Hilton Seattle Hotel
Tenth Quarter Groundwater Monitoring Report
Seattle, Washington

March 15, 2016

SHANNON & WILSON, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

March 15, 2016

Excellence. Innovation. Service. Value *Since* 1954

Submitted To: Mr. Zahoor Ahmed R.C. Hedreen Company 217 Pine Street, Suite 200 Seattle, Washington 98101

By: Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, Washington 98103

(206) 632-8020 www.shannonwilson.com

21-1-12341-004

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	BACI	KGROUND	1
3.0	GEOI	LOGIC AND HYDROGEOLOGIC SETTING	2
5.0	3.1	Regional and Site Geologic Conditions	
	3.2	Groundwater Conditions	
4.0	GRO	UNDWATER REMEDIATION ACTIVITIES	4
	4.1	Conceptual Site Model	4
	4.2	Status of Product Recovery System	
	4.3	Status of In-Situ Groundwater Treatment	
5.0	GRO	UNDWATER MONITORING	5
	5.1	Monitoring Program	5
	5.2	Groundwater Sampling	
	5.3	Laboratory Analyses	
	5.4	Interim Groundwater Monitoring Event Results	
		5.4.1 Contaminants of Concern	
		5.4.2 Geochemical Indicators	7
	5.5	Q10 Groundwater Monitoring Event Results	
		5.5.1 Contaminants of Concern	
		5.5.2 Geochemical Indicators	9
	5.6	Water Level Monitoring	9
	5.7	Investigation-Derived Waste	10
6.0	DATA	A ANALYSIS	10
7.0	CON	CLUSIONS	12
8.0	LIMI	TATIONS	13
9.0	REFE	GRENCES	15

TABLES

_		
2	Q10 Groundwater Sampling Log	
3	Groundwater Monitoring Results	
4	Geochemical Indicators	
5	Water Level Data	
6	Data Analysis Summary	
	FIGURES	
1	Vicinity Map	
2	Site Plan	
3	Estimated Extent of Gasoline Contamination	
4	Estimated Extent of Benzene Contamination	
5	Groundwater Elevation Contours	
6	MW-2 Contaminant Concentrations and Groundwater Levels	
7	MW-3 Contaminant Concentrations and Groundwater Levels	
8	MW-4 Contaminant Concentrations and Groundwater Levels	

Interim Groundwater Sampling Log

1

9

10 11

12

APPENDICES

MW-5 Contaminant Concentrations and Groundwater Levels

MW-5 Product Thickness and Groundwater Levels

MW-5 Product Thickness and Gasoline Concentrations

MW-5 Product Thickness and Benzene Concentrations

A	Analytical Laboratory Report
В	Natural Attenuation Analysis Output
C	Important Information About Your Geotechnical/Environmental Report

21-1-12341-004_Q10 21-1-12341-004

HILTON SEATTLE HOTEL TENTH QUARTER GROUNDWATER MONITORING REPORT SEATTLE, WASHINGTON

1.0 INTRODUCTION

This report summarizes the status of groundwater-monitoring activities at the Hilton Seattle Hotel in Seattle, Washington (the Site), facility No. 56642815. Cleanup of gasoline-contaminated groundwater is being conducted in response to the rescission of No Further Action (NFA) determination by the Washington State Department of Ecology (Ecology). The cleanup action is being conducted on behalf of the former property owner, R.C. Hedreen Company of Seattle, Washington, as part of a real estate transaction agreement with the purchaser, Stonebridge Companies of Englewood, Colorado. Cleanup activities have been performed in general accordance with our Cleanup Action Plan (CAP), dated July 18, 2012. Cleanup activities have included the installation of a single-phase skimmer pump to recover free-floating petroleum product to the extent practicable from one monitoring well located in the sidewalk right-of-way (ROW) adjacent to the east of the Site and in-situ groundwater treatment using oxygen release compounds. This report summarizes monitoring activities performed for the August 2015 to November 2015 period, considered to be the tenth quarter of monitoring.

2.0 BACKGROUND

The Site is located at 1301 Sixth Avenue in downtown Seattle, Washington (Figure 1, Vicinity Map). The hotel was built over a parking structure in approximately 1970. Two 2,000-gallon gasoline underground storage tanks (USTs) were installed along the eastern property line during construction of the hotel (Figure 2, Site Plan). Approximately two years after installation, it was reported that one of the two USTs developed a leak and was replaced. The two tanks were abandoned in place in 1985 by filling them with cement slurry. Although a service station occupied the main level of the parking structure that occupied the site prior to the hotel's construction, no other fuel tanks are known to be present beneath the property.

In the early 1990s, gasoline vapors were encountered in an excavation to extend the hotel's elevator shaft down to the depth of the pedestrian concourse leading toward Rainier Tower (see Figure 2). In 1994, Environmental Associates, Inc., drilled a boring adjacent to the abandoned USTs and confirmed the presence of gasoline-related contamination in soil samples from the boring. In 1997 and 1998, Shannon & Wilson, Inc., conducted site investigations and data evaluations related to closure of the two former USTs beneath the hotel. At the time, no soil contamination was detected in borings advanced at the hotel, but more than a foot of gasoline-

range petroleum product was observed floating in the up-gradient monitoring well MW-5. Gasoline-range hydrocarbons; benzene, toluene, ethylbenzene, and xylenes (BTEX); and lead were detected in groundwater at down-gradient monitoring wells MW-2, MW-3, and MW-4 above the Washington Model Toxics Cleanup Act (MTCA) Method A cleanup criterion established at the time.

Because groundwater flow was interpreted to be to the west-northwest at a relatively steep gradient, and because a relatively impermeable layer of clay and silt was observed in borings advanced at the Site, the floating product encountered up-gradient of the abandoned USTs was attributed to an offsite source. In 1998, Shannon & Wilson also assessed risks and found no complete exposure pathways exist at the Site. Based on the available site information, Ecology issued an NFA letter in October 1998.

In a periodic review conducted in February 2010, Ecology rescinded the NFA, citing the presence of floating petroleum product at monitoring well MW-5 as a risk to environmental health. In response to Ecology's concern, an investigation was conducted by Shannon & Wilson in August 2011 to assess current groundwater conditions at the Site. The investigation confirmed the presence of approximately 2.3 feet of relatively unweathered floating petroleum product at monitoring well MW-5 as well as gasoline-range hydrocarbons, BTEX, and lead in groundwater at down-gradient monitoring wells MW-2, MW-3, and MW-4. Vacuum extraction using an eductor truck was attempted as an interim cleanup action on January 24 and February 21, 2012; however, the effort had limited success and resulted in the removal of approximately 3 gallons of free product.

In June 2012, the hotel re-entered Ecology's Voluntary Cleanup Program (VCP), and Shannon & Wilson was retained to implement groundwater cleanup action with the goal of re-obtaining NFA determination from Ecology. The preferred cleanup action included the installation of a single-phase product recovery system at monitoring well MW-5 to remove source product and in-situ groundwater treatment at monitoring wells MW-2, MW-3, MW-4, and MW-5 using oxygen release compounds to facilitate the degradation of residual contamination in groundwater under the Site. The overall objective is to remove source contamination and achieve cleanup levels through monitored natural attenuation.

3.0 GEOLOGIC AND HYDROGEOLOGIC SETTING

3.1 Regional and Site Geologic Conditions

The Site is situated on the Seattle Drift Plain, a gently rolling, elevated plain that formed approximately 13,500 years ago during the last period of continental glaciations. Geologic maps

21-1-12341-004_Q10 21-1-12341-004

for the site vicinity suggest that much of the material underlying the subject site has been modified extensively by excavation, filling, and/or construction. The Site is situated on a west-facing slope at approximately 175 feet above mean sea level. An arbitrary site datum was established with the sidewalk elevation at monitoring well MW-5 at 175.6 feet in elevation. This elevation was estimated using King County iMap.

Based on borings advanced by Shannon & Wilson in 1997, the Site is underlain by fill and then layers of silty sand, clayey silt, and silty fine sand. Below the fill, the soil is generally dense and hard, having been glacially overridden. The fill thickness ranges from approximately 3 to 12 feet beneath the basement and sidewalk at the Site. The fill layer is underlain by a silty sand/sandy silt layer that ranges from 1 to 12 feet thick. A hard, silty clay/clayey silt underlies the silty sand layer, ranging from 3 to 15 feet thick. The clayey silt layer was absent in the boring at monitoring well MW-5 but appears to be continuous beneath the basement and UST area. The clayey silt layer is underlain by a medium- to very dense, silty, fine sand layer.

3.2 Groundwater Conditions

Groundwater is present beneath the Site in the lower silty sand layer, below the clayey silt layer. Water level measurements collected at the four monitoring wells indicate that groundwater is at an elevation of approximately 140 feet and flows to the west-northwest. The groundwater level at monitoring well MW-5 was adjusted to account for the floating product layer, when necessary. Groundwater is approximately 34 feet below ground surface (bgs) at the sidewalk along Sixth Avenue and ranges from approximately 15 to 22 feet bgs in the basement garage levels. Estimated flow gradients from previous groundwater monitoring events are presented below:

- > 0.008 foot/foot in November 2015,
- > 0.010 foot/foot in September 2015,
- > 0.011 foot/foot in August 2015,
- > 0.017 foot/foot in June 2015.
- > 0.015 foot/foot in February 2015,
- > 0.017 foot/foot in November 2014,
- > 0.022 foot/foot in July 2014,
- > 0.023 foot/foot in May 2014,
- > 0.017 foot/foot in February 2014,
- > 0.017 foot/foot in November 2013.
- ➤ 0.015 foot/foot in August 2013,
- > 0.018 foot/foot in August 2011, and
- ➤ 0.026 foot/foot in January 1998.

4.0 GROUNDWATER REMEDIATION ACTIVITIES

4.1 Conceptual Site Model

Based on measured water levels, monitoring well MW-5 is up-gradient of the location of the closed USTs, monitoring well MW-2 is cross-gradient, and monitoring wells MW-3 and MW-4 are down-gradient. When present, floating petroleum product had been observed at monitoring well MW-5 but not at monitoring wells MW-2, MW-3, or MW-4. Because floating petroleum product was not observed in what are believed to be hydraulically connected wells, the product observed at monitoring well MW-5 appears to be isolated. While the observed dense clayey silt layer is absent at monitoring well MW-5, an unknown boundary condition exists that prevents the floating product plume from migrating to down-gradient locations. The material underlying the subject site has been extensively modified by excavation, filling, and/or construction and has likely created a local subsurface depression that contains the product plume. This is further supported by the condition of the leaded gasoline petroleum product, which, based on a laboratory chromatogram of a collected sample, was relatively unweathered after being released into the environment more than 40 years ago.

Contaminants of concern (COCs) include gasoline-range hydrocarbons, BTEX, and lead. The contamination plume is approximately 34 feet bgs at monitoring well MW-5, and dissolved groundwater contamination is approximately 15 to 22 feet bgs in the basement garage levels. The depth of the contamination below the built environment prevents exposure to contaminated soil and groundwater by human and environmental receptors. Groundwater under downtown Seattle is not likely to be used for drinking water and is not considered a complete exposure pathway. A vapor survey was conducted during our 1998 site evaluation, and gasoline vapors were not measured in the hotel's parking garage, suggesting that this exposure pathway is also incomplete.

4.2 Status of Product Recovery System

A product recovery system was installed in general accordance with our CAP and features a pneumatic, single-phase skimmer pump installed in monitoring well MW-5, with air supply and product-extraction tubing routed under the sidewalk ROW to an equipment compound inside the hotel's parking garage. The system was started on November 6, 2012, and operated until August 14, 2013, when the results of a second rebound test showed petroleum product was no longer readily accumulating in monitoring well MW-5. Product was not observed through the third quarter (February 2014) monitoring event, but has been seasonally observed in monitoring well MW-5. The minor volumes of product were removed using either a submersible pump or a bailer. The extraction system remains turned off. To date, approximately 126 total gallons of

product have been removed by the system, and 129 total gallons have been removed when including interim cleanup actions. Additional system performance details can be found in our *First Quarter Groundwater Monitoring Report* (Shannon & Wilson, 2013).

4.3 Status of In-Situ Groundwater Treatment

In situ groundwater treatment using oxygen release compounds (ORCs) was initiated on May 28, 2013, at monitoring wells MW-2, MW-3, and MW-4 and on September 12, 2013, at monitoring well MW-5 to enhance biodegradation of contamination. Regenesis ORC Advanced™ well socks, containing a mixture of calcium oxyhydroxide and calcium hydroxide, were installed in the wells to deliver oxygen as electron acceptors for the biodegradation of the petroleum compounds. An oil-absorbent sock was also installed at monitoring well MW-5 to remove minor amounts of free product from the groundwater surface as treatment continued. The socks were removed from the monitoring wells prior to the ninth quarter monitoring event and not reinstalled during the tenth quarter monitoring event, so an evaluation of subsurface conditions upon cessation of remedial activity can be made for closure planning.

5.0 GROUNDWATER MONITORING

5.1 Monitoring Program

Quarterly monitoring is being conducted to document groundwater conditions during cleanup actions at the Site. Monitoring events are generally scheduled for the months of February, May, August, and November. An interim monitoring event was performed in September 2015 to evaluate contaminant rebound conditions following the cessation of remediation activities. While up-gradient of the closed USTs, floating product had been confined to the vicinity of monitoring well MW-5, and the well is considered to be within the contamination source. Monitoring wells MW-2, MW-3, and MW-4 are considered to be down-gradient of the source, within the contaminated groundwater plume. Tenth quarter monitoring was performed at monitoring wells MW-2, MW-3, MW-4, and MW-5. Groundwater monitoring parameters include the following:

- > COCs
 - Gasoline-Range Hydrocarbons
 - BTEX
 - Total Lead
- Primary Geochemical Indicators
 - Dissolved Oxygen (DO)
 - Oxidation-Reduction Potential (ORP)
 - nH
 - Specific Conductance

- Temperature
- > Secondary Geochemical Indicators
 - Ferrous Iron
 - Nitrate
 - Sulfate

5.2 Groundwater Sampling

On September 30 and November 20, 2015, groundwater samples were collected from monitoring wells MW-2, MW-3, and MW-4 using a peristaltic pump and low-flow sampling techniques, and from monitoring well MW-5 using a high-density polyethylene bailer. The bailer was used at monitoring well MW-5 due to the limitations of the peristaltic pump as well as to better evaluate the presence of potential floating product or sheen.

Monitoring wells MW-2, MW-3, and MW-4 were purged at a low-flow (less than 500 milliliter per minute) pumping rate prior to sampling. The purge water was monitored using a YSI water quality meter until the measured groundwater quality parameters (pH, conductivity, temperature, etc.) stabilized to ±5 percent for three consecutive readings taken at three- to five-minute intervals. Monitoring well MW-5 was purged by bailing three well volumes, and water quality parameters were collected by emptying the bailer contents into the YSI flow cell. The purge water was collected in a bucket and transferred to the storage tank at the equipment compound for future disposal.

Following purging, groundwater samples were collected in clean, laboratory-supplied containers and placed in a cooler with ice for transport to the laboratory. Purging and sampling data for the interim and Q10 groundwater monitoring events are presented in Table 1 and 2, respectively.

5.3 Laboratory Analyses

Groundwater samples were submitted under chain-of-custody procedures to Fremont Analytical in Seattle, Washington. The collected samples were analyzed for COCs as well as geochemical indicators to continue evaluation of the potential for natural attenuation. Analyses for COCs included gasoline-range hydrocarbons by the Northwest Total Petroleum Hydrocarbons-Gasoline Method (NWTPH-Gx), BTEX by Environmental Protection Agency (EPA) Method 8021B, and total lead by EPA Method 6020/200.8. Analyses for geochemical indicators included ferrous iron by Standard Method 3500B and nitrate and sulfate by EPA Method 300.0.

5.4 Interim Groundwater Monitoring Event Results

The interim groundwater monitoring event results for COCs are shown in Table 3. The data are presented along with previous quarterly results and two historical datasets for comparison. One of the historical datasets is from our initial site assessment in 1997, and the other is from our evaluation of groundwater conditions prior to cleanup activities in 2011. Similarly, the interim groundwater monitoring event results for geochemical indicators are shown in Table 4, with available historical results shown for comparison. The analytical laboratory report for the interim groundwater monitoring event results is provided in Appendix A.

5.4.1 Contaminants of Concern

In September 2015, the samples collected from the monitoring wells had detectable concentrations of gasoline, BTEX, and/or lead. Source well MW-5 had detections of all COCs above their respective MTCA Method A groundwater cleanup criteria, except for toluene. Down-gradient monitoring well MW-2 had detections of gasoline, benzene, toluene, and xylenes below their respective MTCA Method A groundwater cleanup criterion. Gasoline and xylenes were detected at monitoring well MW-3 below their respective MTCA Method A cleanup criterion. No COCs were detected at monitoring well MW-4.

The concentrations of gasoline, benzene, toluene, ethylbenzene, and xylenes in the groundwater at source well MW-5 increased from the ninth quarter while the lead decreased. The concentration of gasoline in the groundwater at MW-3 increased from the ninth quarter while the xylenes decreased. There was a decrease in gasoline, toluene, ethylbenzene, and xylenes concentrations in MW-2 from the ninth quarter. Lead was not detected at monitoring well MW-2 for the sixth consecutive groundwater monitoring event.

5.4.2 Geochemical Indicators

Geochemical indicators are categorized as primary (dissolved oxygen [DO], ORP, pH, specific conductance, and temperature) or secondary (ferrous iron, nitrate, and sulfate). Primary indicators were measured in the field during purging using a YSI water quality meter, and the secondary indicators were analyzed by the laboratory. Low DO concentrations (e.g., 0 to 1.0 milligrams per liter [mg/L]), measurable ferrous iron and depleted nitrate and sulfate concentrations generally suggest that active biodegradation of hydrocarbons is occurring. ORP values are a measure of the reducing conditions present and can be correlated to the presence or absence of secondary geochemical indicators to support the identification of biodegradation processes.

In September 2015, DO was depleted at 0.39, 0.68 and 0.61 mg/L at monitoring wells MW-2, MW-3, and MW-4 respectively. Relatively high concentrations of ferrous iron were measured at 2,990; 6,500; and 10,700 micrograms per liter (ug/L) at monitoring wells MW-2, MW-3, and MW-5, respectively. Ferrous iron levels increased to 140 ug/L at MW-4. There were detections of nitrate in MW-2, MW-3, and MW-4 at 495, 317, and 508 ug/L, respectively. Sulfate concentrations increased in MW-3 and MW-5 and decreased in MW-4. The ORP values measured corresponded to the changing nitrate and sulfate concentrations from previous observed detections. Additionally, lower groundwater temperatures were observed in all wells (Table 4).

