sheen, and product at boring B-21, which is located approximately 250 feet southwest of the property. Diesel odor, sheen, and product have not been observed on the property or in other borings located downgradient of the property. Therefore, the contamination noted at this boring is likely from an offsite source.

Groundwater Sampling

Groundwater grab samples were collected from 11 borings (B-1 through B-6 and B-18 through B-22) that were advanced using a direct-push drill rig. B-1 through B-6 were advanced on July 26, 2008 and B-18 through B-22 were advanced on December 6, 2008. A 3-foot long temporary screen was placed at the top of the water table the borehole was purged until turbidity was reduced. Groundwater samples were collected by low-flow sampling techniques and submitted for chemical analysis, as follows:

- Eleven samples were submitted for analysis of VOCs by EPA Method 8260B. These data were collected to characterize the extent of VOC contamination in groundwater at the site and determine the placement of future monitoring wells.
- Six samples were submitted for analysis of TPH-G (mineral spirits) by Ecology Method NWTPH-G. These data were collected to characterize the extent of mineral spirits contamination in groundwater at the site.

Three monitoring wells (MW-7, MW-8, and MW-9) were installed based on the results of groundwater grab samples to verify the lateral and downgradient boundary of the contaminant plume. Wells were installed using a direct-push rig and consist of a ³/₄-inch diameter, pre-packed well screen placed across the water table.

Monitoring wells MW-1 through MW-6 were sampled on July 12 and 15, 2008, and wells MW-7, MW-8, and MW-9 were sampled on January 19, 2009. Groundwater samples were collected using low-flow sampling techniques.

Laboratory certificates of analysis are attached.

Soil Vapor Sampling

Soil vapor samples were collected from two soil borings (B-13 and B-14) that were advanced using a direct-push drill rig on October 11, 2008. Soil vapor samples were collected by placing a temporary vapor sampling screen, sealed off from the borehole, at discrete depth intervals. Tubing was connected to the screen and 3 tubing/casing volumes of air were purged using a peristaltic pump. The sample was then collected using a 1-L SUMMA vacuum canister at an approximate average flow rate of 200 mL/min. Samples were submitted to Air Toxics, Ltd., for chemical analysis of VOCs by EPA Method TO-15. Laboratory certificates of analysis are attached.

Legend

	Extent of Sewer Camera Survey
	Extent of Sewer Camera Survey
	Sewer Line (Approximate location based on City of Seattle side sewer card)
1	Camera survey performed on sanitary sewer line - location below building not shown on sewer card
С	Minor Sewer Crack Identified
В	Major Sewer Crack Identified
	Catch Basin
[]]]	Former UST Location
н <mark>Ф</mark> н	Fire Hydrant
	Property Boundary (Estimated location based on King County records)

	Site	Plan			
Spic 'n Span Cleaners Site 652 South Dearborn Street, Seattle, Washingtor Spect NOV-2011 PMB FIG PROJECT NO. REV BY: 0601772 SCC PROJECT NO.					
Aspect	NOV-2011 PROJECT NO. 060172	BY: PMB REV BY: SCC	FIGURE NO. A-1		

APPENDIX B

Boring Logs and Well Construction Details

1000	1	Well-graded gravel and	Terms Describing	Relative Densit	ty and Consistency			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GW	gravel with sand, little to no fines	Density Very Loose	SPT ⁽²⁾ blows/foot 0 to 4				
≤5% F	GP	Poorly-graded gravel and gravel with sand, little to no fines	Grained Soils Loose Grained Soils Medium Dens Dense Very Dense	4 to 10 se 10 to 30 30 to 50 >50	Test Symbols G = Grain Size M = Moisture Content			
, Fines ⁽⁵⁾	GM	Silty gravel and silty gravel with sand	Fine- Grained Soils	<u>SPT⁽²⁾blows/foot</u> 0 to 2 2 to 4 4 to 8 8 to 15	$\begin{array}{l} A = Atterberg \ Limits \\ C = Chemical \\ DD = Dry \ Density \\ K = Permeability \end{array}$			
SI2 SI2 SI2 SI2 SI2 SI2 SI2 SI2 SI2 SI2	GC	Clayey gravel and clayey gravel with sand	Very Stiff Hard	15 to 30 > 30				
Tines ⁽⁵⁾	SW	Well-graded sand and sand with gravel, little to no fines	Descriptive Term Size F Boulders Large Cobbles 3" to	nponent Definit Range and Sieve Nu er than 12" 12"	tions mber			
≤5% F	SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel 3" to Coarse Gravel 3" to Fine Gravel 3/4" to Sand No. 4	No. 4 (4.75 mm) 3/4" o No. 4 (4.75 mm) (4.75 mm) to No. 200 ((0.075 mm)			
ines ⁽⁵⁾	SM	Silty sand and silty sand with gravel	Coarse Sand No. 4 Medium Sand No. 1 Fine Sand No. 4 Silt and Clay Smal	 (4.75 mm) to No. 10 (2 0 (2.00 mm) to No. 40 (0 (0.425 mm) to No. 20 ler than No. 200 (0.075 	.00 mm) (0.425 mm) 0 (0.075 mm) mm)			
≥15% I	SC	Clayey sand and clayey sand with gravel	⁽³⁾ Estimated Percenta Percentage by Weight Mo	age	Moisture Content Dry - Absence of moisture, dusty, dry to the touch			
	ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	<5 Trac 5 to 15 Slig	ce htly (sandy, silty,	Slightly Moist - Perceptible moisture Moist - Damp but no visible water			
	CL	Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	15 to 30 San grav 30 to 49 Ver clay	yey, graveiiy) idy, silty, clayey, velly) y (sandy, silty, yey, gravelly)	Very Moist - Water visible but not free draining Wet - Visible free water, usually from below water table			
	OL	Organic clay or silt of low plasticity	Blows/6" or Sampler portion of 6" Type /	Symbols	Cement grout surface seal Bentonite			
	мн	Elastic silt, clayey silt, silt with micaceous or diato- maceous fine sand or silt	2.0" OD Split-Spoon Sampler (SPT) Continuous P	npler Type escription Push	Chips Bentonite seal Filter pack with			
	сн	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample Grab Sample	Wall Tube Sampler elby tube)	↔ blank casing ↓ ↓ ↓ ↓ Screened casing ↓ ↓ ↓ ↓ Screened casing ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			
	он	Organic clay or silt of medium to high plasticity	⁽¹⁾ Percentage by dry weight ⁽²⁾ (SPT) Standard Penetration Tes	covered (5) C st fi	End cap Combined USCS symbols used for nes between 5% and 15% as			
	РТ	Peat, muck and other highly organic soils	(ASTM D-1586)estimated in General Accord(3) In General Accordance with Standard Practice for Description and Identification of Soils (ASTM D-2488)with Standard Practice for Description and Identification Soils (ASTM D-2488)(4) Depth of groundwater ∇ ATD = At time of drilling					
		Zisk Fines (a) ≤15% Fines ≤15% Fines ≤15% Fines ≤15% Fines (b) ≤5% Fines ≤5% Fines (c) (c	Weil-graded gravel and gravel with sand, little to no fines GW Weil-graded gravel and gravel with sand, little to no fines GP GP Poorly-graded gravel and gravel with sand, little to no fines Silty gravel and silty gravel with sand GP GC Clayey gravel and clayey gravel and clayey gravel with sand GP GC Clayey gravel and clayey gravel, little to no fines GP GC Clayey gravel and clayey gravel, little to no fines GP SW Weil-graded sand and sand with gravel, little to no fines GP SP Poorly-graded sand and sand with gravel, little to no fines GP SM Silty sand and silty gravel GP SM Silty sand with gravel, little to no fines GP SM Silty sand and clayey sand with gravel GP CL Clayey sand and clayey sand with gravel GP ML Silt, sandy silt, gravelly silt, silt with sand or gravel GP OL Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay GP OL Organic clay or silt of low plasticity GP OL Clay of high plasticity, sand or silt GP OH Clay of high plasticity, sandy or gravel </td <td>Image: State of the state</td> <td>Well-graded gravel and gravel with sand, little to no fines Terms Describing Relative Density Poorly-graded gravel and gravel with sand, little to no fines Density Wery Sout Dense SPT²blows/foot Very Dense Sout GM Silly gravel and silty gravel with sand Density Wery Sout Dense SPT²blows/foot Very Ponse Component Definit Grained Soits SPT²blows/foot Very Sout Dense SPT²blows/foot Very Sout Sout Carse- Grained Soits SPT²blows/foot Very Sout SPT²blows/foot Very Sout Sout SP Component Definit Sout SP Component Definit Sout SP <t< td=""></t<></td>	Image: State of the state	Well-graded gravel and gravel with sand, little to no fines Terms Describing Relative Density Poorly-graded gravel and gravel with sand, little to no fines Density Wery Sout Dense SPT ² blows/foot Very Dense Sout GM Silly gravel and silty gravel with sand Density Wery Sout Dense SPT ² blows/foot Very Ponse Component Definit Grained Soits SPT ² blows/foot Very Sout Dense SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout Carse- Grained Soits SPT ² blows/foot Very Sout SPT ² blows/foot Very Sout Sout SP Component Definit Sout SP Component Definit Sout SP <t< td=""></t<>			

Aspectconsulting	Exploration Log Key	DESIGNED BY:	PROJECT NO.	04040
	1 6 5	DRAWN BY:	FIGURE NO.	<
www.aspectconsulting.com		REVISED BY:	A-1	10

		Mana	ل م	L							Boring Log									
				 ;			Project	t Numbe 0172	er		Boring Number B-17	Sheet 1 of 1								
Project Na	ame:	Spic 'n Spar	۱ <u>C</u> l	eaners	6						Ground Surface Elev									
Location:		Seattle, WA																		
Driller/Met	thod:	Cascade Drilling	g / D	irect-Pus	sh Probe-Lin	nited A	cces				Depth to Water (ft BGS)	13' ATD								
Depth /			e	Sample			PID	Drive/	Materi	ial		0/12/2011	Dent							
Elevation (feet)			1	Type/ID	Tests		(ppm)	Recovery	Туре		Description		(ft)							
1 -							0.5			0	Concrete Slightly moist, brown, slightly silty fine to medium sand	, gravelly SAND (SP);	 - 1							
2 -				S-1			0.5						+ 2							
3 -							0.5						- 3							
4 -			\bigcirc				0.2				Slightly moist, brown to gray, very gravel, fine to medium sand	silty SAND (SM); trace	- 4							
5 -							0.6						- 5							
6 +				S-2			0.4						+ 6							
7 -							0.3						+ 7							
8 -							0.3						- 8							
a _							0.2													
5				S			0.2													
10-				ப்	B-17-1 B-17-10-	0 10.3	0.1						-10							
11-							0.2						-11							
12-		Backfilled with bentonite chips					0.2						-12							
13-		∑					0.1						- 13							
14-				S-4			0.1						- 14							
15-							0.4						- 15							
16-			\circ	\bigcirc	\bigcirc	0	С	C	\bigcirc	0	0			0.1						- 16
17-								0.1				Slightly moist, brown to dark gray,	sandy SILT (ML); trace							
10_						0.4					gravel									
10				ப்			0.3													
19-			0				0.5						- 19							
20-							0.4				Becomes moist and gray		+20							
21-							0.2						-21							
22-				9-S			0.3						-22							
23-					B-17-2	23	0.1						-23							
24-					B-17-23- B-17-23.	23.3 7-24	0.1				Bottom of boring at 24' BCS		-24							
25-					B-17-2	24					Bottom of boring at 24 BGS		-25							
26-													- 26							
20													20							
21																				
28+													+28							
29-													-29							
⊥ Sar	l mpler Ty	pe:		lP	ID - Photoior	nizatior	I Detecto) or (Head	Ispace	e N	leasurement) Logged by:	MAR								
O No Re	ecovery				Ţ	Static	Water L	_evel			Annrai od hi	r LIP								
Contin	nuous Co	bre			$\overline{\Delta}$	Water	· Level (/	ATD)			Approved by									
											Figure No.	A -								

		Mana		Ł						Boring Log		
							Projec	t Numbe	er	Boring Number	Sheet	
Proiect N	ame:	Spic 'n Spa	$\frac{1}{nC}$	leaners	6		00	0172		Ground Surface Elev	1011	
Location:		Seattle, WA	-									
Driller/Me	ethod:	Cascade Drillin	g / [Direct-Pu	sh Probe					Depth to Water (ft BGS)	N/A	
Sampling	Method	Continuous Co	re		1					Start/Finish Date	6/12/2011	
Depth / Elevation (feet)	В	Borehole Completion		Sample Type/ID	Tests		PID (ppm)	Drive/ Recovery	Materia Type	Description		Dept (ft)
1 +		Asphalt					0.1			Asphalt Slightly moist, brown, gravelly SA	ND (SP); trace silt, fine to	<u>-</u>
2 -							0.1			medium sand		- 2
3 -				φ, 			0.0					- 3
4 -			С				0.2			Small piece of brick		- 4
5 +							0					- 5
6 -							0			Slightly moist, gray SILT (ML); tra trace landfill debris	ace sand, trace gravel,	- 6
7 -				လု	PP-2A	-7	0					- 7
8 -				Ń	PP-2A-7	-7.3	0					- 8
9 -			С				0					- 9
10-							0					- 10
11-							0					-11
12-		Backfilled with bentonite chips		ې د	PP-2A-	12	0.2					-12
13-					PP-2A-12	-12.3	0					-13
14-			С				0					+14
15-							0					- 15
16-							0					+16
17-				S-4			0					-17
							0					
20-							0			Scattered thinly laminated sand b	eds	- 20
20							0					+21
22-				S'S			0.9 2.5			Moist, gray SAND (SP); trace gra	vel, fine to medium sand	-22
23-				01	PP-2A-	23	1033			Strong petroleum-like odor		-23
24-					PP-2A-23	-23.3	682					-24
25-												-25
26-												-26
27-												-27
28-												-28
29-												-29
Sa	mpler Ty	/pe:		 P	 ID - Photoior	nization	Detect) or (Head	dspace	Measurement) Logged by:	MAR	
	ecovery	oro			T	Static	Water I	_evel		Approved by	y: JJP	
	nuous C	UIE			Ŷ	Water	Level (ATD)		Figure No.	Α -	
										Figure No.	Λ-	

			_	L							Boring Log	
		Aspe	C	T			Projec	t Numb	er		Boring Number Sheet	1
Project N	ame.	Spic 'n Spar		Jeaner	S		00	0172			Ground Surface Elev	I
Location:	arro.	Seattle, WA		lounon	<u> </u>							
Driller/Me	ethod:	Cascade Drilling	g / C	Direct-Pu	sh Probe						Depth to Water (ft BGS) 16' ATD	
Sampling	Method:	Continuous Cor	e						-		Start/Finish Date6/12/2011	
Depth / Elevation (feet)	Bo	prehole Completion		Sample Type/ID	Tests		PID (ppm)	Drive/ Recovery	Ma T	terial /pe	Description	Dept (ft)
		Asphalt								·	Asphalt	edium
1 +							0.7				sand	- 1
2 -				လု			0.5					- 2
3 -			-				0.3				Slightly moist, brown, gravelly, very silty SAND (SM)	: fine 3
4 -			С				0.5				to medium sand	- 4
5 -					-				÷.			5
							0.5				Slightly moist, brown to gray SILT (ML)	
6 -					PP-5A-5	.5-8	0.1					- 6
7 -				Ś	PP-5A	-7	0.8					- 7
8 -				N	PP-5A-7	-7.3	0					- 8
9 -							0					- 9
10-					-		0					- 10
11-							0					-11
12-		Backfilled with			PP-5A-	12	0					- 12
13-		bentonite chips		с- 3	PP-5A-12	-12.3						- 13
14-					11-5/(-12	-12.0						- 14
15-					-		0.1					- 15
16		∇					0.2					10
		-					0.8				Wet, sandy SILT (ML)	
17-				S-4			9.8					-17
18-							24					- 18
19-			C				165					- 19
20-					-		297				Strong petroleum-like odor 20'- 24'	-20
21-					PP-5A-2	1-22	56.8					-21
22-				ъ S	PP-5A-22	-23.8	76.1					-22
23-					PP-5A-	23	1544				Frequent think laminated and hade between 22 an	-23
24-					PP-5A-23	-23.3	647					u 24
25-											Bottom of boring at 24' BGS	-25
												25
26+												⁺²⁶
27+												-27
28-												-28
29-												-29
Sa	Impler Typ	be:		F	 PID - Photoio	nizatior	Detect) or (Hea	dspa	ace	Measurement) Logged by: MAR	
	ecovery				Ţ	Static	Water I	_evel			Approved by: JJP	
Conti	nuous Co	re			Ā	Water	Level (ATD)				
											Figure No. A -	

ENV BORING LOG SPIC N SPAN CLEANERS.GPJ August 17, 2011

									Boring Log		
	7		th + water		Project Number 060172				Boring Number B-2	Sheet 1 of 1	
Project N	lame	Spic 'n Span	UDU1/2 B-2 IDU1 Span Cleaners Ground Surface Elev								
Location		Seattle, WA									
Driller/Me	ethod	NW Probe / Dire	ct-Push P	robe					Depth to Water	22' ATD	
Sampling	Method	Continuous Core	€ 	1					Start/Finish Date	7/26/2008	_
Elevation (feet)	Во	rehole Completion	Sample Type/ID	Tests		PID (ppm)	Blows/ 6"	Material Type	Description		Depth (ft)
		Concrete seal 0'-1'							Asphalt	······································	-
1 +									Moist, dark gray, silty CLAY (M	L); trace sub-angular	+1
2-			S-1			0.0			sand		- 2
											43
4 +						4.5					$\begin{bmatrix} 4 \end{bmatrix}$
5 -											- 5
6			S-2							-	-6
-											
I 'T						2.0					Ĺ
8	ан. С										+8
9-											-9
10-			S-3			10					+10
						1.0					
									Moist dark brown fine to medi	um elightly silty SAND	-
12									(SW)	ani, signay sity of the	+12
13-											-13
14-			S-4			0.0					-14
				B-2-1	5	Q .0					15
15-		Hydrated bentonite chips 1'-24'		NWTPHGx	VOCs						
16-								iiiii	Moist, dark gray, silty CLAY (M	L); occasional 4" sand	-16
17-									interbeds		-17
18-			S-5			0.0					-18
						0.0					
19-											
20-											+20
21-											-21
22-		X 7/26/2008	S-6			nn		ЩЦ	March Hards and all CAND /C		-22
						•.•		· ·. ·.	sorted	P), sanu is poosity	23
2°T				B-2-2	4						
24-			L	NWIPHGX	/vous			<u></u>		· · · · · · · · · · · · · · · · · · ·	+24
25									Bottom of boring at 24' bgs Groundwater sample B-2-0726	08 taken from temporary	+25
26									well.	•	-26
											L 27
[∠] ′Ҭ											
28											⁺²⁸
29											-29
Sa Sa	mpler Ty	pe:	Р	ID - Photoic	nizatio	n Detec	tor (He	adspa	e Measurement) Logged by	DFR	
	ecovery			¥	Static	Water	Level		Approved I	by: JJP	
Conti	nuous Co	bre		¥	Water	Level (ATD)			-	
									Figure No.	A-3	

								Boring Log		
					Projec	t Numb	er	Boring Number Sheet		
				06	0172		B-3 1 o		of 1	
Project Na	ame	Spic 'n Spar	n Cleaners	3				Ground Surface Elev		
ocation		Seattle, WA								
Driller/Mei	thod	NW Probe / Di	rect-Push Pr	obe				Depth to Water	22' ATD	
Sampling	Method	Continuous Co	re					Start/Finish Date	7/26/2008	
Depth / Elevation	Вс	rehole Completion	Sample	Tests	PID (00m)	Blows/	Material	Description		1
(feet)	<u></u>		Турело		(Phul)	Ļ.	rype a 6.4.1	Conemia		_+
		Concrete seal 0'-1'					XXX	Fill		{
'							\boxtimes			ſ
2 +			S-1		0.0		\bigotimes			ł
3							ШÛ	Moist, gray-brown, slightly sand	y SILT (ML)	
Ĩ										
4 +										t
5 -										Ļ
°†			S-2		0.0					t
7 🕂 🛛								Moiet grov plightly condy SILT.	(ML): E mm brown	ł
								laminations	(ME), 5 mm brown	
°ΤΙ										Ī
9 - F										ł
₀↓			<u>S-3</u>							1
°			I		0.0					
1				B-3-12				Moist, brown, slightly gravelly sil	ty SAND (SP)	
2				NWTPHGx/VOC	Cs		••			ļ
3							•••••			t
4			S-4		0.0		ппп	Moist gray slightly sandy SILT	(ML)	\rightarrow
5		Havinsted bestonite						monal, gray, angenty sarray one i		
Ň.		chips 1'-24'								
6										f
7-										ļ
⁸ 7			5-5		0.0					Ī
9-										ł
0-										
¹ †							I III	Wet, gray, medium SAND (SP);	odor from 21 to 24'	\neg
2	N N	Z7/26/2008	S-6		550		×	Orden antiperiod and the		ļ
								Odor, mineral spints		
3-				B-3-24			•••••			T
₄┽╴┞			P-R [WTPHGx/VOC	S			<u> </u>		
<u>5</u>								Bottom of boring at 24' bgs		
~								Groundwater sample B-3-07260 well.	8 taken from tempor	агу [
6†										ł
74										ļ
°† [t
9-										ł
Sarr	npler Ty	De:	Pil	D - Photoionizat	ion Detec	tor (He	adspac	æ Measurement) Logged by:	DFR	L.
No Re	covery			¥ Stat	ic Water	Level	•	,		
Contin	uous Co	re				יחדא		Approved by	y: JJP	
-				- wat	er never (AID)				

						Boring Log				
		Project Number 060172				Boring Number B-4	Sheet 1 of 1			
Project Name	Spic 'n Span	Cleaner	S					Ground Surface Elev		
Location	Seattle, WA									
Driller/Method	NW Probe / Dire	ct-Push Pi	robe	·	-			Depth to water	22.5 ATD	
Depth /			·····		Blouct		J		1120/2000	
Elevation Bor (feet)	ehole Completion	Sample Type/ID	Tests	(ppm)	6"	Materia Type		Description		(ft)
(feet) $1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10$	Concrete seal 0'-1' Hydrated bentonite chips 1'-24'	S-1 S-2 S-3 S-4 S-5	B-4-20	(ppin) 0.0 0.0 0.0 0.0 4.0	6		Brite Stress Str	own silty SAND (SM); black 4 bist, dark gray, sandy SILT (N to 12' no recovery; move rig k bist, brown, Poorly sorted SA bist, brown, Poorly sorted SA bist, dark gray, sandy SILT (N bist, dark gray, sandy SILT (S	4" wood debris layers //L) pack 6" and re-probe to ND (SP) //L) SM)	(1)
20 21 22 23 24 25 26 27 28 29	<u>7</u> 7/26/2008	S-6 S-7	B-4-24 NWTPHGx/VO	Cs ³⁵⁰ Cs ¹⁷⁰⁰ 0.0			Note that the second se	o recovery from 21 to 24' (coa be) et, gray, poorly graded SANE ottom of boring at 28' bgs roundwater sample B-4-0726	arse gravel in sampler D (SP); medium sand 08 taken from tempora	-20 -21 -22 -23 -24 -25 -26 -27 -28 ry -29
Sampler Ty	pe: pre	Ρ	ID - Photoioniza	ition Deter itic Water ter Level i	ctor (He Level (ATD)	adspa	ice M	/leasurement) Logged by Approved I Figure No.	: DFR by: JJP A - 5	

