

1329 North State Street, Suite 301 | Bellingham, WA 98225 | 360 594 6262 | www.maulfoster.com

June 8, 2016 Project No. 0818.02.01

Mary Monahan Washington State Department of Ecology Central Regional Office 1250 West Alder Street Union Gap, Washington 98903-0009

Re: Quarterly Progress Report – May 2016 Former Tiger Oil Site Facility Site ID: 469, Cleanup Site ID: 4919 2312 West Nob Hill Boulevard, Yakima, Washington 98902

Dear Ms. Monahan:

On behalf of the City of Yakima, Maul Foster & Alongi, Inc. (MFA) conducted the third post-remedial action quarterly groundwater event at the former Tiger Oil site (the Site), located at 2312 West Nob Hill Boulevard in Yakima, Washington (see Figure 1). This event fulfills the quarterly groundwater-monitoring event requirement as specified in the Washington State Department of Ecology (Ecology) -approved interim remedial action completion report (MFA, 2015a), as well as the progress reporting requirement specified in Section IX, of the Amended Consent Decree (ACD), No. 02-2-00956-2, and the amended cleanup action plan (Section 9-1) (Ecology, 2014). Monitoring activities were conducted as described in the groundwater monitoring plan (GMP) (MFA, 2015b) and in accordance with the monitoring requirements outlined in the Washington State Model Toxics Control Act (MTCA) (Washington Administrative Code 173-340-410).

BACKGROUND

Quarterly monitoring is a requirement of the ACD. Quarterly monitoring has been ongoing at the Site since November 2015, following the interim remedial action completed in early May 2015. The interim remedial action included excavation of petroleum contaminated soil and application of bioremediation products with the clean backfill. An increase in contaminant concentrations in groundwater often occurs over the initial six-months to a year following completion of remedial actions similar to the action conducted at the Site. Therefore, groundwater monitoring/sampling activities began six months after bioremediation product application to allow the initial and anticipated increase in dissolved phase petroleum hydrocarbon concentrations to occur and groundwater conditions to begin to stabilize. Mary Monahan June 8, 2016 Page 2

Groundwater-monitoring results are evaluated quarterly to assess the performance and protectiveness of the remedial action by comparing indicator hazardous substance (IHS) concentrations in all monitoring network wells to MTCA Method A cleanup levels (CULs), as defined in the GMP. Monitoring wells included in the monitoring well network were defined in the GMP, with the exception of KMW-5 and MWG-2, which were included following a request by Ecology after the November 2015 sampling event (see Figure 2) (MFA, 2015b).

FIELD PROCEDURES

MFA used a water level probe to measure static water levels in the wells included in the groundwater-monitoring well network (see Table 1). If light nonaqueous-phase liquid (LNAPL) (i.e., free product) was encountered, the thickness of the LNAPL was measured using an oil/water interface meter. LNAPL was encountered in four monitoring wells (MW-7, MW-11, MW-13, and MWG-3) during the May 2016 monitoring event. The approximate thicknesses of LNAPL at these wells are presented in Figure 3.

Groundwater-monitoring and -sampling activities were conducted in general accordance with industry standard sampling protocols. The integrity of the well seal and cap were observed to ensure that contamination from the surface would not enter the well (see Table 2). During the February 2016 event, monitoring wells KMW-7, MW-7, MW-9, and MW-10 were observed to need new compression plugs, gaskets, locks, and/or bolts. During the May 2016 sampling event, these missing and/or damaged items were replaced. Depth-to-water measurements at all wells designated for monitoring were measured before groundwater sampling activities began. Groundwater samples were collected only from wells included in the groundwater-monitoring well network that did not contain LNAPL. Water quality parameters were measured with a YSI meter (YSI 556MPS) and a turbidity meter (Hach 2100P) before sample collection and were recorded on field sampling data sheets (see Attachment A) and are summarized in Table 3. Thirteen groundwater samples, including a field duplicate, were collected using low-flow sampling techniques involving a peristaltic pump and disposable tubing. Groundwater-monitoring activities were conducted consistent with the sampling and analysis plan included as an appendix to the GMP (MFA, 2015b), with at least one pore volume extracted from the wells and field parameters stabilized before a sample was collected. A field duplicate was collected at monitoring well YMW-2.

Samples were submitted to OnSite Environmental, Inc., of Redmond, Washington, under standard chain-of-custody procedures. Samples were analyzed for IHSs, using the following analytical methods:

• Gasoline-range total petroleum hydrocarbons (TPH) by Northwest Total Petroleum Hydrocarbons Method Gx

Project No. 0818.02.01

Mary Monahan June 8, 2016 Page 3

• Benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency Method 8021B

RESULTS AND DISCUSSION

Water level measurements, final field parameters, and analytical results are summarized in Tables 1, 3, and 4, respectively. Table 4 also includes analytical data from the wells sampled during monitoring events conducted in May and November 2015, and February 2016. The laboratory analytical report is included as Attachment B. A data validation memorandum, summarizing data evaluation procedures, usability of data, and deviations from field and/or laboratory methods, is included as Attachment C. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they meet data quality objectives. The data were validated and are considered acceptable for their intended use.

Depth-to-water measurements and groundwater elevations are summarized in Table 1. The depth to water in monitoring wells with LNAPL was adjusted to account for the density of the LNAPL on top of the water column. Given the type of historical release at the Site, the density of gasoline (0.75 gram per cubic centimeter) was used to complete this adjustment. Groundwater flow direction during the May 2016 event was generally to the southeast, with an easterly tangent in the northern area of the Site, similar to previous observations (see Figure 4).

Figure 5 presents geologic cross-sections of two profiles of the Site from the northwest to southeast transect (A-A') and southwest to northeast transect (B-B'), both of which are identified in Figure 2. Additional features including the water table, LNAPL locations, and observed LNAPL thicknesses are also illustrated. An interpretation of LNAPL within the cross section was not provided due to the lack of information regarding the well screens and lithology of the well locations identified with LNAPL. Generally, the depths to water were slightly higher than recorded during the February 2016 event.

The LNAPL encountered in the four monitoring wells was clear and had a strong petroleum fuel odor. Monitoring wells with LNAPL present were not sampled because of the likelihood of highly elevated concentrations of IHSs in these wells, and laboratory analytical results of these samples would not be representative of the dissolved-phase gasoline petroleum hydrocarbons plume. Additional quarterly monitoring will allow for observation of the presence and thickness of LNAPL in the monitoring-well network over time. LNAPL thickness ranged from 0.04 to 0.32 foot, similar to the last event's observations (see Table 1).

Mary Monahan June 8, 2016 Page 4

Concentrations of gasoline-range TPH above the 800-micrograms-per-liter (ug/L) CUL were identified in the following monitoring wells (see Figure 6):

- MW-9: 26,000 ug/L
- YMW-1: 21,000 ug/L
- YMW-2: 8,500 ug/L
- YMW-3: 23,000 ug/L

Concentrations of benzene above the 5-ug/L CUL were identified in the following monitoring wells (see Figure 7):

- KMW-6: 69 ug/L
- KMW-7: 25 ug/L
- KMW-16: 7.6 ug/L
- MW-9: 1,500 ug/L
- YMW-1: 1,600 ug/L
- YMW-2: 240 ug/L
- YMW-3: 2,000 ug/L

Concentrations of ethylbenzene, toluene, and total xylenes generally decreased in the wells previously identified with IHSs exceeding associated laboratory detection limits during the February 2016 sampling event (see Table 4).

Overall, groundwater quality data over the past three quarterly groundwater events indicate the following:

- Groundwater analytical results from monitoring wells located within the direct vicinity of the interim remedial action, including YMW-2, YMW-3 and KMW-7, exhibited a notable increase in dissolved phase gasoline-range TPH and associated volatile organic compounds (VOCs), in particular, benzene, approximately eight months following completion of the remedial action. This increase was expected due to the application of the calcium oxy-hydroxide-based in situ bioremediation material, which accelerated the aerobic biodegradation process and is anticipated to be temporary. This trend of increasing dissolved phase gasoline-range TPH concentrations is similar to an expected trend of increases in oxygen reduction potential and dissolved oxygen, which is consistent with parameters observed during the November 2015 and February 2016 groundwater events (see Tables 3 and 4).
- As the aerobic biodegradation process of TPH and petroleum fuel associated VOCs proceeds, it is anticipated that the dissolved phase TPH concentrations will then

Mary Monahan June 8, 2016 Page 5

steadily decrease due to a stable ongoing source of oxygen enabling microorganisms to break down the petroleum hydrocarbons. This trend is becoming evident in the interim remedial action area wells (YMW-1 through YMW-3) and nearby downgradient well MW-9 (see Table 4 and Figures 6 and 7), where groundwater analytical results indicate a steady decrease in concentrations of TPH and BTEX from the February to May 2016 groundwater events.