5.5 Q10 Groundwater Monitoring Event Results

The Q10 groundwater monitoring event results for COCs are shown in Table 3. The data are presented along with previous quarterly results and two historical datasets for comparison. One of the historical datasets is from our initial site assessment in 1997, and the other is from our evaluation of groundwater conditions prior to cleanup activities in 2011. Similarly, Q10 results for geochemical indicators are shown in Table 4, with available historical results shown for comparison. The analytical laboratory report for the tenth quarter results is provided in Appendix A.

5.5.1 Contaminants of Concern

In November 2015, the samples collected from the monitoring wells had detectable concentrations of gasoline, BTEX, and/or lead. Source well MW-5 had detections of all COCs above their respective MTCA Method A groundwater cleanup criteria, except for toluene. Down-gradient monitoring well MW-2 had a detection of gasoline above the MTCA Method A groundwater cleanup criterion, as well as detections of BTEX below their respective MTCA Method A groundwater cleanup criteria. Gasoline was detected at monitoring well MW-3 below its respective MTCA cleanup criterion. No COCs were detected at monitoring well MW-4.

The concentrations of gasoline, benzene, toluene, ethylbenzene, and xylenes in the groundwater at source well MW-5 increased from the ninth quarter while the lead decreased. Concentrations of all COCs at monitoring wells MW-3 remained relatively stable over tenth quarter results. There was an increase in gasoline, toluene, ethylbenzene, and xylenes in MW-2 from ninth quarter. Lead was not detected at monitoring well MW-2 for the seventh consecutive monitoring vent. However, ethylbenzene was detected after a previous quarter of no detection.

The estimated extents of gasoline and benzene in groundwater for the four most recent quarters (seventh through tenth quarters) of monitoring at the Site are shown on Figures 3 and 4,

respectively. The leading edge of groundwater contaminated with gasoline extended past monitoring well MW-4 prior to cleanup and receded through the third quarter but expanded slightly through the sixth quarter. The leading edge extended in the ninth and tenth quarter. The estimated extent of gasoline at concentrations above its MTCA cleanup criterion (i.e., $800~\mu g/L$) had been relatively stable in the central portion of the Site for the four most recent quarters. The leading edge of groundwater contaminated with benzene at concentrations above its MTCA cleanup criterion (i.e., $5~\mu g/L$) has receded significantly from levels observed historically, which was beyond monitoring well MW-4, and remained stable through the tenth quarter, with the leading edge receding to a point adjacent to monitoring well MW-2 for the fourth consecutive quarter (Figure 4).

5.5.2 Geochemical Indicators

Geochemical indicators are categorized as primary or secondary. Primary indicators were measured in the field during purging using a YSI water quality meter, and the secondary indicators were analyzed by the laboratory. Water quality was unable to be properly measured at MW-5 for the tenth quarter due to the amount of free product found in the well. Low DO concentrations (e.g., 0 to 1.0 mg/L), measurable ferrous iron and depleted nitrate and sulfate concentrations generally suggest that active biodegradation of hydrocarbons is occurring. ORP values are a measure of the reducing conditions present and can be correlated to the presence or absence of secondary geochemical indicators to support the identification of biodegradation processes.

In the tenth quarter, DO was depleted at 0.24, 0.61 and 0.39 mg/L at monitoring wells MW-2, MW-3, and MW-4 respectively. Relatively high concentrations of ferrous iron were measured at 2,990; 5,840; and 10,300 μ g/L at monitoring wells MW-2, MW-3, and MW-5, respectively. Ferrous iron levels decreased to 60.7 μ g/L at MW-4. There were detections of nitrate in MW-2, MW-4, and MW-5 at 176, 44.4, and 200 μ g/L, respectively. Sulfate was elevated in all monitoring wells. The ORP values measured corresponded to the changing nitrate and sulfate concentrations from previous observed detections. Additionally, lower groundwater temperatures were observed in all wells (Table 1).

5.6 Water Level Monitoring

Table 5 presents water level data for the interim and tenth quarter monitoring events and historical sampling events. Figure 5 shows approximate groundwater elevation contours for the tenth quarter data. The measurements show the groundwater flow direction to the west-northwest, with calculated groundwater flow gradients for the interim and tenth quarter

groundwater monitoring events of approximately 0.010 and 0.008 foot/foot, respectively. The calculated flow gradient has historically ranged from approximately 0.008 foot/foot to 0.026 foot/foot.

5.7 Investigation-Derived Waste

Investigation-derived waste during the tenth quarter monitoring event included purge water from groundwater monitoring and disposable sampling equipment (nitrile gloves, bailers, etc.). Approximately 14.25 gallons of purge water from groundwater sampling were added to the system storage tank during groundwater sampling in the tenth quarter for an approximate cumulative total of 131 gallons of waste in the tank. Shannon & Wilson will again coordinate disposal once the tank is full. Disposable sampling equipment was placed in a plastic bag and disposed as solid waste.

6.0 DATA ANALYSIS

Groundwater monitoring data was analyzed using Ecology's natural attenuation guidance for petroleum-contaminated groundwater (Ecology, 2005a,b). The technical guidance package provides six computational tools, or modules, for evaluating the feasibility and performance of natural attenuation as a cleanup action for groundwater. Available data were analyzed using modules that do not incorporate groundwater flow models, including *Module 1: Non-Parametric Analysis for Plume Stability Test, Module 2: Graphical and Regression Analysis for Plume Stability & Restoration Time Calculation*, and *Module 3: Evaluation of Geochemical Indicators*. The computational module output is provided in Appendix B.

The data analysis results for Modules 1 and 2 are summarized in Table 6. Module 1 evaluates plume stability using the Mann-Kendall non-parametric statistical method, while Module 2 evaluates plume stability using linear regression. Both evaluations provide evidence that gasoline and BTEX concentrations at monitoring well MW-2 are shrinking with high levels of confidence. The Mann-Kendall method shows gasoline concentrations are stable at monitoring well MW-3 and undetermined for BTEX, while linear regression shows gasoline and BTEX concentrations as shrinking. The results for monitoring well MW-3 are reported with moderate-to-high levels of confidence for the Mann-Kendall method and are reported with high levels of confidence using linear regression. While benzene and toluene at monitoring well MW-3 are undetermined by the Mann-Kendall method, the parameters have been non-detect for the past 10 sampling events and therefore do not show a strong decreasing trend. Ethylbenzene and xylenes at monitoring well MW-3 are undetermined but recent low level detections have reduced the certainty of the model result. Trend analyses are again limited in their application at monitoring

well MW-4 because parameter concentrations are predominantly non-detect. The Mann-Kendall method shows gasoline, benzene, toluene, and xylenes as stable at monitoring well MW-4 and ethylbenzene as not applicable and linear regression shows gasoline and xylene as stable with benzene, toluene, and ethylbenzene as not applicable.

Point decay rates and half-life results at 50 and 85 percent confidence levels were determined using linear regression (Table 6). While the module calculates values for both stable and shrinking plumes as shown, the regression analysis is only appropriate for shrinking plumes. Furthermore, because concentrations of gasoline and BTEX at monitoring wells MW-2, MW-3, and MW-4 are generally below their respective cleanup criterion, estimating the time to achieve cleanup is also not appropriate. However, gasoline at monitoring well MW-2 is above the cleanup criterion in the tenth quarter and has point decay rates of 0.082 and 0.049 per year at 50 and 85 percent confidence levels, respectively. Half-life results for gasoline at monitoring well MW-2 were calculated to be 8.459 and 14.128 years at 50 and 85 percent confidence levels, respectively.

Module 3 calculates assimilative capacity and plots geochemical indicators. Assimilative capacity is the potential capacity of groundwater to biodegrade contaminants, and the calculation is based on background concentrations of electron acceptors (e.g., DO, nitrate, sulfate, etc.). Background geochemical values for downtown Seattle groundwater have not been established for this project; therefore, the assimilative capacities calculated by the module are not usable. However, the plots of geochemical indicators provide evidence that biodegradation is occurring. Biodegradation proceeds according to reactions that are energetically preferred by microbes. Electron acceptors evaluated for this project, from most preferred to least preferred, are oxygen, nitrate, ferric iron, and sulfate.

DO was depleted at down-gradient monitoring wells MW-2, MW-3, and MW-4. Concentrations of ferrous iron, a metabolic by-product of reactions involving ferric iron, have historically decreased with distance from source well MW-5; however, in the tenth quarter ferrous iron was detected at high levels at all monitoring well locations with an increase in MW-2 and MW-5 and a decrease in MW-3 and MW-4 in the tenth quarter. Sulfate was elevated in all wells. Overall, ORP and pH field measurements correlate well with the observed detections.

Groundwater contaminant concentrations for gasoline and benzene were also plotted along with groundwater levels for each monitoring well location to evaluate potential trends in the data (Figures 6 through 9). Data from August 2013 to present were plotted for each location to show potential seasonal variation since the start of cleanup activities. Increasing groundwater levels at the Site during spring months have historically resulted in a corresponding increase in gasoline

concentrations at monitoring well MW-2, while benzene concentrations are low and do not show much variation (Figure 6). The increases of gasoline concentration at monitoring well MW-2 decreased over the seventh and eighth quarter and have increased over the ninth and tenth quarters. A similar trend is observed at monitoring well MW-3 but the concentration of gasoline lags behind the groundwater fluctuation due to its proximity to source well MW-5 (Figure 7). No trends are observed in the data from monitoring well MW-4 because gasoline and benzene concentrations are non-detect (Figure 8).

Source monitoring well MW-5 shows an increase in gasoline concentrations since winter 2015. MW-5 showed an increase in benzene concentrations as groundwater elevations increased in spring 2014 and spring 2015, and has shown consistent benzene concentrations over the last two quarters (Figure 9). This seasonal rise in contaminant concentrations is associated with rising groundwater levels and residual petroleum product in the smear zone (or region of water table fluctuation). Figure 10 shows that the presence of product in source well MW-5 occurs during periods of rising groundwater levels. Figure 11 shows the general correlation between product thickness and gasoline concentration in source well MW-5. Product thickness appears to show a decreasing trend over the past season. Further, as shown in Figure 12, the presence of product corresponds to increases in dissolved benzene concentrations at source well MW-5.

7.0 CONCLUSIONS

Based on our review and analysis of the tenth quarter monitoring results, we offer the following conclusions regarding remediation at the Site.

- ➤ Observed occurrences of product returning to source well MW-5 appears to be in response to rising groundwater levels contacting and providing a pathway of transport for residual contamination in the smear zone. Increases in dissolved contaminant concentrations subsequently follow the product observations.
- Source monitoring well MW-5 had detected concentrations of all COCs and, except for toluene, the concentrations exceeded their respective MTCA Method A cleanup criterion. Concentrations of gasoline and BEX increased while toluene and lead decreased from the ninth quarter in MW-5. Concentrations at this location are expected to continue on an overall decreasing trend as residual petroleum in the smear zone is removed.
- ➤ Down-gradient monitoring well MW-2 had a detected a concentration of gasoline above its MTCA Method A cleanup criterion. The gasoline concentration had been below the cleanup criterion in the interim sampling done on 9/30/2015, but rebounded above the criterion in the tenth quarter. Gasoline at this location has shown an increasing trend over

- the ninth and tenth quarter. BTEX compounds were detected at monitoring well MW-2 but below their respective MTCA Method A cleanup criteria.
- Soline was detected below the respective cleanup criteria in down-gradient monitoring well MW-3. The gasoline detection represented a minor increase over the ninth quarter result. Xylenes have been detected for the previous six quarters after being non-detect for three quarters prior. Ethylbenzene had been detected for the first time at this location since before cleanup started in the sixth quarter, but was again not detected in the seventh through tenth quarters.
- No COCs were detected at down-gradient monitoring well MW-4. Lead had been previously detected at this location at concentrations below its MTCA Method A cleanup criterion in the fourth and fifth quarters.
- ➤ Contamination is not migrating off-site, and an analysis of the data indicates that the contamination plume is stable and/or shrinking in response to remedial efforts.
- ➤ Geochemical indicators continue to suggest that biodegradation is occurring at the Site and monitored natural attenuation appears to be a viable long-term remediation alternative.

The eleventh quarter groundwater monitoring event is scheduled to be conducted February 2016.

8.0 LIMITATIONS

This report was prepared for the exclusive use of the R.C. Hedreen Company and its representatives, and in no way guarantees that any agency or its staff will reach the same conclusions as Shannon & Wilson. The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our agreement. The conclusions presented in this report are professional opinions based on interpretation of information currently available to us and are made within the operational scope, budget, and schedule constraints of this project. No warranty, express or implied, is made.

Shannon & Wilson has prepared Appendix C, "Important Information About Your Geotechnical/Environmental Report." While not written specifically for this project, this enclosure should assist you and other in understanding the use and limitations of our reports.

We appreciate the opportunity to be of continued service on this project. If you have any questions, please contact the undersigned at (503) 210-4792.

Sincerely,

SHANNON & WILSON, INC.

Peter Shingledecker Senior Environmental Engineer

MSR:SWG:PJS/msr:aeb

W. GAULTON WASHINGTON WAND WASHINGTON WASHINGTON WASHINGTON WASHINGTON WASHINGTON WASHIN

Scott W. Gaulke, PE, LH.G Vice President

9.0 REFERENCES

- Environmental Associates, Inc., 1994, Soil and groundwater sampling and testing, Hilton Hotel underground storage tanks, Sixth Avenue and University Street, Seattle, Washington, December 1.
- King County, 2011, King County iMap Property Information, http://www.metrokc.gov/GIS/iMap, August 10.
- Shannon & Wilson, Inc., 1998a, Site assessment report, Seattle Hilton Hotel, Seattle, Washington, February.
- Shannon & Wilson, Inc., 1998b, Closure services related to Hilton USTs, Seattle Hilton Hotel, Seattle, Washington, July.
- Shannon & Wilson, Inc., 2011, Seattle Hilton Hotel groundwater current conditions sampling and analysis plan, Seattle, Washington, August 4.
- Shannon & Wilson, Inc., 2012, Cleanup action plan, Hilton Seattle Hotel, Seattle, Washington, July 18.
- Shannon & Wilson, Inc., 2013, First quarter groundwater monitoring report, Hilton Seattle Hotel, Seattle, Washington, September 30.
- Washington State Department of Ecology (Ecology), 1998, Seattle Hilton Hotel parking garage voluntary cleanup program no further action letter, October.
- Washington State Department of Ecology (Ecology), 2005a, Guidance on remediation of petroleum-contaminated ground water by natural attenuation: Olympia, Washington, Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 05-09-091 (Version 1.0), July.
- Washington State Department of Ecology (Ecology), 2005b, User's manual: Natural attenuation analysis tool package for petroleum-contaminated ground water: Olympia, Washington, Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 05-09-091A (Version 1.0), July.
- Washington State Department of Ecology (Ecology), 2007, The Model Toxics Control Act cleanup regulation, chapter 173-340 WAC: Olympia, Washington, Washington State Department of Ecology, October 12.
- Washington State Department of Ecology (Ecology), 2010, Periodic review, Hilton Hotel Parking Garage, Facility Site ID#: 56642815, February.

TABLE 1 INTERIM GROUNDWATER SAMPLING LOG

		Monitor	ring Well	
	MW-2	MW-3	MW-4	MW-5
Water Level Measurement Data				
Date Water Level Measured	9/30/2015	9/30/2015	9/30/2015	9/30/2015
Time Water Level Measured	12:50	12:00	10:30	13:45
Measuring Point (MP) Elevation, Feet	162.55	161.24	154.30	174.35
Depth to Water Below MP, Feet	21.98	21.15	15.10	34.00
Water Level Elevation, Feet	140.57	140.09	139.20	140.35
Purging/Sampling Data				
Date Sampled	9/30/2015	9/30/2015	9/30/2015	9/30/2015
Time Sampled	13:25	12:40	11:30	14:20
Depth to Water Below MP, Feet	21.98	21.15	15.10	34.00
Total Depth of Well Below MP, Feet	29.40	29.24	20.60	38.50
Water Column in Well, Feet	7.42	8.09	5.50	4.50
Gallons per Foot	0.16	0.16	0.16	0.16
Gallons in Well	1.19	1.29	0.88	0.72
Total Gallons Pumped/Bailed	1.0	2.25	3.0	3.0
Purging Method	Peristaltic	Peristaltic	Peristaltic	Bailer
Sampling Method	low flow	low flow	low flow	Bailer
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch
Water Quality Data ^B				
Temperature, °C	21.11	21.47	21.67	23.91
Dissolved Oxygen, mg/L	0.39	0.68	0.61	2.41
Specific Conductance, µS/cm	0.898	0.490	0.702	0.899
pH, standard units	6.93	6.99	7.77	6.91
Oxidation-Reduction Potential, mV	-70.4	-90.4	52.4	-141.2
Remarks			Good Recovery	Measured 0.22
				feet of product
				with interface
				probe.

Notes:

mg/L = milligram per liter

 $\mu S/cm = microsiemens per centimeter$

mV = millivolt

^AWater level was adjusted to account for free product observed.

^BWater quality parameters were measured with YSI instruments.

^{-- =} not applicable or not measured

[°]C = degrees Celsius

TABLE 2 Q10 GROUNDWATER SAMPLING LOG

		Monitor	ring Well	
	MW-2	MW-3	MW-4	MW-5
Water Level Measurement Data				
Date Water Level Measured	11/20/2015	11/20/2015	11/20/2015	11/20/2015
Time Water Level Measured	12:10	11:08	10:00	13:20
Measuring Point (MP) Elevation, Feet	162.55	161.24	154.30	174.35
Depth to Water Below MP, Feet	22.44	21.38	15.25	34.30
Water Level Elevation, Feet	140.11	139.86	139.05	140.05
Purging/Sampling Data				
Date Sampled	11/20/2015	11/20/2015	11/20/2015	11/20/2015
Time Sampled	12:55	12:05	10:55	13:50
Depth to Water Below MP, Feet	22.44	21.38	15.25	34.30
Total Depth of Well Below MP, Feet	29.40	29.24	20.60	39.50
Water Column in Well, Feet	6.96	7.86	5.35	5.30
Gallons per Foot	0.16	0.16	0.16	0.16
Gallons in Well	1.11	1.25	0.86	0.85
Total Gallons Pumped/Bailed	2.5	1.25	2.5	2.5
Purging Method	Peristaltic	Peristaltic	Peristaltic	Bailer
Sampling Method	low flow	low flow	low flow	Bailer
Diameter of Well Casing	2-inch	2-inch	2-inch	2-inch
Water Quality Data ^B				
Temperature, °C	20.7	20.7	21.5	
Dissolved Oxygen, mg/L	0.24	0.61	0.39	
Specific Conductance, µS/cm	0.863	0.783	0.737	
pH, standard units	7.07	7.10	7.77	
Oxidation-Reduction Potential, mV	-94.3	-91.2	-38.7	
Remarks	Good Recovery	Good Recovery	Good Recovery	Measured 0.1
				feet of product
				with interface
				probe. Strong
				hydrocarbon
				odor

Notes:

mg/L = milligram per liter

 $\mu S/cm = microsiemens per centimeter$

mV = millivolt

^AWater level was adjusted to account for free product observed.