				ļ	Ductor			Boring Log	Boring Log	
earth + water					060172			Boring Number B-5	Sheet 1 of 1	
Project Name Spic 'n Span Cleaners				L		••••		Ground Surface Elev		
Location	Seattle, WA									
Driller/Method	NW Probe / Direct-Push Probe							Depth to Water	17' ATD	
Sampling Method	Continuous Core							Start/Finish Date	7/26/2008	
Elevation B (feet)	ehole Completion Sample Type/ID		Tests		PlD (ppm)	Blows/ 6"	Material Type	Description	i	
$ \begin{array}{c} \text{(reet)} \\ 1 - \\ 2 - \\ 3 - \\ 4 - \\ 5 - \\ 6 - \\ 7 - \\ 8 - \\ 9 - \\ 10 - \\ 11 - \\ 12 - \\ 13 - \\ 14 - \\ \end{array} $	Concrete seal 0'-1'	Type//ID S-1 S-2 S-3 S-4			(ppm) 0.0 0.0 0.0	6"	Type	Concrete Slightly moist, gray, sandy SIL Moist, brown, silty SAND (SM)	Г (ML) fill; no odor	
15 16 17 18 19 20	Hydrated bentonite chips 1'-24' 27/26/2008	S-5	B-5-10 - NWTPHGx	∣6 «/VOCs	0.0			2" wet, medium angular sand ir	iterbed	
21- 22- 23- 24-		S-6	B-5-24 NWTPHGx/	4 /VOCs	0.0			Wet, dark gray, very silty SAND) (SM); no odor	
25- 26- 27- 28- 29-								Bottom of boring at 24' bgs Groundwater sample B-5-0726 well.	08 taken from tempora	
Sampler Ty	/pe:	P	ID - Photoio	nization	n Detec	tor (He	adspac	e Measurement) Logged by	DFR	
No Recovery			Ţ	Static	Water	Level		, ·		
Continuous Co	ore		∇	Motor				Approved t	эу: JJP	
			**	water	Levei (.	ATD)				
		Acnost						Boring Log		
---------------------	-----------	---------------------	-------------------	--------------------	---------------	------------------	------------------	----------------------------------	------------------------	--------------------
			th + water		Proje 06	ct Numb 30172	рег	Boring Number B-6	Sheet 1 of 1	
Project N	ame	Spic 'n Span	Cleaner	s				Ground Surface Elev	·····	
Location		Seattle, WA								
Driller/Me	thod	NW Probe / Dire	ct-Push P	robe				Depth to Water	22' ATD	
Sampling	Method	Continuous Core	<u> </u>			- <u> </u>	1	Start/Finish Date	//26/2008	<u> </u>
Elevation (feet)	Boi	rehole Completion	Sample Type/ID	Tests	PID (ppm)	Biows/ 6"	Material Type	Description	n	Depti (ft)
		Concrete seal 0'-1"					\otimes	Fill: bricks, wood, etc.		
								Brown, medium SAND (SW); f	<u> </u>	`
2			S-1		0.0			Moloc, dan gray sic (me)		† 2
3 -										+ з
										4
4										
5 +								· · · · ·		 5
6			S-2		0.0					- 6
_										47
ľ T										
8-										+ 8
9-										+ 9
10			6.3							
			0-0		0.0					
11-								Moist, blue silty SAND (SM)		
12-										+12
12										L 13
IJ										
14-			S-4		15			Moist, gray, slightly sandy SIL	T (ML)	¹⁴
15-		Hydrated bentonite								-15
16-		chips 1'-24'								+16
10										
17-								1" wood layers @ 17', 18', 19'		+1/
18-			S-5		4.0					- 18
19-										-19
								Weak mineral spirits odor		
20-								Strong mineral spirits odor 20'-	-25'	T ²⁰
21-								moist, gray, silty SAND (SM)	,	
22	<u> </u>	Z 7/26/2008	S-6		450			Mint at 001		-22
				B-6-23 NWTPHGx/	VOCs			wet at 22		L23
23-										[²³
24-					660					+24
25-								Wet brown clean medium on	ind (SP): no odor	
20			67					wet, brown, clean, medium sa	מוע נסר ז, ווט טעטו	26
207			3-1		0.0					120
27-				B-6-29	3					+27
28-			Ц	NWTPHGx/	VOCs		ļ.·.··			
20-								Bottom of boring at 28' bgs	,	1-20
297								Groundwater sample B-6-0726	508 taken from tempora	ary ²
	mpler Tvi] Dē:		I ID - Photoior	nization Dete	L actor (H	i eadsna	ce Measurement) Logged by	/: DFR	. 1
	ecoverv	 .	۳		Static Wate	r] eval	Jagoba			
	nuous Co	re		 2	Mator Lour			Approved	by: JJP	
					VY ALCI LEVE	(AID)		Figure No.	A - 7	
L								Figure NO		

l		nsultina					Boring Log		
		earth + water		Projec 06	t Numb 0172	er	Boring Number B-7	Sheet 1 of 1	
Project Name	Spic 'n Spa	n Cleaners	3	00	0112		Ground Surface Elev		
Location	Seattle, WA								
Driller/Method	NW Probe / Di	irect-Push Pro	obe				Depth to Water	22' ATD	
Sampling Meth	nod Continuous Co	bre				i	Start/Finish Date	10/11/2008	_
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Materia Type	Description		Dep (ft)
	Concrete seal 0'-1'						Asphalt.		T
							No recovery, rock in sampler.		+ ¹
2 +		S-1		0.0					+ 2
з –		MI							⊥ 3
1							Moist, light brown, sandy SILT (sand; no odor.	ML); medium angular	
4									† 4
5 +									+ 5
6 -		S-2		0.0					+ 6
7 -									\perp ,
							Moist, brown, slightly silty, grave medium sand: fine, subangular of	elly SAND (SM); fine to	T'
³ †							······································	, avo, no odo,	+ 8
9 -			B-7-9 VOCs						+ 9
o-		S-3							L ₁₀
				Í					
									T'
²							Slightly moist, brown-gray, slight	ly sandy SILT (ML);	+12
3-							occasional 2" sandy layers; no o	dor.	+1:
4-		S-4							
							4" of wood debris.		
ή 📔	chips 1'-24'								+15
°† ∣									+16
74									+17
34		S-5							
- T							Grades to blue.		+19
י † ו									+20
1									-21
2	∑ 10/11/2008	5.6							1
						··· ·	Wet, gray-blue SAND (SP); med	ium sand; no odor.	Τ2
3+									+23
4+ -		┡╇──┤			ł	·· · · ·		<u> </u>	+24
5+							Bottom of boring at 24' bgs		L25
e .					ĺ				
ĭ I I									\int^{26}
7									+27
8-									+28
9-									L 20
									728
Sampler	Туре:	PID	- Photoior	nization Detec	tor (He	adspac	e Measurement) Logged by:	DFR	1
No Recover	y Core		⊈ . ⊽	Static Water I	_evel		Approved by	: JJP	
	COLE		Ϋ́,	Water Level (/	ATD)				
	· · ·						Figure No.	A - 8	

	Aspecta	neutting					Boring Log		
	Aspecico	earth + water		Projec 06	t Numb 0172	er	Boring Number B-9	Sheet 1 of 1	
Project N	ame <u>Spic 'n Spa</u>	an Cleaners	i				Ground Surface Elev	·	
Location	Seattle, WA								
Driller/Me	thod NW Probe / D	Direct-Push Pro	obe				Depth to Water	21.5' ATD	<u> </u>
Sampling	Method Continuous C	ore			r		Start/Finish Date	10/11/2008	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Biows/ 6"	Material Type	Description	I	Dep (ft
1-	Concrete seal 0'-1'						Concrete.		+ 1
2 -		- S-1		0.0			Moist, brown, slightly silty SAN	D (SM); layers of	+ 2
3 -		0					crushed, red blick, no odor.		+ 3
* T 5 +							No recovery, rock in sampler.		Ţ⁴
6		S-2		0.0					- 6
7 -							Moist, light gray SILT (ML); no	odor.	+7
8 9									
10-		S-3		0.0					1
11-							Wet, gray, SAND (SP); mediun Moist, gray, slightly sandy SILT	n sand. (ML).	- 1'
12-									
14-		S-4		0.0			Wet dark brown slightly silty s	AND (SM)	
15-	Hydrated bentonite chips 1'-24'		B-9-1: VOCs	5			week, durk brown, originaly only o		-1
16-				-			Moist, gray-blue, sandy SILT (N	/L); no odor.	+10
1/ - 18-		S-5		0.0					
19-				0.0			Very moist to wet, gray-blue, ve	ary silty SAND (SM); no	+1
20-							odor.		+2
21+	⊻ 10/11/2009	5.6	B-9-22	2 4 0					$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
23			VOCs	3					-2;
24-									+2
25							Bottom of boring at 24' bgs		+2
26+ 27+									$\begin{bmatrix} 2^{2} \\ 2^{2} \end{bmatrix}$
28-									-28
29-									+29
Sar	mpler Type:	<u> </u>) - Photoio	nization Detec	tor (He	adspac	ce Measurement) Logged by	DFR	
O No Re ☐ Contir	ecovery nuous Core		¥ ∑	Static Water Water Level (Level ATD1		Approved I	by: JJP	
							Figure No.	A - 10	

•	Aspecta	sulting			· ·		Boring L	og		
	ea	rth + water		Proje 0	ect Num 60172	ber	Boring Numl B-10	ber	Sheet 1 of 1	
Project Name	Spic 'n Span	Cleaners	S	<u> </u>			Ground Surfa	ce Elev		
Location	Seattle, WA									
Driller/Method	NW Probe / Dire	ect-Push Pr	obe ·				Depth to Wate	er	21' ATD	
Sampling Method	Continuous Cor	e T					Start/Finish D	ate	10/11/2008	 -
Depth / Elevation B (feet)	arehole Completion	Sample Type/ID	Tests	PID (ppr)) Blows) 6*	Materia Type	1	Description		De (1
1 - 2 -	Concrete seal 0'-1'	S-1		0.0			Alternating layers of	black fill and o	crushed brick.	+ 1
3 - 4						Ť	Moist, dark brown, sa subangular gravel.	andy SILT (ĤI	_); trace fine,	
5 6 7		S-2		0.0						
8 - 9 - 10-		S-3		• 0.0						+ 1 + 1
11 - 12-			B-10-1 VOCs	2			Very moist, silty SAN	ID (SM).		1 ــــ 1 ــــــــــــــــــــــــــــــ
13- 14 15	Hydrated benfonite	S-4		0.0			Moist, gray-bluө, san	idy SILT (ML).		1 - ا 1 1
16 17 18		S-5	B-10-1 VOCs	8 0.0			Wood. Very moist, dark brow	wn, silty SANI	D (SM); no odor.	، ـــــــــ · ــــــــــــــــــــــــــ
19 20 21	<u>¥</u> 10/11/2008						Dark gray.			
22 23		S-6	D 40 0	0.0						
24			B-10-2 NWTPHGx	4 /VOCs			Bottorn of boring at 2	'4' bgs		
27- 28-										Ī
29-										
Sampler Ty O No Recovery	ype: ore	PI	D - Photoio	nization Det Static Wate	ector (H er Level	eadspa	ce Measurement) L	Logged by: Approved by:	JJP	
			Ŧ	Water Leve	I (ATD)		F	Figure No	A - 11	

		cultina					Boring Log		
	#SPECICUL	arth + water		Projec 06	t Numb 0172	ber	Boring Number B-11	Sheet 1 of 1	
Project Name	Spic 'n Spar	Cleane	rs	·			Ground Surface Elev	·	
Location	Seattle, WA								
Driller/Method	NW Probe / Dir	ect-Push P	robe				Depth to Water	None ATD	
Denth /	thod Continuous Cor	е 			<u> </u>	<u> </u>	Start/Finish Date	10/11/2008	·
Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Materia Type	Description		Der (fl
1 - 2 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Concrete seal 0'-1'	S-1		0.0			Alternating layers of black fill an Moist, brown, slightly sandy SiL	nd brick. .T (ML); no odor.	- 1 - 2 - 3 - 4
6 7 8 9		S-2		0.0			Moist, brown, very silty SAND (subangular gravel; no odor.	SM); trace fine,	
10 11 12		S-3		0.0					- 10 - 11 - 12
14 15 16	Hydrated bentonite chips 1-24'	S-4	B-11-15 VOCs	0.0			No recovery.		+ 1: + 14 + 1: + 1:
17 18 19 20		\$-5 Ō		0.0			Moist, brown, very silty SAND (SM).	- 17 - 18 - 18
21 22 23		S-6		0.0			NO FECOVERY.		-21 -22 -23
24- 25 26		0	B-11-24 NWTPHGx/VO	Cs		<u>.</u> .	Moist, brown, very silty SAND (ty SAND (SM). 4' bgs	
27+ 28+ 29-									-27 -28 -29
Sampler	Type: ery s Core	PI	D - Photoioniza ⊻ Sta ⊻ Wa	ation Detec atic Water I ater Level (tor (He Level ATD)	adspac	e Measurement) Logged by: Approved b Figure No.	DFR y: JJP A - 12	

	Aspectcor	sulting		Projec	t Numb	er	Boring Log Boring Number	Sheet	
	Criste Cres		<u> </u>	06	0172		B-12	1 of 1	
Project Name		1 Cleaner	s				Ground Sunace Elev	÷-	<u> </u>
Driller/Method	NW Probe / Di	rect-Push Pr	mbe			•	Depth to Water	22' ATD	
Sampling Metho	d Continuous Co	re	000	·			Start/Finish Date	10/11/2008	
Depth / Elevation (feet)	Borehole Completion	Sampte Type/ID	Tests	PID (ppm)	Blows/ 6*	Material Type	Description		De (f
	Concrete seal 0'-1'						Asphalt.		
1 +	×								+ 1
2		S-1		0.0					;
-				0.0			Moist, dark gray, sandy SILT (M	L); fill.	
3 +									T
4 -									+
- L									Ļ
°T									
6 -		S-2		2.0					t
7 -									ł
									L
⁸ T									
9 -									t
10-		S-3		0.0					+
				0.0					
							Moist, dark brown-red, silty SAN	D (SM).	
12-			B-12-12						t
13-			1003						
							Moist, dark gray, sandy SILT (M	L}. ·	
14-		S-4		0.0					Γ
15	Hydrated bentonite								+
16-	chips 1-24								+
							Moist, dark brown, silty SAND (S	SP).	
18-		S-5		0.0					+
19									
							Moist, gray, sandy SILT (ML).		
20									T
21									+
22	¥10/11/2008	S-6	B-12-22	0.0		ШШ	MALE CAND (CD) and fin		
			NWTPHGx/VOC	is			wet, prown SAND (SP); meulun	n sanu; no odor.	
23						· · · ·			Γ
24		F-F				<u>}</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	+
25							Bottom of boring at 24' bgs		+
26	1								T
27									+
28									+
				ĺ		·			
29									Ť
i Sampler	 Type:	<u> </u> P	ID - Photoionizat	ion Dete	L ctor (He	l	Logged by:	DFR	
	y .		¥ Stat	ic Water	Level		A		
Continuous	Core		모 Wat	er Level	(ATD)		Αρριονθά δ	y, JJF	
							Figure No.	A - 13	

		Aspectar	culting							Boring Log		
	7	e	arth + water			Projec 06	t Numb 0172	er		Boring Number B-13	Sheet 1 of 1	
Project N	ame	Spic 'n Spar	1 Cleaner	s						Ground Surface Elev		
Location		Seattle, WA										
Driller/Me	thod	NW Probe / Dir	rect-Push P	robe						Depth to Water	23' ATD	
Sampling	Method	Continuous Co	re 	1					-1	Start/Finish Date	10/11/2008	
Elevation (feet)	В	orehole Completion	Sample Type/ID	Tests		PID (ppm)	Blows/ 6"	Materi Type	iaí)	Description		Dep (ft
1 2 3 4		Concrete seal 0*-1*	0 S-1	B-13- VOCs/Soi	3 il gas	0.0			1	No recovery, concrete. Slightly moist, light brown, slight	tly sandy SILT (ML).	- 1 2 3 4
5 - 6 - 7 - 8 -		2	S-2			0.0					,	- 5 - 6 - 7 - 8
9 10 11 12			S-3			0.0			- N - S	Aoist, light brown, slightly silty S and.	SAND (SM); medium	
13 14 15		Hydrated bentonite chips 1-24	S-4			0.0						- 1 - 1 - 1
17 18 19			. S- 5	B-13-1 VOCs/Soi	9 I gas	0.0			S	Slightly moist, gray-blue, sandy	SILT (ML).	+ 1 + 1 + 1:
20- 21 22- 23		<u>√</u> 10/11/2008	S-6			0.0				Vot brown SAND (SM): trace fi	ne, subangular gravel	-2 -2 -2: -2:
24- 25- 26-									(n	o odor.		+2 -2 -2
27- 28- 29-												+2 +2 +2
San	npler Ty covery uous Co	pe: pre	<u>I</u> PI	ID - Photoion ¥ ⊻	nizatior Static V Water	Detec Water I Level (.	tor (He Level ATD)	adspa	l ice	Measurement) Logged by: Approved by Figure No.	DFR y: JJP A - 14	1

			ulline						Boring Log		
		ear ear	ih + water		Projec 06	t Numb 017 2	er		Boring Number B-14	Sheet 1 of 1	
Project N	lame	Spic 'n Span	Cleaner	s	·				Ground Surface Elev		
Location		Seattle, WA							·		
Driller/Me	ethod	NW Probe / Dire	ct-Push Pi	robe					Depth to Water	25 AID	
Sampling	g Method	Continuous Core					r		Stan/Finish Date	10/11/2006	
Elevation (feet)	Bor	rehole Completion	Sample Type/ID	Tests	(ppm)	6"	Materia Type		Description		(ft)
T		Concrete seal 0'-1'						Asp	halt.		
								Dar	k brown, slightly silty, grave	lly SAND (SM).	$+^1$
2 -			S-1		0.0						+ 2
3-				B-14-3				- -			- 3
				VOCs/Soil	gas			-			
4 1											
5 -								Slig	htly moist, gray-blue, slightl	y sandy silt.	+ 5
6-			S-2		2.0						- 6
7											47
											L º
87											T°
9-											+ 9
10-			S-3		0.0						+ 10
11-				B-14-11	1					•	L ₁₁
				VOCs/Soil	gas						
12-											T ¹²
13-											- 13
14-			S-4		0.0						+14
15		Hydrated hantonite									- 15
	·	chips 1'-24'									
16-											- 10
17-				B-14-17 NWTPHGx/V	7 VOCs			Ver	y moist, dark brown, silty S/	AND (SM); slight odor.	-+17
18-			S-5		30			*			+18
10											+19
			-								
20								Gra	des to gray-blue.		T ²⁰
21											+21
22-			S-6		1020						-22
23				B-14-23	3						-23
				NWTPHGx/	VOCs			ŀ			
24			l	1							\int^{24}
25		Z10/11/2009						• Wei	, brown, slightly silty SAND	(SW); medium sand;	+25
26-			S-7		2.0			no c	odor.		-26
27				B-14-27	,			:			+27
				NWTPHGx/\	VOCs			:			
28								Bett	om of horing at 29' bac		T ²⁸
29-								Bot	um or boinng at 28° ogs		+29
	<u> </u>		<u> </u>			L	<u> </u>	<u> </u>			<u> </u>
Sa Di Ma D	ampter Typ	pe:	P	ID - Photoion ₩	Nzation Deter	ctor (He	adspa	ice Me	easurement) Logged by		
	есочегу іпионя Со)re		±. ⊽.	Static Water				Approved I	by: JJP	
				<u>₩</u>	water Level	(AID)			Elaura No	A - 15	
L			•						rigure NO.	<u>A - 10</u>	

		Acnect						Boring Log		
		Ashectcon	sulling arth + waler		Projec 06	t Numt 0172	ber	Boring Number B-15	Sheet 1 of 1	
Project N	lame	Spic 'n Span	Cleaners					Ground Surface Elev	· · · · · · · · · · · · · · · · · · ·	
Location		Seattle, WA								
Driller/Me	ethod	NW Probe / Dire	ect-Push Pro	be				Depth to Water (ft BGS)	
Sampling	Method	Continuous Cor	e				1	Start/Finish Date	12/6/2008	
Depth / Elevation (feet)	Bo	prehole Completion	Sampia Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description) 	Depli (ft)
		Concrete seal 0'-1'						Asphalt. Slightly moist, dark brown, grav	velly SAND (SP).	
		1 k daala d kaanaa 3a		B-15-	2			ivioist, brown, gravelly, very sar	iay Sili (IVIL).	
117		Hydrateo benionite chips 1'-4'	5-1	VOC	s 0.0					Γŕ
3-										- 3
4				B-15-	4					4
				VOC	s			Bottom of boring at 4' bgs.		
٦°						ĺ				Τ°
6+										+ 6
7-										+ 7
8-										- 8
9-										- 9
10										- 10
11-										+11
12-										- 12
13										-13
14-										- 14
15-										- 15
16-										- 16
17-										- 17
18										- 18
19										- 19
20-										-20
21-										-21
22-										-22
23-										-23
24-										-24
25-										-25
26-										-26
27-										-27
28-						ľ				-28
29-										-29
D No P	mpler Ty	ha ^r	PIC	J - Photoio ₩	Dization Dete	ctor (He	eadspac	ce ivieasurement) Logged by		
Contin	nuous Co	ore		- <u>-</u> - Ţ	Static Water Water Level	Level		Approved	by: JJP	
						,		Figure No.	A - 16	

		Aspectas	culting		·				Boring Log	<u> </u>	
		^e	arth + water		Projec 06	t Numb 0172	ег		Boring Number B-16	Sheet 1 of 1	
Project Na	me	Spic 'n Spar	Cleaners						Ground Surface Elev	·-···-	
ocation		Seattle, WA									
Driller/Meth	hod	NW Probe / Dir	ect-Push Pro	be		<u> </u>			Depth to Water (it BGS)	12/6/2008	<u>.</u>
Denth /		Continuous Cor				Blaun/	I			12/0/2000	
Elevation (feet)	Boi	rehole Completion	Sample Type/ID	Tesis	(ppm)	6"	Mate Typ	erial pe	Description		
		Concrete seal 0'-1'					4-4		Concrete.		
'									Moist, gray brown, gravelly SILT (M	IL); coarse grave	I
2 +			S-1		0.0				Molat, gray blown Gies (Me).		t
3-											ł
4											Г
5 -									Slightly sand gravelly. Sand in 1" of	lumps	÷
<u> </u>			5-2								Ļ
Ŭ					0.0						
7 🕇 🛛									Bright red-orange stain.		t
8-											ł
"†											Ī
10+			S-3		0.0				Trace sand and gravel.		ł
									-		ł
2											Ť
13-									6" gravel interbed		₽
			S 1						o giaver merbed.		ļ
14			0-4		0.0						
15	•	Hydrated bentonite chips 1'-25'									f
16							μщ	Щ	Moist, brown, slightly silty, gravelly	SAND (SP).	
17-									Majet grou brown condy growelly 9		-+
				B-16-18	2				Moist, gray brown, sandy gravely c		
			5-0	VOCs	0.0						
19-											t
20			· · · · · · · · · · · · · · · · · · ·								ł
22			S-6	B-16-22 VOCs	2 0.0						t
23-											ł
											ļ
			S-7		0.0						
25+								ш		·	
26-									Bottom of boring at 25' bgs. Drill refusal at 25' due to wood		╞
,									Temporary well installed but did no	t produce water.	ļ
"											
28+											t
29-							l				ł
Sam 지도 -	ıpler Ty	pe:	PI) - Photoior	ization Detec	ctor (He	eads	pac	e Measurement) Logged by: /	4ET	
				¥	Static Water	Level			Approved by:	JJP	
	uous Co			¥	Water Level ((ATD)					
									Figure No.	A - 17	