- Increasing benzene concentrations downgradient of the interim remedial action area, such as exhibited at KMW-6, are also not unanticipated as the contaminant plume migrates away from the source area and in situ bioremediation continues to breakdown contaminants away from the source area.
- A continuing gradual decline in TPH and associated VOC concentrations is anticipated in future groundwater monitoring events as the controlled release of oxygen via the application of Regenesis Oxygen Release Compound Advanced continues to enable microorganisms to breakdown and transform organic contaminants into carbon dioxide, water, and microbial cell mass as part of the in situ bioremediation process.

Currently, it does not appear there is a seasonal and/or spatial trend impacting the groundwater table. However, the current data is limited to only three quarterly groundwater events.

There were no exceedances of IHSs exhibited in sentry wells during this sampling event. The locations of TPH and BTEX exceedances are within the source area and/or adjacent to and downgradient of the historical source area and the southeastern extent of the interim remedial action. Over the past three monitoring events (November 2015, and February and May 2016), the isoconcentration boundaries of gasoline-range TPH and benzene in groundwater have remained fairly consistent. This suggests the extent of the dissolved-phase plume is fairly well defined (shown in Figures 6 and 7); however, it will continue to be evaluated following the completion of each additional monitoring event.

Investigation-derived waste generated during the May 2016 sampling event was properly drummed and labeled, and is temporarily stored on Site pending final off-site disposal with the accumulation of additional drums as monitoring events progress.

SUMMARY

The following is a summary of findings and opinions of the May 2016 monitoring event relative to prior groundwater monitoring event results:

Project No. 0818.02.01

Mary Monahan June 8, 2016 Page 6

- LNAPL was present in four monitoring wells in the compliance network (MW-7, MW-11, MW-13, and MWG-3), which is consistent with the February 2016 sampling event. Thicknesses of LNAPL are presented in Table 1.
- The overall direction of groundwater migration at the Site appears to be generally to the southeast, consistent with former documentation of groundwater flow direction by MFA and others. However, as observed during the November 2015 and February 2016 groundwater events, there is also an easterly component of the groundwater flow direction in the east-southeastern area of the former Tiger Oil property.
- Dissolved phase gasoline-range TPH concentrations reported during the May 2016 event generally decreased in all monitoring wells relative to the February 2016 event, with the exception of concentrations reported in the sample collected from MW-9.
- Benzene concentrations generally decreased in all monitoring wells relative to the February 2016 monitoring event, with the exception of concentrations reported in samples collected from KMW-6 and KMW-16.
- Toluene, ethylbenzene, total xylenes concentrations generally decreased in wells with previous detections.
- It is anticipated that the dissolved-phase petroleum hydrocarbon plume will continue to fluctuate within the first year following completion of the interim remedial action. Continued quarterly monitoring events will assess IHS concentrations and potential trends in groundwater quality conditions at the Site.

SCHEDULE

In accordance with the GMP (MFA, 2015b), the next quarterly monitoring event is scheduled for August 2016.

If you have any questions regarding this letter, please feel free to contact either of us.

Project No. 0818.02.01

Mary Monahan June 8, 2016 Page 7

Sincerely,

Maul Foster & Alongi, Inc.

arolgo . ese

Yen-Vy Van, LHG Senior Hydrogeologist

Carolyn R. Wise, GIT Staff Geologist

Attachments: Limitations References Tables Figures A—Field Sampling Data Sheets B—Laboratory Analytical Report C—Data Validation Memorandum

cc: Brett Sheffield, City of Yakima

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

- Ecology. 2014. Amended cleanup action plan, Tiger Oil facility, 2312 West Nob Hill Boulevard, Yakima, Washington. Washington State Department of Ecology. June.
- MFA. 2015a. Interim remedial action completion report—former Tiger Oil site, 2312 West Nob Hill Boulevard, Yakima, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington. June 26.
- MFA. 2015b. Groundwater monitoring plan—former Tiger Oil site, 2312 West Nob Hill Boulevard, Yakima, Washington. Prepared for the City of Yakima. Maul Foster & Alongi, Inc., Bellingham, Washington. August 26.

TABLES

Table 1 Water Level Data City of Yakima Former Tiger Oil Site Yakima, Washington

Location	MP Elevation (feet, NAVD 88)	Measurement Date	LNAPL Thickness (feet)	Depth to Water (feet)	Change in Water Level (feet) ^a	Depth to Water Corrected for Presence of LNAPL (feet) ^b	Groundwater Elevation (feet, NAVD 88)
		5/27/2015		9.11		NA	1073.74
KMW-5	1082.85	2/1/2016		8.78	0.33	NA	1074.07
		5/9/2016		8.72	0.06	NA	1074.13
		5/28/2015		8.82		NA	1074.76
	1002 50	11/3/2015		8.43	0.39	NA	1075.15
KIVIVV-O	1083.58	2/1/2016		8.45	-0.02	NA	1075.13
		5/9/2016		8.36	0.09	NA	1075.22
		5/29/2015		13.47		NA	1078.49
	1001.06	11/2/2015		12.64	0.83	NA	1079.32
KIVIVV-7	1091.90	2/1/2016		12.85	-0.21	NA	1079.11
		5/9/2016		12.69	0.16	NA	1079.27
KMW-8	1092.11	5/29/2015		13.48		NA	1078.63
KMW-10	1090.63	5/29/2015		13.10		NA	1077.53
		5/28/2015		12.66		NA	1069.74
	1092.40	11/3/2015		12.37	0.29	NA	1070.03
KIVIVV-14	1082.40	2/1/2016		12.27	0.10	NA	1070.13
		5/9/2016		12.29	-0.02	NA	1070.11
		11/3/2015		10.90		NA	1072.64
KMW-15	1083.54	2/1/2016		10.86	-0.04	NA	1072.68
		5/9/2016		10.88	0.02	NA	1072.66
		5/28/2015		11.05		NA	1072.22
KN 11/1/16	1002 27	11/3/2015		10.67	0.38	NA	1072.60
	1003.27	2/2/2016		10.67	0.00	NA	1072.60
		5/9/2016		10.66	0.01	NA	1072.61
KMW-18	1085.34	5/27/2015		9.70		NA	1075.64
KMW-24	1087.47	5/29/2015		10.25		NA	1077.22
		5/29/2015	1.44	13.78		12.70	1077.60
	1000 30	11/4/2015	0.29	12.20	1.58	11.98	1078.32
10100-7	1070.30	2/1/2016	0.29	12.30	-0.10	12.08	1078.22
		5/9/2016	0.32	12.21	0.09	11.97	1078.33
		5/28/2015		14.20		NA	1077.28
Ν <i>/</i> Ι\Λ/₋Ο	1091 /8	11/3/2015		13.98	0.22	NA	1077.50
171777	1071.40	2/1/2016		14.21	-0.23	NA	1077.27
		5/9/2016		14.11	0.10	NA	1077.37

Table 1 Water Level Data City of Yakima Former Tiger Oil Site Yakima, Washington

Location	MP Elevation (feet, NAVD 88)	Measurement Date	LNAPL Thickness (feet)	Depth to Water (feet)	Change in Water Level (feet) ^a	Depth to Water Corrected for Presence of LNAPL (feet) ^b	Groundwater Elevation (feet, NAVD 88)
		5/29/2015		13.19		NA	1078.92
NAVA / 10	1002 11	11/2/2015		12.36	0.83	NA	1079.75
10100-10	1092.11	2/1/2016		12.54	-0.18	NA	1079.57
		5/9/2016		12.35	0.19	NA	1079.76
		5/29/2015	0.55	14.51		14.10	1077.58
N 414/ 11	1001 (0	11/4/2015	0.01	13.35	1.16	13.34	1078.34
10100-11	1091.08	2/1/2016	0.10	13.52	-0.17	13.45	1078.24
		5/9/2016	0.10	13.41	0.11	13.34	1078.35
		5/28/2015		10.10		NA	1081.17
	1001 27	11/4/2015	0.20	14.03	-3.93	13.88	1077.39
10100-13	1091.27	2/1/2016	0.21	14.10	-0.07	13.94	1077.33
		5/9/2016	0.18	13.98	0.12	13.85	1077.43
MWG-1	1083.98	5/28/2015		9.71		NA	1074.27
	1095 47	2/1/2016		8.90		NA	1076.57
1V1V/G-2	1065.47	5/9/2016		8.78	0.12	NA	1076.69
		5/28/2015		7.60		NA	1076.55
	109/ 15	11/3/2015	0.06	7.10	0.50	7.06	1077.10
10100-3	1064.15	2/1/2016	0.08	7.10	0.00	7.04	1077.11
		5/9/2016	0.04	7.00	0.10	6.97	1077.18
S-1	1088.82	5/28/2015		11.79		NA	1077.03
S-2	1085.74	5/27/2015		8.73		NA	1077.01
		5/29/2015		12.00		NA	1077.05
	1090.05	11/4/2015		11.40	0.60	NA	1077.65
TIVIVV-1	1069.05	2/1/2016		11.49	-0.09	NA	1077.56
		5/9/2016		11.36	0.13	NA	1077.69
		5/29/2015		13.73		NA	1077.13
	1000.86	11/4/2015		13.10	0.63	NA	1077.76
110100-2	1070.00	2/1/2016		13.17	-0.07	NA	1077.69
		5/9/2016		13.08	0.09	NA	1077.78
		5/29/2015		12.28		NA	1077.25
	1080 53	11/4/2015	0.06	0.06 11.68 0.60 11.64		1077.90	
110100-3	1007.00	2/1/2016		11.75	-0.07	NA	1077.78
		5/9/2016		11.62	0.13	NA	1077.91

Table 1 Water Level Data City of Yakima Former Tiger Oil Site Yakima, Washington

NOTES:

-- = free product (LNAPL) not observed; therefore, product thickness was not measured.