^BWater quality parameters were measured with YSI instruments.

^{-- =} not applicable or not measured

[°]C = degrees Celsius

TABLE 3 GROUNDWATER MONITORING RESULTS

SHANNON & WILSON, INC.

			Product Thickness (feet)	OUNDWATE	Sampling Results (μg/L)						
Monitoring Well	Sample Date	Quarter		Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead		
	MTCA Method A	Groundwater C		800	5	1,000	700	1,000	15		
	9/25/1997	Historical		4,700	6,700	210	670	590	8.00		
	8/25/2011	Historical		2,950	76.1	2.19	863	22.0	< 1.0		
	8/22/2013	Q1		5,000	3.07	2.01	408	10.8	8.14		
	11/21/2013	Q2		1,760	1.40	1.57	83.3	6.89	< 1.0		
	2/21/2014	Q3		1,360	2.90	1.62	20.8	7.44	8.10		
	5/30/2014	Q4		2,070	1.82	2.00	36.5	8.47	2.71		
MW-2	7/11/2014	Q5		642	1.22	< 1.0	4.80	3.07	< 1.0		
	11/25/2014	Q6		1,350	1.01	1.63	6.53	8.19	< 1.0		
	2/25/2015	Q7		1,170	< 1.0	1.33	3.36	4.52	< 1.0		
	6/1/2015	Q8		1,030	< 1.0	1.52	1.96	4.48	< 1.0		
	8/21/2015	Q9		1,220	1.14	1.54	1.76	4.58	< 1.0		
	9/30/2015	Interim		785	1.09	1.21	< 1.0	1.54	< 1.0		
	11/20/2015	Q10		1,430	1.1	1.58	2.19	4.23	<1.0		
	9/25/1997	Historical		700	7,200	10.0	74.0	97.0	9.00		
	8/25/2011	Historical		153	< 1.0	< 1.0	< 1.0	1.35	< 1.0		
	8/22/2013	Q1		209	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0		
	11/21/2013	Q2		235	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0		
	2/21/2014	Q3		114	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0		
	5/30/2014	Q4		187	< 1.0	< 1.0	< 1.0	3.59	3.42		
MW-3	7/11/2014	Q5		397	< 1.0	< 1.0	< 1.0	1.31	< 1.0		
	11/25/2014	Q6		208	< 1.0	< 1.0	1.34	5.04	< 1.0		
	2/25/2015	Q7		140	< 1.0	< 1.0	< 1.0	1.16	< 1.0		
	6/1/2015	Q8		152	< 1.0	< 1.0	< 1.0	1.21	< 1.0		
	8/21/2015	Q9		186	< 1.0	< 1.0	< 1.0	1.15	< 1.0		
	9/30/2015	Interim		192	< 1.0	< 1.0	< 1.0	1.04	< 1.0		
	11/20/2015	Q10		213	<1.0	<1.0	<1.0	<1.0	<1.0		

TABLE 3 GROUNDWATER MONITORING RESULTS

SHANNON & WILSON, INC.

M W II	G I D (Quarter	Product							
Monitoring Well	Sample Date	Quarter	Thickness (feet)	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	
	MTCA Method A	Groundwater C	leanup Levels:	800	5	1,000	700	1,000	15	
	11/14/1997	Historical		< 50	< 1.0	< 1.0	< 1.0	< 3.0	< 4.0	
	8/26/2011	Historical		135	< 1.0	< 1.0	< 1.0	< 2.0	5.57	
	8/22/2013	Q1		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	11/21/2013	Q2		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	2/21/2014	Q3		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	5/30/2014	Q4		< 50	< 1.0	< 1.0	< 1.0	< 2.0	11.1	
MW-4	7/11/2014	Q5		< 50	< 1.0	< 1.0	< 1.0	< 2.0	2.40	
	11/25/2014	Q6		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	2/25/2015	Q7		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	6/1/2015	Q8		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	8/21/2015	Q9		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	9/30/2015	Interim		< 50	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	11/20/2015	Q10		<50	<1.0	<1.0	<1.0	<1.0	<1.0	
	12/22/1997	Historical	1.69	NS	NS	NS	NS	NS	NS	
	8/11/2011	Historical	2.33	NS	NS	NS	NS	NS	NS	
	8/22/2013	Q1		NS	NS	NS	NS	NS	NS	
	11/21/2013	Q2		98,100	230	179	1,070	6,100	26.1	
	2/21/2014	Q3		30,300	193	122	796	3,670	47.2	
	5/30/2014	Q4	0.36	51,400	927	552	1,820	7,610	9.97	
MW-5	7/11/2014	Q5	0.44	59,300	1,050	837	1,940	9,960	44.9	
	11/25/2014	Q6		53,500	566	204	1,480	7,610	47.0	
	2/25/2015	Q7	0.10	43,900	605	262	1,320	6,680	39.0	
	6/1/2015	Q8	0.20	60,900	1,080	570	1,990	10,390	22.8	
	8/21/2015	Q9	0.10	66,000	816	369	1,640	8,420	23.4	
	9/30/2015	Interim	0.20	84,500	879	332	1,950	8,910	19.9	
	11/20/2015	Q10	0.10	89,800	1,020	338	2,140	9,420	17.3	

Notes

Bold indicates analyte detected above method reporting limit.

Shaded cell indicates detection is above the groundwater cleanup criterion.

-- = no product observed

< = not detected at or above reporting limit shown

 $\mu g/L = micrograms \ per \ liter$

MTCA = Washington State Model Toxics Control Act

NS = not sampled

TABLE 4 GEOCHEMICAL INDICATORS

					Primary Indicator		Secondary Indicators			
Monitoring Well	Sample Date	Quarter	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	рН	Specific Conductance (µS/cm)	Temperature (°C)	Nitrate (µg/L)	Ferrous Iron (µg/L)	Sulfate (µg/L)
	9/25/1997	Historical								
	8/25/2011	Historical	0.25	-86.0	6.94	0.701	20.49			
	8/22/2013	Q1	0.10	40.8	8.33	0.833	22.40	< 100	980	970
	11/21/2013	Q2	0.29	-136.2	6.88	0.759	19.01	< 100	3,150	< 300
	2/21/2014	Q3	0.21	-154.1	6.95	0.845	17.80	< 100	5,100	< 300
	5/30/2014	Q4	0.19	-153.9	6.89	0.840	17.89	< 100	1,150	304
MW-2	7/11/2014	Q5	2.01	-70.4	7.06	0.831	20.53	393	< 30	428
	11/25/2014	Q6	0.41	89.4	7.63	0.647	20.00	346	60	1,340
	2/25/2015	Q7	0.27	-148.7	7.21	0.805	19.80	< 200	290	< 600
	6/1/2015	Q8	0.58	-74.9	6.98	0.841	20.08	178	600	< 1,500
-	8/21/2015	Q9	0.48	-58.8	7.00	0.834	21.26	< 100	2,910	< 300
	9/30/2015	Interim	0.39	-70.4	6.93	0.898	21.11	495	4,030	<300
-	11/20/2015	Q10	0.24	-94.3	7.07	0.863	20.73	176	2,990	830
	9/25/1997	Historical								
	8/25/2011	Historical	1.87	-92.8	6.95	0.718	20.47			
	8/22/2013	Q1	0.27	-99.8	6.37	0.739	21.50	< 100	2,430	< 300
	11/21/2013	Q2	0.31	-152.1	6.91	0.717	19.99	< 100	4,900	< 300
	2/21/2014	Q3	0.23	-142.1	7.07	0.791	18.40	< 100	3,270	< 300
	5/30/2014	Q4	0.14	-149.2	7.15	0.728	18.40	< 100	600	< 300
MW-3	7/11/2014	Q5	0.28	-118.7	6.94	0.824	21.09	528	2,940	< 300
	11/25/2014	Q6	2.43	214.3	6.90	0.703	21.00	< 100	< 30	< 300
	2/25/2015	Q7	0.24	-131.4	7.27	0.772	20.06	41	1,600	< 600
	6/1/2015	Q8	1.04	-80.8	6.87	0.819	20.30	118	1,750	< 1,500
	8/21/2015	Q9	0.71	-84.3	7.1	0.783	21.61	< 100	6,140	< 300
	9/30/2015	Interim	0.68	-90.4	6.99	0.49	21.47	317	6,500	448
	11/20/2015	Q10	0.61	-91.2	7.1	0.783	20.71	<200	5,840	385

TABLE 4 GEOCHEMICAL INDICATORS

		nple Date Quarter			Primary Indicators	Secondary Indicators				
Monitoring Well	Sample Date		Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	рН	Specific Conductance (µS/cm)	Temperature (°C)	Nitrate (μg/L)	Ferrous Iron (µg/L)	Sulfate (µg/L)
	11/14/1997	Historical								
	8/26/2011	Historical	1.26	-85.1	7.56	0.447	21.20			
	8/22/2013	Q1	0.10	51.3	9.22	0.599	21.50	< 100	80	39,100
	11/21/2013	Q2	0.51	-150.2	7.69	0.602	20.84	< 100	80	30,900
	2/21/2014	Q3	0.39	-105.6	7.80	0.680	19.30	< 100	100	18,300
	5/30/2014	Q4	0.41	-81.4	7.77	0.675	19.27	< 100	2,380	31,500
MW-4	7/11/2014	Q5	2.11	-43.1	7.58	0.654	21.25	249	< 30	34,600
	11/25/2014	Q6	1.50	209.4	7.59	0.561	21.50	222	80	26,200
	2/25/2015	Q7	5.98	-132.4	8.80	0.546	20.98	< 200	30	24,000
	6/1/2015	Q8	2.11	99.4	8.61	0.599	21.06	201	< 30	33,300
	8/21/2015	Q9	1.21	-8.1	7.73	0.696	21.84	< 500	98.3	44,900
	9/30/2015	Interim	0.61	52.4	7.77	0.702	21.67	508	140	4,540
	11/20/2015	Q10	0.39	-38.7	7.77	0.737	21.48	44.4	60.7	50,000
	11/21/2013	Q2						< 100	5,300	3,860
	2/21/2014	Q3						< 100	7,100	16,300
	5/30/2014	Q4						< 100	3,180	2,360
	7/11/2014	Q5	2.23	-121.9	6.68	0.801	24.67	497	3,600	1,170
MW-5	11/25/2014	Q6	1.42	-71.4	7.10	0.697	23.80	< 100	< 30	962
MW-5	2/25/2015	Q7	6.53	-131.4	6.72	0.811	24.50	473	3,100	< 600
	6/1/2015	Q8	2.87	-134.8	6.95	0.899	24.03	96.5	4,200	< 1,500
	8/21/2015	Q9	3.24	-126.4	6.81	0.814	24.47	< 100	10,200	< 300
	9/30/2015	Interim	2.41	-141.2	6.91	0.899	23.91	<200	10,700	452
	11/20/2015	Q10						200	10,300	336

Notes:

 $^{\circ}$ C = degrees Celsius

mg/L = milligrams per liter

mV = millivolt

 $\mu g/L = micrograms per liter$

 $\mu S/cm = microsiemens \ per \ centimeter$

< = analyte not detected below reporting limit shown

-- = not tested

TABLE 5 WATER LEVEL DATA

Monitoring Well	Date	Quarter	Top of Casing Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
	9/25/1997	Historical	162.55	21.36	141.19
	8/25/2011	Historical	162.55	22.09	140.46
	8/22/2013	Q1	162.55	22.20	140.35
	11/21/2013	Q2	162.55	22.85	139.70
	2/21/2014	Q3	162.55	22.67	139.88
	5/30/2014	Q4	162.55	21.90	140.65
MW-2	7/11/2014	Q5	162.55	22.45	140.10
	11/25/2014	Q6	162.55	22.83	139.72
	2/25/2015	Q7	162.55	22.37	140.18
	6/1/2015	Q8	162.55	22.45	140.1
	8/21/2015	Q9	162.55	22.51	140.04
	9/30/2015	Interim	162.55	21.98	140.57
	11/20/2015	Q10	162.55	22.44	140.11
	9/25/1997	Historical	161.24	20.49	140.75
	8/25/2011	Historical	161.24	21.08	140.16
	8/22/2013	Q1	161.24	21.10	140.14
	11/21/2013	Q2	161.24	21.72	139.52
	2/21/2014	Q3	161.24	21.60	139.64
	5/30/2014	Q4	161.24	20.92	140.32
MW-3	7/11/2014	Q5	161.24	22.25	138.99
	11/25/2014	Q6	161.24	21.80	139.44
	2/25/2015	Q7	161.24	21.35	139.89
	6/1/2015	Q8	161.24	21.21	140.03
	8/21/2015	Q9	161.24	21.40	139.84
	9/30/2015	Interim	161.24	21.15	140.09
	11/20/2015	Q10	161.24	21.38	139.86

TABLE 5 WATER LEVEL DATA

Monitoring Well	Date	Quarter	Top of Casing Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
	11/14/1997	Historical	154.30	15.31	138.99
	8/26/2011	Historical	154.30	15.43	138.87
	8/22/2013	Q1	154.30	15.26	139.04
	11/21/2013	Q2	154.30	16.25	138.05
MW-4	2/21/2014	Q3	154.30	16.20	138.10
IVI VV -4	5/30/2014	Q4	154.30	14.98	139.32
	7/11/2014	Q5	154.30	16.16	138.14
	11/25/2014	Q6	154.30	16.32	137.98
	2/25/2015	Q7	154.30	15.71	138.59
	6/1/2015	Q8	154.30	15.30	139.00
	8/21/2015	Q9	154.30	15.33	138.97
	9/30/2015	Interim	154.30	15.10	139.20
	11/20/2015	Q10	154.30	15.25	139.05
	11/14/1997	Historical	175.38	32.79	142.59
	8/26/2011	Historical	175.38	34.21	141.17
	8/14/2013	Q1	174.35	33.51	140.84
	11/21/2013	Q2	174.35	34.17	140.18
	2/21/2014	Q3	174.35	34.10	140.25
	5/30/2014	Q4	174.35	33.40	140.95
MW-5	7/11/2014	Q5	174.35	33.40	140.95
	11/25/2014	Q6	174.35	34.17	140.18
	2/25/2015	Q7	174.35	33.90	140.45
	6/1/2015	Q8	174.35	33.21	141.14
	8/21/2015	Q9	174.35	34.01	140.34
	9/30/2015	Interim	174.35	33.85	140.50
	11/20/2015	Q10	174.35	34.23	140.12

Notes:

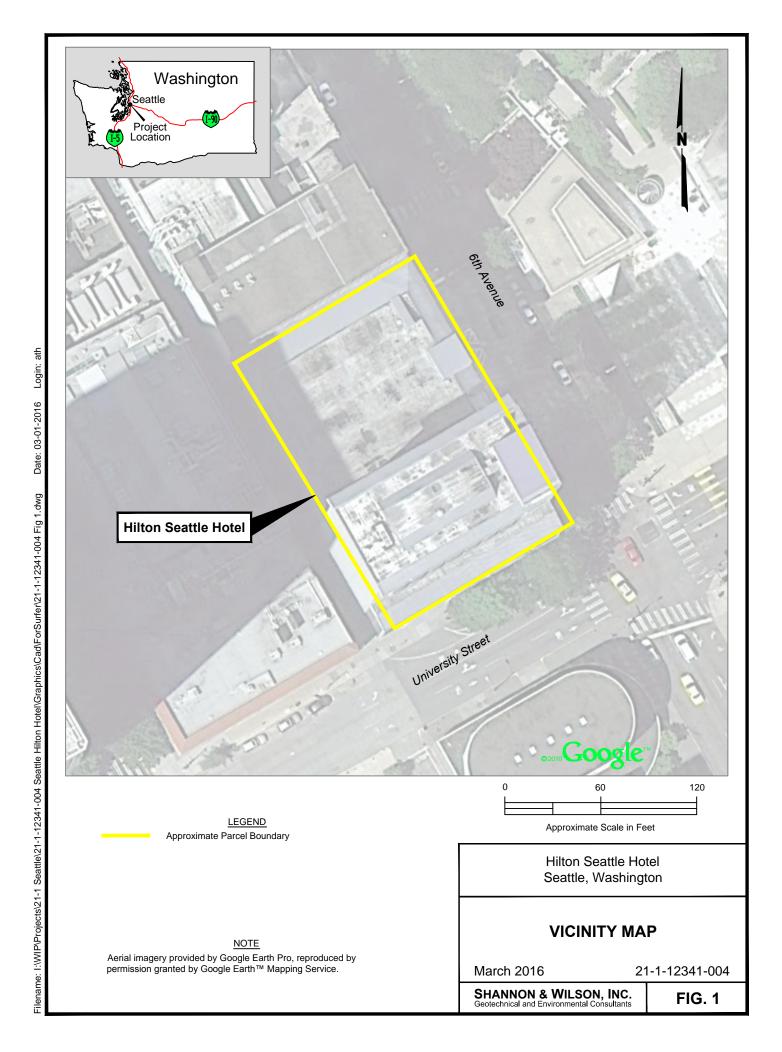
Elevations were estimated from King County iMap (Aug 2011).

Depth to groundwater for 1997, 2011, May 2014, July 2014, September 2015, and November 2015 for MW-5 were adjusted to account for floating product.

Top of casing elevation for MW-5 modified during system installation in 2012.

TABLE 6 DATA ANALYSIS SUMMARY

SHANNON & WILSON, INC.


Monitoring					Parameter		
Well		Analysis	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes
	Mann-Kendall	Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking
	Maiii-Keildaii	CL	99.5%	100.0%	99.3%	100.0%	100.0%
		Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking
MW-2		CL	97.9%	100.0%	100.0%	97.7%	100.0%
IVI VV -2	Linear Regression	Point Decay Rate at 50% CL, yr ⁻¹	0.082	0.517	0.283	0.337	0.289
	Linear Regression	Point Decay Rate at 85% CL, yr ⁻¹	0.049	0.463	0.256	0.199	0.259
		Half Life at 50% CL, yr	8.459	1.340	2.446	2.059	2.000
		Half Life at 85% CL, yr	14.128	1.497	2.707	3.483	2.672
	Mann-Kendall	Plume Stability	Stable	Undetermined	Undetermined	Undetermined	Undetermined
		CL	72.7%	72.7%	72.7%	68.1%	84.5%
	Linear Regression	Plume Stability	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking
MW-3		CL	99.6%	100.0%	100.0%	100.0%	100.0%
MW-3		Point Decay Rate at 50% CL, yr ⁻¹	0.072	0.536	0.168	0.274	0.238
		Point Decay Rate at 85% CL, yr ⁻¹	0.050	0.494	0.154	0.244	0.199
		Half Life at 50% CL, yr	9.658	1.293	4.132	2.529	3.000
		Half Life at 85% CL, yr	13.814	1.404	4.488	2.837	3.484
	Mann-Kendall	Plume Stability	Stable	Stable	Stable	NA	Stable
	Maiii-Keildaii	CL	68.1%	47.3%	47.3%	NA	47.3%
		Plume Stability	Stable	NA	NA	NA	Stable
MW-4		CL	26.1%	NA	NA	NA	0.0%
IVI W -4	Liman Danman's	Point Decay Rate at 50% CL, yr ⁻¹	0.010	NA	NA	NA	0
	Linear Regression	Point Decay Rate at 85% CL, yr ⁻¹	NA	NA	NA	NA	NA
		Half Life at 50% CL, yr	69.7	NA	NA	NA	NA
		Half Life at 85% CL, yr	NA	NA	NA	NA	NA

Notes:

CL = confidence level

NA = not applicable

yr = year

2. Groundwater elevations are based on

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 5

an arbitrary site datum.