		Aspect	culting						Boring Log		
		ea	rth + water		Projec 06	t Numb 0172	er		Boring Number B-18	Sheet 1 of 1	
Project N	lame	Spic 'n Span	Cleaner	S		,			Ground Surface Elev		
Location		_Seattle, WA									
Driller/Me	thod	NW Probe / Dire	ect-Push Pi	robe					Depth to Water (ft BGS)		
Sampling	Method	Continuous Cor	e I						Start/Finish Date	12/6/2008	
Elevation (feet)	Bo	rehole Completion	Sampie Type/(D	Tests	i (ppm)	Blows/ 6"	Mate Typ	orial be	Description		Dep (f
1 2 3 4		Concrete seal 0'-1'	S-1		0.0				Concrete. Slightly moist, gray, sandy, grav- angular gravel; fine to coarse sa 2" gravelly sandy interlayers eve	elly, SILT (ML); coarse nd. ry 6-12".	- 1 - 2 - 3 - 4
5 - 6 - 7 - 8 -			S-2		0.0						- 5 - 6 - 7
9 - 10-+ 11-			S-3		0.0				Gravelly, sandy silt. Trace sand. Sandy.		- 9 - 1(- 1
12- 13 14 15		Hydrated bentonite chips 1'-26'	S-4		0.0				6" gravelly interlayer. Moist, brown gray, slightly silty, g	ravelly SAND (SP).	+1. +1. +1. +1.
17 18 19			S-5		0.0				Moist, gray SILT (ML); trace grav Slightly sandy, gravelly.	vel.	
20 			S-6	B-18-2 VOCs	2 0.0				Trace gravel. 2" gravelly sand interlayers every	r 8-12".	-20 -21 -22 -23
24- 25 26- 27	Ţ	<u>7</u>	S-7		0.0				Gravelly, trace sand.		-24 -25 -26 -27
28+									Bottom of boring at 28' bgs. Groundwater sample B-18-12060 temporary well.	18 taken from	+28 +29
San No Rei Continu	npler Typ covery uous Cor	re:	PI	D - Photoior 又 又	nization Detec Static Water I Water Level (A	tor (He: Level ATD)	idsp	ace	e Measurement) Logged by: Approved by	AET : JJP	
									Figure No.	<u>A - 19</u>	

	Acnoct.						Boring Log		
	Asherro	earth + water		Projec 06	t Numb 0 172	er	Boring Number B-19	Sheet 1 of 1	
Project Name	Spic 'n Spa	n Cleaners	;				Ground Surface Elev		
ocation	Seattle, WA								
oriller/Method	NW Probe / D	irect-Push Pro	be				Depth to Water (ft BGS)		
Sampling Me	thod Continuous C	ore			1		Start/Finish Date	12/6/2008	
Depth / Elevation (feet)	Borehole Completion	Sample Type/iD	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Der (fi
1	Concrete seal 0'-1'						No recovегу.		 1
2 T				0.0					ſ
3 +					[411.	Moist, brown, silty, gravelly SAN	ND (SM); coarse,	-† :
4 4							angular gravel.		+ 4
_									<u> </u>
, T							Moist, gray brown, slightly silty,	gravelly SAND (SP); to medium sand	T,
3 🕂 🛛 📃		S-2		0.0			coarse, subangular gravel, line	to mediant sand.	+ e
7 -									+7
						· · ·			
`T 🔳							Moist, gray brown, sandy, grave	ally SILT (ML) with 2"	T
*† 🔳							medium sand, predominantly fir	le.	† 9
o-		S-3		0.0					+1
							Wood.		Γ'
2-									+1
з-							6" gravel interbed		+1
		54							L
+ T		5-4		0.0			Wood.		Γ'
5+	Hydrated bentonite								+1
a ∔	Gilp5 1-24								+1
_									L
'T									
3+		S-5		0.0		ЩЦ	Moist, gray, slightly silty, gravel	ly SAND (SP) with 1" s	ilt 18
9∔						· · · ·	interlayers every 8-12"; fine to r	nedium sand.	+1
	·					• • • •			
1									
1+	∇					• • • •			^{2°}
2	-	S-6		0.0			Wet, gray, gravelly, very sandy	SILT (MĻ).	+2
							Slightly sandy, trace gravel.		L,
4+		₽₽──┤					· · · · · ·		⁻⁺²
5-							Bottom of boring at 24' bgs. Groundwater sample B-19-1206	308 taken from	+2
				1			temporary well.		12
ĭ									
7†									†2
28-				1					+21
									L,
"T									
Sample	er Type:	PI	D - Photoio	nization Deter	tor (He	adspac	ce Measurement) Logged by:	AET	
No Recov	егу		Ţ	Static Water	Level		Approved h	w: .LIP	
Continuou	is Core		₽	Water Level ((ATD)		Approved t		
							Figure No.	A - 20	

								Boring Log		
7		rth + water		Projec	t Numb	өг		Boring Number Shee	Ē	
Project Name	Spic 'n Span	Cleaners	<u></u>	06	0172			B-20 1 of 1	<u> </u>	
						Ground Surface Elev				
Driller/Method	be					Depth to Water (# BCC)				
Sampling Method	Continuous Cor	e						Start/Finish Date 12/6/2008	 }	
Depth / Elevation Bore (feet)	shale Completion	Sample Type/(D	Tests	PID (ppm)	PID Blows/ Material (ppm) 6" Type		rial e	Description		
	Concrete seal 0'-1'					3		CONCRETE.		
1 + 2 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4		S-1		0.0				Slightly moist, light gray to brown, gravelly, sandy (ML). No gravel or sand.	SILT - 2 - 2 - 3	
5 6 7		S-2		0.0				6" sandy gravel interbed; coarse rounded gravel. Gravelly.	- t - t - t	
8 - 9 - 10		S-3		0.0				Sandy. Slightly gravelly.	+ 8 + 9 + 1	
2 3 4 5 H	ydrated bentonîte hips 1-28'	S-4		0.0					+ 1: + 1: + 1. + 1.	
6- 7 8 9		S-5		0.0				2" sand interlayer; fine to medium sand.	- 10 - 17 - 11 - 11 - 11	
20		S-6		0.0				Very moist, brown, silty, sandy GRAVEL (GM); fin subangular gravel; fine to medium sand. Very moist, gray brown, slightly gravelly, silty SAN (SM). Very moist, gray, slightly sandy SILT (ML), trace g	20 3, 2' D 2' ravel: 2	
24 25 26		S-7		0.0				sand in clumps. 6" gravelly interbed.	-24 -24 -21	
27 28 29								Bottom of boring at 28' bgs. Groundwater cample B-20-120608 taken from emporary well.	- 27 	
Sampler Type		PID	- Photoior .⊈ .Ӯ	nization Detect Static Water L Water Level (A	or (Hea evel \TD)	idspa	iCe	Measurement) Logged by: AET Approved by: JJP		

							Boring Log	Boring Log		
	ASHECICON	sulling rth + water		Proje	ct Numb	ber	Boring Number R-21	Sheet 1 of 1		
Project Name	Spic 'n Span	Cleaners			0172		Ground Surface Elev	1011		
Location	Seattle, WA									
Driller/Method	NW Probe / Dire	ect-Push Prol	De				Depth to Water (ft BGS)	· · · · · · · · · · · · · · · · · · ·		
Sampling Method	Continuous Core	e					Start/Finish Date	Start/Finish Date 12/6/2008		
Depth / Elevation Bo (feet)	prehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	terial Description			
1-	Concrete seal 0'-1'	S-1		0.0			CONCRETE. Moist, gray, sandy GRAVEL (G gravel; fine to coarse sand, pre- medium	P); coarse angular dominantly fine to	+ 1	
3 + 4 +							Moist, gray brown, silty, gravelly subround gravel; fine to medium	y, SAND (SM); coarse, n sand.	- 3 - 4	
5		S-2		0.1			Molst, brown, slightly silty, grave subround to round gravel; fine t Bright red-orange stain.	elly SAND (SP); coarse, o medium sand.	- 5 - 6	
7 + 8 +							Wood. No recovery.		+ 7 + ε	
9		5 -3		0.0			Moist, brown, gravelly SAND (S	P); coarse, subround	+ 9 +1	
11 + 12+							Wood. Moist, gray brown SILT (ML).		+1	
13-	Industed bastonite	S-4		0.0						
16	chips 11-24						Moist, brown, slightly silty, sand Moist, gray brown, gravelly, san	ly GRAVEL (GP). Idy SILT (ML); coarse,	+1 +1 +1	
18		S-5		0.0			subangular gravel.		+1 +1	
20-	Ā						Moist, gray, gravelly SAND (SP).		
22- 23-		S-6		1.0 38.0			Very strong deisel odor, thick st	and (SM). heen and free product.	-2 -2	
24 25 26						<u>(1.1.11</u>	Bottom of boring at 24' bgs. Groundwater sample B-21-1206 temporary well.	508 taken from	+2 +2 +2 +2	
27 28 29									+2	
Sampler Ty	/pe:	PID	- Photoic	nization Dete	ector (He	 eadspac	ce Measurement) Logged by:	AET		
No Recovery	ore		¥ ⊻	Static Wate Water Level	r Level (ATD)		Approved b	by: JJP		
							Figure No.	A - 22		

Project Number (with wald) Project Number 00(172 Barrg Number B-22 Sheat Sheat Project Number (catation Split Th Splan Cleanters Ground Surface Elev										Boring Log		
Profesc Name Spic Tr Span Cheaners Ground Surface Elev Location Saattis, WA Depth to Water (# B3S) Sampling Mohod Confluctuos Core Start/Finish Date 12/8/2008 Sampling Mohod Confluctuos Core Start/Finish Date 12/8/2008 Sampling Mohod Confluctuos Core Start/Finish Date 12/8/2008 Sampling Mohod Constructs Core Start/Finish Date 12/8/2008 1 Core is assister.** Sci 0.0 Start/Finish Date 12/8/2008 1 Sci 0.0 Start/Finish Date 12/8/2008 1 2 Sci 0.0 Sci 1 2 3 Sci 0.0 Sci 1 1 4 Sci 0.0 Sci 1 1 1 Sci 0.0 Sci 0.0 Sci 1 1 Sci 0.0 Sci 0.0 Sci 0.0 Sci 1 1 Sci 0.0 Sci			th + water		P	roject 060	t Numb 0172	er		Boring Number Sheet B-22 1 of 1		
Location Satury WA Simulation Satury Sinter Vision Depth to Waler (ft BGS) Samulary Method Conditional Core Start/Finish Date 128(2008) Samulary Method Conditional Core Start/Finish Date 128(2008) Samulary Method Conditional Core Start/Finish Date 128(2008) Samulary Method	Project Name	Spic 'n Span	Cleaners	·······	· · · · · · · · · · · · · · · · · · ·					Ground Surface Elev		
Definition Water (H B25) Sampling Method Continuous Correction Resolution Definition Control 2008 Definition Control 2008 Definition Definiti	Location	Seattle, WA										
Sampler Nethod Concrete Conjuntus Provide Teach Trade Provide (PP) Model (PP) Model (PP) Description Description Oppin 1 - <td>Driller/Method</td> <td>NW Probe / Dire</td> <td>ct-Push Prob</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Depth to Water (ft BGS)</td> <td></td>	Driller/Method	NW Probe / Dire	ct-Push Prob	9						Depth to Water (ft BGS)		
Deside Constant Same bit is same bit is and bit	Sampling Method	Conlinuous Core) 					,		Start/Finish Date 12/6/2008		
1 Concess set 0-1* S-1 0.0 Concess set 0-1* 1 2 3 S-1 0.0 Concess set 0-1* 1 3 S-1 0.0 Sight red-orange statu 1 4 S-1 0.0 Sight red-orange statu 1 4 S-1 0.0 Sight red-orange statu 1 5 S-2 0.0 Sight red-orange statu 7 8 S-2 0.0 Sight red-orange statu 7 8 S-3 0.0 Sight red-orange statu 7 9 S-3 0.0 Sight red-orange statu 7 11 S-3 0.0 Sight red-orange statu 7 12 S-3 0.0 Sight red-orange statu 7 13 S-4 0.0 Sight red-orange statu 1 14 S-4 0.0 Sight red-orange statu 1 15 S-5 0.0 Sight red-orange statu 1 16 S-6	Depth / Elevation Bor (feet)	rehole Completion	Sample Type/ID	Tests	• (PID (ppm)	Blows/ 6"	Material Type		Description	Depth (ft)	
1 0.00 27.32 Molet, gray brown, silty, sind (M), trace grave), trace sand, and the second gray brown, trace sand, and and the second gray brown, trace sand, and and the second gray brown, silty SAND (SM), fine sand, and		Concrete seal 0'-1'						44	4 	CONCRETE.		
2 2 2 0.0 Weist, gray brown, SiLT (ML), trace gravel, trace and. 2 3 4 5 5 0.0 6* 4 5 5-2 0.0 6* 6* 6 7 5 0.0 6* 6* 6 8 5 0.0 6* 6* 6 9 5-3 0.0 6* 6* 7 10 5-3 0.0 6* 6* 7 11 5-4 0.0 6* 6* 6* 11 5-4 0.0 6* 6* 6* 11 5-4 0.0 6* 6* 6* 11 5-4 0.0 6* 6* 6* 12 5-5 0.0 6* 6* 6* 6* 12 5-6 0.0 6* 6* 6* 6* 12 5-6 0.0 6* 6* 6* 6* 12 5-6 0.0 6* 6* 6* <td< td=""><td>1+ 977892</td><td></td><td></td><td></td><td></td><td></td><td></td><td>91</td><td>Li0</td><td>Moist, gray brown, silty, sandy GRAVEL (SM).</td><td>1</td></td<>	1+ 977892							91	Li0	Moist, gray brown, silty, sandy GRAVEL (SM).	1	
3 -	2 -		S-1			0.0				Moist, gray brown, SILT (ML), trace gravel, trace sai	^{nd.} + 2	
4 4 4 5 52 0.0 6" gravel identager. 6 7 8 6 6" gravel identager. 7 8 53 0.0 6" gravel identager. 7 10 53 0.0 6" gravel identager. 7 11 53 0.0 6" sand interlayer. 7 11 54 0.0 6" sand interlayer. 10 11 54 0.0 6" sand interlayer. 11 12 54 0.0 6" sand interlayer. 11 13 54 0.0 6" sand interlayer. 11 14 55 0.0 10 11 12 15 55 0.0 11 12 13 16 55 0.0 16 19 19 20 21 22 24 24 24 24 22 24 56 0.0 10 10 11 12 56 0.0 10 11 12 12 <t< td=""><td>3-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L 3</td></t<>	3-										L 3	
4 4 5 5 6 5 7 6 8 9 10 5.3 11 12 12 5.3 13 14 14 15 15 5.3 16 5.3 17 11 18 5.4 19 5.5 10 5.5 10 5.5 11 12 12 5.5 10 11 12 5.5 13 14 14 Molist, brown, slightly silty, slightly gravelly, SAND (SP); file 18 19 20 5.5 0.0 21 5.6 0.0 22 5.6 0.0 24 5.6 0.0 25 0.0 10 18 19 19 24 5.6 0.0 25 0.0 10 10 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
S-1 S-2 0.0 6* gravel interlayor. -6 7 -7 -7 -7 -7 8 -7 -7 -7 9 -7 -7 -7 10 -7 -7 -7 11 Molet, brown, skily SAND (SM), fine sand. -8 9 -7 -7 -7 11 Molet, brown, skily SAND (SM), fine sand. -8 12 -7 -7 13 -7 -7 14 -7 -7 15 -7 -7 16 -7 -7 17 -7 -7 18 -7 -7 19 -7 -7 10 -7 -7 11 -7 -7 12 -7 -7 14 -7 -7 15 -7 -7 16 -7 -7 17 -7 -7 18 -7 -7 19 -7 <td>4 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>† 4</td>	4 -										† 4	
6 S-2 0.0 6" gravel interlayer. 7 8 9 S-3 0.0 6" gravel interlayer. 7 10 S-3 0.0 6" sand interlayer. 10 11 Noist, brown, silfy SAND (SM); fine sand. 8 9 S-3 0.0 6" sand interlayer. 10 11 S-4 0.0 6" sand interlayer. 11 12 S-4 0.0 6" sand interlayer. 11 13 S-4 0.0 6" sand interlayer. 11 14 S-4 0.0 6" sand interlayer. 11 15 Hydraud bankale 0.0 6" sand interlayer. 11 16 S-5 0.0 14 14 17 S-5 0.0 16 17 18 S-5 0.0 11 11 20 S-6 0.0 16 17 21 S-6 0.0 16 17 22 S-6 0.0 16 17 24 S-6 0.0 16	5-										- 5	
7 7 7 7 8 9 9 11 Moist, brown, silty SAND (SM); fine sand. 8 9 9 9 11 Moist, brown, silty SAND (SM); fine sand. 9 10 5-3 0.0 0 0 0 0 11 12 13 14 Moist, brown, slightly sandy SILT (ML); sand in - 10 9 13 6* and interlayer. 11 12 12 13 14 5-4 0.0 0 0 0 16 17 14 14 12 13 16 17 5-5 0.0 16 17 19 5-5 0.0 18 19 19 20 21 5-5 0.0 18 19 22 24 5-6 0.0 18 19 24 5-6 0.0 10 10 10 24 25 24 24 24 24 24 24 25 26 27 28 24	6-		S-2			<u> </u>					- 6	
7 8 0 7 7 8 9 10 11 12 10 10 10 11 12 10 11 12 11 </td <td>Ĵ</td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>6" gravel interlayer.</td> <td>ľ</td>	Ĵ					0.0				6" gravel interlayer.	ľ	
8 9 4 Molst, brown, sily SAND (SM); fine sand. 8 9 10 5-3 0.0 00 <t< td=""><td>7 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ш</td><td>Щ</td><td></td><td>- 7</td></t<>	7 -							Ш	Щ		- 7	
9 0 Moist, brown, slightly sandy, SlLT (ML); sand in 0 10- 5-3 0.0 0 6" sand interlayer. 10 11- 12 13 14 12 13 14- 5-4 0.0 0 0 14 15- Hydrated bencrate chape 1/24" 5-4 0.0 14 16- Hydrated bencrate chape 1/24" 0.0 14 17 18- 5-5 0.0 Moist, brown, slightly sity, slightly gravelly, SAND (SP); 15 18- 5-5 0.0 16 17 18 19- 5-5 0.0 14 19 20 20- 21- 22 24 24 24 24 21- 22 5-6 0.0 10 10 22 22- 24 5-6 0.0 10 10 22 23- 24 5-6 0.0 10 10 22 24- 5-6 0.0 10 10 10 22 24- 5-6	8 -									Moist, brown, silty SAND (SM); fine sand.	- 8	
10- S-3 0.0	9									Moist, brown gray, slightly sandy SILT (ML); sand in clumps, fine to medium sand.	- g	
11- 11- 11- 11- 11- 12- 13- 14- 13- 14- 13- 14- 5.4 0.0 13- 14- 5.4 0.0 14- 13- 16- 14- 16- 14- 16- 16- 17- 5.5 0.0 16- 16- 17- 18- 5.4 0.0 16- 17- 17- 19- 5.5 0.0 16- 17- 17- 20-	10		S-3			0.0				6" sand interlayer.		
12- 13- 12- 12- 12- 13- 13- 14- 13- 13- 13- 13- 14- 15- Hydrated bontonic objec 1-2d* 0.0 Moist, brown, slightly silty, slightly gravelly, SAND (SP), 15- 16- 16- 16- 16- 16- 16- 17- 5-5 0.0 16- 17- 18- 5-5 0.0 18- 19- 20- 21- 22- 22- 22- 22- 24- 5-6 0.0 0.0 19- 25- 5-6 0.0 0.0 10- 22- 24- 5-6 0.0 0.0 10- 22- 25- 5-6 0.0 0.0 10- 22- 26- 10- 10- 10- 10- 24- 26- 10- 10- 10- 10- 24- 27- 28- 10- 10- 10- 26- 27- 28- 10- 10- 10- 27- 28-	11-										-11	
13- 14- 13 13 14- Hydraind bencome oxige 1*24" 5.4 0.0 14 15- Hydraind bencome oxige 1*24" 15 16 14 16- 17 16 17 16 17 18- 5.5 0.0 18 19 19 20- 21- 5.5 0.0 18 19 22- 24 5.6 0.0 18 19 24- 5.6 0.0 10 20 21 24- 5.6 0.0 0.0 22 22 24- 5.6 0.0 10 Moist, gray, sandy SiLT (ML). 23 24- 5.6 0.0 10 10 22 22 25- 5.6 0.0 10 10 23 24 24 25- 5.6 0.0 10 10 10 23 24 26- 27 28 29 24 24 25 26 27 28 29 28 29	12-										- 12	
14- 15- 16- 17- 18- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28- 29- No S.4 10- 19- 19- 19- 19- 19- 19- 19- 19- 19- 19	13-										-13	
15- 16- 17- 18- 17- 18- 19- 20- 21- 22- 22- 23- 24- 25- 26- 26- 27- 26- 29- Hydrated bentonike chipe 1:20* Noist, brown, slightly gravelly, SAND (SP); fine to medium sand. 15 16 16 17 18- 19- 20- 21- 22- 23- 24- 25- 26- 26- 27- 26- 27- 28- 29- S-5 0.0 0.0 18 19 20- 21- 22- 23- 24- 25- 26- 26- 27- 26- 27- 28- 29- S-6 0.0 0.0 10 10 24- 25- 26- 27- 28- 29- I S-6 0.0 0.0 Image: Sandy SiLT (ML). 23 24- 27- 28- 29- Image: Sandy SiLT (ML). Image: Sandy SiLT (ML). 24 24 25- 26- 27- 28- 29- Image: Sandy SiLT (ML). Image: Sandy SiLT (ML). 24 26- 29- Image: Sandy SiLT (ML). Image: Sandy SiLT (ML). 24 26- 29- Image: Sandy SiLT (ML). 24 27- 28- 29- Image: Sandy SiLT (ML). 24 28- 29- Image: Sandy SiLT (ML). 24 29- 29- Image: Sandy SiLT (ML). 25 29- 29- Image: Sandy SiLT (ML). 24 29- 29- Image: Sandy SiLT (ML). 24 29- 29- Image: Sandy SiLT (ML). 24 29- 29- Image: Sandy SiLT (ML).	14		S-4			0.0					-14	
16- 16- 16- 16- 16- 16- 16- 16- 17- 16- 16- 17- 16- 17- 16- 17- 18- 17- 18- 17- 18- 17- 18- 17- 18- 17- 18- 17- 18- 17- 18- 17- 18- 19- 20- 19- 20-	15-	Hydraled bentonite						Ш	μļ	Majet brown slightly sity slightly gravely. SAND (9	D) 15	
17- 17- 17- 17- 18- 5-5 0.0 -17 19- - -18 -19 20- - - -20 21- - - -21 22- - S-6 0.0 -22 23- - - - -22 24- - - - - 25- - 0.0 - - 26- - - - - 27- - - - - - 28- - - - - - 29- - - - - - Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET - 29- - - - - - 29- - - - - - 18- - - - - - 28- - - - - -	16	chips 1'-24'							•	fine to medium sand.	- 16	
18- S-5 0.0 -18 19- -19 -20 20- -21 -22 22- V S-6 0.0 23- -21 -22 24- -21 -22 25- 0.0 -22 26- -21 -22 27- -26 -26 27- -27 -28 29- PID - Photoinization Detector (Headspace Measurement) Logged by: AET 28 -22 -22 29- V Static Water Level Annowed by: JLP	17-										17	
18- 18- 19-											– – – – – – – – – –	
19- 19- -19 20- 21- -20 21- 22 -21 22- 24 -21 23- -21 24- -23 25- -24 26- -25 27- -26 27- -26 28- -27 28- -29 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET 29- Vio Recovery Static Water Level	18-		S-5			0.0					+ 18	
20- 21- 22- 23- 24- 25- 26- 27- 28- 29- Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET PID - Photoionization Detector (Headspace Measurement) Logged by: AET Static Water Level Annowed by: LUP	19-							• •			+19	
21- ✓ ✓ S-6 0.0 ✓<	20-										-20	
21- 22- 23- 24- -22 -22 23- 24- -23 -24 -24 25- 26- -25 -26 -25 26- 27- -26 -26 -26 27- -28 -29 -28 -29 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET Q No Recovery Static Water Level Approved by: JLP												
22- Y S-6 0.0 -22 23- Moist, gray, sandy SILT (ML). 23 24- Bottom of boring at 24' bgs. Groundwater sample B-22-120608 taken from temporary well. -26 26- 27- -27 28- 29- PID - Photoionization Detector (Headspace Measurement) Logged by: AET Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET Q No Recovery Y Static Water Level	217	-					1					
23- 24- 25- 26- 27- 28- 29- Sampler Type: PID - Photoionization Detector (Headspace Measurement) No Recovery PID - Photoionization Detector (Headspace Measurement) Static Water Level Approved by: AET Approved by: AET Approved by: AET	22-	4	S-6			0.0					+22	
24- 24 25- 26- 26- 27- 28- 29- Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET Q No Recovery	23-								ΠT	Mojet any condu SILT (ML)		
25- Bottom of boring at 24' bgs. Groundwater sample B-22-120608 taken from temporary well. -25 26- -26 27- -27 28- -28 29- PID - Photoionization Detector (Headspace Measurement) Logged by: AET Q No Recovery Image: Static Water Level	24									i moist, gray, sanuy OILT (ML).	2/	
25- Groundwater sample B-22-120608 taken from temporary well. -26 27- -27 28- -28 29- PID - Photoionization Detector (Headspace Measurement) Logged by: AET Q No Recovery Image: Static Water Level										Bottom of horing at 24' bos	24	
26- 1 1 1 1 1 26 27- 28- 27 28 28 28 29- 29 1 1 1 1 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET Q No Recovery ▼ Static Water Level Approved by: .LIP	25-									Groundwater sample B-22-120608 taken from	+25	
27- 28- 29- Sampler Type: PID - Photoionization Detector (Headspace Measurement) No Recovery ▼ Static Water Level Approved by: JLP	26-									temporary well.	-26	
28- -28 29- -28 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET O No Recovery Image: Static Water Level	27-										-27	
28 29 28 29 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET No Recovery Image: Static Water Level Approved by: LIP												
29- -29 Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET O No Recovery Image: Static Water Level Approved by: ILIP	28										²⁸	
Sampler Type: PID - Photoionization Detector (Headspace Measurement) Logged by: AET No Recovery Image: Static Water Level Approved by: ILIP	29										-29	
O No Recovery Image: Static Water Level	Sampler Tyr	pe:	_I PID -	Photoio	nization [Detec	tor (He	ads	pac	e Measurement) Logged by: AET		
	No Recovery			Ţ	Static W	ater	Level			·····		
U Continuous Core ↓ Water Level (ATD)	Continuous Co	re		Ϋ́	Water Le	evel (ATD)			Approved by: JJP		
Figure No. A - 23						- \				Figure No. A - 23		