LNAPL = light nonaqueous-phase liquid.

MP = measuring point.

NA = not applicable.

NAVD 88 = North American Vertical Datum of 1988.

NM = not measured.

^aChange in water level is relative to the two most recent sampling events.

^bWater level corrected for presence of free product, using an assumed product density of 0.75 gram per cubic centimeter (American Petroleum Institute).

Table 2 Monitoring Wells Conditions Summary City of Yakima - Former Tiger Oil Site Yakima, Washington

Location	Date	Well Diameter (inches)	Monument	Gasket	Lock	Functional Compression Plug	Bolts	Notes
KMW-5	5/9/2016	4	Y	Y	Y	Y	3	
KMW-6	5/9/2016	4	Y	Y	Y	Y	3	
KMW-7	5/10/2016	4	Y	Y	Y	Y	3	
KMW-14	5/9/2016	4	Y	Y	Y	Y	3	
KMW-15	5/9/2016	4	Y	Y	Y	Y	3	
KMW-16	5/9/2016	4	Y	Y	Y	Y	3	
MW-7	5/10/2016	2	Y	Y	Y	Y	2	
MW-9	5/10/2016	2	Y	Y	Y	Y	2	
MW-10	5/10/2016	2	Y	Y	Y	Y	3	
MW-11	5/10/2016	2	Y	Y	Y	Y	2	
MW-13	5/10/2016	2	Y	Y	Y	Y	2	
MWG-2	5/9/2016	2	Y	Y	Y	Y	3	
MWG-3	5/9/2016	2	Y	Y	Y	Y	3	
YMW-1	5/10/2016	2	Y	Y	Y	Y	2	
YMW-2	5/10/2016	2	Y	Y	Y	Y	2	
YMW-3	5/10/2016	2	Y	Y	Y	Y	2	
NOTES: Y = yes, c	omponent integ	rity checked	and confirme	d.				

Table 3 Final Water Quality Field Parameters City of Yakima Former Tiger Oil Site Yakima, Washington

Location	Date	рН	Temperature (degrees C)	Conductivity (uS/cm)	DO (mg/L)	ORP	Turbidity (NTU)
	5/27/2015	7.02	18.01	1,098	0.34	28.6	7.03
KMW-5	2/2/2016	6.63	14.75	879	1.49	256.6	6.06
	5/9/2016	7.31	16.05	881	2.28	-74.0	3.67
	5/28/2015	7.98	16.45	816	1.78	-30.3	2.42
	11/3/2015	7.05	17.94	965	1.69	74.2	0.36
KIVIVV-O	2/1/2016	6.81	15.47	840	2.30	293.9	2.82
	5/9/2016	7.58	15.32	825	4.27	-104.0	2.51
	5/29/2015	7.33	16.61	123	7.44	123.6	2.33
	11/2/2015	7.05	16.55	934	2.92	6.3	1.04
NIVIV-7	2/3/2016	7.40	15.31	832	3.39	187.0	3.78
	5/10/2016	7.49	14.96	799	7.98	-50.6	3.12
KMW-8	5/29/2015	7.41	17.19	889	7.35	114.2	9.62
KMW-10	5/29/2015	7.27	21.30	795	5.24	132.6	3.81
	5/28/2015	6.99	15.71	1,266	0.14	-33.5	6.88
KMW-14	11/3/2015	6.51	17.93	1,230	0.22	-12.3	7.32
	2/2/2016	6.84	15.64	959	0.38	287.7	5.66
	5/9/2016	7.02	16.11	1,868	0.23	-102.8	5.24
	11/3/2015	6.95	17.85	930	2.06	63.3	1.14
KMW-15	2/2/2016	7.12	14.97	768	4.02	292.1	5.48
	5/9/2016	7.58	16.18	758	7.95	-58.4	2.42
	5/28/2015	7.56	16.80	879	0.81	10.9	1.71
	11/3/2015	6.88	18.27	1,147	0.20	26.3	1.13
KIVIVV-TO	2/2/2016	6.80	14.64	935	0.69	258.0	3.12
	5/9/2016	7.26	15.75	1,061	0.74	-82.8	3.76
KMW-18	5/27/2015	7.05	17.82	846	4.80	70.1	27.83
KMW-24	5/29/2015	7.51	15.96	771	7.41	22.4	1.52
	5/29/2015						
	11/4/2015						
10100-7	2/1/2016						
	5/9/2016						
	5/28/2015	7.09	22.55	1,186	1.57	-28.5	153.20
	11/3/2015	6.65	14.67	1,375	0.61	-40.2	15.83
10100-9	2/2/2016	6.58	10.00	1,198	0.50	244.2	14.40
	5/10/2016	7.04	17.26	1,184	0.40	-130.1	9.85

Table 3 Final Water Quality Field Parameters City of Yakima Former Tiger Oil Site Yakima, Washington

Location	Date	рН	Temperature (degrees C)	Conductivity (uS/cm)	DO (mg/L)	ORP	Turbidity (NTU)
	5/29/2015						
	11/2/2015	6.98	16.53	1,114	2.68	108.2	12.78
10100-10	2/3/2016	7.25	11.86	1,980	4.25	250.1	30.80
	5/10/2016	7.58	14.68	1,165	9.84	85.1	9.51
	5/29/2015						
	11/4/2015						
10100-11	2/1/2016						
	5/9/2016						
	5/28/2015	7.06	21.03	906	1.28	58.0	49.35
	11/4/2015						
10100-13	2/1/2016						
	5/9/2016						
MWG-1	5/28/2015	7.45	17.08	843	4.71	24.1	2.62
	2/3/2016	7.29	13.62	774	3.45	279.3	22.2
WWG-2	5/9/2016	7.55	16.49	768	7.04	-48.3	1.94
	5/28/2015	8.16	16.94	872	0.08	-156.0	1.34
	11/3/2015						
10100-3	2/1/2016						
	5/9/2016						
S-1	5/28/2015	8.09	17.69	822	2.48	-7.7	2.32
S-2	5/27/2015	7.40	16.74	1,145	0.28	-86.4	2.25
	5/29/2015						
	11/4/2015	6.87	15.83	1,154	1.42	-46.3	4.98
110100-1	2/2/2016	6.87	15.15	1,202	0.33	232.6	6.03
	5/10/2016	7.33	16.67	1,054	1.47	-156.9	4.11
	5/29/2015						
	11/4/2015	6.98	16.40	987	1.52	48.3	4.11
110100-2	2/1/2016	6.37	14.98	1,110	0.79	327.9	8.98
	5/10/2016	7.32	16.93	919	2.62	-81.7	1.73
	5/29/2015						
	11/4/2015						
110100-3	2/1/2016	6.50	15.09	1,505	0.39	208.3	2.77
	5/10/2016	7.41	16.11	1,393	0.40	-196.0	2.49

Table 3 Final Water Quality Field Parameters City of Yakima Former Tiger Oil Site Yakima, Washington

NOTES:

-- = sample not analyzed or collected.

C = Celsius.

DO = dissolved oxygen.

NA = final field parameters not available.