FIG.

March 2016

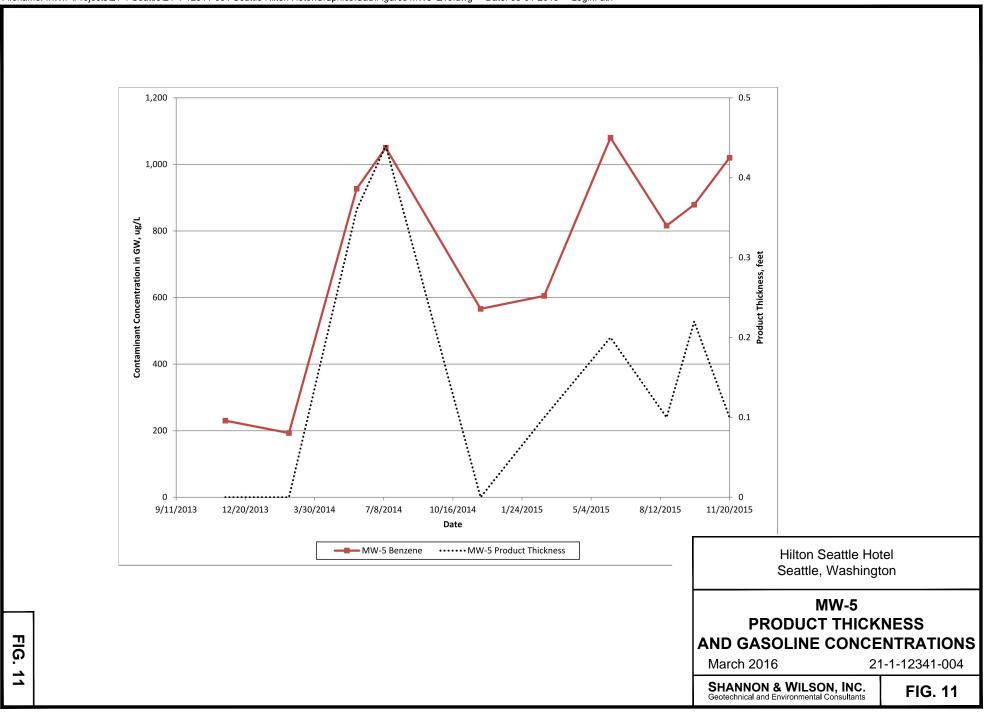
21-1-12341-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 6

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 7


FIG. 8

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 9

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 10

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 12

12

SHANNON & WILSON, INC.

APPENDIX A ANALYTICAL LABORATORY REPORT

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson

Peter Shingledecker 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Seattle Hilton Lab ID: 1511225

November 24, 2015

Attention Peter Shingledecker:

Fremont Analytical, Inc. received 4 sample(s) on 11/20/2015 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B
Gasoline by NWTPH-Gx
Ion Chromatography by EPA Method 300.0
Total Metals by EPA Method 200.8
Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Malcidy-

Sincerely,

Mike Ridgeway President

Date: 11/24/2015

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Seattle Hilton Lab Order: 1511225

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1511225-001	MW-4	11/20/2015 10:55 AM	11/20/2015 2:26 PM
1511225-002	MW-3	11/20/2015 12:05 PM	11/20/2015 2:26 PM
1511225-003	MW-2	11/20/2015 12:55 PM	11/20/2015 2:26 PM
1511225-004	MW-5	11/20/2015 1:50 PM	11/20/2015 2:26 PM

Case Narrative

WO#: **1511225**Date: **11/24/2015**

CLIENT: Shannon & Wilson
Project: Seattle Hilton

WorkOrder Narrative:

1511225: I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1511225**

Date Reported: 11/24/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1511225**

Date Reported: 11/24/2015

Client: Shannon & Wilson Collection Date: 11/20/2015 10:55:00 AM

Project: Seattle Hilton

Lab ID: 1511225-001 Matrix: Groundwater

Analyses	Result	PQL	Qual	Units	DF	= Da	ate Analyzed
Gasoline by NWTPH-Gx				Bato	h ID:	R26234	Analyst: BC
Gasoline	ND	50.0		μg/L	1	11/2	1/2015 10:51:00 AM
Surr: 4-Bromofluorobenzene	99.5	65-135		%Rec	1	11/2	1/2015 10:51:00 AM
Surr: Toluene-d8	101	65-135		%Rec	1	11/2	1/2015 10:51:00 AM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Bato	h ID:	R26233	Analyst: BC
Benzene	ND	1.00		μg/L	1	11/2	1/2015 10:51:00 AM
Toluene	ND	1.00		μg/L	1	11/2	1/2015 10:51:00 AM
Ethylbenzene	ND	1.00		μg/L	1	11/2	1/2015 10:51:00 AM
m,p-Xylene	ND	1.00		μg/L	1	11/2	1/2015 10:51:00 AM
o-Xylene	ND	1.00		μg/L	1	11/2	1/2015 10:51:00 AM
Surr: Dibromofluoromethane	109	45.4-152		%Rec	1	11/2	1/2015 10:51:00 AM
Surr: Toluene-d8	116	40.1-139		%Rec	1	11/2	1/2015 10:51:00 AM
Surr: 1-Bromo-4-fluorobenzene	102	64.2-128		%Rec	1	11/2	1/2015 10:51:00 AM
Ion Chromatography by EPA Me	ethod 300.0			Bato	h ID:	R26214	Analyst: KT
Nitrate	0.0444	0.200	JD	mg/L	2	11/2	0/2015 3:35:00 PM
Sulfate	50.0	0.600	D	mg/L	2	11/2	0/2015 3:35:00 PM
Total Metals by EPA Method 20	0.8			Bato	h ID:	12452	Analyst: TN
Lead	ND	1.00		μg/L	1	11/2	3/2015 4:16:30 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R26229	Analyst: KT
Ferrous Iron	0.0607	0.0300		mg/L	1	11/2	0/2015 5:21:00 PM

WO#: **1511225**

Date Reported: 11/24/2015

Client: Shannon & Wilson Collection Date: 11/20/2015 12:05:00 PM

Project: Seattle Hilton

Lab ID: 1511225-002 Matrix: Groundwater

Analyses	Result	PQL	Qual	Units	DF	- Da	ate Analyzed
Gasoline by NWTPH-Gx				Bato	h ID:	R26234	Analyst: BC
Gasoline	213	50.0		μg/L	1	11/2	1/2015 11:49:00 AM
Surr: 4-Bromofluorobenzene	99.4	65-135		%Rec	1	11/2	1/2015 11:49:00 AM
Surr: Toluene-d8	100	65-135		%Rec	1	11/2	1/2015 11:49:00 AM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Bato	h ID:	R26233	Analyst: BC
Benzene	ND	1.00		μg/L	1	11/2	1/2015 11:49:00 AM
Toluene	ND	1.00		μg/L	1	11/2	1/2015 11:49:00 AM
Ethylbenzene	ND	1.00		μg/L	1	11/2	1/2015 11:49:00 AM
m,p-Xylene	ND	1.00		μg/L	1	11/2	1/2015 11:49:00 AM
o-Xylene	ND	1.00		μg/L	1	11/2	1/2015 11:49:00 AM
Surr: Dibromofluoromethane	112	45.4-152		%Rec	1	11/2	1/2015 11:49:00 AM
Surr: Toluene-d8	118	40.1-139		%Rec	1	11/2	1/2015 11:49:00 AM
Surr: 1-Bromo-4-fluorobenzene	101	64.2-128		%Rec	1	11/2	1/2015 11:49:00 AM
Ion Chromatography by EPA Met	hod 300.0			Bato	h ID:	R26214	Analyst: KT
Nitrate	ND	0.200	D	mg/L	2	11/2	0/2015 3:45:00 PM
Sulfate	0.385	0.600	JD	mg/L	2	11/2	0/2015 3:45:00 PM
NOTES:				-			
Diluted due to high levels of non-target ar	nalytes and matrix	(.					
Total Metals by EPA Method 200	<u>.8</u>			Bato	h ID:	12452	Analyst: TN
Lead	ND	1.00		μg/L	1	11/2	3/2015 4:20:02 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R26229	Analyst: KT
Ferrous Iron	5.84	0.300	D	mg/L	10) 11/2	0/2015 5:25:00 PM

Collection Date: 11/20/2015 12:55:00 PM

WO#: **1511225**Date Reported: **11/24/2015**

Project: Seattle Hilton

Client: Shannon & Wilson

Lab ID: 1511225-003 Matrix: Groundwater

Analyses	Result	PQL	Qual	Units	DF	- Da	te Analyzed
Gasoline by NWTPH-Gx				Bato	h ID:	R26234	Analyst: BC
Gasoline	1,430	50.0		μg/L	1	11/2	1/2015 12:18:00 PM
Surr: 4-Bromofluorobenzene	101	65-135		%Rec	1	11/2	1/2015 12:18:00 PM
Surr: Toluene-d8	101	65-135		%Rec	1	11/2	1/2015 12:18:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Bato	h ID:	R26233	Analyst: BC
Benzene	1.10	1.00		μg/L	1	11/2	1/2015 12:18:00 PM
Toluene	1.58	1.00		μg/L	1	11/2	1/2015 12:18:00 PM
Ethylbenzene	2.19	1.00		μg/L	1	11/2	1/2015 12:18:00 PM
m,p-Xylene	2.54	1.00		μg/L	1	11/2	1/2015 12:18:00 PM
o-Xylene	1.69	1.00		μg/L	1	11/2	1/2015 12:18:00 PM
Surr: Dibromofluoromethane	110	45.4-152		%Rec	1	11/2	1/2015 12:18:00 PM
Surr: Toluene-d8	116	40.1-139		%Rec	1	11/2	1/2015 12:18:00 PM
Surr: 1-Bromo-4-fluorobenzene	102	64.2-128		%Rec	1	11/2	1/2015 12:18:00 PM
Ion Chromatography by EPA Me	ethod 300.0			Bato	h ID:	R26214	Analyst: KT
Nitrate	0.176	0.500	JD	mg/L	5	11/2	0/2015 3:55:00 PM
Sulfate	0.830	1.50	JD	mg/L	5	11/2	0/2015 3:55:00 PM
NOTES:							
Diluted due to high levels of non-target	analytes and matrix	Χ.					
Total Metals by EPA Method 20	0.8			Bato	h ID:	12452	Analyst: TN
Lead	ND	1.00		μg/L	1	11/2	3/2015 4:23:33 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID:	R26229	Analyst: KT
Ferrous Iron	2.99	0.0300		mg/L	1	11/2	0/2015 5:23:00 PM

WO#: **1511225**

Date Reported: 11/24/2015

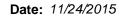
Client: Shannon & Wilson Collection Date: 11/20/2015 1:50:00 PM

Project: Seattle Hilton

Lab ID: 1511225-004 Matrix: Groundwater

Client Sample ID: MW-5							
Analyses	Result	PQL	Qual	Units	DF	Da	ate Analyzed
Gasoline by NWTPH-Gx				Bato	h ID: R26	6234	Analyst: BC
Gasoline	89,800	5,000	D	μg/L	100	11/2	3/2015 4:46:00 PM
Surr: 4-Bromofluorobenzene	122	65-135		%Rec	1		1/2015 12:47:00 PM
Surr: Toluene-d8	108	65-135		%Rec	1		1/2015 12:47:00 PM
Volatile Organic Compounds by	/ EPA Method	<u>8260</u>		Bato	h ID: R26	6233	Analyst: BC
Benzene	1,020	100	D	μg/L	100	11/2	3/2015 4:46:00 PM
Toluene	338	100	D	μg/L	100		3/2015 4:46:00 PM
Ethylbenzene	2,140	100	D	μg/L	100	11/2	3/2015 4:46:00 PM
m,p-Xylene	7,130	100	D	μg/L	100	11/2	3/2015 4:46:00 PM
o-Xylene	2,290	100	D	μg/L	100	11/2	3/2015 4:46:00 PM
Surr: Dibromofluoromethane	114	45.4-152		%Rec	1	11/2	1/2015 12:47:00 PM
Surr: Toluene-d8	134	40.1-139		%Rec	1	11/2	1/2015 12:47:00 PM
Surr: 1-Bromo-4-fluorobenzene	118	64.2-128		%Rec	1	11/2	1/2015 12:47:00 PM
lon Chromatography by EPA Me	ethod 300.0			Bato	h ID: R26	6214	Analyst: KT
Nitrate	ND	0.200	D	mg/L	2	11/2	0/2015 4:06:00 PM
Sulfate	0.336	0.600	JD	mg/L	2	11/2	0/2015 4:06:00 PM
NOTES:				•			
Diluted due to high levels of non-target	analytes and matrix	(.					
Total Metals by EPA Method 20	0.8			Bato	h ID: 124	152	Analyst: TN
Lead	17.3	1.00		μg/L	1	11/2	3/2015 4:27:05 PM
Ferrous Iron by SM3500-Fe B				Bato	h ID: R26	6229	Analyst: KT
Ferrous Iron	10.3	0.600	D	mg/L	20	11/2	0/2015 5:27:00 PM

Date: 11/24/2015

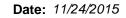


Work Order: 1511225

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Seattle Hi	lton						Feri	rous Iron by SM350	0-Fe B
Sample ID MB-R26229	SampType: MBLK			Units: mg/L		Prep Date:	11/20/2015	RunNo: 26229	
Client ID: MBLKW	Batch ID: R26229					Analysis Date:	11/20/2015	SeqNo: 495255	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	ND	0.0300							
Sample ID LCS-R26229	SampType: LCS			Units: mg/L		Prep Date:	11/20/2015	RunNo: 26229	
Client ID: LCSW	Batch ID: R26229					Analysis Date:	11/20/2015	SeqNo: 495256	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	0.969	0.0300	1.000	0	96.9	90	110		
Sample ID 1511225-001CDUP	SampType: DUP			Units: mg/L		Prep Date:	11/20/2015	RunNo: 26229	
Client ID: MW-4	Batch ID: R26229					Analysis Date:	11/20/2015	SeqNo: 495261	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	0.0724	0.0300					0.06070	17.6 20	
Sample ID 1511225-001CMS	SampType: MS			Units: mg/L		Prep Date:	11/20/2015	RunNo: 26229	
Client ID: MW-4	Batch ID: R26229					Analysis Date:	11/20/2015	SeqNo: 495262	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	1.08	0.0300	1.000	0.06070	102	85	115		
Sample ID 1511225-001CMSD	SampType: MSD			Units: mg/L		Prep Date:	11/20/2015	RunNo: 26229	
Client ID: MW-4	Batch ID: R26229					Analysis Date:	11/20/2015	SeqNo: 495263	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Ferrous Iron	1.08	0.0300	1.000	0.06070	101	85	115 1.080	0.431 20	_



QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Ion Chromatography by EPA Method 300.0

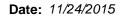
Project:	Seattle Hilton								Ion Ch	romatogra	ohy by EP	A Method	300.0
Sample ID MB	3-R26214	SampType:	MBLK			Units: mg/L		Prep Dat	te: 11/20/2	2015	RunNo: 26	214	
Client ID: MB	BLKW	Batch ID:	R26214					Analysis Da	te: 11/20/2	2015	SeqNo: 49	4949	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			ND	0.100									
Sulfate			ND	0.300									
Sample ID LC:	S-R26214	SampType:	LCS			Units: mg/L		Prep Dat	te: 11/20/2	2015	RunNo: 26	214	
Client ID: LC:	sw	Batch ID:	R26214					Analysis Da	te: 11/20/2	2015	SeqNo: 49	4950	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			2.88	0.100	3.000	0	95.8	90	110				
Sulfate			15.3	0.300	15.00	0	102	90	110				
Sample ID 151	11209-008CDUP	SampType:	DUP			Units: mg/L		Prep Dat	te: 11/20/2	2015	RunNo: 26	214	
Client ID: BA	тсн	Batch ID:	R26214					Analysis Da	te: 11/20/2	2015	SeqNo: 49	4959	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			ND	0.100						0		20	
Sulfate			4.27	0.300						4.290	0.479	20	
Sample ID 151	11209-008CMS	SampType:	MS			Units: mg/L		Prep Dat	te: 11/20/ 2	2015	RunNo: 26	214	
Client ID: BA	тсн	Batch ID:	R26214					Analysis Da	te: 11/20/2	2015	SeqNo: 49	4960	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate			2.87	0.100	3.000	0.02370	95.0	80	120				
Sulfate			19.1	0.300	15.00	4.290	98.8	80	120				
Sample ID 151	11209-008CMSD	SampType:	MSD			Units: mg/L		Prep Dat	te: 11/20/2	2015	RunNo: 26	214	
Client ID: BA	тсн					-		Analysis Dat	te: 11/20/ 2	2015	SeqNo: 49	4961	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

OLIENI.								Ion Ch	romatograp	hy by EP	A Method	300.0
•	1511209-008CMSD	SampType: MSD			Units: mg/L		Prep Date	e: 11/20/ 2	2015	RunNo: 262	214	
Client ID:	BATCH	Batch ID: R26214					Analysis Date	e: 11/20/ 2	2015	SeqNo: 494	4961	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate		19.1	0.300	15.00	4.290	98.7	80	120	19.10	0.0575	20	
Sample ID	1511225-004DDUP	SampType: DUP			Units: mg/L		Prep Date	e: 11/20/ 2	2015	RunNo: 262	214	
Client ID:	MW-5	Batch ID: R26214					Analysis Date	e: 11/20/ 2	2015	SeqNo: 495	5282	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate		ND	0.200						0		20	D
Sulfate		0.331	0.600						0		20	JD
Sample ID	1511225-004DMS	SampType: MS			Units: mg/L		Prep Date	e: 11/20/ 2	2015	RunNo: 262	214	
Client ID:	MW-5	Batch ID: R26214					Analysis Date	e: 11/20/ 2	2015	SeqNo: 495	5283	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate		5.86	0.200	6.000	0	97.7	80	120				D
Sulfate		31.6	0.600	30.00	0.3358	104	80	120				D