		Acnoct			Boring Log					
			arth + water		Projec 06	t Numb 01 7 2	ler	Boring Number MW-7	Sheet 1 of 1	
Project N	lame	Spic 'n Spar	n Cleaners		· · · · · · · · · · · · · · · · · · ·			Ground Surface Elev		
ocation		Seattle, WA								
Driller/Me	əthod	NW Probe / Dir	ect-Push Prob	e		Depth to Water 18.67				
Sampling	Meth	od Continuous Co	re					Start/Finish Date	1/17/2008	<u> </u>
Depth / Elevation (feet)		Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description	l	Dep (ft
1	Ň	Concrete seal 0'-1'					4	Concrete sidewalk. Pot hole with post hole digger.		- - 1
2 - 3 -			S-1		0.0			Moist, brown, slightly silty, sligh no odor	ntly gravelly SAND (SP);	+ 2 + 3
4 🕂					0.0					+ 4
5 -		Hydrated bentonite chips 1'-20.5'								- 5
6 7 			S-2		0.0					+ 6
8 -					0.0			Moist, gray-blue, gravelly, very	sandy SILT (ML); no	- 8
9			C _3					odor.		
1-			3-3		0.0					
2-			_		1.0					+1
14-			S-4		2.0			Moist, dark gray, slightly grave (SM); по odor.	lly, very silty SAND	-1
15 16					0.0					+1!
17-								Very moist, dark gray, thin alte	rnating beds of SILT	+1
18- 19-		<u>▼</u> 1/19/2008	S-5					(אוב) מווע סאויע (סוע), דוט נ ווע סאויע סאויע (סוע), דוט נ		
20-	.	-						Very moist, dark gray-blue, ver fine gravels.	y silty SAND (SM), trace	
21- 22-		.8 Sand filter pack 20.5'-28'	S-6							-2 ⁻
23-								very moist, dark gray-blue, sar	idy Silt (Mil).	-2:
24-		22.5'-27.5'						Wet, dark gray-blue, silty, grav	elly SAND (SM).	$+2^{2}$
26-			S-7							-20
27-										+2
29								Bottom of boring at 28' bgs.		-29
	1 Impler	Туре:	<u>II</u> PID	- Photoic	nization Dete	L ector (He	eadspa	L Ce Measurement) Logged by	DFR	l
O No R ☐ Conti ☐ Conti	lecove inuous	ery s Core		¥ ⊽	Static Wate Water Level	r Level (ATD)		Approved	by: JJP	
						- /		Figure No.	A - 24	

							Boring Log			
	ASPECICON	sutting arth + water		Projec 06	t Numb 0172	er		Boring Number MW-8	Sheet 1 of 1	
Project Name	Spic 'n Span	Cleaners	3	·				Ground Surface Elev	·	
ocation										
Driller/Method	NW Probe / Dir	irect-Push Probe Depth to Water 21.47								
Sampling Method	Continuous Cor	e I I			1		—	Start/Finish Date	1/17/2008	
Elevation Borehole Completion Sample (feet) Type/ID			Tests	PID (ppm)	Blows/ 6"	Mater Type	riai e	Description		Dep (fi
$\begin{array}{c} \text{Elevation} \\ \text{(feet)} \\ \hline 1 \\ 2 \\ - \\ 3 \\ - \\ 3 \\ - \\ - \\ 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Concrete seal 0'-1' Hydrated bentonite chips 1'-15' .8 Sand filter pack 15'-24' 3/4", 10-slot PVC 17'-22'	S-1 S-1 S-2 S-3 S-3 S-4 S-5	Tests	(cpm) 0.0 0.0 0.0 0.0 0.0 0.0	6"			CONCRETE. <u>Moist, gray brown, silty, sandy (</u> Moist, gray brown, SILT (ML), tr Bright red-orange stain. 6" gravel interlayer. Moist, brown, silty SAND (SM); Moist, brown gray, slightly sand; clumps, fine to medium sand. 6" sand interlayer. Moist, brown, slightly silty, slight fine to medium sand.	BRAVEL (SM). ace gravel, trace sand. fine sand. y SILT (ML); sand in	
20- 21- 22- 23- 24- 25- 26- 77-	<u>▼</u> 1/19/2008	S-6		0.0				Moist, gray, sandy SILT (ML). Bottom of boring at 24' bgs. Drilled without sampling, soil log B-22.	derived from nearby	+2 +2 +2 -2 +2 +2 +2
28-										-2 -2 -2
Sampler Ty	pe:	PIC) - Photoior T	nization Detect Static Water L	tor (Hea _evel	adspa	ace	e Measurement) Logged by: Approved by	DFR /: JJP	

							Boring Log		
	ASPECICONS	th + water		Projec 06	t Numb 0172	er	Boring Number MW-9	Sheet 1 of 1	
Project Name	Spic 'n Span	Cleaners					Ground Surface Elev		. <u> </u>
Location Seattle, WA								A. 55	
Driller/Method <u>NW Probe / Direct-Push Probe</u>							Depth to Water	21.55	
Sampling Method Continuous Core					· · · · ·	<u> </u>	Start/Finish Date	1/1//2008	1
Depth / Elevation B (feet)	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dept (ft)
1 2 3 4	Concrete seal 0'-1'	S-1		0.0			Moist, gray, sandy GRAVEL (G gravel; fine to coarse sand, pre- <u>\medium.</u> Moist, gray brown, silty, gravelity subround gravel; fine to mediur	P); coarse angular dominantly fine to y, SAND (SM); coarse, n sand.	- 1 - 2 - 3
5 6 7 8	Hydrated bentonite chips 1'-16'	S-2		. 0.1			Moist, brown, slightly silty, grav subround to round gravel; fine t Bright red-orange stain. Wood.	elly SAND (SP); coarse, o medium sand.	- 5 - 6 - 7 - 8
9 10 11		S-3		0.0			Moist, brown, gravelly SAND (S gravel; fine to medium sand. Wood.	SP); coarse, subround	9
12 13 14 15		S-4		0.0		0000	Moist, gray brown SILT (ML). Moist, brown, slightly silty, sand	iy GRAVEL (GP).	- 13 - 14 - 15
16 17 18 19	.8 Sand filter pack 16'-24 3/4", 10-slot PVC 18'-23'	S-5		0.0			Moist, gray brown, gravelly, sar subangular gravel. Moist, gray, gravelly SAND (SP	ndy SILT (ML); coarse,	- 16 - 17 - 18 - 19
20- 21- 22- 23-	▼_1/19/2008	S-6		1.0 38.0			Wet, gray, gravelly, very silty S, Very strong deisel odor, thick sl	AND (SM). heen and free product.	-20 -21 -22 -23
24- 25- 26- 27- 28-						<u> </u>	Bottom of boring at 24' bgs. Drilled without sampling, soil log B-21.	g derived from nearby	-24 -25 -26 -27 -28
29- Sampler Tr No Recovery Continuous C	ype:	PIC) - Photoic ¥ ⊻	onization Detec Static Water Water Level	ctor (He Level (ATD)	eadspac	e Measurement) Logged by: Approved t Figure No.	DFR by: JJP A - 26	-29

Geologic Log

Monitoring Well Design

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Ground water level, if indicated, is ot time of drilling (ATD) or far date specified. Level may vary with time.

) 6/13/00 1=1 charlie-8.pa2 734801\LOGS

g

Geologic Log

Monitoring Well Design

- 1. Refer to Figure A-1 for explanation of descriptions . and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Ground water level, if indicated, is at time of drilling

.

3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Geologic Log

oth Feet

Monitoring Well Design Casing Stickup in Feet: 0.0 Top of in Feet 39

in Del	Relative Tap of Casing Elevation in Feet: 39.0	Somple	N	PID 1			
0	7 inches of Concrete over 5 inches of base course fill.]		-		-
	Soft, moist, gray—green, silty CLAY with scattered gravel.	S1	4	(<1)			-
5-	Soft to medium stiff, maist, gray—brown to brown, slightly gravelly, slightly sondy, clayey SILT with Sand layers and scattered organic material and burnt	s-2	5	(<1)			-
4	wood. (FILL)	S-3	4	(<1)	-		_
10-		S-4	5	(<1)			-
	– Thin Sand layers.	S-5	7	(<1)	-		-
15-	 Grading stiff with sandy Gravel layers. 	S-6	13	(<1)	-		
	- Grading very stiff with scattered gravel.	s-7	21	(<1)			1 1
20-	Medium dense, wet, gray, silty, very gravelly, SAND.	S-8	16	(<1)			
-		S-9	9	(<1)			. I.
25	Very soft, wet, gray, very sondy SILT with Sand layers.	S-10	2	(<1)			
-	- Wood layer with creosote-like odor.	S-11	22	(60)	_		_
30-	Grading very stiff, green, slightly sandy, gravelly, clayey SILT grading green—yellow with no gravel.	S-12 A	30	(<1)	 - 	-	-
	Battom of Boring at 31.5 Feet. Completed 4/5/00.				Ē		
35						_]

35-1

1. Refer to Figure A-1 for explanation of descriptions and symbols. 2. Soil descriptions and stratum lines are interpretive

- ond actual changes may be gradual. 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Geologic Log

Monitoring Well Design

- Refer to Figure A-1 for explanation of descriptions ond symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Monitoring Well Log VE-1

HARTCROWSER 7348-02 09/01 Figure A-9

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date

specified. Level may vary with time.

Monitoring Well Log VE-2

 Soil descriptions and stratum lines are interpretive and actual changes ma be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time. Figure A-10

	Soil Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
	6 inches of Concrete.			
	(Loose to medium dense), dry, brown to gray, gravelly, silty, fine SAND. (FILL)		S-1	-{<0.1) CA
	Grades to damp.		S-2	- (<0.1)
	damp, brown to gray, slightly gravelly, slightly sandy, clayey SILT to silty SAND, with occasional brown glass shards and black wood fragments. (FILL)		S-3	- (<0.1)
		15	S-4	- (<0.1)
	(Very stiff to very dense), moist, brown to gray, slightly sandy SILT to silly, gravelly SAND with scattered glass shards in sand. (FILL)		S-5	- (<0.1)
ORP.GDT 7/13/05		+20 - - - ↓ - ↓ - ↓ - ↓	S-6	-(<0.1) CA
APROBE 734805-BL.GPJ HC_C	Bottom of Boring at 24.0 Feet. Completed 06/16/05.	-25		
STRA1		 30		

Ð HARTCROWSER 7348-05 06/05 Figure A-2

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

ş

So	il Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
[6 inches of Concrete.			
	silty, fine SAND. (FILL)		N A	
			S-1	- (<0.1)
		-		
	(Dense to stiff), damp, slightly gravelly,		()	
	clayey, silty SAND to sandy SILT with abundant black wood and brick fragments.	5	N/I	
	(FILL)	-	S-2	-(<0.1)
ľ		-	//\	
	(Stiff), damp, mottled green to gray-brown,			
	slightly sandy, clayey SILT with scattered brick fragments. (FILL)	-	N/I	
			S-3	~(<0.1) CA
	Silty Clay lenses	-	N/I	
			S-4	~(<0.1)
		+15		
	Grades to black		ΛA	
			S-5	-(157) CA
	Moderate hydrogathon like odor and slight			
	to moderate sheen.	+20 ,⊻		
			A A	
7/13/0	Abundant black wood frogments		*s-6	-(112)
	Pottem of Poring at 23.0 East		I/I	
50	Completed 06/16/05.			
원		-25		
EL CP				
34805				
DBE 7				
TAPR(
STRA				
		50		

E **HARTCROWSER** 7348-05 06/05 Figure A-3

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Soil Descriptions	Depth in Feet	Samp	LAB TESTS Ie & (PID)
6 inches of Concrete.	<u> </u>	·	<u>ر</u>
(Loose), dry, brown to gray, slightly gravelly, very silty, SAND. (FILL)		S-1	-(<0.1) CA
(Stiff), damp, brown to gray, slightly gravelly, sandy, clayey SILT to silty CLAY with occasional black wood fragment. (FILL)	5	S-2	~ (<0.1)
Trace of brick fragments.	- 10	S-3	-(<0.1) CA
	- 15	S-4	-(<0.1)
(Medium dense), damp, grayish brown, slightly gravelly, clayey, silty SAND with occasional brick and black wood fragments. (FILL)		S-5	- (<0.1)
		S-6	-(<0.1) CA
Bottom of Boring at 24.0 Feet. Completed 06/16/05.	- 25		

. .

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Soil Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
8 inches of Concrete	—		
(Loose), dry, brown, slightly gravelly SAND. (FILL)		S-1	-{<0.1} CA
		/ \	
(Medium stiff), dry to damp, brown to gray, slightly gravelly, sandy, clayey SILT. (FILL)	5	S-2	- (<0.1)
Grades to silty CLAY to clayey SILT.	- 10	S-3	-(11.6) CA
		S-4	-(37.2)
Strong hydrocarbon-like odor and slight sheen.		S-5	- (146) CA
		S-6	-(39.6)
Bottom of Boring at 24.0 Feet. Completed 06/16/05.	25		

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Soil Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
 3 inches of Asphalt. 		· 🗖	
(Loose), dry, brown, gravelly, silty SAND. (FILL) (Stiff to very stiff), damp, gray, silty CLAY		S-1	-(<0.1) CA
to clayey SILT. (FILL)		S-2	- (<0.1)
Occasional to abundant black wood fragments.	+ 10	S-3	-(<0.1) CA
· · .	15	S-4	- (<0.1)
		S-5	- (<0.1)
Moderate to strong hydrocarbon-like odor.		S-6	(105) CA
Bottom of Boring at 24.0 Feet. Completed 06/16/05.			

Į

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

3

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Groundwater level, if indicated, is at lime of drilling (ATD) or for date specified. Level may vary with time.

HARTCROWSER 7348-05 06/05

Figure A-9

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes
- may be gradual.
- 3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

7348-05 06/05 Figure A-10

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

HARTCROWSER 7348-05 06/05

Figure A-11

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

anay be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. Groundwater level, if indicated, is at time of drilling (ATD) or for date

specified. Level may vary with time.

HARTCROWSER 7348-05 06/05 Figure A-12
Boring Log/Construction Data Monitoring Well MW-6

HARTCROWSER 7348-05 06/05

Figure A-13

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Soil Appr	Descriptions oximate Ground Surface Elevation in Feet:	Depth ìn Feet		Sample	LAB TESTS & (PID)
	(Medium dense), moist, brown, slightly silty, slightly gravelly SAND. Sampled from cuttings.	- - - - - - - - - - - - - - - - - - -			
	(Medium stiff), moist, gray, slightly sandy SILT with occasional charcoal pieces.		S-1		-(<1)
			S-2	\mathbb{N}	-(<1)
	(Medium dense), moist to wet, brown to gray, silty SAND with petroleum-like odor.		S-3	A	- (52)
-	(Medium dense), wet, gray, slightly gravelly,		S-4		-(1787) CA
P.GDT 4/12/02	slightly sitly SAND with petroleum-like odor and sheen observed.		S-5	\mathbb{N}	-(>3000) CA.
TRATAPROBE 734802.GPU HC_COR	(Medium dense), wet, gray, silty, fine SAND. Wood and brick debris from 29.5 to 29.8 feet. (Dense), wet, gray, slightly gravelly, silty SAND. Bottorn of Boring at 30.0 Feet. Completed 09/06/01.		S-6		- (55)
LS ST		⊥ ₃₅			

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may

be gradual.

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Monitoring Well Log SP-4⁻

HARTCROWSER 7348-02 09/01 Figure A-5

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may

be gradual.3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

· · .

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may

be gradual. 3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

HARTCROWSER 7348-02 09/01 Figure A-8

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Soil	Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
	4 inches of CONCRETE. (Medium dense), damp, tan-brown, slightly silty, very gravelly SAND with organic debris.			
	(Soft), moist, gray-brown, very sondy	5 		-(12)
	SILT with organic and wood debris, coal bits, and glass fragments.	- - -	S-2	-(6)
	Grades to (stiff), gray SILT with thin interbeds of sandy debris, including coal bits and wood bits.	-15	S-3	-(<1)
	(Loose), wet, gray, slightly silty, coarse SAND.			
	(Loose), wet, gray SILT. (Loose), wet, gray, slightly silty, medium to coarse SAND.		S-5	-(<1)
	Bottom of Stratoprobe at 24.0 Feet. Completed 6/27/97.	-25		
	-Groundwater grab sample collected from 21.5 ta 24.0 feet.	-		
-				
-				

- and actual changes may be gradual. 3, Ground water level, if indicated, is at time of drilling (ATD) ar for date specified. Level may vary with time.

HARTCROWSER J-4808 6/97 Figure A-2

1

8)=1 acad

Soil	Descriptions	Depth in Feet	Sample	LAB TESTS & (PID)
	4 inches of CONCRETE. (Medium dense), damp to moist, brown, slightly silty, slightly grovelly SAND with bits of coal and wood.		S-1	-(30)
	(Stiff), damp, gray~brown, slightly sandy SILT with organic debris and some coal bits.		S-2	-(15)
	Becomes moist, gray.	- - - -	S-3	-(7)
	Becomes wet		S-4	-(16)
	Lens of peat—like organic material with a strong chemical—like odor.	-20	ATD S-5	-(250)
	(Medium dense), wet, gray, slightly silty SAND to very sandy SILT with a strong chemical—like odor.		S-6	-(250)
	Groundwater grab sample collected from 21 to 23.5 feet.	- 		
	Grades to slightly silty, gravelly SAND with a chemicol—like ador.		S-7 X	-(100)
	Becomes tan—brown, very gravelly, odor decreoses.		· S-8	-(50)
	(Very dense), damp to maist, tan to gray, slightly silty, very gravelly SAND. (Weathered TILL?)		S-9	-(5)
	Bottom of Stratoprobe ot 37.0 Feet. Completed 6/27/97.			

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive
- and actual changes may be gradual.
 Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

ACAD LOG

Soil	Descriptions	Depth in Feet	Sample	LÀB TESTS & (PID)
	3 inches of ASPHALT. (Medium dense), damp, ton to dark brown, gravelly SAND.		S-1	(9)
	(Stiff, damp, gray SILT with some bits of coal.		5-2	-(2)
	(Loase), damp, brown, medium SAND. (Stiff, maist, gray SILT.	+ 10 	s-3	-(5)
	Chunk of wood.	-15	S-4	-(6)
	Grading to very sandy SILT with a strong odor. Grading to (medium dense), wet, gray, slightly gravelly SAND with thin loyers o	f	S-5 S-6	-(2D) -(3)
	SILT and a chemical-like odor.	-25		
	Bottom of Strataprobe at 32.0 Feet.		s-7	
	-Groundwater grob sample collected from 20.5 to 23.0 feet.	35 		
		40		

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive
- and actual changes may be gradual.
 Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Ş

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

- Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

1=1 ACAD LOG

- Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Ground water level, if indicated, is at time of drilling
- Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

ACAD LOG

H

- Refer to Figure A-1 far explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Ground water level, if indicated, is at time of drilling (ATD) or far date specified. Level may vary with time.