NTU = nephelometric turbidity unit.

mg/L = milligrams per liter.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

Table 4 Summary of Groundwater Analytical Results City of Yakima Former Tiger Oil Site Yakima, Washington

Location	Callestian Data			(Chemicals of Inte	rest		
Location	Collection Date	Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene	Xylenes ^a	Gasoline TPH
	Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/L	ug/l
MTCA Method A	Cleanup Level (ug/L)	5	700	1,000	NV	NV	1,000	800 ^b
	05/27/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U
KMW-5	02/02/2016	1 U	1 U	1 U	1 U	1 U	1 U	100 U
	05/09/2016	1 U	1 U	2 U	1 U	1 U	1 U	100 U
	05/28/2015	47	1.6	1 U	1 U	1 U	1 U	100 U
	11/03/2015	15	18	7.4	28	7.6	35.6	410
NIVIV-0	02/01/2016	42	22	4 U	5.4	4 U	7.4	100 U
	05/09/2016	69	33	3 U	2	1.2	3	270
	05/29/2015	8.4	14	2	47	41	88	620
	11/02/2015	13	21	1 U	5.1	1 U	5.6	350
	02/03/2016	47	41	1 U	2.1	1 U	2.6	610
	05/10/2016	25	21	2.3 U	1 U	1 U	1 U	250
KMW-8	05/29/2015	1 U	1 U	1 U	1	1 U	1 U	100 U
KMW-10	05/29/2015	830	1,200	4,000	4,400	2,000	6,400	81,000
	05/28/2015	1.9	1 U	1 U	1 U	1 U	1 U	100 U
KN/11/	11/03/2015	5.5	1 U	1 U	1 U	1 U	1 U	100 U
1111111111	02/02/2016	3	1 U	1 U	1 U	1 U	1 U	100 U
	05/09/2016	1 U	1 U	1.9 U	1 U	1 U	1 U	100 U
	11/03/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U
KMW-15	02/02/2016	1 U	1 U	1 U	1 U	1 U	1 U	100 U
	05/09/2016	1 U	1 U	1.1 U	1 U	1 U	1 U	100 U
	05/28/2015	60	9.6	1 U	4.6	1 U	5.1	280
KN 11/1 16	11/03/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U
	02/02/2016	1 U	1 U	1 U	1 U	1 U	1 U	200
	05/09/2016	7.6	1 U	1 U	1 U	1 U	1 U	200
KMW-18	05/27/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U

R:\0818.02 City of Yakima\Report\01_2016.06.08 Quarterly Groundwater Report\Tables\Table 4_Analytical GW Results.xlsx

Table 4 Summary of Groundwater Analytical Results City of Yakima Former Tiger Oil Site Yakima, Washington

Looption	Callestian Data			(Chemicals of Inte	rest		
LOCATION	Collection Date	Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene	Xylenes ^a	Gasoline TPH
	Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/L	ug/l
MTCA Method A	Cleanup Level (ug/L)	5	700	1,000	NV	NV	1,000	800 ^b
KN/\\\/_2/	05/29/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U
111111124	03/2//2013	1.7	1 U	1 U	1 U	1 U	1 U	100 U
	05/28/2015	1,200	740	1,900	1,800	980	2,780	28,000
	11/03/2015	1,800	720	1,400	1,500	740	2,240	18,000
	02/02/2016	1,800	850	1,500	1,700	970	2,670	19,000
	05/10/2016	1,500	960	1,700	1,900	910	2,810	26,000
	11/02/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U
MW-10	02/03/2016	1 U	1 U	1 U	1 U	1 U	1 U	100 U
 MW-13	05/10/2016	1 U	1 U	1 U	1 U	1 U	1 U	100 U
MW-13	05/28/2015	32	1,500	510	8,700	3,800	12,500	92,000
MWG-1	05/28/2015	1 U	1 U	1 U	1 U	1 U	1 U	100 U
	02/03/2016	1 U	1 U	1 U	1 U	1 U	1 U	100 U
IVIVG-2	05/09/2016	1 U	1 U	2.1 U	1 U	1 U	1 U	100 U
MWG-3	05/28/2015	3,300	2,700	710	6,200	1,800	8,000	64,000
S-1	05/28/2015	1 U	7.2	1 U	2	1.2	3.2	200
S-2	05/27/2015	1,300	200	10 U	51	10 U	56	1,600
	11/04/2015	990	470	1,400	1,000	430	1,430	11,000
YMW-1	02/02/2016	2,200	840	3,900	2,400	950	3,350	29,000
MW-9 MW-10 MW-13 MWG-1 MWG-2 MWG-3 S-1 S-2 YMW-1	05/10/2016	1,600	750	2,500	2,100	650	2,750	21,000
	11/04/2015	72	150	130	590	180	770	3,700
	11/04/2013	76	160	140	640	200	840	4,100
	02/01/2016	380	300	630	1,700	810	2,510	13,000
TIVIVV-Z	02/01/2010	380	310	650	1,800	830	2,630	13,000
	05/10/2016	240	180	570	770	300	1,070	6,600
	03/10/2010	240	190	590	800	310	1,110	8,500

R:\0818.02 City of Yakima\Report\01_2016.06.08 Quarterly Groundwater Report\Tables\Table 4_Analytical GW Results.xlsx

Table 4 Summary of Groundwater Analytical Results City of Yakima Former Tiger Oil Site Yakima, Washington

Location	Collection Date	Chemicals of Interest								
		Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene	Xylenes ^a	Gasoline TPH		
Units		ug/l	ug/l	ug/l	ug/l	ug/l	ug/L	ug/l		
MTCA Method A Cleanup Level (ug/L)		5	700	1,000	NV	NV	1,000	800 ^b		
	02/01/2016	3,100	1,200	1,800	4,000	1,700	5,700	31,000		
110100-3	05/10/2016	2,000	980	1,100	2,300	910	3,210	23,000		

NOTES:

Detected results are indicated by bold font.

Shaded result values indicate exceedance of MTCA Method A cleanup level.

DUP = groundwater duplicate sample.

GW = groundwater sample.

MTCA = Model Toxics Control Act.

TPH = total petroleum hydrocarbons.

U = Result is non-detect.

ug/L = micrograms per liter.

^aXylenes = Sum of m,p- and o-xylene. Non-detect results are summed at half of the non-detect value. The highest non-detect value is used when both results are non-detect.

^bMTCA Method A cleanup level for gasoline with benzene present.

FIGURES

Path: X:10818.02 City of Yakima'Projects'Quarterly GW Monitoring\Fig2_GW Monitoring Well Network_Transect

: 0818.02.01-06 Produced By: cwise Approved By: mstringer Print Date: 2/29/2016

Figure 2 Groundwater Monitoring Well Network

City of Yakima Former Tiger Oil Site Yakima, Washington

Legend

Ð	GW Monitoring Network Well
\oplus	Monitoring Well

Sentry Monitoring Well

Sources: Aerial photograph obtained from Esri ArcGIS Online; Infiltration Gallery delineated by Maul Foster & Alongi, Inc.; stormwater line and taxlot boundaries obtained from City of Yakima; all other features obtained from PLSA Engineering & Surveying.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 3 Light Nonaqueous-Phase Liquid Thickness Contour -May 2016

City of Yakima Former Tiger Oil Site Yakima, Washington

Legend

Approximate LNAPL Thickness Contours

---- 0.01 ft contour

---- 0.1 ft contour

- Monitoring Network Well
- Monitoring Well

Sentry Monitoring Well

Monitoring Well, LNAPL Present (thickness in feet)

Former Tiger Oil Property Boundary

Notes:

 Depth measurements are in feet below ground surface.
Not all the wells included in the figure are included in the monitoring well network.

- 3. LNAPL = light non aqueous-phase liquid
- 4. NM = not measured

Sources:

Aerial photograph obtained from Esri ArcGIS Online Taxlot boundaries obtained from City of Yakima All other features obtained from PLSA Engineering and Surveying.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the informatio

Figure 4 Groundwater Potentiometric Map May 2016

City of Yakima Former Tiger Oil Site Yakima, Washington

Monitoring Network Well

Groundwater Flow Direction

Groundwater Elevation Contour (1 ft., NAVD 88)

Former Tiger Oil Property Boundary

Source: Aerial photograph obtained from Esri ArcGIS Online.