Date: 11/24/2015

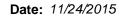


Work Order: 1511225

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

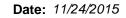
Project:	Seattle Hilton	n							Total Met	als by EP	A Method	d 200.8
Sample ID N	MB-12452	SampType: MB	LK		Units: µg/L		Prep Date	11/23/2	2015	RunNo: 26	253	
Client ID: N	MBLKW	Batch ID: 124	52				Analysis Date	11/23/2	2015	SeqNo: 49	5566	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	1.00									
Sample ID L	_CS-12452	SampType: LCS	<u> </u>		Units: µg/L		Prep Date	: 11/23/2	2015	RunNo: 26	253	
Client ID: L	_csw	Batch ID: 124	52				Analysis Date	: 11/23/2	2015	SeqNo: 49	5567	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		49.5	1.00	50.00	0	99.1	85	115				
Sample ID 1	1511221-001CDUP	SampType: DUI	-		Units: µg/L		Prep Date	: 11/23/2	2015	RunNo: 26	253	
Client ID: B	ВАТСН	Batch ID: 124	52				Analysis Date	: 11/23/2	2015	SeqNo: 49	5569	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	1.00						0		30	
Sample ID 1	1511221-001CMS	SampType: MS			Units: µg/L		Prep Date	: 11/23/2	2015	RunNo: 26	253	
Client ID: E	ВАТСН	Batch ID: 124	52				Analysis Date	: 11/23/2	2015	SeqNo: 49	5570	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		240	1.00	250.0	0.4375	96.0	70	130				
Sample ID 1	1511221-001CMSD	SampType: MS	D		Units: µg/L		Prep Date	: 11/23/2	2015	RunNo: 26	253	
Client ID: B	ВАТСН	Batch ID: 124	52				Analysis Date	: 11/23/2	2015	SeqNo: 49	5571	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		241	1.00	250.0	0.4375	96.3	70	130	240.3	0.333	30	



QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Seattle	Hilton							Gasoline by NWTF	PH-Gx
Sample ID LCS-R26234 Client ID: LCSW	SampType: LCS Batch ID: R26234			Units: µg/L		Prep Date:	11/20/2015 11/20/2015	RunNo: 26234 SeqNo: 495328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Gasoline	507	50.0	500.0	0	101	65	135		
Surr: Toluene-d8	24.9		25.00		99.8	65	135		
Surr: 4-Bromofluorobenzen	e 24.8		25.00		99.2	65	135		
Sample ID MB-R26234	SampType: MBLK			Units: µg/L		Prep Date:	11/21/2015	RunNo: 26234	
Client ID: MBLKW	Batch ID: R26234					Analysis Date	11/21/2015	SeqNo: 495329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Gasoline	ND	50.0							
Surr: Toluene-d8	25.1		25.00		100	65	135		
Surr: 4-Bromofluorobenzen	e 24.9		25.00		99.6	65	135		
Sample ID 1511225-001ADU	IP SampType: DUP			Units: µg/L		Prep Date:	11/21/2015	RunNo: 26234	
Client ID: MW-4	Batch ID: R26234					Analysis Date	11/21/2015	SeqNo: 495320	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Gasoline	ND	50.0					0	30	
Surr: Toluene-d8	25.2		25.00		101	65	135	0 0	
Surr: 4-Bromofluorobenzen	e 24.7		25.00		98.6	65	135	0 0	



QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260

Project: Seattle Hilton	<u> </u>					volatile	e Organi	ic Compou	nas by EP	A wetno	a 826
Sample ID LCS-R26233	SampType: LCS			Units: µg/L		Prep Date	e: 11/20/2	2015	RunNo: 262	233	
Client ID: LCSW	Batch ID: R26233					Analysis Date	e: 11/20/2	2015	SeqNo: 49	5300	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	21.2	1.00	20.00	0	106	69.3	132				
Toluene	20.8	1.00	20.00	0	104	61.3	145				
Ethylbenzene	19.3	1.00	20.00	0	96.4	72	130				
m,p-Xylene	37.2	1.00	40.00	0	92.9	70.3	134				
o-Xylene	18.5	1.00	20.00	0	92.3	72.1	131				
Surr: Dibromofluoromethane	27.6		25.00		110	45.4	152				
Surr: Toluene-d8	28.4		25.00		114	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.6		25.00		102	64.2	128				
Sample ID MB-R26233	SampType: MBLK			Units: µg/L		Prep Date	e: 11/21/2	2015	RunNo: 262	 233	
Client ID: MBLKW	Batch ID: R26233					Analysis Date	e: 11/21/2	2015	SeqNo: 49	5301	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Surr: Dibromofluoromethane	27.2		25.00		109	45.4	152				
Surr: Toluene-d8	28.6		25.00		115	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.5		25.00		102	64.2	128				
Sample ID 1511225-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 11/21/2	2015	RunNo: 262	 233	
Client ID: MW-4	Batch ID: R26233					Analysis Date	e: 11/21/2	2015	SeqNo: 49	5292	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260

Project: Seattle Hilton	n					Volatile	Organi	c Compou	nds by EF	PA Metho	d 826
Sample ID 1511225-001ADUP	SampType: DUP			Units: µg/L		Prep Date:	11/21/2	015	RunNo: 26	233	
Client ID: MW-4	Batch ID: R26233					Analysis Date:	11/21/2	015	SeqNo: 49	5292	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	27.6		25.00		110	45.4	152		0		
Surr: Toluene-d8	28.8		25.00		115	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	25.2		25.00		101	64.2	128		0		
Sample ID 1511211-003AMS	SampType: MS			Units: µg/L		Prep Date:	11/21/2	015	RunNo: 26	233	
Client ID: BATCH	Batch ID: R26233					Analysis Date:	11/21/2	015	SeqNo: 49	5289	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	24.2	1.00	20.00	0	121	65.4	138				
Toluene	22.7	1.00	20.00	0.04840	113	64	139				
Ethylbenzene	23.6	1.00	20.00	0	118	64.5	136				
m,p-Xylene	50.9	1.00	40.00	0.1268	127	63.3	135				
o-Xylene	22.2	1.00	20.00	0	111	65.4	134				
Surr: Dibromofluoromethane	27.9		25.00		111	45.4	152				
Surr: Toluene-d8	28.5		25.00		114	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.9		25.00		103	64.2	128				

Sample Log-In Check List

С	lient Name:	sw			Work Order Num	ber: 1511225		
Lo	ogged by:	Clare Grig	gs		Date Received:	11/20/201	5 2:26:00 PM	
Cha	in of Custo	od <u>y</u>						
1.	Is Chain of Co	ustody com	plete?		Yes 🗸	No \square	Not Present	
2.	How was the	sample deli	vered?		Client			
Log	ln .							
	Coolers are p	resent?			Yes 🗸	No 🗌	NA □	
0.	,							
4.	Shipping cont	tainer/coole	r in good condition?		Yes 🗹	No \square		
5.			n shipping container/cooler? Custody Seals not intact)		Yes	No 🗌	Not Required 🗹	
6.	Was an atten	npt made to	cool the samples?		Yes 🗹	No 🗌	NA 🗌	
7.	Were all item	s received a	at a temperature of >0°C to 10.0°C	*	Yes	No 🗸	NA 🗆	
				were i	received at appro		<u>iture.</u>	
•	Sample(s) in		• •		Yes 🗹	No 🗆		
9.	Sufficient san	nple volume	for indicated test(s)?		Yes 🔽	No 🗌		
10.	Are samples	properly pre	eserved?		Yes 🗹	No 🗌		
11.	Was preserva	ative added	to bottles?		Yes 🗌	No 🗸	NA 🗌	
12.	Is there head	space in the	e VOA vials?		Yes	No 🗹	na 🗆	
13.	Did all sample	es containe	rs arrive in good condition(unbroke	n)?	Yes 🗸	No 🗆		
14.	Does paperw	ork match b	ottle labels?		Yes 🗹	No 🗌		
15.	Are matrices	correctly ide	entified on Chain of Custody?		Yes 🗹	No 🗌		
16.	Is it clear wha	at analyses	were requested?		Yes 🗸	No 🗌		
17.	Were all hold	ing times at	ble to be met?		Yes 🗹	No 🗌		
Spe	cial Handli	ing (if api	plicable)					
			discrepancies with this order?		Yes	No \square	NA 🗹	
	Person I	Notified:		Date				
	By Who			Via:	eMail Pr	none Fax	☐ In Person	
	Regardi			via.		TOTIO T T GA		
	_	structions:	,					
19.	Additional ren		,					
	Information							
ICIII	inionnation	Item #	Temn ⁰C					

Cooler	12.2
Sample	3.3
Temp Blank	5.6

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

TAT → SameDay^ NextDay^ 2 Day 3 Day STD	Date/Time	Repélved		Date/Time	Relinquished
	2015 142b	Received / III)	1426	1/20/15	Relinquish
		engoed vamples are retained after 30 days.)	Disposal by Lab (A fee may be	Return to Client	Sample Disposak
Special Remarks:	Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin	O-Phosphate Fluoride Nitr	e Sufate Bromide	Nitrite Chloride	***Anions (Circle): Valuate
Sb Se Sr Sn Ti Ti U V Zn	Co Cr Cu Fe Hg X Mg Mn Ma Na Ni	Individual Ag Al As B Ba Be Ca Cd	Priority Pollutants TAL /	MTCA-5 RCRA-8	**Metals Analysis (Circle):
A STATE OF THE PARTY OF THE PAR					10
					ub
				100	œ
					7
					5 S
	>	2	1000	4	* MW-5
	♦ 1000	<u> </u>	1255		ME-N
			1205		2 MW-3
	× 1× ×		151055 GW	S/06/11	1 MW-4
Comments	10 10 10 10 10 10 10 10 10 10 10 10 10 1		Sample Type (Marrix)*	Dan	Sample Name
m Water, WW = Waste Water	DW = Drinking Water, GW = Ground Water, SW = Storm Water, WW = Waste Water	SD = Sediment, SL = Solid, W = Water, DW =	P = Product, S = Sail,	AQ = Aqueous, B = Bulk, O = Other,	*Matrix Codes: A = Air, AQ =
Shingle Red	PJSE Shankil . com	Report To (PM): PM Email:	98/03 Fatt	Seattle WA	e, Zip: ne:
	1/01	Location:	St. Suite 100	HOD N SYTH ST	Address: 4
Collected by:	SEATHE Allow	Project Name:	anten	chain & histon	
	Page: of:	51/06/11	Date:	Tel: 206-352-3790 Fax: 206-352-7178	3600 Fremont Ave N. Seattle, WA 98103
611225	Laboratory Project No (internal):		ATIA C	C C C C C C C C C C C C C C C C C C C	
Chain of Custody Record	Cha		+		を追し、

APlease coordinate with the lab in advance

SHANNON & WILSON, INC.

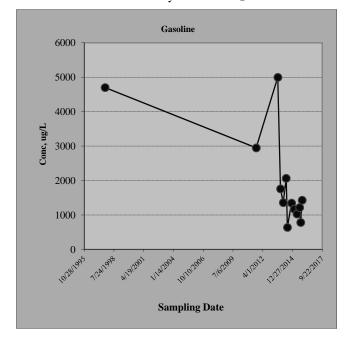
APPENDIX B NATURAL ATTENUATION ANALYSIS OUTPUT

Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-2
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Ha	zardous Subst	ances (unit is ug	;/L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	9/25/1997	4700	6700	210	670	590	
#2	8/25/2011	2950	76.1	2.19	863	22	
#3	8/22/2013	5000	3.07	2.01	408	10.8	
#4	11/21/2013	1760	1.4	1.57	83.3	6.89	
#5	2/21/2014	1360	2.9	1.62	20.8	7.44	
#6	5/30/2014	2070	1.82	2	36.5	8.47	
#7	7/11/2014	642	1.22	0.5	4.8	3.07	
#8	11/25/2014	1350	1.01	1.63	6.53	8.19	
#9	2/25/2015	1170	0.5	1.33	3.36	4.52	
#10	6/1/2015	1030	0.5	1.52	1.96	4.48	
#11	8/21/2015	1220	1.14	1.54	1.76	4.58	
#12	9/30/2015	785	1.09	1.21	0.5	1.54	
#13	11/20/2015	1430	1.1	1.58	2.19	2.54	
#14							
#15							
#16							

2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	99.50%	100.00%	99.30%	100.00%	100.00%	NA
Plume Stability?	Shrinking	Shrinking	Shrinking	Shrinking	Shrinking	NA
Coefficient of Variation?						n<4
Mann-Kendall Statistic "S" value?	-42	-53	-40	-66	-54	0
Number of Sampling Rounds?	13	13	13	13	13	0
Average Concentration?	1959.00	522.45	17.59	161.75	51.89	NA
Standard Deviation?	1412.70	1856.24	57.81	292.81	161.77	NA
Coefficient of Variation?	0.72	3.55	3.29	1.81	3.12	NA
Blank if No Errors found						n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

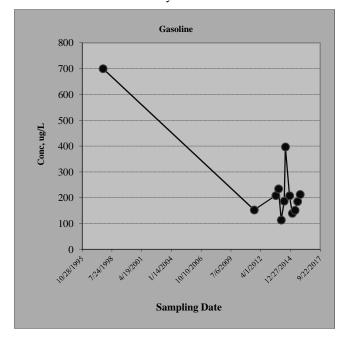
Hazardous substance? Gasoline
Plume Stability? Shrinking

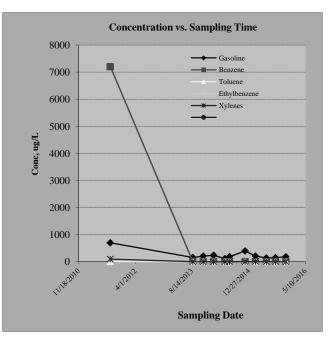
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-3
Level of Confidence (Decision Criteria)? 85%

1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Haz	zardous Substa	ances (unit is ug	₅ /L)	
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
#1	9/25/1997	700	7200	10	74	97	
#2	8/25/2011	153	0.5	0.5	0.5	1.35	
#3	8/22/2013	209	0.5	0.5	0.5	1	
#4	11/21/2013	235	0.5	0.5	0.5	1	
#5	2/21/2014	114	0.5	0.5	0.5	1	
#6	5/30/2014	187	0.5	0.5	0.5	3.59	
#7	7/11/2014	397	0.5	0.5	0.5	1.31	
#8	11/25/2014	208	0.5	0.5	1.34	5.04	
#9	2/25/2015	140	0.5	0.5	0.5	1.16	
#10	6/1/2015	152	0.5	0.5	0.5	1.21	
#11	8/21/2015	186	0.5	0.5	0.5	1.15	
#12	11/20/2015	213	0.5	0.5	0.5	0.5	
#13							
#14							
#15							
#16							


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	72.70%	72.70%	72.70%	68.10%	84.50%	NA
Plume Stability?	Stable	Undetermined	Undetermined	Undetermined	Undetermined	NA
Coefficient of Variation?	CV <= 1	CV > 1	CV > 1	CV > 1	CV > 1	n<4
Mann-Kendall Statistic "S" value?	-10	-11	-11	-9	-17	0
Number of Sampling Rounds?	12	12	12	12	12	0
Average Concentration?	241.17	600.46	1.29	6.70	9.61	NA
Standard Deviation?	161.21	2078.32	2.74	21.20	27.55	NA
Coefficient of Variation?	0.67	3.46	2.12	3.17	2.87	NA
Blank if No Errors found						n<4

3. Temporal Trend: Plot of Concentration vs. Sampling Time

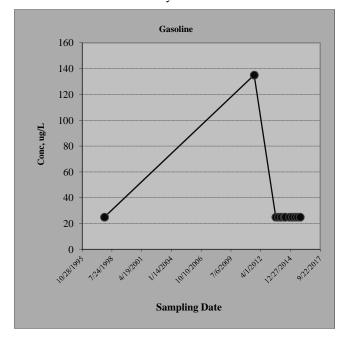
Hazardous substance? Gasoline
Plume Stability? Stable

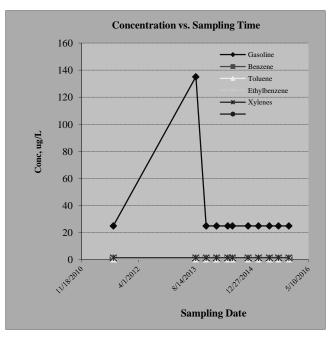
Module1: Mann-Kendall Trend Test for Plume Stability (Non-parametric Statistical Test)

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

Well (Sampling) Location? MW-4
Level of Confidence (Decision Criteria)? 85%

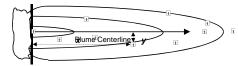
1. Monitoring Well Information: Contaminant Concentration at a well: Quarterly sampling recommended.