Soil Descriptions

- С О 1. Refer to Figure A-1 for explanation of descriptions
 and symbols.
 2. Soil descriptions and strotum lines are interpretive
- and actual changes may be grodual. 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

HARTCROWSER

J-4808 6/97 Figure A-9

Soil Descriptions

200

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vory with time.

HARTCROWSER J-4808 6/97 Figure A-10

LAÐ

Soil Descriptions

- L0G
- 1. Refer to Figure A-1 for explonation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive
- ind actual changes may be gradual. iii 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

LAB

Soil Descriptions

500

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
 2. Sail descriptions and stratum lines are interpretive and actual changes may be gradual.
 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

APPENDIX C

Historical Groundwater Elevation Data

Groundwater Elevation Contour Map Spic 'n Span Cleaners Site

ľ

-)

- 78.89 Relative Groundwater Elevation in Feet
- 78.0---- Relative Groundwater Elevation Contour in Feet
 - Approximate Groundwater Flow Direction
- Site Elevation Reference Datum of 100.0 Feet (Top of Fire Hydrant)

(Heasured June 2005)

Groundwater Elevation Contour Map - October 2004

Spic 'n Span Cleaners Site

7348-04

Figure 1

11/04

734804C.cdr HEL 11/4/04

Groundwater Elevation contour Map-July 2004 Spic 'n Span Cleaners Site

8/04

7348-04 Figure 2

Groundwater Elevation Contour Map-April 2004

Spic 'n Span Cleaners Site

1904 - 24- 40 - 1904 -

主義のあり

ł

Figure 1

Figure 1

734B02E.cdr DJH 6/25/03

Site and Exploration Plan Spic 'n Span Cleaners Site

J-7348-01

Figure 2

6/00

DTN 6/13/00 734801AA.cdr

1

Groundwater Flow Direction

APPENDIX D

Historical Soil and Groundwater Data

Table 5 - Summary of Historical Chemical Data for Groundwater Samples for MW-1, MW-2, MW-3, MW-4, and VE-1

-

.

Groundwater Data Summary

Sample ID	MW-1	MW-1	ł MW-1	MW-1	MW-1	MW-1	MW-1	MIN-1	MANA/-1	M//_1	Addar 1	A ANAL 1	L MARA 1	84147.4	RAVAL 1	LINAL 1	MALAJ 1	MTCA Mathed
Sampling Date	4/14/2000	7/26/2000	10/20/2000	2/13/2001	11/1/2001	3/5/2002	6/26/2002	9/23/2002	1/22/2003	4/24/2003	7/30/2003	10/21/2002	1/8/2004	4/20/2004	7/20/2004	10/20/2004	6(22/2005	
Field Parameters			†	1				0120/2002	12232000		1130/2003	10/31/2003	110/2004	4/30/2004	112512004	10720/2004	0/23/2003	
Specific Conductance in umos/cm	300	240	270	230	260	80	230	110	180	204	196	168	228	210	212	333	265	
pH (std. units)	6,5	7.7	6.86	6.5	6.3	66	75	75	60	57	5 11	5.07	6.24	210	213	5.01	203	
Temperature in degrees C	15.5	15.9	16.0	15.5	15.6	15.8	16.7	16.0	15.2	16.0	16.6	15.0	0.24	0.53	0.41	5.01	0.35	
Dissolved Oxygen in mg/L	3.8	5.2	1.89	1.29	2.81	192	5.01	21	1 99	203	16.3	10.0	10.0	10.0	17.0	10.2	17.1	
				1.20	2.01	1.52	5.01	2.1	1.33	2.03	1.57	0.9	2.03	1.99	2.20	2,56	1.00	
Total Suspended Solids in mg/L	7100	210	96	23	20 U	14	59	6	20 U	20	60	20 U	20 U	20	20 U	20 U	2.4 U	-
Petroleum Hydrocarbons in mg/L																		
Winerar Spins/Stondard Solvent	0.10	0.1 0	0.70	0.1 0	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0,1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.25 U	1
Volatile Organics in mg/L																		
o-Dichlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.72 (a)
p-Dichloropenzene .	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0018 (a)
cis-1,2-Dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0,005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.00† U	0.001 U	0.001 U	0.001 U	0.08 (a)
1,2-Dichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,005
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.014	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0D1 U	0.001 U	0.001 U	0.005
Tetrachloroethene	0.0024	0.0022	0.0038	0.0034	0.0042	0.002	0.0024	0.0037	0.0016	0.002	0.0017	0.0022	0.0029	0.0032	0.0038	0,0032	0.0034	0.005
1,1,2,2-Tetrachloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0,005 U	0.005 U	0.00 5 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00022 (a)
Vinyl Chloride	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0,005 U	0.0002 U	0.0002 U	0.0002 U	0,0002 U	0.0002 U	0.0002
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.005
Ethylbenzene	0.001 V	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,7
Total Xylene	0.001 U	0.001 U	0.001 U	0.001 U	0.0028	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0D1 U	0.001 U	0.001 U	1
cis-1,3-Dichloropropene	0.005 U	0.005 U	0.005 U	0.005 U			0.005 U	0,005 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0002
Chloroform	0.001 U	0.001 U	0.021	0.022	0.021	0.001 U	0.001 U	0.014	0.001 U	0.001 U	0.001 U	0.001 U	0.0096	0.001 U	0.001 U	0.0091	0.0084	0.007 (a)
								·	I				L					
Sample ID	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MTCA Method
Sampling Date	4/14/2000	7/26/2000	10/20/2000	2/13/2001	11/1/2001	3/5/2002	6/26/2002	9/23/2002	1/22/2003	4/24/2003	7/30/2003	10/31/2003	1/8/2004	4/30/2004	7/29/2004	10/20/2004	6/23/2005	A for Water
Field Parameters												<u> </u>						
Specific Conductance in umos/cm	950	860	720	580	620	220	1040	380	480	750	930	612	766	604	505	780	828	
pH (std. units)	7.1	7.1	6.73	7.04	6.5	6.8	7.7	6.7	6,5	6.41	748	6.45	6.87	7 12			6 75	
Temperature in degrees C	16.1									0.71 1				1.14	6.75	5.03	0.70 4	[
		15.4	15.5	16.2	15.2	15.5	17.9	17.3	16.7	17.0	18.2	18.6	18.0	18.8	6.75 18.5	5.03 19.2	17.5	
Dissolved Oxygen in mg/L	2.1	15.4 2.9	15.5 0.5	16.2 0.87	15.2 0.63	15.5 0.16	17.9 	17.3 0.43	16 <i>.</i> 7 0,52	17.0 0.9	18.2 0.87	18.6 0.11	18.0 0.42	18.8 0.01	6.75 18.5 0.48	5.03 19.2 0.6	17.5 0.1	
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L	2.1 2500	15.4 2,9 250	15.5 0.5 23	16.2 0.87 22	15.2 0.63 20 U	15.5 0.16 125	17.9 910	17.3 0.43 46	16.7 0.52 20	17.0 0.9 40	18.2 0.87 1300	18.8 0.11 20 U	18.0 0.42 6600	18.8 0.01 20	6.75 18.5 0.48 600	5.03 19.2 0.6 20	17.5 0.1 1110	
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L	2.1 2500	15.4 2,9 250	15.5 0.5 23	16.2 0.87 22	15.2 0.63 20 U	15.5 0.16 125	17.9 910	17.3 0.43 46	16.7 0.52 20	17.0 0,9 40	18.2 0.87 1300	18.8 0.11 20 U	18.0 0.42 6600	18.8 0.01 20	6.75 18.5 0.48 600	5.03 19.2 0.6 20	17.5 0.1 1110	
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent	2.1 2500 2.8	15.4 2.9 250 0.1 U	15.5 0.5 23 0.82	16.2 0.87 22 1.7	15.2 0.63 20 U 0.11	15.5 0.16 125 0.92	17.9 910 0.1 U	17.3 0.43 46 0.1 U	16.7 0.52 20 0.1 U	17.0 0.9 40 0.21	18.2 0.87 1300 0.1 U	18.8 0.11 20 U 0.1 U	18.0 0.42 6600 0.1 U	18.8 0.01 20 0.15	6.75 18.5 0.48 600 0.17	5.03 19.2 0.6 20 0.18	17.5 0.1 1110 0.25 U	 1
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L	2.1 2500 2.8	15,4 2,9 250 0.1 U	15.5 0.5 23 0.82	16.2 0.87 22 1.7	15.2 0.63 20 U 0.11	15.5 0.16 125 0.92	17.9 910 0.1 U	17.3 0.43 46 0.1 U	16.7 0.52 20 0.1 U	0.9 40 0.21	18.2 0.87 1300 0.1 U	18.6 0.11 20 U 0.1 U	18.0 0.42 6600 0.1 U	18.8 0.01 20 0.15	6.75 18.5 0.48 600 0.17	5.03 19.2 0.6 20 0.18	0.75 17.5 0.1 1110 0.25 U	
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene	2.1 2500 2.8 0.0064	15.4 2.9 250 0.1 U	15.5 0.5 23 0.82	16.2 0.87 22 1.7	15.2 0.63 20 U 0.11	15.5 0.16 125 0.92	17.9 910 0.1 U	17.3 0.43 46 0.1 U	16.7 0.52 20 0.1 U	0.41 17.0 0.9 40 0.21	18.2 0.87 1300 0.1 U	18.6 0.11 20 U 0.1 U	18.0 0.42 6600 0.1 U	18.8 0.01 20 0.15	6.75 18.5 0.48 600 0.17	5.03 19.2 0.6 20 0.18	0.75 17.5 0.1 1110 0.25 U	
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene	2.1 2500 2.8 0.0064 0.001 U	15.4 2,9 250 0.1 U 0.001 U 0.001 U	15.5 0.5 23 0.82 0.001 U	16.2 0.87 22 1.7 0.0035 0.0016	15.2 0.63 20 U 0.11 0.001 U	15.5 0.16 125 0.92 0.001 U	17.9 910 0.1 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U	0.41 17.0 0.9 40 0.21	18.2 0.87 1300 0.1 U 0.001 U	18.6 0.11 20 U 0.1 U 0.001 U	18.0 0.42 6600 0.1 U 0.001 U	18.8 0.01 20 0.15 0.001 U	6.75 18.5 0.48 600 0.17	5.03 19.2 0.6 20 0.18 0.001 U	0.75 17.5 0.1 1110 0.25 U 0.001 U	 1 0.72 (a)
Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1.2-Dichloroethene	2.1 2500 2.8 0.0064 0.001 U 0.083	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.001 U 0.025	16.2 0.87 22 1.7 0.0035 0.0016 0.017	15.2 0.63 20 U 0.11 0.001 U 0.001 U	15.5 0.16 125 0.92 0.001 U 0.001 U	17.9 910 0.1 U 0.001 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U	0.41 17.0 0.9 40 0.21 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.001 U	18.8 0.11 20 U 0.1 U 0.01 U 0.001 U 0.001 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U	0.75 17.5 0.1 1110 0.25 U 0.001 U 0.001 U	 1 0.0018 (a)
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1.2-Dichloroethene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U	15.2 0.63 20 U 0.11 0.001 U 0.001 U 0.005 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U	17.9 910 0.1 U 0.001 U 0.001 U 0.005 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U	0.01 17.0 0.9 40 0.21 0.001 U 0.001 U 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.001 U 0.005 U	18.6 0.11 20 U 0.1 U 0.01 U 0.001 U 0.005 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U 0.0021	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U 0.0034	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.0027	0.75 17.5 0.1 1110 0.25 U 0.001 U 0.001 U 0.0061	 1 0.0018 (a) 0.08 (a)
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.001 U	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U	15.2 0.63 20 U 0.11 0.001 U 0.005 U 0.005 U 0.005 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U	17.9 910 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U	0.01 17.0 0.9 40 0.21 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U	18.8 0.11 20 U 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U 0.0021 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U 0.0034 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.0027 0.001 U	0.75 17.5 0.1 1110 0.25 U 0.001 U 0.001 U 0.0061 0.001 U	 1 0.0018 (a) 0.005 (a) 0.005
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038	15.4 2.9 250 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.005 U 0.001 U	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033	15.2 0.63 20 U 0.11 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	17.9 910 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U	0.9 40 0.21 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U	18.8 0.11 20 U 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U 0.0021 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U 0.0034 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.0027 0.001 U 0.001 U 0.001 U	0.73 17.5 0.1 1110 0.25 U 0.001 U 0.001 U 0.0061 0.001 U 0.001 U	 1 0.0018 (a) 0.005 0.005
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tetrachloroethene 1 1 2 2-Tetrachloroethene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038	15.4 2.9 250 0.1 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.001 U 0.001 U 0.001 U 0.005	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033 0.005 U	15.2 0.63 20 U 0.11 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	17.9 910 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	0.9 40 0.21 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.01 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	18,8 0,11 20 U 0,11 U 0,01 U 0,001 U 0,005 U 0,005 U 0,001 U 0,001 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U 0.0021 0.001 U 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U 0.0034 0.001 U 0.001 U 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.0027 0.001 U 0.001 U 0.001 U	0.73 17.5 0.1 1110 0.25 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	 1 0.022 (a) 0.0018 (a) 0.08 (a) 0.005 0.005 0.005
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tetrachloroethene 1,12,2-Tetrachloroethane Vinvl Chloride	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038 0.0088 0.0088	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.001 U 0.001 U 0.001 U 0.003 4	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033 0.005 U 0.005 U	15.2 0.63 20 U 0.11 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.005 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U	17.9 910 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.005 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.9 40 0.21 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	18.8 0.11 20 U 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	1.12 18.8 0.01 20 0.15 0.001 U 0.001 U 0.0021 0.001 U 0.001 U 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.0034 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.0027 0.001 U 0.001 U 0.001 U 0.001 U	0.73 17.5 0.1 1110 0.25 U 0.001 U 0.0061 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	 1 0.0018 (a) 0.005 (a) 0.005 0.005 0.005 0.0005 (a)
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Tichloroethene Tichloroethene Tichloroethene 1,1,2,2-Tetrachloroethane Vinyl Chloride Benzene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038 0.0088 0.0088 0.0088	15.4 2.9 250 0.1 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.001 U 0.001 U 0.005 0.001 U	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033 0.005 U 0.001 U	15.2 0.63 20 U 0.11 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U	17.9 910 0.1 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U	0.9 40 0.21 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U	18.8 0.11 20 U 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U	18.0 0.42 6600 0.1 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U 0.0021 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.0027 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.73 17.5 0.1 1110 0.25 U 0.001 U 0.0061 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	 1 0.0018 (a) 0.005 0.005 0.005 0.005 0.005 0.005 0.00022 (a) 0.0002
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Tichloroethene Tichloroethene Tetrachloroethene 1,1,2,2-Tetrachloroethane Vinyl Chloride Benzene Ethylbenzene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038 0.0088 0.0088 0.0088 0.001 U 0.001 U	15.4 2.9 250 0.1 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.001 U 0.001 U 0.005 0.034 0.001 U 0.005	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033 0.005 U 0.014 0.001 U 0.0051	15.2 0.63 20 U 0.11 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U	17.9 910 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	16.7 0.52 20 0.1 U 0.001 U 0.005 U	0.9 40 0.21 0.001 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.0017 0.001 U	18.8 0.11 20 U 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.75 0.1 1110 0.25 U 0.001 U 0.0061 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	 1 0.0018 (a) 0.005 0.005 0.005 0.005 0.00022 (a) 0.0002 0.005
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tichloroethene 1,1,2,2-Tetrachtoroethane Vinyl Chloride Benzene Ethylbenzene Total Xvlene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038 0.0088 0.0088 0.0088 0.001 U 0.001 U 0.0012	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.025 0.005 U 0.001 U 0.001 U 0.005 0.034 0.001 U 0.005 0.034	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033 0.005 U 0.014 0.001 U 0.0051 U	15.2 0.63 20 U 0.11 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U	17.9 910 0.1 U 0.001 U 0.005 U 0.001 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	0.01 U 0.01 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.8 0.11 20 U 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0001 U 0.0001 U 0.0001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.0034 0.001 U 0.003 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	0.75 17.5 0.1 1110 0.25 U 0.001 U 0.0061 0.001 U 0.001 U	 1 0.72 (a) 0.0018 (a) 0.005 0.005 0.005 0.005 0.005 0.0005 0.00022 (a) 0.0005 0.0002 0.005 0.7
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tetrachtoroethene 1,1,2,2-Tetrachtoroethene Vinyl Chloride Benzene Ethylbenzene Total Xylene cis-1,3-Dichloroptonene	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038 0.0088 0.0068 0.001 U 0.016 0.012 0.005 U	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.003 U 0.003 U 0.003 U 0.0057 0.0035 U	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.0033 0.005 U 0.014 0.001 U 0.0051 0.001 U 0.005 U	15.2 0.63 20 U 0.11 0.001 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	15.5 0.16 125 0.92 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	17.9 910 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	0.01 U 0.01 U 0.001 U	18.2 0.87 1300 0.1 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.8 0.11 20 U 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	18.0 0.42 6600 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.00061 0.001 U 0.001 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.0034 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U	0.75 17.5 0.1 1110 0.25 U 0.001 U 0.0061 0.001 U 0.001 U	 1 0.0018 (a) 0.005 0.005 0.005 0.0005 0.00022 (a) 0.0005 0.0002 0.005 0.0002 0.005 0.0002 0.005
Total Suspended Solids in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tetrachloroethene 1,1,2,2-Tetrachloroethane Vinyl Chloride Benzene Ethylbenzene Total Xylene cis-1,3-Dichloropropene Chloroform	2.1 2500 2.8 0.0064 0.001 U 0.083 0.005 U 0.001 U 0.0038 0.0088 0.0088 0.0061 U 0.012 0.005 U 0.001 U	15.4 2.9 250 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	15.5 0.5 23 0.82 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.005 0.034 0.001 U 0.005 0.035 0.0035 U	16.2 0.87 22 1.7 0.0035 0.0016 0.017 0.005 U 0.001 U 0.005 U 0.001 U 0.0051 0.001 U 0.005 U 0.001 U	15.2 0.63 20 U 0.11 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	15.5 0.16 125 0.92 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U	17.9 910 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U	17.3 0.43 46 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	16.7 0.52 20 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U	0.9 40 0.21 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.2 0.87 1300 0,1 U 0,001 U 0,001 U 0,005 U 0,001 U 0,001 U 0,001 U 0,001 U 0,001 U 0,001 U 0,001 U 0,001 J	18.8 0.11 20 U 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	18.0 0.42 6600 0.1 U 0.001 U	18.8 0.01 20 0.15 0.001 U 0.001 U	6.75 18.5 0.48 600 0.17 0.001 U 0.001 U	5.03 19.2 0.6 20 0.18 0.001 U 0.001 U	0.73 17.5 0.1 1110 0.25 U 0.001 U	 1 0.72 (a) 0.0018 (a) 0.005 0.005 0.0005 0.0005 0.0005 0.00022 (a) 0.0005 0.005 0.0002 0.005 0.005 0.0005 0.7 1 0.00002

.

Sheet 1 of 3

..

.

Table 5 - Summary of Historical Chemical Data for Groundwater Samples for MW-1, MW-2, MW-3, MW-4, and VE-1

· · .