This product is for informational purposes and may not have been prepared for, or be suitable for kgal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Alongi, Inc.; stormwater line and taxlot boundaries obtained from City of Yakima; all other features obtained from PLSA

Alongi, Inc.; stormwater line and taxlot boundaries obtained

ATTACHMENT A

FIELD SAMPLING DATA SHEETS

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	KMW-5
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/9/2016
Sampling Event	May 2016	Sample Name	KMW5-GW-050916
Sub Area		Sample Depth	11
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

			(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)		
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	12:15	18.86		8.72		10.1	6.59

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	12:56:00 PM	6.5	0.3	7.3	15.86	883	2.24	-70.5	4.42
	12:59:00 PM	6.74	0.3	7.3	15.83	882	2.25	-71.9	4.33
	1:06:00 PM	7.3	0.3	7.32	16.19	881	2.27	-73.8	3.84
Final Field Parameters	1:10:00 PM	7.62	0.3	7.31	16.05	881	2.28	-74	3.67

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. No odor or sheen
-----------------------------	-------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:15:00 PM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 12:20.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	KMW-6
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/9/2016
Sampling Event	May 2016	Sample Name	KMW6-GW-050916
Sub Area		Sample Depth	12
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	13:30	19.02		8.36		10.66	6.96

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:20:00 PM	7	0.3	7.49	14.91	828	4.14	-95.3	5.42
	2:25:00 PM	7.4	0.3	7.59	15.38	827	4.08	-103.6	3.75
	2:30:00 PM	7.8	0.3	7.58	15.29	826	4.3	-104.2	3.64
	2:35:00 PM	8.2	0.3	7.59	15.28	826	4.31	-104.1	2.66
Final Field Parameters	2:40:00 PM	8.6	0.3	7.58	15.32	825	4.27	-104	2.51

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations: Black organic-like debris present during initial purge, then clear. No sheen. Slight odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:40:00 PM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 13:35.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	KMW-7
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/10/2016
Sampling Event	May 2016	Sample Name	KMW7-GW-051016
Sub Area		Sample Depth	15
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

	_				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:15	19.94		12.69		7.25	4.73

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	9:55:00 AM	4.5	0.3	7.38	14.99	797	8.29	-15.9	5.64
	10:00:00 AM	4.9	0.3	7.45	14.89	796	7.97	-40	4.97
	10:05:00 AM	5.3	0.3	7.49	14.97	798	7.96	-50.1	4.25
	10:10:00 AM	5.7	0.3	7.49	14.96	798	7.96	-50.5	3.77
Final Field Parameters	10:15:00 AM	6.1	0.3	7.49	14.96	799	7.98	-50.6	3.12

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. Slight odor. No sheen.
-----------------------------	-------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	10:20:00 AM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 9:15.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	KMW-14
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/9/2016
Sampling Event	May 2016	Sample Name	KMW14-GW-050916
Sub Area		Sample Depth	15
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	9:20	18.75		12.29		6.46	4.22

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	9:55:00 AM	4.5	0.2	6.93	16.3	1223	0.54	-96.9	9.81
	10:00:00 AM	4.75	0.2	6.93	16.2	1243	0.47	-97.8	7.58
	10:05:00 AM	5	0.2	6.96	16.05	1364	0.35	-100	6.4
	10:10:00 AM	5.25	0.2	7	16.11	1522	0.3	-102.2	5.57
	10:15:00 AM	5.5	0.2	7.01	16.18	1765	0.28	-102.2	5.16
	10:20:00 AM	5.75	0.2	7.02	16.12	1861	0.25	-102.7	5.41
Final Field Parameters	10:25:00 AM	6	0.2	7.02	16.11	1868	0.23	-102.8	5.24

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations: Red flakes present during initial purge.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	10:30:00 AM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 9:25.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	KMW-15
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/9/2016
Sampling Event	May 2016	Sample Name	KMW15-GW-050916
Sub Area		Sample Depth	13
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	11:05	19.63		10.88		8.75	5.71

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	11:55:00 AM	5.5	0.3	7.56	16.13	758	8.01	-62	4.38
	12:00:00 PM	5.9	0.3	7.57	16.16	757	7.98	-60.2	3.17
	12:05:00 PM	6.3	0.3	7.58	16.17	758	7.96	-58.7	2.79
Final Field Parameters	12:10:00 PM	6.7	0.3	7.58	16.18	758	7.95	-58.4	2.42

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. No odor or sheen
-----------------------------	-------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	12:15:00 PM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 11:10.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	KMW-16
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/9/2016
Sampling Event	May 2016	Sample Name	KMW16-GW-050916
Sub Area		Sample Depth	13
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:55	20.31		10.66		9.65	6.3

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	8:50:00 AM	5.5	0.3	7.28	15.65	1001	0.94	-68	3.84
	8:55:00 AM	5.9	0.3	7.29	15.71	1013	0.8	-74.2	4.14
	9:00:00 AM	6.3	0.3	7.31	15.76	1041	0.78	-79.9	3.93
Final Field Parameters	9:05:00 AM	6.7	0.3	7.26	15.75	1061	0.74	-82.8	3.76

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. No odor or sheen
-----------------------------	-------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	9:10:00 AM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 8:00.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MW-7
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	
Sampling Event	May 2016	Sample Name	
Sub Area		Sample Depth	
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:25	18.49	11.89	12.21	0.32	6.28	1.02

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft) (4" = 0.653 gal/ft) (5" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Í									
Í									
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
			VOA-Glass		
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	0	

General Sampling Comments

Sample not collected due to presence of free product in well.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MW-9
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/10/2016
Sampling Event	May 2016	Sample Name	MW9-GW-051016
Sub Area		Sample Depth	16
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:35	18.62		14.11		4.51	0.74

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	4:20:00 PM	0.75	0.2	7	18.01	1194	0.98	-119.9	12.6
	4:25:00 PM	1	0.2	7.01	17.47	1190	0.54	-125.7	10.3
	4:30:00 PM	1.25	0.2	7.02	17.4	1188	0.5	-127.2	10.1
	4:35:00 PM	1.5	0.2	7.03	17.33	1186	0.47	-128.2	9.81
Final Field Parameters	4:40:00 PM	1.75	0.2	7.04	17.26	1184	0.4	-130.1	9.85

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations: Very strong odor. Some organic-like particles present in purge water.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	4:40:00 PM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 14:50. Well began to quickly drawdown at 15:00. Allowed an hour to recharge prior to beginning second purge.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MW-10
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/10/2016
Sampling Event	May 2016	Sample Name	MW10-GW-051016
Sub Area		Sample Depth	13.5
FSDS QA:	AWV, 5/26/2016	Easting	Northing

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:00	14.8		12.35		2.45	0.4

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	8:35:00 AM	1	0.2	7.56	14.53	1236	9.79	99.8	12.6
	8:40:00 AM	1.25	0.2	7.55	14.59	1220	9.73	92.2	11.3
	8:45:00 AM	1.5	0.2	7.55	14.6	1216	9.7	92.7	10.8
	8:50:00 AM	1.75	0.2	7.57	14.63	1177	9.83	87.2	9.15
	8:55:00 AM	2	0.2	7.57	14.64	1173	9.82	85.6	9.82
Final Field Parameters	9:00:00 AM	2.25	0.2	7.58	14.68	1165	9.84	85.1	9.51

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. No sheen or odor.
-----------------------------	--------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	9:00:00 AM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 8:10.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MW-11
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	
Sampling Event	May 2016	Sample Name	
Sub Area		Sample Depth	
FSDS QA:	AWV, 5/26/2016	Easting	Northing

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:10	14.89	13.31	13.41	0.1	1.48	0.24

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump							1		
ĺ									
Í									
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
			VOA-Glass		
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	0	

General Sampling Comments

Sample not collected due to the presence of free product in well.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MW-13
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	
Sampling Event	May 2016	Sample Name	
Sub Area		Sample Depth	
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:40	17.83	13.8	13.98	0.18	3.85	0.63

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft) (4" = 0.653 gal/ft) (5" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft) (3" = 0.653 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Í									
Í									
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
			VOA-Glass		
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	0	

General Sampling Comments

Sample not collected due to presence of free product in well.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MWG-2
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/9/2016
Sampling Event	May 2016	Sample Name	MWG2-GW-050916
Sub Area		Sample Depth	10.5
FSDS QA:	AWV, 5/26/2016	Easting	Northing

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	15:00	13.69		8.78		4.91	0.8

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	3:20:00 PM	0.5	0.2	7.52	16.96	769	6.81	-48.9	2.79
	3:25:00 PM	0.75	0.2	7.52	16.83	768	6.99	-49.3	2.44
	3:30:00 PM	1	0.2	7.57	16.65	769	7.03	-50	1.83
Final Field Parameters	3:35:00 PM	1.25	0.2	7.55	16.49	768	7.04	-48.3	1.94

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. No odor or sheen
-----------------------------	-------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	3:40:00 PM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 15:05.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	MWG-3	
Project #	0818.02.01	Sampler	C. Wise	
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date		
Sampling Event	May 2016	Sample Name		
Sub Area		Sample Depth		
FSDS QA:	AWV, 5/26/2016	Easting	Northing	

Hydrology/Level Measurements

· · · · · · · · · · · · · · · · · · ·					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	14:50	14.2	6.96	7	0.04	7.2	1.17

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump							1		
ĺ									
Í									
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
			VOA-Glass		
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	0	

General Sampling Comments

Sample not collected due to presence of free product in well.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	YMW-1
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/10/2016
Sampling Event	May 2016	Sample Name	YMW1-GW-051016
Sub Area		Sample Depth	14
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:30	19.69		11.36		8.33	1.36