			Hazardous Substances (unit is ug/L)									
Sampling Event	Date Sampled	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes						
#1	11/14/1997	25	0.5	0.5	0.5	1.5						
#2	8/26/2011	135	0.5	0.5	0.5	1.5						
#3	8/22/2013	25	0.5	0.5	0.5	1.5						
#4	11/21/2013	25	0.5	0.5	0.5	1.5						
#5	2/21/2014	25	0.5	0.5	0.5	1.5						
#6	5/30/2014	25	0.5	0.5	0.5	1.5						
#7	7/11/2014	25	0.5	0.5	0.5	1.5						
#8	11/25/2014	25	0.5	0.5	0.5	1.5						
#9	2/25/2015	25	0.5	0.5	0.5	1.5						
#10	6/1/2015	25	0.5	0.5	0.5	1.5						
#11	8/21/2015	25	0.5	0.5	0.5	1.5						
#12	11/20/2015	25	0.5	0.5	0.5	1.5						
#13	·		·	·								
#14							, and the second					
#15												
#16												


2. Mann-Kendall Non-parametric Statistical Test Results

Hazardous Substance?	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	
Confidence Level Calculated?	68.10%	47.30%	47.30%	47.30%	47.30%	NA
Plume Stability?	Stable	Stable	Stable	Stable	Stable	NA
Coefficient of Variation?	CV <= 1	CV <= 1	CV <= 1	CV <= 1	CV <= 1	n<4
Mann-Kendall Statistic "S" value?	-9	0	0	0	0	0
Number of Sampling Rounds?	12	12	12	12	12	0
Average Concentration?	34.17	0.50	0.50	0.50	1.50	NA
Standard Deviation?	31.75	0.00	0.00	0.00	0.00	NA
Coefficient of Variation?	0.93	0.00	0.00	0.00	0.00	NA
Blank if No Errors found						n<4

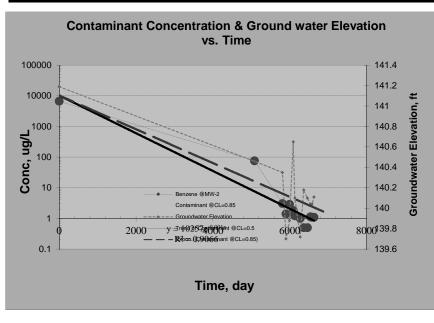
3. Temporal Trend: Plot of Concentration vs. Sampling Time

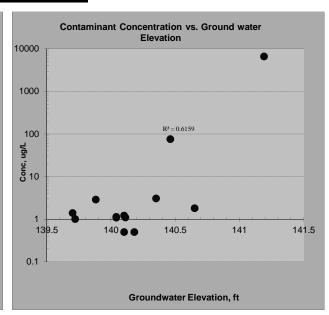

Hazardous substance? Gasoline
Plume Stability? Stable

Module 2: Inputs: Enter Historical Ground Water Data

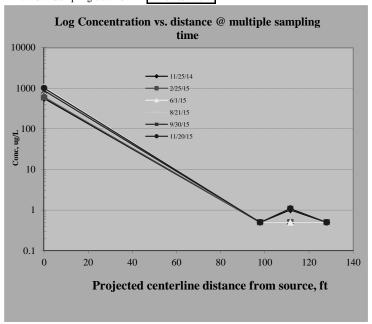
Hilton Seattle Hotel Seattle, WA Site Address: Additional Description: NA Evaluation Hazardous Substance Benzene

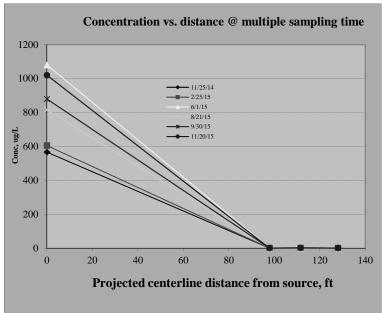
nazaraous subsia	nce Benzene																	
1. Monitoring W	ell information	: Contami	nant Co	ncentra	ation at	a well:			Note	e: relatio	nship of	' ''y/x ≤	0.33" is	preferre	ed			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x-	-direction	ft	0.001	44	78	128												
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	day	Unit of	concentra	ation is u	g/L												
#1	9/25/97	0		6700	7200	0.5												
#2	8/25/11	5082		76.1	0.5	0.5												
#3	8/22/13	5810		3.07	0.5	0.5												
#4	11/21/13	5901	230	1.4	0.5	0.5												
#5	2/21/14	5993	193	2.9	0.5	0.5												
#6	5/30/14	6091	927	1.82	0.5	0.5												
#7	7/11/14	6133	1050	1.22	0.5	0.5												
#8	11/25/14	6270	566	1.01	0.5	0.5												
#9	2/25/15	6362	605	0.5	0.5	0.5												
#10	6/1/15	6458	1080	0.5	0.5	0.5												
#11	8/21/15	6539	816	1.14	0.5	0.5												
#12	9/30/15	6579	879	1.09	0.5	0.5												
#13	11/20/15	6630	1020	1.1	0.5	0.5												
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concenti	ration		736.6	522.5	554.3	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concer	ntration		1080	6700	7200	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	ntration	•	193	0.5	0.5	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA


2. Groundwater Elevation:

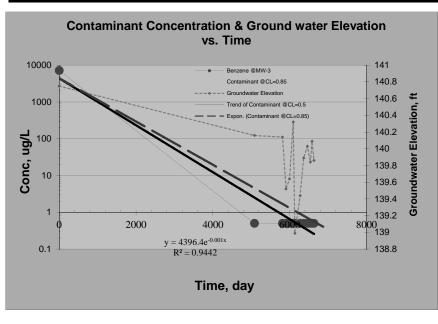

Well Location:												
Sampling Event	Date sampled	Day										
#1	9/25/97	0	142.59	141.19	140.75	138.99						
#2	8/25/11	5082	141.17	140.46	140.16	138.87						
#3	8/22/13	5810	140.84	140.35	140.14	139.04						
#4	11/21/13	5901	140.18	139.7	139.52	138.05						
#5	2/21/14	5993	140.25	139.88	139.64	138.1						
#6	5/30/14	6091	140.95	140.65	140.32	139.32						
#7	7/11/14	6133	140.95	140.1	138.99	138.14						
#8	11/25/14	6270	140.18	139.72	139.44	137.98						
#9	2/25/15	6362	140.45	140.18	139.89	138.59						
#10	6/1/15	6458	141.14	140.1	140.03	139						
#11	8/21/15	6539	140.41	140.04	139.84	138.97						
#12	9/30/15	6579	140.34	140.04	140.09	138.97						
#13	11/20/15	6630	140.05	140.11	139.86	139.05						
#14												
#15												
#16												
#17												
#18												
#19												
#20												

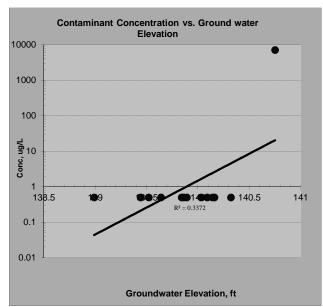
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Benzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-2	Confidence Level (Decision C	riteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Shrinking	; Decision Criteria is	s 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.517 @50% C.L.;	0.463	@85% C.L.
Half Life for k_{point} , yr		1.340 @50% C.L.;	1.497	@85% C.L.

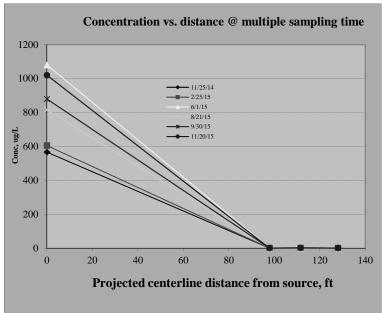
Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15



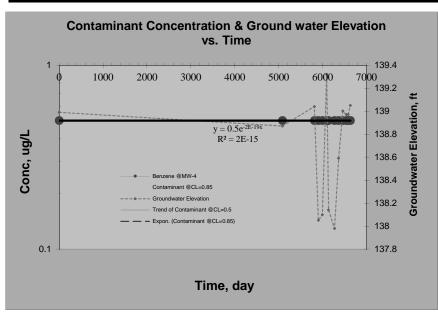


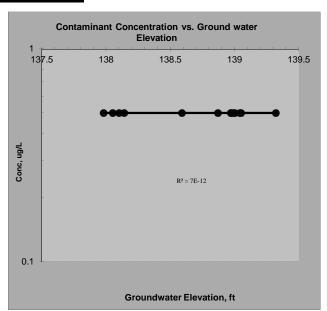
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Benzene

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

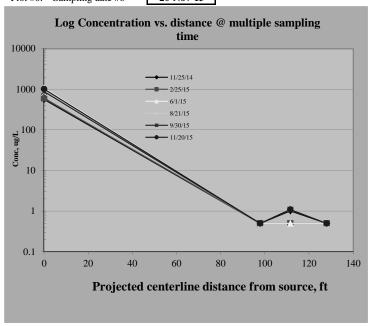

Name of Sampling Well?	MW-3	Confidence	Level (Decision Criteria)? 85.0%)
Confidence Level calculated with	log-linear regression is?	100.000	0%		
Plume Stability?	Shrinking	;	Decision Criteria is 85%	•	
Slope: Point decay rate constant (k point), yr ⁻¹	0.536 @	250% C.L.; 0.4	94 @85% C.I	L.
Half Life for k_{point} , yr		1.293 @	250% C.L.; 1.4	04 @85% C.I	L.

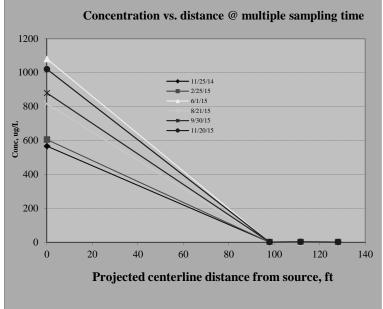
Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15





Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Benzene

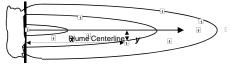

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	NA		
Plume Stability?	NA	; Decision Criteri	ia is 85%.	
Slope: Point decay rate constant (k_{point}), yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.

Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15

Module 2: Inputs: Enter Historical Ground Water Data

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene


796

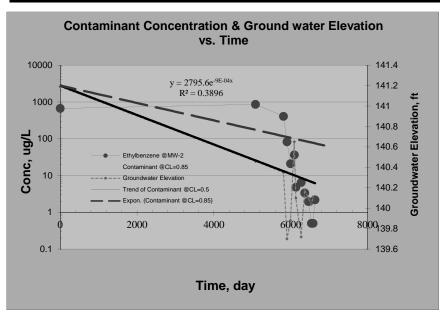
0.5

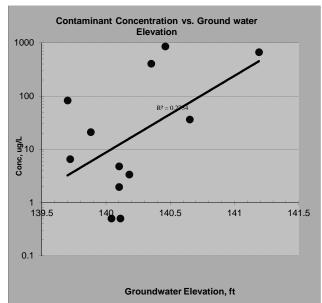
0.5

0.5

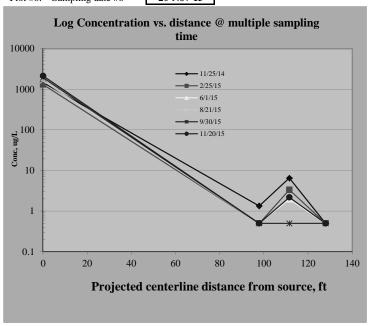
NA

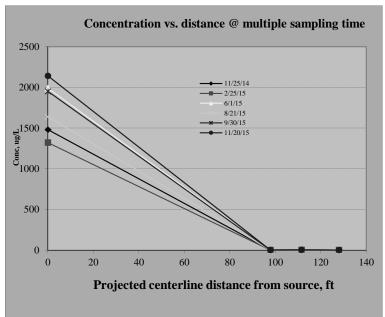
Hazardous Substa	nce Ethylbenze	ene																
1. Monitoring W	ell information	: Contami	inant Co	ncentra	ation at	a well:			Note	e: relatio	nship of	"y/x ≤	0.33" is	preferre	d			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x-	-direction	ft	0.001	44	78	128												
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	9/25/97	0		670	74	0.5												
#2	8/25/11	5082		863	0.5	0.5												
#3	8/22/13	5810		408	0.5	0.5												
#4	11/21/13	5901	1070	83	0.5	0.5												
#5	2/21/14	5993	796	21	0.5	0.5												
#6	5/30/14	6091	1820	36.5	0.5	0.5												
#7	7/11/14	6133	1940	4.8	0.5	0.5												
#8	11/25/14	6270	1480	6.53	1.34	0.5												
#9	2/25/15	6362	1320	3.36	0.5	0.5												
#10	6/1/15	6458	1990	1.96	0.5	0.5												
#11	8/21/15	6539	1640	0.5	0.5	0.5												
#12	9/30/15	6579	1950	0.5	0.5	0.5												
#13	11/20/15	6630	2140	2.19	0.5	0.5												
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concenti	ation		1614.6	161.6	6.2	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Concentration		2140	863	74	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	


Minimum Concentration 2. Groundwater Elevation:

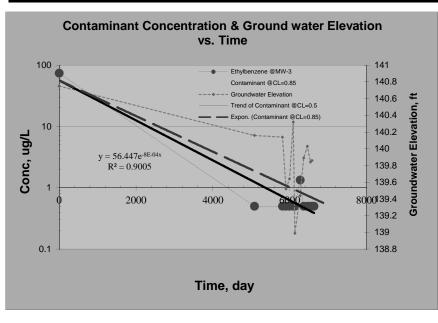

Well Location:													
Sampling Event	Date sampled	Day											
#1	9/25/97	0	142.59	141.19	140.75	138.99							
#2	8/25/11	5082	141.17	140.46	140.16	138.87							
#3	8/22/13	5810	140.84	140.35	140.14	139.04							
#4	11/21/13	5901	140.18	139.7	139.52	138.05							
#5	2/21/14	5993	140.25	139.88	139.64	138.1							
#6	5/30/14	6091	140.95	140.65	140.32	139.32							
#7	7/11/14	6133	140.95	140.1	138.99	138.14							
#8	11/25/14	6270	140.18	139.72	139.44	137.98							
#9	2/25/15	6362	140.45	140.18	139.89	138.59							
#10	6/1/15	6458	141.14	140.1	140.03	139							
#11	8/21/15	6539	140.41	140.04	139.84	138.97							
#12	9/30/15	6579	140.05	140.11	139.86	139.05							
#13	11/20/15	6630											
#14													
#15													
#16													
#17													
#18												-	
#19													
#20					-			_	_				

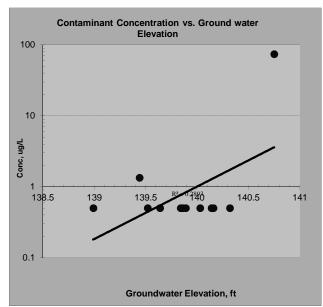
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

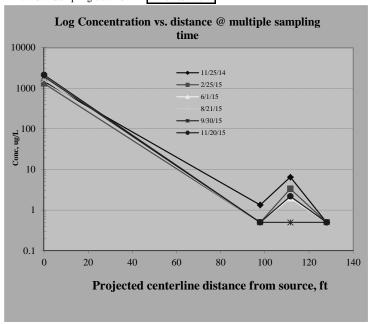

Name of Sampling Well?	MW-2	Confidence Level (Decision	on Criteria)?	85.0%				
Confidence Level calculated with log-linear regression is? 97.741%								
Plume Stability?	Shrinking	; Decision Crite	ria is 85%.					
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.337 @50% C.L.;	0.199	@85% C.L.				
Half Life for k_{point} , yr		2.059 @50% C.L.;	3.483	@85% C.L.				

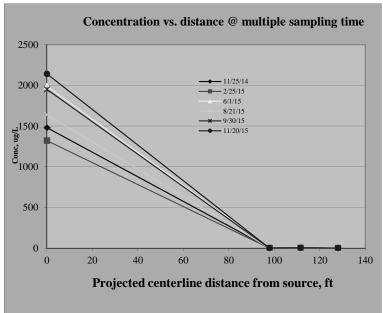
Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15



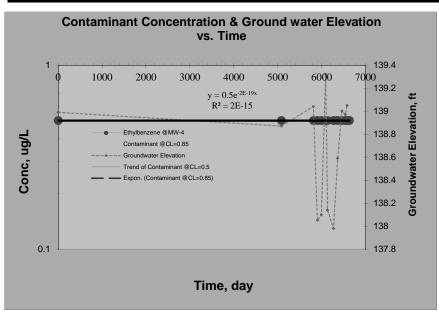


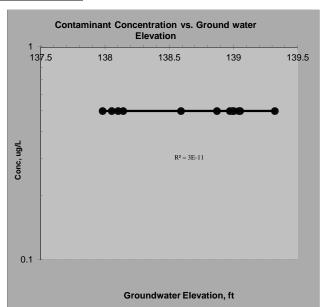
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-3	Confidence	Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000)%		
Plume Stability?	Shrinking	;	Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.274 @	950% C.L.;	0.244	@85% C.L.
Half Life for k_{point} , yr		2.529 @	950% C.L.;	2.837	@85% C.L.

Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15





Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Ethylbenzene

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW-4	Confidence Level (Decis	ion Criteria)?	85.0%	
Confidence Level calculated with	log-linear regression is?	NA			
Plume Stability? NA ; Decision Criteria is 85%.					
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	NA @50% C.L.;	NA	@85% C.L.	
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.	

2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

 Plot #1:
 Sampling date #1

 Plot #2:
 Sampling date #2

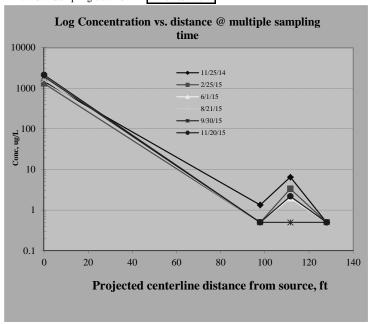
 Plot #3:
 Sampling date #3

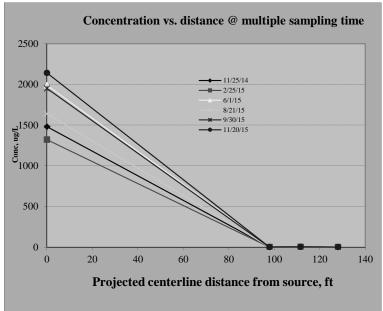
 Plot #4:
 Sampling date #3

 Plot #4:
 Sampling date #4

 Plot #5:
 Sampling date #5

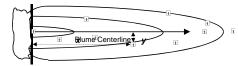
 Plot #6:
 Sampling date #6


 25-Feb-15


 1-Jun-15

 21-Aug-15

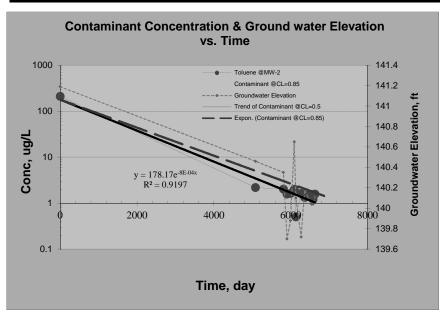
 30-Sep-15

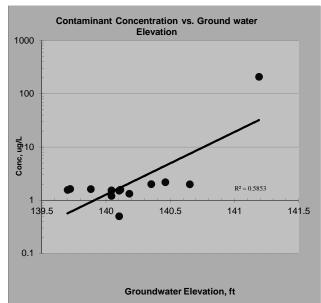

 Plot #6:
 Sampling date #6

Module 2: Inputs: Enter Historical Ground Water Data

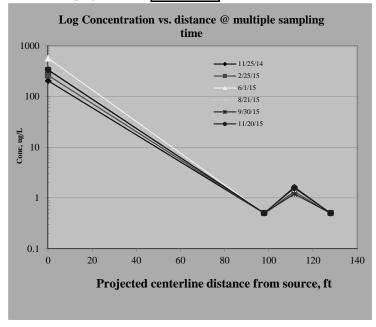
Hilton Seattle Hotel Seattle, WA Site Address: Additional Description: NA Evaluation Hazardous Substance Toluene

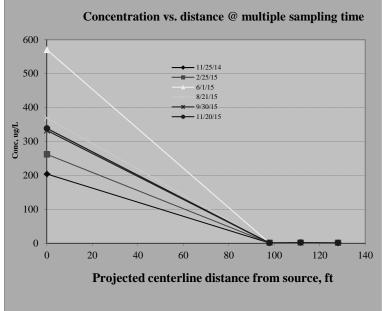
nazaraous Subsiar	ice Totuene																	
1. Monitoring Well information: Contaminant Concentration at a well:						Note: relationship of " $y/x \le 0.33$ " is preferred												
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x-c	direction	ft	0.001	44	78	128												
Off-centerline dist, y	-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	9/25/97	0		210	10	0.5												
#2	8/25/11	5082		2.19	0.5	0.5												
#3	8/22/13	5810		2.01	0.5	0.5												
#4	11/21/13	5901	179	1.57	0.5	0.5												
#5	2/21/14	5993	122	1.62	0.5	0.5												
#6	5/30/14	6091	552	2	0.5	0.5												
#7	7/11/14	6133	837	0.5	0.5	0.5												
#8	11/25/14	6270	204	1.63	0.5	0.5												
#9	2/25/15	6362	262	1.33	0.5	0.5												
#10	6/1/15	6458	570	1.52	0.5	0.5												
#11	8/21/15	6539	369	1.54	0.5	0.5												
#12	9/30/15	6579	332	1.21	0.5	0.5												
#13	11/20/15	6630	338	1.58	0.5	0.5												
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concentra	Average Concentration		376.5	17.6	1.2	0.5	N/A											
Maximum Concentration			837	210	10	0.5	NA											
Minimum Concent	tration		122	0.5	0.5	0.5	NA											