	1 1414 0	1 1000	1			T				r			1					······
	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MTCA Method
	4/14/2000	//26/2000	10/20/2000	2/13/2001	11/1/2001	3/5/2002	6/26/2002	9/23/2002	1/22/2003	4/24/2003	7/30/2003	10/31/2003	1/8/2004	4/30/2004	7/29/2004	10/20/2004	6/23/2005	A for Water
Field Parameters	1.020	050					_											
Specific Conductance in umos/cm	1,030	950	790	770	700	170	790	470	450	562	865	774	960	669	327	843	798	-
		7.2	6.75	7.04	6.6	6.8	7.6	6.5	6.1	6.32	6.67	6.05	6,63	6.97	6.74	5,13	6.77	
Temperature in degrees C	16,3	16./	16.4	16.7	15.7	16	17.9	17.7	17.0	17.5	18.1	17.9	18.3	18.3	18,3	19.3	17.8	
Dissolved Oxygen in mg/L	1.7	3.0	0.2	1.11	0.67	0.2	2.1	0.25	0.39	0.88	0.48	0.12	0.11	0	0.14	2.21	0.04	
Total Suspended Solids in mg/L	1400	83	120	74	20 U	24	97	19	20 U	20	60	20 U	100	20 U	20	20	11	
Petroleum Hydrocarbons in mg/L											[
Mineral Spirits/Stoddard Solvent	0.39	0.1 U	0.28	0.76	0.1 U	0.21	0.1 U	0.1 U	0.1 U	0.1 U	0.15	0.23	0.37	0.19	0.19	0.13	0.25 U	1
Volatile Organics in mg/L		ſ																
o-Dichlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.72 (a)
p-Dichlorobenzene	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,001 U	0,0018 (a)
cis-1,2-Dichloroethene *	0.0091	0.0073	0.01	0.012	0.005 U	0.005 U	0.005 U	0,0052	0.0068	0.001 U	0.005 U	0.0063	0.0012	0.0009 J	L 6000.0	0.0013	0.001	0.08 (a)
1,2-Dichloroethane	0.0018	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0,005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.005
Trichloroethene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.005
Tetrachloroethene	0.013	0.0022	0.001 U	0.001 U	0.001 U	0.001 U	0.0017	0.02	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.005
1,1,2,2-Tetrachloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001.0	0.001 U	0.00022 (a)
Vinyl Chloride	0.012	0.005 U	0.017	0.015	0.005 U	0,005 U	0.005 U	0.0064	0.0099	0.002 U	0.005 U	0.005 U	0.0015	0.0017	0.0022	0.0023	0.0016	0.0002
Benzene	0.0043	0.001 U	0.0027	0,001 U	0.001 U	0.001 U	0.0013	0.0018	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0 001 U	0.001 U	0 001 U	0.001 U	0.005
Ethylbenzene	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	07
Total Xylene	0,007	0.001 U	0.012	0.011	0.001 U	0.0044	0.0014	0.0015	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	1
cis-1,3-Dichloropropene	0.005 U	0.005 U	0.005 U	0.005 U			0.005 U	0.005 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001.0	0.001 U	0.0002
Chloroform	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 t	0.001 U	0.007 (a)
Sample ID	KALAZ A																	
	10100-16 1	Ni (Na 44	04107-4	KAUAZ AL I	54507.4 1	6436777	N (I N / A			10000	kaka ka			· · · · · · · · · · · · · · · · · · ·				
Sampling Date	4/14/2000	7/26/2000	MVV-4 10/20/2000	MW-4 2/13/2001	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MTCA Method
Sampling Date	4/14/2000	7/26/2000	MVV-4 10/20/2000	MW-4 2/13/2001	MW-4 11/1/2001	MW-4 3/8/2002	MW-4 6/26/2002	MW-4 9/23/2002	MW-4 1/22/2003	MW-4 4/24/2003	MW-4 7/30/2003	MW-4 10/31/2003	MW-4 1/8/2004	MW-4 4/30/2004	MW-4 7/29/2004	MW-4 10/20/2004	MW-4 6/23/2005	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm	4/14/2000	7/26/2000	MVV-4 10/20/2000 810	MW-4 2/13/2001 810	MW-4 11/1/2001 720	MW-4 3/8/2002	MW-4 6/26/2002	MW-4 9/23/2002	MW-4 1/22/2003	MW-4 4/24/2003	MW-4 7/30/2003	MW-4 10/31/2003	MW-4 1/8/2004	MW-4 4/30/2004	MW-4 7/29/2004	MW-4 10/20/2004	MW-4 6/23/2005	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm oH (std. units)	4/14/2000 1,120 7,3	900 5 8	MW-4 10/20/2000 810	MW-4 2/13/2001 810 7 1	MW-4 11/1/2001 720	MW-4 3/8/2002 	MW-4 6/26/2002 730 7.5	MW-4 9/23/2002 390	MW-4 1/22/2003 470	MW-4 4/24/2003 509	MW-4 7/30/2003 774	MW-4 10/31/2003 755	MW-4 1/8/2004 1010	MW-4 4/30/2004 747	MW-4 7/29/2004 666	MW-4 10/20/2004 957	MW-4 6/23/2005 781	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C	4/14/2000 1,120 7.3 16	900 5.8 16.9	MVV-4 10/20/2000 810 6.66 16 9	MW-4 2/13/2001 810 7.1 17.3	MW-4 11/1/2001 720 6.6 16.2	MW-4 3/8/2002 	MW-4 6/26/2002 730 7.5 17.5	MW-4 9/23/2002 390 6.6 17.4	MW-4 1/22/2003 470 6.5	MW-4 4/24/2003 509 6.4	MW-4 7/30/2003 774 5.66	MW-4 10/31/2003 755 6.28	MW-4 1/8/2004 1010 7.08	MW-4 4/30/2004 747 5.93	MW-4 7/29/2004 666 6.71	MW-4 10/20/2004 957 4.95	MW-4 6/23/2005 781 6.7	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/	4/14/2000 1,120 7.3 16 1.7	900 6.8 16.9 2.0	810 6.66 16.9	810 7.1 17.3	MW-4 11/1/2001 720 6.6 16.2 0.72	MW-4 3/8/2002 	MW-4 6/26/2002 730 7.5 17.5	MW-4 9/23/2002 390 6.6 17.4	MW-4 1/22/2003 470 6.5 17.6	MW-4 4/24/2003 509 6.4 15.5	MW-4 7/30/2003 774 5.56 18.2	MW-4 10/31/2003 755 6.28 17	MW-4 1/8/2004 1010 7.08 16.1	MW-4 4/30/2004 747 5.93 18.1	MW-4 7/29/2004 666 6.71 18.2	MW-4 10/20/2004 957 4.95 18.6	MW-4 6/23/2005 781 6.7 18.1	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L	4/14/2000 1,120 7.3 16 1.7	900 6.8 16.9 2.0	MW-4 10/20/2000 810 6.66 16.9 1.6	MW-4 2/13/2001 810 7.1 17.3 1.01	MW-4 11/1/2001 720 6.6 16.2 0.72	MW-4 3/8/2002 	MW-4 6/26/2002 730 7.5 17.5 	MW-4 9/23/2002 390 6.6 17.4 0.71	MW-4 1/22/2003 470 6.5 17.6 0.88	MW-4 4/24/2003 509 6.4 15.5 1.13	MW-4 7/30/2003 774 6.66 18.2 0.56	MW-4 10/31/2003 755 6.28 17 0.35	MW-4 1/8/2004 1010 7.08 16.1 0.2	MW-4 4/30/2004 747 5.93 18.1 0.02	MW-4 7/29/2004 666 6.71 18.2 0.27	MW-4 10/20/2004 957 4.95 18.6 0.88	MW-4 6/23/2005 781 6.7 18.1 0.01	MTCA Method A for Water
Sampling Date Seelific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L	4/14/2000 1,120 7.3 16 1.7 3200	900 6.8 16.9 2.0 190	MW-4 10/20/2000 810 6.66 16.9 1.6 1.6 46	MW-4 2/13/2001 810 7.1 17.3 1.01	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U	MW-4 3/8/2002 530	MW-4 6/26/2002 7.5 17.5 52	MW-4 9/23/2002 6.6 17.4 0.71 7	MW-4 1/22/2003 470 6.5 17.6 0.88 40	MW-4 4/24/2003 509 6.4 15.5 1.13 20	MW-4 7/30/2003 774 5.66 18.2 0.56 60	MW-4 10/31/2003 755 6.28 17 0.35 20 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20	MW-4 4/30/2004 747 5.93 18.1 0.02 60	MW-4 7/29/2004 666 6.71 18.2 0.27 20	MW-4 10/20/2004 957 4.95 18.6 0.88 20	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9	MTCA Method A for Water
Sampling Date Signal Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L	4/14/2000 1,120 7.3 16 1.7 3200	100 900 6.8 16.9 2.0 190	MW-4 10/20/2000 810 6.66 16.9 1.6 1.6 46	MW-4 2/13/2001 810 7.1 17.3 1.01 . 14	MW-4 11/1/2001 720 6.5 16.2 0.72 20 U	MW-4 3/8/2002 530	MW-4 6/26/2002 730 7.5 17.5 52	MW-4 9/23/2002 390 6.6 17.4 0.71 7	MW-4 1/22/2003 470 6.5 17.6 0.88 40	MW-4 4/24/2003 509 6.4 15.5 1.13 20	MW-4 7/30/2003 774 5.66 18.2 0.56 60	MW-4 10/31/2003 755 6.28 17 0.35 20 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20	MW-4 4/30/2004 747 5.93 18.1 0.02 60	MW-4 7/29/2004 666 6.71 18.2 0.27 20	MW-4 10/20/2004 957 4.95 18.6 0.88 20	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U	7/26/2000 900 6.8 16.9 2.0 190 0.1 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U	MW-4 9/23/2002 390 6.5 17.4 0.71 7 0.1 U	MW-4 1/22/2003 470 6.5 17.5 0.88 40 0.1 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U	MTCA Method A for Water 1
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U	7/26/2000 900 6.8 16.9 2.0 190 0.1 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0,12	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U	MTCA Method A for Water 1
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U	7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U	MTCA Method A for Water
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U	7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.001 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.01 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.01 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U 0.001 U	MW-4 7/30/2003 774 5.66 18.2 0.56 60 0.1 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0,12 0,12	MW-4 4/30/2004 747 5.93 18.1 0.02 60 0.1 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U	MTCA Method A for Water
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U 0.13	7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U 0.001 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.13	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U 0.005 U	MW-4 9/23/2002 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.18	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U 0.001 U 0.028	MW-4 7/30/2003 774 5.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.012 0.001 U 0.001 U 0.001 U	MW-4 4/30/2004 747 5.93 18.1 0.02 60 0.1 U 0.001 U 0.001 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.01 U 0.001 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U	MTCA Method A for Water 1 0.0018 (a) 0.008 (a)
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethane	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U 0.001 U 0.13 0.005 U	7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.001 U 0.001 U 0.001 U 0.09 0.005 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U 0.001 U 0.001 U 0.11 0.005 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.13 0.005 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.061 0.005 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U	MW-4 9/23/2002 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.18 0.005 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.12 0.005 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U 0.001 U 0.001 U 0.078 0.001 U	MW-4 7/30/2003 774 5.66 18.2 0.56 60 0.1 U 0.01 U 0.001 U 0.001 U 0.005 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.012 0.001 U 0.001 U 0.001 U 0.01 U	MW-4 4/30/2004 747 5.93 18.1 0.02 60 0.1 U 0.001 U 0.001 U 0.001 U 0.10	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.01 U 0.001 U 0.001 U 0.09	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.01 U 0.001 U 0.001 U 0.10	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U	MTCA Method A for Water 1 0.0018 (a) 0.08 (a) 0.08 (a)
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene is-1,2-Dichloroethene Tichloroethene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.01 U 0.01 U 0.03 U 0.001 U	MVV-4 7/26/2000 6.8 16.9 2.0 190 0.1 U 0.001 U 0.001 U 0.001 U 0.09 0.005 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U 0.001 U 0.11 0.005 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.13 0.005 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.061 0.005 U 0.001 U	MW-4 3/8/2002	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.0014	MW-4 9/23/2002 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.18 0.005 U 0.001 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.12 0.005 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 7/30/2003 774 5.66 18.2 0.56 60 0.1 U 0.01 U 0.001 U 0.005 U 0.005 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.01 U 0.001 U 0.001 U 0.001 U	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U 0.001 U 0.001 U 0.001 U 0.10 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.01 U 0.001 U 0.09 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.01 U 0.001 U 0.001 U 0.10 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.064 0.001 U	MTCA Method A for Water 1 0.0018 (a) 0.0018 (a) 0.005 0.005
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tetrachloroethene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MVV-4 7/26/2000 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.09 0.005 U 0.001 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.01 U 0.001 U 0.11 0.005 U 0.001 U 0.001 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.0014 0.0014	MW-4 9/23/2002 390 6.5 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.01 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U 0.001 U 0.001 U 0.078 0.001 U 0.001 U 0.001 U	MW-4 7/30/2003 774 5.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.01 U 0.001 U 0.005 U 0.001 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 4/30/2004 5.93 18.1 0.02 60 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.001 U 0.001 U 0.09 0.001 U 0.001 U 0.001 U	MW-4 10/20/2004 957 4.95 18.5 0.88 20 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.064 0.001 U 0.001 U	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene 1,1,2,2-Tetrachloroethane	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MVV-4 7/26/2000 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2000 810 6.66 15.9 1.6 46 0.1 U 0.01 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.005 U 0.0014 0.0017 0.005 U	MW-4 9/23/2002 390 6.5 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U	MW-4 1/22/2003 470 6.5 17.5 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 4/30/2004 5.93 18.1 0.02 60 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene Tetrachloroethene Tetrachloroethene Vinyl Chloride	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U	MVV-4 7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.01 U 0.001 U 0.005 U 0.005 U 0.096	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U 0.005 U 0.0014 0.0017 0.005 U 0.0054	MW-4 9/23/2002 390 6.5 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.001 U 0.001 U	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MTCA Method A for Water
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Trichloroethene 1,2-Z-Tetrachloroethane Vinyl Chloride Benzene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MVV-4 7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.005 U 0.005 U 0.0014 0.0017 0.005 U 0.005 U 0.005 U 0.005 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.0022	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.055	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.001 U 0.001 U	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MTCA Method A for Water 1 0.72 (a) 0.0018 (a) 0.0018 (a) 0.005 0.005 0.005 0.005 0.005 0.0005 0.00022 (a) 0.0002
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Tichloroethene Tichloroethene 1,1,2,2-Tetrachloroethane Vinyl Chloride Benzene Ethylbenzene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U	MVV-4 7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.003 0 0.0014 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.002 U 0.002 1 0.000 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.003 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.005 U 0.0014 0.0017 0.005 U 0.0014 0.0017 0.005 U 0.0019 0.001 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.002 U 0.002 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.002	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.001 U 0.001 U	MW-4 4/30/2004 747 5.93 18.1 0.02 60 0.1 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MTCA Method A for Water
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Tichloroethene Tichloroethene Tichloroethene I,1,2,2-Tetrachloroethane Vinyl Chloride Benzene Ethylbenzene Total Xylene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MVV-4 7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.002 U 0.0021 0.0021 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.003 U 0.001 U 0.001 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.0019 0.001 U 0.001 U 0.001 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.002 U 0.002 U 0.001 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U	MW-4 7/30/2003 774 6.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.001 U 0.001 U	MW-4 4/30/2004 747 5.93 18.1 0.02 60 0.1 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.003 0.0015 0.001 U	MTCA Method A for Water
Sampling Date Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene p-Dichlorobenzene cis-1,2-Dichloroethene 1,2-Dichloroethene Tichloroethene Tetrachloroethene Tetrachloroethene Tichloroethene Tetrachloroethene Tichloroethene Tetrachloroethene Tichloroethene Tetrachloroethene Ethylbenzene Ethylbenzene Colal Xylene cis-1,3-Dichloropropene	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.001 U	MVV-4 7/26/2000 5.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.005 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.0021 0.001 U 0.001 U 0.001 U 0.0021 0.001 U 0.001 U 0.0021 U 0.001 U 0.001 U 0.0021 U 0.001 U 0.0021 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.0019 0.001 U 0.0025 0.005 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.0022 0.001 U 0.003 U 0.003 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.005 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U	MW-4 7/30/2003 774 5.66 18.2 0.56 60 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.005 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0,12 0.001 U 0.001 U	MW-4 4/30/2004 747 5.93 18.1 0.02 60 0.1 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U	MTCA Method A for Water
Sampling Date Field Parameters Specific Conductance in umos/cm pH (std. units) Temperature in degrees C Dissolved Oxygen in mg/L Total Suspended Solids in mg/L Petroleum Hydrocarbons in mg/L Mineral Spirits/Stoddard Solvent Volatile Organics in mg/L o-Dichlorobenzene p-Dichlorobenzene p-Dichlorobenzene p-Dichloroethene 1,2-Dichloroethene 1,2-2Tetrachloroethene 1,1,2,2-Tetrachloroethane Vinyl Chloride Benzene Ethylbenzene Total Xylene zis-1,3-Dichloropropene Chloroform	4/14/2000 1,120 7.3 16 1.7 3200 0.1 U 0.01 U 0.01 U 0.001 U	MVV-4 7/26/2000 900 6.8 16.9 2.0 190 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/20/2000 810 6.66 16.9 1.6 46 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.0021 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.001 U 0.005 U 0.001 U	MW-4 2/13/2001 810 7.1 17.3 1.01 14 0.1 U 0.001 U	MW-4 11/1/2001 720 6.6 16.2 0.72 20 U 0.1 U 0.01 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.003 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 3/8/2002 530 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 6/26/2002 730 7.5 17.5 52 0.1 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.0014 0.0019 0.001 U 0.0025 0.005 U 0.001 U	MW-4 9/23/2002 390 6.6 17.4 0.71 7 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.0022 0.001 U 0.005 U	MW-4 1/22/2003 470 6.5 17.6 0.88 40 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U	MW-4 4/24/2003 509 6.4 15.5 1.13 20 0.1 U 0.001 U	MW-4 7/30/2003 774 5.66 18.2 0.55 60 0.1 U 0.05 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.005 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U	MW-4 10/31/2003 755 6.28 17 0.35 20 U 0.1 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.005 U 0.005 U 0.005 U 0.001 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.001 U	MW-4 1/8/2004 1010 7.08 16.1 0.2 20 0.12 0.001 U 0.001 U	MW-4 4/30/2004 747 6.93 18.1 0.02 60 0.1 U 0.001 U	MW-4 7/29/2004 666 6.71 18.2 0.27 20 0.1 U 0.01 U 0.001 U	MW-4 10/20/2004 957 4.95 18.6 0.88 20 0.1 U 0.001 U	MW-4 6/23/2005 781 6.7 18.1 0.01 7.9 0.25 U 0.001 U	MTCA Method A for Water

.

.

Sheet 2 of 3

Table 5 - Summary of Historical Chemical Data for Groundwater Samples for MW-1, MW-2, MW-3, MW-4, and VE-1

Sample (D	VE-1	VE-1	VE-1	VE-1	VE-1	VE-1	VE-1	VE-1	VE-1	VE-1	VE-1		VE-1	MTCA Method
Sampling Date	12/8/2001	3/5/2002	6/26/2002	9/23/2002	1/22/2003	4/24/2003	7/30/2003	10/31/2003	1/8/2004	4/30/2004	7/29/2004	10/20/2004	6/23/2005	A for Water
Field Parameters		· · · · · · · · · · · · · · · · · · ·						10/01/2000	110/2004		112512004	10/20/2004	0/20/2000	
Specific Conductance in umos/cm	610	210	1,160	300	440	514	573	480	572	507	428	635	402	_
pH (std. units)	5.3	6,9	7.7	6.1	6.4	6.36	6.78	5.38	7.08	6.88	6.51	5.01	641	~
Temperature in degrees C	14	17.2	19,7	19.8	18.8	17.9	20.1	18.5	17.6	18.4	18.5	16.5	17.4	
Dissolved Oxygen in mg/L	2.4	0.3	1.53	0.49	1.30	2.20	2.15	4.60	2.60	0.21	0.49	1.04	0.07	
Total Suspended Solids in mg/L		4	15000	2100	20 U	20	20	20 U	20 U	20 U	20	20 U	1 U	
Petroleum Hydrocarbons in mg/L												1		
Mineral Spirits/Stoddard Solvent	0.1 U	0.1 U	0.† U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.25 U	1				
Volatile Organics in mg/L			1											
o-Dichlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.72 (a)
p-Dichlorobenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0018 (a)
cis-1,2-Dichloroethene	0.0077	0.005 U	0.005 U	0.024	0.0094	0.001 U	0.005 U	0,005 U	0.001 U	0.0029	0.004	0.009	0.0053	0.08 (a)
1,2-Dichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.0011	0.0013	0.001 U	0,005
Trichloroethene	0.001 U	0.001 U	0.0013	0.011	0.0021	0,001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0013	0.001	0.005
Tetrachloroethene	0.001 U	0.002	0.001 U	0.0033	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0,001 U	0.001 U	0,001 U	0,005
1,1,2,2-Tetrachloroethane	0.005 U	0.005 U	0.005 U	0,005 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00022 (a)
Vinyl Chloride	0.005 U	0.005 U	0,005 U	0.005 U	0.005 U	0.002 U	0.005 U	0.005 U	0.0002 U	0.0002 U	0,0002	0,0006	. 0,001 _	
Benzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.005
Toluene	0.001 U	0.001 U	0.001 U	0.001 U ·	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0017	0.001 U	0.001 U	0.001 U	· 1
Ethylbenzene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.7
Total Xylene	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	1
cis-1,3-Dichloroptopene			0.005 U	0.005 U	0.005 U	0.001 U	0.005 U	0.005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0002
Chloroform	0.001 U	0.001 U	0.001_U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 Ú	0.007 (a)				

- AS/SVE

.

J - Estimated value.

.

.

U - Not detected at the detection limit shown.

Bold value indicates compound above cleanup level.

Blank indicates results not reported.

(a) - No Method A value available. Based on MTCA Method B.

- Not Measured

Sheet 3 of 3

· · .

.

Table 1 - Summary of Chemical Analysis Results for Soil Samples

Sample Location		SP-1 S4	SP.1 55	SP-2 S1	SP.2 S4	59.3.52	SP-3 S4	50.452	CD F CA	68 4 63	VE 4 E4	10 4 6 6	
Sample Depth in Feet	Screening.	20 to 24	24 to 28	8 to 12	20 to 24	12 to 16	20 to 24	12 to 15	20 to 24	3F-0 32 16 to 20	V C * 1 3 1 9 to 10 5	10 10 20 5	VE-2 31
Date of Sampling	Level	9/6/2001	9/6/2001	9/6/2001	9/6/2001	9/7/2001	9/7/2001	9/7/2001	9/6/2001	9/6/2001	9/17/2001	9/17/2001	9/17/2001
Gasoline-range Petroleum in mg/k	g						TANK TANK						
Mineral Spirits/Stoddard Solvent	100/30 ⁶	9,600	710	1,300	10,000	330	190	5 U	220	6.000	510	920	5.11
Gasoline	100/30 ^b	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	5 U	5 11	5.11	5.11	. 51	5.0
Volatile Organics in mg/kg (only c	ompounds w	ith 1 or more d	etections)					•••	•••		50	50	50
cis-1,2-Dichloroethene	400	-	_	250 U	250 U	230 J	-	250 U		250 U	250 U	250 U	250 11
Trichloroethene	30		-	850;	110	320		20 U		20 U	20 U	20 U	20 11
Chlorobenzene	1,400	-	-	250 U	130 J	250 U	-	250 U	-	250 Ú	250 U	250 1	250 11
Tetrachioroethene	50	-	-	240	200	88	-	50 U		50 U	300	50 U	2.000
m-Dichlororbanzena	na	-	-	420	<u>50</u> U	50 U	-	50 U	-	50 U	50 U	50 U	<u>50</u> U
p-Dichlotobenzene	30,1	-		560	150	50 U		50 U		170	50 Ú	50 U	50 U
o-Dichlorobenzene	8,430	-	-	890	190	190	-	50 U	-	180	50 U	50 U	50 U
Toluene	7,000	~	-	50 U	50 U	50 U	-	50 U		50 U	63	50 U	50 11
Ethylbenzene	6,000			250	. 50 U	710	-	50 U	-	50 U	200	280	50 U
Xylenes	9,000		. .	290	50 U	1,800		50 U		50 U	2,700	160	50 U

- -

J - estimated value

U - not detected at detection limit indicated

not measured

na - not available

* MTCA Method A cleanup level for unrestricted land use if available; otherwise, MTCA Method B cleanup level based either groundwater protection or direct contact, whichever is lower.

^b 100 mg/kg if benzene not present and ethylbenzene, toluene, and xylenes are less than 1 percent of total; otherwise, the cleanup level is 30 mg/kg.

bold indicates analyte detected

indicates analyte detected above screening level.

2

. .

Table 2 - Summary of Detected Analytes in Soil and Groundwater Samples Spic'n Span Cleaners

Soil Data Summary

ļ

3

。 明 明

Sample ID	MW-1 COMP	MW-2 COMP	MW-3 COMP	MW-4 COMP	MTCA Method
Sampling Date	4/6/2000	4/5/2000	4/5/2000	4/4/2000	A for Soil
Petroleum Hydrocarbons in mg/kg					
Mineral Spirits/Stoddard Solvent	5U	12	40	5U	100
Volatile Organics in mg/kg					
Trichloroethene	0.05U	0.05U	0.11	0.084	0.5
Tetrachloroethene	0.05U	0.11	0.58	0.05U	0.5
Toluene	0.05U	0.05U	0.16	0.05U	40

Groundwater Data Summary

Sample ID	MW-1	MW-2	MW-3	MW-4	MTCA Method
Sampling Date	4/17/2000	4/17/2000	4/17/2000	4/17/2000	A for Water
Field Parameters			,	, , ,	
Specific Conductance in umos/cm	30	95	103	112	
pH (std. units)	6.5	7.1	7	7.3	
Temperature in degrees C	15.5	16.1	16.3	16	Ŧ.,
Dissolved Oxygen in mg/L	3.8	2.1	1.7	1.7	
Total Suspended Solids in mg/L	7100	2500	1400	3200	
Petroleum Hydrocarbons in mg/L					
Mineral Spirits/Stoddard Solvent	0.1U	2.8	0.39	0.1U	1
Volatile Organics in mg/L					
o-Dichlorobenzene	0.001U	0.0064	0.001U	0.001U	0.72(1)
cis-1,2-Dichloroethene	0.005U	0.083	0.0091	0.13	0.08(1)
1,2-Dichloroethane	0.005U	0.005U	0.0018	0.005∪	0.005
Tetrachloroethene	0.0024	0.0038	0.013	0. 001 U	0.005
1,1,2,2-Tetrachloroethane	0.005U	0.0088	0.005U	0.005U	0.00022(1)
Vinyl Chloride	5U	0.076	0.012	0.081	0.0002
Benzene	0.001U	0. 00 1U	0.0043	0.001U	0.005
Ethylbenzene -	0.001U	0.016	0.001U	0.001U	0.03
Total Xylene	0.001U	0.012	0.007	0.001U	0.02

U - Not detected at the detection limit shown.