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	11:00:00 AM	1.5	0.2	7.25	16.77	1130	1.92	-151.1	6.76
	11:05:00 AM	1.75	0.2	7.24	16.63	1090	1.64	-154.1	5.29
	11:10:00 AM	2	0.2	7.3	16.64	1079	1.57	-155.1	4.96
	11:15:00 AM	2.25	0.2	7.31	16.68	1064	1.51	-156.1	4.78
Final Field Parameters	11:20:00 AM	2.5	0.2	7.33	16.67	1054	1.47	-156.9	4.11

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water	Quality	Observations:	Clear. Strong odor. No sheen
-------	---------	----------------------	------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:30:00 AM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 10:35.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	YMW-2
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/10/2016
Sampling Event	May 2016	Sample Name	YMW2-GW-051016
Sub Area		Sample Depth	15
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:50	19.74		13.08		6.66	1.09

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:22:00 PM	1.25	0.2	7.37	16.84	859	3.75	-79.8	4.82
	2:27:00 PM	1.5	0.2	7.37	16.9	868	3.56	-80.6	4.67
	2:32:00 PM	1.75	0.2	7.36	16.9	881	3.17	-81.6	3.61
	2:37:00 PM	2	0.2	7.34	16.84	895	2.85	-81.6	2.96
	2:42:00 PM	2.25	0.2	7.32	16.88	917	2.5	-81.6	2.44
Final Field Parameters	2:45:00 PM	2.5	0.2	7.32	16.93	919	2.62	-81.7	1.73

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. Strong odor. No sheen.
-----------------------------	-------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:45:00 PM	VOA-Glass	6	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	6	

General Sampling Comments

Collected DUP-GW-051016. Began purge at 13:50.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Water Field Sampling Data Sheet

Client Name	City of Yakima	Sample Location	YMW-3
Project #	0818.02.01	Sampler	C. Wise
Project Name	Tiger Oil - W. Nob Hill Blvd.	Sampling Date	5/10/2016
Sampling Event	May 2016	Sample Name	YMW3-GW-051016
Sub Area		Sample Depth	14
FSDS QA:	AWV, 5/26/2016	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
5/9/2016	7:45	19.68		11.62		8.06	1.31

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:15:00 PM	1.75	0.2	7.34	16.15	1514	0.99	-180	7.63
	1:20:00 PM	2	0.2	7.36	16.81	1483	0.76	-187.5	4.58
	1:25:00 PM	2.25	0.2	7.39	16.2	1460	0.63	-190.6	4.28
	1:30:00 PM	2.5	0.2	7.4	16.12	1426	0.48	-193.7	3.86
	1:35:00 PM	2.75	0.2	7.41	16.1	1395	0.41	-195.1	3.37
Final Field Parameters	1:40:00 PM	3	0.2	7.41	16.11	1393	0.4	-196	2.49

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify

Water Quality Observations:	Clear. Strong odor. No sheen.
-----------------------------	-------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:45:00 PM	VOA-Glass	3	No
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	3	

General Sampling Comments

Began purge at 12:50.

ATTACHMENT B

LABORATORY ANALYTICAL REPORTS

May 18, 2016

Yen-Vy Van Maul Foster & Alongi, Inc. Bay Vista Tower 2815 2nd Avenue, Suite 540 Seattle, WA 98121

Re: Analytical Data for Project 0818.02.01-06 Laboratory Reference No. 1605-094

Dear Yen-Vy:

Enclosed are the analytical results and associated quality control data for samples submitted on May 11, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on May 9 and 10, 2016 and received by the laboratory on May 11, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	KMW16-GW-050916					
Laboratory ID:	05-094-01					
Benzene	7.6	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	200	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	71-111				
Client ID:	KMW14-GW-050916					
Laboratory ID:	05-094-02					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	1.9	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	71-111				
Client ID:	KMW15-GW-050916					
Laboratory ID:	05-094-03					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	1.1	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	71-111				

3

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	KMW5-GW-050916					
Laboratory ID:	05-094-04					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	2.0	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-111				
Client ID:	KMW6-GW-050916					
Laboratory ID:	05-094-05					
Benzene	69	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	3.0	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	33	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	2.0	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	1.2	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	270	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	71-111				
Client ID:	MWG2-GW-050916					
Laboratory ID:	05-094-06					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	2.1	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	71-111				

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-GW-051016					
Laboratory ID:	05-094-07					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-111				
Client ID:	KMW7-GW-051016					
Laboratory ID:	05-094-08					
Benzene	25	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	2.3	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	21	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	250	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	71-111				
Client ID:	YMW1-GW-051016					
Laboratory ID:	05-094-09					
Benzene	1500	10	EPA 8021B	5-16-16	5-16-16	Е
Toluene	2300	10	EPA 8021B	5-16-16	5-16-16	Е
Ethyl Benzene	750	10	EPA 8021B	5-16-16	5-16-16	
m.p-Xylene	1900	10	EPA 8021B	5-16-16	5-16-16	Е
o-Xylene	650 10 EPA 802		EPA 8021B	5-16-16	5-16-16	
Gasoline	21000	1000	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	71-111				

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	YMW1-GW-051016					
Laboratory ID:	05-094-09					
Benzene	1600	50	EPA 8021B	5-17-16	5-17-16	
Toluene	2500	50	EPA 8021B	5-17-16	5-17-16	
Ethyl Benzene	800	50	EPA 8021B	5-17-16	5-17-16	
m,p-Xylene	2100	50	EPA 8021B	5-17-16	5-17-16	
o-Xylene	710	50	EPA 8021B	5-17-16	5-17-16	
Gasoline	23000	5000	NWTPH-Gx	5-17-16	5-17-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-111				
Client ID:	YMW3-GW-051016					
Laboratory ID:	05-094-10					
Benzene	2100	10	EPA 8021B	5-16-16	5-16-16	Е
Toluene	1100	10	EPA 8021B	5-16-16	5-16-16	E
Ethyl Benzene	1100	10	EPA 8021B	5-16-16	5-16-16	E
m,p-Xylene	2400	10	EPA 8021B	5-16-16	5-16-16	E
o-Xylene	1000	10	EPA 8021B	5-16-16	5-16-16	E
Gasoline	23000	1000	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	71-111				
Client ID:	YMW3-GW-051016					
Laboratory ID:	05-094-10					
Benzene	2000	50	EPA 8021B	5-17-16	5-17-16	
Toluene	1100	50	EPA 8021B	5-17-16	5-17-16	
Ethyl Benzene	980	50	EPA 8021B	5-17-16	5-17-16	
m,p-Xylene	2300	50	EPA 8021B	5-17-16	5-17-16	
o-Xylene	910	910 50 EPA 8021B 5-17-16 5-17-		5-17-16		
Gasoline	21000	5000	NWTPH-Gx	5-17-16	5-17-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	71-111				

6

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	YMW2-GW-051016					
Laboratory ID:	05-094-11					
Benzene	240	10	EPA 8021B	5-16-16	5-16-16	
Toluene	570	10	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	180	10	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	770	10	EPA 8021B	5-16-16	5-16-16	
o-Xylene	300	10	EPA 8021B	5-16-16	5-16-16	
Gasoline	6600	1000	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	71-111				
Client ID:	DUP-GW-051016					
Laboratory ID:	05-094-12					
Benzene	240	10	EPA 8021B	5-16-16	5-16-16	
Toluene	590	10	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	190	10	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	800	10	EPA 8021B	5-16-16	5-16-16	
o-Xylene	310	10	EPA 8021B	5-16-16	5-16-16	
Gasoline	8500	1000	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-111				
Client ID:	MW9-GW-0501016					
Laboratory ID:	05-094-13					
Benzene	1300	10	EPA 8021B	5-16-16	5-16-16	Е
Toluene	1500	10	EPA 8021B	5-16-16	5-16-16	E
Ethyl Benzene	960	10	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	1700	10	EPA 8021B	5-16-16	5-16-16	E
o-Xylene	910	10	EPA 8021B	5-16-16	5-16-16	
Gasoline	26000	1000	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	71-111				

7

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-GW-0501016					
Laboratory ID:	05-094-13					
Benzene	1500	50	EPA 8021B	5-17-16	5-17-16	
Toluene	1700	50	EPA 8021B	5-17-16	5-17-16	
Ethyl Benzene	1000	50	EPA 8021B	5-17-16	5-17-16	
m,p-Xylene	1900	50	EPA 8021B	5-17-16	5-17-16	
o-Xylene	1000	50	EPA 8021B	5-17-16	5-17-16	
Gasoline	22000	5000	NWTPH-Gx	5-17-16	5-17-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	71-111				
Client ID:	Trip Blanks					
Laboratory ID:	05-094-14					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	1.9	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-111				

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0516W1					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-111				
Laboratory ID:	MB0516W2					
Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Toluene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
o-Xylene	ND	1.0	EPA 8021B	5-16-16	5-16-16	
Gasoline	ND	100	NWTPH-Gx	5-16-16	5-16-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	71-111				
Laboratory ID:	MB0517W1					
Benzene	ND	1.0	EPA 8021B	5-17-16	5-17-16	
Toluene	ND	1.0	EPA 8021B	5-17-16	5-17-16	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-16	5-17-16	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-16	5-17-16	
o-Xylene	ND	1.0	EPA 8021B	5-17-16	5-17-16	
Gasoline	ND	100	NWTPH-Gx	5-17-16	5-17-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	71-111				

. .