Minimum Concentration 2. Groundwater Elevation:

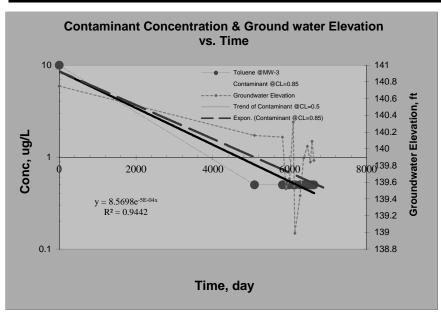

2. Groundwater Elevation.													
Well Location:													
Sampling Event	Date sampled	Day											
#1	9/25/97	0	142.59	141.19	140.75	138.99							
#2	8/25/11	5082	141.17	140.46	140.16	138.87							
#3	8/22/13	5810	140.84	140.35	140.14	139.04							
#4	11/21/13	5901	140.18	139.7	139.52	138.05							
#5	2/21/14	5993	140.25	139.88	139.64	138.1							
#6	5/30/14	6091	140.95	140.65	140.32	139.32							
#7	7/11/14	6133	140.95	140.1	138.99	138.14							
#8	11/25/14	6270	140.18	139.72	139.44	137.98							
#9	2/25/15	6362	140.45	140.18	139.89	138.59							
#10	6/1/15	6458	141.14	140.1	140.03	139							
#11	8/21/15	6539	140.41	140.04	139.84	138.97							
#12	9/30/15	6579	140.34	140.04	140.09	138.97							
#13	11/20/15	6630	140.05	140.11	139.86	139.05							
#14													
#15													
#16													
#17		•											
#18													
#19													
#20													

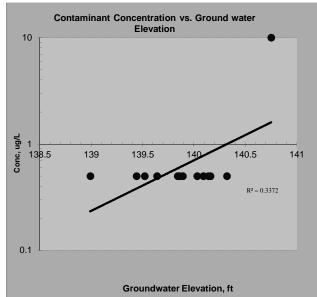
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene


1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Shrinking	; Decision Criteria	is 85%.	
Slope: Point decay rate constant (k_{point}), yr ⁻¹	0.283 @50% C.L.;	0.256	@85% C.L.
Half Life for k_{point} , yr		2.446 @50% C.L.;	2.707	@85% C.L.

Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15

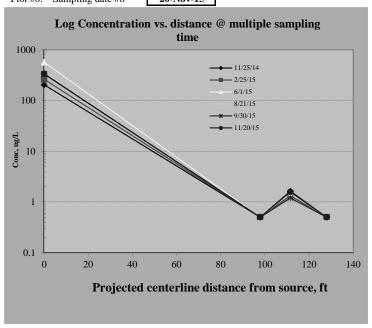


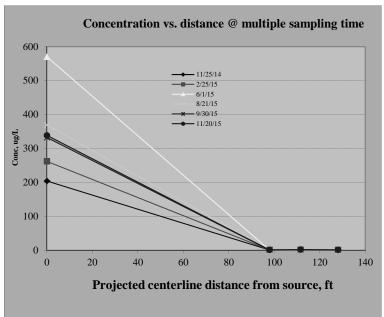


Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW-3	Confidence	e Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.00	00%		
Plume Stability?	Shrinking		; Decision Criteria	a is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.168	@50% C.L.;	0.154	@85% C.L.
Half Life for k_{point} , yr		4.132	@50% C.L.;	4.488	@85% C.L.

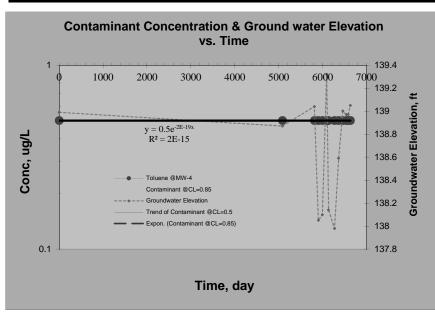


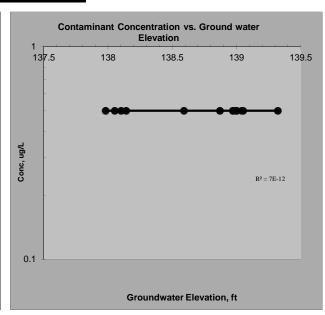


2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

Plot #1: Sampling date #1
Plot #2: Sampling date #2
Plot #3: Sampling date #3
Plot #4: Sampling date #4
Plot #5: Sampling date #5
Plot #6: Sampling date #6

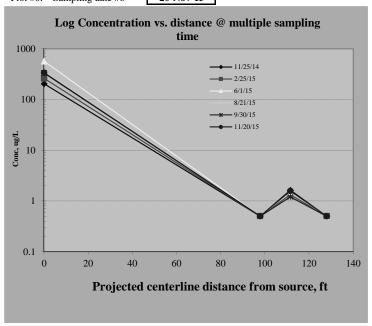
25-Nov-14
25-Feb-15
1-Jun-15
21-Aug-15
30-Sep-15
20-Nov-15

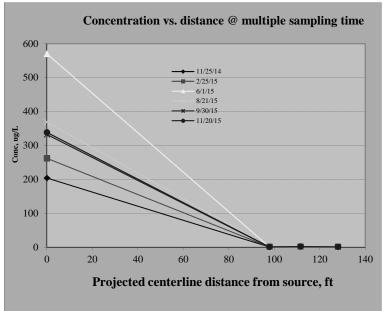




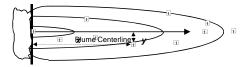
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Toluene

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	NA		
Plume Stability?	NA	; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ($(k_{point}), yr^{-1}$	NA @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		NA @50% C.L.;	NA	@85% C.L.



2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:


Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15

Module 2: Inputs: Enter Historical Ground Water Data

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes

1. Monitoring W	ell information:	: Contami	inant Co	ncentra	tion at	a well:			Note	: relatio	nship of	"y/x ≤	0.33" is	preferre	d			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x	-direction	ft	0.001	44	78	128												
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	day	Unit of o	concentra	tion is u	g/L												
#1	9/25/97	0		590	97	1.5												
#2	8/25/11	5082		22	1.35	1.5												
#3	8/22/13	5810		10.8	1	1.5												
#4	11/21/13	5901	6100	6.9	1	1.5												
#5	2/21/14	5993	3670	7.4	1	1.5												
#6	5/30/14	6091	7610	8.47	3.59	1.5												
#7	7/11/14	6133	9960	3.07	1.31	1.5												
#8	11/25/14	6270	7610	8.19	5.04	1.5												
#9	2/25/15	6362	6680	4.52	1.16	1.5												
#10	6/1/15	6458	10390	4.48	1.21	1.5												
#11	8/21/15	6539	8420	4.58	1.15	1.5												
#12	9/30/15	6579	8910	1.54	1.04	1.5												
#13	11/20/15	6630	7130	2.54	1	1.5												
#14																		
#15																		
#16																		
#17																		
#18								-							-			
#19																		
#20								-							-			
Average Concent	ration		7648.0	51.9	9.0	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Minimum Concentration 2. Groundwater Elevation:

Maximum Concentration

Well Location:												
Sampling Event	Date sampled	Day										
#1	9/25/97	0	142.59	141.19	140.75	138.99						
#2	8/25/11	5082	141.17	140.46	140.16	138.87						
#3	8/22/13	5810	140.84	140.35	140.14	139.04						
#4	11/21/13	5901	140.18	139.7	139.52	138.05						
#5	2/21/14	5993	140.25	139.88	139.64	138.1						
#6	5/30/14	6091	140.95	140.65	140.32	139.32						
#7	7/11/14	6133	140.95	140.1	138.99	138.14						
#8	11/25/14	6270	140.18	139.72	139.44	137.98						
#9	2/25/15	6362	140.45	140.18	139.89	138.59						
#10	6/1/15	6458	141.14	140.1	140.03	139						
#11	8/21/15	6539	140.41	140.04	139.84	138.97						
#12	9/30/15	6579	140.34	140.04	140.09	138.97						
#13	11/20/15	6630	140.5	140.11	139.86	139.05						
#14												
#15												
#16												
#17												
#18												
#19												
#20												

1.5

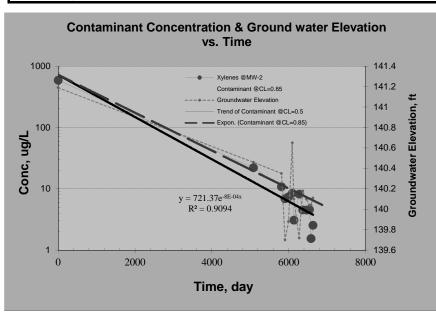
1.5

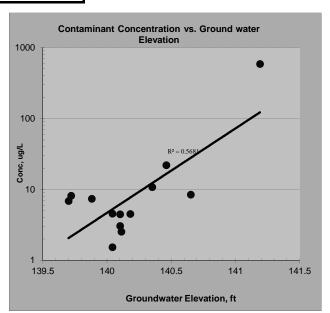
NA

10390

3670

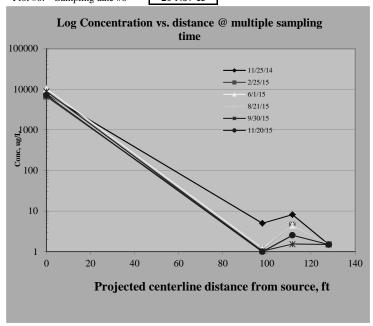
590

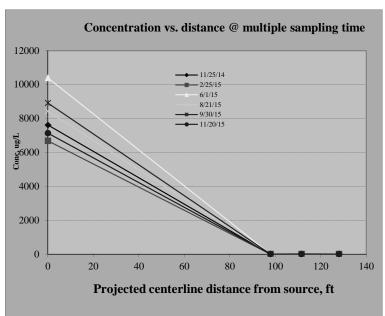

1.54


97

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes

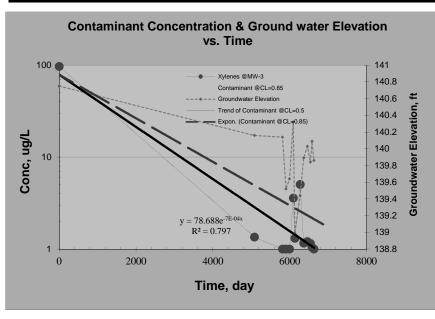
1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

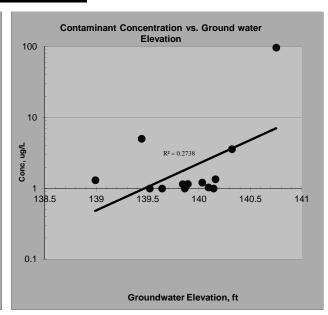

Name of Sampling Well?	MW-2	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	100.000%		
Plume Stability?	Shrinking	; Decision Criteria	ı is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.289 @50% C.L.;	0.259	@85% C.L.
Half Life for k_{point} , yr		² @50% C.L.;	2.672	@85% C.L.



2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15





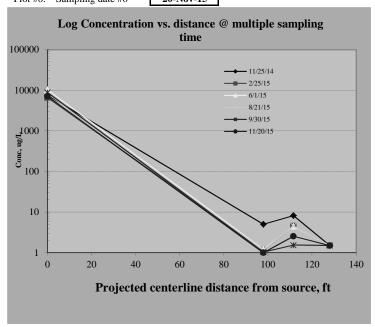
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes

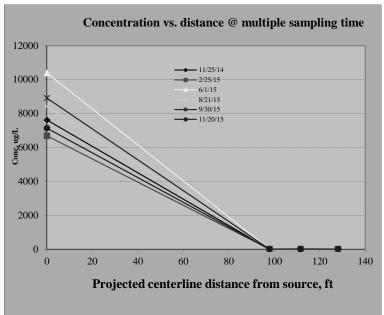
1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW-3	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.996%		
Plume Stability?	Shrinking	; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.238 @50% C.L.;	0.199	@85% C.L.
Half Life for k_{point} , yr		³ @50% C.L.;	3.484	@85% C.L.

2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

 Plot #1:
 Sampling date #1
 25-Nov-14

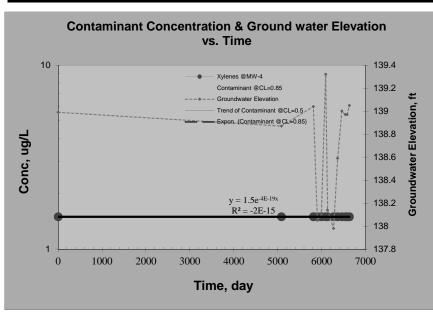

 Plot #2:
 Sampling date #2
 25-Feb-15

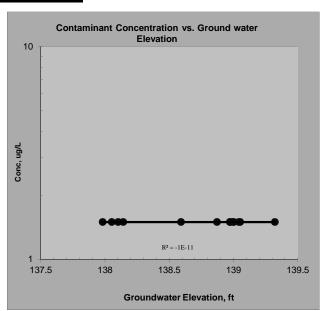

 Plot #3:
 Sampling date #3
 1-Jun-15

 Plot #4:
 Sampling date #4
 21-Aug-15

 Plot #5:
 Sampling date #5
 30-Sep-15

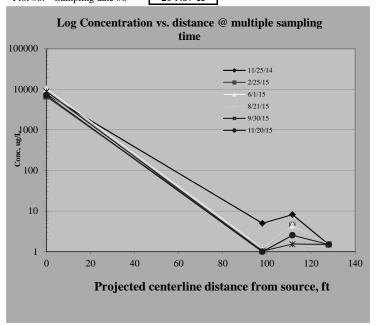
 Plot #6:
 Sampling date #6
 20-Nov-15

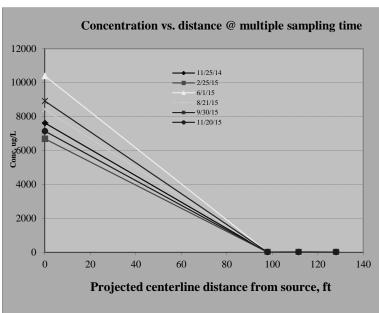




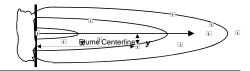
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Xylenes

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)


Name of Sampling Well?	MW-4	Confidence	ce Level (Decision C	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	0.00	0%		
Plume Stability?	Stable		; Decision Criteria	is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.000	@50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		***************************************	@50% C.L.;	NA	@85% C.L.



2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

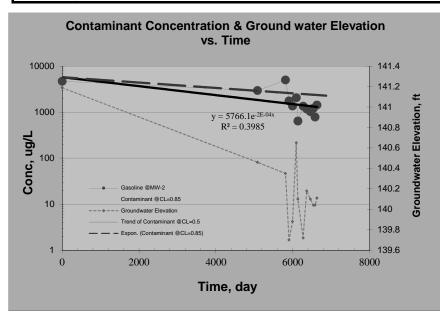

Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6	Sampling date #6	20-Nov-15

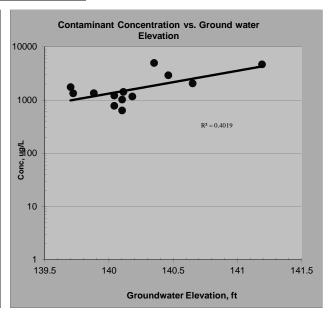
Module 2: Inputs: Enter Historical Ground Water Data

Hilton Seattle Hotel Seattle, WA Site Address: Additional Description: NA Evaluation Hazardous Substance Gasoline

1. Monitoring W	Vell information:	Contaminant (Concentration at	a well:
-----------------	-------------------	---------------	------------------	---------

1. Monitoring Well information: Contaminant Concentration at a well:									Note	e: relatio	nship of	"y/x ≤	0.33" is	preferre	ed			
Well Location:		Unit	MW-5	MW-2	MW-3	MW-4												
Dist from source, x	-direction	ft	0.001	44	78	128												
Off-centerline dist,	y-direction	ft	0.001	18	13	0.001												
Sampling Event	Date sampled	day	Unit of	concentra	tion is u	g/L												
#1	9/25/97	0		4700	700	25												
#2	8/25/11	5082		2950	153	135												
#3	8/22/13	5810		5000	209	25												
#4	11/21/13	5901	98100	1760	235	25												
#5	2/21/14	5993	30300	1360	114	25												
#6	5/30/14	6091	51400	2070	187	25												
#7	7/11/14	6133	59300	642	397	25												
#8	11/25/14	6270	53500	1350	208	25												
#9	2/25/15	6362	43900	1170	140	25												
#10	6/1/15	6458	60900	1030	152	25												
#11	8/21/15	6539	66000	1220	186	25												
#12	9/30/15	6579	84500	785	192	25												
#13	11/20/15	6630	89800	1430	213	25												
#14																		
#15																		
#16																		
#17																		
#18																		
#19																		
#20																		
Average Concent	ration		63770.0	1959.0	237.4	33.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maximum Conce	ntration		98100	5000	700	135	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Minimum Concer	ntration		30300	642	114	25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2. Groundwater	Floretion		-				•		•			•					•	•

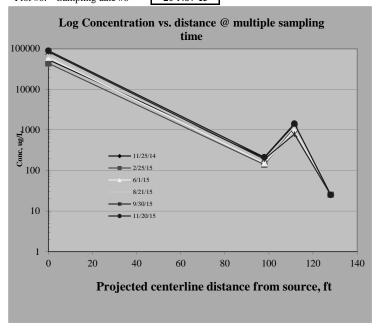

2. Groundwater Elevation:

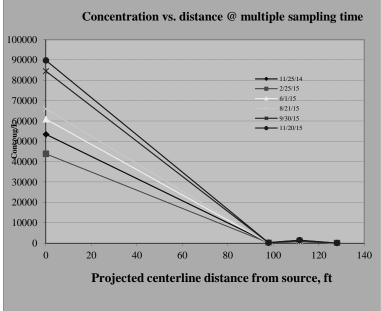

2. Groundwater	Bic varion.											
Well Location:												
Sampling Event	Date sampled	Day										
#1	9/25/97	0	142.59	141.19	140.75	138.99						
#2	8/25/11	5082	141.17	140.46	140.16	138.87						
#3	8/22/13	5810	140.84	140.35	140.14	139.04						
#4	11/21/13	5901	140.18	139.7	139.52	138.05						
#5	2/21/14	5993	140.25	139.88	139.64	138.1						
#6	5/30/14	6091	140.95	140.65	140.32	139.32						
#7	7/11/14	6133	140.95	140.1	138.99	138.14						
#8	11/25/14	6270	140.18	139.72	139.44	137.98						
#9	2/25/15	6362	140.45	140.18	139.89	138.59						
#10	6/1/15	6458	141.14	140.1	140.03	139						
#11	8/21/15	6539	140.41	140.04	139.84	138.97						
#12	9/30/15	6579	140.34	140.04	140.09	138.97						
#13	11/20/15	6630	140.05	140.11	139.86	139.05						
#14												
#15												
#16												
#17		•										
#18												
#19												
#20												

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline

1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW-2	Confidence	ce Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	97.93	32%		
Plume Stability?	Shrinking		; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.082	@50% C.L.;	0.049	@85% C.L.
Half Life for k_{point} , yr		8.459	@50% C.L.;	14.128	@85% C.L.