(1) - No Method A value available. Based on MTCA Method B.

F:\docs\jobs\734801\Well Instal FR.doc

Table 1 - Analytical Results for Soil Samples

(HC-x samples (collected 6/27/97)

		D	TPH as	<u> </u>		<u>-</u>	· <u>-</u>
	. .	Deptn in	Mineral	_		Ethyl-	
Location	Sample	Feet	Spirits	Benzene	Toluene	benzene	Xylene
Method A	Screening	Level:	100	0.5	40	20	20
HC-1	S-5	21-24	10 U	NA	NA	NA	NA
HC-2	S-3	10-12	10 U	0.05 U	0.05 U	0.05 U	0.05 U
	S-5	20-22	3190	0.05 U	0.05 U	0.65	12.9
	S-8	30-32	10 U	NA	NA	NA	NA
HC-3	S-3	10-12	10 U	0.05 U	0.05 U	0.05 U	0.05 U
	S-5	20-22	1060	0.05 U	0.05 U	1.49	2.66
HC-4	S-1	20-22	1200	NA	NA	NA	NA
HC-5	S-1	21-23	411	NA	NA	NA	NA
HC-6	S-1	21-23	10 U	NA	NA	NA	NA
HC-7	<u>S-1</u>	21-23	10 U	NA	NA	NA	NA
B1	B1-3-5	3-5	10 U	NA	NA	NA	NA
B1	B1-5-7	5-7	10 U	NA	NA	NA	NA
B1	B1-7-9	7-9	10 U	NA	NA	NA	NA
B2	B2-3-5	3-5	10 U	NA	NA	NA	NA
B3	B3-5-7	5-7	10 U	NA	NA	NA	NA
B4	B4-5-7	5-7	10 U	NA	NA	NA	NA

Location	Sample	Depth in Feet	Tetrachloro- ethylene	Trichloro- ethylene	Dichloro- ehtylenes	Dichloro- ethanes	Vinyl Chloride
Method A	Screening L	_evel:	0.5	0.5	N/A	N/A	N/A
HC-1	S-1	3-6	0.05 U	0.05 U	0.05 U	0.05 U	NA
	S-2	9-11	0.05 U	0.05 U	0.05 U	0.05 U	NA
	S-5	21-24	0.05 U	0.05 U	0.05 U	0.05 U	NA
HC-2	S-1	0-3	4.82	0.05 U	0.05 U	0.05 U	NA
	S-3	10-12	2.4	0.05 U	0.05 U	0.05 U	NA
	S-5	20-22	0.03 J	0.05 U	0.05 U	0.05 U	NA
	S-8	30-32	0.05 U	0.05 U	0.05 U	0.05 U	NA
HC-3	S-1	0-3	3.71	0.06	0.05 U	0.05 U	NA
	S-3	10-12	0.05 U	0.05 U	0.05 U	0.05 U	NA
	S-5	20-22	0.05 U	0.05 U	0.05 U	0.05 U	NA
HC-4	S-1	20-22	0.05 U	0.05 U	0.05 U	0.05 U	NA
B1	B1-9-11	9-11	4.7	NA	NA	NA	NA
B2	B2-9-11	9-11	1.9	NA	NA	NA	NA
B2	B2-11-13	11-13	0.3	NA	NA	NA	NA
B3	B3-7-9	7-9	0.04 U	NA	NA	NA	NA

Notes:

U Not detected at indicated detection limit.

All results are in mg/kg (ppm).

NA Not analyzed.

4808\SPANDATA_XLS
Table 2 - Analytical Results for Groundwater Samples (Collected 6/27/97)

	<u></u>		TPH as				
		Depth in	Mineral			Ethyl-	
Location	Sample	Feet	Spirits	Benzene	Toluene	benzene	Xylene
		,					
Method A	Screening Level:		1.0	0.005	0.04	0.03	0.02
		01 5 04	0.4.11	NIA			NIA
	HC-1 GW-1	21.5-24	0.1 0	NA	NA	NA	NA
HC-2	HC-2 GW-1	21-23.5	335	0.005 U	0.010	0.15	3.24
HC-3	HC-3 GW-1	20.5-23	1310	0.005 U	0.03,9	1.28	1.68
HC-4	HC-4 GW-1	20.5-23	355	0.005 U	0.011	0.005 U	6.44
HC-5	HC-5 GW-1	20.5-23	76.6	0.0025 U	0.0025 U	0.0029	0.0027
	HC-5 GW-1 (Dup.)	20.5-23	79.6	NA	NA	NA	NA
HC-6	HC-6 GW-1	20.5-23	0.1 U	NA	NA	NA	NA
HC-7	HC-7 GW-1	20.5-23	0.1 U	0.001 U	0.001 U	0.001 U	0.001 U
HC-8	HC-8 GW-1	22-24.5	0.1 U	0.001 U	0.001 U	0.001 U	0.001 U
HC-9	HC-9 GW-1	22-24.5	0.1 U	0.001 U	0.001 U	0.001 U	0.001 U
HC-10	HC-10 GW-1	22-24.5	0.1 U	0.001 U	0.001 U	0.001 U	0.001 U
HC-11	HC-11 GW-1	22-24.5	0.1 U	0.001 U	0.001 U	0.001 U	0.001 U

		Depth in	Tetrachloro-	Trichloro-	Dichloro-	Dichloro-	Vinyl
Location	Sample	Feet	ethylene	ethylene	entylenes	ethanes	Chloride
Method A	Screening Level:		0.005	0.005	N/A	0.005	0.0002
HC-1	HC-1 GW-1	21.5-24	0.0017	0.001 U	0.0037	0.001 U	NA
HC-2	HC-2 GW-1	21-23.5	0.0053	0.001 U	0.064	0.001	0.005 U
HC-3	HC-3 GW-1	20.5-23	0.0041	0.001 U	0.09	0.0054	0.005 U
HC-4	HC-4 GW-1	20.5-23	0.0005 J	0.001 U	0.017	0.001 U	0.022
HC-5	HC-5 GW-1	20.5-23	0.001	0.001 U	0.0992	0.001 U	0.082
HC-6	HC-6 GW-1	20.5-23	0.0018	0.001 U	0.0087	0.001 U	0.0047
HC-7	HC-7 GW-1	20.5-23	0.0064	0.006	0.0096	0.001 U	0.001 U
HC-8	HC-8 GW-1	22-24.5	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
HC-9	HC-9 GW-1	22-24.5	0.001 U	0.0009 J	0.0018	0.001 U	0.001 U
HC-10	HC-10 GW-1	22-24.5	0.001 U	0.0008 J	0.0367	0.001 U	0.0355
HC-11	HC-11 GW-1	22-24.5	0.001 U	0.001 U	0.00345	0.001 U	0.0305

Notes:

U Not detected at indicated detection limit.

All results are in mg/L (ppm).

NA Not analyzed.

4808\SPANDATA.XLS

Spic 'n Span Cleaners Page 8

	· · · · · · · · · · · · · · · · · · ·	T	
Sample #	Sample Location	Analytical Method	Results
B1-3-5	Boring 1, 3 to 5 feet	WTPH-8015	< 10 ppm
B1-5-7	Boring 1, 5 to 7 feet	WTPH-8015 WTPH-418.1	< 10 ppm < 25 ppm
B1-7-9	Boring 1, 7 to 9 feet	WTPH-8015	< 10 ppm
B1-9-11	Boring 1, 9 to 11 feet	EPA 8260 *	4.7 ppm
B2-3-5	Boring 2, 3 to 5 feet	WTPH-8015	< 10 ppm
B2-7-9	Boring 2, 7 to 9 feet	Archive	Not applicable
B2-9-11	Boring 2, 9 to 11 feet	EPA 8260 *	1.9 ppm
B2-11-13	Boring 2, 11 to 13 feet	EPA 8260 *	0.3 ppm
B3-3-5	Boring 3, 3 to 5 feet	Archive	Not applicable
B3-5-7	Boring 3, 5 to 7 feet	WTPH-8015 WTPH-418.1	< 10 ppm < 25 ppm
B3-7-9	Boring 3, 7 to 9 feet	EPA 8260 *	< 0.04 ppm
B3-13-15	Boring 3, 13 to 15 feet	Archive	Not applicable
B4-3-5	Boring 4, 3 to 5 feet	Archive	Not applicable
B4-5-7	Boring 4, 5 to 7 feet	WTPH-8015	< 10 ppm
B4-7-9	Boring 4, 7 to 9 feet	Archive	Not applicable

TABLE A Soil Sample Analytical Results

WTPH = Washington Total Petroleum Hydrocarbon (analytical method) Method 8015 = Modified for stoddard solvent (mineral spirits) Method 418.1 = Modified for heavy diesel/oil

* EPA Method 8260 = for Perchloroethylene-results reported as Tetrachloroethylene

G = Gasoline

ppm = parts per million

(Soil samples collected 5/16/97)

APPENDIX E

Review of Potential Remediation Technologies

E.1 Monitored Natural Attenuation

Mineral spirits and PCE in site soil and groundwater will be slowly removed *in-situ* by natural processes, such as biodegradation by native bacteria. TCE, cis-DCE, and vinyl chloride are products of PCE biodegradation that will be further degraded to ethene and, eventually, carbon dioxide and water. This technology involves periodic monitoring of soil, groundwater, and/or air to evaluate remediation progress and ensure continued protectiveness.

Advantages

- COCs are permanently destroyed.
- Easy to implement without disrupting operations.
- Relatively low cost.

Limitations

- Remediation may take decades.
- Not sufficient to prevent off-property migration of COCs, based on existing data.

Summary Evaluation

Because of its low cost and ease of implementation, monitored natural attenuation can be a valuable component of a remediation strategy; however, it is unlikely to achieve RAOs as a stand-alone alternative within a reasonable restoration timeframe.

E.2 Enhanced In-Situ Bioremediation

The natural biodegradation of site COCs can be enhanced by adding substances to the subsurface that create conditions more amenable to degradation of these compounds. Substances that promote reductive dechlorination of PCE, TCE, and cis-DCE include sodium lactate, Hydrogen-Release Compound (HRC – a proprietary poly-lactate), and emulsified vegetable oil. Adding oxygen - such as by injecting air (air sparging), passive diffusion of high-purity oxygen (ISOC), or injecting peroxides such as Oxygen-Release Compound (ORC – a proprietary magnesium peroxide) - can enhance aerobic degradation of mineral spirits, cis-DCE and vinyl chloride. Injection programs can be conducted using permanent wells or with temporary direct-push soil borings.

Advantages

- COCs are permanently destroyed.
- Easy to implement without significantly disrupting operations.
- Aerobic enhancement of cis-DCE, VC, and mineral spirits degradation by biosparging could be accomplished with modification of existing system.
- Can enhance remediation in otherwise inaccessible areas by altering groundwater conditions over a localized area.

Limitations

- Stimulated reductive dechlorination of PCE can sometimes result in incomplete conversion to ethene and increase vinyl chloride concentrations.
- Promoting reducing conditions can also mobilize naturally-occurring metals, particularly arsenic, iron, and manganese.
- Although faster than natural attenuation, remediation will likely be limited by the rate at which PCE and mineral spirits desorb from soil. Therefore, remediation time with this technology may be a decade or more.
- Generally not effective in soil above the water table.
- Aerobic enhancement in source-area groundwater during 2.5 years of air sparging did not achieve remedial action objectives in groundwater downgradient of the source area.

Summary Evaluation

This technology is relatively easy to implement, and does not require high initial investment in capital equipment. Year-to-year operating costs are moderate but may accrue significantly if remediation progresses slowly. This technology would likely need to be applied in conjunction with another technology to address shallow impacted soils. The effectiveness of anaerobic bioremediation is strongly dependent on site geochemistry and microbial population, and evaluation would require pilot testing.

E.3 Soil Vapor Extraction

COCs in site soils above the water table can be removed by applying a vacuum to wells and treating constituents removed in the extracted soil gas. This technology can also be applied to prevent vapor intrusion in buildings from COCs in subsurface vapors. Equipment required with this technology includes wells, piping, a vacuum blower, moisture knockout pot, and treatment equipment (e.g., activated carbon vessels). Operation requirements include electricity for the vacuum blower, disposal of generated wastes (condensate water and spent carbon), equipment maintenance, and air monitoring.

This technology was applied at the site from 2001 to 2004 in the UST area. Significant quantities of mineral spirits and PCE were removed and some improvement in groundwater quality were observed; however, subsequent soil and groundwater sampling has indicated that elevated concentrations of PCE and mineral spirits remain in soil in the treatment area and in groundwater downgradient of this area.

Advantages

- COCs are permanently destroyed.
- Prevents subsurface vapors from impacting indoor air.
- Equipment already present on site.
- Area of treatment can extend underneath otherwise inaccessible facility areas.

Limitations

- Removal of COCs from low-permeability soils can be limited by the rate of diffusion through these soils. Complete removal of COCs from site soils shown to be infeasible.
- Not effective in groundwater or soil below the water table.

Summary Evaluation

This technology did not achieve remedial action objectives after 2.5 years of operation. However, this technology may be required if an air injection technology (air sparging or biosparging) were selected, to control liberated vapors.

E.4 Air Sparging

COCs can be physically removed from site groundwater by injecting air in wells screened below the water table. Volatile contaminants evaporate into the injected air, which is typically collected and treated by a Soil Vapor Extraction system (see above). Equipment required with this technology includes wells, piping, and an air compressor. Operation requirements include electricity for the air compressor, equipment maintenance, and air monitoring.

This technology was applied at the site from 2001 to 2004 in the UST area with partial success in groundwater in the area of treatment. Vinyl chloride concentrations downgradient of the system did not achieve cleanup levels, and high concentrations of TPH remained in soil below the water table within the sparging area.

Advantages

- PCOCs are permanently removed and destroyed (if collected/treated with soil vapor extraction).
- Relatively non-disruptive technology (will require temporary disturbances to install wells and subslab piping).

Limitations

- Although most shallow, saturated soils are non-silty sands that should be amenable to treatment, removal of COCs from low-permeability soil layers near the water table may be limited by the rate of diffusion through these soils.
- Preferential pathways for subsurface air movement may still result in incomplete treatment in some areas.

Summary Evaluation

This technology is relatively easy to apply without significantly disrupting facility operations. This technology would likely need to be applied in conjunction with soil vapor extraction to control vapor emissions and treat unsaturated-zone soils. This technology met remedial action objectives for groundwater in the area of treatment, but did not achieve objectives for treatment of soils below the water table.

E.5 Dual-Phase Extraction

This approaches uses soil vapor extraction in conjunction with groundwater pumping to depress the water table, which exposes shallow saturated soils to treatment by soil vapor extraction, and provides hydraulic containment and removal of COCs in site groundwater. Because the removal of groundwater COCs by groundwater pumping is generally not cost-effective, this technology is often applied in conjunction with air sparging to provide additional groundwater treatment. In addition to equipment required by soil vapor extraction, this technology requires either submersible pumps or a high-vacuum blower to remove water, and additional treatment equipment. Water disposal would require obtaining a sewer discharge authorization and possibly treatment prior to discharge.

Advantages

- COCs are permanently removed and destroyed.
- Provides hydraulic control of chemical migration as well as on-site treatment.
- Area of influence from pumping would extend underneath inaccessible areas of the facility.

Limitations

• Will require significant above-ground space for required equipment.

Summary Evaluation

Adding groundwater removal and treatment to soil vapor extraction is likely to significantly increase costs but provide a marginal increase in treatment efficiency. This technology would likely need to be applied in conjunction with air sparging to provide adequate groundwater treatment.

E.6 In-Situ Oxidation

COCs in soil and groundwater can be chemically destroyed by injecting a strong oxidizing chemical into the subsurface. The chemical can be injected as a liquid solution (e.g., potassium permanganate) or injected with air (ozone). Injection systems can either be continuous, requiring permanent above-ground storage, mixing and pumping equipment, or performed on a batch basis at regular intervals.

Advantages

- COCs are permanently removed and destroyed *in-situ*.
- Potential area of influence could extend underneath inaccessible areas of the facility.

Limitations

- Generally not effective for unsaturated soils.
- Low-permeability zones of shallow saturated soils may not be completely addressed.
- Potassium permanganate can elevate concentrations of manganese above state water quality criteria. Injection of this product may require obtaining a state waste discharge permit.

Summary Evaluation

Addition of ozone to air sparging did not achieving RAOs in soil. The effectiveness of liquid oxidants would need to be tested, but the high organic content/reducing conditions in site soils would likely require a large quantity of oxidant, and the heterogeneity of site soils would likely prevent this technology from achieving RAOs.

E.7 In-Situ Permeable Reactive Barriers

COCs in groundwater can be chemically destroyed by installing a Permeable Reactive Barrier (PRB) perpendicular to the affected groundwater plume. A PRB would consist of a trench, backfilled with a mixture of iron and sand, downgradient of the source areas. The purpose of a PRB is to prevent off-property migration of COCs; because the source area is not directly addressed, long-term maintenance (typically consisting of groundwater monitoring, but may require replacement or mixing of iron in 20 to 30 years) will be required.

Advantages

- PCOCs are permanently removed and destroyed *in-situ*.
- Eliminate further off-site migration.
- Effectiveness not limited by soil heterogeneities.

Limitations

- Does not address unsaturated zone soils or potential vapor issues.
- Does not directly treat source areas, resulting in long-term monitoring and maintenance.

Summary Evaluation

This technology is a potentially effective method of preventing off-property migration of PCOCs. However, it does not address source areas, and would likely need to be implemented in conjunction with soil vapor extraction to mitigate vapor intrusion concerns.

E.7 In-Situ Thermal Treatment

Contaminated soil is heated by inducing electrical current at subsurface electrodes. COCs in soil and groundwater are volatilized and collected using a soil vapor extraction system. Vapors are treated prior to discharge to the atmosphere.

Advantages

- COCs are permanently removed and destroyed *in-situ*.
- Potential area of influence could extend underneath inaccessible areas of the facility.
- Effective for low-permeability soils.

Limitations

- Heat-sensitive utilities require rerouting.
- Requires auger rig access to install electrodes.
- Fewer similar installations to evaluate performance track record than other technologies.
- Significant space required for equipment.

Summary Evaluation

This technology has the potential to achieve site cleanup levels.

E.8 Soil Excavation

Soil impacted with COCs above cleanup levels may be removed from the site (if accessible) and disposed of at a permitted facility. Depending on the concentration of PCE, excavated soils may be considered a hazardous waste and require disposal at a Subtitle C facility. This technology would require access to contaminated soil with excavation equipment, which would require removal of the building. The depth of excavation would require shoring along the property boundary.

Advantages

• For soil that can be accessed, this is the most certain method of removing COCs from the site.

Limitations

- Some material exceeding cleanup levels present beyond the property boundary, and likely could not be removed.
- Can be costly at depths, particularly when shoring is required.

Summary Evaluation

This technology should be considered to the extent that impacted soil is accessible, because of its ability to achieve remedial action objectives.

APPENDIX F

MTCA TPH11.1 Workbook

A2. 2 Worksheet for Calculating Sail Channelievel for the Rectestion of Grand Hater Quality (Lessching Bathway) Ground Water

WAC 173-340-740 and 747

Date: 10/11/2008 Site Name: Spic'nSpan

Sample Name	: BH-14-23							ltem	Symbol	Value	Units
					<u></u>			Total soil porosity:	n	0.43	unitless
	Measured Soil	GW Cleanur		Adju	sted Conditio	n		Volumetric water content:	$\boldsymbol{\varTheta}_{\boldsymbol{w}}$	0.3	unitless
Chemical of Concern or EC	Conc	Level	Soil Conc being	Predicted Conc	HO @ Well	RISK @ Well	Pass or Fail?	Volumetric air content:	\mathcal{O}_a	0.13	unitless
Group	@dry basis		tested	@Well				Soil bulk density measured:	ρ_{b}	1.5	kg/L
	mg/kg	ug/L	mg/kg	ug/L	unitless	unitless		Fraction Organic Carbon:	f_{oc}	0.004	unitless
Petroleum EC Fraction								Dilution Factor:	DF	20	unitless
AL_EC >5-6	0		0.00E+00	0.00E+00	0.00E+00						
AL_EC >6-8	0		0.00E+00	0.00E+00	0.00E+00			Target Ground Water TPH	cane adjusted a	roviously if	
AL_EC >8-10	153		1.33E+01	4.27E+00	1.78E-02				. conc aujusteu p	reviously fi	алу:
AL_EC >10-12	358		3.11E+01	1.13E+00	4.70E-03			Target Ground Water TPH Conc, ug/L ⇒			
AL_EC >12-16	0		0.00E+00	0.00E+00	0.00E+00						
AL_EC >16-21	0		0.00E+00	0.00E+00	0.00E+00			CALCULATE PROTECTIVE CO	NDITION	Ć	Calarilate
AL_EC >21-34	0		0.00E+00	0.00E+00	0.00E+00			OR TEST ADJUSTED CONDI	TION		Calculate or
AR_EC >8-10	130		1.13E+01	8.39E+01	1.05E-01						Test
AR_EC >10-12	345		3.00E+01	1.40E+02	8.73E-01			Selected Criterion:	@ HI=1		
AR_EC >12-16	0		0.00E+00	0.00E+00	0.00E+00			Most Stringent?	YES		
AR_EC >16-21	0		0.00E+00	0.00E+00	0.00E+00			Protective TPH Se	oil Cone, mg/kg =	85.62	
AR_EC >21-34	0		0.00E+00	0.00E+00	0.00E+00			Protective TPH	GW Conc, ug/L =	2.29E+02	
Benzene	0	5	0.00E+00	0.00E+00	0.00E+00	0.00E+00			RISK @ Well =	= 0.00E+00	
Toluene	0	1000	0.00E+00	0.00E+00	0.00E+00				HI @Well =	= 1.00E+00	
Ethylbenzene	0	700	0.00E+00	0.00E+00	0.00E+00				~		
Total Xylenes	0	1000	0.00E+00	0.00E+00	0.00E+00			DEDAILED N	10DEL RESUL	rs	(TPH Range Test)
Naphthalene	0	160	0.00E+00	0.00E+00	0.00E+00			Type of model used for computation:	4-Phase Model		<u> </u>
1-Methyl Naphthalene	0		0.00 E +00	0.00E+00	0.00E+00			Computation completed?	Yes!		
2-Methyl Naphthalene	0		0.00E+00	0.00E+00	0.00E+00			Initial Weighted Average MW of NAPL, g/mol:		137.9	
n-Hexane	0		0.00E+00	0.00E+00	0.00E+00			Equilibrated Weighted Average MW of NAPL, g/n	ıol:	149.7	
MTBE	0	20	0.00E+00	0.00E+00	0.00E+00			Initial Weighted Average Density of NAPL, kg/L:		0.808	
Ethylene Dibromide (EDB)	0	0.01	0.00E+00	0.00E+00	0.00E+00	0.00E+00		Volumetric NAPL Content, $\boldsymbol{\Theta}_{NAPL}$:		2.7E-05	
1,2 Dichloroethane (EDC)	0	5	0.00E+00	0.00E+00	0.00E+00	0.00E+00		NAPL Saturation (%), Θ_{MAPL}/n :		0.01%	
Benzo(a)anthracene	0	for	0.00E+00	0.00E+00		0.00E+00	for	100% NAPL, mg/kg		70062.0	
Benzo(b)fluoranthene	0	all	0.00E++00	0.00E+00		0.00E+00	all	Mass Distribution Pattern @ 4-phase in soil pore sy	/stem:	Mass	Balance Pattern
Benzo(k)fluoranthene	0	cPAHs	0.00E+00	0.00 E +00		0.00E+00	cPAHs	Total Mass distributed in Water Phase:	1.07%	in Sol	id: 81.85% -
Benzo(a)pyrene	0	Risk=	0.00E+00	0.00 E +00		0.00E+00		Total Mass distributed in Air Phase:	1.09%	in NAP	L: 15.99%
Chrysene	0	1E-05	0.00E+00	0.00 E +00		0.00E+00					
Dibenz(a,h)anthracene	0		0.00E+00	0.00E+00		0.00E+00	Σ Risk=]			
Indeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00		0.00E+00	0.00E+00	L			
Sum	986		8.56E+01	2.29E+02	1.00E+00	0.00E+00	Pass				