9

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
Laboratory ID:	05-09	94-01									
	ORIG	DUP									
Benzene	7.60	7.64	NA	NA		N	A	NA	1	30	
Toluene	ND	ND	NA	NA		N	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	198	186	NA	NA		Ν	A	NA	6	30	
Surrogate:											
Fluorobenzene						84	87	71-111			
Laboratory ID:	05-10	03-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						86	84	71-111			
Laboratory ID:	05-13	34-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						82	82	71-111			

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	e Percent		Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-09	94-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	59.3	54.3	50.0	50.0	7.60	103	93	83-123	9	15	
Toluene	52.9	48.2	50.0	50.0	ND	106	96	83-124	9	16	
Ethyl Benzene	51.9	48.7	50.0	50.0	ND	104	97	82-123	6	15	
m,p-Xylene	51.5	48.6	50.0	50.0	ND	103	97	81-125	6	17	
o-Xylene	50.0	48.2	50.0	50.0	ND	100	96	82-123	4	15	
Surrogate:											
Fluorobenzene						88	85	71-111			
Laboratory ID:	05-13	34-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	51.3	52.5	50.0	50.0	ND	103	105	83-123	2	15	
Toluene	51.1	52.0	50.0	50.0	ND	102	104	83-124	2	16	
Ethyl Benzene	50.8	51.6	50.0	50.0	ND	102	103	82-123	2	15	
m,p-Xylene	50.6	51.5	50.0	50.0	ND	101	103	81-125	2	17	
o-Xylene	50.5	51.3	50.0	50.0	ND	101	103	82-123	2	15	
Surrogate:											
Fluorobenzene						91	87	71-111			
SPIKE BLANKS											
Laboratory ID:	SB05	16W1									
,	S	В	S	SB		5	SB				
Benzene	47	7.0	50	0.0		ç	94	83-119			
Toluene	45	5.8	50	0.0		ç	92	83-120			
Ethyl Benzene	45	5.2	50	0.0		ç	90	82-120			
m,p-Xylene	45	5.2	50	0.0		ç	90	80-122			
o-Xylene	45	5.7	50	0.0		ç	91	80-120			
Surrogate:											
Fluorobenzene						ξ	85	71-111			
Laboratory ID:	SB05	17W1									
	<u> </u>	B	ç	SB		ç	SB				
Benzene	49).6	50	<u>.</u> 0.0		ç	<u>)</u>	83-119			
Toluene	49).8	50	0.0		1	00	83-120			
Ethyl Benzene	48	3.8	50	0.0		ç	98	82-120			
m.p-Xvlene	48	3.9	50	0.0		ç	98	80-122			
o-Xylene	49).1	50	0.0		ç	98	80-120			
Surrogate:											
Fluorobenzene						ξ	84	71-111			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Lab ID	True Value (ppm)	Calc. Percent Value Difference		Control Limits
CCVH0516G-1	5.00	4.94	1	+/- 20%
CCVH0516G-2	5.00	4.93	1	+/- 20%
CCVD0516G-1	5.00	5.00	0	+/- 20%
CCVD0516G-2	5.00	4.89	2	+/- 20%
CCVH0517G-1	5.00	4.53	9	+/- 20%
CCVH0517G-2	5.00	4.68	6	+/- 20%
CCVD0517G-2	5.00	4.69	6	+/- 20%
CCVD0517G-3	5.00	4.90	2	+/- 20%

NWTPH-Gx CONTINUING CALIBRATION SUMMARY

BTEX EPA 8021B CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Benzene	CCVH0516B-1	50.0	48.4	3	+/- 15%
Toluene	CCVH0516B-1	50.0	48.4	3	+/- 15%
Ethyl Benzene	CCVH0516B-1	50.0	46.9	6	+/- 15%
m,p-Xylene	CCVH0516B-1	50.0	48.2	4	+/- 15%
o-Xylene	CCVH0516B-1	50.0	48.1	4	+/- 15%
Benzene	CCVH0516B-2	50.0	50.5	-1	+/- 15%
Toluene	CCVH0516B-2	50.0	49.9	0	+/- 15%
Ethyl Benzene	CCVH0516B-2	50.0	49.2	2	+/- 15%
m,p-Xylene	CCVH0516B-2	50.0	49.1	2	+/- 15%
o-Xylene	CCVH0516B-2	50.0	49.5	1	+/- 15%
Benzene	CCVH0516B-3	50.0	49.4	1	+/- 15%
Toluene	CCVH0516B-3	50.0	49.2	2	+/- 15%
Ethyl Benzene	CCVH0516B-3	50.0	48.5	3	+/- 15%
m,p-Xylene	CCVH0516B-3	50.0	48.3	3	+/- 15%
o-Xylene	CCVH0516B-3	50.0	48.3	3	+/- 15%
Benzene	CCVD0516B-1	50.0	52.8	-6	+/- 15%
Toluene	CCVD0516B-1	50.0	53.7	-7	+/- 15%
Ethyl Benzene	CCVD0516B-1	50.0	53.2	-6	+/- 15%
m,p-Xylene	CCVD0516B-1	50.0	54.6	-9	+/- 15%
o-Xylene	CCVD0516B-1	50.0	53.1	-6	+/- 15%
Benzene	CCVD0516B-2	50.0	51.2	-2	+/- 15%
Toluene	CCVD0516B-2	50.0	51.7	-3	+/- 15%
Ethyl Benzene	CCVD0516B-2	50.0	51.4	-3	+/- 15%
m,p-Xylene	CCVD0516B-2	50.0	52.5	-5	+/- 15%
o-Xylene	CCVD0516B-2	50.0	51.3	-3	+/- 15%
Benzene	CCVD0516B-3	50.0	47.0	6	+/- 15%
Toluene	CCVD0516B-3	50.0	47.8	4	+/- 15%
Ethyl Benzene	CCVD0516B-3	50.0	47.1	6	+/- 15%
m,p-Xylene	CCVD0516B-3	50.0	47.9	4	+/- 15%
o-Xylene	CCVD0516B-3	50.0	47.4	5	+/- 15%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

BTEX EPA 8021B CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
					
Benzene	CCVH0517B-1	50.0	50.4	-1	+/- 15%
Toluene	CCVH0517B-1	50.0	51.1	-2	+/- 15%
Ethyl Benzene	CCVH0517B-1	50.0	49.6	1	+/- 15%
m,p-Xylene	CCVH0517B-1	50.0	50.8	-2	+/- 15%
o-Xylene	CCVH0517B-1	50.0	50.3	-1	+/- 15%
Benzene	CCVH0517B-2	50.0	49.6	1	+/- 15%
Toluene	CCVH0517B-2	50.0	49.1	2	+/- 15%
Ethyl Benzene	CCVH0517B-2	50.0	48.3	3	+/- 15%
m,p-Xylene	CCVH0517B-2	50.0	48.5	3	+/- 15%
o-Xylene	CCVH0517B-2	50.0	49.0	2	+/- 15%
Benzene	CCVD0517B-2	50.0	50.8	-2	+/- 15%
Toluene	CCVD0517B-2	50.0	51.0	-2	+/- 15%
Ethyl Benzene	CCVD0517B-2	50.0	50.8	-2	+/- 15%
m,p-Xylene	CCVD0517B-2	50.0	50.9	-2	+/- 15%
o-Xylene	CCVD0517B-2	50.0	50.6	-1	+/- 15%
Benzene	CCVD0517B-3	50.0	48.8	2	+/- 15%
Toluene	CCVD0517B-3	50.0	48.7	3	+/- 15%
Ethyl Benzene	CCVD0517B-3	50.0	48.3	3	+/- 15%
m,p-Xylene	CCVD0517B-3	50.0	48.2	4	+/- 15%
o-Xylene	CCVD0517B-3	50.0	48.2	4	+/- 15%