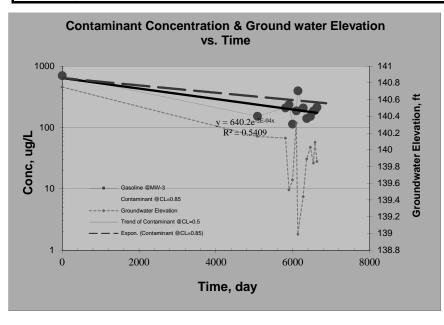


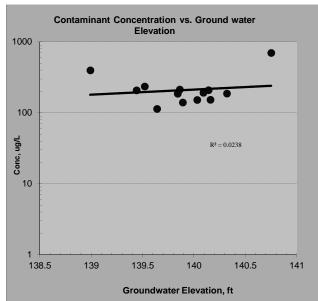


2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

Plot #1: Sampling date #1
Plot #2: Sampling date #2
Plot #3: Sampling date #3
Plot #4: Sampling date #4
Plot #5: Sampling date #5
Plot #6: Sampling date #6

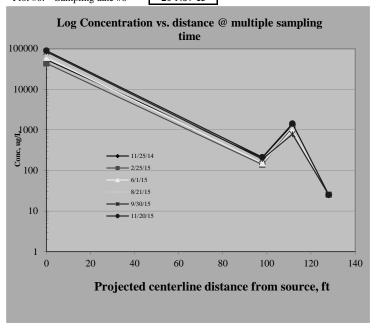
25-Nov-14
25-Feb-15
1-Jun-15
21-Aug-15
30-Sep-15
20-Nov-15

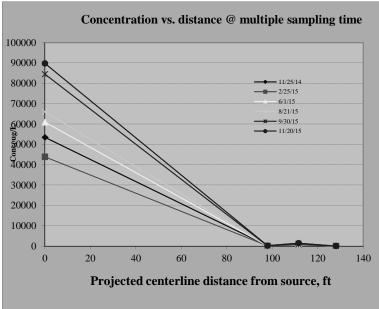




Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline

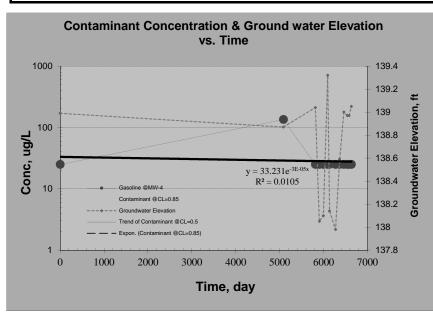
1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

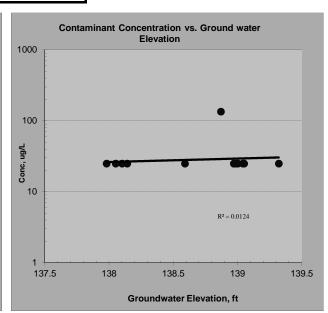

Name of Sampling Well?	MW-3	Confidence	ce Level (Decision	n Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	99.58	33%		
Plume Stability?	Shrinking		; Decision Criteri	a is 85%.	
Slope: Point decay rate constant ((k_{point}) , yr ⁻¹	0.072	@50% C.L.;	0.050	@85% C.L.
Half Life for k_{point} , yr		9.658	@50% C.L.;	13.814	@85% C.L.



2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

Plot #1:	Sampling date #1	25-Nov-14
Plot #2:	Sampling date #2	25-Feb-15
Plot #3:	Sampling date #3	1-Jun-15
Plot #4:	Sampling date #4	21-Aug-15
Plot #5:	Sampling date #5	30-Sep-15
Plot #6:	Sampling date #6	20-Nov-15





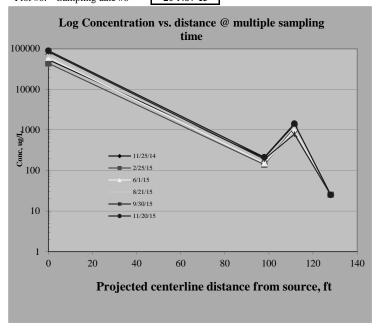
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation
Hazardous Substance Gasoline

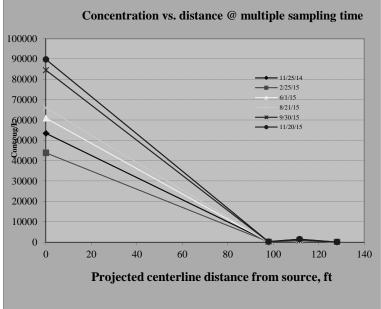
1. Temporal Trend at a Well (Concentration vs. Time & Groundwater Elevation : well-to-well analysis)

Name of Sampling Well?	MW-4	Confidence Level (Decision	Criteria)?	85.0%
Confidence Level calculated with	log-linear regression is?	26.077%		
Plume Stability?	Stable	; Decision Criteria	a is 85%.	
Slope: Point decay rate constant ($(k_{point}), yr^{-1}$	0.010 @50% C.L.;	NA	@85% C.L.
Half Life for k_{point} , yr		69.650 @50% C.L.;	NA	@85% C.L.

2. Spatial and Temporal Trend along Overall Plume Length for Multiple Wells:

 Plot #1:
 Sampling date #1
 25-Nov-14


 Plot #2:
 Sampling date #2
 25-Feb-15


 Plot #3:
 Sampling date #3
 1-Jun-15

 Plot #4:
 Sampling date #4
 21-Aug-15

 Plot #5:
 Sampling date #5
 30-Sep-15

 Plot #6:
 Sampling date #6
 20-Nov-15

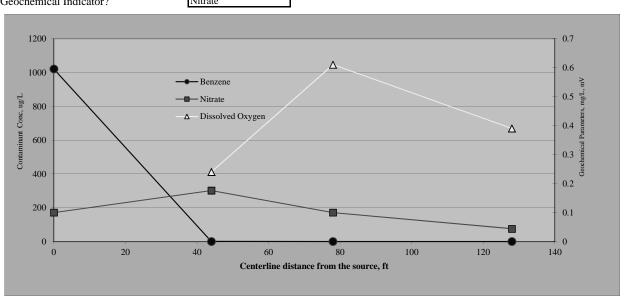
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	N/A	0.9	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.1	0.0	0.1	-10.8	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-10.2	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Benzene
Dissolved Oxygen
Nitrate

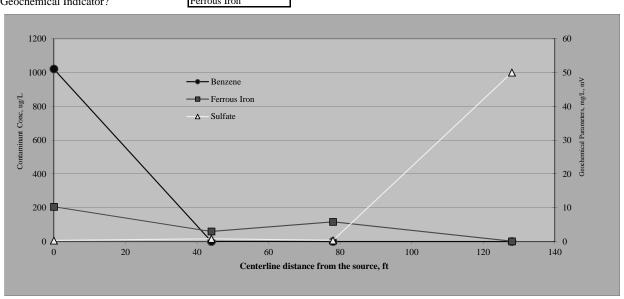
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

J	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent C	ontaminaı	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	N/A	0.9	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.1	0.0	0.1	-10.8	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-10.2	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Benzene
Sulfate
Ferrous Iron

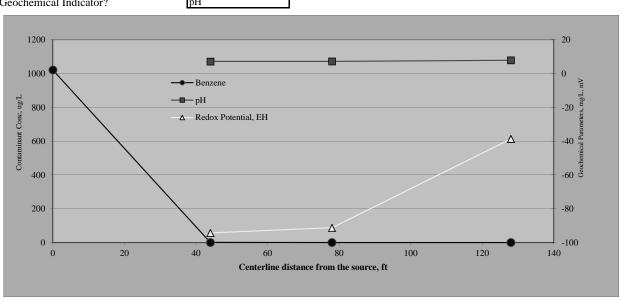
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Benzene

Equivalent C	ontaminaı	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.33	N/A	N/A	N/A	N/A	0.9	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.22	N/A	N/A	N/A	0.1	0.0	0.1	-10.8	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.047	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-10.2	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Benzene	
Redox Potential, EH	
рΗ	

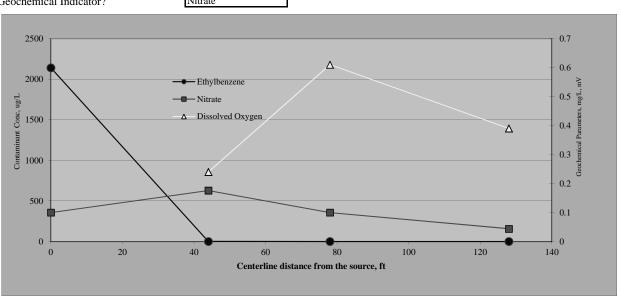
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
pН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Ethylbenzene

Equivalent C	ontaminaı	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Ethylbenzene
Dissolved Oxygen
Vitrate

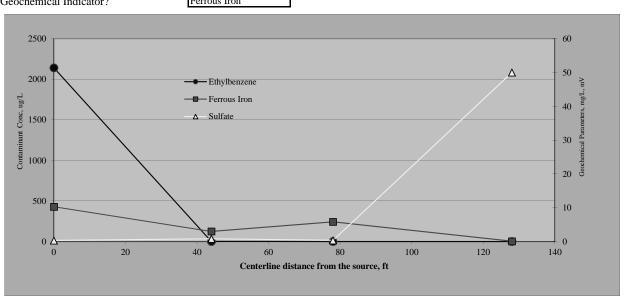
Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

J	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Ethylbenzene

Equivalent C	ontaminaı	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Ethylbenzene	
Sulfate	
Ferrous Iron	

Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

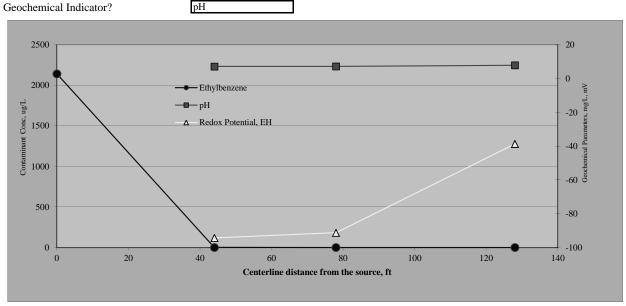
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

J	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Ethylbenzene

Equivalent C	ontaminaı	nt Degrad	lation												
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance
Geochemical Indicator?

Ethylbenzene	-
Redox Potential, EH	
рΗ	

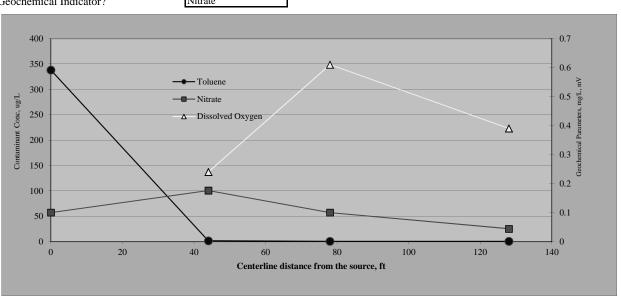
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
pН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Toluene

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.046	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Toluene
Dissolved Oxygen
Nitrate

Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

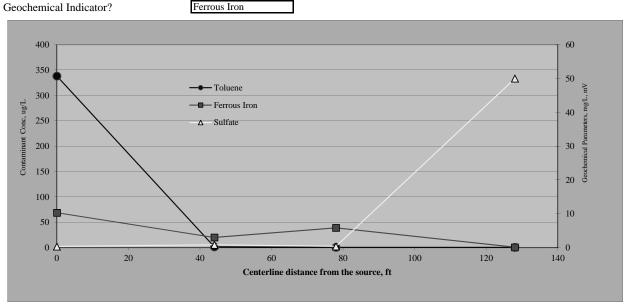
1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

J	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Toluene

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.046	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance
Geochemical Indicator?

Toluene
Sulfate
Ferrous Iron

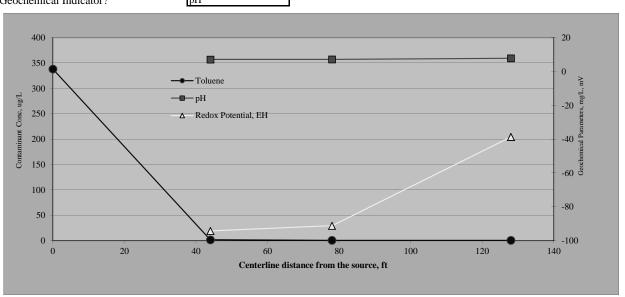
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

$\textbf{2. Enter Average Geochemical Indicator's Concentrations} \ (\textbf{direct measurement}) \ \textbf{at the Monitoring Wells.}$

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection **Toluene**

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.21	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.046	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Toluene	
Redox Potential, EH	
РΗ	

Site Name: Hilton Seattle Hotel
Site Address: Seattle, WA
Additional Description: NA Evaluation

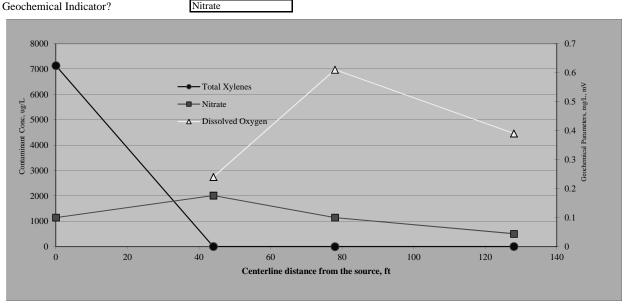
${\bf 1.\,Monitoring\,Well\,information:\,Enter\,Average\,\,Contaminant\,\,Concentrations\,\,at\,\,the\,\,Monitoring\,\,Wells}$

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

J	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					

3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)


Contaminant for UF Selection Total Xylenes

			·												
Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Hazardous Substance Geochemical Indicator?

Γotal Xylenes
Dissolved Oxygen
Vitrate

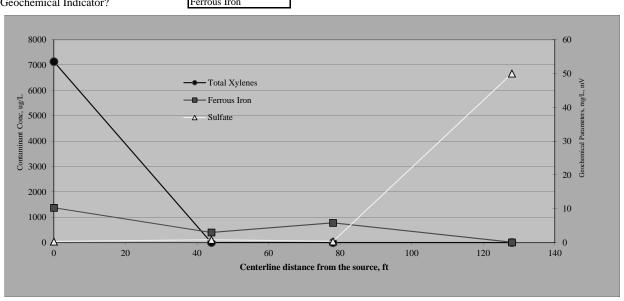
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
pН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Total Xylenes

Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Γotal Xylenes
Sulfate
Ferrous Iron

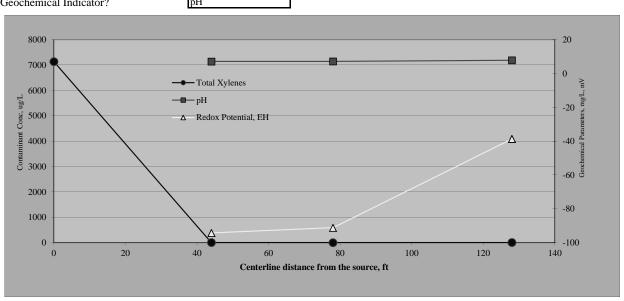
Site Name:	Hilton Seattle Hotel
Site Address:	Seattle, WA
Additional Description:	NA Evaluation

1. Monitoring Well information: Enter Average Contaminant Concentrations at the Monitoring Wells

Sampling Location:	Unit		MW-5	MW-2	MW-3	MW-4			
Centerline Distance from source	ft		0	44	78	128			
Benzene	ug/L		1020	1.1	0.5	0.5			
Toluene	ug/L		338	1.58	0.5	0.5			
Ethylbenzene	ug/L		2140	2.19	0.5	0.5			
Total Xylenes	ug/L		7130	2.54	0.5	1.5			
Gasoline	ug/L		89800	1430	213	25			
User-specified chemical1	ug/L								
User-specified chemical3	ug/L								

${\bf 2.\ Enter\ Average\ Geochemical\ Indicator's\ Concentrations\ (direct\ measurement)\ at\ the\ Monitoring\ Wells.}$

J	Unit	Background	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	mg/L	2.87					0.24	0.61	0.39					
Nitrate	mg/L	0.0965				0.1	0.176	0.1	0.044					
Sulfate	mg/L	0.75				0.336	0.83	0.385	50					
Manganese	mg/L													
Ferrous Iron	mg/L	4.2				10.3	2.99	5.84	0.0983					
Methane	mg/L													
Redox Potential, E_H	mV	-134.8					-94.3	-91.2	-38.7					
Alkalinity	mg/L													
рН	unitless	6.95					7.07	7.1	7.77					


3. Expressed Assimilative Capacity Calculation: Utilization Factor (UF)

Contaminant for UF Selection Total Xylenes

			·												
Equivalent Contaminant Degradation															
		Unit	UF	NA	NA	NA	MW-5	MW-2	MW-3	MW-4	NA	NA	NA	NA	NA
Dissolved Oxygen	utilized	mg/L	0.32	N/A	N/A	N/A	N/A	0.8	0.7	0.8	N/A	N/A	N/A	N/A	N/A
Nitrate	utilized	mg/L	0.2	N/A	N/A	N/A	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A
Sulfate	utilized	mg/L	0.21	N/A	N/A	N/A	0.1	0.0	0.1	-10.3	N/A	N/A	N/A	N/A	N/A
Manganese	produced	mg/L	0.09	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ferrous Iron	produced	mg/L	0.045	N/A	N/A	N/A	0.3	-0.1	0.1	-0.2	N/A	N/A	N/A	N/A	N/A
Methane	produced	mg/L	1.27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		mg/L		N/A	N/A	N/A	0.4	0.8	0.9	-9.7	N/A	N/A	N/A	N/A	N/A

4. Geochemical Indicator Plot

Γotal Xylenes	
Redox Potential, EH	
Н	

SHANNON & WILSON, INC.

APPENDIX C

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 21-1-12341-004

Date: March 2016

To: Mr. Zahoor Ahmed

R.C. Hedreen Company

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2014

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2014