Site-Specific Hydrogeological Properties previously entered:

APPENDIX G

Vapor Intrusion Modeling

SG-ADV Version 3.1; 02/04 Reset to

Defaults

Soil Gas Concentration

_		Soil	Gas Concentratio	n Data						
	ENTER	ENTER		ENTER		ENTER	ENTER		ENTER	
		Soil		Soil			Soil		Soil	
	Chemical	gas		gas		Chemical	gas		gas	
	CAS No.	conc.,	OR	conc.,		CAS No.	conc.,	OR	conc.,	
	(numbers only,	Cg		Cg		(numbers only,	Cg		Cg	
	no dashes)	(µg/m ³)		(ppmv)	Chemical	no dashes)	(µg/m ³)		(ppmv)	
								_		
	71432	1.20E+02			Benzene		0.00E+00			CA

	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE	Depth			Totals mu	st add up to value of L	s (cell F24)	Soil					
$\mathbf{+}$	below grade	Soil gas			Thickness	Thickness	stratum A		User-defined			
	to bottom	sampling	Average	Thickness	of soil	of soil	SCS		stratum A			
	of enclosed	depth	soil	of soil	stratum B.	stratum C.	soil type		soil vapor			
	space floor	below grade	temperature	stratum A	(Enter value or 0)	(Enter value or 0)	(used to estimate	OR	permeability			
	l_	l soloti glado,	T-	h.	(Linter Value el e) h-	(soil vapor	0.11	k k			
	LF (Ls (ns (PO)	IIA ()	inB (IIC ()			(2)			
	(cm)	(cm)	(°C)	(cm)	(cm)	(cm)	permeability)		(cm)			
	15	90	10	90	0	0	SL					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C
. ↓	SCS	soil dry	soil total	soil water-filled	SCS	soil dry	soil total	soil water-filled	SCS	soil dry	soil total	soil water-filled
	soil type	bulk density,	porosity,	porosity,	soil type	bulk density,	porosity,	porosity,	soil type	bulk density,	porosity,	porosity,
	Lookup Soil	ρ _b A	n ^A	θ_w^A	Lookup Soil	ρ _b B	n ^B	θ _w ^B	Lookup Soil	ρ _b C	n ^C	θ_w^c
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Parameters	(α/cm^3)	(unitless)	(cm ³ /cm ³)	Parameters	(α/cm^3)	(unitless)	(cm^{3}/cm^{3})
		(9/0111)	(uniticaa)	(01170117)		(g/oiii)	(uniticaa)			(9/0117)	(unitic33)	(em /em /
	SI	1 4 3	0 459	0.215	C	1 43	0.459	0.215	C	1 43	0 459	0.215
	02	1.40	0.400	0.210	Ŭ	1.40	0.400	0.210	Ŭ	1.40	0.400	0.210
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
	Enclosed		Enclosed	Enclosed					Average vapor			
MORE	snace	Soil-blda	snace	snace	Enclosed	Floor-wall	Indoor		flow rate into bldg			
J	floor	nressure	floor	floor	snace	seam crack	air exchange		OR			
	thickness	differential	length	width	height	width	rate	1	eave blank to calcula	ate		
		۸P	I -	W/41,	H_	width,	ER	-		10		
	L crack	<u> </u>	- B	**B	LIB (vv			Soll			
	(cm)	(g/cm-s ⁻)	(cm)	(cm)	(cm)	(cm)	(1/h)		(L/m)			
		1								1		
	10	40	1000	1000	366	0.1	0.25		5			
	ENTER		ENTED									
			ENTER	ENTER								
	Averaging	Averaging	F	F								
	time for	time for	Exposure	Exposure								
	carcinogens,	noncarcinogens,	duration,	trequency,								
	AT _C	AT _{NC}	ED	EF								
	(yrs)	(yrs)	(yrs)	(days/yr)	-							
				1	-							

END

INTERMEDIATE CALCULATIONS SHEET

Exposure duration, τ	Source- building separation, L _T	Stratum A soil air-filled porosity, θ_a^A	Stratum B soil air-filled porosity, θa ^B	Stratum C soil air-filled porosity, θa ^C	Stratum A effective total fluid saturation, Ste	Stratum A soil intrinsic permeability, k _i	Stratum A soil relative air permeability, k _{ra}	Stratum A soil effective vapor permeability, k _v	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m ³)	(cm ³ /s)
		•							X		
9.46E+08	75	0.244	0.244	0.244	0.419	5.93E-09	0.733	4.35E-09	4,000	1.20E+02	2.54E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} _B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L _d (cm)
1.06E+06	3.77E-04	15	8,122	2.68E-03	1.15E-01	1.75E-04	3.81E-03	0.00E+00	0.00E+00	3.81E-03	75
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (µg/m ³⁾⁻¹	Reference conc., RfC (mg/m ³)	-
15	1.20E+02	0.10	8.33E+01	3.81E-03	4.00E+02	2.28E+237	1.29E-03	1.54E-01	7.8E-06	3.0E-02]

END

APPENDIX H

SOPs for Sampling Hot Soil and Groundwater

Hot Soil Sampling SOP

1) Telephone the TRS PM the day prior to sampling to schedule a remote shutdown. A shutdown period of at least 12 hours is preferred prior to soil sampling.

2) An authorized person shall apply lock out, tag out (LOTO) to the ERH PCU by site specific instructions. Note: this procedure can only be completed by personnel who have been trained and certified by TRS in LOTO procedures.

3) Position drill rig in the area to be sampled and perform a visual check for any safety concerns. Potential concerns include: high voltage lines, uneven terrain, underground utilities, and egress limitations with rig placement.

4) Hand auger, or air knife the first five feet of the boring to clear location for potential buried utilities.

5) Advance the push sampler to the depth required and collect samples. The sample sleeves used must be made of Teflon®, brass, or stainless steel. Sample sleeves made of other materials such as acrylic or other materials can melt and bias sample results.

6) The sample sleeves must be capped immediately and placed into the ice bath to begin the cool down process. Water from melting ice must be allowed to drain, as the sample sleeves should not be submerged at any time.

7) The sample sleeves should be cooled until the soil nears ambient temperature (approximately 20°C or 70°F). A standard cooking thermometer can be inserted through the end cap for temperature monitoring. The sample sleeve may be opened and sampled once near-ambient temperatures have been reached.

8) Soil samples including quality control (QC) samples are collected, labeled, preserved and shipped per the site specific Sampling and Analysis Plan.

9) Plugging/sealing of the soil borehole will be in accordance with Federal, State, and Local regulatory and client requirements.

10) Soil cuttings not consumed in the sampling process will be disposed of according to Federal, State, and Local regulatory and client requirements.

Hot Groundwater Sampling SOP

1) Calibrate probes used to monitor water quality parameters according to the manufacturer's instructions (as necessary). Calibration frequencies should adhere to the manufacturer's recommendations.

2) Cease power application to the treatment area and perform LOTO procedures on the ERH PCU if required by site specific protocols. Note: LOTO application shall only be completed by personnel who have been trained and certified by TRS according to SOP 1.1.

3) Confirm that the pump inlet (end of tubing for peristaltic pump or screened opening on the bladder pump) is located within the screened interval.

4) Connect ¹/₄-inch sample tubing from the valve on the well to the cooling coil and place the coil in a bucket or cooler with ice to form the ice bath.

5) Connect the pump to the cooling coil. For wells with a total depth less than 25 feet, connect the cooling coil and peristaltic pump to the monitoring wellhead. For deeper wells, connect pump controls to the previously deployed bladder pump and connect the cooling coil and compressed air source.

6) Connect the cooling coil discharge tubing to a flow-through cell with the calibrated meter probes/sensors securely held in the flow-through cell.

7) Connect tubing from the discharge of the flow-through cell to the purge water collection bucket.

8) Begin purging the well at a low- flow rate. Target pumping rates should generally be in the order of 0.1 to 0.5 liters per minute (L/min) to ensure stabilization of parameters and reduce mixing of formation water with stagnant well casing water (Puls and Barcelona, 1996). Depending on site parameters and pumping method used, maintaining a steady low-flow rate may require pumping up to a rate of 1 L/min. Adjustments to the pumping rate are best made within the first 15 minutes of purging to minimize purging time.

9) The pumping rate is recorded on purge data sheets every 3 to 5 minutes during purging. Any adjustments to the pumping rate are recorded. At the initiation of well purging and after recording pumping rates, water quality parameters are measured and recorded with a multi-parameter water quality meter equipped with a flow-through cell. The measured water quality parameters are temperature, turbidity, specific conductance, pH, DO, and oxygen reduction potential (ORP or Redox). Pumping shall continue until the water quality parameters have stabilized or the minimum purge volume has been removed.

10) After all water quality parameters have stabilized and the minimum purge volume is purged, sampling may begin. If all parameters have stabilized, but turbidity remains above 10 NTUs, decrease the pump rate and continue monitoring. If the pump rate cannot be reduced and turbidity remains above 10 NTUs, the information will be recorded and sampling initiated. For low yield wells, sampling commences as soon as the well has recovered sufficiently to collect the appropriate volume for the anticipated samples.

11) Disconnect the tubing from the inlet side of the flow-through cell. The tubing from the pump outlet will be used to fill the groundwater sample bottles. Samples for VOCs shall be collected first followed by semi-volatile organic compounds (SVOCs). All other parameters should be collected in order from most volatile to least.

12) Groundwater samples including quality control (QC) samples are labeled and preserved per the site-specific Sampling and Analysis Plan (SAP).

13) All pertinent information will be documented in the sample log book and on the chain of custody forms including: date, time of sample, sample identification, analysis being completed, and any other information deemed relevant to the sample results. The following additional information shall be documented in the sample logbook: time at beginning and end of well purging, flow rate and any changes during the well purge, equipment used for well purge, and water quality parameter readings used to determine sample time.

14) Package and ship samples with a laboratory supplied trip blank to the offsite laboratory for analysis.

15) Meters used for groundwater sampling effort shall be decontaminated according to manufacturer recommendations. Dispose of decontamination liquids and purge water in accordance with site-specific documents.

APPENDIX I

ERH Bench Test Report

PO Box 737 Longview, WA 98632

www.thermalrs.com

August 1, 2011

Mr. Jeremy Porter, PE Aspect Consulting, LLC 401 2nd Avenue South, Suite 201 Seattle, WA 98104 jporter@aspectconsulting.com

Subject: ERH Bench Test Report Spic and Span Cleaners, Seattle, WA

Dear Mr. Porter,

TRS Group is pleased to provide you with our report for the bench scale testing of Electrical Resistance Heating (ERH) remediation using soil samples collected from the Spic and Span Cleaners site at 652 Dearborn Street, Seattle, WA (the Site). The Site is impacted with perchloroethylene (PCE) and Stoddard solvent. ERH is commonly used for remediation of PCE and it is easily modeled. However, TRS recommended bench scale testing to evaluate removal efficiencies of Stoddard solvent since it is a less common contaminant and its composition varies between manufacturers. TRS originally modeled the Site with the assumption that Stoddard solvent had chemical properties similar to gasoline. The treatment target was to reduce Stoddard solvent, in soil, as measured by Method NWTPH-Gx. An energy density of approximately 213 kilowatt-hours per cubic yard (kWh/yd³) was calculated using this methodology. This is equivalent to a total energy demand of approximately 510,000 kWh.

Bench scale testing was performed for verification of the design energy under site-specific conditions. The results of the ERH bench scale test show that Stoddard solvent concentrations can be reduced by 99% at an energy density of approximately 228 kWh/yd³. This is within 7% of the previous energy estimate. Based on the test results, the total energy demand now estimated at 545,000 kWh. It will require an estimated 94 days of ERH operations to achieve the clean-up objectives assuming an average power input of 240 kW.

We appreciate to opportunity to work with Aspect Consulting on this project. If you have any questions please feel free to contact me at (419) 517-3649.

Sincerely, TRS Group, Inc. and Obe Daniel Oberle, PE

VP – Engineering

ERH Bench Test Report Spic and Span Cleaners Site – Seattle, WA

TRS Group in conjunction with Kemron Environmental Services (Kemron) conducted an electrical resistance heating (ERH) bench scale feasibility study of two soil samples collected from the Spic and Span Cleaners site (the Site) in Seattle, Washington. The soil samples were collected by Aspect Consulting on June 12, 2011 from two locations adjacent to the west opening of the breezeway. The approximate location of the soil samples is displayed in Figure 1.

FIGURE 1: Soil Sampling Location

Soil samples from the 7', 12' and 23' depth interval of each boring were packaged by Aspect Consulting and shipped to Advanced Analytical Laboratory for a 24-hour turn-around analysis of PCE (Method 8260B) and Stoddard solvent (Method NWTPH-Gx). The results of the analyses are summarized below.

Sample	PCE (mg/kg)	NWTPH-Gx (mg/kg)
PP-2A-7'	1.2	< 5
PP-2A-12'	0.73	< 5
PP-2A-23'	0.62	300
PP-5A-7'	4.30	<5
PP-5A-12'	0.89	56
PP-5A-23'	0.12	1700

Upon receipt of the preliminary analytical data, the soil samples were shipped to Kemron laboratories for treatability testing on June 14th. The samples arrived at the Kemron laboratory on June 17th at a temperature of 21 ^o C. Kemron immediately placed the samples in a sample refrigerator to bring the temperature down to 4 ^o C to minimize volatilization losses. After a review of the preliminary analytical, Kemron expressed concerns that PCE concentrations were too low for soil homogenization for testing due to suspected volatilization losses encountered during shipping. The samples selected for the testing were PP-2A-23' and PP-5A-23' based on elevated concentrations of Stoddard solvent in the samples. Stoddard solvent will dictate the energy requirements for the site due to its elevated concentrations and its lower vapor pressure.

Background

ERH is an effective and proven remediation technology for volatile organics that exhibit vapor pressures greater than 2 mm Hg. Stoddard solvent has a vapor pressure of 5 mm Hg at ambient temperatures and is therefore amenable for treatment with ERH. PCE has a vapor pressure of 14 mm Hg so a removal efficiency of 99% Stoddard solvent will produce greater than 99% removal of PCE. The ERH process heats the subsurface by resistive heating. The heating causes water and hydrocarbons to volatilize from the soil and groundwater. The volatilized hydrocarbons are then recovered and treated. Enough steam is generated during ERH to sweep the treatment volume with several hundred pore volumes of steam. It is the steam that serves as a carrier gas to remove the Stoddard solvent vapors from the subsurface.

The type of contaminant and the desired clean-up goal affect the energy, time, and cost to remediate a site. However, two subsurface parameters also have important effects: the amount of total organic carbon (TOC) and the presence of heavier hydrocarbons such as diesel or oil in the subsurface. Diesel and oil were not detected in site soil samples.

Stoddard solvent preferentially adsorbs to TOC in comparison to the soil or water. This is why activated carbon is used for vapor and water treatment. Typical TOC values for soil are around 0.25%. The TOC of the site was anticipated to fall into the range of 0.4 to 1.2% based on prior testing. This amount of TOC will require additional energy and time to allow for release of adsorbed Stoddard solvent.

Bench Test Procedure

TRS worked with Kemron to develop the bench test procedure used for this study. Soil samples from the 23-foot depth interval were selected for bench scale testing as they displayed the greatest concentrations of Stoddard solvent, and also contained some PCE. Soils from shallower depths showed minimal Stoddard solvent impacts. Each of the samples from 23 feet were analyzed for total organic matter (by loss on ignition), specific gravity, and moisture content.

The soil moisture content and specific gravity for these samples were typical and will have no significant impact on the remediation. The loss on ignition data (organic matter) was used to calculate the total organic carbon (TOC) of the soil. The TOC for sample PP-2A-23' was 0.27% and the TOC in sample PP-5A-23' was 0.61%. The physical characteristics of the soil samples are summarized in Table 1.

Testing Parameter	Boring	Reporting Units	Results – Untreated Soil
Moisture Content	PP-2A-23'	% of dry weight	15.11%
	PP-5A-23'	% of dry weight	18.94%
Specific Gravity	PP-2A-23'		2.71
	PP-5A-23'		2.72
Loss On Ignition	PP-2A-23'	% of dry weight	0.39%
	PP-5A-23'	% of dry weight	1.04%
Total Organic Carbon	PP-2A-23'	% of dry weight	0.27%
(100)	PP-5A-23'	% of dry weight	0.61%

Table 1.	Physical	Characteristics	of	Untreate	d Soil
	•				

Eight 250-gram sub-samples (aliquots) were collected from the soil samples and gently pressed into Pyrex trays. The trays were then covered with perforated plastic sheeting. One of the aliquots was set aside as a control from each homogenized soil sample, and three were used for the heated testing. The control aliquot of each boring was used as the "starting point" for each of the bench tests. The concentrations of Stoddard solvent (by NWTPH-Gx), diesel-range organics (NWTPH-Dx) and residual range organics (NWTPH-Dx) for the untreated samples were determined. The data from this testing is summarized below in Table 2.

Boring	Stoddard solvent	Diesel Range	Residual Range
PP-2A-23'	360 mg/kg	17 mg/kg	24 mg/kg
PP-5A-23'	440 mg/kg	12 mg/kg	14 mg/kg

Table 2. Initial Hydrocarbons in Untreated Soil

The analyses showed only minor concentrations of diesel-range and residual-range hydrocarbons in the soils. Both samples contained similar starting concentrations for Stoddard solvent. The chromatograms showed that the Stoddard solvent had an average molecular weight greater than gasoline, but the distillate cut was very clean with most all of the hydrocarbons falling into the C7 to C11 range. A chromatogram is shown below in Figure 2.

Figure 2: Chromatogram of Stoddard Solvent

A microwave oven was used to heat the tested aliquots to simulate ERH treatment. Microwave heating is used because it provides the most uniform and rapid heating method possible for small soil samples. TRS has used microwave heating for bench-scale testing and successfully used the data for pilot- and full-scale applications. Kemron used a flat geometry for the soil in the Pyrex trays with a slight concavity in the center. This geometry, with the soil in the center of the dishes about half as thick as soil near the edges, was designed to heat as even as possible.

Each of the heated sub-samples were placed into a microwave oven and heated at 30 second to 5 minute intervals. After each heated interval the dish was weighed to determine the amount of water that had evaporated. The heating continued until approximately 50%, 75%, and 90% of the moisture content was evaporated for the corresponding soil sample. After completing the heating process, the heated sub-samples were refrigerated. Once cool, the final weight and moisture content were determined and analyses for Stoddard solvent as NWTPH-Gx were performed.

Results

During the bench test, weight loss due to the boiling of soil moisture was measured. This weight loss can be directly converted to energy density, the most important parameter that affects remediation cost. To provide some perspective, the early TRS estimate (prior to bench testing) assumed a total energy density of 213 kWh/yd³, for this project.

The concentration of Stoddard solvent in the PP-2A-23' sample as a function of applied steaming energy density is shown in Figure 3 below. Most of the data for this sample produced a linear data set when plotted on a semi-logarithmic scale.

Figure 3 – Stoddard Solvent Removal for Sample PP-2A-23'

The results suggest that a steaming energy density of approximately 100 kWh/yd³ is the appropriate design value to achieve the goal of 99% reduction in Stoddard solvent concentration. This does not include the energy required to heat the soils to boiling temperature or the energy lost due to heat loss to the surface and surroundings.

The concentration of Stoddard solvent in the PP-5A-23 sample as a function of applied steaming energy density is shown in Figure 4 below.

The PP-5A-23 sample produced a similar data set as the PP-2A-23 sample when plotted on a semi-logarithmic scale. The results also suggest that a steaming energy density of approximately 100 kWh/yd³ will achieve a 99% reduction in Stoddard solvent concentrations (not including heat up energy and heat losses). Chromatograms of soil samples before ERH treatment and after 100kWh/yd³ of energy input are shown below in Figures 5 and 6.

When designing an ERH system, TRS estimates a required amount of energy necessary to heat up a specific site and boil off water and volatile contaminants as part of treatment. The energy estimate is based on site data such as TOC, location of the water table, the geometry of the treatment volume and associated heat losses, as well as the contaminant of concern.

With the results from this bench scale test we can calculate the energy that will be required to remove Stoddard solvent from the Site.

Calculation of Design Energy Density

The total energy input determines the heating time and remediation cost for a thermal remediation. For thermal remediation, energy and heat are synonymous. The energy or heat input is determined by the total energy equation and can be summarized as follows:

Total energy = sensible heat + latent heat of vaporization + heat losses

Sensible heat is the energy required to increase the subsurface temperature to the boiling point of water. The required sensible heat is very consistent and is approximately 60 kWh/yd³ for a typical site. Latent heat of vaporization is the energy required to boil water and evaporate volatile contaminants. The energy density required for boiling water and evaporating 99% of Stoddard solvent present was determined in this bench test and is estimated at 100 kWh/yd³. With the additional of the 60 kWh/yd³ sensible heat, the energy density increases to 160 kWh/yd³. Heat losses are geometry-dependent and cannot be measured in a bench test. However, our preliminary site model suggests a 30 percent heat loss based on the area, depth and shape of the treatment volume. Therefore, the total energy density required for 99% treatment of Stoddard solvent is estimated at 228 kWh/yd³ (160 kWh/yd³ divided by 70% useful heat). This is within 7% of the previously prepared estimate.

Test Biases

The following are known test biases:

- ERH remediation will take months while the bench-testing is completed in a matter of minutes. This time at temperature during full-scale ERH allows reduction of volatile contaminants by mechanisms other than volatilization. For example, bioremediation of Stoddard solvents will likely comprise a component of treatment at this site that is not recognized by the bench testing. This bias is conservative.
- The bench test was conducted in sealed containers and no contaminants were able to enter the soil from external untreated regions. In a field application, some contaminants will flow into the treated region in conjunction with groundwater. This bias is not conservative.
- More uniform remediation is more energy efficient. In general, smaller treatment volumes (bench tests) have relatively greater heat losses and are less uniformly heated. However, great care was taken to make the bench test as uniform as possible and it might have had a uniformity of treatment exceeding that possible in the field. Therefore, the effect of this bias is unknown.

Summary

TRS has reviewed the bench test data and compared it to our preliminary site model. The bench test suggests that the use of ERH at an energy density of 228 kWh/yd³ will achieve 99% removal of Stoddard solvent from the soils. The total energy demand for the site is estimated at 545,000 kWh and the estimated treatment time is 94 days.