14

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Chain of Custody

OnSite	Chain of Custody							Ρ	age _	1	_ of	1	2										
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		La	aboi	rato	ry	Num	be	r: ,	0!	5 -	0	94	4									
Phone: (425) 883-3881 • www.onsite-env.com Company: Maul Foster Alongi Project Number: 0818.02.01-06 Project Name: Tiger 011-W. Nob Hill Project Manager: Ten-Vy Van Sampled by: Carolyn Wise	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) (other)	r of Containers	-HCID	-Gx/BTEX	-GX		s 8260C ated Volatiles 8260C	otiloc 0070D/CIM	attes oz rou/sitvi v-level PAHs) 270D/SIM (low-level)	382A	chlorine Pesticides 8081B	hosphorus Pesticides 8270D/SIM	Ited Acid Herbicides 8151A	CRA Metals	rCA Metals	letals	l and grease) 1664A						ture
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	Numbe	NWTPH	NWTPH	NWTPH		Volatiles Haloger	louimod	With lov	PCBs 8	Organoo	Organop	Chloring	Total RC	Total M	TCLP N	HEM (oi						% Mois
1 KMW16-GW-050916 2 KMW14-GW-050916	57/16910 W	3		X X							-											_	
3 KMW15-GW-050916	5/16/215 W	3		X						+	-												
4 KMW5-GW-050916	5/9/10 1315 W	3		X				1															
5 KMW6-GW-050916	5/16/1440 W	3		X																			
6 MWGZ-GW-050916	57/16/540 W	3		X																			
7 MW10 - GW-051016	570/16900 W.	3		X																			
8 KMW7 - GW-051016	5/161020 W	3		X																			
9 4mw1-GW-051016	5/0/16/130 W	3		X																			
[0 9mw3-Gw-051016	5/10/10 345 W	3		X							1.10												
Relinquished	MFA			STI	h	0	13L	11		Dimme	nts/əj	Decial	msui	uction	15								
Received	0915			T	11/14	5	130	u	5														
Relinquished	Gene			4																			
Received	(
Relinquished							1.1																
Received	N													_	_								
Reviewed/Date			E1.	actros	ic Data	Doli	vorables			roma	togra	ms w	ith fin	al rep	oort [
Data Package: Sta			El	ectron	ic Data	Dell	verables		No. X-	-7	fre	9	+										

Analylical Laboratory Testing Bervices Turnaround Request (In working days) Laboratory Number: 05 - 094 Company:: Manuel Foster Alongi Project Number: OSIBS.0201 - 06 Check One) Image: Image: Difference Image: Difference Image: Difference Image: Difference Im	OnSite	Chain o	of Custody		Page 2 of 2
Company: (Check One) Mault Foster Alongi Same Day 1 Day Project Number: 2 Days 3 Days Project Name: X Standard (7 Days) 1 Day Project Manager: X Standard (7 Days) (TPH analysis 5 Days) Project Manager: (other) Sampled by: (other) Sampled by: (other) Isampled by: Date Time Sampled Sampled Multi Y-MULS Sampled Sampled Mark (Ke) downlow (Ke) (Ke) (Ke) (Ke) (Ke) (Ke) (Ke) (Ke)	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.cosite.com	Turnaround Request (in working days)	Laboratory Number:	05-094	
12 DUP - GW-051016 5/0/16 1445 W 3 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Company: Maul Foster Alongi Project Number: 0818.02.01-06 Project Name: Tiger 0i1-W.Nob Hill Project Manager: Yen-Vy Van Sampled by: Carolyn Wise Lab ID Sample Identification IJ YMWZ-GW-051016	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) Date Time Sampled Matrix 57,0/,16 1445 W	Number of Containers NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx/BTEX NWTPH-Gx/BTEX NWTPH-Gx/BTEX NWTPH-Gx/BTEX NWTPH-Gx/BTEX Semicondation Semicondation Semicondation	PAHS 8270D/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8270D/SIM Chlorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA Metals	TCLP Metals HEM (oil and grease) 1664A 8 Moisture 9 Moisture
	12 DUP - GW - 051016 12 MID9 - GW - 051016	57.0/16 1445 W	3 X 3		
<u>Vy Irip Blanks</u> <u>ytotr — W 3 X</u> 	14 Trip Blanks	7/0/1 - W	3 X		
Signature Company Date Time Comments/Special Instructions Relinquished Arolphic MFA 711/16 1340 Received OS65 \$111/16 1340 Relinquished Image: Special Instruction struction struct	Signature Relinquished Received Relinquished	Company MFA	Date Time 5711/16 1340 5111/16 1340	Comments/Special Instructions	
Received Image: Constraint of the second s	Received			-	
Received Image: Constraint of the second o	Received			-	
Reviewed/Date Chromatograms with final report	Reviewed/Date	Reviewed/Date		Chromatograms with final report	

Sample/Cooler Receipt and Acceptance Checklist

Client: MFA Client Project Name/Number: 0818.02.01-06 OnSite Project Number: 05-094	Initiated by: Date Initiated: 5/11/16			_	
1.0 Cooler Verification			~		
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A	1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	N/A	1234	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	(N/2)	1234	
1.4 Were the samples delivered on ice or blue ice?	Yes	No		1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature:	6	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes				
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
2.0 Chain of Custody Verification					
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	res	No		1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian?	res	No		1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Yes	No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	No		1 2 3 4	
3.0 Sample Verification					
3.1 Were any sample containers broken or compromised?	Yes	Not		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	No		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	(Yes)	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Yes	No	N/A	1 2 3 4	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Tes	No	N/A	1 2 3 4	
3.6 Is there sufficient sample submitted to perform requested analyses?	(es)	No		1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
3.8 Was method 5035A used?	Yes	No	(N/A)	1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#		NA	1234	

Explain any discrepancies:

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

ATTACHMENT C

DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 0818.02.01 | JUNE 8, 2016 | CITY OF YAKIMA

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater monitoring samples collected at the Tiger Oil property at West Nob Hill Boulevard and 24th Avenue in Yakima, Washington. The samples were collected May 9 and 10, 2016.

OnSite Environmental, Inc. (OE) performed the analyses. OE report number 1605-094R was reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
BTEX	USEPA 8021B
Gasoline	NWTPH-Gx

NWTPH = Northwest Total Petroleum Hydrocarbons.

USEPA = U.S. Environmental Protection Agency.

Samples Analyzed					
Report 1605-094R					
KMW16-GW-050916	MWG2-GW-050916	YMW2-GW-051016			
KMW14-GW-050916	MW10-GW-051016	DUP-GW-051016			
KMW15-GW-050916	KMW7-GW-051016	MW9-GW-051016			
KMW5-GW-050916	YMW1-GW-051016	Trip Blanks			
KMW6-GW-050916	YMW3-GW-051016	-			

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2014) and appropriate laboratory and method-specific guidelines (OE, 2015; USEPA, 1986).

OE flagged some results with "E" to indicate exceedance of the upper calibration range of the instrument. All samples with "E" flagged results were also reported with results from diluted sample fractions; no action was required by the reviewer.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. All laboratory method blanks were non-detect at method reporting limits (MRLs).

Trip Blanks

A trip blank (Trip Blanks) was submitted for USEPA 8021B and NWTPH-Gx analyses. The trip blank sample had a detection of toluene above the MRL, at 1.9 micrograms per liter (ug/L). All associated samples with toluene results less than five times the trip blank concentration were qualified by the reviewer with "U" as non-detect at the reported value.

Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
KMW14-GW-050916	Toluene	1.9	1.9 U
KMW15-GW-050916	Toluene	1.1	1.1 U
KMW5-GW-050916	Toluene	2.0	2.0 U
KMW6-GW-050916	Toluene	3.0	3.0 U
MWG2-GW-050916	Toluene	2.1	2.1 U
KMW7-GW-051016	Toluene	2.3	2.3 U

U = the result is non-detect.

ug/L = micrograms per liter.

Equipment Rinsate Blanks

Equipment rinsate blanks were not submitted for analysis.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate results were within percent recovery acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

MS/MSD results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency. All MS/MSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All laboratory duplicate samples were extracted and analyzed at the required frequency. All laboratory duplicate results met RPD acceptance criteria.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate (YMW2-GW-051016/DUP-GW-051016) was submitted for analysis. MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All field duplicate results met RPD acceptance criteria.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument accuracy through the end of the sample batch. All CCVs were within acceptance limits for percent recovery.

REPORTING LIMITS

OE used routine reporting limits for non-detect results, except when samples required dilutions because of high analyte concentrations and/or matrix interferences.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

- OE. 2015. Quality assurance manual. Onsite Environmental Inc. Redmond, Washington. July 24.
- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846 Update V. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (revision 1, July 2014).
- USEPA. 2014. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540/R-014/002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. August.